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This paper develops a monocular vision-aided inertial navigation system based on the
factored extended Kalman filter (EKF) proposed by Bierman and Thornton. The simul-
taneous localization and mapping (SLAM) algorithm measurement update and propaga-
tion steps are formulated in terms of the factored covariance matrix P = UDUT, and a
novel method for efficiently adding and removing features from the covariance factors is
presented. The system is compared to the standard EKF formulation in navigation per-
formance and computational requirements. The proposed method is shown to improve
numerical stability with minimal impact on computational requirements. Flight test re-
sults are presented which demonstrate navigation performance with a controller in the
loop.

I. Introduction

This paper describes a novel vision-aided inertial navigation system (VINS) based on the factored EKF

proposed by Bierman and Thornton. The Bierman-Thornton EKF (BTEKF), sometimes known as a UD

filter, was developed to improve the numerical stability of the Kalman filter without sacrificing computational

performance. This allows the filter to handle poorly conditioned problems with greater reliability than

standard EKF implementations. The standard EKF is a widely used tool for aircraft state estimation

and visual-inertial navigation in particular. Many visual slam algorithms are based on an underlying EKF

algorithm for state and covariance estimation. However, its use in vision-aided navigation is problematic due

to the possibility of poor conditioning of the covariance. The visual slam problem is not fully observable,

so the state covariance can grow without bound, leading to poorly conditioned operations within the filter.

Improving the numerical stability with the BTEKF expands the operational envelope of the system and

improves reliability.

The VINS system described here is similar to the familiar EKF-based simultaneous localization and

mapping (EKF-SLAM) systems. The state vector is composed of vehicle states and feature locations, and a

covariance matrix and state vector are estimated from measurements and model propagation. Our system

differs by storing the covariance matrix in factored form, and performs measurement updates, propagations,

and feature initialization and removal by modifying the factored covariance matrix. Like many other systems,

the number of stored features is limited to ensure the filter operates in constant time.

Next, an overview of the related literature is presented. Section III presents the proposed BTEKF

navigation filter. Section IV presents a simulation study comparing the proposed filter to the standard EKF,

both in performance and computational load. Close loop performance of the filter is demonstrated with

flight test results. Finally, Section V presents conclusions.
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II. Related Work

Monocular camera-only SLAM has been a very active research area since the first real-time implementa-

tion was introduced by Davison in 2003.1 The first system was based on the standard EKF, and since then

variety of new paradigms have emerged. MonoSLAM,2 and extentsion of Davison’s original work, improved

feature initialization and the motion model. Eade and Drummond3 propose to treat the measurement up-

date as a nonlinear estimation problem, analagous to bundle adjustment with one camera pose and a prior

covariance, and build a set of submaps which are then optimized. Both of these systems operate on sparse

image features. Klein and Murry4 propose dividing the mapping and tracking steps into separate threads.

This allows a full bundle adjustment to be carried out on a more dense point cloud in non-real time, while

tracking continues on the existing map at frame rate.

The system proposed in this paper has most in common with MonoSLAM,2 in that both use the Kalman

filter to estimate a sparse set of features. This paper differs in the use of the factored covariance for improve

numerical stability, and the use of inertial sensors for propagation of the motion model. Additionally, this

paper looks at the problem in the context of unmanned vehicles, which have fast dynamics and a controller

in the loop. This fact becomes relevant because the highly non-linear nature of the visual SLAM problem

causes a failure of the separation principle, and the controller feedback loop may cause instability if only

considered separately.5

Work on the application of VINS to aerospace systems is becoming more common. This is often driven

by the need for independence or reduced reliance on GPS for unmanned vehicle systems (UAS). Vision

aiding for obstacle avoidance,6 and for vehicle localization7 were early efforts in this area. More recently,

the work by Weiss et al.8,9 adapts the PTAM algorithm by Klein and Murray4 for use on small quadrotor

vehicles with an inertial measurement unit as the only additional sensor. They demonstrate highly capable

systems with extended closed-loop flight test results. Shen et al.10 develop a system which is fundamentally

monocular, but uses a second camera for feature depth initialization. Other papers such as Leishman et al.11

and Schmid et al.12 demonstrate close-loop flight test results with systems using RGB-D vision and stereo

vision respectively.

The UD filter used in this paper was first proposed by Bierman and Thornton.13,14 In a detailed case study

of a portion of an interplanetary space mission, they compare the UD filter to standard EKF, the Joseph-

stabilized EKF, and the square-root filter.15 They demonstrate that the UD filter performs accurately using

single precision arithmetic where both the standard EKF and Joseph-stabilized filters fail. Additionally, the

UD filter demonstrated computational load which was approximately 50% greater than the standard and

Joseph-stabilized, and much less than the square-root filter.16 The formulation of the UD filter presented

here extends the original algorithm to allow feature states to be efficiently added and removed from the filter.

This work builds on previous papers developing the vision-aided inertial navigation system. Wu et al.

developed a method for fusing feature information from a monocular vision sensor in an extended Kalman

filter framework.17 The approach in those papers relied on tracking features whose locations were estimated

when GPS was active. When GPS was inactive, they demonstrated that this method ensures bounded hover

of a rotorcraft UAV through flight test results. This work was continued in Chowdhary et al. in which a fully

independent vision-aided inertial navigation system was presented and flight tested.18 The system presented

here improves upon Chowdhary et al. by accounting for correlations between the vehicle and feature states,

which improves accuracy and consistency, and by using the UD filter for the full system to improve numerical

stability.

III. The Bierman-Thornton EKF SLAM Navigation System

This section presents an overview of the Bierman-Thornton visual SLAM navigation system. The BTEKF

formulation is of importance in this application because the relative nature of vision-aided estimation without

known features may cause covariances with large condition number over large time intervals and distances.
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The state vector is composed of the vehicle postion, attitude, velocity and IMU bias states. Feature states are

added and removed to the estimator, and only a limited number of features are stored to maintain constant

time performance. The features are cartesian parameterized.

A. State Definition and Measurement Model

The vehicle model is based on the specific force and angular velocity input from a IMU. The non-linear

dynamics of the vehicle are driven by raw IMU input, which is assumed to have a static or slowly evolving

bias and corrupted by white Gaussian noise.

The vehicle state is given by the following vector:

x̂a =
[
p̂i v̂i q̂i ŝb ω̂b

]T
(1)

where p, v, q, is the vehicle position, velocity and attitude quaternion, respectively, sb is the acceleration

bias and ωb is the gyro bias. Superscript i denotes the inertial frame and hatted variables indicate estimated

quantities. The rotation matrix from body to inertial is denoted Lib = LT
bi. The vehicle state is propagated

by integrating data from the IMU. IMU sensor measurements are corrupted by noise and bias as follows:

sraw = a+ sb + Lbig + ηa, (2)

ωraw = ωt + ωb + ηω. (3)

where a, and ωt are the true acceleration and angular velocity, respectively, and g is the acceleration due to

gravity in the inertial frame. It is assumed that the noise is zero mean and white Gaussian, i.e. ηa ∼ N (0, Qa)

and ηω ∼ N (0, Qω). The estimated bias is subtracted from the IMU data before propagation in the model

s = sraw − ŝb, (4)

ω = ωraw − ω̂b. (5)

The vehicle dynamics are given by the following:

˙̂pi = vi (6)

˙̂vi = Libs− g = Lib(sraw − ŝb)− g (7)

˙̂qi =
1

2
Q(ω)q̂i =

1

2
Q(ωraw − ω̂b)q̂

i (8)

˙̂sb = 0 (9)

˙̂ωb = 0 (10)

where s is bias-corrected specific force, and angular velocity ω is the bias-corrected angular velocity. The

function Q : R3 → R4×4 maps angular velocity to the quaternion derivative matrix coefficient and, in the

first-element-scalar convention used here, is given by19

Q([a1 a2 a3]T) =


0 −a1 −a2 −a3
a1 0 a3 −a2
a2 −a3 0 a1

a3 a2 −a1 0

 (11)

Using the quaternion representation in the estimation algorithm causes the covariance matrix to become

singular and requires careful accounting of the quaternion constraints. To avoid these difficulties, a minimal

representation of the vehicle’s attitude is used, which defines the vehicle’s current attitude with respect to
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an arbitrary reference frame, in this case the attitude in the previous time step.

Since the time step is short, we can assume this attitude change is small and it can be defined as an

infinitesimal error quaternion.

δq =
[
1 R̂

]T
(12)

such that

δq = q̂−1
ref ⊗ q̂. (13)

Additional details on this formulation can be found in.20,21

The minimal vehicle state vector is

x̂v =
[
p̂i v̂i R̂ ŝb ω̂b

]T
∈ R15 (14)

The full state vector of the system is composed of the vehicle state and the feature states:

x̂ =
[
x̂v p̂f

]T
∈ R15+3Nf (15)

=
[
p̂i v̂i R̂ ŝb ω̂b p̂f1 . . . p̂fNf

]T
(16)

where Nf is the number of feature states. The feature states are assumed to be static, and so the process

model may be ignored, though a feature state process noise term Qf may be applied. The covariance of the

state vector is given by P ∈ R(15+3Nf )×(15+3Nf ), though it not explicitly tracked in the BTEKF. The process

noise of the filter is given by Q = diag(0, Qa, Qω, 0, 0, Qf , . . . , Qf ), where diag indicates a block diagonal

matrix of the arguments.

A pinhole camera model is used, and for simplicity, it will be assumed that the principle point is in the

center of the image plane, and distortion has been compensated for. Additionally, we will treat the the image

plane as if it is located in front of the optical center, and align the camera frame x-axis with the optical axis.

Given the feature point location rcf = pcf − pc = [X,Y, Z]
T

, the image plane location (u, v) is given by

z =

[
u

v

]
= h(x) + ν =

[
fu

Y
X + νu

fv
Z
X + νv

]
(17)

where fu and fv are the horizontal and vertical focal lengths, respectively, and νu ∼ N (0, Ru) and νv ∼ N (0, Rv),

R = diag(Ru, Rv). Figure 1 illustrates the relationship between the inertial, vehicle and camera reference

frames.

B. Bierman-Thornton Extended Kalman Filter

The Bierman-Thornton EKF is a modification of the standard EKF formulation which maintains the esti-

mator covariance in a modified Cholesky factorization. It is composed of the Bierman propagation equations

and Thornton update equations. Efficient algorithms for computing the resulting covariance factors are

available in Grewal and Andrews.14
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Figure 1. A schematic of the key reference frames used in this presentation: the inertial frame i, the vehicle
body frame b, and the camera frame c. In general, the camera and body frame origins can be in different
locations, but for simplicity of presentation it is assumed they are co-located.

1. Thornton propagation equaations

The BTEKF stores the covariance factors U and D, where U is an upper triangular matrix with unit diagonal

entries, and D is a diagonal matrix. The factors relate to the covariance matrix by

P = UDUT. (18)

The Thornton propagation equations for timestep k − 1 to k are given below. Let Q be the process noise

and Φ be the state transition matrix for the discrete dynamic system. Then the propagated covariance is

given by

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1. (19)

Rewriting this in terms of factors U and D gives

Uk(−)Dk(−)Uk(−)T =
[
Φk−1Uk−1(+) I

] [Dk−1(+) 0

0 Qk−1

][
Uk−1(+)TΦT

k−1

I

]
. (20)

Factoring terms on the right side, [
Uk−1(+)TΦT

k−1

I

]
= BL (21)

where B is an orthogonal matrix and L is lower triangular. Comparing the result to the left side:

Uk(−) = LT (22)

Dk(−) = BT

[
Dk−1(+) 0

0 Qk−1

]
B (23)

The propagation of factors U and D is therefore a matrix factorization problem. Propagation of the state

vector proceeds according to the nonlinear dynamic equations presented in Section III.A.

2. Bierman measurement equations

The Bierman measurement update equations update the covariance factors to account for new measurement.

The equations assume a scalar measurement. If the system has vector measurements, they can be processed
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sequentially.22 In standard EKF, the covariance update is given by

P (+) = P (−)− P (−)CT
(
CP (−)CT +R

)−1
CP (−). (24)

Where C = ∂h(x)
∂x x=x̂

is the measurement Jacobian evaluated at the estimate x̂. Rewriting in terms of U

and D gives

U(+)D(+)U(+)T (25)

= U(−)D(−)U(−)T − U(−)D(−)U(−)TCTCU(−)D(−)U(−)T

CU(−)D(−)U(−)T
(26)

= U(−)

[
D(−)− D(−)U(−)TCTCU(−)D(−)

CU(−)D(−)U(−)TCT +R

]
U(−)T. (27)

Now, consider the factor in brackets. If this can be factored into its modified Cholesky form,

D(−)− D(−)U(−)TCTCU(−)D(−)

CU(−)D(−)U(−)TCT +R
= UaD(+)UT

a , (28)

where Ua is an upper triangular matrix, then inserting in to Eq. (27) gives

U(+)D(+)U(+)T = U(−)
[
UaD(+)UT

a

]
U(−)T (29)

= [U(−)Ua]D(+) [U(−)Ua]
T

(30)

and it can be seen that the updated diagonal matrix D(+), and U(+) is given by

U(+) = U(−)Ua (31)

Additionally, the Kalman gain K is easily computed from U(−) and D(−) and used to update the state

vector.

C. Initialization of New Features

The initialization and removal of features in the BTEKF is more difficult than the standard EKF formulation

due to the factored form of the covariance. In the standard EKF, all terms contributing to the correlation

of a particular state are contained in the row and column corresponding to its location in the state vector.

However, it will be shown that in factored form, the values in diagonal matrix D contributes to all state

correlations, and the relationship between elements of U and the states is not so clear. In the following

section, the initialization of a new feature and its covariance in the BTEKF is expressed as a factorization

problem, and this problem turns out to be of identical form to the Thornton propagation problem, allowing

the same algorithm to be used.

Consider the state x full covariance matrix P . Since the initialization occurs during a single timestep k,

the subscripts will be omitted. Let x be divided into three parts, and P divided correspondingly.

x̂ =
[
x̂T1 x̂T2 x̂T3

]T
(32)

P =

 P1 P12 P13

PT
12 P2 P23

PT
13 PT

23 P3

 (33)
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by extension, the modified Cholesky factors are given by

U =


U1 U12 U13

0 U2 U23

0 0 U3

 , D =


D1 0 0

0 D2 0

0 0 D3

 (34)

Let us replace the state x̂2 and its correlation with a new state x̂2new
and correlation. The new state, in this

context the location of a feature in an image projected into 3D space, is a function of the current state and

measurement. Inverting the camera model gives

x̂2new = f(x̂1, x̂3, z, d) (35)

= p̂i + dLic(q̂
i, R̂)

 1

u/fu

v/fv

 , (36)

where d is an a priori distance along the projection ray necessary for computing the initialization of the

state. The expression for the new state vector is given by

x̂new =

 x̂1

x̂2new

x̂3

 =

 x̂1

f(x̂1, x̂3, z, d)

x̂3

 (37)

The initialization function is in general nonlinear, therefore to calculate the initialization covariance, the

function is linearized:

x̂new ≈ J
[
x̂T1 zT d x̂T3

]T
(38)

where

J =
∂x̂new

∂
[
x̂T1 , z

T, d, x̂T3
]T =


I1 0 0 0

∂x̂2new

∂x̂v
0 . . . 0

∂x̂2new

∂z
∂x̂new

∂d 0

0 0 0 I3

 (39)

Then, from the definition of covariance, the covariance of the new state vector can be found as a linear

transformation of the covariance of [x̂1, z, d, x̂3]
T

, which is known.

Pnew = J


P1 0 0 P13

0 R 0 0

0 0 σ2
d 0

PT
13 0 0 P3

 JT = J


P1 0 P13

0 R̄ 0

PT
13 0 P3

 JT (40)

= JPoJ
T (41)

where σd is the standard deviation of the a priori distance d.
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Next, recall that P is stored in its factored form U and D. Rewriting Po in terms of these factors gives

Po =


U1 U12 U13

0 0 0

0 0 U3



D1 0 0

0 D2 0

0 0 D3



U1 U12 U13

0 0 0

0 0 U3


T

+


0 0 0

0 R̄ 0

0 0 0

 (42)

= ŪDŪT + ¯̄R. (43)

This expression for Po allows the new covariance to be written in the same form as the Thornton propagation.

Pnew = J
(
ŪDŪT + ¯̄R

)
JT (44)

=
[
JŪ J

] [D 0

0 ¯̄R

][
ŪTJT

JT

]
, (45)

and the calculation of the U and D factors of the new covariance then becomes a identical factorization

problem to that described in Section III.B.1. Decomposing the right-most factor into orthogonal matrix B

and lower-triangular matrix L, [
UTJT

JT

]
= BL, (46)

yields new U and D factors,

Unew = LT (47)

Dnew = BT

[
D 0

0 ¯̄R

]
B. (48)

This method of feature initialization allows the use of the BTEKF implementation without costly re-

construction and re-factorization of the covariance from the factors. Additionally, multiple features can be

initialized simultaneously by constructing Po and J for multiple features. Then the factorization into B and

L may be performed once for all features.

IV. Results

This section presents the simulation and flight test results for the fully correlated vision-aided navigation

system described in this paper. Validation of the vision-based navigation system was conducted on the

GTMax,23 a 66 kg modified Yamaha RMAX helicopter UAV with custom avionics and flight software

designed by the Georgia Institute of Technology Unmanned Aerial Vehicle Research Facility (UAVRF).

Figure 2 shows a picture of the GTMax. The helicopter is outfitted with a variety of sensors including an

Inertial Science IMU sampled at 100 Hz, short-range sonar, magnetometer, and differential GPS. The vehicle

was equipped with a Prosilica GC 1380 camera for vision-based navigation. A computer with an Intel i7

processor performs all flight-essential processing. When performing vision aided navigation, the computer

runs two processes, one for guidance, navigation and control and another for feature and descriptor extraction.

Image features and descriptors are generated using the SIFT algorithm,24 as implemented in OpenCV a. All

flight results presented below employ the GTMax’s baseline adaptive flight controller that has been described

in detail in [25].

Simulation results presented below were generated using the Georgia Tech UAV Simulation Tool (GUST).

ahttp://opencv.org/
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The GUST software package that combines a high-fidelity vehicle and environment model, onboard flight

control software, and ground station software. The vehicle model is a six rigid body degree of freedom

model with additional engine and rotor dynamics. The vehicle model simulates sensor noise, delay, location,

orientation, and actuator dynamics and saturation.

Figure 2. The GTMax helicopter weighs 66 kg and has a rotor diameter of 3 m. For vision-based navigation,
a downward-facing camera is mounted on the nose of the vehicle.

A. Comparison of BTEKF SLAM with Standard EKF SLAM

The purpose of the Bierman-Thornton EKF implementation is to improve the numerical stability of the

update and propagation of the filter. To demonstrate the improved numerical properties, the BTEKF

was compared to a standard EKF. The standard EKF was implemented using the following covariance

propagation equations:

∆t = tk − tk−1 (49)

Pk = Φ(tk, tk−1)Pk−1Φ(tk, tk−1)T +Q∆t (50)

The state derivative given in equations (6-10) is propagated with a second order Runge-Kutta method. The

measurement update equations are

P (+) = (I −KC)P (−) (51)

x̂(+) = x̂(−) +K(z − h(x̂(−))) (52)

K = P (−)CT(CP (−)CT +R) (53)

The implementation of the propagation equation performed two N×N matrix multiplications, and all entries

of Pk were calculated and the upper and lower triangular values were averaged to ensure symmetry.

In both the BTEKF and standard EKF, the state transition matrix Φ(tk, tk−1) is approximated with a

first order expansion of the linearized dynamics,

Φ(tk, tk−1) = I +A(tk − tk−1) +H.O.T (54)

where A is the Jacobian of the nonlinear dynamics of equations (6-10).

A state vector of 15 vehicle states and 16 features was used, giving a full state vector of 63 states in the

form described in Section III.A. The filter was initialized with a diagonal matrix P0, and a diagonal process

noise Q was used. The initial covariance is given in Table 1. Camera and magnetometer sensors were used.

Figures 3 and 4 illustrate the operation of the filter, during initialization until 5 seconds, and then in

full operation afterwards. Figure 3 shows the root-mean-squared position error for the two filters. It can
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Initial Covariance

φ, θ 2× 10−9 rad2

ψ 0.1 rad2

px, py, px 5× 1011 ft2

vx, vy, vx 0 (ft/s)2

abx, aby 1 (ft/s2)2

abz 2× 10−6 (ft/s2)2

ωb 2× 10−8 (rad/s)2

features derived

Table 1. Initial covariance of the state vector

be seen that the unfactored standard EKF implementation quickly diverges about 5 seconds after the end

of the initialization routine, while the factored BTEKF remains accurate. Similarly, in Figure 4 the state

variances of the unfactored standard EKF quickly become unreasonable, whereas the factored BTEKF is

stable throughout.

The failure of the standard EKF is directly related to numerical problems, which do not occur in the

BTEKF. The case demonstrate a dramatic failure, but it can be assumed that inaccuracies are present in

the standard filter even when failure does not occur.

B. Comparison of Computational Load of BTEKF and Standard EKF

An investigation of the computational requirements of the BTEKF and Standard EKF was performed. It

should be noted that no special effort was made to make the standard EKF efficient, and that a more in-depth

comparison would take greater advantage of sparsity in both the standard EKF and BTEKF algorithms.

However, since many implementations of the standard EKF are in precisely this form, we think this is a

useful comparison.

The propagation portion of the filter was chosen for the comparison, as this is the most frequent operation

and thus is often a limiting factor. The average computation time for the covariance propagation was

measured over 60 s of filter operation for both implementations. The simulation was run on a desktop

computer with a Core i7 processor. The results are presented in Table 2. The BTEKF propagation was

found to be on average slightly more efficient at propagating the covariance than the standard EKF.

Propagation Time

BTEKF 0.00211 s

Standard EKF 0.00262 s

Table 2. Average computation time for one covariance propagation over 60 s of operation for BTEKF and
standard EKF.

C. Simulated Navigation Performance

The BTEKF was evaluated in simulation flying a prescribed trajectory. The GTMax flew four laps of an

oval trajectory at 9.1 m/s velocity and an altitude of 30.5 m. The BTEKF vision-aided navigation solution

was used in the controller loop in real time. Vision data was simulated by overlaying satellite maps on the

simulation ground, and capturing images from rendered graphics from the camera location. SIFT features

were used.26
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Figure 3. Position RMS error for the standard EKF (unfactored) and the BTEKF (factored). Filter initial-
ization ends at 5 seconds.
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Figure 4. Position and attitude covariance for the standard EKF (unfactored) and the BTEKF (factored).
Filter initialization ends at 5 seconds.
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Figures 5, 6, and 7 show the results from the simulation. Figures 6 and 7 show the error between the

simulation truth states and the navigation output. Also shown are 2σ uncertainty bounds. Is is apparent

that the navigation solution remains consistent with the uncertainty throughout the test. Figure 5 shows

the trajectory of the vehicle and the navigation estimate. Table 3 shows some performance statistics from

the simulated flight.
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nav
truth

Figure 5. Horizontal position of vehicle as given by vision-based navigation position states (red dashed line)
and simulation truth data (blue solid line) of the GTMax during a simulated flight of an oval trajectory. The
total distance flown was approximately 1600 m.

Horizontal Error Statistics

Distance 1575 m

RMS Error 5.5 m

% RMS Error 0.35 %

Final Error 9.7 m

% Final Error 0.61 %

Table 3. Horizontal error statistics for the simulated oval trajectory using vision-aided navigation.

D. Flight Test Results

The BTEKF SLAM navigation system was flight tested on the GTMax platform. The navigation system

provided input to the vehicle controller, which tracked trajectory commands from an operator. The navi-

gation system was operated with a controller in the loop, and important validation criteria because of the

highly non-linear nature of the SLAM navigation.

The sensors available to the navigation system were as follows: camera, capturing images at 57.66 fps and

320×240 resolution, magnetometer at 10 Hz, IMU at 100 Hz. Additionally, the RTK-GPS altitude above a

datum was used to simulate the behavior of a pressure altimeter. The horizontal RTK-GPS was recorded for

comparison, but was not used in the navigation solution. Harris corner features were used, and an 11 × 11
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Figure 6. Horizontal position error and 2σ-covariance of vision-aided navigation system of the GTMax during
a simulated flight of an oval trajectory. The final horiontal position error was 9.7 m.
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Figure 7. Attitude error and 2σ-covariance of vision-aided navigation system of the GTMax during a simulated
flight of an oval trajectory.
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pixel window around each feature was used as a descriptor. Figure 8 shows examples of images from the

camera used during the test.

Figure 9 shows a image of the planned trajectory as seen from the ground station during the test.

Figure 10 shows the navigation solution along with the GPS sensor data. The trajectory of the vehicle

agrees with the GPS sensor data in general, but the figure does highlight two sources of error in the system.

The first is the seen in the rotation of the navigation solution with respect to the GPS data. This is caused

by an error in the magnetometer calibration. Since no absolute yaw angle information is provided by the

vision aiding, this introduces a constant yaw angle bias into the solution. Second, the slight scaling of the

navigation solution with respect to the GPS data. This is caused by a bias in the initialization distance.

Features are initialized with a depth prior based on the datum height, and assume a Gaussian distribution

about that height. Variation from this altitude in one direction violates the Gaussian assumption and causes

a biased solution.

Figure 11 shows the horizontal error plots between the navigation solution and the GPS data, as well as

the 2σ error covariance. The altitude of the vehicle above the datum is shown for reference. The error is

shown to be consistent with the covariance. Oscillations in the error plot are caused by the magnetometer

bias.

Table 4 gives numerical results from the test.

Flight Test Results

Time 200 s

Linear Distance 1163 m

Horizontal RMS Error 5.51 m

% RMS Error 0.47 %

Final Error 3.88 m

% Final Error 0.33 %

Table 4. Flight test results for oval trajectory.

V. Conclusion

This paper presents a vision-aided navigation system based on the Bierman-Thornton factored extended

Kalman filter (EKF). The filter update and propagation steps are described, and a novel method to initialize

and remove states from the filter is presented. Simulation results illustrate the improved numerical stability

over the standard EKF formulation and comparable computational requirements. Simulation and flight test

with a controller in the loop was performed and the results presented. The navigation system remained

within the 2σ bounds over most of the trajectory.

(a) (b) (c) (d)

Figure 8. Example images from the camera during the flight test.
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Figure 9. Image from ground control station during flight of oval trajectory. Yellow trace shows the navigation
solution. Blue trace shows the GPS data. Purple line indicates the commanded trajectory.
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Figure 10. Horizontal navigation solution and RTK-GPS data for autonomous flight with controller in the
loop.
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Figure 11. Horizontal position error of navigation solution from GPS truth for autonomous flight with con-
troller in the loop. Altitude is shown for reference.
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