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SUMMARY

Broadband, variable, and random excitations are often suppressed using active vi-

bration absorbers (AVAs). While AVAs can be e®ective, they also are expensive and subject

to instability when the disturbance is ill de¯ned. A state-switched absorber (SSA) can be

used for these same vibration classes while reducing the expense and instability because

an SSA is only allowed to be active at discrete instances. SSAs are spring-mass-damper

devices in which at least one element is controllably variable. The work presented in this

dissertation evaluates the properties of magnetorheological elastomers (MREs) to assess

their use in SSAs as variable springs.

MREs are elastomers doped with magnetically permeable material, generally iron. They

are modeled as lossy springs, and have sti®ness and loss factor components. Natural fre-

quency and sti®ness behavior, and their relationships to static displacement, iron content,

and forcing frequency and amplitude were determined. Loss factors were found to be in-

dependent of MRE content, con¯guration, and static displacement. This was con¯rmation

that MREs are in fact controllable springs. Natural frequencies changed in the presence

of magnetic ¯elds by as much as 360%. The corresponding change in static displacement

could not account for this frequency change.

Transient data was found by determining the length of time it took for an MRE to

achieve quasi-steady state oscillation behavior when subjected to a harmonic excitation.

This time was referred to as the characteristic response time. The characteristic response

time correlated to the ratio of the forcing frequency to the zero-¯eld natural frequency.

When a magnetic ¯eld was turned on, the characteristic response time on average was

found to be consistently longer than when the magnetic ¯eld was turned o®, regardless

of iron content or con¯guration. The di®erence between these two characteristic response

times is caused by the particles' mechanics. To form a chain, a magnetic ¯eld must both be

set up, and particles must move to join together. When a chain is broken, the magnetic ¯eld

x



must merely be removed. However, this di®erence gives opportunities for future research

to be conducted on controlling MREs' transient responses.
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CHAPTER I

INTRODUCTION

Magnetorheological elastomers (MREs) are heterogeneous materials consisting of ferromag-

netic particles dispersed in chain-like patterns within elastomeric matrices. Because MREs

contain ferromagnetic particles, their sti®ness have been found to increase in the presence

of magnetic ¯elds [7]. Due to their sti®ness changing properties, MREs are a subject of

interest particularly for vibration control applications. MREs can be implemented as active

vibration suppression elements within vibration absorbers [17]. The work presented here

investigates the transient behavior of MREs contained in longitudinal vibration absorber

con¯gurations and their controllability and stability limits, with an emphasis on their ability

to operate as state-switched absorbers (SSAs).

MREs were used as the subject of study because their Young's and shear moduli are

magnetic-¯eld dependent (see Chapter II for a thorough discussion of this subject). This

means that when placed in series with a mass, MREs behave as variable-sti®ness springs.

Due to the curing methodology employed to create MREs, discussed in more detail in

Section 2.2, the MREs' behavior is dependent upon the orientation of the excitation with

respect to the magnetic ¯eld.

For the research discussed in this dissertation, MREs were excited parallel to the di-

rection of their internal chains, which is referred to as \longitudinal" excitation. This is

contrary to what has been done previously by many researchers, which was to implement

MREs in vibration absorption applications such that the magnetic ¯eld was perpendicular

to the direction of excitation [40, 33, 23, 16, 10]. Exciting MREs in this con¯guration is

commonly referred to as \shear" excitation. Original MRE work contained MREs in the

shear excitation con¯guration because the theory behind MREs' behavior in this con¯gura-

tion was well-understood, as will be detailed in Section 2.1. However, recent studies have

found that MRE excitation parallel to the direction of magnetic ¯eld can produce larger
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sti®ness changes than excitation in the shear orientation [2].

MREs were studied with the goal of use within an SSA device. SSAs, which are discussed

in Section 2.1, have a speci¯c tuning algorithm that requires a switchable spring to change

from state to state \instantaneously". In practical terms, this means that state switching

must be complete within a quarter-cycle of the frequency of interest to maintain stability

[20]. While MREs are known to exhibit sti®ness changes in the presence of changing

magnetic ¯elds, the time-dependent behavior of these changes have not been studied. The

purpose of this dissertation were to answer the questions \how do micro scale MRE models

predict to macro scale MRE behavior?" and \what are the transient properties of these

MREs for purposes of SSA control?" Four research objectives were developed to answer

these questions. These objectives were to:

² create a numerical model describing micro scale MRE behavior

² use the micro scale numerical model to predict macro scale MRE behavior

² assess stability and controllability properties

² determine the transient behavior of MREs in longitudinal excitation

A two-dimensional micro scale numerical model was developed so that known informa-

tion, such as the host elastomer's sti®ness and the ¯ller particle's nominal diameter, could

be synthesized to predict aggregate MRE behavior in a vibration absorber con¯guration.

FEA packages on the market require prior knowledge of MRE behavior (sti®ness, loss fac-

tor, damping, etc.) in order to predict knowledge in future con¯gurations. The micro

scale numerical model developed for this research does not require prior knowledge of MRE

behavior, just knowledge of the separate elastomer and particulate properties.

The micro scale MREs were modeled as very small portions of MRE elastomers. Each

individual portion was treated as a block, which could be built upon to create a two-

dimensional face. The e®ects of building up, or scaling, on predicted property behavior

was compared to known property behavior recorded from experimental tests. Knowledge

2



of how properties' predictions are a®ected by scaling can be used in future to extrapolate

future properties from small-scale MRE modeling in this manner.

Simulation results from these micro scale MREs were put into context of full-sized MREs

by treating each small simulation MRE as a building block, and building up larger MREs.

Simulation results were compared to the original micro scale size as these MREs were \scaled

up". The pattern of predicted behavior was extrapolated as a function of further scaling

to predict MRE behavior at the macro scale, or full-sized MRE scale.

Stability and controllability properties were assessed in micro scale simulation and ex-

perimental MRE results. In order for an MRE to function as a switchable spring in an

SSA, properties such as sti®ness and loss factor, and each of these values' responses to

changes in magnetic ¯eld must be understood. These properties are characterized in micro

scale simulations, scaled up to predict macro scale response, and compared to experimental

results.

Transient response of MREs to step changes in magnetic ¯eld was studied so that MRE

behavioral dynamics could then be incorporated into an overall control algorithm to achieve

successful SSA control. Stability and controllability limits must be assessed to ensure the

successful SSA algorithm controls within the physical limitations of MRE behavior. It was

anticipated that with this knowledge, engineers will have more complete information with

which to design not only SSAs, but other AVA applications using MREs as a switchable

spring.

The objectives were achieved through a combination of experimental and numerical

research. A simulation was developed, as were methods for analyzing the simulation results,

as described in Chapter III. Experimental methods and procedures are explained in Chapter

IV. Static MRE properties, including sti®ness and loss factors, found in the experimental

data and simulation results are reported in Chapter V. Transient responses are evaluated

in Chapter VI. Loss factors are reported in Chapter VII. The results reported in Chapters

V and VI are synthesized to create a model describing MRE behavior and was tested for

controllability and stability in Chapter VII, and numerically validated in Chapter VIII.

Conclusions drawn from this research are presented in Chapter IX.
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This research represents an advancement for AVA and SSA developers. The creation

of this transient model gives developers a predictive tool to evaluate the usefulness of an

MRE for their particular applications. This includes the frequency limitations of MREs

when designing SSAs and AVAs, as well as physical limitations on its ability to respond to

control inputs.

The subject of this dissertation was studied after a thorough investigation of the current

state of research in the area of vibration absorbers, MREs, magnetic ¯elds, and elastomer

behavior modeling. The next chapter is dedicated to the discussion of tuned vibration ab-

sorbers (TVAs), adaptive tuned vibration absorbers (ATVAs), and state switched absorbers

(SSAs), their uses, advantages, and disadvantages. Descriptions of smart materials used in

ATVAs are also discussed. MREs in particular are discussed, including analytical and em-

pirical models that have previously been established. Descriptions of other, magnetically

manipulated devices are also discussed as well as their physical models. Previous research

conducted by the author on the subject of MREs is included, as well as a discussion of the

understanding of MRE behavior to date.

4



CHAPTER II

BACKGROUND

Vibration absorbers are devices that, when attached to base structures, minimize the base

structure's vibration response to an excitation. Vibration absorbers can be \tuned" by

selecting speci¯c mass, damping, and sti®ness values to minimize base motion at particular

frequencies. Section 2.1 discusses TVAs as well as their active and hybrid vibration absorber

(HVA) counterparts. AVAs, HVAs, and SSAs require \smart" materials, materials which

possess characteristics that are controllable through an external stimulus. MREs are a

class of smart materials, described in Section 2.2. MREs are comprised of elastomeric host

matrices with embedded ferromagnetic particles. Section 2.3 discusses common elastomeric

models and Section 2.4 covers the various ways magnetic ¯elds have been modeled in the

context of MREs.

2.1 TVAs, AVAs, and HVAs

Figure 2.1 depicts an example of a TVA, which is a spring-mass-damper devices. The

TVA was developed in 1911 for suppression of vibration in ships, buildings, and aircraft

[13]. TVAs were further developed to suppress vibration in rotating machinery, camshafts,

multiple and single degree of freedom systems, and continuous systems [11]. TVAs can also

control nonlinear systems as well as systems subject to random vibration excitation [28].

Figure 2.1: A TVA attached to a base mass.

While TVAs are very e®ective for a wide variety of applications, a TVA's performance is

compromised in order to achieve e®ective attenuation over broadband or variable frequency
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ranges [35]. Several alternatives to TVAs have been developed, including adaptive tuned

vibration absorbers (ATVAs), AVAs, HVAs, and SSAs. These devices have been developed

for use in di®erent applications, although their fundamental construction was similar.

Since TVA performance is decreased in the presence of broadband, variable, or simply ill

de¯ned or unknown excitation [35], a di®erent absorber was developed to control these types

of excitation. A direct control AVA controls these excitations by imposing a force directly

onto the vibrating mass. An indirect control AVA applies a force to the vibrating mass

through a mass-spring-damper mechanism, where one or more of the spring-mass-damper

elements can instantaneously and continuously change its properties to minimize vibration.

Work on AVAs began using the direct control method, and AVAs were shown to outperform

TVAs in broadband applications [29]. However, direct control AVAs can require signi¯cant

amounts of energy, and therefore indirect control AVAs were developed. Furthermore,

indirect control AVAs are much more closely related to TVAs and ATVAs. While indirect

control AVAs are not necessarily an advantage over direct control AVAs, a device that has

the capacity to function as an ATVA may also have characteristics that would lend itself

to e®ective AVA application. Any future mention of AVAs in this dissertation implies an

indirect control AVA.

While AVAs can be highly e®ective, they also pose the serious risk of adding energy to

the overall system, leading to instability [1]. A disturbance must be either well de¯ned, or

very accurately measured to be able to implement this type of vibration absorber. AVAs

are considered to be high-cost and high-risk, but very important to the development of

helicopter rotors, °exible aerospace vehicle bending control, and isolating ¯ghter pilots

from their aircraft's motion [24], among other applications.

Hybrid vibration absorbers (HVAs) have been developed as a hybrid of the stable TVA

and the adaptive AVA. HVAs can be signi¯cantly more robust than AVAs, while at the

same time achieving vibration control that rivals the AVA [24]. An HVA is only permitted

to change one or more properties at discrete and de¯ned times. In between each property

change, the HVA behaves as a passive TVA. An HVA can not add energy into the system,

which minimizes the instability risk.
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There are several types of HVAs, but for this work the focus is on adaptive tunable

vibration absorbers (ATVAs) and state-switched absorbers (SSAs). An ATVA is generally

used to control a system that was not well de¯ned, such as a machine whose natural fre-

quency is not known but operates at a constant frequency [35]. An ATVA is a device whose

properties change quasi-statically until an optimal property value is found. Once an optimal

property value has been found, it stays at that value and behaves as a TVA. An SSA is

used to control well de¯ned but changeable excitation. An SSA is a device that switches

between di®erent element values, or \states", to minimize an overall cost function, such as

base energy [9]. The HVA considered in this dissertation was developed for SSA control

applications, and will eventually be used to further develop control algorithms established

by Cunefare et al [9].

The control algorithm employed by Cunefare et al [9] consist of two conditions; one con-

dition determines candidate switch points based on avoiding shocks in the system response,

and the other condition determines whether a switch would minimize base energy. Both

conditions must be satis¯ed in order for a switch to occur. The candidate switch points for

a changeable spring are when the energy level in each spring state would be equal, or when

kix2 = kjx2; (2.1)

where x was the spring expansion from its equilibrium state and ki and kj are the sti®nesses

for states i and j, respectively. At the instant when the sti®ness switches, the displacement

will stay the same. Therefore, in order to satisfy Equation 2.1, the spring may only switch

sti®nesses when x = 0. The candidate switch point condition mandates a constant energy

level in the switching element during the switch, which was a key concept addressed in

Section 5.3. Whereas Equation 2.1 determines whether or not the point in time was a

candidate switch point, whether or not the sti®ness should be switched was determined by

knextSSA =

8
>>>><
>>>>:

kSSA1 if _xbase( _xSSA ¡ _xbase) > 0

kSSA2 if _xbase( _xSSA ¡ _xbase) < 0

kSSA if _xbase( _xSSA ¡ _xbase) = 0

9
>>>>=
>>>>;

: (2.2)

This equation comes from the e®ort to minimize kinetic energy at the time when there was no
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potential energy [9]. This method has been shown to be more e®ective than passive devices

for single degree-of-freedom cases as well as continuous systems [21], and additionally was

stable provided that a switch was complete within 1=4 of the period of the highest frequency

of interest[20].

The nonpassive devices, AVAs, HVAs, SSAs, and ATVAs, all have elements that are

changeable. While mechanical switching implementations have been developed, recent work

has focused on materials with switchable elements. There are several materials that have

been researched and developed as changeable elements, but the emphasis for the dissertation

work lies on magnetorheological elastomers (MREs) as tunable springs.

2.2 MREs

An MRE is a smart material whose e®ective sti®ness increases in the presence of a magnetic

¯eld. MREs contain ferromagnetic particles suspended in an elastomeric matrix. The

ferromagnetic particles develop particle-to-particle attraction forces in the presence of a

magnetic ¯eld, yielding a gross average sti®ness increase.

While ferromagnetic inter-particulate attraction causes a sti®ness increase in magnetic

¯elds, the presence of any particulate matter in an elastomer contributes additional sti®ness

to an otherwise un¯lled elastomer. An analytical model relates the amount of particulate

matter in an elastomer to the overall Young's modulus such that [18]

E 0 = E0(1 + 2:5Á + 14:1Á2); (2.3)

where Á is the volume fraction of the elastomer composite that consists of the particulate

matter, and E0 is the un¯lled elastomer's Young's modulus. This model remains accu-

rate, even when particulate matter is not randomly aligned [18]. Meinecke experimentally

validated this model [27].

MREs yield the largest sti®ness changes when they have been cured in the presence of

a magnetic ¯eld [7]; it has become common practice to cure MREs in this manner. When a

magnetic ¯eld is present during cure, iron particles within the MRE align in chains, as shown

in Figure 2.2. This means that the cured MRE exhibits isentropic, or non-directionally

uniform, behavior in response to magnetic ¯elds.
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Figure 2.2: An MRE, made up of 30% iron particles by volume, is magni¯ed by a factor
of 1000. The iron particles are aligned in chains.

Figure 2.3 depicts an isentropic MRE excited in three di®erent orientations. Each ori-

entation places MREs such that the chains within the MREs are parallel to the direction

of magnetic ¯eld. However, the shear mode device, on the left, is excited perpendicular to

the magnetic ¯eld, whereas the longitudinal and squeeze-mode devices, on the center and

right, are excited parallel to the direction of the magnetic ¯eld. The primary di®erence

between a longitudinal mode and squeeze mode device is that the longitudinal mode device

has static separation distance between the base and absorber masses, enforced by geometric

conditions and independent from spring sti®ness, while the static separation distance for

the squeeze-mode absorber is dependent upon the MRE's sti®ness.

Research on MREs excited in shear was ¯rst conducted by Rigbi and Jilken in 1983 [31],
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Figure 2.3: MREs placed in shear, longitudinal, and squeeze modes

when a stable magneto-mechanical state was found to exist within MREs. MREs have been

developed for variable sti®ness suspension applications [38, 17]. MREs containing 27% iron

by volume have been found to generate the largest sti®ness increase, of up to a 50% sti®ness

change [10]. This corresponds to approximately a 23% natural frequency increase.

While MREs have been studied extensively when excited perpendicular to the direction

of magnetic ¯eld [40, 33, 23, 16, 10], little work has concentrated on the mechanistic ex-

planation governing MRE behavior when excited parallel to the direction of magnetic ¯eld.

Furthermore, the mechanistic explanation for the sti®ness increase in shear does not apply

to a sti®ness increase experienced by an MRE excited in a longitudinal or squeeze mode

application.

MREs in the longitudinal and squeeze mode orientations have been studied for magne-

tostrictive as well as dynamic characteristics. Researchers have investigated the magne-

tostriction properties of MREs, which includes static geometric changes in MREs due to

magnetic ¯elds. Dynamic studies of MREs in longitudinal modes have been explored only

recently, with publications dating back to 2002 by Sun et al [36]. While the theoretical

rationale for a sti®ness increase in this orientation was up to 2008 unknown, Lerner and

Cunefare found as much as a 507% natural frequency increase when excited in this manner

[26]. This natural frequency increase was signi¯cantly larger than the frequency increase

exhibited in the shear mode. This large frequency increase can potentially be useful in a

variety of control applications such as beam vibration control, where the second vibration

mode is roughly 5.27 times larger than the fundamental natural frequency [28]. For cases
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such as these, Holdhusen and Cunefare found that beams can be optimally controlled if a

spring sti®ness could increase by a factor of 1.94 [21].

Magnetostriction has been studied for MREs with iron fraction volumes of at least 27%

[5, 42]. One of the interesting magnetostrictive properties exhibited by MREs are its change

in nominal length, or static length, in response to the application of a constant magnetic

¯eld. MRE static lengths have been found susceptible to MRE ¯ller content and the ratio

of void volume within the MRE to overall volume [4]. MRE static length was found to

decrease linearly with increasing °ux density B, measured in Tesla, or

² =
¢l
l0

/ ¡B (2.4)

for B < 0:3 T and for Á =0.4, 0.6, and 0.8 [5]. Signi¯cant hysteretic e®ects were also

found. Magnetostatic volumetric changes were predicted using eigenstrains and Eshelby's

equivalent inclusion method [36], which models strain induced by inhomogeneity by replac-

ing particulate matter with the matrix material. Experimental work has found that while

MREs cured in the presence of a magnetic ¯eld will decrease in length along the direction

of a magnetic ¯eld, an MRE cured in the absence of a magnetic ¯eld, called an elastomer-

ferromagnet composite (EFC), will actually increase in length along the axis of a magnetic

¯eld as random particles migrate normal to the ¯eld in an e®ort to align into chains [42].

While signi¯cant e®orts have been placed on examining the theoretical reasoning behind

MRE behavior in the static realm, few explanations have been o®ered for dynamic behavior

of MREs in the longitudinal direction. Brigadnov et. al. attempted to explain MRE

behavior by developing an isotropic model of MREs [8]. A reasonable match was achieved

between the theoretical model and shear data collected from Jolly et al. [22], but this

mathematical model has not been compared to longitudinal experimental data.

Zhou and Li have claimed that low-frequency applications of MREs are futile [43]. After

studying acceleration hysteresis curves, Zhou and Li concluded that MREs do not exhibit

frequency changes in the presence in a magnetic ¯eld [43]. They found little change in the

acceleration curves when magnetic ¯elds were applied for excitation frequencies below 80

Hz, and inferred that MREs are not useful for low-frequency applications [43]. (It should be
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noted that they did not record the natural frequency of the system they studied.) However,

this work was looking at the response of MREs to speci¯c frequency excitations; it was a

well-known phenomenon that the response of a vibration absorber well below its natural

frequency remains constant; the key was to develop an MRE with a low natural frequency

to operate in low frequency applications.

Farshad and Benine found experimentally that compressive moduli can increase by a

factor of 3 when subjected to a magnetic ¯eld [12]. Furthermore, it was found that MREs

experience the largest property shifts in the direction of iron particles when iron particles

are aligned [26, 12].

2.3 Elastomer modeling

Iron particle alignment within MREs is possible because an elastomeric substrate holds the

ferromagnetic particles in place. Elastomeric sti®ness behavior has been studied intensely

because as a class they exhibit elastic characteristics. This section examines how elastomers

deviate from other material models of sti®ness moduli, and commonly accepted elastomeric

models.

Elastomers, like many materials, deform in a manner best governed by Hooke's Law,

where

¾ = E²; (2.5)

and ¾ is stress, E is the material's Young's modulus, and ² is strain. However, elastomers

used in MRE applications are generally considered to have complex Young's moduli [15, 41],

since the stress and strain are generally out-of-phase with each other. The di®erence in

phase is captured by a loss factor, ±, where

tan (±) =
E"
E0 ; (2.6)

E" is the viscous out-of-phase Young's modulus and E0 is the elastic in-phase Young's

modulus. A complex Young's modulus, E¤, creates a phase lag between stress and strain

as well as displacement-dependent energy loss.
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2.4 Magnetic ¯eld models

MREs contain both elastomers, discussed in the previous section, and ferromagnetic parti-

cles, discussed here. Ferromagnetic particles are known to undergo a hysterisis loop when

in the presence of a magnetic ¯eld, as shown in Figure2.4. When a ferromagnetic parti-

cle is in the presence of a magnetic ¯eld (H), the concentration of the magnetic ¯eld, or

°ux density (B) increases nonlinearly. The ferromagnetic particle is at state (Bx, Hx) at

complete saturation. However, once the magnetic ¯eld is removed, there will still be some

residual magnetic ¯eld, or coercive \force", denoted as Hc [19].

Figure 2.4: A hysteretic loop showing magnetic °ux versus magnetic ¯eld for a typical
ferromagnetic particle.

A standing body of knowledge exists concerning MREs operating in shear, as well as

magnetic modeling for ferromagnetic, para- and dia-magnetic materials operating under

repulsive magnetism. While this knowledge does not directly address MRE behavior in the

longitudinal mode, some of this information can be adapted to describe its performance.

This section describes magnetic models for each of these scenarios.

One reason that MREs have been studied extensively in shear as opposed to longitudinal

mode may be that there was a theoretical explanation for a sti®ness increase in the shear

direction. Ferromagnetic particulate matter in MREs are modeled as point dipoles, depicted

in Figure 2.5, where the interaction energy between two magnetic dipoles is modeled as

Eij =
1

4¼¹rel¹0

·¡!m i ¢ ¡!m j ¡ 3 (¡!m i ¢ ber) (¡!m j ¢ ber)
j¡!r j3

¸
; (2.7)

where ¹rel is the relative magnetic permeability, ¹0 = 4¼£10¡7 is the magnetic permeability
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of a vacuum, ¡!m i and ¡!m j are magnetic strengths of each magnetic particle, assumed to be

identical and saturated in high magnetic ¯elds, and ¡!r is the distance of separation between

particles i and j. When excited in shear, the total energy per unit volume is [23]

U =
3Á

¡
²2 ¡ 2

¢
j¡!m j2

2¼2¹rel¹0d3r30 (1 + ²2)7=2
; (2.8)

where Á is the fraction of particulate matter, by volume, ² is the strain in shear, de¯ned as

² = x=r. The shear stress is then de¯ned as

¾ =
@U
@²

=
9Á²

¡
4 ¡ ²2

¢
j¡!m j2

2¼2¹rel¹0d3r30 (1 + ²2)7=2
; (2.9)

where d is the diameter of the particles. If small strain are assumed, or ² < 0:1, the shear

modulus is

G '
ÁJ2
p

2¹rel¹0h3
; (2.10)

where h is the height of the MRE, and Jp is the saturation polarization of the particles with

an MRE, and Jp / H. This means that ¢G / H2, where H was the applied magnetic ¯eld

intensity, for dipole-dipole interactions [33]. Davis empirically con¯rmed this relationship

in 1999 [10]. Davis also found a relationship that described maximum possible change in

shear modulus [10] such that

¢Gmax

G (0)
=

0:1911MPa
G0

; (2.11)

and for a \typical" elastomer with G0 = 0.4 MPa, he predicted a 50% increase for the optimal

particle volume fraction. However, Lerner and Cunefare found that larger increases can be

achieved with elastomers containing much softer shear moduli. Using a shear modulus of

250 Pa, they found a 335% increase in modulus.

Figure 2.5: Two magnetic particles.
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Ferromagnetic particles can only be modeled as magnetic dipoles when they are in high

magnetic ¯elds. Ginder found a sub-square relationship between G and H for nonsaturated

iron particles [14]. Zhou stated further that the magnetic dipole assumption does not

hold true for magnetic ¯elds lower than 0.8 Tesla, and that local magnetic saturation in

particles must be included for these cases [40]. Ginder et al [16] predicted analytically

that for intermediate ¯elds, u = ¡3
8Á¹0M 2

s
¡ ±
R

¢4, where Ms is the magnetic saturation,

± is the radius of the saturation zone, and R is the radius of the particle. Jolly et al.

examined MREs and MR °uids when particles are partially saturated, as would be the case

for intermediate ¯elds, and found theoretical curves that ¯t MR behavior [22]. Shkel and

Klingenberg modeled an MR chain assuming point-dipole model, but modeled the relative

magnetic permeability according to the Frolich-Kennelly equation, such that [34]

¹rel(H) = 1 +
(¹0 ¡ 1)Ms

(¹0 ¡ 1)H + Ms
: (2.12)

The Frohlich-Kennelly model describes magnetic permeability very well for intermediate

and large magnetic ¯elds, but does not re°ect low magnetic ¯eld behavior well. This type

of modeling remains suitable for shear excitation in intermediate and large magnetic ¯elds.

MREs have not been modeled extensively in squeeze and longitudinal modes. Since their

mechanistic behavior was not well understood, a search was conducted to investigate other

implementations of magnetic ¯elds in attraction or repulsion. It was possible that these

types of magnetic ¯eld models could lead to an explanation of squeeze and longitudinal

MRE behavior.

Magnetic ¯elds are used in magnetic bearing, levitation, and repulsion systems. These

three systems are e®ectively one phenomenon; that is, magnetic levitation, or maglev,

systems feature two magnets, operated in repulsion. The force of the repulsion allows

a mass attached to the nonstationary magnet to be suspended, reducing the e®ects of

friction. Figure 2.6 shows a typical magnetic levitation system. One magnet, typically one

with variable and controllable magnetic ¯eld output, is ¯xed to a system, and the second

magnet, which is a permanent magnet, is then suspended.
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Figure 2.6: A magnetic levitation system works by applying a magnetic force that opposes
gravity.

The maglev phenomenon was investigated by conducting a numerical study of two per-

manent magnets, separated by an air gap, z. The repulsive magnetic force was found to

follow Fz = k=z, where k is a constant [37]. It was found that a linearized magnetic force

could be integrated into an equation of motion such that

mÄ& + c _& + mg ¡
µ

k
z0

¶
+

µ
k
z20

¶
& ¡

µ
2k
z30

¶
&2 = F (t) ; (2.13)

where z = z0 + &, and F (t) is a control force [37]. The second-order magnetic forcing

e®ect can generally be discarded. The remaining two terms generate two e®ects; the 0th-

order e®ect decreases the net static displacement of the suspended magnet, and the 1st-order

e®ect generates a net sti®ness between the two magnets. While repulsive maglev systems are

stable in the axial direction, any transverse displacement will generate instability. However,

two-axis repulsive control systems can be created to generate a stable control system [39].

Repulsive magnetism can also be used to alter mechanical behavior of para- and dia-

magnetic materials, such as aluminum, copper, or brass. Consider Figure 2.7, where a

para- or dia-magnetic material is positioned as a vibrating cantilever beam, in between

two permanent magnets of identical strength. The Joule e®ect generates induced current

through the cantilever beam. This induces a \phantom e®ect", which is modeled as a force

proportional to the velocity of the beam, such that [30]

Fm = ®
µ

@B
@x

¶2

_x; (2.14)

where ® is a constant, and @B=@x is the °ux density gradient as a function of x. In this

way, permanent magnets can be used to increase the viscous damping in a system if the

system to be controlled was a para- or dia-magnetic material.
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Figure 2.7: A paramagnetic material in between two permanent magnets in repulsion.

There has been signi¯cant work conducted on MREs in shear, magnetic modeling for

repulsive control systems both in ferro-magnetic as well as para- and dia-magnetic materials,

and magnetostriction modeling conducted on MREs in the longitudinal direction.

Chapters V, VI, and VII describes MRE behavior when the MREs are excited in a

longitudinal manner. In Chapter III, elastomeric and magnetic models discussed in this

chapter are used to model microscopic pieces of MREs as matrices of elastomer and iron

particles.
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CHAPTER III

NUMERICAL MODEL

A numerical model was developed to answer the questions: \how do loss factors and natural

frequencies vary with magnetic ¯eld?" and \what is the characteristic response time of

MREs subjected to a step change in magnetic ¯eld?". In order to address these questions,

a simulation is constructed by combining basic magnetic theory with linear vibration theory.

The simulation results are validated against experimental data in Chapter VI. The contents

of this chapter develop the underlying principles behind the simulation and validate the

curve-¯tting method used to answer the dissertation questions.

The work presented in this chapter addresses the general numerical model used to deter-

mine a small MRE's dependency on magnetic ¯eld at a microscopic scale. Each micro scale

model is used as a basic building block and stacked upon itself to create larger MRE as-

semblies. The change in key characteristic behavior was identi¯ed and used to numerically

extrapolate macro scale MRE behavior. Section 3.1 discusses the characteristic elastomer

and iron properties used and assumed for this dissertation work, which are applied in the

remainder of this work. Section 3.6 describes scaling techniques used to validate this

micro-scale numerical model using macro-scale elastomeric results.

3.1 Modeling MREs: Representative Characteristics

In this work, MRE behavior was measured experimentally, simulated numerically, and their

results were compared. In order to make like comparisons, simulation properties mirrored

the experimental properties. This section lists the material and behavioral properties that

were used in this work to assess MRE behavior.

While many MRE applications contain base elastomers with shear moduli of approxi-

mately 0.4 MPa [33], this research follows a continuation of prior work aimed at developing a

low-mass, low-frequency SSA [2]. A base elastomer, discussed more thoroughly in Chapter
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IV, was represented in the numerical models as having a Young's modulus of E = 1:3 MPa,

a characteristic mass of 66 picograms, and a loss factor of 0.2. These two properties were

found experimentally to best represent this elastomer [25]. The ferromagnetic particles in

this work were iron microparticles. They were modeled as spheres with an average diameter

of 7 ¹m, and a characteristic mass of 0.36 ng.

The magnetic ¯eld inside the elastomer was modeled such that a saturation magnetic

°ux of Bm = 1:4 T required a separation force of

Fm =
B2
m

2¹0¹rel
; (3.1)

where ¹rel was assumed to be 1, since pure elastomers have ferromagnetic properties similar

to air.

3.2 Numerical models for MREs

MREs are commonly modeled as springs placed between a base mass and an absorber

mass, simulating conditions depicted in Figure 2.1. The equations discussed in Sections

3.2.1.1 and 3.2.1.2 are compiled into a model that simulated MRE performance in such a

con¯guration.

When MREs are modeled, typically the global material properties are applied to an

FEA program. This means that for each di®erent MRE used, the MREs must ¯rst be

tested to identify material properties before further FEA analysis can be conducted. The

purpose of generating the models discussed in this chapter and for the duration of this

dissertation is to create a model that addresses the microscopic behavior in terms of base

elastomer characteristics as well as particle properties and to predict macroscopic trends.

The advantage to this type of model is that elastomer and particle properties are generally

well-known, and MREs need not be created in order to do initial testing.

In order to model MRE behavior, microscopic cross sections of MREs were modeled

as matrices of connected elements. Appendix A lists the ensemble of all MRE matrices

that were used in this work. MRE behavior is ¯rst modeled in the absence of a magnetic

¯eld, and then modi¯ed to include the particles linked in chains by a magnetic ¯eld. The

modeling details are presented in Section 3.2.1.
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3.2.1 MRE models and equations of motion (EoMs)

MREs contain chains of particles that move together as a single unit in high magnetic

¯elds under low forcing conditions, but move independently under large forcing levels or

low/nonexistent magnetic ¯elds. The elastomer elements, on the other hand, are modeled

as mass and spring elements in all cases. The system of equations are established for an

MRE assuming no external magnetic ¯eld in Section 3.2.1.1, and the e®ects of the magnetic

¯eld are addressed in Section 3.2.1.2.

3.2.1.1 MRE system of equations with no magnetic ¯eld

Figure 3.1 shows a sample MRE matrix Actual matrices used for this work can be found in

Appendix A. MREs were modeled as matrices of elements, where each element is assigned

a value of either spring or magnetic particle, and each element's motion is described by an

equation of motion. Element locations were predicted for each step in the following order:

1) Forcing elements { all elements along the bottom rows

2) Unbroken long-chain particle elements (only in magnetic ¯elds)

3) All other particle elements { denoted by the crosshairs in Figure 3.1

The equations of motion for each particle element were compiled so that the displacement

of all particles could be predicted at time step i + 1 using a linear time invariant (LTI)

model such that

½
_xi+1

Äxi+1

¾
=

8
><
>:

[0] [I]

[M ]¡1 [A] [M ]¡1 [B]

9
>=
>;

½
xi
_xi

¾
+

½
0

[M ]¡1 Fi+1

¾
(3.2)

and

½
xi+1

_xi+1

¾
=

½
_xi+1

Äxi+1

¾
¢ dt +

½
xi
_xi

¾
; (3.3)

where [I] is an identity matrix, [A], [B] and [M ] are matrices determined through the EoM,

F is a forcing vector, and dt is the time between each time step.

In order to determine matrices [A], [B], and [M ], each element is classi¯ed as either an

elastomer or a particle. The elastomer in this cross section is represented as longitudinal

springs, with spring constants equal to the sti®ness of an equivalently sized elastomer and
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Figure 3.1: Schematic representation of a microscopic cross section of a sample MRE.
Letters and numbers designate the element grid.

containing a point mass at the node location of an equivalent size. The particles were

represented by point masses of iron. Shear springs, whose sti®nesses were equivalent to

the host elastomer's, connected neighboring elements in the direction perpendicular to that

of the excitation. All elements along the bottom of the sample moved together uniformly

according to the forcing displacement, and the top of the sample is ¯xed at a zero reference

frame.

Each element's behavior is characterized by an equation of motion, described as

(1 ¡ ¯mn) MÄxmn = ¡
X

i

X

j

[®ijkij (xmn ¡ xij) + ®ijcij ( _xmn ¡ _xij)] + ¯mnf; (3.4)

where ®ij is 1 if element ij is immediately adjacent to element mn, otherwise it is 0,

and the summation indicates all elements directly adjacent to element(m;n). ¯mn is an

indicator; if element(m;n) is in the bottom row, ¯mn is 1, otherwise it is 0. M is the mass

at element(m;n). The sti®ness kij is either a longitudinal or shear sti®ness, depending on

whether element(i; j) is adjacent to, or above/below element(m;n). The variable f is the

forcing function applied to the bottom row of the MRE matrix.

Equation 3.4 is implemented for every particle in each MRE. Consider a sample MRE,

depicted in Figure 3.1. The equation of motion for element A2 would be

mkÄxA2 = ¡k (xA2 ¡ 0) ¡ k (xA2 ¡ xB2) ¡ ks (xA2 ¡ xA1) ¡ ks (xA2 ¡ xA3)

¡ c ( _xA2 ¡ 0) ¡ c ( _xA2 ¡ _xB2) ¡ cs ( _xA2 ¡ _xA1) ¡ cs ( _xA2 ¡ _xA3) ; (3.5)

where k and c are the tensile sti®ness and damping, respectively, mk is the mass of the

spring element, and ks and cs are the shear sti®ness and damping. The equation of motion
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for element B2 would be

mÄxB2 = ¡k(xB2 ¡ xA2) ¡ ks(xB2 ¡ xB1) ¡ ks(xB2 ¡ xB3) ¡ (3.6)

c( _xB2 ¡ _xA2) ¡ cs( _xB2 ¡ _xB1) ¡ cs( _xB2 ¡ _xB3);

where m is the mass of the particle. Since element C2 is also a particle, it does not contribute

to B2's motion in the absence of a magnetic ¯eld. Equation 3.4 describes the motion of

every element except for those in the bottom row. elements in row F are dictated by the

forced motion f , such that

xFj = f; (3.7)

where j = f1; 2; 3; 4; 5g. Equations 3.5, 3.6, and 3.7 can be rearranged into the general

matrix equation of

[M ]Äx + [B] _x + [A]x = ¡!F : (3.8)

One important characteristic of the mass matrix [M ] is that it is a diagonal matrix, where

the diagonal is the mass of each particle. This value is zero when an element is positioned

along the bottom row of the MRE, such as described by Equation 3.7. Therefore, the mass

matrix is singular, and Equation 3.8 cannot be applied to Equation 3.2.

A modi¯ed mass matrix must be constructed in order to correctly produce Equation 3.2.

All bottom row elements can be given a nominal diagonal matrix value of 1, and once [M ]¡1

has been calculated, the resultant diagonal is replaced with 0. This means that Equation

3.3 must be modi¯ed to ensure that bottom element motion is being properly calculated.

The (i + 1)th time step is calculated such that

xi+1 = Axi + F: (3.9)

Equations 3.2 and 3.3 are used to describe an MRE's dynamic performance in the

absence of a magnetic ¯eld. These equations are the bases for determining the behavior of

MREs in a magnetic ¯eld. The EoM for MREs in a magnetic ¯eld are described in Section

3.2.1.2.
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3.2.1.2 MRE system of equations in a magnetic ¯eld

When neighboring iron particles are in the presence of a magnetic ¯eld that dominates other

forcing e®ects, these iron particles move as a unit. As other forcing factors increase and

become stronger than the magnetic ¯eld, the iron particle unit break into smaller units, and

then ¯nally as individual particles. This section describes the models used to predict this

behavior.

Full Chain EoMs Consider the chain of particles in Figure 3.1 comprised of elements B2,

C2, and D2. Using the methods described in Section 3.2.1.1, the EoMs for these elements

are

B2 :
mÄxB2 + (k + 2ks)xB2 ¡ ks(xB1 + xB3) ¡ kxA2 + (c + 2cs) _xB2¡

cs( _xB1 + _xB3) ¡ c _xA2 = 0

C2 : mÄxC2 + 2ksxC2 ¡ ks(xC1 + xC3) + 2cs _xC2 ¡ cs( _xC1 + _xC3) = 0

D2 :
mÄxD2 + (k + 2ks)xD2 ¡ ks(xD1 + xD3) ¡ kxE2+

(c + 2cs) _xD2 ¡ cs( _xD1 + _xD3) ¡ c _xE2 = 0

: (3.10)

These three particles will move as a unit because the magnetic attractive forces that bring

these particles together exceed the external mechanical forces. Since these three particles

are moving as a unit, ÄxB2 = ÄxC2 = ÄxD2. Exploiting Newton's 2nd Law, the chain's equation

of motion can be written as

3mÄxD2 + (k + 2ks)(xB2 + xD2) + 2ksxC2 ¡ ks(xB1 + xB3 + xC1 + xC3 + xD1 + xD3) ¡

k(xA1 + xB2) + (c + 2cs)(xB2 + xD2) + 2csxC2 ¡

cs(xB1 + xB3 + xC1 + xC3 + xD1 + xD3) ¡ c(xA1 + xB2) = 0 (3.11)

This equation of motion can be used to describe element D2's motion. Elements C2 and

B2 can then be rewritten such that

xC2 = xD2 ¡ ±x

xB2 = xC2 ¡ ±x
; (3.12)
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where ±x is the distance between the center of the particles, or the diameter of the particle,

if they are spherical. These ¯ndings can be generalized for a chain of N particles, such that

xj = xj+1 ¡ ±x for j = 1; 2; : : : ; N ¡ 1

NmÄxN = ¡(
NP
j=1

¡!K j) ¢ ¡!x ¡ (
NP
j=1

¡!C j ) ¢ ¡!_x for j = N
(3.13)

where ¡!K j is the j th row of the sti®ness matrix and ¡!C j is the j th row of the damping matrix.

Equation 3.13 is incorporated into Equation 3.3 for large chains.

Chain Breaks In section 3.2.1.2, EoMs were derived for an MRE in a large magnetic

¯eld but subjected to a small excitation force. In section 3.2.1.1, EoMs were derived for an

MRE under no magnetic ¯eld, but this derivation also holds for an MRE in a magnetic ¯eld

with large excitation. While these EoMs capture MRE behavior at the extremes of expected

excitation behavior, there is a range of intermediate stages between these two extremes for

which these models are not representative. In physical terms, these intermediate stages

represent the di®erent interactive forces when the magnetic chains inside an MRE are

breaking and there are any number of smaller chains and some independent particle motion.

The derivation of these intermediate stage EoMs is detailed in this subsection.

Intermediate stage EoMs are calculated in an iterative manner, and are dependent

upon the internal structure of the MRE. When MREs contain long chains, de¯ned as

chains that connect the top and bottom of the MRE, the long chains must be broken ¯rst.

Beginning with the EoMs derived in section 3.2.1.2, the location of the ¯rst chain break

must be determined, and then the EoM of the MRE with this newly broken chain may

be determined. For each subsequent stage, the order of particle bond breaks must ¯rst be

found, and then the EoM may be derived.

In order to determine where a chain break occurs within a speci¯c chain, consider

the chain comprised of elements B2, C2, and D2 in Figure 3.1. Immediately prior to the

¯rst chain break, the MRE will be operating under conditions established by the EoMs in

Equation 3.13. If the excitation force subjects the MRE to a step increase in displacement
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of dx, the MRE's new static equilibrium can be found by solving

[K ]~x = ~F ; (3.14)

where [K ] is the sti®ness matrix as established by Equations 3.4, 3.3, and 3.13, assuming

that Äxij = 0 for all i and j .

As an MRE is stretched, forces on each particle chain increase until the forces due to the

excitation overcome the attractive magnetic forces. Although each particle within a chain

moves uniformly, and generally adheres to rigid body mechanics, this holds true only while

the forces internal to the chain are less than the force required to separate two magnetic

particles,

Fm =
B2A

2¹rel¹0
; (3.15)

where B is the magnetic °ux, in Tesla, A is the common surface area that the two particles

share when in contact, ¹rel is the relative permeability, where ¹rel = 200 for iron, and

¹o is the magnetic permeability in a vacuum, or ¹0 = 4¼ £ 10¡7. Since each particle

is individually attached to di®erent springs, the particle that builds up enough separation

force from its neighbors will break o® ¯rst. Once that chain break has occurred, assuming a

uniform particle size and contact area, the attractive magnetic force between two particles

in a constant magnetic ¯eld is a constant value. In a static balance situation, the step

displacement due to a chain separation is found to be

dx =
B2A

2k¹rel¹0
: (3.16)

The net magnetic force in this work is modelled as

Fi =

8
><
>:

mi (Äxi ¡ Äxi¡1) if mi (Äxi ¡ Äxi¡1) < Fm

Fm if mi (Äxi ¡ Äxi¡1) ¸ Fm

9
>=
>;

; (3.17)

where Fi is the attractive magnetic force between the ith and the (i ¡ 1)th element. The

magnetic force forces the ith and (i¡ 1)th elements to move together if the force separating

them is less than the threshold magnetic force described in Equation 3.15. However, the

attractive magnetic force is assumed to be a constant value for any separation forces greater
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than that. By modeling magnetic forces in this way, the nonlinear decrease in magnetic

¯eld is ignored. This technique is valid for small displacement values; in the future, the

e®ect of such an assumption may be studied in greater detail.

3.2.2 Comprehensive, micro scale MRE models

Whereas section 3.2.1 describes elastomer motion and section 3.2.1.2 discusses the motion

of particles in chains, this section synthesizes the analyses developed in the previous two

sections, and describes a system of equations that predict MRE constituent behavior for a

microscopic building block like that depicted in Figure 3.1. Equations 3.2 and 3.3 give a

framework for ¯nding the next time step in an MRE simulation. Within this framework,

particle motion is calculated within each iterative step before elastomer motion. Since

particles are assumed to have mass, they are treated as point masses within the MRE,

whereas elastomer elements are assumed to be point springs, massless, and therefore in

static equilibrium at all times (the lack of a static condition notwithstanding).

For this analysis, the entire vector of the elastomer's nodes can be regrouped so that at

time j the position vector is

xj =

8
><
>:

xpart;j

xforcing;j

9
>=
>;

; (3.18)

where xpart;j is a vector containing all the particles' displacement. The vector xf orcing;j

describes all the elements in direct contact with the forcing element, and overrides those

elements' dynamic behavior as particles. If there are p elements in xpartj and f elements

in xforcingj, then n = p + f . From Equation 3.9, A can be rewritten such that

Ax =
µ

[App] [Apf ]

¶
8
><
>:

xpart;j

xforcing;j

9
>=
>;

; (3.19)

where App is p £ p and Apf is p £ f .

Particle motion is derived from the general iterative form where

_x = Ax + B (3.20)

y = Cx + D

26



for a continuous system, and _x is found from Equation 3.9. Since the outcome of this

method is a numerical simulation, this equation must be discretized, so that

xi+1 = Axi + B: (3.21)

These equations are tailored to the MRE simulation such that the motion of a vector of all

particles within an MRE can be calculated by

xpart;j = eAppdt + App
³
eAppdt ¡ I

´
(Apfxforcing;j ) ; (3.22)

where App, and Apf are described in Equation 3.19.

Two matrices must be de¯ned in order to use Equations 3.22 and 3.2. In order to

¯nd App and Apf , recall from Equation 3.4 that the equation of motion for a particle in a

continuous system is

mmnÄxmn = ¡
X

i

X

j

f®ij [kij (xmn ¡ xij ) + cij ( _xmn ¡ _xij)]g ; (3.23)

where ®ij is 1 if xij is a neighboring element to xmn , and 0 otherwise. The mass element,

mmn = N (¢m), is the mass of each elemental particle, ¢m, multiplied by the number of

particles in the chain, N . Equation 3.23 can be rearranged such that

Äxpart = Appxpart + Apfxforcing + Bpp _xpart + Bpf _xf orcing: (3.24)

Equation 3.23 and its discrete counterpart, Equation 3.22, hold only for the last element

of a chain that does not terminate on the forcing surface. The rest of the particles in the

chain are described by xj = xj+1 ¡ dx. It should be noted that for Equation 3.23, xforcing

describes the displacement of all elements in contact with the forcing surface, or any element

in the M th row.

In summary, a simulation was created using an iterative time-step simulation such that

xi+1 = e[A]dt~p + A~xi + ~B, where

A =
·

[App] [Apf ]

¸
; (3.25)

and

xi =

8
><
>:

xpart;i

xf orcing;i

9
>=
>;

: (3.26)
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Each value of A is ¯rst identi¯ed using equations of motion such that Am;n =
P
i
P
j ®ijkij

and ®ij is 1 if xij is a neighboring element to xmn, and 0 otherwise. Then A is broken into

submatrices App, and Apf , according to whether xmn is on the line of forcing or not, and

whether its neighboring node is a particle, or forcing unit.

3.3 Using a numerical model to predict MRE behavior

The numerical models, developed in the previous section, are applied to predict experimental

MRE behavior. The equations that were discussed in the previous section are used to model

the displacement of each node within an MRE at every instance in time. However, only

the motion at the ends of the MRE is important in macro scale MREs; this is the motion

that is associated with the forcing frequency, and the displacement that is attached to the

absorber mass. So while each node is independently modeled for every MRE con¯guration,

the only simulation results used are the time progression, the forcing excitation, and the

uniform displacement of the top nodes that would attach to a mass in SSA applications.

The numerical model yields time data, from which properties such as natural frequency

and loss factors must be identi¯ed. Section 3.4 discusses how single degree-of-freedom ab-

sorber models are applied to these simulation results, and how key properties are identi¯ed.

3.4 Post-processing: System identi¯cation

MRE behavior is simulated according to the methods detailed in Section 3.2. The resul-

tant absorber mass behavior is ¯t to an equivalent single degree-of-freedom spring-damper

vibration model such that

Äxabs + i2³!n _xabs + !2
ne
i±xabs = i2³!n _xbase + !2

nxbase: (3.27)

This model is used because the goal is to create a tunable vibration absorber, in particular a

tunable vibration absorber whose sti®ness is controllably variable. By ¯tting the simulation

results to this curve, natural frequency and damping characteristics can be identi¯ed for

future control algorithms.

Equation 3.27 was used to identify system properties for all simulations in this work.

When discussing natural frequencies, the time response was converted to the frequency

28



domain via FFT to evaluate frequency response. Figure 3.2 shows a representative fre-

quency response of a 30% MRE (MRE30b) that was excited with no magnetic ¯eld. The

frequency data ¯ts well to the assumed model described in Equation 3.27. Model iden-

ti¯cation strategies are compared to ¯nd the best ¯t according to sum of the square of

errors.

Figure 3.2: The transfer function as a function of frequency for a 30% MRE subjected to
a 0.1 forcing ratio, band limited to below 250 Hz, and no static displacement.

When simulation data is ¯t to the model described in Equation 3.27, xbase and xabs

were the input and output of the models described in Equations 3.27. The two unknown

variables in Equation 3.27 were ³ and !n . Nonlinear least squared error methods were used

to calculate these properties, as discussed in Section 3.5.

MRE characteristics were identi¯ed by ¯tting the experimental data to a predetermined

single degree of freedom vibration absorption model. Experimental data was ¯t using

least-squared error methods. In order to ¯t the data to a least-squared error method, a

purely real sti®ness (K) and damping (C ) is assumed for an elastomer modeled in Figure
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3.3a. The equation of motion for the absorber mass of the device can be expressed as

MÄx + C _x + Kx = C _y + Ky; (3.28)

where M is the mass of the absorber, x is the displacement of the absorber mass, and y is the

displacement of the base mass. If the natural frequency is de¯ned as !n =
p

K=Mand the

frequency ratio as r = !
!n , where ! is the frequency of interest, then the Fourier transform

of Equation 3.28 can be found, and the amplitude of the SSA with respect to the base mass,

is

G =
¯̄
¯̄X
Y

¯̄
¯̄ = 10 log10

Ã
a

s
1 ¡ 4³2r2

(1 ¡ r2)2 + 4³2r2

!

= A + 5 log10
¡
1 ¡ 4³2r2

¢
¡ 5 log10

³¡
1 ¡ r2

¢2 + 4³2r2
´

; (3.29)

where A = 10 log10 a. This transfer function is similar to, but not identical to the commonly

derived transfer function

G =
¯̄
¯̄X
Y

¯̄
¯̄ = 10 log10

0
@ (F=K)q

(1 ¡ r2)2 + 4³2r2

1
A =

10 log10 (F=K) ¡ 5 log10
³¡

1 ¡ r2
¢2 + 4³2r2

´
; (3.30)

which is generated when a traditional single-degree-of-freedom system is considered, as

shown in Figure 3.3b. The transfer functions described in Equations 3.29 and 3.30 (as-

suming F=K = 1) are plotted in dB against r in Figure 3.4. While these two systems are

similar, they are not identical. The discrepancies between these two systems are signi¯cant

enough such that traditional, linear methods to identify system (b) are not valid for system

(a). As a result, nonlinear least-squared error system identi¯cation techniques were used.

3.5 Gauss-Newton Least-Squares Algorithm

Since the system shown in Figure 3.3a cannot be described by a linear system, a Gauss-

Newton least-squares error methodology was used to identify system parameters !n, ³,

and A, as they appear in Equation 3.29. In this section, the Gauss-Newton algorithm is

described within the context of application to Equation 3.29.
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Figure 3.3: Macro-scale representations for a) the system as described in this text, and b)
conventionally used to describe single-degree-of-freedom systems.

Figure 3.5 plots numerical simulation data against frequency for a 30% MRE and a curve

described by the parameters A = ¡0:201, !n = 15:3 Hz, and ³ = 0:377. The parameters

!n , ³, and A were found such that G(!n; ³; A) best represented the numerically-simulated n-

point data (henceforth referred to simply as data) y(r). A 3£1 vector of system parameters

was de¯ned as ¯ = [!n ; ³; A], and the Jacobian of the system was a n £ 3 matrix such that

J (r; !n; ³; A) =
·

@G
@!n

;
@G
@³

;
@G
@A

¸
: (3.31)

For a transfer function described in Equation 3.29, Equation 3.31 becomes

J (r; !n; ³ ; A) =
·

20r2

!n log 10

µ
2³2 ¡ 1 + r2

den
¡ 2³ 2

num

¶
;
40³r2

log 10

µ
1

den
¡ 1

num

¶
; 1

¸
; (3.32)

where num = 1 + 4³2r2 and den =
¡
1 ¡ r2

¢2 + (2³r)2. The Gauss-Newton algorithm

is iterative, and hence dependent upon an initial guess. Given an initial guess ¯0 =

[!peak; 0:2; 0], which corresponds to the peak natural frequency, the damping coe±cient of

the un¯lled elastomer, and no amplitude o®set, any ith iteration can yield system parameters

such that ¯i = ¯i¡1 + ±¯, where

±¯ =
£
JTJ

¤¡1 JT [y (r) ¡ G (r; ¯i¡1)] : (3.33)

31



0 1 2 3 4 5
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

Frequency ratio, Hz/Hz

A
m

pl
itu

de
, d

B

 

 
(a)
(b)

Figure 3.4: Transfer function amplitudes for systems (a) and (b).

The iterative search for parameters was concluded when each parameter deviation was less

than 0.1% of its previous value, or (¯i ¡ ¯i¡1) =¯i < 0:001 for all ¯ values.

3.6 Micro- to macro-scaling: Volume Averaging Technique

Numerical simulations were run on 35-by-40 ¹m segments of elastomer, which was 100-

150 times smaller than the actual elastomers used in experimental results. Simulating a

full-sized elastomer using the numerical simulation procedures here was not possible due to

limitations in computing resources. To circumvent this, a volume-averaging technique was

used to bound the range of expected elastomeric results. This section describes volume

averaging techniques, and the methodology used to apply these techniques to this particular

study.
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Figure 3.5: The numerically simulated transfer function for MRE30a is plotted against
frequency and a best-¯t line is found using Gauss-Newton least-squares algorithm.

A volume-averaging technique is used to extract meaningful macro-scale material char-

acteristics from micro-scale behavior. The idea is that the e®ects of occlusions, point

deformations, lamination, and other local microscopic behavior contribute to the overall

macroscale material characteristics. For a given parameter x, the volume-averaged param-

eter ¹x can be found such that

¹x =
1
V

Z

V
xdV; (3.34)

where dV is the di®erential volume that x is valid for, and V is the volume of the overall

material.

There is only one directional degree of freedom in the model discussed in this disser-

tation, that of longitudinal deformation. It was assumed that no deformation occured to

change the cross-sectional area of either the individual nodes nor the overall simulated MRE.

Therefore, Equation 3.34 can be simpli¯ed in this case such that an average parameter can
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be found such that

¹x =

NP
n=1

xn

N
; (3.35)

where N is the number of nodes, and xn is the parameter value at the nth node.

If the static relationship is considered between two nodes, such as those shown in Figure

3.6, that are directly in vertical alignment with each other, the equation of (non)motion

can be found such that

k (xi ¡ xi¡1) = k"i = Fi; (3.36)

where Fi is the 0th-order approximation of a magnetic force on that particle. Using the

principle of volume averaging, Equation 3.36 becomes

k =
P

FiP
"i

: (3.37)

Fi

xi

xi-1

Figure 3.6: Two neighboring nodes are separated by a spring and magnetic force.

The sti®ness reported in this work is the average sti®ness among all the identi¯ed equa-

tions of motions. It is expected that as the number of chains decreases, the sti®ness would

also decrease. This is because there is less resistance associated with the magnetic chains,

and more particles are able to move freely. As the MRE amplitudes increase and approach
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all chains broken, the average sti®ness should be the same as an MRE in the absence of a

magnetic ¯eld.
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CHAPTER IV

EXPERIMENTAL METHODS AND PROCEDURES

The experiments presented in this dissertation involved fabrication of MRE based vibra-

tion absorbers, and then evaluating their time-dependent response when subjected to an

excitation. This chapter deals with the MRE mixing and curing process, the absorber and

experimental apparatus, and procedures used to collect experimental data. The fabrica-

tion involved mixing and curing the MRE, and then attaching them to base and absorber

masses. The assembled vibration absorber was attached to a shaker, with its coil controlled

through a power supply. Both the shaker and power supply were manipulated to generate

di®erent absorber responses, which were measured.

MREs were mixed and cured to generate a desired volume fraction of iron, also referred

to as iron concentration. An appropriate mass of iron micropowder, ISP Technologies Inc.

grade R-1470, was added to RTV6186B, one of two parts of a GE Silicones elastomer, and

mixed thoroughly. The second part of the elastomer, RTV6186A, was added drop-by-drop.

The entire composition was mixed over a hot plate for ¯ve minutes. The elastomer mixture

was poured into a mold and cured for thirty minutes. The mold was designed to elevate the

elastomer temperature to over 90±C for thirty minutes as well as generate a magnetic ¯eld

through the MRE to promote iron chain formation. The mold could produce one cylindrical

MRE with overall diameter of 8 mm and 5 mm height.

The vibration absorber required two cured MREs, as well as an absorber mass and four

pieces that attached together to form the base mass, as shown in Figure 4.1. Cured and

cooled MREs were sliced in half lengthwise (cross-sectional areas were \D"-shaped) and

glued to the absorber mass. Once the glue had dried, the opposite ends of the MREs were

glued to the base mass.

The base and absorber masses were designed to minimize magnetic °ux resistance around

a desired magnetic path. Since the sti®ness changes as a function of magnetic ¯eld, the
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Figure 4.1: a) Front and b) side views of the base and absorber masses, connected with
MREs. Materials were selected to minimize magnetic resistance around preferred °ux
paths.

absorber and base masses were designed so that maximum magnetic ¯eld would travel

through the MREs. Figure 4.1 shows the materials used for each portion of the base and

absorber masses.

The assembled SSA device was assembled in the experiment con¯guration depicted in

Figure 4.2. A dSPACE DS1103 PPC controller board in a PC was used for data acquisition.

The board sent a band-limited white noise excitation source to a Ling Dynamic Systems

PA25E ampli¯er driving a Ling Dynamic Systems V203 shaker. A PCB type U288D01 ac-

celerometer was placed between the shaker and the SSA device's base mass to ¯nd a uniform

amplitude of excitation, and was powered by a Kistler 5134 power supply. The dSPACE

board also sent a signal to a Kepco power supply, model 36-6D, operated in current mode.

The Kepco supplied the current to the wire coil within the absorber mass that behaved

as the magnetic ¯eld source. A Philtec remote-sensing D100-QPT displacement probe was

rigidly connected to a base mass and measured the absorber's motion relative to the base

mass. The SSA itself was aligned in two di®erent con¯gurations; in one con¯guration, the

SSA was placed on top of the shaker, and excited parallel to the direction of gravity, and

will be referred to as the \in gravity" case. In the other con¯guration, the shaker's motion

input was perpendicular to gravity; that is, the SSA moved parallel to the ground, and any

response was free of gravity's in°uence, labeled here the \gravity-free" case. The absorber

mass and base mass were each elastically suspended to prevent out-of-plane motion for the
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gravity-free con¯guration.

Figure 4.2: Experimental hardware arrangement for the absorber device. The absorber
in this diagram represents an SSA suspended such that gravity was perpendicular to the
direction of excitation.

The coil used in this experiment had a resistance and inductance of R = 0:7 Ohms and

L = 91 mH, respectively. The power supply does not respond well to inductive loading;

therefore, the load was placed in parallel with a capacitor Ct = 0:1 ¹F and resistor RC =

100 kOhms, as indicated in Figure 4.3, to reduce electrical transients. Voltage across the

terminals was measured, and the current I through the coil was identical to that supplied

by the power supply, with a 95% settling time of 3.6 ms.

Figure 4.3: Transient suppression circuit, consisting of a resistor and capacitor, for power
supply stability. R = 0.7 Ohms, L = 91 mH, C t = 0.1 microF, and R c = 100 kOhms.

While current input to the coil could be precisely regulated, the shaker input was de-

pendent upon the ampli¯er settings, which could not be identically reset from test to test.

To ensure that the shaker level was as similar as possible between tests, a 25 Hz pure tone

signal was used to drive the shaker. The ampli¯er levels were varied until the accelerometer

measured an rms value of approximately 0.015 V, where up to 6% deviation was tolerated

test to test. This drive level was equivalent to approximately a 0.02 mm rms displacement

excitation. Each MRE was excited at three di®erent amplitude levels to check for any

nonlinearities associated with displacement; the nominal excitation level, denoted as \A =
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1.00", represented the 0.02 mm rms excitation level. An amplitude of \0.5" was 50% that

level, and an amplitude of \1.50" was 150% of that level.

The SSA was subjected to controllably variable magnetic ¯eld levels under three di®erent

control schemes: steady magnetic ¯eld excitation, blind switching, and SSA switching.

The purpose of these tests were to ¯nd static natural frequency levels, the characteristic

response time under random switch conditions, and the characteristic response time under

appropriate switch conditions, respectively. Once the amplitude level had been adjusted,

the SSA was tested to determine the natural frequency of the SSA under steady magnetic

¯elds. The time required to achieve the natural frequency under di®erent switching cases

was measured. The SSA wire coil was subjected to a static current load to produce steady

magnetic ¯eld excitation. Both blind and SSA switching involved two step changes in

magnetic ¯eld per test; the magnetic ¯eld was switched \on" and then \o®" at speci¯c

instances. For blind switching, the magnetic ¯eld turned on precisely 1/3 of the way through

the test duration, and then turned o® at 2/3 of the way through. For the test condition

calling for SSA switching, the magnetic ¯eld turned on at the ¯rst SSA-permissible time

after 1/3 of the test duration had been run, and o® 2/3 of the way through at the next

SSA-permissible time. The SSA-permissible switch times, described in greater detail in

Chapter II, are when k1x2
rel = k2x2rel, and when _xbase( _xSSA ¡ _xbase) > 0 to switch up, or

_xbase( _xSSA ¡ _xbase) < 0 to switch down.

Testing was designed to examine the e®ects of switch condition, magnetic ¯eld, and

amplitude level on MREs of di®erent iron content. For each of these four test cases,

six magnetic ¯eld levels were examined: 14, 28, 43, and 57 kG. These are the computed

magnetic ¯eld at the center of the wire coil; it was estimated that the ¯eld at each MRE

would be substantially less. Within each magnetic ¯eld level, three amplitude levels were

tested to examine the interaction between magnetic ¯eld and displacements. Finally, each

test case was repeated a total of nine times to assess the repeatability of these ¯ndings.

It is desirable to determine the usable frequency range of an SSA, quanti¯ed by the

frequency shift ratio, FSR. The ratio of increase is calculated using the SSA's natural

frequency in the absence of a magnetic ¯eld, and the percent increase in natural frequency
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over the duration of the test data. Speci¯cally, the FSR is calculated by

FSR =
µ

!n;hi ¡ !n;0
!n;0

¶
; (4.1)

where !n;hi is the natural frequency found in the ¯eld that yielded the largest natural

frequency, which was at a magnetic ¯eld of 85 kG, and !n;0 is the natural frequency in the

absence of a magnetic ¯eld.

In order to glean information about transient behavior, an excitation input of a 30 Hz

sine wave was used to obtain blind and SSA switching results. For each test, 1.5 seconds

of data was accumulated at a sampling rate of 10 kHz. Two types of transient tests,

involving the blind switching and SSA switching, were particularly challenging to evaluate.

Fast Fourier transforms measure the frequency content of a signal throughout the entire

duration; it cannot distinguish when particular frequency components were present in the

time record. Wavelet analysis, and in particular the Wigner-Ville algorithm, has come

into use to determine the time-frequency content of signals. While this was e®ective for

broadband applications, it does not have the ability to distinguish between two mid-range

frequencies that may change over time. Furthermore, broadband excitation appeared to

mask any transient e®ect. The methods used to evaluate transient behavior are discussed

in the next section.

4.1 Transient Analysis Procedure

Transient data and transient simulation results were analyzed by passing the data through

a notch ¯lter to separate the 30 Hz component of the response from the rest of the data.

The ¯ltered data was then analyzed to ¯nd the experimental response time. This section

examines the rationale and validity behind these methods.

The experimental data was ¯ltered to separate its forced response from its unforced, or

transient response. If a mass behaves according to the equation of motion describing a

mass-spring damper, such that

MÄx + Kei±x = F; (4.2)
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and a harmonic excitation of the form F = Re
¡
fei!t

¢
, then the equation of motion can be

broken down such that

M Äxt + Kei±xt = 0; (4.3)

M Äxf + Kei±xf = Re
¡
fei!t

¢
(4.4)

where x = xt + xf , xt is the transient response, and xf is the forced response.

Equations 4.3 and 4.4 can be analyzed in the frequency domain to determine the ampli-

tude and phase response of each component of the transient response. A general solution

to Equation 4.3 is [28]

xt = Xe(s+i!)t; (4.5)

where s is the real component of the response and ! is the harmonic response. Equation 4.5

is regularly manipulated to ¯nd rise times and settling times; the time is simply measured

from the start of a vibration phenomenon until the ¯rst time when xt is within some

percentage of the ¯nal displacement for rise time, or else when xt is always within some

percentage of the ¯nal displacement for settling times [3].

This analysis did not yield productive results, however, because chains were continually

breaking and reforming, meaning that the spring was in a constant state of transient re-

sponse, and would not settle. Transient analysis instead was conducted by analyzing the

forcing response.

The forced response can be found to be in the form xf = Xei(!t+Ã), where X is the

amplitude, and

K =
f

X [cos (± + Ã) ¡ r2 cosÃ]
; (4.6)

± = sin¡1 ¡
r2 sinÃ

¢
¡ Ã (4.7)

where r = !
!n . Figure 4.4 shows the normalized displacement of an absorber mass over

time when placed in series with a 30% short (MRE30c) chain MRE. The displacement was

normalized by the displacement achieved with one chain break, as described in equation

3.16. The \x", occurring 1.77 seconds into the simulation, denotes when the magnetic
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¯eld was switched on. The right-hand side of Figure 4.4 becomes a quasi-steady-state

oscillation pattern more quickly than can be observed in this ¯gure. Absorber amplitude

was approximately 6.8 times larger in a magnetic ¯eld than absent a magnetic ¯eld, and the

mean displacement in the magnetic ¯eld was 5.98e-5 m. Since the absorber amplitude in

Figure 4.4 was larger when in a magnetic ¯eld than not, this SSA would suppress vibration

in a base mass more e®ectively than its TVA counterpart at this operational frequency.
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Figure 4.4: Absorber mass displacement is plotted against time. Magnetic ¯elds were
turned on at 1.77 seconds.

Figure 4.5 depicts the same data from Figure 4.4, but the x-axis was shortened so that

the transient behavior at the point of the magnetic ¯eld change could be examined. The

time at which the magnetic ¯eld was turned on was notated with an \x", and the beginning

of quasi-steady-state behavior was notated with an \o". The transient time was found using

the di®erences in amplitude and mean displacement. The characteristic response time was

di±cult to visually assess in Figure 4.5. It was clear that the characteristic response time
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was shorter than the time to the ¯rst peak amplitude, occurring at roughly 1.8 seconds.

The characteristic response time (CRT) was found instead by ¯nding the root-mean-square

amplitude for the steady-state post-switch displacement data, Arms, and then ¯nding the

¯rst data window that the root-mean-square amplitude across one cycle was within 1% of

Arms. The CRT was the time at which the beginning point in the data window occurs.
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Figure 4.5: Displacement of the same 30% MRE as Figure 4.4 is magni¯ed around the
point of magnetic ¯eld step change.

The methods and procedures detailed in this chapter are used to acquire the data pre-

sented in the remainder of this dissertation. Four test cases are considered:

² the magnetic ¯eld was left at a constant level to ¯nd the \static" SSA behavior

43



² magnetic ¯eld stepped up or down at temporally ¯xed points to ¯nd the \blind switch-

ing" behavior

² magnetic ¯eld stepped up or down at the ¯rst SSA-algorithmically-permissible time

after the temporally ¯xed points

² SSA is mounted either parallel to the magnetic ¯eld or perpendicular.

These four test cases and their results are discussed in Chapters V and VII.
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CHAPTER V

MRES IN A STEADY MAGNETIC FIELD: SIMULATION

AND EXPERIMENTAL RESULTS

Using the same general procedures as discussed in Chapter IV, MREs were studied un-

der steady magnetic ¯eld but forced excitation conditions. Since the magnetic ¯eld was

unchanging in these scenarios, these tests are referred to as \static" conditions, despite

dynamic MRE behavior. MREs were simulated under di®erent MRE sizes, static displace-

ment ratios, and amplitude ratios. Select conclusions drawn from simulated behavior were

compared with empirical data.

While the e®ect of excitation amplitude and static displacement levels is nonexistent for

most springs within their elastic region, these considerations have considerable in°uence on

MRE behavior in the presence of magnetic ¯elds [32]. The excitation displacement used

for this work was xforcing = [rand (t) + s]A ¢ dx, where rand (t) is an n-length vector of

numbers randomly generated within the range of 0 to 1, s is the static displacement value,

A is the amplitude ratio, and dx is the static distance required of the forcing displacement

to just break every particulate magnetic bond.

Section 5.1 describes natural frequency behavior with di®erent iron content, and com-

pares that behavior to standard, accepted relationships between particulate content and

natural frequency for A = 1 and s = 0. Section 5.3 discusses the e®ect of static dis-

placement on natural frequencies in magnetic ¯elds. Section 5.4 describes the e®ect of

amplitude ratios on natural frequency, and compares to ¯ndings in the literature. Section

5.6 describes the e®ect of volume averaging on MRE as simulated MRE sizes approach those

of experimental MRE sizes.
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5.1 Natural Frequencies versus Iron Content: Simulation
Results

Given that a baseline 5 £ 6 con¯guration, as shown in Appendix A, predicts the natural

frequency of a much larger MRE, the baseline 5 £ 6 con¯guration was used to evaluate

natural frequencies of MREs, excited at a forcing level that was such that F = 0:01d, where

F is the forcing amplitude and d is the diameter of a simulated particles. In order to

evaluate MRE performance in and out of magnetic ¯elds, the non-dimensional frequency

shift ratio was used, where

F SR =
!n;hi ¡ !n;0

!n;0
: (5.1)

If the frequency ratio was larger than 0, the natural frequency in a magnetic ¯eld was larger

than the natural frequency out of the magnetic ¯eld. An FSR < 0 value means that the

natural frequency in a magnetic ¯eld was smaller than the natural frequency of the same

device in the absence of a magnetic ¯eld.

Figure 5.1 presents the FSR for a) short chain MREs and b) long chain MREs subjected

to a forcing ratio of 0 and an amplitude ratio of 1. While both ¯gures demonstrate that

MREs in longitudinal mode do indeed have positive F SRs, and that a natural frequency

can as much as double between the ¯eld o® and ¯eld on cases, there is a large di®erence

between the relationship between iron content, F SR, and type of chain present in the MRE.

Whereas the long chain MREs in Figure 5.1a) show an FSR versus iron content that is

consistent with experimental data, shown in Figure 5.2, the short chain MRE behavior in

Figure 5.1b) shows a more scattered pattern that is nonetheless dependent upon the inner

short chain geometries.

Figure 5.1a) shows long-chain MRE behavior for MREs with iron content between 20%

and 50%. Within the plot, there is a general trend of FSRs increasing as iron content

increases, up through 40% iron content. The 50% MRE shows an FSR that is less than

the peak FSR of the 40% MRE. A 40% long-chain MRE exhibited the largest FSR, where

FSR = 76%, which corresponds to a sti®ness increase of 300%. The natural frequency

of that MRE in the absence of a magnetic ¯elds was found to be 10.2 Hz and the natural
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Figure 5.1: Frequency shift ratios of simulation a) short chain and b) long chain MREs
excited with a forcing ratio of 1 and no static displacement.

frequency in the presence of a magnetic ¯eld was 18.0 Hz.

Figure 5.1b) shows short-chain MRE behavior for iron content between 10% and 50%.

All but two elastomers exhibit positive FSRs, which means that natural frequencies when

magnetic ¯elds are turned \on" are higher than the natural frequencies of the MRE when

there is no magnetic ¯eld. While most of the MREs exhibit positive FSRs, the values

of FSRs vary greatly. The explanation behind this variation may be explained by the

geometry of the particles within the MRE matrices themselves.

In order to explain the variation in short-chain MRE values shown in Figure 5.1, the

internal structure of the short-chain MREs must be examined. For the purposes of this

discussion, a node is in the \immediate vicinity" of another node if it is touching the ¯rst

node, and no other node is between the two. A node in the immediate vicinity of a second

node would appear in the second node's equation of motion. Consider the two negative FSR

values, which correspond to MRE20b and MRE30b, shown in Appendix A. The structures

of these two elastomers di®er from the other elastomers in that the short chains do not

have any other chains in the immediate vicinity of each other. Whereas the other MREs

have short chains either next to each other, in the instances of MRE20b and MRE30b, the

neighboring nodes are all elastomer. The other short-chain elastomers see quasi-long chain

e®ects by virtue of these neighboring interactions, whereas theese two elastomer matrices

do not bene¯t from these e®ects. However, the isolating-chain hypothesis does not hold
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for the 10% MRE, which due to the small amount of particles, has a single chain. On the

contrary, this MRE experienced the single largest FSR { an 82% increase. This data point

leads to the conclusion that while geometry is highly important, there are perhaps more

complex relationships that determine the FSR of an MRE.

The long-chain MRE FSR simulation presented in this section represent the experi-

mental MRE behavior more faithfully than the short-chain MRE F SR simulation. While

researchers have found that MRE particulate matter tend to form many short chains rather

than long chains [6], the short chains also tend to cluster, forming long chain-like struc-

tures, as shown in Figure 2.2. In Figures 5.1a and b, it can be seen that while the short

chain geometry leads to F SR results not necessarily consistent with experimental results,

short-chain MREs with long chain-like structures follow the long-chain results much more

closely, and are by extension more closely tied to experimental results. Future work would

likely establish more close relationships between the short-chain MRE FSR behavior and

long-chain MRE behavior by examining magnetic links cross-chain, discussed in Section

9.2. Given the results presented in this section, long chain MRE matrices are examined

more thoroughly in subsequent chapters as most faithfully representing their experimental

counterparts.

While the simulated responses did not mirror those of experimental work, these simu-

lation responses are nonetheless relevant. These simulations represent a proof-of-concept

that this type of modeling can be done to represent MRE behavior. Future e®orts to re-

¯ne property identi¯cation techniques would yield more consistent, and most likely relevant

data with respect to experimental results.

The simulated data presented in this Section was compared to empirical data to de-

termine the relevance of these simulation methods. Section 5.2 examines the relationship

between empirical and numerical results, and the validity of this numerical technique is

assessed.
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5.2 Natural Frequencies versus iron content: a comparison
to experimental results

The results described in Section 5.1 were compared to data that had been collected from a

squeeze-mode vibration absorber device. Once the data is normalized according to static

displacement, it is compared to the numerically simulated data discussed in Section 5.1.

The experimental methods used to collect this data are discussed in Appendix B.

Experimental results from these tests are presented in Figure 5.2. The frequency

ratios for the experimental results are much higher than those predicted by the numerical

simulations presented in Figure 5.1. However, since the data is collected from a squeeze-

mode device, a portion of the natural frequency change can be credited to the physical

shape change in the MRE; that is, the static displacement length shortens in the presence

of a magnetic ¯eld, and hence increases the sti®ness and therefore the natural frequency of

the MRE. The e®ect of such a shortening is examined in this section.
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Figure 5.2: Frequency ratios of high magnetic ¯eld to no magnetic ¯eld, collected from a
squeeze-mode vibration absorber.

As is discussed in Section 5.6, natural frequencies of elastomers are determined by

!n =

r
EA
LM

: (5.2)

The elastomer is assumed to have a uniform cross-section, such that the volume V = AL.

Using this assumption for volume, Equation 5.2 is rewritten such that !n = 1
L

q
EV
M , hence

Ehi =
!2
nML2

hi
V

0
; (5.3)
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where Ehi and Lhi are the Young's modulus and elastomer lengths with an applied magnetic

¯eld. The lengths of the elastomer are determined by the static equilibrium equations of

motion

Khi (Lhi ¡ l0) + Fm ¡ Mg = 0 (5.4)

K0 (L0 ¡ l0) ¡ Mg = 0;

where l0 is the elastomer's unstretched length, and Fm is the attractive force imposed on

the absorber mass by the magnetic ¯eld. Fm is the separation force,

Fm =
nB2A
2¹rel¹0

=
nB2V

2r¹rel¹0
; (5.5)

where r = Lhi¡ l0 and n is the number of particles separated. Using the FrÄohlich-Kennelly

equation, where

¹rel = 1 + Â = 1 +
(¹r ¡ 1) ms

ms + (¹r ¡ 1) H
; (5.6)

and ¹r = 10 and ms = 1:5£106 A/m for iron, m is known to be m = ¹0ÂHv, where v is the

volume of a particle, Fm can be recalculated as Fm =
¡
Ád3¹0Â2¢ = (8¹rel) H2. Substituting

this expression for Fm in Equation 5.4 yields a fourth-order polynomial in terms of Lhi,

whereas L0 = l0 + g=!2
n . Although four roots can be found to this fourth-order equation,

only one root will be exclusively real and negative; this is the physical value for the static

displacement. The value for E0 can be found by rearranging Equation 5.2 and using

experimental data for !n. Once these variables have been computed, Ehi can be calculated

from empirical data using Equation 5.3.

The empirical !n;hi is compared to a theoretical !n;hi, assuming that there is no change

in Young's modulus, and only the change in static displacement a®ects the MRE. Empirical

data is collected according to protocol discussed in Appendix B, and then the percentage

deviation is calculated as

deviation =
!n;empirical ¡ !n;theoretical

!n;empirical
£ 100%: (5.7)

A positive deviation indicates that the empirical data exhibited a larger natural frequency

change than would be predicted if the natural frequency change were due only to the change

in static displacement length.
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Figure 5.3 shows the percentage deviation as a function of magnetic ¯eld for seven

di®erent MRE formulations. A 0% MRE showed a 16% decrease in natural frequency over

what would have been expected from pure change in static length alone; while this indicates

that the theory does not accurately predict empirical outcomes, every other MRE in Figure

5.3 shows more than a 16% increase in natural frequency. Therefore, regardless of the

shortcomings in predicting static displacement and its e®ects on natural frequency, MREs

consisting of at least 10% iron (or more) show substantive natural frequency increases that

can not be accounted for by an enlarged area and decreased length.
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Figure 5.3: The percentage each MRE composition deviates from the expected performance
is shown in di®erent magnetic ¯elds.

The simulation results presented in Figure 5.1 are similar to the empirical data presented

in Figure 5.3 in that they both predict a maximum natural frequency change between 30%

and 40%. The simulation results provide an explanation for the results that are seen in

Figure 5.3

5.3 The e®ect of static displacement on natural frequency

In classic vibration theory, static displacements are the consequence of static forces, and that

is the only e®ect a static force can induce. However, once magnetic ¯elds are introduced,

the e®ect of a static displacement could conceivably prevent MRE particles from generating

magnetic bonds, or conversely, prevent large enough motion to break these bonds. The

purpose of this section is to examine the e®ect of static displacement on MRE behavior.
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The e®ect of static displacement was simulated on the MREs referenced in Appendix B,

and the results are shown in Figure 5.4. The MRE was subjected to random excitation and

static displacement ratios rsd, which was related to the static displacement, ¢, as rsd = ¢
d ,

where d was the diameter of a particle. A negative static displacement percentage indicates

a net compressive MRE state, and a positive static displacement ratio indicates the MRE

was in tension. Short-chain MREs exhibited a few negative FSR values, primarily when

the static displacement was forcing a compressive states. Long-chain MREs exhibited only

positive FSR values.
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Figure 5.4: Frequency shift ratios of simulated a) short chain and b) long chain MREs
versus MRE content for di®erent static displacement ratios.

From Figure 5.4b), it can be seen that regardless of static displacement, the peak FSR

value is achieved with long-chain MREs when the iron content is 40%. While the individual

plot points on this ¯gure vary according to static displacement, the overall trend of lower

FSRs at 20% and 50% are also preserved. Upon examining Figure 5.4a), no trend is

apparent among either iron content or static displacement. The conclusion that is drawn

from these results is that this model is not able to adequately capture the e®ect of static

displacement on natural frequency.

It is unsurprising that this model is unable to capture static displacement e®ects on

natural frequency, as this model does not include the geometric deformation of the matrix

in response to compression or tension, nor does it include material laminiation e®ects or

local strain responses to occlusions, all of which would a®ect natural frequency. Despite
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this de¯ciency of the model, prediction of static displacement e®ects was secondary to the

goals of predicting unstrained MRE parameters and transient results. Further re¯nements

to the model can be included at a later date to more adequately predict the e®ect of static

displacement on MRE vibration parameters.

5.4 Forcing amplitude e®ect on natural frequency: simula-
tion and experimental results

MREs have been empirically found to exhibit increased natural frequencies in the presence

of magnetic ¯elds, but only for limited ranges of forcing amplitude levels [6, 32], and the-

oretical studies have yielded the same conclusions [40, 33, 7]. The work presented in this

section describes the range of amplitude excitation on the upper and lower bounds for MRE

response.

MRE behavior was simulated under variable displacement amplitude conditions. Forc-

ing amplitudes were simulated in comparison to the diameter of a ferromagnetic particle,

such that a forcing amplitude of 1 meant that the amplitude was equal to the diameter of

a ferromagnetic particle. MREs were evaluated both in and out of a saturated magnetic

¯eld, and natural frequencies were calculated according to the least squared error method.

Figure 5.5 displays the average frequency ratio for each simulated MRE against the

excitation amplitude coe±cient. A simulation value of \1" represents the minimum forcing

excitation required to cause every chain to break. An amplitude ratio of 1 yielded the

largest FSRs, with the peak value of 0.76 occuring with a 40% MRE. As the amplitude

ratio increases beyond 1, the FSR decreases and approaches 0. This is consistent with both

the experimental and theoretical explanation for this behavior, and further validation of the

appropriateness of this model. This ¯nding is an important contribution, because whereas

others have found these results experimentally or by studying a homogeneous composition

using FEA simulations, this is the ¯rst model that examines particulate and elastomer

contributions as an aggregate.

The further implications for this decreasing FSR increase in the face of increasing

amplitude is that MREs o®er increasingly limited bene¯ts for large-amplitude excitations.
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Figure 5.5: Frequency shift ratios for simulated long-chain MREs at four forcing ratios.

This means that while MREs may be a bene¯cial choice for variable sti®ness applications,

this will only hold true if the amplitude of excitation is known to be below a threshold

value. Conversely, MREs would not be an appropriate choice for disturbances that can not

be necessarily known to hold to this restriction.

5.5 Frequency Shift Ratios versus Magnetic Field: Simula-
tion and Experimental Results

Magnetic ¯eld strength was varied to examine the e®ect on MRE motion. This was a

particularly valuable study, as magnetic ¯eld strength is a controllable element for an SSA

user to obtain desired behavior. MRE behavior was simulated using the numerical model.

Magnetic ¯eld strengths are reported in terms of percentage iron saturation in the MRE

chains.

Figure 5.6 shows the average natural frequency across many MREs for magnetic ¯elds

that were 25%, 50%, 75%, and 100% of the saturation magnetic ¯eld. The natural fre-

quencies for MREs subjected to 25%, 50% and 75% of the magnetic ¯eld saturation did not

show statistically signi¯cant deviations from lower and no-¯eld natural frequencies. How-

ever, there is greater than 97.5% certainty, using a Student's t-test analysis, that the 100%

saturation magnetic ¯eld yields larger natural frequencies than those of lesser saturation.

Figure 5.7 shows FSR results for MREs excited in squeeze-mode. It can be seen that for

MREs of all iron content except 32%, FSR values are close to zero for any ¯eld value less than
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12 kA/m. On the other hand, FSRs increase for most iron content values above the 12 kA/m

value. This is consistent with the simulation ¯nding in Figure 5.6 that there is minimal

natural frequency increase below total magnetic ¯eld saturation. Since the simulation

predicts no FSR change below a threshold value between 75% and 100% saturation, and

experimental results indicate the same, it can be concluded that the simulation is able to

correctly predict the magnetic ¯eld level at which the frequency can be expected to shift.
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Figure 5.7: FSRs are plotted against magnetic ¯eld for seven di®erent MRE compositions.
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5.6 Simulation Results: Natural Frequencies and Scaling
E®ects

The MRE responses to steady magnetic ¯elds reported in the previous three sections were

simulated according to the procedures set forth in Chapter III, and using MRE blocks

with length and area multiplication factors of 1. Simulation MREs were examined on

a microscopic scale not representative of common MRE sizing. Each block needed to be

scaled 145£108 times in order to be the same size as the experimental MREs. As this would

have required more computing power than was available, the method of volume averaging,

as described in Section 3.6, was used to determine the average sti®ness for each node within

the numerically-simulated MRE when it was scaled appropriately ¯rst for the proper area,

and then for the proper length.

Figure 5.8 shows the averages sti®ness for each node within an MRE as a function of

scaling factor when scaled over MRE a) length and b) width. When sti®ness is volume-

averaged over the scaled length, the sti®ness decreases exponentially as a function of the

scaling. When scaled over the area, the sti®nesses settled towards a non-zero number.

This means that the average sti®ness-per-unit-node can be found to be between 5:9 £ 10¡3

and 2:83 £ 1015 N=
¡
m ¢ unit2

¢
for a 20% MRE, above 318 N=

¡
m ¢ unit2

¢
for a 30% MRE,

and 4:2 £ 10¡4 and 168 N=
¡
m ¢ unit2

¢
for a 40% MRE.
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Figure 5.8: Average sti®ness values for scaling over MRE a) length and b) width for long-
chained MREs.

A similar method was used to ¯nd the overall natural frequency of the MRE and its
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absorber mass for the expansion. Figure 5.9 shows the natural frequency of MREs as they

are scaled over a) length and b) area. The average natural frequency for a full-sized MRE

could be estimated to be between 0.07 Hz and 762 Hz.
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CHAPTER VI

MRES IN A TRANSIENT MAGNETIC FIELD

Whereas steady-state behavior described in the previous chapter was found by using random

excitation, transient behavior was assessed in simulation by exciting micro-MRE models

harmonically in a variable magnetic ¯eld. The absorber mass's displacement was calculated,

and its oscillation patterns were observed. While MREs in magnetic ¯elds do not have

\steady-state" behavior per se, they do exhibit repetitive oscillation patterns that can be

described as quasi-steady-state. Section 6.1 describes how MRE transient behavior is

assessed. Section 6.2 characterizes the transients as a function of iron content. Section

6.3 characterizes excitation amplitude. Section 6.4 characterizes excitation frequency, and

Section 6.5 measures the e®ect of magnetic ¯elds turning on versus magnetic ¯elds turning

o®. Section 6.5 characterizes magnetic ¯eld strength.

6.1 Assessing transient behavior

MRE models were simulated such that the bottom row was subjected to a 40 Hz oscillation.

The amplitude of oscillation was A = n (dx), where n was the number of possible chain

breaks and dx was the displacement associated with a single chain break. The top row of

each MRE was attached to an absorber mass, and this mass's displacement was computed

in order to assess transient behavior.

For the purposes of this dissertation, transient behavior is de¯ned as the variation of

motion in an absorber mass as a direct result of the addition or removal of a magnetic ¯eld.

In this work, if a magnetic ¯eld had previously been absent and was added in a stepwise

manner, this change in magnetic ¯eld is referred to as turning on. If, on the other hand, a

magnetic ¯eld is present, and instantaneously removed at a speci¯c instant in time, that is

referred to as turning o® the magnetic ¯eld. All changes in magnetic ¯elds are assumed to

be instantaneous. Each test case and simulation was run nine times, and average values
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are reported in the remaining sections.

The ratio between the pre- and post-switch rms-amplitudes and the CRT analysis are

the basis for comparing the e®ects of iron content in Sections 6.2, 6.3, 6.4, 6.1, and 6.5.

6.2 The e®ect of iron content on transients

Simulation MREs were excited harmonically and CRTs were compared by iron content.

Figure 6.1 shows average CRTs for MREs when a magnetic ¯eld is turned on and when a

magnetic ¯eld is turned o®. For long-chain MREs, shown in Figure 6.1a, the CRT response

is longer when magnetic ¯elds are turned o®. When a magnetic ¯eld is turned on, according

to SSA switching behavior, the MRE must be undeformed, and therefore not in any strain

situations. Individual particles instantly create a chain with their neighboring particles.

The long chains connect the base mass to the absorber mass, and hence the absorber mass

will instantly be forced into the same motion as the base mass { and hence no CRT. On the

other hand, when the magnetic ¯eld is turned o®, the chains are dissolved and the absorber

mass will behave in a manner consistent with its transient behavior.
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Figure 6.1: CRTs for simulated a) long-chain and b) short-chain MREs of di®erent iron
content, for magnetic ¯eld conditions changing to on and o®.

Short-chain MREs exhibited the opposite e®ect, which makes sense because the chains

do not connect the forcing motion of the base to the absorber motion. However, that is

also a weakness in the modeling of the short chains, and one that does not re°ect reality,

as discussed in Section 5.1. Therefore, short chain MRE behavior will not be examined in
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this chapter.

In addition to long- versus short- chain deviations in CRT behavior, CRTs also vary

linearly with iron content. This is a logical result, as an MRE with more iron content has

more potential chains to break, and thus can go through more transitional period before

settling into a quasi-steady state oscillation pattern.

6.3 The e®ect of step changes in magnetic ¯eld and exci-
tation amplitude on transients

This section describes CRT behavior in terms of step changes in the magnetic ¯eld, which

is referred to here with the \on" and \o®" nomenclature, and excitation amplitude. As

was discussed in Section 6.1, excitation amplitude was measured in terms of number of

chain breaks, and the displacement associated with each chain break. Simulation results

are discussed and then compared to experimental tests.

Figure 6.2 shows average CRTs when magnetic ¯elds were turned o® across long-chain

simulated MREs subjected to amplitude ratios between 1 and 20. Figure 6.2a shows

CRT plotted against MRE content, which reveals the much lower CRT values for the 30%

MRE. Figure 6.2b shows the CRTs plotted against ratio of amplitude excitation. In

this plot it is much clearer that amplitude of excitation very much a®ects CRTs, and

not necessarily in a linear fashion. The conclusion to be drawn here is that MRE-based

vibration absorbers exhibit excitation amplitude-dependent transient characteristics in the

numerical simulations.

Figure 6.3 shows average CRTs for MREs placed in the experimental SSA described

in Chapter IV and subjected to di®erent excitation amplitudes, and separated by whether

they were subjected to an \on" or \o®" magnetic ¯eld.

By comparing the transient times in Figure 6.2 to Figure 6.3, it can be seen that despite

the di®erent CRT time frames (8 - 16 ms for the simulation, 0.49-0.51 s for the experiment),

CRTs are independent of excitation amplitude, and CRTs are larger when a magnetic ¯eld

is turned \o®" than \on". The implication is that the natural frequency response of the

simulated MRE-based SSA is closer to the forcing frequency when the magnetic ¯eld is on
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Figure 6.2: Average CRTs for simulated MREs subjected to a) di®erent excitation ampli-
tude ratios, and b) di®erentiated by a magnetic ¯eld being turned \on" or \o®".
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Figure 6.3: Average CRTS across experimental MRE data at di®erent forcing amplitude
ratios for magnetic ¯elds being turned \on" and \o®"

than when it is o®; this is con¯rmation that the MRE-based SSA experienced a natural

frequency shift. Since the amplitude of the SSA is higher when the magnetic ¯eld is turned

on, this means that the SSA device is able to \absorb" more energy when the magnetic

¯eld is on, if the device is excited at the listed forcing frequency.

To con¯rm that the discrepancy between the magnetic ¯elds turning on and o® is not an

aberration, voltage was measured across the magnetizing coil on the SSA, and the di®erence

between the time response of the voltage when rising or falling was negligible. The cause

of the di®erence in CRTs is due in part to the hysteretic e®ect of magnetism (please refer to

Section 2.4 for a description of this phenomenon), and partially due to equation of motion

mechanics. While the MREs present in the experiment could have been a®ected by either
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phenomenon, hysteretic e®ects were ignored in the simulation. Therefore, the discrepancy

in CRTs must be due to structural mechanics.

As a further explanation, consider a chain of ferromagnetic particles. Each particle

engages in motion unrelated to its neighbors in the absence of a magnetic ¯eld. Once

a magnetic ¯eld is applied, the attractive forces compel each particle to align and begin

motion as a partial or entire chain. On the other side, consider the e®ect of a magnetic

¯eld being turned o® once each particle in a chain is moving together at a common velocity.

While there is no longer any force compelling these particles to remain aligned, they will

continue to move together for the very short term due to the e®ects of inertia.

6.4 The e®ect of excitation frequency on transients

Excitation frequency plays a signi¯cant role in the ability of a TVA to suppress vibration.

A TVA exhibits its maximum amplitude at its resonance frequency, which is slightly lower

than its natural frequency. SSAs also can be characterized as single-degree-of-freedom

vibration absorbers with a natural frequency.

Unfortunately, an SSA's performance when subjected to random excitation does not

necessarily predict pure-tone responses for SSAs. SSAs are time-varying systems, since

every time a chain is broken or created, transient oscillations ensue. On the macro scale

level, these transient oscillations manifest themselves as increased energy loss, friction, loss

factor, or some other damping property. However, because the macro scale MRE would be

subjected to ongoing state changes, regardless of the forced frequency oscillation, there will

be ongoing, thus sustained transient oscillation response, hence the \quasi-steady-state"

term from the beginning of this chapter.

MRE transient behavior was examined as it related to excitation frequency in a pure-

tone oscillation. Figure 6.4 shows CRTs for a) magnetic ¯elds that were turned on and b)

magnetic ¯elds turned o® for long-chain MREs at various forcing frequencies. In general,

the CRT required when the magnetic ¯eld was turned on was less than the CRT required

when the magnetic ¯eld was turned o®.

In order to better compare CRTs with magnetic ¯elds being turned on versus o®, the
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Figure 6.4: CRTs for a magnetic ¯eld being turned a) on and b) o® versus forcing frequency.

di®erence between the CRTs, calculated as

¢CRT = CRToff ¡ CRTon ; (6.1)

was plotted against MRE iron content in Figure 6.5. Any ¢CRT that is greater than 0

has a CRToff that is greater than its CRTon . It can be seen that for all but a few data

points, CRToff > CRTon. Referring back to Figure 6.4, it can be seen that many CRTon

values are equal to zero.
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Figure 6.5: Di®erential CRTs are plotted against excitation frequency for long-chain MREs.

There is a physical explanation for the di®erential CRTs demonstrated in Figures 6.3,

6.4, and 6.5. When a magnetic ¯eld is turned on when there is no strain across an MRE,

in accordance with the SSA algorithm, the presence of a magnetic ¯eld causes chains to

instantaneously form, and there is e®ectively no transient { the entire chain is forced to move
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in alignment. However, when a magnetic ¯eld is turned o®, iron particles will separate

according to the forces exerted on them, which means that the transients will be related to

the damped natural frequency of the individual particles { and hence nonzero. Figure 6.3

demonstrates that this phenomenon also exists experimentally. This means that di®erent

input shaping may be required to optimize magnetic ¯eld shut-o® CRT response as opposed

to magnetic ¯eld turn on CRT response.

In order to assess the meaning of these CRTs, it was useful to recall, from Section 2.1,

that CRT must take less than a 1=4¡period if an SSA's performance was to be stable [20].

Figure 6.6 plots the maximum allowable excitation frequency for each forcing frequency

ratio to ensure stability was maintained. The maximum allowable excitation frequency,

occurring for a 1.1 forcing frequency ratio, was 250 Hz. Allowable excitation frequencies

decrease as the distance above the natural frequency increases.
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Figure 6.6: The maximum allowable equivalent natural frequency is plotted against the
forcing frequency ratio to ensure a stable SSA response.

While this ¯nding seemingly limits design properties of an MRE considerably, it is

possible that looser transient limit standards could in fact yield stable results. While

beyond the scope of this work, future study could determine the precise properties of the

stability limits of MRE-based ATVA and SSA devices.
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6.5 The e®ect of magnetic ¯eld strength on transients: sim-
ulation results

Magnetic ¯eld strength was varied to examine the e®ect on MRE motion. This was a

particularly valuable study, as magnetic ¯eld strength is a controllable element for an SSA

user to obtain desired behavior. MRE behavior was simulated using the numerical model.

Magnetic ¯eld strengths are reported in terms of percentage iron saturation in the MRE

chains.

Figure 6.7 shows the CRTs for long-chain MREs when the magnetic ¯elds were turned

o®. (CRTs for magnetic ¯elds being turned on are not reported, as there were primarily no

CRT times for magnetic ¯elds being turned on. For an explanation of why that is, please

see Section 6.2.) The magnetic ¯eld ratio was normalized to 1 for full magnetic saturation.

While each MRE has a di®erent CRT value, the CRT value is una®ected by magnetic ¯eld

ratio.
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Figure 6.7: CRTs versus magnetic ¯eld ratio for long-chain MREs subjected to a magnetic
¯eld being turned o®.

Because the CRT is insensitive to di®erent magnetic ¯eld levels, the characteristic re-

sponse time can not be controlled by a positive magnetic ¯eld. Therefore, MREs are not

controllable using input shaping. This means that if it is desirable to implement an SSA

algorithm and MREs do not meet the performance requirements, then MREs should not

be utilized in that particular application.

It may still be possible to use MREs in this particular scenario. This work delved
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exclusively in the realm of a positive magnetic ¯eld. The e®ect of a reversed magnetic ¯eld

{ one where the magnetic poles were switched { was not studied. It is possible that in such

a con¯guration, either the change in polarity or else the hysteretic phenomenon inherent in

iron could be exploited to give the control desired.
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CHAPTER VII

DAMPING COEFFICIENTS

While the primary thrust of this work is on the e®ect of the magnetic ¯eld on a sti®ness

change, its e®ect on damping cannot be ignored. Damping coe±cients' dependencies on

magnetic ¯eld a®ect not only the ability of the SSA to e®ectively suppress vibration, but

also the e±cacy of the SSA switching laws discussed in Chapter III. This chapter explores

simulated damping, and the results associated with extrapolating the simulation responses

to a scale on par with macro scale MREs.

The equation of motion governing a mass subjected to a complex spring is found to be

Äx + 2³!n _x + !2
nx =

F
M

: (7.1)

If the forcing excitation, F , is harmonic, then the displacement is

x = Xei(!t+Ã) ; (7.2)

where Ã is the phase lag. Using a nonlinear Gauss-Newton method discussed in Section

3.5, the damping coe±cient was found.

This chapter is devoted to studying the damping coe±cient, ³. It has been assumed

that the damping coe±cient is una®ected by the presence of a magnetic ¯eld, which is why

MREs are classi¯ed as smart springs rather than smart dampers. The data reported in

this section was collected via numerical simulation, and were found using the Gauss-Newton

least squares algorithm concurrently with the natural frequency data reported in Chapter

5. The e®ect of iron content is discussed in Section 7.1, excitation amplitude in Section

7.2, and static displacement in Section 7.3.

7.1 The e®ect of iron content on damping coe±cients

Damping coe±cients were compared between simulated MREs with di®erent iron content.

Figure 7.1 shows damping coe±cients for MREs with 10-50% iron content and no static
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displacement for MREs with a) long and b) short chains. Damping coe±cients for long-

chain MREs, shown in Figure 7.1a, exhibited that when magnetic ¯elds were turned on,

coe±cients were roughly double their non-magnetic-¯eld counterparts for all MREs except

the 30% MRE. Short-chain MREs did not exhibit any signi¯cant deviation, which is what

would be expected.
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Figure 7.1: Damping coe±cients are plotted against MRE content for a) long chain and b)
short chain MREs with magnetic ¯elds on and o®.

Since the peak frequency response is a function of both natural frequency and damping

coe±cient, the results shown in Figure 7.1 raises the question, is the peak frequency shift

actually due to damping switching rather than sti®ness shifting? Realizing that the peak

resonant frequency occurs at a value less than the natural frequency, and that the larger

the damping, the lower this peak frequency would be, it follows that the increased damping

coe±cients for the magnetized MREs would cause natural frequencies to be lower if the

same peak frequency was observed. However, the opposite was observed; while there is

increased damping when the magnetic ¯eld is turned on, there were also increased natural

frequencies. Therefore, there is still a legitimate sti®ness increase phenomenon.

7.2 The e®ect of amplitude on damping coe±cients

Excitation amplitude was shown to a®ect natural frequency in Section 5.4. Figure 7.2

shows damping coe±cients for a) long and b) short chain MREs subjected to di®erent

amplitude ratios. An amplitude ratio of \1" indicates the minimum amplitude to ensure
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every chain bond breaks. While short-chain MREs show scattered damping coe±cient

patterns not correlated to either iron content or amplitude, the long-chain MREs do have

amplitude-dependent damping ratios. Figure 7.3 shows long-chain MREs' damping coef-

¯cients at di®erent amplitude rates. As the amplitude ratio approaches 20, the damping

ratio approaches 0.4, which is the value for the damping coe±cients of the same MREs in

the absence of a magnetic ¯eld. Hence, as amplitude ratios are increased, the damping

ratio approaches that of the non-¯eld damping ratio.
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Figure 7.2: Damping ratios for a) long and b)short chain MREs in the presence of magnetic
¯elds.
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Figure 7.3: Damping ratio versus amplitude ratio for long-chain MREs of di®erent iron
content.

The fact that all the long-chain MREs have damping ratios whose characteristics ap-

proach that of the non-¯eld damping ratios in high amplitude excitation is unsurprising.

Since the magnetic ¯eld was modeled in this work as a zeroth-order force, any excitation
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that takes the MRE outside the neighborhood of action of that force would be similar to the

lack of force. In other words, for high excitation levels, the MRE spends more time where

all particles are completely separated and not under chain in°uence, just as if it were not

under the in°uence of a magnetic ¯eld. The only di®erence is a small static force applied

under those circumstances, which would not a®ect the damping ratio.

7.3 The e®ect of static displacement on damping coe±-
cients

Because most longitudinal mode SSAs place MREs in some sort of static displacement

condition, static displacements were simulated to ¯nd the e®ect on damping ratios. Figure

7.4 shows damping ratios for MREs at static displacement ratios varying between -1 and

1, where 0 is an undeformed MRE. Figure 7.4a shows damping ratios in the absence of a

magnetic ¯eld, and Figure 7.4b shows damping ratios of the same MREs in the presence

of a magnetic ¯eld. While there is no discernable pattern between the di®erent static

displacement levels, the variation between damping ratios when the magnetic ¯eld is on is

nearly double that of when the magnetic ¯eld o®. This leads to the conclusion that when

a magnetic ¯eld is present, damping ratios are more variable by iron content and static

displacement conditions than if the magnetic ¯eld is absent.
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CHAPTER VIII

DISCUSSION OF SIGNIFICANT FINDINGS

The purpose of this work was to assess the transient behavior of MREs in order to better

utilize them in SSA applications. To that end, numerical and experimental studies were

conducted to determine the interdependencies of outputs such as loss factor, natural fre-

quency, and CRTs on inputs such as MRE iron content, magnetic ¯eld strength, and static

displacement. Of particular signi¯cance, and bene¯t to the engineering community, are

that

² A model was developed that combines elastomer and ferromagnetic properties to

synthesize model MREs.

² This model is mass-normalized, and scales up appropriately.

² The model validates experimental ¯ndings that MRE natural frequency increases in

the presence of magnetic ¯elds for long-chain MREs.

² Damping coe±cients in simulation results were found to be largely insensitive to

parameter changes, and thus validated as not the mechanism for frequency change in

MREs

² CRTs are longer when a magnetic ¯eld was turned on than o®, for both simulation

and experimental results. There was no MRE content dependency nor amplitude

dependency.

² CRTs are insensitive to magnetic ¯eld strength, which means that open-loop input

shaping control may not be used to control CRT behavior.

The signi¯cance of these ¯ndings are discussed in the following sections.
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8.1 Model Development

A numerical model was developed that combines pure elastomer properties with ferromag-

netic properties to simulate an MRE. Prior to this model being developed, MRE properties

were homogenized before running an FEM/FEA analysis. While this model is in its un-

re¯ned stages, it has been validated that the model simulates a frequency increase when

subjected to a magnetic ¯eld, and natural frequency results are robust when the model

is scaled up, and thus holds for any size MRE, so long as the simulation dimensions are

proportional to the MRE dimensions of interest. This represents a signi¯cant advantage

to those in MRE research, as this model a®ords the opportunity to simulate di®erent MRE

formulations without ¯rst having to create the MREs.

8.2 Natural Frequency versus Static Displacement

Repeatability has been a limiting factor in MRE experimentation, development, and adap-

tation into the commercial world. The research presented here provides evidence that

geometric constraints as well as static forcing conditions can adversely a®ect an MRE's

ability to shift natural frequencies in a magnetic ¯eld. The numerical simulation per-

formed for this dissertation showed that iron particle chains must be in contact in order to

yield positive natural frequency shifts. This was con¯rmed by experimental results, both

in the inability to yield a natural frequency shift using methodologies discussed in Chap-

ter IV, but also by examining the successful shifts in a squeeze-mode vibration absorber.

The squeeze-mode vibration absorber conformed to this static displacement requirement

if the static displacement was measured in reference to neighboring particle proximity; it

actually speaks to the need to allow MREs to be free to change geometry to accommodate

neighboring particles.

8.3 Characteristic Response Times versus Magnetic Fields

CRTs are critical to SSA applications because an SSA that does not shift in less than a

1/4-period risks instability. It was determined that CRTs are sensitive to the nature of the

changing magnetic ¯eld. That is to say, CRTs are larger if a magnetic ¯eld was turned on
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than if it was turned o®. CRTs depend on the amount of iron present in the MRE, but are

una®ected by amplitude and magnetic ¯eld levels. Both of these ¯ndings were determined

both experimentally and simulated numerically. Because MREs exposed to a magnetic

¯eld turning o® respond more slowly than MREs in ¯elds turning on, input shaping control

is more desired for when a magnetic ¯eld turns o®.

Unfortunately, CRTs are insensitive to the baseline magnetic ¯eld level. This means

that a CRT can not be decreased by increasing the magnetic ¯eld beyond what is desired

and then bringing it back down to the appropriate levels. This means that input shaping

would not be valid for MREs, which could a®ect their abilities to function as commercially-

available SSAs.

More work must be conducted to conclusively decide MREs' e®ectiveness as variable

springs in SSAs, but this work represents a major step forward in that MRE mechanics are

better understood. It has been con¯rmed that loss factors are not a®ected by magnetic

¯elds, and the importance of static displacement and its role in natural frequency shifts is

known, and bounds have been placed on the CRT for magnetic ¯elds.

8.4 Damping Coe±cient Dependencies

Damping coe±cients are typically identi¯ed from experimental data as a system property,

and at each di®erent magnetic ¯eld level, the best-¯t damping coe±cient is identi¯ed. The

results of this work demonstrate that damping coe±cients are generally independent of

geometric properties. This means that compressing or stretching an MRE does not change

the damping coe±cient. The engineering community has long modeled MREs as variable-

sti®ness springs in the presence of magnetic ¯elds. From this work it can be concluded that

MREs are indeed variable-sti®ness springs, and that damping coe±cients, while a®ected by

the magnetic ¯eld, are not the material driving force behind the materials' behavior change.
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CHAPTER IX

FUTURE WORK

The work presented in this dissertation represents a proof-of-concept of the underlying prin-

ciples that drives sti®ness changes in MREs when they are excited longitudinally. Using

only zeroth-order magnetic ¯eld e®ects, this model was able to demonstrate sti®ness in-

creases as a function of iron content that was consistent with known experimental results.

Furthermore, transient characteristic response time was consistent with experimental data.

This work also exposes further unknown and unexplored areas that would represent signif-

icant leaps in future scienti¯c understanding.

While there were several signi¯cant ¯ndings, here there were several numerical simula-

tions from which no conclusions could be drawn. In this chapter, ideas for future re¯nement

of this model, speci¯cally to address these short-comings, are developed. Topics for future

work that are discussed here are more sophisticated models for the elastomeric host, inlclu-

sion of transverse neighboring particle bonds, modeling higher-order magnetic ¯eld e®ects,

and reexamining the chain break algorithm.

9.1 Elastomeric Host Modeling

The elastomer was modeled in this work as a linear spring and damper. The results yielded

FSRs and CRTs that were similar in character to those observed experimentally. However,

the similarities disappeared when the e®ects of static displacement and amplitude variation

were examined. One of the likely causes of these discrepancies is the linear spring modeled

for the elastomeric host.

The linear modeling of an elastomer, as used in this work, is only valid for small elas-

tomeric displacement. However, the deformations within the simulated matrix are not

small with respect to the individual node-sizes of elastomer. Therefore, the e®ect of the

geometric distortion, lamination, etc. should be a signi¯cant contribution to the MRE's
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overall behavior. This would particularly a®ect any static displacement behavior and and

amplitude variations.

When an MRE is subjected to a nonzero static displacement in addition to dynamic

excitation, the e®ect of secondary deformation has an e®ect on the perceived Young's mod-

ulus.

9.2 Neighboring Bond Modeling

For this work, all particles were separated by elastomer material in the transverse direc-

tion. That meant that there was no possibility for particle-to-particle magnetic bonds of

separate chains. However, Figure 2.2 showns particle chains that twist together and inter-

relate. Furthermore, results from Section 5.1 demonstrated that long-chain MREs more

accurately re°ect true MRE behavior than short-chain MREs. In addition, MREs that

lacked contiguous chain-to-chain relationships related even less to MRE behavior than their

contiguous chain-to-chain counterparts. It is the belief of this author that the inclusion

of chain-to-chain magnetic ¯eld modeling would amend the discrepancy between these two

classes of simulated MREs.

9.3 Inclusion of Higher-Order Magnetic Field Terms

In Section 3.1, the attractive force between two particles was shown to be inversely pro-

portional to the square of the separation distance. In this work, the magnetic force has

been simpli¯ed to its zeroth-order component, where the nominal displacement is assumed

to be the one that allows for a static equilibrium. However, higher-order terms are present

and can be signi¯cant to MRE performance. It is proposed that future work examines the

e®ects of these higher-order terms on simulated MRE performance.

The reason for this is that the ¯rst-order approximation of a magnetic ¯eld is known

to serve as a softening-spring e®ect [30]. These ¯rst-order approximations undermine the

sti®ening e®ect found in the zeroth-order approximation studied in this work. What will

be particularly compelling and informative is a study of the interactions between excitation
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amplitude and inclusion of ¯rst-order e®ects. Since higher-order e®ects are more signif-

icant than lower-order e®ects with additional amplitude, it is suspected that ¯rst-order

approximations will impact the amplitude studies more than any other phenomenon.

9.4 Integration of MRE Dynamics and SSA Algorithm

It was found that there is a di®erential CRT for MREs when a magnetic ¯eld is turned on

versus when it is turned o®. This means that when applying an MRE in an open-loop

control system such as an SSA algorithm, it may be necessary to employ input shaping on

the magnetic ¯eld. Input shaping would serve to generate desirable MRE behavior from

the outset and to minimize transients.

9.5 Chain Break by Force Analysis

In order to conduct this research, chain breaks were found through an iterative process using

a static balance. That is to say, a static strain was applied to the simulated MRE with all

chains intact. The chain chosen to break ¯rst was the chain experiencing the largest force

gradient, and within the chain, the particular bond that broke was the one experiencing the

largest force gradient. That particular bond break was assumed hereonafter to always be

the ¯rst bond to break, and would break when the absorber mass's displacement relative

to the base mass exceeded the pre-established change in displacement. Subsequent chain

breaks were calculated in an iterative manner, and once all chain breaks were found, the

order of breaks were assumed to stay constant.

This is a valid assumption if only the lowest few modes of the system are activated.

At higher modes, the order of quasi-static bond breaking is no longer indicative of the

order of chain breaking. Instead, at each time step the forces applied to each bond must

be compared to the magnetic attractive force. This would lead to greater accuracy in

numerical predictions of MRE behavior at higher frequencies.

76



CHAPTER X

CONCLUSIONS

The purpose of this work was to better understand the mechanics of MRE behavior so that

they may be implemented as springs in SSA devices. Numerical simulations were created

from numerical models of iron-iron interactions and mass-spring mechanics. These simula-

tions results were validated with experimental data. The main focus of this work was the

assessment of damping coe±cients, natural frequencies, and transient times, and how each

of these properties were a®ected by forcing frequency and amplitude, static displacement,

and iron content and con¯guration.

Simulations were run in Matlab rather than FEA software because MREs were modeled

as elastomer-iron matrices rather than a homogenous material with magnetic properties.

Damping coe±cients were evaluated and determined to be independent of parameters such

as static displacement and amplitude of excitation. This was a signi¯cant ¯nding because

it con¯rms that changes in MRE natural frequency are due to sti®ness changes as opposed

to damping variance.

Long-chain MREs were found to best represent the experimental MRE behavior, as they

exhibited natural frequency increases at the appropriate iron content value. Furthermore,

large amplitude excitation decreased the MREs' FSR. This matches experimental results,

and makes sense within the context of the known theory governing MRE behavior.

Transient behavior was assessed by ¯nding a characteristic response time rather than a

rise or settling time because MREs are constantly exposed to internal transients within the

context of chain breaks. CRTs were determined by looking at quasi-steady state behavior,

and measuring the time it took to achieve that behavior. CRT was correlated to forcing

frequencies, and CRT was found to be insensitive to the magnitude of the applied magnetic

¯eld.

CRTs varied depending on whether the MRE was exposed to a magnetic ¯eld being
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turned on or o®. Both numerical and experimental results showed that CRTs were longer

when an MRE was exposed to a magnetic ¯eld turning o® than when the magnetic ¯eld

turned on. This is because when an MRE is exposed to a magnetic ¯eld that is just

turned o®, chain formation are limited by particle dynamics, whereas chains are forced

into the appropriate behavior when a magnetic ¯eld is turned on. This is a signi¯cant

¯nding because the limitations of MREs is exposed. The dynamics of the MREs, when

the magnetic ¯eld is turned o®, are una®ected by magnetic ¯eld strength and hence not

controllable using open-loop input shaping of the magnetic ¯eld. However, possibilities for

small amounts of magnetic ¯eld in the opposite direction have not been studied nor ruled

out as a possibility for a®ecting this behavior.

Using both numerical and empirical results, transient behavior of MREs was assessed.

The relationship between natural frequency, damping, static displacement, CRT, and mag-

netic ¯eld were determined. This work allows future researchers to assess the controllability

of MRE transient behavior, and shape it appropriately for SSA use.
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APPENDIX A

NUMERICAL MRE SAMPLES

MRE micro-samples consisted of thirty nodes; each node was assigned either a value of

\spring", labelled as a \0", or \particle", labeled as a \1". Each sample was in either a

6 £ 5 or 5 £ 6 con¯guration. The samples used were con¯gured as follows:

10% MREa, short:2
666666666666664

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
777777777777775

20% MREa, long:2
666666666666664

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

3
777777777777775

20% MREb, short:2
666666666666664

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

3
777777777777775

20% MREc, short:
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2
666666666664

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

3
777777777775

20% MREd, short:2
666666666666664

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

3
777777777777775

30% MREa, long:2
666666666664

0 0 1 1 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 1 1 0 0

3
777777777775

30% MREb, short:2
666666666664

0 1 0 0 0 0

0 1 0 1 0 0

0 1 0 1 0 1

0 0 0 1 0 1

0 0 0 0 0 1

3
777777777775

30% MREc, short:
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2
666666666666664

0 0 1 0 0

0 0 1 1 0

0 0 1 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 0 0

3
777777777777775

40% MREa, long:2
666666666666664

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

3
777777777777775

40% MREb, short:2
666666666664

0 0 1 0 0 1

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 1 1 0

0 0 1 1 0 0

3
777777777775

40% MREc, short:2
666666666664

0 0 1 0 0 1

0 0 0 1 0 1

1 0 1 1 0 1

1 0 1 0 0 0

1 0 1 0 0 0

3
777777777775

50% MREa, long:

85



2
666666666664

0 1 1 0 1 0

0 1 1 0 1 0

0 1 1 0 1 0

0 1 1 0 1 0

0 1 1 0 1 0

3
777777777775

50% MREb, short:2
666666666664

0 1 1 0 1 0

0 1 1 0 1 0

0 1 0 1 1 0

1 0 0 1 0 1

1 0 0 1 0 1

3
777777777775
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APPENDIX B

SQUEEZE-MODE VIBRATION ABSORBER

EXPERIMENTAL METHOD

Figure B.1 is a schematic of the apparatus used to obtain experimental results for a squeeze-

mode vibration absorber. A magnetic ¯eld was delivered by attaching the wire coil ends

to a KEPCO model 36-6D power supply, which supplied up to 6 A of direct current. For

experiments requiring device excitation, a data acquisition system was used to generate

a white noise signal, low-pass ¯ltered to 1000 Hz. This signal was ampli¯ed by an LDS

PA25E power ampli¯er, and excited the base mass using an LDS V205 shaker. The shaker

was rigidly attached to the base mass.

Figure B.1: A squeeze-mode vibration absorber is depicted with its experimental setup.

Data in the form of magnetic ¯eld, displacement, and acceleration were collected to

determine device characteristics. Magnetic ¯elds were measured by a Lakeshore model 480

°uxmeter, using a sensor with 125 turns of wire. The °uxmeter probe could be placed

around the base mass, as indicated by Figure B.1, or around the MREs. Acceleration data

was collected by a PCB 303A02 accelerometer, attached to the absorber mass, and a PCB

87



288A11 accelerometer, which was attached to the base mass. Information that was static in

nature, such as the static displacement of the absorber mass, was measured using a Philtec

model D100-QPT displacement probe. The displacement probe was located such that it

could measure the absolute displacement of the absorber mass. Data from accelerometers

and the displacement probe were acquired by a Siglab model 50-21 data acquisition system,

and then transferred to a PC.

MREs were placed in a squeeze mode vibration absorber con¯guration and the base mass

was subjected to white noise, band limited at 1000 Hz. Acceleration data was collected from

the base mass and the absorber mass. The MRE was modeled as a spring with complex

sti®ness, having a loss factor ± and sti®ness K . The equation of motion governing the

system was assumed to be

M Äxabs + Kei±xabs = Kei±xbase ; (B.1)

where M was the absorber mass, . An FFT was applied to the data, yielding a transfer

function

H (!) =
Xabs (!)
Xbase (!)

=
Kei±

Kei± ¡ !2M
=

!4
n ¡ !2!2

n cos ± ¡ i!2!2
n sin ±

!4
n + !4 ¡ 2!2!2

n cos ±
; (B.2)

where !2
n = K

M . The phase angle and amplitude of Equation B.2 were found and analyzed

to empirically determine the values of !n and ± for each data set. The phase angle between

the absorber and base masses may be written as

\H (!) = tan¡1
µ

!2 sin ±
!2 sin ± ¡ !2

n

¶
: (B.3)

Using Equation B.3, the phase angle can be shown to cross -90± when

! = !90± =
!np
cos ±

: (B.4)

Substituting this into Equation B.2, the amplitude can be found to be

jH (!)j =
!2
90± cos ±

£
!4 + !4

90± cos2 ± ¡ 2!2!2
90± cos ±

¤1=2 : (B.5)

The natural frequency, !n , and loss factor, ±, were found by ¯rst identifying !90± from

the phase angle data. Amplitude data was calculated using Equation B.5, where ± = n¼
40 ;
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n = 1; 2; : : : 20. The ± value was selected when

@
¡
e2

¢

@±
= 2e

@e
@±

= 2
MX

m=1

·
(jy (!m)j ¡ jH (!m; ±n)j) ¢

µ
¡@ jH (!m; ±n)j

@±n

¶¸
= 0; (B.6)

where y (!m) was the experimental data value at frequency !m . Equation B.6 ¯nds the point

of zero-slope in the squared-error curve. This indicated points of maximum and minimum

error. Since

@ jH (!; ±)j
@±

=
¡!2

90±!4 sin ±
£
!4 + ¡!4

90± cos2 ± ¡ 2!2
90±!2 cos ±

¤3=2 ; (B.7)

values at ± = 0 were ignored. Once a ±-value had been ascertained, the natural frequency,

!n , was determined by substituting ± back into Equation B.4.
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APPENDIX C

CHARACTERISTIC RESPONSE TIMES VERSUS

MAGNETIC FIELD RATIOS

MREs described in Appendix A were subjected to magnetic ¯eld ratios of 1, 0.75, 0.5, and

0.25, where a magnetic ¯eld ratio was the ratio of the applied magnetic ¯eld to the magnetic

¯eld that would cause total saturation of the magnetic particles. Data points were omitted

if the simulation yielded numerical instability.
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Figure C.1: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 10a.
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Figure C.2: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 20a.
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Figure C.3: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 20b.
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Figure C.4: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 20c.
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Figure C.5: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 20d.
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Figure C.6: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 30a.
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Figure C.7: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 30b.
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Figure C.8: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 30c.
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Figure C.9: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 40a.
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Figure C.10: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 40b.
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Figure C.11: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 40c.
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Figure C.12: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 50a.
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Figure C.13: CRT is plotted against forcing frequency ratios at magnetic ¯eld ratios of 1,
0.75, 0.5, and 0.25 for MRE 50b.
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