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SUMMARY 

 

 

This thesis presents investigations on the potential negative effects of wind 

turbine noise on the human ear from a sound point source (i.e. wind farm).  In Chapter 2, 

the tectorial membrane, which is a crucial gelatinous structural matrix located within the 

cochlea of the inner ear, is considered to have a similar constitutive stress-strain 

relationship to that of an elastomer (rubber) in tension.  The tectorial membrane appears 

to stretch when subjected to constant heavy sound stimulation.  The tectorial membrane is 

modeled as a simply-supported beam with an external load Pext applied at midspan.  A 

virtual work approach is used to balance the external work at midspan Pextδz of the 

tectorial membrane with the internal strain energy  zU   from its hysteresis loops.  These 

hysteresis loops quantify the amount of damage that the tectorial membrane undergoes 

due to an applied external loading.  Normalized damage tables are presented at the end of 

the chapter to suggest safe distances away from the wind turbines to limit damage to the 

tectorial membrane.  Chapter 3 considers a hypothetical autonomous village constructed 

in South Pretoria, South Africa.  This village accommodates approximately 2000 people 

(~500 families) and receives electricity for hot water from a nearby 2.5 MW wind farm.  

The design process for the village is discussed from an architectural and design 

standpoint.  The wind farm specifications, specifically the number of 2.5 MW wind 

turbines needed to provide electricity for hot water, are established.  Results from 

Chapter 2 are used to suggest minimum safe distances between the wind farm and the 

autonomous village in the context of limiting damage to the tectorial membrane.
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CHAPTER 1 

INTRODUCTION 

 

Current Wind Turbine Technology 

 Recently, wind turbine technology has gathered worldwide attention because of 

the need to foster renewable energy infrastructure across the globe.  Many investigations 

on wind turbines focus exclusively on current and future power output potential and 

efficient ways to harness this energy.  Modern land-based wind turbines can individually 

produce power generally between 1.5 MW and 2.5 MW.  Offshore wind turbines are 

larger and are rated around 4.0 MW, but prototypes for 5 MW offshore wind turbines are 

already being developed (Archer and Jacobson 2005; Musial et al. 2006; Thresher et al. 

2008; Martínez et al. 2008; Lu et al. 2009).   

A typical coal-fired plant can currently produce net power of around 500 MW.  

Coal-based plants that are under 35 years old have an average capacity of about 550 MW 

(Bohm et al. 2007; MIT 2007; Beér 2009).  World coal consumption is expected to 

increase by 65% in the next 20 years (EIA 2008).  Thus, it might appear as though wind 

turbines will be maintained in the future as a supplementary energy source.  However, if 

the push for increased development of wind technology occurs, there will be other issues 

to consider besides improving power output capacity and exploiting energy efficiently.  

While coal burning has numerous environmental and health hazards such as air and water 

quality disturbance (Greb et al. 2006), wind turbines produce constant noise that could be 

harmful to the human ear over time.  Various ontological symptoms such as tinnitus and 
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aural pain and pressure have been reported by residents who reside near wind turbines 

(Salt and Hullar 2010). 

 

Measuring Wind Turbine Noise on the Ear 

It is well known that sustained exposure to noise can cause temporary threshold 

shifts (TTS) and depending on the level and duration can result in long-term auditory 

fatigue.  According to Charron and Botte (1988), sounds greater than 85 decibels are 

characterized as high-level stimuli and can result in long-term ear fatigue.  A modern 

wind farm consisting of multiple turbines can emit sound power levels between 94 and 

103 A-weighted decibels (dBA) for wind speeds between 5 and 10 m/s, respectively (van 

den Berg 2003).  Acoustic noise is generally recorded using A-weighted decibels that 

account for human hearing sensitivity from the unweighted wind turbine noise spectrum 

data.  At distances no greater than 500m and/or located within rural settings, a wind 

turbine farm can generate perceivable sound levels generally between 30 and 50 dBA.  

These values are calculated for land-based wind turbines (between 1.5 MW and 2.5 MW) 

functioning during the day and night with average wind speeds of around 8 m/s (Keith et 

al. 2008; Pederson et al. 2009; Salt and Hullar 2010).   

Since wind turbine sound levels at significant distances fall well below the critical 

threshold for human hearing loss from sustained exposure (~90-105 dBA), they have 

been deemed safe for the ear by many previous studies, including BWEA (2000) and 

Colby et al. (2009).  But this does not account for the complexity of the ear and its 

response to low frequency sounds.  Low frequency sounds that fall below the range of the 

normal audible range of 20 Hz and 20 kHz are collectively known as infrasound.  Wind 
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turbines generate infrasound at frequencies and levels not necessarily perceived by the 

human ear, which may result in long term damage (Salt and Hullar 2010).  This suggests 

that there is the possibility that the constant sound generated from multiple wind turbines, 

even at a lower frequency, can cause auditory fatigue and cumulative damage to the ear 

over years of exposure.   

There are currently two major sound measurement procedures that are used for 

determining decibel levels from wind turbines.  The first standard is IEC 61400-11 which 

is published by the International Electrotechnical Committee (IEC) and addresses 

acoustic noise from wind turbines.  The second standard is ISO 7196 which is published 

by the International Organization for Standardization (ISO) and specifies a frequency-

weighted characteristic (G) for determining weighted sound pressure levels that are 

deemed as infrasound.  The former code reports A-weighted sound power levels, 1/3 

octave levels, and tonality at wind speeds between 6-10 m/s (IEC 2002; Huskey 2006; 

Jung et al. 2008).  The IEC 61400-11 procedure generally records perceptible wind 

turbine noise as ~30-50 dBA.  Figure 1 illustrates the method used by IEC 61400-11 for 

measuring acoustic emission. 



 

4 

 

 

Figure 1. Illustration of IEC 61400-11 schematic for acoustic emission 

measurement. A microphone is placed in the downstream direction at a distance, R+H 

away from a wind turbine of hub height, H and rotor radius, R.  Image derived from Jung 

et al. (2008). 

 

 

Jung et al. (2008) reported that, a 1.5 MW wind turbine generates a direct 

relationship between wind speed and sound pressure level.  At an R+H distance of 98m, 

where R is the rotor radius and H is the hub height, sound pressure levels range between 

~54 and ~65 dBA for wind speeds between ~7 and ~14 m/s, respectively.  Additionally, a 

comparison of sound spectral densities revealed that low-frequency acoustic waves 

including infrasound decayed more slowly and covered a wider range of dB levels (~100 

dBA to ~55 dBA) than high-frequency ones.  Data collected using the ISO 7196 standard 

reported similar results to those using the IEC 61400-11 code.   

Figure 2 depicts the unweighted wind turbine noise spectrum recorded by van den 

Berg (2006) and Jung et al. (2008) for frequencies between 1 and 1000 Hz.  The 
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infrasound range is marked in the figure (<20 Hz).  At ~700 Hz, the A-weighted sound 

pressure level is ~40 dBA.  Conversely, at ~3 Hz, the unweighted sound pressure level 

generated by the wind turbine is ~80 dB.    

 

 
 

Figure 2. Unweighted wind turbine noise spectra taken from van den Berg (2006) and 

Jung et al. (2008) for frequencies between 1 and 1000 Hz. Adapted from Salt (2010). 
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CHAPTER 2 

WIND TURBINE NOISE EFFECTS ON THE EAR 
 

 

Chapter Overview  

 This chapter is concerned with about the effects of wind turbine noise on the ear, 

particularly the tectorial membrane, and a potential method to quantify the damage.  The 

first part of this chapter is about the relationship of how sound pressure levels vary with 

distance due to sound propagation from a point source and how wind turbines can be 

modeled as these point sources.  The theory of noise propagation from a point source is 

first established to set the context for its application to a wind farm.  Using the wind farm 

model given by van den Berg (2003) as a point source, the sound pressure levels are then 

calculated at distances of up to 500 m away.  In the next part of this chapter, the 

mechanical properties of the tectorial membrane, a gelatinous structural matrix within the 

cochlea of the inner ear that is critical for hearing, are discussed in detail.  The tectorial 

membrane appears to demonstrate non-linear behavior throughout a majority of its stress-

strain curve and seems to resemble a general stress-strain curve of an elastomer (rubber) 

in tension.  Due to this nonlinearity, the constitutive stress-strain relationship of the 

tectorial membrane is established through a power law.  In the final part of this chapter 

the damage from sound pressure levels on the tectorial membrane are investigated.  The 

tectorial membrane appears to partially stretch when exposed to sustained loud noise.  

The tectorial membrane is modeled as a simply supported beam loaded at midspan, and 

Castigliano's first theorem (virtual work) and rubber damage modeling methods are used 

as ways to quantify the damage due to sound pressure levels from wind turbines.  
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Sound Propagation from a Point Source 

 In order to discuss how sound pressure levels vary with distance, it is necessary to 

first understand how noise propagates through a medium from a point source.  Under 

ideal conditions, sound from a point source propagates waves equally in all directions 

(spherical spreading) and follows the Inverse-square law.  Each time the distance doubles 

away from the source, the sound level drops by 6 dB (Lamancusa 2009; Traux 1999).  At 

distances r1 and r2 away from a point source, where r2 is twice the distance of r1, their 

decibel difference DD can be expressed by: 

                                                      )/log(20 21 rrDD                                                        (1) 

 

A diagram based on the Inverse-square law of sound propagation radiating from a point 

source at distances r1 and r2 is shown in figure 3. 

 

 
 

Figure 3. Sound propagation from a point source at distances r1 and r2.  At distance r2, 

which is twice the distance of r1, the sound level drops by 6 dB. 

 

 

Point 

Source 

r1 

r2 
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A point source whose dimension is small as compared to its sound wavelength 

radiates sound waves in an omni-directional pattern, while a point source that is relatively 

large compared to its sound wavelength radiates these waves directionally.  Thus, a 

directivity factor, Q and directivity index, DI can be expressed with the following 

equations:  

                                        
2

2

sP

P
Q                    QDI 10log10                          (2, 3)  

where, Pθ refers to sound pressure for a directional source and Ps is the sound pressure of 

a non-directional point source.  The total sound power level, Lp (in dB) of a single source 

propagating in an atmosphere can be represented by the following equation: 

                                       Eabswp AADIrLL  11log20                                       (4) 

where, Lw is the sound power level of the source, r is the distance away from the point 

source, Aabs is the atmospheric absorption factor, and AE is the excess attenuation factor.  

This excess attenuation factor, AE can be calculated as the sum of various terms: 

                                 ... turbulencevegetationweathergroundE AAAAA                                (5) 

 

where, Aground is the attenuation due to the ground and terrain interaction, Aweather is the 

attenuation due to meteorological effects, Avegetation is the attenuation due to forests and 

trees, Aturbulence is the attenuation due to atmospheric turbulence (Lamancusa 2009).  

Other effects can also be added to the equation to determine a final AE value. 

 

A Wind Farm as a Point Source  

 Recent studies have suggested that a wind turbine of hub height h can be modeled 

as a point source in terms of noise propagation originating from the turbine blades 
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(Makarewicz 2011).  Thus, the total A-weighted sound pressure level of a point source, 

Lp (in dBA) can be expressed by the following equation: 

                                            










 r

wp
r

r
LL

0005.0

2

2

0 10
2

log10


                                        (6) 

 

where, Lw is the initial A-weighted sound power level (in dBA), r is the distance away 

from the point source, r0 is the initial distance, and the excess attenuation factor AE which 

includes all frequency contributions) is assumed to be 0.005 (Makarewicz 2011). 

In order to model the effects of a wind farm as a point source, it is first necessary 

to establish its decibel level production.  As given in van den Berg (2003) and mentioned 

in Chapter 1, the initial sound power level Lw of the wind farm studied varied between 94 

and 103 dBA for wind speeds between 5 and 10 m/s, respectively.  From Archer and 

Jacobson (2005), the average global wind speed at a height of 80 m is ≥6.9 m/s.  

Although this value falls between the numbers from van den Berg (2003), the maximum 

of 10 m/s will be assumed as the wind speed.  Figure 4 depicts a global map of average 

wind speeds at a height of 80 m taken from Archer and Jacobson (2005).    

 

Figure 4. Global map of average wind speeds at 80 m. (Archer and Jacobson 2005). 
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A wind speed of 10 m/s corresponds directly to 103 dBA for the wind farm data 

provided in van den Berg (2003).  Thus, at a height of 80 m (assumed hub height h) the 

wind farm generates an initial Lw of 103 dBA.  Using this wind farm sound pressure level 

data as a point source and the equation provided from Makarewicz (2011), a plot of the 

total A-weighted sound pressure levels of the wind farm versus distance is presented 

starting with an initial Lw value of 103 dBA (figure 5). 

 
 

Figure 5. Total A-weighted sound pressure level (Lp) vs. distance (r) in log scale. 

 

 

From figure 5, it can be seen that at a distance d=500m away from the wind farm, 

the perceivable sound pressure level is 38 dBA.  As all the values in figure 5 are A-

weighted sound pressure levels, they have been adjusted due to human hearing 

sensitivity.  From Salt (2010), the wind turbine noise spectra curve at ~40 dB corresponds 

to an A-weighted value of ~40 dBA at ~700 Hz, as marked in figure 2.  This is 

38 dBA 
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perceivable as it is clearly above the upper limit for infrasound (20 Hz).  On this same 

curve, a sound pressure level of ~80 dB (unweighted) generated by the wind turbine farm 

is off of the A-weighting scale and corresponds to an extremely low frequency of ~3 Hz 

(infrasound).  At ~3 Hz, there is nearly a 120 dB difference between the actual sound 

pressure level (~80 dB) and the A-weighted sound pressure level (~ -40 dBA).   

 

Properties of the Tectorial Membrane  

As mentioned in the chapter overview, the tectorial membrane is a gelatinous 

structural matrix that is within the cochlea of the inner ear.  It contains 97% water as well 

as macromolecular polyelectrolytes.  It overlays the hair cell bundles of the organ of 

Corti (figure 6) and, although previously overlooked in past research, is currently thought 

to play a crucial role in cochlear mechanics, particularly with regards to stimulating the 

hair cells.  From Gueta et al. (2006), the tectorial membrane spans the length of the 

cochlea and its approximate dimensions are ~100 µm and ~50 µm in the radial (x) and 

transverse (z) directions, respectively.  Thus, the cross-sectional area normal to the x-z 

plane is approximately 5000 µm
2
.  Although it spans the entire cochlear length, the 

tectorial membrane is cut into longitudinal segments ~500-1000 µm for testing.  The area 

normal to the x-y plane ranges between 5 x 10
4
 and 1 x 10

5
 µm

2
 (Ghaffari et al. 2010).   

Structurally, the tectorial membrane is made up of two major components: 

collagen fibrils and non-collagenous proteins.  There are also multiple proteins within the 

tectorial membrane including α-tectorin, β-tectorin, and collagen type XI, and any genetic 

modification of them could lead to significant hearing loss.  The glycoprotein β-tectorin 

is a necessary structural component and provides non-negligible longitudinal coupling in 
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the tectorial membrane.  Additionally, the tectorial membrane is very important in 

sensitivity and frequency selectivity in the inner ear (Masaki et al. 2006, Ghaffari et al. 

2007; Richter et al. 2007; Gu et al. 2008). 

 
 

Figure 6. In-situ tectorial membrane segment overlaying the organ of Corti. (1) spiral 

limbus; (2) outer hair cells; (3) inner hair cells. 

 

 

Although initially thought to have uniform mechanical stiffness and originally 

rendered as an isotropic homogenous rigid plate, research has shown that the tectorial 

membrane has important anisotropic mechanical properties with increased stiffness 

(mechanical impedance) in the radial direction.  This is due to the fact that the collagen 

fibrils are organized as thick fibers (~1 µm) and are radially oriented in the tectorial 

membrane (figure 6).  Additionally, these collagen fibers have been shown to be thicker 

and closer together at the base of the tectorial membrane than at the apex.  Furthermore, 

they are embedded within a tectorin based striated-sheet matrix.  The tectorial membrane 
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has also been modeled as a resonant system acting in the transverse direction, but no 

current observations have confirmed the theory of tectorial membrane resonance.  It 

seems that the mammalian inner ear is dependent on this anisotropic matrix in guiding 

sound-induced vibrations to specific sensory hair cells in the organ of Corti.  In addition 

to its anisotropy, the tectorial membrane also displays viscoelastic properties.  The 

frequency dependence of the displacement of the tectorial membrane can be 

characterized somewhere between pure viscosity (i.e. viscous damper) and pure elasticity 

(i.e. linear spring), meaning that both are relevant. Results show that the viscoelastic 

properties of the tectorial membrane extend over a wide range of audio frequencies.  

(Davis 1965; Geisler and Sang 1995; Abnet and Freeman 2000; Richter et al. 2007; Gu et 

al. 2008; Richardson et al. 2008; Gavara and Chadwick 2009; Lukashkin et al. 2010; 

Meaud and Grosh 2010).   

Based on results computed by Richter et al. (2007), the transversal stiffness of the 

tectorial membrane taken at five different locations ranged between 0.005 N/m and 0.166 

N/m.  The radial stiffness at these five locations ranged between 0.007 N/m and 0.288 

N/m.  Longitudinal stiffness was calculated to be around 0.15 N/m.  From Gu et al. 

(2008), it was found that the effective stiffness of the tectorial membrane increased with 

frequency.  Additionally, the shear stiffness of the tectorial membrane was reported to be 

about 3-6 N/m and increased with frequency.  As this value is much higher than the 

stiffness values of the hair cell bundles (0.25 N/m), it is unlikely that they would have 

much effect on shearing the tectorial membrane and would most likely move with it (bulk 

motion).   
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Different studies have revealed that the tectorial membrane has a larger Young‟s 

modulus (E) at the base than at the apex.   A recent study done by Gavara and Chadwick 

(2009) found the Young‟s modulus to be around 1.93 kPa and 0.78 kPa at the base and 

apex, respectively.  Richter et al. (2007) reported similar values for Young‟s modulus of 

the tectorial membrane at around 1.9 kPa at the base and 0.53 kPa at the apex.  According 

to Shoelson et al. (2004), the Young‟s modulus was uniform for both the base and the 

apex of the tectorial membrane of ~4.5 kPa.  Gueta et al. (2006) reported grossly higher 

values of 215 kPa and ~25 kPa at the base and apex, respectively.  Of all of these 

experiments, the study by Richter et al. (2007) was the only one done in situ and appears 

to be most consistent with Gavara and Chadwick (2009).  The latter group speculates the 

reason for the large discrepancy from data of Gueta et al. (2006) might be because of the 

small size of their probe which can overestimate the Young‟s modulus.   

From a more recent study done by Gueta et al. (2008), Atomic Force Microscopy 

(AFM) and finite element modeling were used to find the Young‟s modulus in the 

principal orthogonal directions (x, y, and z).  The study revealed that the Young‟s 

modulus of the tectorial membrane in the apical, midturn, and basal regions was 11 kPa, 

18 kPa, and 45 kPa, respectively in the radial (x) direction.  In the longitudinal (y) 

direction, Gueta et al. (2008) reported values of 16 kPa, 31 kPa, and 75 kPa, for the 

apical, midturn, and basal regions, respectively.  With regards to the transverse (z) 

direction, the reported values from Gueta et al. (2008) were 28 kPa, 73 kPa, and 300 kPa 

in the apical, midturn, and basal regions, respectively.  Gavara and Chadwick (2009) 

maintain that the study done by Gueta et al. (2008) along the orthogonal directions does 
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not correctly represent the anisotropic model of the tectorial membrane, and thus reports 

inaccurate modulus values. 

 Finally, shear modulus calculations of the tectorial membrane also varied widely 

between studies.  In Richter et al. (2007), the shear modulus was found to be ranging 

between 0.1-1.2 kPa.  Shoelson et al. (2004) found the shear modulus between 1.2-8.6 

kPa.  In the study done by Gu et al. (2008), the shear modulus was determined to be 

significantly larger ranging between 17-50 kPa. 

 

 

Stress-Strain Relationship of the Tectorial Membrane 

In order to determine the potential effects of wind turbine noise on the tectorial 

membrane, it is first necessary to establish its constitutive stress-strain relationship.  From 

Masaki et al. (2006), the tectorial membrane of a mouse was submerged in a bathing 

solution. Polyethylene glycol solutions with a molecular mass between 20 and 511 kDa 

were added to this bathing solution to exert osmotic pressure in the range of 0.025-10 kPa 

on the tectorial membrane.  They found that the tectorial membrane shrank in size with 

an increase in osmotic pressure.  Thus, the stress-strain relationship of the tectorial 

membrane was determined to be generally non-linear and was related by the power 

function: 

                                                                   
b

cz a                                                         (7) 

where, σc is the applied stress, εz is the strain in the -z direction as a function of the 

applied stress, and a and b are constants used for fitting the power curve.  With algebraic 

manipulation, the equation for the applied stress as a function of the strain can be 

rewritten from Eq. (7) using the preceding defined variables: 
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                                                              
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1
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









                                                     (8) 

Using Eq. (8) and constants a = 0.31 and b = 0.31 from Masaki et al. (2006), a plot of the 

stress-strain curve in the apical-middle part of the tectorial membrane is shown (figure 7). 

 

 
 

Figure 7. Plot of stress-strain curve of the apical-middle region of the tectorial membrane 

using constants a = 0.31 and b = 0.31 from Masaki et al. (2006). 

 

 

Figure 7 clearly displays a stress-strain relationship that is almost completely non-

linear and appears to resemble the stress-strain relationship of an elastomer (rubber) in 

tension.  Figure 8 depicts the tensile stress-strain curves for four natural rubber 

compounds of different hardnesses as shown in Lindley (1966).  The stress-strain curve 

of the tectorial membrane from figure 7 also seems to suggest nearly perfect elasticity, or 

that the strain is mostly recoverable.  In addition to behaving like an elastomer, the 

tectorial membrane may also behave partially like a fluid. 
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Figure 8. Tensile stress-strain curves for four natural rubber compounds of different 

hardnesses (adapted from Lindley 1966). 

 

 

Since figure 7 is essentially non-linear, it appears as though it can be classified as 

a type V stress-strain curve as presented in Byars and Snyder (1969).  For non-linear 

curves, the Ramberg-Osgood model can be used for determining the constitutive stress-

strain relationship.  This is presented below: 

                                            

n

E
K

E











                                                         (9) 

where,   is the strain, σ is the stress, E is the Young‟s modulus and thus the slope of the 

tangent to the curve taken from the origin for a type V curve, and K and n are constants 

found from experimentation (Byars and Snyder 1969). 

 As mentioned previously in the chapter, different studies (Schoelson et al. 2004, 

Gueta et al. 2006; 2008, Richter et al. 2007, and Gavara and Chadwick 2009) have 

experimentally obtained Young‟s modulus.  However, this section is concerned with 
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comparing the stress-strain relationship of an elastomer to that of the tectorial membrane.  

In the former, as the stress-strain relationship is non-linear, a distinct yield point is not 

well defined. Without an assumed yield point, Eq. (9) is not applicable.  Additionally, 

Young‟s modulus for rubber is generally calculated for small strains.  From figure 7, 

there is no obvious yield point for the tectorial membrane based on the power law in Eq. 

(8).  Therefore, Eq. (9) does not apply here and Eq. (8) will be taken to be the constitutive 

stress-strain relationship of the tectorial membrane.  

 

Damage of the Tectorial Membrane 

 When subjected to constant heavy sound stimulation (~120 dB), the tectorial 

membrane becomes damaged by being partially stretched.  From Poje et al. (1995), the 

damage and repair of the tectorial membrane was thought to play a major role in hearing 

loss and recovery in chick ears when exposed to intense pure tones at 120 dBL.  It is 

widely believed that due to acoustic trauma the extracellular matrix in the tectorial 

membrane breaks up (depolymerizes).  This acoustic trauma produces a patch lesion, and 

at this spot the upper and lower layers of the tectorial membrane disintegrate until there is 

complete damage after 24 hours of exposure.  The tectorial membrane also decouples 

from the hair cells during sound damage.  Studies have shown that the tectorial 

membrane can repeatedly regenerate itself and form honeycomb patterns around each 

hair cell, but it never fully recovers its original structure (Adler et al. 1995; Contanche 

1999; Ding-Pfennigdorf 1998; Kurian et al. 2003). 

 From Contanche 1992, tectorial membranes were taken from chicks and exposed 

to 1500 Hz pure tones at 120 dBL for a 24 hour period.  Video-enhanced DIC images 
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were taken of the tectorial membrane immediately after exposure and also after a 14 day 

recovery period.  Figure 9 depicts two video-enhanced DIC images.  The image on the 

left, Fig. (9a), is the control tectorial membrane that is undamaged.  As mentioned 

previously, the collagen fibrils in the tectorial membrane are oriented radially, and these 

can be seen in Fig. (9a).  The image on the right, Fig. (9b) depicts the noise-damaged 

region of the tectorial membrane immediately after exposure.  Here the tectorial 

membrane appears distorted and the lateral fibrils are wavy and not clearly defined.  

Specifically, the center of Fig. (9b) appears to be stretched as the distorted fibrils have 

shriveled away from it. 

   

Figure 9. Video-enhanced DIC images of the tectorial membrane taken from Cotanche 

(1992): (a) control specimen; (b) specimen immediately after exposure to 1500 Hz pure 

tones at 120 dBL for a 24 hour period.  The stretched region is marked in 7b. 

 

 

The way in which the damaged portion of the tectorial membrane stretches in Fig. 

(9b) when subjected to heavy sound stimulation appears to be similar to the way that an 

elastomer stretches in tension.  From Wang et al. (2002), uniaxial tension and fatigue 

tests were performed on rubber specimens.  The fatigue tests were done under ambient 

conditions (22°C), and the samples were subjected to triangular cyclic strain waves with 

a frequency of 0.1 Hz.  Figure 10 depicts SEM micrographs of the surface of two 

a b 

15 µm 15 µm 

Stretched region 
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different specimens.  The image on the left, Fig. (10a) is the virgin (undamaged) sample, 

and the image on the right, Fig. (10b) is a sample subjected to 1600 cycles. 

  

Figure 10. SEM micrographs of rubber of two different specimens taken from Wang et al. 

(2002): (a) virgin sample (x3000); (b) sample at 200% strain and subjected to 1600 cycles 

(x1000).  Extensive microvoids can be seen in 8b. 

 

 

Although the tectorial membrane and the elastomer samples clearly exhibit different 

physical behavior with the former depicting distorted fibrils and the latter depicting 

microvoids as evidenced in Fig. (9b) and Fig. (10b), respectively, they both apparently 

stretch when subjected to external forces.  The distorted fibrils can also be considered as 

micro defects that may alter the tectorial membrane‟s stiffness.   

 The damage of the tectorial membrane can also be expressed graphically.  Using 

Eq. (8) and data derived in figure 7, hysteresis loops are presented in figure 11 for the 

tectorial membrane when subjected to cycles of osmotic pressure.  In figure 12, the 

hysteresis loops are presented for a purely viscoelastic computation of rubber damage 

when subjected to cyclic tension.  As mentioned earlier in the chapter, studies have 

shown that the tectorial membrane displays viscoelastic properties.  Thus, the hysteresis 

loops in both figures 11 and 12 further suggest that the tectorial membrane has similar 

mechanical properties to that of an elastomer.   

a b 

Stretched region 
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Figure 11. Hysteresis loops for the tectorial membrane when subjected to cycles of 

osmotic pressure. 

  

 

 

        

Figure 12. Hysteresis loops for a purely viscoelastic computation of rubber damage when 

subjected to cyclic tension. 
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 As shown in figure 11, hysteresis loops graphically depict the potential 

quantitative damage of the tectorial membrane under cyclic loadings of osmotic pressure.  

The area contained within these loops is the quantitative damage as expressed in terms of 

strain energy density 0U .  Since it is difficult to determine a reliable yield point and 

subsequently a Young‟s modulus for the tectorial membrane, a Gibbs free energy 

approach can be used to quantify the damage from the hysteresis loops.  The fundamental 

thermodynamic equation for Gibbs free energy is: 

                      TSpVUTSHTpG ,                                        (10) 

where, H is enthalpy, U is the internal energy in the system, p is pressure, V is volume, T 

is temperature, and S is entropy.  The pressure p can be replaced with  d  which is the 

term for strain energy density 0U  because stretching is assumed to be occurring in the 

tectorial membrane.  Additionally, the variables T and S will be ignored because 

temperature and entropy, respectively, are assumed to not be relevant in this case.  

Therefore, the Gibbs free energy of the tectorial membrane  zG   can be rewritten as:   

                                                   zcTMzz dVUG                                              (11) 

where,  zU   is the internal strain energy, 
TMV  is the volume of the tectorial membrane, 

and therefore zcd is the strain energy density integrated along the entire path of each 

hysteresis loop in figure 11.  Table 1 presents the internal strain energy  zU  in µJ due to 

the number of cycles of applied osmotic pressure.  This strain energy quantifies the 

amount of damage that the tectorial membrane undergoes with each subsequent cycle.  

The volume TMV  is assumed to be equivalent to 2.5 x 10
6
 µm

3
. 
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Table 1. Strain energy due to the number of cycles of applied osmotic pressure. 

 

Number of cycles of 

osmotic pressure 
 zU   (µJ) 

1 2.83 x 10
-3 

2 2.84 x 10
-3 

3 3.58 x 10
-3 

4 5.27 x 10
-3 

5 7.99 x 10
-3

 

 

 The stretching damage of the tectorial membrane has been established as 

equivalent to the internal strain energy of its hysteresis loop.  Therefore, the applied 

external force such as a decibel pressure load from a wind farm on the tectorial 

membrane can then be determined by applying Castigliano‟s first theorem. The theorem 

states that for both linearly elastic and nonlinearly elastic structures the generalized force 

iP  can be calculated by: 

                                                          
i

i

U
P




                                                                 (12) 

where, U  and i  are the partial derivatives of the strain energy and generalized 

displacement, respectively.  Substituting Eq. (11) into Eq. (12), assuming an external 

force extP  and displacement 
z  in the transverse z-axis, and balancing the energy terms 

by rearrangement results in the following equation of virtual work: 

                                      zcTMzzTMextzext dVUAP                                   (13) 

where, in addition to terms previously defined, σext is the external decibel pressure and 

ATM  is the area of tectorial membrane in the x-y plane normal to the direction that the 

external decibel pressure is being applied.  This area ATM is assumed to be equivalent to 5 

x 10
4
 µm

2
.  Figures 13 presents the tectorial membrane modeled as a simply-supported 
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beam of length l, width w, and thickness t with an external force Pext from a point source 

(i.e. wind farm) applied at midspan.  

 

 

 

 

Figure 13. The tectorial membrane modeled as a simply-supported beam of length l, 

width w, and thickness t with an external force Pext from a wind farm applied at midspan.   

The tectorial membrane displaces a distance δz under the loading at midspan. 

Pext 

δz 

Pext 
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From the energy balance in Eq. (13), the transverse z-axis displacement 
z  can be 

parametrically varied with an assumed constant decibel level and balanced with the 

internal strain energy of the tectorial membrane.  This quantifies the amount of damage 

that the tectorial membrane undergoes with each increasing displacement.  The external 

decibel pressure σext is taken to be equivalent to each of the A-weighted dB values from 

the data in figure 5.  The external force Pext is equivalent to σext multiplied by the area of 

the x-y plane of the tectorial membrane ATM.  Figure 14 presents multiple curves of the 

damage (internal strain energy) of the tectorial membrane that occurs with increasing 

transverse z-axis displacement
z .  Each curve is for a different A-weighted external 

decibel pressure beginning with 95 dBA.  This corresponds to a distance d=1m away 

from the wind farm point source.    
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Figure 14. Damage of the tectorial membrane vs. the z-axis displacement.  

(1) d = 1-5m; (2) d = 10-50m; and (3) d = 100-500m from a wind farm. 
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 As mentioned previously and shown in figure 5, at a distance d=500m away from 

the wind turbine point source, the perceivable A-weighted decibel value is 38 dBA.  

From Salt (2010), the wind turbine noise spectra curve shows an A-weighted decibel 

value of ~40 dBA at 700 Hz.  Along the curve the unweighted wind turbine noise spectra 

data in the infrasound range (1-20 Hz) ranges between 90 and 60 dB, respectively.  It is 

assumed that this noise spectra applies to a wind farm at a distance d=500m away from 

the wind turbine point source. Thus, the damage of the tectorial membrane based on 

unweighted decibel values in the infrasound range with respect to the z-axis displacement 

at a distance d=500m is presented in figure 15.      

  

 

Figure 15. Damage of the tectorial membrane based on unweighted decibel values in the 

infrasound range vs. the z-axis displacement at a distance d=500m from a wind farm.  

Frequencies range between 1 and 20 Hz.  
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 Figure 14 quantifies the amount of damage in terms of strain energy that the 

tectorial membrane undergoes for increasing z-axis displacement at various distances 

away from a wind farm point source.  These values can then be compared with  zU max , 

which is the maximum strain energy that the tectorial membrane can undergo before 

being overstretched and developing micro tears.  Based on the rubber damage modeling 

equations in Kolling et al. (2005), the damage parameter D for the tectorial membrane is 

taken to be equivalent to: 

                                              
 
 

 
 zlcd
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z
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1
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                                            (14) 

where,  zulcd   is the stress in the unloading curve,  zlcd   is the stress in the loading 

curve, and the max internal strain energy is:  

                                        zlcdTMz dVU

z







max,

0

max                                               (15) 

The area under the loading part of the hysteresis loop in figure 11 multiplied by 

the volume of the tectorial membrane VTM is equivalent to  zU max .  However, it is not 

known whether or not an applied stress of 10 kPa as done by Masaki et al. (2006) exceeds 

the allowable maximum strain energy of the tectorial membrane.  Therefore, using 120 

dB (20 Pa) as the maximum allowable stress on the tectorial membrane based on the 

stretching damage shown in figure 9,  zU max  is 5 x 10
-5

 µJ.  Based on Eqn. (14) and the 

data from figure 14, table 2 presents the damage parameter D of the tectorial membrane 

vs. the distance d away from a wind farm point source for transverse z-axis displacements 

δz between 10 and 100 µm.  Figure 16 presents the results from the table graphically.     
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Table 2.  Damage parameter D of the tectorial membrane vs. distance d away from a 

wind farm point source for transverse z-axis displacements δz between 10 and 100 µm.   

 

 
δz = 10µm δz = 20µm δz = 30µm δz = 40µm δz = 50µm 

d (m) D d (m) D d (m) D d (m) D d (m) D 
1 1.1E-02 1 2.2E-02 1 3.4E-02 1 4.5E-02 1 5.6E-02 

10 1.1E-03 10 2.2E-03 10 3.4E-03 10 4.5E-03 10 5.6E-03 

20 5.6E-04 20 1.1E-03 20 1.7E-03 20 2.2E-03 20 2.8E-03 

30 3.7E-04 30 7.4E-04 30 1.1E-03 30 1.5E-03 30 1.9E-03 

40 2.8E-04 40 5.6E-04 40 8.4E-04 40 1.1E-03 40 1.4E-03 

50 2.2E-04 50 4.4E-04 50 6.6E-04 50 8.8E-04 50 1.1E-03 

60 1.8E-04 60 3.6E-04 60 5.5E-04 60 7.3E-04 60 9.1E-04 

70 1.6E-04 70 3.1E-04 70 4.7E-04 70 6.2E-04 70 7.8E-04 

80 1.4E-04 80 2.7E-04 80 4.1E-04 80 5.4E-04 80 6.8E-04 

90 1.2E-04 90 2.4E-04 90 3.6E-04 90 4.8E-04 90 6.0E-04 

100 1.1E-04 100 2.2E-04 100 3.3E-04 100 4.4E-04 100 5.5E-04 

200 5.0E-05 200 1.0E-04 200 1.5E-04 200 2.0E-04 200 2.5E-04 

300 3.0E-05 300 6.0E-05 300 9.0E-05 300 1.2E-04 300 1.5E-04 

400 2.0E-05 400 4.0E-05 400 6.0E-05 400 8.0E-05 400 1.0E-04 

500 1.7E-05 500 3.4E-05 500 5.1E-05 500 6.8E-05 500 8.5E-05 

 

δz = 60µm δz = 70µm δz = 80µm δz = 90µm δz = 100µm 

d (m) D d (m) D d (m) D d (m) D d (m) D 
1 6.7E-02 1 7.8E-02 1 9.0E-02 1 1.0E-01 1 1.1E-01 

10 6.7E-03 10 7.8E-03 10 9.0E-03 10 1.0E-02 10 1.1E-02 

20 3.4E-03 20 3.9E-03 20 4.5E-03 20 5.0E-03 20 5.6E-03 

30 2.2E-03 30 2.6E-03 30 3.0E-03 30 3.3E-03 30 3.7E-03 

40 1.7E-03 40 2.0E-03 40 2.2E-03 40 2.5E-03 40 2.8E-03 

50 1.3E-03 50 1.5E-03 50 1.8E-03 50 2.0E-03 50 2.2E-03 

60 1.1E-03 60 1.3E-03 60 1.5E-03 60 1.6E-03 60 1.8E-03 

70 9.3E-04 70 1.1E-03 70 1.2E-03 70 1.4E-03 70 1.6E-03 

80 8.1E-04 80 9.5E-04 80 1.1E-03 80 1.2E-03 80 1.4E-03 

90 7.1E-04 90 8.3E-04 90 9.5E-04 90 1.1E-03 90 1.2E-03 

100 6.6E-04 100 7.7E-04 100 8.8E-04 100 9.9E-04 100 1.1E-03 

200 3.0E-04 200 3.5E-04 200 4.0E-04 200 4.5E-04 200 5.0E-04 

300 1.8E-04 300 2.1E-04 300 2.4E-04 300 2.7E-04 300 3.0E-04 

400 1.2E-04 400 1.4E-04 400 1.6E-04 400 1.8E-04 400 2.0E-04 

500 1.0E-04 500 1.2E-04 500 1.4E-04 500 1.5E-04 500 1.7E-04 
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Figure 16. Damage parameter D of the tectorial membrane vs. distance d (m) for 

displacements δz between 10 and 100 µm.   
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CHAPTER 3 

NEXT-GENERATION AUTONOMOUS HOUSING 

 

Chapter Overview 

In the modern building construction age, it has become attractive to supplement 

diminishing fossil fuel resources with intelligent housing systems that can have 

renewable energy capabilities. The challenge is to create sustainable building designs that 

are not only of higher quality but provide higher standards of living with minimal 

environmental impact.  Thus, this chapter considers the novel concept of next-generation 

autonomous housing.  In order to understand autonomous housing as a concept, it is 

important to first consider it as an individual self-sufficient unit or house.  Then this idea 

can be expanded to understand it in the context of an entire self-sustaining village.  In this 

chapter, a hypothetical autonomous village is considered.  It contains about 2000 people 

(~500 families) and consists of round “beehive” housing communes with L-shaped 

modules that plug in to the overall structure.  Nearby, there is a 2.5 MW wind farm that 

partially powers the village by providing it with electricity for hot water.  An extensive 

architectural and design process was used in designing and planning the village, and this 

is described in detail.  In the end of this chapter, the results from the damage modeling 

section of Chapter 2 are applied to suggest minimum safe distances between the wind 

farm and the village in the context of limiting damage to the tectorial membrane. 
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The Autonomous House 

 

The autonomous building concept, which was first proposed in 1972 by 

Alexander Pike at the University of Cambridge School of Architecture, refers to a 

[building] not linked to the mains services of gas, water, electricity or drainage, but 

instead uses the income-energy sources of sun, wind, and rain to service itself and 

process its own wastes (Vale and Vale 2000). Autonomous buildings reduce ownership 

costs, carbon footprints, and overall environmental impact by eliminating dependence on 

public utilities and services.  Current examples of autonomous housing include the 

Hockerton Housing Project, the Findhorn Eco-Village, and Earthships (Figure 17). 

 

   

Figure 17. Current examples of autonomous housing. (1) Hockerton Housing Project in 

Hockerton, Nottinghamshire, UK; (2) Findhorn Eco-Village house in Moray, Scotland; 

(3) Earthship in Rio Arriba County, New Mexico. 
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Cost-Modeling the Autonomous House 

Autonomous projects generally have the following characteristic features: (1) 

clean energy generation, storage, and use, (2) water collection and reuse, (3) sustainable 

food production, (4) the use of “green” construction materials, (5) the use of innovative 

building structures, and (6) resource availability.  A technical cost-model can be used to 

simulate single autonomous buildings or houses.  This model can generate fixed and 

variable costs for the six characteristic variables mentioned above.  Figure 18 depicts an 

example of process-based cost model methodology for an autonomous house. 

 

 

 

 

 

 

 

 

 

 

Figure 18. Example of process-based cost model methodology. 

 

Based on the previous methodology, a general process-based cost model (PBCM) can be 

expressed as:  

                                             



6

1i

iT CC  ,i = RE, W, F, M, S, RA                                  (16) 

 

where CT is the total cost over a certain time, CRE is the cost of renewable energy 

resources, CW is cost of water resources, CF is the cost of food production,  CM is the cost 

of materials (e.g. Cenocell™ based materials, other concrete substitutes, etc.), CS is the 

cost of structures, and CRA is the cost of resource availability.  Due to uncertainty and 

variation in the cost-modeling process, non-equilibrium and extreme-value statistical 
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methods will be used for estimating the total costs. An extreme-value equation for 

expected total cost, E[C], is proposed here:  

                            
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                      (17) 

where n is the six input variables multiplied by the cost Ci of each one modeled using the 

cumulative distribution function from Dahan and Mendelson (2001).  Assuming this 

model is reliable, different variable combinations can be simulated to create optimized, 

cost-efficient solutions that vary based on controlled parameter changes.  

 

Principles of Cube Symmetry and Modular Design  

As the idea of the autonomous house has been established previously, the design 

and layout of the autonomous village consisting of beehive housing communes will be 

discussed in the following sections.  In designing these communes for the village, 

principles of cube symmetry and modular design were primarily employed.  The former 

of these principles refers to the multiple forms of symmetry that exist in one of the 

simplest spatial shapes, the cube.  The work of Stiny (1980), which is known as the 

“kindergarten grammars”, derives a series of geometrical gifts from Frederick Froebel‟s 

kindergarten method.  In four of the gifts (3-6), six individual solids are derived with the 

first one being the cube (Economou 1999).  Furthermore, the structure of the cube 

contains multiple isometries that can be explored.  From Economou and Baker (2006), 

there are ninety-eight symmetry groups of the structure of the cube.  Additionally, the 

structure of the cube consists of the octahedral group which contains thirty-three 

conjugacy classes. The ninety-eight subgroups are formed from these conjugacy classes.  

Three of the ninety-eight configurations (classes) are depicted in Figure 19. 
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Figure 19. Three classes of the ninety-eight cube configurations (Economou and Baker 

2006). 

 

 

Modular design and construction feature individual pre-fabricated units that are 

combined together and installed on site to create an entire building structure.  Advantages 

of modular construction include: (1) lower costs due to repeated manufacture of units, (2) 

increased installation speed, (3) more precise manufacturing, and (4) the ability to 

dismantle and reuse the constructed units.  These units are usually considered as load-

bearing elements where the loads are transferred through the walls.  Modular construction 

is used in mid-rise cellular buildings (up to eight stories) that feature load-bearing walls 

that resist wind-induced shear forces.  In high-rise buildings, modules that resist 

compression can be “clustered” around a core structure, which consequentially stabilizes 

them (Lawson and Richards 2010). 

Prominent examples of modular design in architecture include Moshe Safdie‟s 

Habitat ‟67 (Figure 20) and Kisho Kurokawa‟s Nakagin Capsule Tower (Figure 21).  

Both of these projects feature the cube as an individual unit.  In his Habitat ‟67, Safdie 



 

36 

 

combines pre-fabricated cubes to form an L-shaped motif and creates offset stacking 

configurations.  Habitat ‟67 was designed as part of the 1967 International and Universal 

Exposition in Montreal, Canada.  In his Nakagin Tower, which is one of the most 

prominent forms of Japanese “Metabolism” architecture, Kuroka employs the individual 

cube and stacks it repeatedly in organic forms to give the impression of a “growing” 

structure.  In essence these cubes are “plugged” into an overall high-rise core structure in 

the method similar to that described by Lawson and Richards (2010). 

 

      
 

 

 
 

Figure 20. Exploded axonometric (1), plans (2), and stacking model (3) of the module 

cubes in Habitat ‟67 (Canadian Architecture Collection, McGill University 2001). 
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3 
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Figure 21. Axonometric (1), plan (2), and stacking arrangement (3) of the prefab modular 

capsule in Nakagin Tower (Kurokawa 1977; Schmal et al. 2005; Ross 1978). 

 

 

Design of the L-module – Use of the Cube 

 In designing the L-module for the beehive structures, the structure of the cube was 

utilized extensively.  A majority of the design for the modules was inspired from the two 

precedent projects mentioned previously (Habitat ‟67 and the Nakagin Tower).  Each L-

module is approximately 972 square feet and can house a family of 4-5 people.  

1 2 

3 
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Additionally, each one features 2 bedrooms, 2 bathrooms, a living room, a kitchenette, 

and a balcony.  Figure 22 depicts a 3D model of the L-module. 

 

Figure 22. 3D model of the L-module (generated in Autodesk 3ds Max). 

 

Figure 23 depicts the plan and section cuts of the L-module. 

 

 

Figure 23. Plan and section cuts of the L-module. 
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The L-modules were then arranged to give the impression that they are “stacked.”  

In reality these modules are slid in between two core structural walls and “locked” in 

place.  Shear releases are placed at each floor level to allow for sway due to lateral forces.  

For greater rigidity, these shear releases can be bolted in place.  Figure 24 depicts the 

modules being stacked, while figure 25 illustrates how the modules are locked into place. 

 
Figure 24. (1) Section cut of modules being stacked with (2) elevation of façade; (3) 

detail of shear release. 

  

 

     

Figure 25. Modules being locked into “core” structure (generated in Autocad 3ds Max). 
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3 
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Design of the “Beehive” Structure – Zulu Design, Shells, and Rotational Symmetry  

In designing the “beehive” structures, designs of traditional Zulu “beehive” 

dwellings were utilized.  Some examples of these Zulu beehive dwellings are shown in 

figure 26.  

   

   

Figure 26. Examples of Zulu beehive dwellings. (1) Traditional Zulu house, South 

Africa; (2) Two of the round houses on the Palace Grounds of the Zulu King; (3) Zulu 

“beehive” houses, Zululand, South Africa; (4) Traditional Zulu house, central 

Drakensberg, South Africa. 

 

           A defining principle behind the design of “beehive” commune is the use of 

rotational symmetry.  As a precedent, Pier Luigi Nervi‟s Palazzetto dello sport was 

studied for its use of rotational symmetry as well as for its use of a prefabricated 

reinforced ribbed concrete shell for the dome (figure 27).   

 

 

1 2 

3 4 
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Figure 27. (1) Ribbed reinforced concrete shell and (2) shell braced by concrete “Y” 

flying buttresses in the Palazzetto dello sport. 

 

From Steadman and March (1971), there are three classes of plane symmetry groups 

based on their translational structure: (1) two planar point groups, (2) seven frieze 

groups, and (3) seventeen wallpaper groups. The two planar point groups, which have 

finite symmetry groups of rotation in the plane, are the cyclic group and the dihedral 

group.  They do not contain any translations and can be represented by: 

                                                       C1, C2, C3,…, Cn,…                                                  (18) 

D1, D2, D3,…, Dn,… 

where, n is the period of the group, specifically the number of 360°/n rotations for 

completing a full revolution.  This was an important system set up by Leonardo da Vinci 

when he studied the symmetry of the core of a central building (Steadman and March 

1971).  The two planar point groups are depicted in figure 28; the cyclic group (left) 

contains rotations about the origin point up to 2π/n, and the dihedral group (right) 

contains rotations and reflections about the origin point.  The highlighted dihedral 

column served as a precedent for the “beehive” commune layout, particularly D6. 
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Figure 28. The two planar point groups: cyclic (Cn) and dihedral (Dn) (Steadman and 

March 1971). 

  

 



 

43 

 

Figure 29 depicts examples of point groups in architectural plans.  Examples a-e are 

designs of Claude-Nicolas Ledoux and reflect the dihedral group: D1, D2, D3, D4, and 

D12, respectively.  Design e (D12) is highlighted because it served as a direct precedent in 

the design of the beehive commune. 

 

Figure 29. Examples of point groups in architectural plans (Steadman and March 1971). 
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 A typical floor plan of the beehive commune is shown in figure 30.  The design 

maintains the dihedral grouping (D14) of symmetric rotation. 

 
 

Figure 30. A typical floor plan of the beehive commune.   

 

 

Figures 31 and 32 depict the overall structural model (with a spanning shell) and the  

 

module arrangement of the beehive commune, respectively. 

 

 

Figure 31. Complete structural model (generated in Rhinoceros 3D). 
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Figure 32. Module arrangement within the building (generated in Rhinoceros 3D). 

 

 

A complete model of the beehive commune is generated in figure 33. 

 

 
 

Figure 33.  Complete view of the beehive commune (generated in Rhinoceros 3D). 
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Design of the Village – Zulu Layout and Group Symmetry 

           The first concept used in designing the village was utilizing the layout of historic 

Zulu settlements.  An example of the layout of a Zulu royal settlement, Mgungundlovu is 

seen in figure 34.  As is seen in the figure, the region bounded by E (known as 

Indlunkulu) housed the royalty including the king and his family.  The ring-shaped 

regions marked „N‟ and bounded by „W‟ on either side of the settlement housed the 

soldiers.  Cattle were kept within the open space in the center of the village and milked at 

the three enclosures marked „R‟ (Kuper 1993). 

 

 

Figure 34. Layout of the Zulu royal settlement - Mgungundlovu (Kuper 1993). 
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           Figure 35 depicts a layout of a traditional Zulu homestead.  The hut marked 1 is 

the Indlunkulu, which was the largest of the huts and was associated with the head of the 

homestead.  The head of the homestead actually lived in the house marked 2 (Ilawu), but 

his mother or great wife lived in the Indlunkulu.  The Indlunkulu was the keystone and 

unified the homestead.  Additionally, it housed ritual objects and served as a building to 

connect with the ancestors.  As in the previous layout, the center of the homestead was 

where the cattle were kept as labeled in the figure as cattle-byre (Kuper 1993). 

 

 
 

Figure 35. Layout of a Zulu homestead (Kuper 1993). 
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           In addition to the influence of historic Zulu settlement layouts, the group 

symmetry concepts discussed by Steadman and March (1971) were also applied.  The 

seventeen wallpaper groups are the third class of the plane symmetry groups and consist 

of more than one translation.  There are two distinct translations (T1 and T2) that can be 

derived from any translation combination within a plane.  In crystallographic restriction, 

the only possible periods of rotational symmetry are 2, 3, 4, and 6.  The translations, T1
i
 

and T2
j
 form a lattice that serves as the basis from any planar symmetric group, where i 

and j are integers (i,j є Z) (Steadman and March 1971).  Figure 36 depicts W6
1
, which 

refers to six point rotations and one direct translation. 

 

Figure 36. Wallpaper W6
1
 with six point rotations and one direct translation (Steadman 

and March 1971). 

 

 

           The principle of hexagonal tiling was briefly explored and applied to the wallpaper 

group concept as presented by Steadman and March (1971).  Hexagonal tiling is one of 

the three regular symmetry group tessellations (triangle, square, and hexagonal) as it 
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creates three regular hexagons at each mutually incident vertex (Grünbaum and Shephard 

1987).  Additionally, hexagonal tiling is considered more isotropic than square tiling and 

has been applied in a cellular automaton (CA) (Gajardo and Goles 1998).  Figure 37 

depicts a possible application of hexagonal tiling of multiple beehive communes by 

overlaying the W6
1
 wallpaper configuration.  Although explored, hexagonal tiling was not 

incorporated in the final design of the village. 

 

 

 

Figure 37. Overlay of hexagonal tiling of beehive communes on the W6
1
 wallpaper 

configuration. 
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Final Design of the Village            

This autonomous village is to be located in South Pretoria, South Africa on the 

left side of the Ben Schoeman Freeway and bounded by Ashwood Drive and the M10 

(figure 38).  It was designed to look like a human eye when seen in plan or from an aerial 

perspective.  As mentioned previously, it is designed to house about 2000 people (~500 

families).  The “beehives” are arranged to form the “brow” of the human eye.  

Additionally, a development complex (the “eyeball”) will be located in the center of the 

village and will serve as a main convention center to train residents in various industrial 

trades.  Nearby, there is a wind farm that will provide electricity for supplying hot water 

to the village.   

           The final design for the proposed autonomous village layout incorporated an 

abstraction of the Zulu homestead layout.  In the Zulu homestead layout from Kuper 

(1993), the beehive huts were arranged around the open space (cattle-byre) at the top of 

the village with the largest of the huts in the center and the smaller ones on either side.  

As shown in figure 35, the entire village is within the circular open space and the beehive 

communes are arranged from largest to smallest (left to right) and form the “eyebrow”, 

while the development center resembles the “eyeball”.  As in the Zulu homestead, the 

village entrance is at the bottom of the layout. 
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Figure 38. Final layout of the proposed village. 

 

 

Wind Farm Specifications 

 

            As mentioned in the chapter overview, there will be a nearby 2.5 MW wind farm 

supplying electricity for hot water to the autonomous village.  According to EIA (2011), 

the total United States household electricity consumption in 2009 was approximately 1.36 

billion MWh.  Water heating only accounted for 127 million MWh (~9.3%) of the total 

electricity consumption.  This translates to approximately 0.41 MWh per person annually.  

Using these numbers, a ~2000 person village would require about 820 MWh annually.  

Based on the electricity consumption numbers and assuming 8760 hours in a year, a 

standard land-based 2.5 MW wind turbine running at maximum efficiency with a 

capacity factor (CF) of 0.3 can produce ~6570 MWh of energy annually.  This suggests 

that one 2.5 MW wind turbine would be more than sufficient in providing electricity for 

hot water for the village. 
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Suggested Distances between the Wind Farm and the Autonomous Village  

           Based on the results of this work, the wind farm can be placed at any reasonable 

distance, away from the autonomous village, that will minimize infrastructure costs. It 

should be noted however that such a conclusion is based on a maximum allowable stress 

on the tectorial membrane of 120 dB (20 Pa). Future studies should examine the stress 

level of 85 dB at which point long-term fatigue of the ear may occur.   It is currently 

unknown what long term damage occurs on the tectorial membrane due to both constant 

noise and low-frequency sounds (infrasound) generated from wind turbines. 
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