
NEAR-MEMORY PRIMITIVE SUPPORT AND INFRASTRUCTURE FOR
SPARSE ALGORITHM

A Dissertation
Presented to

The Academic Faculty

By

Kartikay Garg

In Partial Fulfillment
of the Requirements for the Degree

Masters of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2017

Copyright c© Kartikay Garg 2017

NEAR-MEMORY PRIMITIVE SUPPORT AND INFRASTRUCTURE FOR
SPARSE ALGORITHM

Approved by:

Dr. Sudhakar Yalamanchili,
Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Jeffrey Young, Co-advisor
School of Computer Science
Georgia Institute of Technology

Dr. Tushar Krishna
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Richard Vuduc
School of Computational Science
and Engineering
Georgia Institute of Technology

Date Approved: April 28, 2017

ACKNOWLEDGEMENTS

I wish to express my gratitude to my advisor Dr. Sudhakar Yalamanchili, for his support

and motivation through the course of my thesis. His guidance was invaluable to my research.

I would also like to express my utmost respect for my co-advisor, Dr. Jeffrey Young. His

unwavering faith in my capabilities and potential helped me make great strides in my work

and beyond. I look up to him immensely. He patiently answered all my queries and provided

extremely valuable feedback.

I am also very grateful to Piyush Sao, for providing me with his invaluable time and

assistance. His efforts to guide me through his base code, greatly assisted me to develop

critical components for my work.

I am greatly indebted to Dr. Tushar Krishna, who not only taught me my Computer

Architecture course, but also provided me numerous opportunities to expand my knowledge

and work on research projects. His support has been an invaluable component of my grad

life.

I would also like to thank my fellow lab mates, Burhan Mudassar, Ramyad Hadidi,

Blaise Tine, Chad Kersey, and Karthik Rao for helping me out greatly during the course of

my program. They were always welcoming and helped me a great deal through different

aspects of my graduate studies.

I thank the committee members for their precious time and consent to serve on my

committee. I thank them for their insightful comments.

Finally, a special thanks to my family for their moral support and encouragement. They

are the pillar of my strength. I thank my parents and my sisters, for their loving support.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . ix

List of Figures . x

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Introduction to SUPERLU . 4

1.3 Introduction to 3D-stacked memory architectures 6

1.3.1 Hybrid Memory Cube Architecture 7

Chapter 2: Background Study . 10

2.1 Related Work . 10

2.1.1 Algorithmic Optimization of SuperLU 10

2.1.2 Hardware Approaches for Data Movement 13

Chapter 3: Implementing the Target Application for NDP 15

3.1 SUPERLU with HALO . 15

3.1.1 OpenCL SUPERLU Implementation 16

3.2 BLAS libraries . 20

vi

3.2.1 clBLAS . 20

3.2.2 OpenBLAS . 21

Chapter 4: Evaluating Memory Behavior With Memory Traces 22

4.1 Hardware platform . 22

4.2 PIN tool . 23

4.2.1 Memory Trace Pintool Filter . 25

4.2.2 Custom Pintool Filters . 25

4.3 Limitations . 27

4.3.1 Extrapolations for memory trace for representing GPU trace 29

Chapter 5: Evaluation Model and Hardware Infrastructure 31

5.1 Evaluation Platform . 32

5.1.1 PICO stream framework . 33

5.2 HMC addressing . 34

5.3 GUPS framework . 35

5.4 Measurements and metric instrumentation 38

5.5 Operations supported . 39

Chapter 6: Experiments and Results . 41

6.1 Dense SuperLU proxy measurements . 41

6.2 Memory trace experiments . 45

6.2.1 Serial issue of commands . 46

6.2.2 Parallel issue of commands . 57

vii

Chapter 7: Conclusions . 62

Chapter 8: Future Work . 64

References . 67

viii

LIST OF TABLES

6.1 Profiling code phase timing contributions on GPU 42

6.2 Profiling code phase timing contributions on CPU (OpenCL accelerator
kernel) . 42

ix

LIST OF FIGURES

1.1 Scope of Work . 2

1.2 Thesis Contributions . 4

1.3 3D-stacked structure . 7

1.4 Memory organization in Hybrid Memory Cube (HMC) 8

1.5 CPU HMC link . 9

2.1 Asynchronous data transfer and compute time sharing 11

2.2 HALO elimination tree . 12

2.3 DGEMM phase in HALO . 13

3.1 Schur Complement Update Overview . 19

4.1 PIN tool . 24

4.2 Proxy target disassembly . 26

4.3 Custom PIN tool . 26

4.4 Sample Memory Trace . 29

5.1 Pico framework software stack . 31

5.2 Internal architecture of Ac-510 board . 32

5.3 Pico stream framework . 34

x

5.4 HMC addressing scheme . 34

5.5 Algorithm to measure HMC performance 37

5.6 GUPS statistics . 39

5.7 128 bit command packet . 40

6.1 Performance comparison of HALO optimization for SuperLU on GPU . . . 44

6.2 Performance comparison of HALO on different platforms 45

6.3 Per port GOPS as a function of Batch Size (READ-only) 47

6.4 Cumulative time to emulate memory trace on the HMC as a function of
Batch Size (READ-only) . 48

6.5 Predicted cumulative time to service memory requests on the HMC as a
function of number of ports (READ-only) 49

6.6 Per port GOPS as a function of Batch Size (WRITE-only) 51

6.7 Cumulative time to service memory requests on the HMC as a function of
Batch Size (WRITE-only) . 52

6.8 Predicted cumulative time to service memory requests on the HMC as a
function of number of ports (WRITE-only) 53

6.9 Per port GOPS as a function of Batch Size 54

6.10 Cumulative time to service all memory requests on the HMC as a function
of Batch Size . 55

6.11 Predicted cumulative time to service all memory requests on the HMC as a
function of number of ports . 56

6.12 Aggregate GOPS as a function of port count and batch size (READ-only) . 57

6.13 Per port GOPS as a function of batch size and port count (READ-only) . . . 58

6.14 Cumulative time to service requests from the trace file on the HMC as a
function of port count and batch size (READ-only) 59

6.15 Aggregate GOPS as a function of port count and batch size (WRITE-only) . 60

xi

6.16 Per port GOPS as a function of batch size and port count (WRITE-only) . . 61

xii

SUMMARY

Current trends in multi-core processors and heterogeneous architectures have aimed

at improving and performance in terms of raw GFLOPS/sec . This has had fundamental

implications on interaction between compute cores and the memory system. Particularly

for the HPC (High Performance Computing) community, the conventional DRAM mem-

ory subsystem poses a major bottleneck in achieving peak acceleration speedups due to

bandwidth and fetch latency limitations. Developers invest time and resources to select and

design the optimal offload accelerators to avoid paying these latencies directly, and they

couple this hardware design with algorithms to maximize compute utilization while hiding

the maximum memory latencies [1].

This thesis introduces an approach to solving the problem of memory latency perfor-

mance penalties with traditional accelerators. By introducing simple near-data-processing

(NDP) accelerators for primitives such as SpMV (Sparse Matrix Multiplication of Vectors)

and DGEMM (Double Precision Dense Matrix Multiplication) kernels, applications can

achieve a considerable performance boost. NDP can be combined with new 3D-stacked

architectures to provide high internal bandwidth and data parallelism. Additionally, the verti-

cal TSV (Through Silicon Via) links in 3D-stacked memories can help reduce average access

times for memory requests and accelerate atomic-type operations like Read-Modify-Write.

We evaluate these technologies using a common HPC algorithm, ”LU decomposition

for large order, sparse matrices”. This algorithm is included in one of the most commonly

used solvers for the HPC community, SUPERLU [2], and has been accelerated on GPU and

Xeon Phi. We take the existing state of the art solver implementations of the SUPERLU suite

as a baseline implementation to study and analyze memory access patterns with DRAM and

stacked DRAM and to make meaningful inferences about the opportunities for acceleration.

The work includes a preliminary analysis of extensions to the SUPERLU algorithm like

HALO (Highly Asynchronous Lazy Offload) [1] on the CPU and GPU with a near-term path

xiii

to Field Programmable Gate Array (FPGA) accelerator platforms as well. We study the

effect of block and grid size decisions and other optimization parameters on the performance

of the application. Finally choosing a baseline implementation, we discuss the techniques to

extract a memory trace, representative of an accelerated, bulk synchronous parallel (BSP)

application behavior. This includes exploration of binary instrumentation techniques and

simulation infrastructures as potential candidates.

Using the Pico Computing FPGA board with an on-board interfaced HMC (Hybrid

Memory Cube) chip, we build upon the primitive framework provided by the vendor for

application performance estimation and studying memory subsystem metrics. This enables

us to study the behavior of the HMC for any given memory access pattern/trace. We study

the effect of varying the command issue queue size and the number of contending ports

(hardware queues) on the access latency and available peak bandwidth. Experiments include

the effect of queuing parallel memory requests in a similar fashion to GPUs across multiple

requesting ports contending for a single access link to the HMC. This is compared to an

in-order issue strategy across multiple requesting ports. These experiments help us decide

an optimum batch size for the target application on the hypothetical custom offload HMC

accelerator.

From our experiments, the optimum batch size is also dependent upon the number of

active ports contending for access to the HMC. We demonstrate that the performance of the

HALO LU decomposition kernel is platform dependent and that block size should match the

throughput of the CPU, GPU, or FPGA accelerator. We conclude by saying that a strong

correlation exits between the command FIFO depth in the HMC hardware and request batch

size in the kernel on host and that future algorithm design should take these factors in to

account.

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Large scientific codes, such as simulations of experimental fusion systems like NIMROD [3],

rely in part on solving large systems of linear equations and solver libraries like Lawrence

Berkeley’s SUPERLU library [2]. When these real world applications are modeled as HPC

problems, they tend to be represented as large sparse matrix based calculations, and a major

chunk of HPC applications use sparse kernels like Sparse Matrix-Vector multiplication

(SpMV) as part of their core simulation kernels. These simulation kernels can thus be

accelerated by linear algebra operations, such as LU decomposition, a computational tech-

nique that is widely incorporated in the aforementioned SUPERLU library. Accelerating

HPC compute primitives such as SpMV or LU decomposition can directly lead to a per-

formance boost for the applications employing them, including more than 15 well-known

DoE scientific codes. Previous approaches to accelerate these types of primitives, such as

those in [4, 1], map these computations onto distributed and accelerated systems like large

CPU or GPU-based clusters. However, these systems are ultimately limited by the slowest

component, which has recently been the memory subsystem.

Secondly, with the end of Dennard Scaling, HPC compute clusters face a tremendous

fundamental problem of thermal budgeting. For data-intensive applications with limited

cache locality, the data transfer cost between the memory and the compute core constitutes

a major chunk of the energy expenses. Thus, energy constraint considerations from the

perspective of data movement need to be given utmost priority. One of the best ways to

optimize energy usage for data intensive applications is to place processing as close as

possible to the data in main memory [5]. Advances in 3D integration, specifically with

1

Figure 1.1: Scope of Work

High-Bandwidth Memory (High Bandwidth Memory (HBM)) and Hybrid Memory Cube

(HMC), provide an opportunity to implement near-data processing (NDP) and processing in

memory (PIM) without the technology problems that similar efforts had in the past.

These NDP and PIM architectures can reduce latency penalties of deep caches but can

also offer extensive data level parallelism opportunities. This directly translates to reduced

memory access latency and higher internal bandwidth for applications. This reduced latency

helps support faster context switches and in the case of PIMs, open up opportunities for

high-bandwidth Single Instruction Multiple Thread (SIMT) and Single Instruction Multiple

Data (SIMD) architecture accelerator designs that can sit on the logic layer beneath the

DRAM stacks.

At the same time, Field Programmable Gate Arrays (FPGAs) combined with 3D mem-

ories provide a power efficient platform for NDP designs due to their customization ca-

pabilities for specific applications. Additionally, new high-level synthesis techniques for

programming FPGAs using OpenCL have introduced new avenues for accelerating HPC

applications on re-configurable fabric. Together, 3D stacked memories and FPGA fabrics

2

can potentially enable developers to program a customized yet high-performance algorithm

that uses less power than an equivalent GPU implementation.

Following the compelling reasons stated above, this work will look at such HPC primi-

tives that can better support sparse algorithms (specifically those included in the SUPERLU

package) with a new class of high-performance, 3D-stacked memories and also help to

design and implement infrastructure to use algorithm components on new FPGA-based

systems with 3D-stacked memories.

Thesis Statement: Reevaluating core primitives such as DGEMM, SCATTER, and

GATHER for 3D-stacked PIM architectures that incorporate re-configurable fabrics can

deliver multi-fold performance improvements for SUPERLU and other sparse algorithms.

Figure 1.1 visualizes the scope of our work and Figure 1.2 details the thesis contributions.

This work analyzes the existing LU decomposition methods in SUPERLU and the recently

proposed state of the art extensions for reducing data movement [4]. We complement our

proposal with an analysis of dense matrices of large dimensionality to estimate the potential

benefits of accelerating computation on the typical sparse matrices that are computed with

SUPERLU. The results are bench-marked against the performance of the same SUPERLU

primitives on GPU, which is the currently most widely adopted platforms for hardware

acceleration of similar HPC workloads

3

HPC applications on
FPGA + 3D-stacked memory

OpenCL

• Portable kernel
implementations for
core primitives such as
Schur’s Complement,
DGEMM,
scatter/gather

• Evaluation across
different acceleration
platforms such as GPU,
FPGA, CPU

Application Behavior

• Memory Trace extraction,
representative of
application behavior

• Memory remapping
policy to move from host
memory address space to
accelerator’s address
space for optimum
performance

Emulation on HMC

• Emulation framework to
execute custom memory
trace operations on the
3D-stacked HMC onboard
AC-510 accelerator board

• Real-time performance
analysis of HMC memory
system for custom
memory trace

Figure 1.2: Thesis Contributions

1.2 Introduction to SUPERLU

SUPERLU is a general purpose library which has implementations of solvers for efficiently

handling large sets of linear equations of the form AX = B [6]. Non-linear systems tend to

be expressed in form of a sparse matrix of high dimension value ranges. This calls for highly

specialized direct solver algorithmic implementations to avoid redundant or unnecessary

computation. The SUPERLU library is employed in a variety of computational science and

engineering applications.

The library implementations offers single and double precision implementations. The

properties of the matrices which act as raw input data structures for such libraries, have a

major influence on the system call implementation. The rank, symmetric nature, fractal

representations, etc. have a direct effect on the technique adopted. These different input

requirements have led to optimized implementations of the functionality in various flavors

such as sequential, parallel and distributed.

SUPERLU helps to solve a given sparse matrix A with LU decomposition, which factors

4

it to a product format represented as A = L.U , where L is a unit lower triangular matrix

and U is an upper triangular matrix. This problem (sometimes referred to as sparse LU) is

usually the most expensive step computationally, in a sparse direct solver like SUPERLU.

It typically has a large memory footprint, thereby benefiting from the use of a distributed

memory system. Given the increased utilization of some form of GPU-like acceleration for

such systems, we need an efficient way to exploit all forms of available parallelism, whether

in distributed memory or shared memory. This is the prime motivation for selecting ”sparse

LU decomposition” as the target application.

With this in mind, we aim at matching the available high degree of parallelism in the

HMC with the respective flavor of the SUPERLU library to leverage maximum benefit. For

this reason, we pick the SUPERLU DIST package which has a high degree of parallel calls

to map fractals of the matrix for partial solving to independent distributed clusters, many of

which have accelerators like GPUs.

This implementation provides good motivation for an optimized offload accelerator in

the HMC logic layer for data parallel independent HPC primitives similar to those scheduled

on GPU SIMD lanes. An improvement in the primitive’s memory request access latency

and internal bandwidth owing to the HMC’s 3D-stacked architecture could translate to

direct boost in performance metrics for application run time. Since we cannot currently test

acceleration in the HMC stack we instead pursue NDP implementations with FPGA for this

work.

Stacked memory bandwidth and latency benefits can be complemented by the reduction

in the number of multiple local copies needed to be created in accelerator global memories

such as those of GPU clusters. For GPUs to achieve peak memory access performance,

each independent workgroup/thread-block needs to be assigned local memory copies for

asynchronized accesses by threads within the group/block. Later, different copies need to

be merged in a synchronizing code section to create a contiguous copy (as in the case of

array representations) or one big block of merged data elements stored in a sparse matrix

5

format. This can be handled much more elegantly in an NDP or PIM HMC implementation.

Independent data fractals of the same sparse block representation can potentially be mapped

to independent compute entities on the logic layer by carefully mapping the data store

format in the HMC. This can be controlled by adjusting the granularity of assignment

of banks, vaults or quads to independent data fractals. This can help bypass the need for

multiple copies of the data blocks. This is because before finally shipping off the result in

a sparsely formatted data to the host, a simple address stream for accesses to independent

banks/vaults/quads can be created in a reorder buffer which delivers the desired data blocks

in the respective order to the host. This may potentially help to overcome data copying

overheads.

1.3 Introduction to 3D-stacked memory architectures

With advancements in packaging technology, we are now able to integrate multiple DRAM

dies in a three dimensional structure. This architecture offers a high internal link bandwidth

between stacks, and offer low energy consumption benefits. The energy savings stem mainly

from the opportunity to be able to move computation much closer to the memory, on the logic

layer integrated in the 3D stack, as shown in figure 1.3. This helps save energy otherwise

wasted in shipping data from the memory store to the compute core, and to transfer the

updated data back to the memory for permanent storage. Such was the paradigm in previous

processor-centric architectures, where compute cores would request data from the shared

DRAM memory store, over a communication channel.

6

Figure 1.3: 3D stacking for Near Data Processing (NDP) [7]

Thus now basic tasks such as Read-Update-Write can be associated with memory and

may be performed very close to the memory die.

1.3.1 Hybrid Memory Cube Architecture

Hybrid Memory Cube (HMC) is a 3D-stacked memory architecture proposed by one of the

industry leaders, Micron. This architecture proposes the integration of a network and logic

layer under multiple DRAM dies in a 3D-stacked structure. The dies are vertically connected

by means of Through Silicon Vias (TSV), or vertical communication channels. The TSVs

provide high internal communication bandwidth between memory and the controller when

compared to 2D structures for similar memory densities.

HMC introduces significant improvements in access bandwidth, lower chip area footprint

and lower power consumption when compared to DRAM. Although in order to achieve

these benefits, memory requests cannot be naively sent to the device. For example, access

patterns and read-write request ratios and communication overhead between the HMC and

host play a crucial role in determining the performance benefits that may be achieved for a

target application.

7

Figure 1.4: Memory organization in Hybrid Memory Cube (HMC).

(a) Memory organization

A HMC memory may be understood by breaking it down into constituent building blocks.

The chip on board our evaluation platform (See Section 5) accelerator board is HMC

Consortium 1.1 compliant. As shown in figure 1.4, it consists of 8 DRAM dies with one

logic layer. The 3D structure is divided into 16 vertical sections, known as vaults. Each vault

has a dedicated memory controller in the logic layer to handle vertical requests to any of the

DRAM stacks. Four such vaults in the same physical vicinity are logically grouped together,

and are known as a quadrant. The four vaults of a quadrant usually share a common external

link. Each layer within a vault consists of 2 banks. This means that our HMC device has

256 banks of DRAM.

Banks(spec1.1) = 8Memorystacks× 16vault/stack × 2banks/partition

= 256banks

In each subsequent iteration of the HMC specification, the memory partitions are made

more dense.

8

(b) Interface protocol

HMC works over a serial link, employing a packet based communication protocol. Thus

in contrast to conventional parallel DRAM interfaces, HMC utilizes serialization and de-

serialization (SerDes) modules. Thus it enables us to achieve higher bandwidth over HMC

links at the cost of higher power usage for SerDes. A packet in this communication

protocol is usually of a 16B or higher granularity. These packets are called ”Flits”. Special

header and tail flits carry header information to ensure packet integrity and flow control for

communication.

A HMC is usually connected to a host via two or four external links, as shown in figure

1.5. Each link is an independent link to a quadrant in the HMC. The quadrants within a

HMC are internally connected via a crossbar, which serves as a router between the external

links and the distributed vaults. Routing latency is lower for packets with vault destinations

in the same quadrant, and higher for packets with vault destinations in other quadrants.

Figure 1.5: Serial links between CPU and HMC [8]

9

CHAPTER 2

BACKGROUND STUDY

An extensive study into the existing widely accepted state of the art implementation for our

target application, LU decomposition for large order sparse matrices with SUPERLU, is

necessary to understand possible optimization. This chapter discusses a deeper analysis

of the LU decomposition algorithm in the SUPERLU DIST package to better understand

the opportunities for parallelism on an offload accelerator or GPU platform. This is also

followed by a literature survey of prior recent work with similar approaches to mitigate the

memory bottleneck by hardware improvements.

2.1 Related Work

For the target application, LU decomposition, numerous efforts in the past have been made

in order to increase the performance of relevant HPC primitives such as matrix-multiply and

related SpMV kernels. Some focus on improvement in the algorithmic implementations to

increase the occupancy of the compute units, reduce memory transfer invocations, and/or

hide memory access latency to the maximum possible extent. Other approaches emphasize

hardware improvements to reduce the absolute memory access costs and the peak achievable

bandwidth.

2.1.1 Algorithmic Optimization of SuperLU

Most implementations usually invoke a phase to perform matrix row and column manipula-

tions to create favorable fractal formations without changing the properties of the matrix.

This is followed by multiple DGEMM (Double-precision Matrix Multiply) API calls mapped

to a GPU or other accelerator for operations on dense data fractals of the otherwise sparse

matrix. This phase, sometimes referred to as the Schur Complement, is the most common

10

choice for optimization algorithms to improve the efficiency of the algorithm from a compute

efficiency point of view. We tackle this phase from the memory system’s perspective by

employing a combined FPGA and HMC architecture to exploit potential benefits.

(a) Scatter DGEMM operation to smaller dimension dense matrix block DGEMM calls

(b) Using Data Transfer idle time on host for DGEMM compute

Figure 2.1: Asynchronous data transfer and compute time sharing. Adopted from P.Sao, R.
Vuduc, X. S. Li, Euro-Prar, 2014 [4]

Efforts like those of Sao, et. al [4] aim to optimize this phase in order to speed up the

overall computation. One of the approaches to do so is by distributing the workload across

multiple compute nodes or GPU lanes or threads to overlap the embarrassingly parallel

computations, like those of Schur Complement updates of matrix blocks. The authors of

11

this work do so by presenting the first hybrid MPI+OpenMP+CUDA implementation of

a distributed memory, right-looking, asymmetric sparse direct solver for sparse LU using

static pivoting.

Another state of the art approach is one which reduces the wall clock time of the

previous approach considerably by overlapping the data transfer overheads with SC (Schur

Complement) update computations. This is the approach taken in the Highly Asynchronous

Lazy Offload (HALO) optimization that was added an implementation of SUPERLU DIST

[4]. The HALO approach is described in figure 2.1. The updates to matrix blocks in memory

are scheduled in parallel to manipulation of other independent blocks prepared in a prior

step in the form of a tree data structure. The nodes of the tree, as shown in figure 2.2,

represent an independent sub-block ready for a SC update. The parent of a node represents

a dependency relationship on the result of its child’s SC update before the SC update can

occur for a parent sub-block. Thus the partial results of the computation are stored on the

respective offload accelerator/GPU unless deemed absolutely necessary as a dependency for

the SC update of the parent sub-block node.

(a) Sparse matrix (b) Dependence tree

Figure 2.2: Dependent sub-blocks are coded in red, and independent sub-blocks that may be
scheduled for Schur Complement update in the same iteration stage are coded in blue. The
dependence tree shows independent blocks that may be processed for Schur Complement in
the same iteration stage.

12

Another crucial contribution of the work in [1] is in minimizing size of such data

transfers between the CPU and the GPU local memories. This is made possible by sharing

the computation overhead between the CPU (host) and the GPU (accelerator) in a proportion

(chosen dynamically) such that the overall time taken by the two to process their chunks is

the same. Thus only the required sub-group of the U -panels and the L-panel, as shown in

figure 2.3 is shipped off to the GPU, instead of the entire matrix or the entire U -panel as in

case of naive sparse LU direct solver implementations. Naive accelerator implementations

offload all the BLAS calls for operations such as DGEMM to the GPU (accelerator) leaving

the CPU (host) idle while it waits to receive the final results. This is further aggravated

by the need to ship entire U and L block panels to the accelerator, increasing data copy

overheads.

Figure 2.3: Schur Complement update in k-iteration. The L(k) and U(k) panels, calculated
in k-th panel-factorization on the CPU, are sent to the GPU. The GPU sends (k + 1) matrix-
panels to the CPU. The CPU and GPU update parts of the k-th Schur-complement. The
DGEMM result for areas marked in orange is computed by CPU and the one in green is
computed by GPU. The CPU merges the received GPUs (k + 1) matrix-panels with its own
(k +1) matrix-panels, before the (k +1) iteration starts. Adopted from P.Sao, R. Vuduc, X. S.
Li, Euro-Prar, 2014 [4]

2.1.2 Hardware Approaches for Data Movement

Another approach taken by [9] suggests augmenting the hardware to reap benefits. They

propose using the logic layer of the 3D-stacked memory architecture to implement a data

13

restructuring engine for irregular access patterns, that would ultimately reduce the volume

of data to be transferred to the compute core on the memory bus. The proposal discusses a

hardware engine that acts as a hardware offload unit for a CPU requesting data reorganization

for a data structure with large strides or a statically determinable irregular access pattern, to

a cache friendly layout buffer. This hardware engine takes over the responsibility for address

translation and coherence housekeeping, while moving data between DRAM banks local

view buffer which is ultimately streamed to the CPU. The high package internal bandwidth

of the stacked memory helps achieve lower latency for data reorganization compared to

other prior similar approaches on the host.

Although the approach seems to offer many benefits for sparse access streams with fixed

access patterns, the limiting factor of the proposal is its dependence on scatter/gather and

DMA (Direct Memory Access) kernels to deliver a static irregular access stream to the

hardware engine. This may limit opportunities to optimize for dynamic access streams that

are dependent on previously accessed data values. It does however reinforce the need for

data movement and access primitives like scatter and gather on these types of architectures.

14

CHAPTER 3

IMPLEMENTING THE TARGET APPLICATION FOR NDP

This chapter talks about the design of the OpenCL implementation of the target proxy

application that is suitable to run on CPU, GPU, and FPGA. OpenCL is selected as the

target language due to its versatility across platforms and new compilers that support FPGA

hardware compilation via High-Level Synthesis (HLS). We discuss the assumptions that are

used to implement the matrix data structure representation in memory while implementing

the proxy SUPERLU or LU decomposition kernel. We go into more detail about the different

computation phases of the algorithm and the parallelism opportunities within. Finally we

highlight the libraries used for efficient BLAS (Basic Linear Algebra Subroutines) calls on

the CPU and the GPU platforms.

3.1 SUPERLU with HALO

For the purpose of studying the maximum achievable benefit from the HMC near-memory

SUPERLU implementation, we use a dense matrix as our initial input kernel. This is an

assumption made in order to maximize the number of memory accesses requests made to

access the data elements, as compared to the house keeping overhead information such

as data indexes that are used with sparse matrix representations. This worst case scenario

model for the HMC memory model provides a counterpoint to the competing baseline model

of a GPU accelerator. Normally a GPU would have a large data parallelism potential and

the opportunity to hide memory access latency with an abundance of compute scheduling.

Thus an improvement for the worst case scenario of dense matrix input would make the

best argument further exploring memory models supporting NDP architectures for HPC,

particularly for sparse LU implementations.

This proxy HALO implementation in OpenCL, is then used to obtain memory traces

15

representative of the application behavior which are then used for simulation using the

GUPS HMC framework to make application performance estimates (Ch. 6).

The final SUPERLU implementation for sparse matrices and HALO data movement

implemented in OpenCL is kept as a final piece of the work for testing on the real FPGA

hardware interfaced with HMC memory chip. While this thesis does not examine this in

detail, this implementation will be used to study real achievable numbers of performance

improvements for sparse matrices. A respective vendor toolchain to convert the OpenCL

solver implementation for sparseLU to an optimum verilog design for prototyping on the

FPGA is later discussed in Ch. 5.

3.1.1 OpenCL SUPERLU Implementation

SUPERLU with HALO can be summarized as multiple progressive iterations of 3 phases,

namely panel-factorization, DGEMM (Double Precision Matrix Multiplication) and SC

(Schur Complement) update. A detailed explanation of these phases can be found in the

following paper [1].

Since our argument is for a PIM or NDP architecture acheived by moving the accelerator

to the logic layer of a 3D-stacked memory chip, we are only concerned with the memory

access stream of the BLAS calls offloaded to the accelerator. Thus for our discussion of the

SUPERLU DIST package [4], the distributed memory model of a cluster of hosts interacting

with MPI calls is not of our utmost concern. Thus, for simplicity, in our proxy application,

we consider interaction between a single CPU (host) and a GPU (offload accelerator). For

this reason, the phase that interest us is the DGEMM phase, which is offloaded to the GPU.

To discuss the DGEMM phase, we must understand how the data is prepared for the

GPU and the asynchronous lazy offload calls, which help reduce the data transfer overhead

costs in HALO. During the initialization phase, the GPU kernel is allocated a section of the

memory (Aφ) initialized to all zeros. This memory serves as an analogous representation of

the input matrix (A), where the computed partial DGEMM products are superimposed.

16

To understand this, consider a matrixAhost(i, j) and its analogous copy on the accelerator

(GPU), AGPU(i, j). A0
host(i, j) denotes the initial value of Ahost(i, j). As descibed above,

we initializeAGPU(i, j) with zero values. In an iteraion k < min(i, j), HALO updates either

AGPU(i, j)← AGPU(i, j)−L(i, k).U(k, j) on the GPU orACPU ← ACPU−L(i, k).U(k, j)

on the CPU. Let α1 denote the set of iterations in which AGPU(i, j) is updated on the GPU,

and α2 denote the iterations when ACPU(i, j) is updated on the CPU. Then, the images of

ACPU(i, j) and AGPU(i, j) can be represented by:

AGPU(i, j)← −
∑
k∈α1

L(i, k)U(k, j) (3.1)

ACPU(i, j)← A0
host(i, j)−

∑
k∈α2

L(i, k)U(k, j) (3.2)

If we added AGPU(i, j) to ACPU(i, j), it would lead to the same result as updating

ACPU(i, j) each α1 iterations. i.e.,

ACPU(i, j)← ACPU(i, j) + AGPU(i, j)

= A0
host(i, j)−

∑
k∈(α1∪α2)

L(i, k)U(k, j)

Thus before the k = min(i, j)th iteration begins, we can query for the AGPU(i, j) block

and add it to ACPU(i, j). The resultant ACPU(i, j) block contains updates from all α1 ∪ α2

iterations. Thus, when in the k = min(i, j)th panel-factorization stage, the images of the

ACPU(i, j) block in the GPU offload case and the non-offloaded case are the same. This

analysis holds true for all the blocks in the kth panel-factorization stage. Hence, the factored

L(k) and U(k) panels in the GPU offloaded case are the same as they would have been in

the vanilla non-offloaded case.

Post panel-factorization phase, the burden of the SC update call is shared by the host

17

and the GPU. The HALO algorithm schedules the matrix multiply operation of the lower

triangular matrix panel (L-panel) and the upper triangular matrix panel (U-panel), required

for the SC update step, over the host and the GPU in an efficient way. Thus one portion

of the result matrix is obtained as the result of a BLAS library call on the CPU while the

remaining is scheduled on the GPU. The GPU computes the result of the DGEMM operation

and superimposes it over the the local GPU memory representing the analogous section of

the input matrix. This is critical to the data transfer savings promised by HALO. This avoids

the need for transferring the entire computed result to the host for each GPU call. Thus

the GPU keeps accumulating the results of the partial L, U panel multiplications for the

subsequently scheduled DGEMM operations. This results in the GPU local memory (Aφ)

serving as a temporary storage for the compounded summation of the partial L, U panel

products. A data transfer request call to the GPU is thus triggered by the host only when it

is absolutely necessary to apply the sum of the computed partial products of the L, U panels

to the respective block in the host memory store. This is done in order to complete the SC

update of a block on the host before scheduling it for panel factorization on the host. Thus

the data transfer overhead costs are reduced significantly.

In order to achieve the maximum GPU occupancy, HALO uses the elimination tree

as described in the paper to identify the blocks which can be processed in the Schur

Complement (SC) update stage in parallel in kth iteration. Thus at any point of time, multiple

blocks panels could be issued for computing DGEMM products if they are independent

nodes on non-overlapping branches of the elimination tree. This helps overlap DGEMM

computation of kth iteration with data transfer calls invoked for completing SC update to a

block, to be issued for panel factorization in k + 1th iteration. Thus hiding memory access

latency for fetching the computed result from GPU. It should be noted that this in no way

helps the GPU to hide the local GPU memory access latency. That is strictly dependent

on the number of blocks scheduled at the moment on the GPU, for DGEMM. Thus our

argument for a HMC memory model contends for a quicker result computation on the GPU.

18

Figure 3.1: Concurrent execution of the remainder of Schur complement update for blocks
A(k) on the GPU after transfer of required panels A(k + 1) to CPU. Allows for concurrent
factorization of subsequent independent block A(k + 1) on CPU. In general, the Schur
complement update is much longer than both other steps and data transfer. Adopted from
P.Sao, R. Vuduc, X. S. Li, Euro-Par, 2014 [4]

Another important aspect is that this implementation is for a strict comparison of a

portable application. This means that it is compatible with both the hardware platforms,

one with a GPU using a DDR3 memory subsystem, and another with a GPU/accelerator

using a HMC chip. Thus the benefits of dynamic HMC address mapping (as discussed in

the section 1.1) by rewriting the accelerator (GPU) kernel cannot be exploited. We cannot

19

avoid the need for multiple local partial copies of the product on different local memories of

SMXs (Symmetric Multi-streaming processors).

3.2 BLAS libraries

Our implementation includes standard BLAS libraries in order to perform linear algebraic

manipulations on matrices in an efficient manner. We invoke CBLAS library calls on the

host using the OpenBLAS runtime package bound dynamically to the executable. Similarly

we include the clBLAS runtime library package to support efficient BLAS implementations

in OpenCL kernels running on an accelerator (CPU, GPU, etc.).

3.2.1 clBLAS

This library [10] houses efficient OpenCL kernel implementations of BLAS level 1, 2 and 3

routines. The library supports running on CPU devices to facilitate debugging and multicore

programming. Thus dedicated implementation for efficient OpenCL BLAS execution on

CPU is assured. Importing this library helps us implement an efficient proxy application for

the accelerator capable of representing a tuned accelerator kernel. This is irrespective of the

actual hardware platform chosen for the accelerator. Thus assumptions may be taken in the

thus obtained memory trace to expect maximum data parallelism.

The PICO vendor toolchain discussed for FPGA compilation in Ch. 5 has only limited

support for BLAS call translations to efficient Verilog design implementations. Thus for

final execution of the sparseLU application on FPGA interfaced with a HMC memory, we

may need to implement a custom OpenCL implementation for DGEMM.

20

3.2.2 OpenBLAS

This library houses efficient multi-thread, multi-core implementations of BLAS level 1, 2

and 3 routines. This ensures efficient manipulation of the matrix data structures during

BLAS calls on host. Its significance is that while generating the memory trace (Ch. 4, we

must be careful of these contending threads executing BLAS calls because they may make

requests to the same blocks of memory simultaneously.

21

CHAPTER 4

EVALUATING MEMORY BEHAVIOR WITH MEMORY TRACES

Since our FPGA and HMC Near Data Processing platform currently has limited support

for running BLAS operations that are key to the proxy application, we use this chapter

to discuss how memory traces are generated and used with our FPGA framework to test

the memory access characteristics of our kernel. A memory trace refers to a record of

attributes of all the memory access requests made by the hardware, including the size of

transaction, access type (read/write), address, etc. The possible approaches to get the trace

include binary instrumentation or executing the binary through a simulation framework with

a custom memory model. The span of memory requests which are of interest to us, is too

wide over the lifetime of the executable in our case. This is so because the DGEMM call

invocations are distributed across multiple iterations of the LU factorization algorithm. Thus

a simulation framework modeling the host and the accelerator pipelines through memory

stages would simply take too long to simulate the entire program to generate the memory

trace. Thus the alternate approach for binary instrumentation is adopted.

4.1 Hardware platform

At the time of this work, there was a lack of a stable compatible binary instrumentation

tool to record memory trace for a binary running on a GPU hardware. Most tool chains

exist for recording memory trace for an instruction trace running on a simulator frameworks

for a GPU platform. Only a few dynamic instrumentation tools, like ”lynx” [11] exist for

GPU platforms. But these tools support instrumentation for only a small subset of NVIDIA

GPU architectures of the ages past. Recent tools such as GT-Pin [12] and GPUPROF lack

the necessary documentation and support for experimentation and reliable usage on more

recent GPU architectures. They are also often vendor restricted i.e. they work for only select

22

vendor platforms; GT-pin is restricted for only Intel GPU platforms and currently exists only

in beta format.

For this reason, we choose a stable CPU platform capable of executing OpenCL kernels

coupled with the PIN instrumentation tool [13]. The supported runtime packages on Intel

CPUs provide efficient multi-threaded implementations for multi-core processor platforms.

We use the Intel(R) Core(TM) i7-4790K CPU processor clocked at 4.00GHz for our

experiments to generate the memory traces. The generation of a memory trace for the proxy

application with a square matrix of dimension 1000 takes ˜25 GB of storage space and 4

hours instrumentation runtime.

4.2 PIN tool

Pin [13, 14] is a dynamic binary instrumentation framework by Intel for their IA-32, x86-

64 and MIC instruction-set architectures. The tool enables creation of dynamic program

analysis tools or ”pintools” for user space applications. Instrumentation is performed at

run time on the compiled binary files. Thus, it does not require recompiling of source code

and can support instrumenting programs that dynamically generate code. It allows context

information such as register contents to be passed to the injected code as parameters.

The tool provides a rich API library which allows for specialized filtering of information

to be monitored for the executing binary. It enables us to dynamically modify the target

binary application on the fly through the static definition of procedure calls that are inserted

dynamically into the instruction stream based on instruction type. This is depicted in figure

4.1.

23

Figure 4.1: Dynamic binary instrumentation by probing instructions and inserting predicated
calls.

The tool fidelity encompasses:

1. The granularity of instrumentation: instruction, basic blocks, trace

2. Information to extract: memory references, instruction pointer information, routine

name, instruction image name

3. Multi-thread primitives, etc...

Our focus is to obtain the memory trace for the offloaded DGEMM routine invoked

from the clBLAS library. Thus we need to focus on the OpenCL kernel execution on the

Intel CPU. Hence, we concentrate our efforts to isolate the memory accesses initiated from

the instruction stream that belong to the dynamically linked Intel OpenCL runtime package

images. Similarly, we trigger the instruction level instrumentation only after invocation of

the proxy application routine. And we end the instrumentation, as soon as we return with

24

the factored LU result. This is shown in figure 4.3. The entry and exit point of the proxy are

identified using the dis-assembly dump of the binary as shown in figure 4.2.

4.2.1 Memory Trace Pintool Filter

Pintool refers to the filter applications developed using Pin to focus the scope of instru-

mentation on the instruction stream which is of deep interest. In order to isolate memory

access requests to generate a trace, the technique involves two logical steps. These include

identifying the instruction type to pinpoint memory operations that interest us, and then

isolating the required information attributes from the instruction header.

For standard memory manipulation instructions which perform simple ”loads” and

”stores” on memory operands, predicated calls for instrumentation are inserted. These

trigger a routine which records the the details if the memory operation is indeed performed.

The attributed recorded include the instruction pointer, memory address, request size, type

of operation (read/write), and the actual probed data.

For other standard memory access instructions initiating write requests on its operands

or for conditional codes making control decisions, a respective instrumentation call for

tracking the write update to the AFUNPTR pointer is inserted. This helps the profiler track

the path taken by the branches for subsequent calls.

4.2.2 Custom Pintool Filters

In order to maintain a good degree of performance for the instrumentation phase, and to

restrict the amount of pre-processing required for the memory trace to extract the OpenCL

kernel memory references, we limit the scope of the instrumentation with a filter.

We generate a dis-assembly of the compiled binary to identify the memory address of

the instruction invoking the proxy application routine. Similarly the memory address for the

return instruction for the target is noted. These instruction addresses are hard coded in a

custom pintool which triggers instruction level instrumentation only when the routine for

25

the target application is executed. The instrumentation is disabled once a return from the

routine is acknowledged by the instruction pointer. This also triggers other house keeping

actions such as closing the trace file pointer and exiting the application. This is shown in

figure 4.3.

Figure 4.2: Disassembly of the proxy target application. Helps identify the memory address
for entry and return instructions for the OpenCL kernel subroutine.

Figure 4.3: Custom pin tool to generate memory trace recording requests issued by target
application OpenCL kernel

26

Once instrumentation begins, instruction traces from the runtime package images that

are linked dynamically to the binary are forwarded to the pintool for analysis. As the

application progresses, basic blocks from the images are analyzed by executing instructions

one by one in the pintool environment. Only the images for OpenCL runtime packages are

probed further, to isolate memory requests. This ensures a memory trace record for memory

transactions generated by only the offloaded OpenCL kernels.

An important design consideration accounts for the multi-threaded nature of the exe-

cuting binary. Thus a careful use of mutex locks provided by ”pin” is necessary to avoid

obfuscated trace records where multiple competing threads contend for access to the file

pointer to flush their stream contents. This in turn also negatively impacts the performance

of the probed application on the hardware because a lock contention for the trace file pointer

is generated by each thread for every memory operation. But this is a necessary cost we

must absorb for meaningful results.

4.3 Limitations

The chosen hardware platform (CPU) immediately poses restrictions on the meaningful

information that can be extracted out of the memory traces due to its limited number

of hardware threads. The support for multi-thread runtime packages for OpenCL kernel

execution allows for multiple independent threads to be issued on the CPU, which may be

seen as emulating concurrent OpenCL workitems. Similarly, multi-core runtime support for

OpenCL kernel execution provides a heavy-weight concurrent execution similar to that at

the SMX or threadblock level on the GPU. This is another reason for choosing clBLAS as

the BLAS runtime library for accelerator kernel implementation. This enables us to emulate

a platform tuned OpenCL kernel over a wide range of accelerator hardware platforms such

as Nvidia GPUs and Intel CPUs. But because of the inherent serial scheduling nature

of a thread on a CPU, the information about concurrent parallel execution of workitems

within a wavefront is lost. Thus any possible information about concurrency in the issued

27

memory requests is lost.

No information about the mapping of independent workitems (belonging to the same

wavefront) to their respective counterparts as CPU-schedule thread IDs is passed on through

the OpenCL runtime packages. Thus the stream of memory requests loses any informa-

tion regarding restrictions in thread scheduling due to inter-workitem data dependencies.

Therefore, we cannot easily map our memory access patterns to a GPU-like implementation.

This may not be a huge loss for traditional OpenCL implementations on FPGA which use

heavy-weight pipelines similar to CPU threads.

However, intra-workitem data dependencies are preserved in the memory address

stream. These dependencies within a thread instruction trace may be identified by matching

the CPU thread IDs of the suspected latter stream command with the CPU thread id of the

immediate previous stream command with the same memory address. But there may be

false positives as well, because of the arbitration of lock acquisition as discussed in the

subsection 4.2.2. For example, contending CPU threads could delay the recording time

point of an earlier transaction in the trace, leading to an inverted dependence.

Similarly, no consistency guarantees are preserved in the memory trace because of

the lack of a tool (and possibly an associated cache model) to be able to represent concurrent

memory requests being emulated on the CPU platform. This lack of timing information

between subsequent and concurrent accesses as in case of a true GPU execution model,

validates a wide range of assumptions that can be made over this obtained memory trace. A

sample is shown in figure 4.4.

28

Figure 4.4: A snippet of the memory trace generated by the pin tool. Format:
<InstrAddr>: R/W <memAddr> <size> <data>

4.3.1 Extrapolations for memory trace for representing GPU trace

Despite the above limitations, these OpenCL-based traces offer an opportunity to explore

the performance implication for PIM on HMC by making meaningful extrapolations to the

trace data. The serial memory reference stream is a good way to get comparison figures

for the overall contribution of the memory system model to the application run time. This

provides us with a minimum limit barrier for exploring the parallelism opportunities in the

computation which enable us to successfully hide the effect of memory access latency. The

lower this scheduling barrier is, the more probable and easier it is to find an independent task

to schedule in parallel. This ensures that the result is ready before it is deemed necessary by

HALO to transfer to the host, preventing any idle time on the host compute cores. Lower

latency for single memory requests and a higher degree of data parallelism in the memory

model will also help lower this barrier.

29

Thus before feeding the trace to our FPGA and HMC-based simulation model, we make

the following assumptions.

• Memory requests are issued in a round robin policy to each port represented by a

queue, contending for access to a common shared serial link to the HMC. This is

representative of multiple compute units (lanes) in an accelerator (GPU) making

simultaneous independent requests to the memory subsystem.

• A group of requests (of fixed size) may be issued sequentially in a batch, as indepen-

dent requests. This is to represent the compute capability of an accelerator allowing it

to hide memory access latency while servicing other workgroups, meanwhile queuing

new memory requests.

• Serial execution within batches needs to be ensured, representing serial intra-workitem

dependencies. That is, this represents one workitem/lane issuing memory requests

sequentially.

• Multiple queues sharing the common serial link may be serviced out-of-order in any

fashion to achieve maximum link occupancy and average transfer bit rate.

Thus we use the trace limitations as a benefit instead of letting them be a roadblock to

our analysis. With these assumptions we make an argument for the 3D memory architecture

models, to understand the potential of benefits that may be exploited from them. While at

the same time we ensure that the correct functionality and data quality as presented by the

memory trace in terms of memory state, is reproduced by our simulations on the HMC by

honoring the consistency and data dependencies which are represented by the memory trace.

30

CHAPTER 5

EVALUATION MODEL AND HARDWARE INFRASTRUCTURE

After we successfully generate a memory trace representative of the application behavior,

we switch gears to the performance study and evaluation of the trace on a 3D memory

architecture model. We use the AC-510 accelerator board by Pico Computing (now, a part

of Micron) that combines a Xilinx FPGA with a HMC (Hybrid Memory Cube), for our

evaluations. The platform features a HMC Consortium Specification 1.1 interface between

the FPGA and the on-board HMC and a vendor implemented HMC controller IP. This

”‘Pico Framework”’ also allows us to leverage vendor-provided communication via PCI

Express and software-readable registers on the FPGA and to express a custom tuned IP for

establishing a stream based interface firmware with instrumentation support.

Figure 5.1: The vendor implemented Pico framework software stack gives easy to use APIs
to tweak hardware design parameters on the FPGA logic. The stream framework may be
used to interact directly with the HMC. Adopted from [15]

31

5.1 Evaluation Platform

The evaluation platform consists of a host CPU communicating with a backplane card over

a x16 PCIe Gen3 (32GB/s) full width link. This card provides a physical medium for the

modules to communicate with the rest of the system over PCIe. It can house up to 6 AC-510

accelerator boards, each communicating over a x8 PCIe Gen3 (16GB/s) half width upstream

link. The accelerator board, shown in figure 5.2 consists of a Xilinx Ultrascale FPGA

(XCVU060) interfaced with Micron’s high bandwidth HMC over 2 half width x8 PCIe full

duplex lanes supporting 15Gbps transfer rates. Each FPGA module has its own connection

to the PCIe network, through which it can communicate with the host CPU. The host CPU

must manage dataflow to and from each of the FPGAs and control their processing.

Figure 5.2: FPGA-HMC link architecture. Adopted from [16]

To better understand the system, we split the behavior into 2 aspects: software and

firmware.

• Software is comprised of the host CPU code, which consists of our application reading

a memory trace and scheduling memory accesses on the FPGA over HMC port queues.

This also includes the Pico device driver which provides a ready to use solution to

interact with the vendor HMC controller IP on the FPGA.

• Firmware comprises of the Pico HMC controller IP implementation accessible by

on-board logic modules using the standard AXI (Advanced Extensible Interface)

32

bus interface. This is augmented by custom Verilog code to support instrumentation

registers and initialization registers to reset performance probing counters. This

provides easy to control switches in software for experimentation and to probe metrics

such as latency and bandwidth by reading cycle counts and the number of requests

issued to user ports.

The knobs provided by vendor and custom firmware can be accessed by means of the

Pico Framework API. The vendor framework provides a stream based communication model

to a multi port memory interface.

5.1.1 PICO stream framework

A stream is a unidirectional channel for point to point communication that carries sequences

of data with flow control information. The Pico API provides a simple to use model to

know when the stream is available for reading or writing, and when data can be sent or

received using a DMA-like mechanism. The stream firmware on the FPGA is essentially

a FIFO interface. This ensures an in-order delivery of command requests to the HMC

controller. This enables us to emulate sequential consistency on a user port (emulating a

GPU lane/accelerator processing element), modeled by the memory trace. The stream based

interface also helps cut down on software overheads incurred while scheduling packets

one by one, for transmission over the HMC user ports. This provides a low latency model

compared to serial bus models.

As shown in figure 5.3, we set up two streams for each HMC user port. One to forward

the command requests to the HMC user port, another to accept responses returned by the

HMC controller to the user port. These streams provide the basic functionality to interact

with the user ports via software APIs.

33

Figure 5.3: Read and Write channels for Command and Data streams using Pico stream
framework. Adopted from Pico code documentation.

5.2 HMC addressing

The HMC supports a 34 bit address space, as shown in figure 5.4. This allows for a total of

16 GB of memory on one HMC chip. The current stacked memory on the AC-510 supports

only 4GB, so the higher order 2 bits are ignored. Although each memory location refers to

a byte of data, the access granularity differs. The lowest granularity of access is 16 bytes.

Thus the 4 LSB (Least Significant Byte) bits are masked out during access. For a denser

data packet, the granularity of access may be increased to 32, 64 or 128 bytes.

Figure 5.4: The components of the 34-bit address space of HMC.

The bit fields represent the following:

• [3] : 4 LSB bits ignored during access

• [6:4] : address bits masked as per block size

• [8:7] : 2 bits for Vault ID

34

• [10:9] : 2 bits for Quadrant ID

• [14:11] : 4 bits for Bank ID

• [31:15] : Block Address

• [33:32] : masked for 4GB HMC chip onboard AC-510

The default memory addressing ensures that sequential address memory requests are

distributed across vaults first, then to banks, and finally spreading across quadrants. This

provides for a high degree of parallel access bandwidth for a sequential address stream.

Using this information, the memory allocation in the HMC may be carefully organized in

order to optimally utilize the available link bandwidth.

5.3 GUPS framework

The vendor provides a useful application ”GUPS” for the accelerator board platform. The

application helps us measure memory system performance, by measuring number of oper-

ations or giga-updates performed per second. Hence the name of the application ”GUPS”

(Giga Updates Per Second). GUPS can be used to help us make first order approximations on

the performance that an application shall observe. The vendor framework generates patterns

of random and/or linear memory address requests from the FPGA logic, in a sequence as

programmed. This enables them to make a performance estimation for the memory system

for an application, using the memory request pattern.

We modify this framework to study the realtime performance of the memory system for

a custom memory trace, generated as described in Ch. 4. Using this custom framework,

we are able to make accurate predictions of the expected latency and bandwidth for our

proxy application by using the previously generated memory trace. We provide support

in our GUPS application to remap memory accesses to the HMC’s address space in a

configurable manner. In addition, we modify the firmware to take it addresses and data from

35

software-based Pico streams rather than generating them in the hardware as with the normal

GUPS design. This allows us to extend our study to understand potentials for performance

improvement for both naive as well as custom tweaked implementation of the application

on a 3D memory architecture.

For 1st order analysis, we use a random mapping policy to move from the host’s 64

bit memory address space (of the memory trace file) to the HMC’s 34 bit address space

(to be forwarded to the HMC controller IP). We may easily extend these to much more

sophisticated mapping schemes in order to localize accesses from a user port to a single

vault in order to optimally exploit the data parallelism within a vault, and make use of high

internal bandwidth in a HMC. This may also be used to distribute accesses from different

user ports to different vault controllers in order to minimize the network flow traffic and

congestion on the logic layer of the HMC. This evaluation is currently underway but is not

included in this work.

Our tweaked GUPS application is a multi-threaded application emulating the behavior of

multiple processing elements (lanes in a GPU warp) issuing independent memory requests

simultaneously to a common memory link. This is shown in fig. 5.5. The memory controller

in such an accelerator platform coalesces the memory requests received and forwards them

off-chip to the memory die. The memory access latency is hidden by servicing compute

needs of other workgroups, ready for execution. The new memory requests from these

workgroups are then issued in a cascaded manner to the previously pending requests. We

emulate a similar behavior by maintaining independent queues of commands ready to be

issued to the HMC, for each user port. Independent execution threads represent and control

independent user ports on the FPGA. Each thread schedules memory requests over its

respective user port, in parallel to the other threads. Thus multiple user ports contend for

access to the shared HMC link. While the user port waits to receive a response for the

scheduled request, it issues another memory request from the batch queue, with a different

tag id. This helps us to emulate the cascading nature of memory requests issued by the

36

controller while waiting on responses for pending requests.

Figure 5.5: The figure depicts the software and firmware modifications used to measure
multi-port performance of the HMC. Each software thread controls access to the command
and data streams of respective GUPS user ports. Each thread issues batches of commands
from the circular command queue to the port, as per depth of empty FPGA port buffer flits.

This batch scheduling of memory requests also helps minimize and overcome the

overhead of reading a memory transaction from the trace file and to prepare a respective

command request packet for the HMC controller. Apart from these, the overheads in

software to schedule a request and probe for response are significant and are much bigger in

terms of absolute time than the hardware latency incurred by the FPGA to receive a response

from the HMC. Thus precise measurements are made when multiple requests are issued to

the HMC. Since the time taken to receive responses for all of them exceeds the polling time

in software to probe for responses.

A producer thread spawned from the main thread in the initialization phase, runs in the

background to replenish the circular queue buffers of the individual user ports. This thread

parses the memory trace file and issues requests sequentially in a round robin fashion to

user port buffers, advancing their write pointers. Once the port thread issues a batch of

commands to the HMC, it advances the read pointer of the buffer. The producer thread exits

only when it has scheduled all the operations from the trace file, setting a global flag on

exit. The individual port threads exit only when the local queue’s read pointer catches up to

the local write pointer and the global flag is read to be true. Thus the program inculcates

37

a degree of randomness to the individual number of requests issued over each user port,

enforcing a robust performance analysis framework.

5.4 Measurements and metric instrumentation

The Pico framework provides a way for real-time instrumentation of performance metrics of

the user ports. This is facilitated by means of hardware mapped registers which hold the

state of counters implemented in the FPGA logic. Separate 32 bit counters for each user

port respectively count the number of read and write requests issued on each port. Other

wider 48 bit registers keep track of other timing metrics such as cumulative cycle count to

service all issued read requests since initialization.

These memory mapped hardware registers are probed by using the PicoBus communica-

tion framework. Using the Pico API, we read the value of these registers before spawning

port threads, and after they finish execution. This helps us calculate performance metrics

such as number of operations performed per second. This throughput metric is reported as

GOPS (Giga Operations per Second).

Absolute wall clock time taken to service issued requests on a user port is measured

in software. We use the clock gettime() API to measure the time taken precisely in

nanoseconds. This help us compute access latency numbers, and aggregate latency to

emulate the memory trace file requests on the HMC memory subsystem.

Bandwidth calculations are fairly easy as well. We can simply multiply the number of

operations performed with the standard size of each operation. The measurements, shown in

fig. 5.6 for our experiments are reported in the next chapter.

38

Figure 5.6: Printing GUPS application statistics

5.5 Operations supported

The AC-510 module features a HMC Consortium Specification 1.1 compliant interface to the

3D-stack memory die. The specification supports a wide array of command requests. The

protocol supports 16B granularity flits for communication over the HMC interface. Shown

in figure 5.7 is the command header. But the GUPS application framework supports only

simple READ and posted write requests. Posted write memory requests perform the same

operation as normal write operations, except that no response is returned to the requester.

39

Figure 5.7: The constructs of a command packet header for the HMC

Since the granularity of operation of these basic READ/WRITE commands is 16B, the

typical packet size for HMC requests is much larger than what our application dealing

with double precision values, needs. For this reason, extra overhead in terms of operations

performed on the HMC is incurred. While a simple READ request is unaffected by the high

granularity of access, Writes become the bottleneck. A simple write request of size less

than 16B needs to converted to a blocking READ operation followed by a modification and

then a write request of the updated value to the memory address. For this reason, if we wish

to reproduce the same memory state in the HMC as shall be observed in a byte accessible

memory system for the application, the overhead is unjustified. For this reason, we adapt

a different solution in order to keep our experiments meaningful and fair to the HMC’s

architecture. We remap all of our memory requests with size less than 16B to memory

transactions in the HMC with size of 16B. By doing this, we wish to assure that we are able

to study the same stress levels that a true byte accessible memory system shall face in the

field. We are able to produce coherent results with this assumption because by the virtue of

our proxy application, we can remap every request with size less than 16B, we can uniquely

map the request address to a 16B block in the HMC.

40

CHAPTER 6

EXPERIMENTS AND RESULTS

This chapter presents results from experiments that are used to detail how SUPERLU Schur’s

Complement and SCATTER/GATHER memory accesses would perform on a GPU, CPU, and

FPGA+HMC platform. Our proxy kernel for the Schur’s Complement, and DGEMM, is

evaluated on multiple platforms and memory access primitives are evaluated using memory

traces from Pin on the combined FPGA and HMC hardware. We make inferences regarding

the observed behavior and draw conclusions of how application behavior may be used to

exploit potential parallelism of the HMC memory system.

As described in section 1.1, we evaluate our implementations on a GPU, FPGA, and

a CPU. We chose the NVIDIA Tesla K40c as the GPU baseline. While the K40 has the

best performance, this device’s high Thermal Design Power (TDP) rating of 245W limits its

power/performance efficiency. Similarly, the general purpose Haswell CPU based multicore

platform with a TDP rating of 88W provides good performance but at a moderate power

costs. FPGA based accelerators offer a lucrative design choice with low TDP ratings of

30W and with the right design for accelerated hardware, they can offer a higher performance

per watt than GPU based accelerators.

6.1 Dense SuperLU proxy measurements

We start off with a stripped down implementation of the SUPERLU algorithm, first for the

CPU (host) platform, extending it later with GPU (accelerator) offloading using OpenCL.

We use the HALO algorithm [1] for absolute baseline comparison numbers for standalone

execution time. A detailed analysis with multiple matrix and block dimensions, reveals

that the overall execution time spent can be categorized into 2 parts. The time spent in

computation on the logic cores and the time spent in accessing the required working data set

41

from the memory. The memory access time does not scale down linearly as we progress

from dense to sparse matrices of large dimensions, owing to the data structure and meta-data

overheads as in case of a Sparse matrix.

Here we present our analysis of the performance of our proxy application on different

evaluation platforms. In table 6.1, profiling data for one matrix dimension is depicted for

experiments on GPU. For matrix dimension of 8000, as block size increases, we observe

that the compute overlap time for CPU and GPU (in column 5) also increase. Thus an ideal

block size is larger in this case, close to 200.

Table 6.1: Profiling code phase timing contributions on GPU

Matrix

Dim

Block

Dim

Run time

(sec)

SC update on

host (sec)

Time for GPU GEMM to return,

while host computes SC (sec)

Time on host to apply

GEMM on local copy (sec)

8000 40 17.0681 3.66E-02 2.19E-05 0.00140726

8000 80 10.0502 0.0486543 2.35E-05 0.0024981

8000 100 8.1636 0.0500713 2.41E-05 0.00257875

8000 160 4.7996 0.0538009 2.82E-05 0.00339264

8000 200 4.1368 0.0596777 3.08E-05 0.003977

Table 6.2: Profiling code phase timing contributions on CPU (OpenCL accelerator kernel)

Matrix

Dim

Block

Dim

Run time

(sec)

SC update on

host (sec)

Time for GPU GEMM to return,

while host computes SC (sec)

Time on host to apply

GEMM on local copy (sec)

8000 40 16.0652 0.06238 0.0388992 0.00133843

8000 80 13.4651 0.0674356 0.08429 0.00179011

8000 100 12.2684 0.0735 0.17232 0.00210493

8000 160 9.9743 0.104352 0.198438 0.00302897

8000 200 13.1479 0.124813 0.160466 0.00359104

In table 6.2, profiling data for matrix dimension 8000 is depicted for experiments running

with the OpenCL kernel on the CPU. As block size increases, we observe the compute

overlap time for host and accelerator (in column 5) to rise briefly and then fall. Thus for the

42

CPU platform the ideal batch size is 160 rather than 200. While most timing parameters

increase with the increase in block size, we see that the maximum computation overlap

time (0.19 seconds) occurs when the block size is 160, which gives us the best overall

performance.

Following preliminary tests of our proxy application, we further investigate the effects of

block size, matrix dimension, and the HALO optimization versus a baseline implementation

(figure 6.1). We sweep a wide range of values for matrix dimension size (N), where N varies

from 500 up to 10,000, in steps of 1,000. We sweep the block size (M) from 50 to 200, in

steps of 20. A careful analysis confirms our understanding wherein data transfer overheads

dominate lower matrix dimension and smaller block size test cases; this situation matches

when GPU occupancy is low. As matrix dimensions are increased the GPU becomes better

utilized and overall runtime is decreased. The non-HALO block size 80 test case does show

up as an outlier in this test. While we don’t have detailed profiles for the non-HALO case,

it is likely that the dependence tree is at the optimal size when block size is 80 rather than

100. As block size increases, communication overheads increase and the dependence tree

becomes denser and larger leading to larger data transfer overhead and possibly to decreased

cache locality.

Next, we study the affect of changing block sizes on both the CPU and GPU platforms.

As shown in figure 6.2, tweaking block size can have a major effect on the performance. As

a generic trend from the figures, larger block sizes deliver higher performance. However, for

the OpenCL kernel implementation running on the CPU, block size of 150 appears to be

outperforming all other CPU kernels. Even then, the best CPU kernel is easily beaten by

the GPU kernels, even at a small block size of 80 for the GPU kernel. Moreover, the sweet

spot for optimum performance on the GPU is not the same as the CPU. For an optimum

performance on the GPU, a block size of 200 is most efficient while the CPU performs best

at block size of 150. This indicates that to balance our CPU and GPU computation we may

need to find a “sweet spot” value that satisfies both CPU and GPU.

43

Figure 6.1: Performance comparison of SuperLU kernel with HALO vs. SuperLU without
HALO on NVIDIA Tesla K40c GPU.

44

Figure 6.2: Performance comparison of HALO kernel on CPU (Intel 4790K) and GPU
(Tesla K40c) platforms.

6.2 Memory trace experiments

We now present results obtained by running memory traces generated via techniques in Ch.

4 on the HMC evaluation platform. We vary multiple design attributes to study the affect of

design decisions on the performance of the target application on the 3D-stacked memory

system.

We vary attributes such as:

• Number of user ports being employed to issue commands to HMC

• Command batch size for issue

45

• Serial in-order issue or parallel issue across user ports

By varying the batch size, we are able to understand the optimum queue size for each

lane/compute core contending for access to a common link. By reducing the batch size to 1,

we can study implications of issuing requests in-order one by one to the memory system.

This may potentially help us make predictions about expected performance on interfacing

a CPU style processing core to the HMC, which makes blocking memory access calls.

The Pico driver limits the batch size to 370, due to the Pico stream framework firmware

implementation on the FPGA. For our analysis, we vary the batch size from 4 to 350 (for

reliable experiment results).

By issuing commands serially on a single user port, software contention between threads

for access to Pico board’s object can be minimized. This helps us do an accurate analysis

of performance metrics of a user port and how it varies as attributes of issued commands

are varied. For example, we can investigate localization of read and write commands on

separate ports or localization of memory access requests to a group of vaults on a particular

port. Whereas, by issuing commands in parallel across multiple user ports, we are better

able to understand link contention implications and the overall performance gain from using

3D stacked memory.

6.2.1 Serial issue of commands

This refers to the state, when only 1 user port (pre-determined as per program) requests

access to the HMC at any point of time. Thus software thread contention overheads do not

exist.

(a) READ requests only

The graph in figure 6.3 shows that as the batch size increases, the peak port throughput (Giga

Operations per Second i.e. GOPS) and peak port bandwidth increases. This is because the

software overheads on the host, for preparing and enqueuing a request flit to be issued to the

46

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

4 16 128 256 350

GO
PS
	()
Gi
ga
	O
Pe
ra
tio
ns
	p
er
	s
ec
on
d

Batch	size	for	issuing	requests	to	HMC

Port	1

Figure 6.3: Per port GOPS as a function of Batch Size (READ-only)

FPGA, are minimized. Since now these overheads are paid upfront for a batch of command

requests. Thus precision for software latency measurement is improved, and precise results

are obtained.

In figure 6.4, the cumulative time for servicing the memory trace requests on the HMC

decreases as we increase the batch size. This observation also stems from the fact that

software overheads in issuing commands to the HMC become smaller as batch size increases.

Thus we get much closer to the port’s ideal peak read bandwidth. Hence, this reduction in

execution time can be linked directly to higher GOPS for larger batch sizes.

47

0

5

10

15

20

25

30

35

40

4 16 128 256 350

To
ta
l	A

cc
es
s	T

im
e	
(s
ec
)

Batch	size	for	issuing	requests	to	HMC

Port	1

(a) Trace Emulation time vs. Batch Size (READ-only)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

128 256 350

To
ta
l	A

cc
es
s	T

im
e	
(s
ec
)

Batch	size	for	issuing	requests	to	HMC

Port	1

(b) A closer view of result plots for higher batch values

Figure 6.4: Cumulative time to emulate memory trace on the HMC as a function of Batch
Size (READ-only)

48

0

1

2

3

4

5

6

7

8

9

10

1 2 4 6 7

Po
rt	
Th
re
ad
	A
cc
es
s	
Ti
m
e	
(s
ec
)

Port	 Count	for	HMC	interafce

Batch	16

Batch	128

Batch	256

Batch	350

(a) Predicted cumulative time on HMC vs. number of ports (READ-only)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 6 7

Po
rt	
Th
re
ad
	A
cc
es
s	
Ti
m
e	
(s
ec
)

Port	 Count	for	HMC	interafce

Batch	128

Batch	256

Batch	350

(b) A closer view of result plots for higher batch values

Figure 6.5: Predicted cumulative time to service memory requests on the HMC as a function
of number of ports (READ-only)

We extend the serial issue implementation across multiple ports. This is done in order

to make prediction of runtime if the memory requests actually originated from compute

cores mapped to the lower most logic layer of the HMC. This layer or the connected FPGA

would be the likely location of compute cores for scatter/gather/DGEMM core primitives.

49

Such a hardware model can be approximated using our framework. We do this by assuming

an intelligent data mapping engine [9] allocates blocks in the 3D-stack according to the

workload distribution of primitives across the logic layer. Thus each compute core would

make memory requests for only the locations housed in the same vault. Thus generated

requests by each port are isolated to the local vault controller. This behavior may be

replicated by distributing the memory requests from the trace file across multiple ports,

but allowing only one port’s thread at a time to issue requests to the HMC. Thus each

thread simulates a behavior where it has complete control of the HMC link. When one port

completes its request allocation, it transfers the control in round-robin fashion to the next

port thread. This gives us the figure 6.5 showing prediction for ideal multi-port performance

for parallel issue, if the requests were generated from the logic layer of the 3D-stacked

HMC. One key point from this figure is that batch size must be high enough to overcome the

latency of DMA-style operations since low batch values like 16 provide very poor overall

performance.

(b) WRITE requests only

We perform separate experimental analysis for write requests, because of their ”posted”

nature. Since these requests do not wait for a response to acknowledge their completion, the

performance metrics for write requests are expected to be much faster than those for read

requests. The only throttling parameter for them is the internal queue size of the HMC vault

controllers, which can accommodate only limited number of pending requests at once.

For measuring the latency of servicing posted writes, we employ a different technique.

Since the posted writes do not return a response, we sandwich a group Nof write requests

between 2 READ requests, to be issued as one batch. We then use the vendor framework

hardware register, SUM RD LATENCY that counts the cumulative number of cycles taken

to service all read requests issued since initialization. The first request of the issued batch,

being a read request, triggers the cycle count probe in the FPGA. Since all the requests from

50

the same port stream buffer are serviced in order by the HMC controller, the response to the

last request in the batch marks an end to the probe. The last response to the batch, being

a read response, copies the elapsed cycle count into the hardware probe register. We then

measure the elapsed cycles count (with a small error margin) taken to issue N write requests,

and then we calculate the write request throughput. We keep the value of N large in order to

minimize any error due to read request overheads.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

16 128 256 350

GO
PS
	()
Gi
ga
	O
Pe
ra
tio
ns
	p
er
	s
ec
on
d

Batch	size	for	issuing	requests	to	HMC

Port	1

Figure 6.6: Per port GOPS as a function of Batch Size (WRITE-only)

Figure 6.6 shows a trend of rising aggregate link throughput (GOPS) values for higher

batch sizes. Note also that due to the non-posted nature of the operations, the max GOPS for

the WRITE-only case is almost 0.040 while the READ-only case maxes out at approximately

0.008, a factor of 5 difference.

Plots in figure 6.7 show the expected behavior of falling aggregate runtime for trace on

the HMC memory system, with an increase in the batch issue size. This stems from the fact

that higher batch size aids in higher aggregate link throughput (GOPS) for write requests

and runtime is improved by almost 2x when using a larger batch size (350 vs. 128).

51

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

16 128 256 350

To
ta
l	A

cc
es
s	T

im
e	
(s
ec
)

Batch	size	for	issuing	requests	to	HMC

Port	1

(a) Cumulative time vs. Batch Size (WRITE-only)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

128 256 350

To
ta
l	A

cc
es
s	T

im
e	
(s
ec
)

Batch	size	for	issuing	requests	to	HMC

Port	1

(b) A closer view of result plots for higher batch values

Figure 6.7: Cumulative time to service memory requests on the HMC as a function of Batch
Size (WRITE-only)

52

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 7

Po
rt	
Th
re
ad
	A
cc
es
s	
Ti
m
e	
(s
ec
)

Port	 Count	for	HMC	interafce

Batch	16

Batch	128

Batch	256

Batch	350

(a) Predicted cumulative time vs. number of ports (WRITE-only)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

2 4 6 7

Po
rt	
Th
re
ad
	A
cc
es
s	
Ti
m
e	
(s
ec
)

Port	 Count	for	HMC	interafce

Batch	128

Batch	256

Batch	350

(b) A closer view of result plots for higher batch values

Figure 6.8: Predicted cumulative time to service memory requests on the HMC as a function
of number of ports (WRITE-only)

Figure 6.8 shows that due to higher aggregate link throughput, the active runtime for

each individual port falls as the active port count increases. This decrease in runtime is close

to 2x when increasing from 2 ports to 4 (0.58 s to 0.28 s) and slightly lower when going

from 4 to 6 ports (0.28 s to 0.19 s)

53

(c) READ-WRITE requests

When issuing both read and write requests over the same port, the overall port and link

bandwidth gets split across the read and write requests. The figure 6.9 shows the distribution

of the link bandwidth for such a scenario. With rising batch sizes, the aggregate port through-

put increases. Write throughput is lower than the read throughput. This is strictly because of

the ratio of read requests to the write requests. We measure the time to service a batch of

mixed requests and use this to calculate the read and write throughput (NumRequestsInBatch
T imeToServiceBatch

).

Hence the ratio of the read throughput to the write throughput is AvgREADRequestsInBatch
AvgWRITERequestsInBatch

.

Although the ratio of read command count to write command count varies from batch to

batch, an overall ratio of read request count to write request count helps us interpret this

better. For our memory trace, the READcount
WRITEcount

is 1.5477.

0

0.001

0.002

0.003

0.004

0.005

0.006

16 128 256 350

GO
PS
	()
Gi
ga
	O
Pe
ra
tio
ns
	p
er
	s
ec
on
d

Batch	size	for	issuing	requests	to	HMC

Port	1	READ

Port	1	WRITE

Figure 6.9: Per port GOPS as a function of Batch Size

Figure 6.10 shows the trend for trace run-time on the HMC as the batch size is varied,

when requests are issued in a mixed stream on the active port. From it, we infer that

cumulative runtime for the memory trace on the HMC decreases with an increase in the

batch size. Comparing the absolute run time with those for write request streams, we infer

54

that latency of responses for read requests govern the achievable throughput in a mixed

stream. This is as expected, since posted write requests do not receive a response.

0

5

10

15

20

25

16 128 256 350

To
ta
l	A

cc
es
s	T

im
e	
(s
ec
)

Batch	size	for	issuing	requests	to	HMC

Port	1

(a) Cumulative time vs. Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

128 256 350

To
ta
l	A

cc
es
s	T

im
e	
(s
ec
)

Batch	size	for	issuing	requests	to	HMC

Port	1

(b) A closer view of result plots for higher batch values

Figure 6.10: Cumulative time to service all memory requests on the HMC as a function of
Batch Size

55

0

1

2

3

4

5

6

7

8

9

10

11

2 4 6 7

Po
rt	
Th
re
ad
	A
cc
es
s	
Ti
m
e	
(s
ec
)

Port	 Count	for	HMC	interafce

Batch	16

Batch	128

Batch	256

Batch	350

(a) Predicted cumulative time vs. number of ports

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 4 6

Po
rt	
Th
re
ad
	A
cc
es
s	
Ti
m
e	
(s
ec
)

Port	 Count	for	HMC	interafce

Batch	128

Batch	256

Batch	350

(b) A closer view of result plots for higher batch values

Figure 6.11: Predicted cumulative time to service all memory requests on the HMC as a
function of number of ports

Plots in figure 6.11 show the predicted ideal performance of the memory system when

read, and write requests are issued in a mixed stream, to multiple GUPS ports in parallel. In

the ideal scenario, each port would be statically bound to a link to the HMC, and would be

free of contention delays. As the port count increases, the burden on each individual port

56

reduces and thus individual port active run times reduce.

6.2.2 Parallel issue of commands

To implement parallel issue of commands, multiple host threads issue batches of commands

from the OpenCL trace to their respective port queues on the FPGA. This includes reading

the respective circular buffers on the host memory, and issuing WriteStream() calls

to respective user port streams. These hardware Pico streams in the FPGA then contend

for access to the HMC link. For these experiments, we vary the HW port count from 1

to 7. Tests with 8 and 9 ports crashed, possibly due to an issue with the provided PICO

framework.

(a) READ requests only

0

0.002

0.004

0.006

0.008

0.01

0.012

1 2 4 6 7

GO
PS
	()
Gi
ga
	O
Pe
ra
tio
ns
	p
er
	s
ec
on
d

Port	 Count	for	HMC	interafce

Batch	4

Batch	16

Batch	128

Batch	256

Batch	350

Increasing Peak	aggregate	GOPS

Figure 6.12: Aggregate GOPS as a function of port count and batch size (READ-only)

Figure 6.12 shows measured performance (GOPS) as a function of port count and batch

size for multiple threads issuing memory requests to respective user ports in parallel. The

57

expected behavior of increasing aggregate GOPS is observed only as we increase the port

count from one to two. Beyond this, the aggregate READ GOPS saturates. This behavior is

because the parallel user ports are being emulated by parallel competing threads running on

a CPU host. These threads contend for access to the global Pico board object in order to

issue requests to their respective streams and poll for responses. For port counts higher than

two, these software thread contention overheads exceed the granularity of hardware latency

for servicing issued memory requests. Thus we do not observe increasing performance we

might expect from running solely on the FPGA with more ports. This is verified by reading

port specific control registers in the FPGA. These registers which store cumulative cycle

count spent in order to service global command count, suggest that as port count increases,

aggregate read performance (in the hardware) grows as well.

We believe we can observe the true boost in measured GOPS if the memory request gen-

erator is implemented solely on the FPGA. One local independent request generation unit for

each user port would help measure true read performance metrics, and this implementation

would be free of software-related contention overheads.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

1 2 4 6 7

GO
PS
	()
Gi
ga
	O
Pe
ra
tio
ns
	p
er
	s
ec
on
d	
pe
r	p

or
t	t
hr
ea
d

Port	 Count	for	HMC	interafce

Batch	4

Batch	16

Batch	128

Batch	256

Batch	350

43% 78% 85% 86%

Diminishing Penalty

Figure 6.13: Per port GOPS as a function of batch size and port count (READ-only)

58

Figure 6.13 shows the GOPS throughput for one port when N ports are actively issuing

requests to the HMC in parallel. This measurement from the software stack again suffers

from inaccuracies due to thread contention overheads. Although the port throughput is

expected to decrease as compared to that of single port implementation, the penalty is

expected to be somewhat marginal. But since our measurements are done in the software

stack by means of timers, the contention overheads play a bigger role. Nevertheless, we

are able to see a diminishing penalty effect of overhead in the dropping port GOPS values

which leads to increasing aggregate GOPS values.

1.11 1.10

0.96
1.01

0.90

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 6 7

To
ta
l	A

cc
es
s	T

im
e	
(s
ec
)

Port	 Count	for	HMC	interafce

Batch	128

Batch	256

Batch	350

Falling access	time	as	
ports	increase

Figure 6.14: Cumulative time to service requests from the trace file on the HMC as a
function of port count and batch size (READ-only)

In figure 6.14, we report that the observed performance is optimal for a batch size of 256.

This is because for this value, the software issue batch size matches the command queue

FIFO depth in hardware. This leads to minimal software overheads to poll for responses

of commands still waiting in the queue FIFO on the FPGA. Thus we observe a trend of

decreasing overall cumulative time to execute the requests from the memory trace on the

HMC, as the port count increases.

59

(b) WRITE requests only

As explained previously in section 6.2.1, the measurement technique for posted writes uses

batches of writes sandwiched by two read requests, which can be measured using existing

vendor-provided counters.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

1 2 4 6 7

GO
PS
	()
Gi
ga
	O
Pe
ra
tio
ns
	p
er
	s
ec
on
d

Port	 Count	for	HMC	interafce

Batch	4

Batch	16

Batch	128

Batch	256

Batch	350

Increasing Peak	aggregate	GOPS

Figure 6.15: Aggregate GOPS as a function of port count and batch size (WRITE-only)

In figure 6.15, we do observe the expected boost in GOPS as the port count increases.

This is because of the nature of posted write requests. Since they do not require a response

packet, software thread contention overheads for response polling are drastically reduced,

and performance can increase to a maximum of 0.24 GOPS with batch size 350.

60

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 4 6 7

GO
PS
	()
Gi
ga
	O
Pe
ra
tio
ns
	p
er
	s
ec
on
d	
pe
r	p

or
t	t
hr
ea
d

Port	 Count	for	HMC	interafce

Batch	4

Batch	16

Batch	128

Batch	256

Batch	350

Figure 6.16: Per port GOPS as a function of batch size and port count (WRITE-only)

Figure 6.16 reports per-port GOPS, and like the aggregate test case, the measurements

are more precise for write requests due to reduced response polling overhead. Thus we see

that the true penalty in port performance is marginal with respect to the observed increase in

aggregate GOPS.

61

CHAPTER 7

CONCLUSIONS

Our analysis of the HPC community’s LU decomposition application, focuses on exploiting

benefits of 3D-stacked memory architectures. Our analysis was focused on memory accesses

that simulate the scatter/gather kernel primitive for the Schur Complement update stage

of the application. During our experiments, we observe run time performance benefits

and take note of the design decisions and software knobs that can be used to acheive peak

performance numbers.

The work contributions of this thesis include a detailed testing of the SUPERLU ap-

plication suite, including different platforms for different situations that were previously

evaluated due to limited support for non-CUDA GPU accelerators. From those analysis, we

draw conclusions about critical algorithm and hardware co-design decisions.

The following points must be given high priority while designing an accelerator on the

3D-stacked memory architecture model, particularly HMC:

1. A higher value of batch issue size on the driver software side does not always guarantee

peak performance. This goes against common intuition of issuing requests in pending

state on the host driver, to be able to hide the memory latency of HMC servicing

already issued requests. This may often lead to a user port contending for access

to a HMC link to poll for partial set of responses, in hope to issue more requests to

keep the hardware request FIFO always filled. This steals useful link access time

from ports which could issue a larger batch of requests or read back a larger group

of responses. Thus the ideal scenario is when the batch size in driver algorithm for

issue and polling responses is made equal to the hardware command FIFO depth.

This ensures a higher link utilization by making every transaction between the host

and HMC deliver maximum payload.

62

2. The issue batch size is also a function of the number of ports requesting access to

the HMC link. For lower port counts, a larger batch size may be beneficial, since

contention is low. But for higher port counts, the link contention on the host driver

to poll for responses can kill the peak achievable throughput. Thus for higher port

counts, the ideal batch size lies close to the command FIFO depth of the hardware’s

vault controllers.

3. A deeper exploration of the hardware algorithm co-design to identify the optimal

command FIFO depth is needed. Our ideal NDP test platform, the AC-510, currently

requires further work and vendor support to run a multi-threaded version of SuperLU.

This would also be beneficial to achieve a hardware platform wherein the requesting

ports would be free of software contention, and precise measurements of cycle counts

spent to service different requests could be made.

4. The sweet spot for compute sharing as proposed by HALO algorithm is also plat-

form dependent. The division of labor between the host and the accelerator for the

DGEMM phase prior to the Schur’s Complement stage is highly dependent on the

hardware platform chosen. Our analysis shows that a block size of 150 on the CPU

outperform the performance of all other block size values for the same platform across

different matrix sizes. Whereas the ideal block size for a GPU platform was 200, the

largest value of the parameter tested in our experiments. While a higher block size

may be favorable for a GPU based platform, the deciding factor must be a hybrid of

compute capability and data transfer overheads. Thus for a FPGA based accelerator,

even lower values of block sizes may deliver a higher performance metric for the

application if host and accelerator compute and data movement are properly matched.

63

CHAPTER 8

FUTURE WORK

The analysis and results described before motivate us for a deeper design space explo-

ration of the 3D-stacked memory architecture. The following steps seem logical extension

opportunities for our work.

1. It would be useful to implement the proxy application on the FPGA platform. The

Pico Computing framework for translating OpenCL kernels to Verilog hardware

implementations would be useful to obtain real prototype performance metrics for

the HMC memory system. A programmable memory request generation engine

in the hardware, issuing requests of programmed batch size would help get rid of

software contention overheads. This would help us better understand the performance

implications of multi-port scheduling policies. Currently we are testing a beta driver

that uses 1 port, which as our results showed has relatively poor performance.

2. We would like to extend our implementation to support a wider range of commands.

This would help us better utilize the HMC specification 1.1 protocol much more

efficiently. In particular, atomic commands such as ”BIT WRITE” would be useful to

perform Read-Modify-Write operations of granularity lower than the standard 16B.

Since majority of double precision operations make 8B memory request transactions,

such atomics would be a great addition to the benchmark firmware.

3. Additional timing and dependency information if augmented to the memory trace,

would help make better accurate performance measurements. A dynamic binary

instrumentation tool for GPU platforms would aid greatly to this effort.

4. A memory trace derived from a GPU simulator or a binary instrumentation tool like

GT-Pin would help generate a more accurate memory trace. Such a trace should ideally

64

be augmented with associated timing information, and batch/warp id information.

This would help emulate a parallel issue scenario much closer to the GPU hardware

pipeline.

5. Future hardware that uses a shared 3D-stacked memory to service both the host (CPU)

and the accelerator (GPU) would greatly reduce data transfer overheads. This has the

potential for gaining benefits of data remapping by distributing DGEMM operations

over dense data blocks in local vaults.

65

REFERENCES

[1] P. Sao, X. Liu, R. Vuduc, and X. Li, “A sparse direct solver for distributed memory
xeon phi-accelerated systems,” in Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International, IEEE, 2015, pp. 71–81.

[2] SuperLU project website, http://crd- legacy.lbl.gov/˜xiaoye/
SuperLU/.

[3] D. Abramson, C. Enticott, and I. Altinas, “Nimrod/k: Towards massively parallel
dynamic grid workflows,” in Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, ser. SC ’08, Austin, Texas, 2008, 24:1–24:11, ISBN: 978-1-4244-
2835-9.

[4] P. Sao, R. W. Vuduc, and X. S. Li, “A distributed cpu-gpu sparse direct solver.,” in
Euro-Par, 2014, pp. 487–498.

[5] H. Kim, H. Kim, S. Yalamanchili, and A. F. Rodrigues, “Understanding energy
aspects of processing-near-memory for hpc workloads,” in Proceedings of the 2015
International Symposium on Memory Systems, ser. MEMSYS ’15, Washington DC,
DC, USA, 2015, pp. 276–282, ISBN: 978-1-4503-3604-8.

[6] X. S. Li, “An overview of superlu: Algorithms, implementation, and user interface,”
ACM Trans. Math. Softw., vol. 31, no. 3, pp. 302–325, Sep. 2005.

[7] Amd’s 3d-stacked high bandwidth memory (hbm) rolls out, http://fudzilla.
com/news/graphics/36995-amd-fiji-hbm-limited-to-4gb-
stacked-memory.

[8] Hybrid memory cube replacing ddr ram technology, https://www.extremetech.
com/computing/167368-hybrid-memory-cube-160gbsec-ram-
starts- shipping- is- this- the- technology- that- finally-
kills-ddr-ram.

[9] M. Gokhale, S. Lloyd, and C. Hajas, “Near memory data structure rearrangement,” in
Proceedings of the 2015 International Symposium on Memory Systems, ser. MEMSYS
’15, Washington DC, DC, USA: ACM, 2015, pp. 283–290, ISBN: 978-1-4503-3604-8.

[10] Clblas, an implementation of basic linear algebra subprograms, levels 1, 2 and 3
using opencl, https://github.com/clMathLibraries/clBLAS.

66

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://fudzilla.com/news/graphics/36995-amd-fiji-hbm-limited-to-4gb-stacked-memory
http://fudzilla.com/news/graphics/36995-amd-fiji-hbm-limited-to-4gb-stacked-memory
http://fudzilla.com/news/graphics/36995-amd-fiji-hbm-limited-to-4gb-stacked-memory
https://www.extremetech.com/computing/167368-hybrid-memory-cube-160gbsec-ram-starts-shipping-is-this-the-technology-that-finally-kills-ddr-ram
https://www.extremetech.com/computing/167368-hybrid-memory-cube-160gbsec-ram-starts-shipping-is-this-the-technology-that-finally-kills-ddr-ram
https://www.extremetech.com/computing/167368-hybrid-memory-cube-160gbsec-ram-starts-shipping-is-this-the-technology-that-finally-kills-ddr-ram
https://www.extremetech.com/computing/167368-hybrid-memory-cube-160gbsec-ram-starts-shipping-is-this-the-technology-that-finally-kills-ddr-ram
https://github.com/clMathLibraries/clBLAS

[11] N. Farooqui, A. Kerr, G. Eisenhauer, K. Schwan, and S. Yalamanchili, “Lynx: A
dynamic instrumentation system for data-parallel applications on gpgpu architectures,”
in 2012 IEEE International Symposium on Performance Analysis of Systems Software,
2012, pp. 58–67.

[12] M. Kambadur, S. Hong, J. Cabral, H. Patil, C. K. Luk, S. Sajid, and M. A. Kim, “Fast
computational gpu design with gt-pin,” in 2015 IEEE International Symposium on
Workload Characterization, Oct. 2015, pp. 76–86.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’05, Chicago, IL,
USA: ACM, 2005, pp. 190–200, ISBN: 1-59593-056-6.

[14] Pin 2.13 user guide and tutorial, https://software.intel.com/sites/
landingpage/pintool/docs/65163/Pin/html/.

[15] Pico-computing software stack and driver framework, http://picocomputing.
com/products/framework/.

[16] Ac-510 hmc accelerator board product brief, http://picocomputing.com/
ac-510-superprocessor-module/.

67

https://software.intel.com/sites/landingpage/pintool/docs/65163/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/65163/Pin/html/
http://picocomputing.com/products/framework/
http://picocomputing.com/products/framework/
http://picocomputing.com/ac-510-superprocessor-module/
http://picocomputing.com/ac-510-superprocessor-module/

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Introduction to SuperLU
	Introduction to 3D-stacked memory architectures
	Hybrid Memory Cube Architecture

	Background Study
	Related Work
	Algorithmic Optimization of SuperLU
	Hardware Approaches for Data Movement

	Implementing the Target Application for NDP
	SuperLU with Halo
	OpenCL SuperLU Implementation

	BLAS libraries
	clBLAS
	OpenBLAS

	Evaluating Memory Behavior With Memory Traces
	Hardware platform
	PIN tool
	Memory Trace Pintool Filter
	Custom Pintool Filters

	Limitations
	Extrapolations for memory trace for representing GPU trace

	Evaluation Model and Hardware Infrastructure
	Evaluation Platform
	PICO stream framework

	HMC addressing
	GUPS framework
	Measurements and metric instrumentation
	Operations supported

	Experiments and Results
	Dense SuperLU proxy measurements
	Memory trace experiments
	Serial issue of commands
	Parallel issue of commands

	Conclusions
	Future Work
	References

