
SELF-RECONFIGURABLE SHIP FLUID-NETWORK
MODELING FOR SIMULATION-BASED DESIGN

A Thesis
Presented to

The Academic Faculty

by

Kyungjin Moon

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
August 2010

Copyright c© 2010 by Kyungjin Moon

SELF-RECONFIGURABLE SHIP FLUID-NETWORK
MODELING FOR SIMULATION-BASED DESIGN

Approved by:

Professor Dimitri N. Mavris,
Committee Chair
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Neil Weston
School of Aerospace Engineering
Georgia Institute of Technology

Professor Daniel P. Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Mr. Frank Ferrese
Naval Surface Warfare Center
Carderock Division

Professor Mark Costello
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: May 19, 2010

To my love, Minsuk,

my son,

and

my parents.

iii

ACKNOWLEDGEMENTS

During my entire time in the Ph.D program, I have felt like I was a novice marathoner,

who was running his first match. As with all other rookies in their first journeys, I

would have never been able to make it to this successful finale of mine if I were not

with a great coach and people who supported me. I would first like to thank my

advisor, Professor Dimitri Mavris. He gave me, in the perfect balance, both freedom

of exploring various research directions – even some crazy ideas – and thoughtful

and insightful advice, monitoring, and redirection of my research as a great scholar,

sincere mentor, and solid supporter of mine.

I would also like to thank Dr. Neil Weston, one of my committee members, for

giving advice, reviewing my work, and sometimes helping this struggling “interna-

tional” graduate student with his technical writing. I want to thank the rest of my

thesis committee, Professor Daniel Schrage, Professor Mark Costello, and Mr. Frank

Ferrese, for their constructive suggestions and feedback on my thesis work.

I would also like to thank the former and current members of IRIS project team:

Michael Balchanos, David Fullmer, Matt Hoepfer, Joosung Kang, Dr. Yongchang Li,

Bassem Nairouz, and Daili Zhang. It has been pure pleasure having discussions with

you folks in the many meetings and road trips and working with you all for about 6

years. All these are a part of my invaluable memories.

I want to thank my wife, Minsuk. During 7 years of graduate studies, you always

gave me cheers and patience on the numerous days of my coming home late in the

night with a stressful look on my face. Also, thank you for taking good care of our

most valuable treasure, our son.

Thank you, mother and father. I could never thank you two enough for all

iv

your sacrifices through your lives. You always have been my motivation, inspira-

tion, courage, and shelter of my life, and you will be so forever.

Thank you all,

Kyungjin, Spring 2010

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF SYMBOLS OR ABBREVIATIONS xv

SUMMARY . xvii

I INTRODUCTION . 1

1.1 Overview of DD(X), Next-Generation Naval Surface Combatants
Program . 3

1.1.1 Concepts of DD(X) . 4

1.1.2 IEP Control Architecture [21] 10

1.2 Integrated M&S of Ship Engineering Systems for Fail-Proof Design 12

1.3 Problems of Domain-Specific Engineering Network Models in Inte-
grated M&S . 13

1.3.1 Problem 1: Damage Modeling 13

1.3.2 Problem 2: Model Reconfiguration 14

1.3.3 Problem 3: Simulation Cost 14

1.4 Available M&S Methods . 15

1.4.1 Surrogate Modeling . 16

1.4.2 Bond Graph . 18

1.4.3 Component-Based Acausal Modeling 22

1.4.4 Graph Theory . 26

1.4.5 Summary of Comparisons Based on Research Problems . . . 29

1.5 Research Scope and Objective . 30

1.6 Overview of M&S Formulation . 31

1.6.1 Graph-Based Topological Modeling for Flexible Model Re-
configuration . 32

vi

1.6.2 Surrogate Modeling of Dynamic System Components 33

1.6.3 Development of Damage Modeling Tools 34

1.6.4 Numerical Implementation Environment 35

II SURROGATE MODELING APPROACHES: IN THE VIEW OF MODEL
STRUCTURE . 37

2.1 Introduction . 37

2.1.1 Previous Works in Surrogate Modeling Approach 38

2.1.2 Approach Based on System Identification 39

2.1.3 About System Identification 40

2.2 Overview of Linear Model Structures 41

2.2.1 Auto-Regressive with Exogenous Input (ARX) Model 42

2.2.2 Output-Error (OE) Model 43

2.2.3 Other Models . 45

2.3 Overview of Nonlinear Model Structures 47

2.3.1 Volterra Model . 48

2.3.2 Kriging Method (or DACE Method) 50

2.3.3 Basis Function Expansion Models 57

2.3.4 Wiener Model: A Block-Oriented Nonlinear Parametric Model 67

2.3.5 Other Block-Oriented Models 72

III SURROGATE MODELING FOR DYNAMIC NONLINEAR SYSTEM COM-
PONENTS . 74

3.1 Introduction . 74

3.2 Design of Surrogate Model Structure 75

3.2.1 Selection of Baseline Model Structure 76

3.2.2 Choosing Fidelity of Transient Analysis: Transient Vs. Quasi-
Steady State Simulation . 80

3.2.3 Recurrent Neural Network with Block-Oriented Structure . 81

3.2.4 Design of Regression Vector 85

3.3 Generation of Surrogate Model . 87

vii

3.3.1 Design of Experiments for Dynamic System Simulation . . . 88

3.3.2 Computer Experiment and Data Extraction 92

3.3.3 Training, Testing, and Launching NN Surrogate Model . . . 94

3.4 Example Study . 95

3.4.1 Nonlinear RLC Circuit . 95

3.4.2 Heat Exchanger Unit with Flow Control Valve 104

3.4.3 Conclusions . 111

IV GRAPH-BASED TOPOLOGICAL AND DAMAGE MODELING 113

4.1 Graph-Based Topological Modeling 113

4.1.1 Basic Mathematical Denotations of Graph 115

4.1.2 Numerical Implementation of Graph Model 119

4.2 Damage Modeling . 128

4.2.1 Damage Bubble . 129

4.2.2 Reference Damage Control Model 135

4.2.3 Automatic Generation of Reference Damage Control Model 142

4.3 Model Integration and Simulation 149

4.3.1 Model Set-Up . 149

4.3.2 Simulation Process and Jacobian Computation 151

V IMPLEMENTATION EXAMPLE . 156

5.1 Brief Introduction of Chilled-Water Model of Notional Ship 156

5.2 Graph-Based Surrogate Model for Notion YP Fluid System 158

5.2.1 Graph-Based Representation 158

5.2.2 Generation of Component Surrogate Models 158

5.3 Simulation-Based Design Analysis 163

5.3.1 Model Verification . 165

5.3.2 Damage Analysis of Notional YP Fluid Model 168

5.3.3 Design Analysis for Optimal Smart-Valve Placement 173

5.4 Conclusions . 181

viii

VI CONCLUSIONS . 184

6.1 Review Based on Research Problems and Goals 184

6.1.1 Problem 1: Damage Modeling 184

6.1.2 Problem 2: Model Reconfiguration 185

6.1.3 Problem 3: Simulation Cost 186

6.2 Drawbacks and Limitations . 187

6.2.1 Limited Data Accessibility of Component Surrogate Models 187

6.2.2 Difficulties in Predicting and Controlling Accuracy of Com-
ponent Surrogate Models 187

6.2.3 Linear Edge-Based Component Definition 188

6.2.4 Modeling of Compressible-Flow Systems 189

6.3 Future Research . 189

6.3.1 Application Expansion to Electric Power Distribution Systems189

6.3.2 Simulation-Based Analysis for Energy Optimized Aircraft (EOA)190

APPENDIX A FLOW CONTINUITY-CHECK THRESHOLD OF SMART-
VALVE CONTROL AGENTS . 191

APPENDIX B SOURCE CODE . 195

REFERENCES . 282

ix

LIST OF TABLES

1 Engineering Development Model (EDM) of DDG-1000 Acquisition . . 5

2 Effort and Flow Variables in Bond Graph 19

3 Pros and Cons of Volterra Model . 50

4 Pros and Cons of DACE Model . 57

5 Pros and Cons of Sigmoid-NN and RBF-Net Model 63

6 Pros and Cons of Wiener Model . 71

7 Model Settings of Nonlinear RLC Circuit 96

8 Configuration of Two NN Surrogate Model Structures of Nonlinear
RLC Circuit . 97

9 Training Results from Two Groups of NN Models of Nonlinear RLC
Circuit Model . 99

10 Heat Exchanger Unit Specification 104

11 Configuration of the Two NN Surrogate Model Structures of Heat Ex-
changer Unit . 105

12 Training Results of Two NN Model Groups of Heat Exchanger System 107

13 Edge and Node Types . 123

14 Edge Component Types . 160

15 NN-Surrogate Models Specification 162

16 Thermal Service Loads . 171

17 Number of Generated Models for YP-Fluid Systems with Different
Valve Amounts . 175

18 Python Files for M&S of Notional YP-Fluid System 195

x

LIST OF FIGURES

1 Examples of Complex Systems in Engineering Domain 2

2 Artwork of DDG-1000 Zumwalt Class 4

3 Comparison of Conventional Ship Power System and Integrate Power
System . 7

4 Notional Layout of Integrated Power System 8

5 Navy Budget Chart . 9

6 Damage Examples of Conventional Warships 9

7 IEP Control Architecture . 11

8 Chilled Water Reduced Scale Advance Demonstrator 12

9 Example of Simple Ruptured Pipeline and its Implementation in Flow-
master . 14

10 Example of Configuration Design Changes 15

11 RLC Circuit and its Bond Graph . 19

12 Backhoe Model . 21

13 Bond Graph of Backhoe Model . 21

14 Simulink Model of Fuel Rate Controller of Automotive Engine 23

15 Modelica Model of DC-Motor with Spring and Inertia 24

16 Simple Electrical Network and Corresponding Linear Graph 27

17 Comparison of Modeling Approaches/Methods Based on Three Problems 30

18 Formulated Solution Approach for Identified Problems of Domain M&S 32

19 Linear ARX and OE Models . 44

20 Single Hidden Layer Feedforward Neural Network with Single Output 59

21 A Notional Neuron . 60

22 Radial-Basis Function Networks with Single Output 62

23 Recurrent Neural Networks . 65

24 Structure of Wiener Model . 70

25 SISO Wiener Model with Feedback Linear Block 70

xi

26 SISO Hammerstein Model . 72

27 SISO Hammerstein-Wiener Model . 73

28 Comparison of Nonlinear Model Structures 77

29 A Linear Neural Model as Linear Dynamic Block of Wiener Structure 82

30 Double Hidden-Layer Neural Net with Wiener Structure 83

31 Block-Oriented Nonlinear Model with Output Feedback – the Modified
Wiener Structure . 84

32 Classification of Variables as Regressors 86

33 RNN-Based Surrogate Modeling Process 87

34 Experimental strategy for dynamic system simulations 89

35 Modified Factorial Design, Two factors with Five Factor Levels 91

36 Preprocessing of Simulation Data for Batch-Mode Training of NN Sur-
rogate Model . 93

37 Simple RLC Circuit with Nonlinear Inductance 96

38 “Actual Vs. Predicted” Plot of Two NN Models of Nonlinear RLC
Circuit with Test Data Set . 100

39 Training Results of Two NN Models with the Best Training MSE for
Nonlinear RLC Circuit . 102

40 Simulation Runs of the Two NN Model Groups of Nonlinear RLC
Circuit with Test Set . 103

41 Diagram of Heat Exchanger Unit Example 104

42 “Actual Vs. Predicted” Plot of Two NN Models of Heat Exchanger
System with Test Data Set . 108

43 Simulation Runs of NN Models with Another Test Set 110

44 Simple Electric Network and Its Digraph 113

45 Digraph with Flow and Edge Potential Variables for a Resistor 115

46 Relations between Node and Edge Potentials 118

47 Elementary Classes for Graph-Based Modeling 121

48 Graph Representation of Simple Fluid Model (HEx: heat exchanger,
P: pump, C: chiller) . 123

49 Flowmaster V7 Model of Pump-Chiller-Reservoir Sub-Network in CW-
RSAD . 124

xii

50 Edge of Pump-Chiller-Reservoir Sub-Network and Conversion to Source-
Sink Edge Pair . 125

51 Object Diagram of Simple Fluid Model 126

52 Incidence Matrix Data Structure in GraphModel Class 126

53 Toplogical Coordinates on Graph Model in Figure 44 128

54 Rupture in Simple Fluid System . 129

55 Junction Points between Edge and Sphere 131

56 Four Cases of Intersection Placement Representing Different Damage
Cases of Edge . 133

57 Implementation of Damage Bubble in Simulation 134

58 Composition of Component-Level Control Unit of Smart Valve in Sim-
plified View . 138

59 Distributed Reference Damage Control Modeling Classes 140

60 Contraction of Edge e1 . 144

61 Manipulation of Incidence Matrix for Contraction of Edge e1 145

62 Extraction of Neighbors List and Local Adjacency Matrix (adj mat)
of Controller on e2 . 147

63 UML Activity Diagram of Model Set-Up Process before Simulation . 149

64 User Inputs for Initializing Graph Model 150

65 Simplified Diagram of Graph-Based Model Generation Process Flow . 150

66 Simulation Process . 151

67 Interactions of Elements Model Reconfiguration 155

68 YP-676 Yard-Patrol Craft . 156

69 Chilled-Water Cooling Model of Notional YP and Rupture Location . 157

70 Graph Representation of YP Fluid Model 159

71 ModelCenter R©7.0 Environment . 164

72 Comparison of the Responses of Flowmaster and Graph-Based Surro-
gate Model with the Rupture at (7,4,0), Part 1 166

73 Comparison of the Responses of Flowmaster and Graph-Based Surro-
gate Model with the Rupture at (7,4,0), Part 2 167

74 Damage Locations for 28 Simulation Cases 168

xiii

75 Comparison of Open-Loop and Closed-Loop Responses of YP-Fluid
System with Rupture at (7,4,0) . 169

76 Result of Damage Analysis . 172

77 Rupture Locations for Damage Simulations with the Four Lowest OCR
Values . 173

78 Original Smart-Valve Placement of YP-Fluid Model 174

79 Bare Model of YP-Fluid System and Its Damage Locations 175

80 Number of Smart Valves vs. Average OCR 176

81 Smart-Valve Placement of Design with Maximum Average OCR for
Different Valve Amount, Part 1 . 177

82 Smart-Valve Placement of Design with Maximum Average OCR for
Different Valve Amount, Part 2 . 178

83 OCR Values of Tested Damage Cases for the Best Designs in 2- to
3-Valve Configurations . 179

84 OCR Values of Tested Damage Cases for the Best Design in 4-Valve
Configuration . 180

85 OCR Values of Tested Damage Cases for the Best Designs in 4- to
6-Valve Configurations . 181

86 Component Status Comparison Between Baseline and 5-Valve Optimal
Designs of YP-Fluid System . 183

87 Damage Analysis Results with Different Values of ε in Control Units 193

88 Total Rupture Flow Rate from Simulation No.9 with Different Values
of ε in Control Units . 193

xiv

LIST OF SYMBOLS OR ABBREVIATIONS

δ(G) Minimal Degree of the Vertices of Graph G.

∆(G) Maximal Degree of the Vertices of Graph G.

d(x) Degree of Vertex x (number of adjacent vertices to x).

E Edge Set of a Graph.

E(G) Edge Set of Graph G.

G A Graph.

V Node or Vertex Set of a Graph.

V (G) Node or Vertex Set of Graph G.

|G| Order of Graph G (=|V |, number of vertices).

|X| Number of elements in Set X.

||G|| Size of Graph G (=|E|, number of edges).

AAW Anti-Air Warfare.

AFRL Air Force Research Laboratory.

ARIMA Auto-Regressive Integrated Moving Average (model).

ARMA Auto-Regressive Moving Average (model).

ARMAX Auto-Regressive Moving Average with eXogenous input (model).

ARX Auto-Regressive with eXogenous inputs (model).

BIBO Bounded-Input, Bounded-Output.

BJ Box-Jenkins (model).

BPTT Backpropagation through Time.

DACE Design and Analysis of Computer Experiments.

DAE Differential Algebraic Equations.

DD(X) Next-Generation Naval Surface Combatants Program.

DOE Design of Experiment.

EOA Energy Optimized Aircraft.

xv

ERLS Extended Recursive Least-Squares.

FIR Finite Impulse Response.

IED Integrated Electric Drive.

IEP Integrated Engineering Plant.

INVENT Integrated Vehichle & Technology program.

IPS Integrated Power System.

LCC Life Cycle Cost.

M&S Modeling and Simulation.

MA Moving-Average (model).

MLE Maximum Likelihood Estimation.

MLP Mult-Layer Perceptron.

MSE Mean Squared Error.

NN (Artificial) Neural Network.

NRAC Naval Research Advisory Committee.

O&S Operation and Support.

OCR Operation Capability Rate.

OE Output-Error (model).

ONR Office of Naval Research.

RBF Radial-Basis Function.

RNN Recurrent Neural Network.

RSM Response Surface Method.

RTRL Real-Time Recurrent Learning.

SHL Single Hidden Layer.

T&E Test & Evaluation.

xvi

SUMMARY

Our world is filled with large-scale engineering systems, which provide various

services and conveniences in our daily life. A distinctive trend in the development

of today’s large-scale engineering systems is the extensive and aggressive adoption of

automation and autonomy that enable the significant improvement of systems’ ro-

bustness, efficiency, and performance, with considerably reduced manning and main-

tenance costs, and the U.S. Navy’s DD(X), the next-generation destroyer program,

is considered as an extreme example of such a trend.

This thesis pursues a modeling solution for performing simulation-based analysis

in the conceptual or preliminary design stage of an intelligent, self-reconfigurable ship

fluid system, which is one of the concepts of DD(X) engineering plant development.

Through the investigations on the Navy’s approach for designing a more survivable

ship system, it is found that the current naval simulation-based analysis environment

is limited by the capability gaps in damage modeling, dynamic model reconfiguration,

and simulation speed of the domain specific models, especially fluid network models.

As enablers of filling these gaps, two essential elements were identified in the

formulation of the modeling method. The first one is the graph-based topological

modeling method, which will be employed for rapid model reconstruction and damage

modeling, and the second one is the recurrent neural network-based, component-

level surrogate modeling method, which will be used to improve the affordability

and efficiency of the modeling and simulation (M&S) computations. The integration

of the two methods can deliver computationally efficient, flexible, and automation-

friendly M&S which will create an environment for more rigorous damage analysis

and exploration of design alternatives.

xvii

As a demonstration for evaluating the developed method, a simulation model

of a notional ship fluid system was created, and a damage analysis was performed.

Next, the models representing different design configurations of the fluid system were

created, and damage analyses were performed with them in order to find an optimal

design configuration for system survivability. Finally, the benefits and drawbacks of

the developed method were discussed based on the result of the demonstration.

xviii

CHAPTER I

INTRODUCTION

During recent decades, engineering systems around us have evolved to be more and

more integrated into larger systems in a way to provide better quality of functions,

services, and conveniences. Such products can be found everywhere in our life –

such as automobiles, aircraft, ships, and buildings – and have a commonality in

their structures, which are composed of a number of networks representing different

functional and physical domains, such as mechanical, fluid, electrical, communication,

and control systems, just to name a few.

One distinctive trend in the development of the large-scale engineering systems

is the extensive and aggressive adoption of automation and autonomy that enable

the significant improvement of systems’ robustness to failure, energy efficiency, ser-

vice performance, and functional bandwidth, with considerably reduced manning and

maintenance costs. However, this approach increases the system complexity, which

causes the high cost of development, technical difficulties in predicting its behaviors,

and understanding interactions among the subsystems. And evidently, theses difficul-

ties make the design and development of a large-scale complex system one of new and

imminent challenging problems in today’s engineering and scientific communities.

Meanwhile, with advances in computer technologies and mathematical algorithms,

computer modeling and simulation (M&S) has achieved enormous success and pros-

perity in the past several decades, aiding various engineering and scientific break-

throughs. These days, M&S is often a key process of test and evaluation (T&E) in

the research, development, and design processes, since it provides a more affordable

and flexible way of analyzing and predicting engineering systems than those with

1

Figure 1: Examples of Complex Systems in Engineering Domain

physical test and prototyping, which are very expensive to build and highly limited

regarding model modifications by design change.

Observing such benefits and the fast progresses of the field of computer simulation,

many engineers and scientists envision simulation-based engineering and design as the

enabler of developing many large-scale engineering systems, but its potential is not yet

fully unleashed because of various problems and limitations that have not been solved

until now. According to the report by National Science Foundation [56, p.25], the

key challenges in M&S of complex systems are that: 1) the development of models

is highly time-consuming and requires advanced technical skills and knowledge; 2)

linking multi-scale, multi-physics models is still a widely unsolved problem; and 3)

since simulation is treated and performed as a separate discipline from design process,

the collaboration with a design optimization process is often highly limited.

2

These problems become more aggravated especially in an early design stage of com-

plex systems, since there are only limited human, financial, and temporal resources

available in this stage, resulting that a M&S-based analysis approach does not enter

into the design cycle until its later stages [56, p.23]. Therefore, the M&S-based de-

sign efforts may remain in each domain specific, functional-system level, without the

integration for analyzing the aggregated system.

The goal of this thesis is to develop a modeling method and an M&S environment

that can address some of the previously stated problems in the early design stages of a

large-scale engineering system. The developed M&S method does not mean to serve

as a general solution for any complex engineering system, because the application

of M&S is very problem-specific, and requires different strategies and approaches

based on the physical domain, assumptions, desired fidelity, and scope of M&S. In

this thesis, the application domain is chosen to be a next-generation naval platform,

especially the fluid system layer of it, and first of all, the further descriptions of the

application domain and the motivation follow in the next sections.

1.1 Overview of DD(X), Next-Generation Naval Surface

Combatants Program

The Navy’s DD(X) program was established in order of the research and development

of the next-generation, multi-mission naval destroyer [27], which would provide in-

comparable improvements of combat effectiveness and survivability, while sufficiently

reducing total ownership cost. In order to achieve better combat effectiveness and

survivability, a number of revolutionary technologies were incorporated in the DD(X)

program, such as advanced gun system, integrated systems and computing environ-

ment, wave-piercing tumble-home hull, and stealthy body, just to name a few (see

Table 1 for details). This program was started and conceptualized from DD-21 pro-

gram, the predecessor of DD(X) program, that lasted from late 1990s to 2001. Then,

the U.S. congress approved to perform detailed design and procure the lead ship in

3

Figure 2: Artwork of DDG-1000 Zumwalt Class (from www.navsource.org [55])

2005, and the Navy designated, in 2006, the ship’s hull number 1000, and named this

new destroyer after Zumwalt, the Chief of Naval Operations from 1970 to 1974 [58].

Figure 2 shows the artwork of the DDG-1000 class destroyer. The construction of the

lead ship was scheduled in July 2008, but the procurement plan was down-sized to

the delivery of only two ships from the Navy’s original plan of seven ships, because of

the pressure of the excessive increase of the program cost. Currently, the both ships

are currently being built by Northrop Grumman Ship Systems and General Dynamics

Bath Iron Works, and scheduled to be delivered in 2012.

1.1.1 Concepts of DD(X)

The design of engineering systems in DD(X) is based on two revolutionary concepts,

which are Integrated Power System (IPS) [19] (see Figure 4) and Integrated Engi-

neering Plant (IEP) [21, 39, 81]. The concept of IPS, which was initiated in 1994, can

be summarized as an “all-electric ship.” In the conventional ship-power system ar-

chitecture, which is shown in Figure 3(a), there are two totally isolated sets of power

4

Table 1: Engineering Development Model (EDM) of DDG-1000 Acquisition [76]

Engineering Development Model Description

Advanced Gun System [10] Will provide long-range fire support for forces
ashore through the use of unmanned operations
and the long-range land attack projectile.

Autonomic Fire Suppression Sys-
tem [43]

Intended to reduce crew size by providing a fully
automated response to fires.

Dual Band Radar Horizon and volume search improved for perfor-
mance in adverse environments.

Hull Form Designed to significantly reduce radar cross sec-
tion.

Infrared Mock-Up Seeks to reduce ships heat signature in multiple
areas.

Integrated Deckhouse and Aperture Composite structure that integrates apertures of
radar and communication systems.

Integrated Power System Power system that integrates power generation,
propulsion, and power distribution and manage-
ment.

Integrated Undersea Warfare Sys-
tem

System for mine avoidance and submarine war-
fare with automated software to reduce work-
load.

Peripheral Vertical Launch System Multi-purpose missile launch system located on
the periphery of the ship to reduce damage to
ship systems.

Total Ship Computing Environ-
ment [54]

Provides single computing environment for all
ship systems to speed up command while reduc-
ing manning.

generation units (e.g., turbine engines) dedicated separately to the ship’s mechanical

propulsion and the rest of the loads in the ship system, such as weapons systems and

auxiliary electric loads. In IPS, as shown in Figure 3(b), the ship’s power generation

and management are integrated by replacing the mechanical propulsion units with

electric motors, so the single set of electric power generation units provides power for

both the propulsion and all other electric loads in the ship. The power system is de-

signed to be highly modularized so that the entire ship power system can be designed

5

and manufactured in a manner of plug-and-play. According to Doerry et al. [19], the

integrated electric drives (IED) and the modularized power system architecture of

IPS could provide far better efficiency and flexibility in ship designing and manufac-

turing, and greater energy efficiency by intelligent utilization of excess power from

power generation units. It could also improve maintainability and upgrade capability

of the ship, leading to the reduced life cycle cost (LCC).

IEP is a more aggressive extension of IPS concept. Taking advantage of the IPS

architecture, IEP pursues utilizing sensors and electric actuators throughout the entire

ship system. This concept is aiming at a leap-ahead shift of the paradigm in ship’s

engineering operations – from human-based operations to autonomous or automation-

based operations by the well-designed, intelligent layers of control systems.

The IEP concept was promoted for two main objectives, and the first one is

to reduce the manning for ship operations. According to a report from Naval Re-

search Advisory Committee (NRAC) in 2000 [74], the Navy’s total budget had been

decreased since 1985 by about 40%, but Operation and Support (O&S) costs had

remained almost unchanged. Since the manning cost was over 50% of the O&S cost,

it was unavoidable for the Navy to pay a lot of efforts for reducing manning in or-

der to decrease O&S cost. The Navy’s effort to reduce manning is traced back to

DD-21 program that set a very ambitious goal of a 95 man crew, meaning 70% less

O&S cost than a DDG-51 class ship, which needs a 350 man crew. The idea was

the development of a real-time monitoring environment of the system conditions and

failures for the crews in a remote area, using a dense network of sensors weaved with a

wireless-networking technology and data fusion technologies [69]. Later in the DD(X)

program, the goal was changed to a less aggressive 120 to 140 man crew, with the

added capabilities of automated reconfiguration and damage control of engineering

systems. In a conventional warship, most of the reconfiguration works and the damage

control activities are performed manually.

6

(a) Conventional Ship Power System

(b) Integrated Power System

Figure 3: Comparison of Conventional Ship Power System and Integrate Power
System

7

Figure 4: Notional Layout of Integrated Power System (from Doerry et al. [19])

Another objective of IEP is to ensure far better survivability of the ship under

various damage conditions. This type of survivability is often expressed in such

phrases as graceful degradation, fight-through capability, or puncture-proof capability.

For a conventional naval warship, many of its subsystems (e.g., electric power , cooling

, and fire-main systems) typically rely on manual operations of human experts for

system recovery, when it comes to damage or malfunctions in subsystems, and the

previous incidents clearly showed the high vulnerability of the human-based damage

control. In 1987, USS Stark (FFG 31) was struck by two Exocet missiles launched by

an Iraqi Mirage figherjet (see Figure 6(a)). The first missile was luckily misfired, but

with the detonation of the second one, the consequence became deadly. It took about

50 minutes until the damage control teams partially restored the ruptured fire-main,

while the fire spread out rapidly. After about another one hour, all engines had to be

shut off. The fire lasted for about 12 hours incinerating the radar room and combat

information center, claiming 37 casualties [5, 3]. The current Navy state-of-the-art,

8

Figure 5: Navy Budget Chart [88]

Aleigh Burke (DDG 51) and Ticonderoga (CG 47) classes were no better than that

older and smaller frigate in the way of damage control. In 1991, USS Princeton

(CG-59) was damaged by the explosion of two mines (see Figure 6(b)), but its Aegis

anti-air warfare (AAW) system could be back in operation within 2 hours, by the

great works of its damage control teams [4]. Although the case of USS Princeton was

(a) USS Stark (FFG-31) Struck by Two Exocet
Missiles (1987)

(b) USS Princeton (CG-50) with Mine Damage
(1991)

Figure 6: Damage Examples of Conventional Warships

considered as one of the successful stories in the Navy’s record of damage control (in

9

fact, the damage of USS Princeton was not so serious as that of USS Stark either), the

fate of both USS Stark and USS Princeton would not be much different if there were

successive hostile actions by the enemy. IEP is being designed to prevent the system

from cascading catastrophes, and maximize the survivability to damage of the ship.

Unlike the human-based damage controls, of which the response time is mostly in an

order of several hours and no faster than several minutes, the autonomous controls can

provide reflex actions of isolating time-critical failures such as the ruptures or damages

of fuel pipes, electric power lines, cooling systems, and fire-main, and ultimately,

reconfigure subsystems to provide various resources continuously to the vital systems

of the ship within seconds or almost instantaneously.

1.1.2 IEP Control Architecture [21]

Apparently, the control architecture and its algorithms are the core of IEP concept.

In the naval research for DD(X) engineering systems control, the agreed solution

is a hierarchical, distributed control architecture. The IEP control architecture is

basically constructed of three hierarchical layers, as shown in Figure 7 [21, 81].

The component layer in Figure 7 refers to the group of module/component-level

controllers (or agents) that are embedded in various components of the ship’s hy-

draulic, mechanical, and electrical systems. These controllers have direct interfaces

with the sensors and actuators of their components, and regulates or optimizes the

status of the components based on their local objectives. With relatively low-level

logics and inferencing algorithms, they perform first-aid-type, reactive actions to time

critical failures like ruptures, power disconnections, or fire in the ship systems.

The process layer in Figure 7 performs the control and coordination of the low-

layer components to achieve the optimized availability of system-level functions such

as propulsion, power generation and distribution, cooling, and damage control. Each

process agent is capable of monitoring, diagnosing, and reconfiguring the engineering

10

Figure 7: IEP Control Architecture [21]

systems by communicating with the associated component-level agents. To do these,

it must have a high-level of intelligence and inferencing abilities, which can generate

robust and optimized decision-making in order to secure system-level functionalities.

Lastly, the mission control layer performs a top-level decision-making by inter-

acting with human operators. In this layer, the very abstract, high-level operational

conditions such as dockside, normal cruise, combat, and damage control of the ship is

decided, and translated into the system-level functional requirements and objectives

for the control agents in the process layer. It also performs an intelligent planning

of ship resource management based on the assigned mission, operating scenarios, and

availability and demands of resources. During its decision-making process, the opera-

tor intervention is allowed under advisory information and warnings provided by the

control system.

11

1.2 Integrated M&S of Ship Engineering Systems for Fail-
Proof Design

As previously stated, one of the goals of the Navy’s DD(X) program for the next-

generation destroyer is to reduce manning levels to less than half of DDG-51 destroy-

ers, while increasing ship survivability significantly. In order to meet the challenging

requirement, Office of Naval Research (ONR) had conceptualized highly intelligent

and distributed autonomy and automation in ship operations and damage controls

for reconfiguration via smart actuators to recover from damages and malfunctions.

Sucessful research progress includes the demonstration of agent-based control im-

plemented into a chilled-water system testbed called Chilled Water Reduced Scale

Advanced Demonstrator (CW-RSAD) built by Naval Surface Warfare Center, Carde-

rock Division (NSWC-CD) [39, 66]. CW-RSAD is shown in Figure 8.

Figure 8: Physical Testbed [66] and Software (FlowMaster2 R©) Model of CW-RSAD

As the next step, ONR is moving further into developing a multi-domain, multi-

physics modeling and simulation (M&S) environment which will not be crucial only

for designing control systems, but also for designing any engineering system in a ship.

This M&S environment should be based on a system-of-systems perspective rather

than unrealistic single-system responses. As a part of this effort, the Navy has devel-

oped a model integration environment called DOMINO [90]. The DOMINO environ-

ment uses the SQL server as the backbone of storing and exchanging all the simulation

12

results of the models created by domain-specific M&S applications synchronously, so

the simulation can capture the interactions and interdependencies between the ship

subsystems when failures or damages occur in the simulation.

1.3 Problems of Domain-Specific Engineering Network Mod-

els in Integrated M&S

The Navy’s multi-disciplinary M&S environment based on the integration of domain

specific M&S tools is inevitable for simulation-based analyses in early design phases

where very limited human, financial, and temporal resources are assigned, but it is

easily challenged by three common problems of local domain tools. The following

sections describe these three problems raised by domain-specific modeling tools.

1.3.1 Problem 1: Damage Modeling

The models created with domain-specific modeling tools are often incapable of, or

poor at, performing damage simulation unless the modeling tools provide the libraries

for modeling damages. The Navy’s DOMINO environment is a good example for

addressing this problem. The DOMINO model includes an electric power model,

communication models, and fluid models. Among them, the fluid models were created

with a 1-D pipeline simulation tool called Flowmaster R©, which contains no library

for damage or rupture analyses. As a rudimentary approach to modeling damage,

a branched-off valve with one of its ends open to ambient pressure has been placed

at a predefined location of interest in the fluid model [15] (see Figure 9). Along

with its problem of incorrect modeling, this approach is unable to support a rigorous

and extensive damage analysis which will be key to the design for resiliency and

survivability, since it is virtually impossible to automate the damage analysis in a

design process for a large set of damage scenarios.

13

Figure 9: Example of Simple Ruptured Pipeline and its Implementation in Flow-
master

1.3.2 Problem 2: Model Reconfiguration

An early design phase is typified by the terms of aggressive design changes such as

design space exploration, generation of various design alternative, and design opti-

mization [49]. Recalling that many of the ship engineering systems are in the form

of networks of their components, M&S based analyses should let systems engineers

explore not only the component-level system configurations, but also the designs of

different topological configurations among components, since the topology of the net-

worked system affects both the performance and the cost of the entire system. As

a result, the design of a large-scale system requires a very large number of design

alternatives and simulation runs, meaning that an automation of M&S is a condition

that must be achieved, not just preferred, for successful design of complex systems.

However, in most commercial or legacy domain tools, a topological design change

requires a manual modification of the baseline model. Figure 10 shows the example

of a fluid model created by Flowmaster.

1.3.3 Problem 3: Simulation Cost

The dependence on domain specific M&S tools for running simulation often slows

down the overall simulation speed and creates a large computational burden when it

comes to simulation-based design approach. In the Navy DOMINO environment, an

example is, again, the fluid models created using Flowmaster, which were slower than

14

Figure 10: Example of Configuration Design Changes

the rest of the models – so slow that their simulation speed dominated the speed of

the integrated simulation. The reason for their computational cost was not only in the

simulation cost of this tool, but also the computational overhead or inefficiency from

its external interfacing to the integrating framework. This high computational cost

can prohibit many design-oriented analyses that require a large number of simulation

cases.

1.4 Available M&S Methods

There are several M&S methods that are frequently applied to the analyses of various

types of complex systems. Each of them has its own strengths, but it alone is not a

feasible solution for addressing all the three problems discussed in §1.3. In this section,

each of them are briefly introduced, and their strengths and weaknesses are discussed

based on the previously discussed problem for the M&S of large-scale engineering

networks.

15

1.4.1 Surrogate Modeling

As mentioned in the Navy M&S application, the cost of computer simulations is

often a great obstacle for proceeding with various analyses for design or optimization,

especially when it comes to complex systems. In order to achieve the successful design

of a complex system, a large number of simulations need to be performed in order

to evaluate mission effectiveness, solution robustness, and system survivability, under

various operational conditions and scenarios. However, due to the high computational

cost, the simulation process of a complex system may become intractable and is often

limited by the available computing power and time. One straightforward solution

to this issue is to increase the computing power or resort to a distributed computing

environment. However, this approach is often not an affordable solution and at times,

does not offer sufficient reductions in execution time.

An alternative to improving the capability of the hardware associated with the

simulation is to reduce the computational time through the use of surrogate models.

Surrogate modeling techniques, which are particularly popular in the field of design

and optimization, have been successfully applied to various analyses that require

repeated and intensive computations and can save a significant amount of simulation

time and cost in the design and optimization processes.

The sole purpose of surrogate modeling approach is to gain a huge improvement

in computation speed of a model. As the name implies, a surrogate model is an

approximation or a reduced-order model of a model. There are various types of sur-

rogate models, which are from simple polynomial-based fit models to more compli-

cated kernel-based or basis function-based models that are capable of higher-fidelity

modeling, and the details of different surrogate modeling approaches are revisited in

Chapter 2.

In that sense, a surrogate modeling method may be a good choice for the M&S of

complex systems for the following reasons, which are that:

16

• Surrogate models can enable to expand the size of the design space exploration

significantly.

• Design engineers can perform ‘what-if’ type analyses more rigorously and effi-

ciently.

• Surrogate models are easily run in parallel or distributed computing environ-

ments.

• Surrogate models can be integrated to various M&S environments without tech-

nical challenges.

• Surrogate models are portable and license-free. The models can be translated

into generic programming or scripting languages so that they can be distributed

and run without expensive commercial tools.

There are also drawbacks in applying surrogate modeling methods, which are:

• Curse of dimensionality [13]. Surrogate modeling methods require the genera-

tion of a data set consisting of input-response pair samples through computer

experiments. This sampling process becomes computationally impossible when

the dimension of the design space is too large, since the number of computa-

tional cases for generating the data set grows combinatorially with respect to

the growth of the input dimension.

• Surrogate models are incapable of containing the information of the system

topological configuration, which is very important for the design of engineering

networks.

• Some surrogate model is not suitable for approximating dynamic models or

nonlinear models.

17

• The output of a surrogate model always contains error, compared to the output

of the original model.

Based on the benefits and drawbacks above, a surrogate modeling approach can

be considered as a great solution for the simulation cost, the third problem in §1.3.

However, it can not address the first and second problems, because of its lack of

modeling topological configurations of a system, and incapability to model the systems

with a large number of inputs.

1.4.2 Bond Graph

Bond graph [84] is a graphical modeling method aimed for modeling and analyzing

dynamic behaviors of multi-domain complex systems. This method is based on the

idea that the behavior of most engineering systems – such as electric, mechanical,

thermal, and hydraulic systems – can be commonly represented by power flows or

energy exchanges between components inside those systems. In bond graph method,

all power flows between components of a system are expressed by two variables called

flows and efforts, but defending on the physical domain to which each component

belongs, the specific attributes of flows and efforts are different. Table 2 introduces

the flow and effort variables for different physical domains.

Figure 11 shows a simple example of a bond-graph model. The edge of the graph

model is called power bond, or shortly, bond. A bond describes the power flow-based

connection between two components in a system. The direction of the power flow

through a bond is shown by a half-arrow placed at the either end of the bond.

There are two different types of junctions defined in bond graph reflecting two

aspects of Kirchhoff’s law. The ’0’ junction is the one representing Kirchhoff’s current

law so that the sum of all the flow variables is zero, but all the effort variables are

the same in the junction. On the other hand, the ’1’ junction follows Kirchhoff’s

voltage law, meaning that all the flow variables are the same and the effort variables

18

Table 2: Effort and Flow Variables of Different Physical Domains in Bond Graph [1]

Systems Effort (e) Flow (f)

Mechanical Force Velocity
Torque Angular velocity

Electrical Voltage Current

Hydraulic Pressure Volumetric flow rate
Thermal Temperature Entropy change rate

Pressure Volume change rate

Chemical Chemical potential Mole flow rate
Enthalpy Mass flow rate

Magnetic magneto-motive force Magnetic flux

Figure 11: RLC Circuit and its Bond Graph (u: voltage, i: electric current)

are summed to zero. According to the notations of the two junctions, the bond graph

in Figure 11 is made of a single junction of Kirchhoff’s voltage law.

The energy-based representation of bond graph is especially beneficial for modeling

multi-physics systems. The advantages of the bond graph approach are:

• A multi-physics, multi-domain system can be modeled by a common modeling

formalism and method.

• Bond graph method is inherently capable of modeling dynamic systems.

19

• It is easy to apply an object-oriented modeling approach which enables higher

reusability, adaptiveness, and maintainability of a model.

• Bond graph modeling naturally leads the users to systematic approaches for

setting variables, interfaces, and processes.

However, there are also the disadvantages, which are:

• A bond graph model does not resemble the physical topology of an actual

system.

• Bond graph’s graphic formalism is difficult to understand and become too com-

plicated to comprehend even for a relatively simple system (see Figures 12 and

13 for example).

• A bond graph model has relatively poor capability of representing the nonlinear

components creating discontinuity, such as switches and diodes.

• A bond graph model is not suitable for automated model reconfiguration be-

cause the model is generated graphically (thus, manually).

• The bond graph approach does not necessarily provide the benefit of computa-

tional speed.

• There are not many bond graph-based modeling tools that are well maintained

and updated in either commercial or open-sources sectors.

Regarding the three problems in §1.3, the bond graph method allows manual

modifications of a model when damage modeling and design-oriented model reconfig-

urations are needed. For the computation efficiency, bond graph would not give any

particular benefit.

20

Figure 12: Backhoe Model (from Margolis and Shim [47])

Figure 13: Bond Graph of Backhoe Model (from Margolis and Shim [47])

21

1.4.3 Component-Based Acausal Modeling

Efforts of building models of systems based on their components or modeling blocks

are motivated by a simple goal – improving model reusability. Many different en-

gineering systems share the same or similar components. Even for a single system,

there are some parts that are used repeatedly in multiple places in the system. There-

fore, an M&S environment with the libraries of highly reusable component models

can improve modeling efficiency and productivity significantly.

There are many component-based modeling softwares, and they can be classified

as either causal or acausal types, based on their ways of defining the component

representation. In causal modeling tools, a component represents a functional pro-

cess, which has the distinct definitions of input and output ports, just like a function

in typical programming codes. An example of the component-based causal model-

ing tools is Simulink R©, which may also be one of the most commonly used M&S

software tools in many different scientific and engineering fields, and Figure 14 is an

example diagram of Simulink models. Causal modeling tools are especially convenient

for modeling control systems, some rigid-body dynamics that can be represented by

ordinary differential equations, numerical computing algorithms, communication net-

works, and logistics systems, in which many physical or notional components also

represent certain functional processes.

However, when it comes to modeling flow-based engineering network systems such

as electric and fluid systems, the causal modeling approach can make the model gen-

eration very inefficient and difficult. The RLC circuit in Figure 11 is a good example.

The components in the RLC circuit can be modeled by the following equations:

Resistor: uR = iRR

Inductor: L
diL
dt

= uL

Capacitor: C
duC

dt
= iC

Voltage source (input): uS

(1)

22

Figure 14: Simulink Model of Fuel Rate Controller of Automotive Engine (from
Mathworks [48])

The connections provide the algebraic constraints of the system, which are:

KCL: iR = iL = iC

KVL: uS = uR + uL + uC

(2)

These components and their physical connections do not have any explicit input and

output definitions. The set of system equations from Equations (1) and (2) is called a

differential algebraic equation (DAE). In order to model the RLC circuit in Figure 11

with the causal modeling approach, the causality (input and output definitions) of

each component should be chosen by a modeler, but the problem is that this causality

may be changed when the connections among the components are changed.

One way is that the DAE of the RLC circuit is reorganized in the form of ODE,

such as the one given in Equation (3), by a series of substitution of Equations (1)

and (2), to create a monolithic model, but in this case, the model is only valid for a

23

system with the topology in Figure 11, so has very limited reusability.

diL
dt

= −
R

L
iL −

1

L
uC +

1

L
uS

duC

dt
=

1

C
iL

(3)

The modeling tools based on the acausal modeling approach address the prob-

lem of causality in modeling the flow-based systems. The core of a modeling tool

based on the acausal modeling approach is a combination of a DAE solver and a so-

phisticated symbolic automation algorithm for finding a proper causality of a model.

Thus, modeling engineers can consider only the system configuration when generat-

ing a model. This acausal modeling approach may be the current state-of-the art in

component-based modeling and has been implemented in ModelicaTM[51], an object-

oriented modeling language. Flowmaster R© is also an acausal modeling tool in this

perspective, although this tool is only for fluid system modeling.

Figure 15: Modelica Model of DC-Motor with Spring and Inertia (from Fritzson [25])

Actually, Modelica is more than just a component-based acausal modeling tool.

It pursues the unified modeling environment for modeling systems that are composed

of different physical domains based on the energy-based system modeling method,

which has, in fact, almost the same conceptual basis as the bond graph method.

In Modelica, all the energy-based components have flow and effort variables as the

24

universal variables across different physical domains.

Modelica is a complete object-oriented, script-based modeling environment, which

gives great usability, flexibility, and efficiency of modeling. Modelica is also an open-

source tool, which means there are a large number of model libraries that are available

for free. Unlike the very rigid and obscure graphical formalism of bond graph, each

basic component of Modelica is created by scripting. Thus, the creation of derivative

component models is easy, and the connection of components is a lot like the physical

connections inside an actual system, which makes building a complex system model

become easier. Figure 15 is a simple example of a Modelica model, which has both

the electric and the mechanical portions of the model, in the graphical model editing

environment.

In outline, the advantages of modeling the ship fluid system using Modelica are

as follows.

• Modelica provides both graphical and script-based environments for modeling.

• The graphical model highly resembles the connection topology of an actual

system.

• The automation for component-level model reconfiguration is possible to be

programmed.

• The acausal and energy-based modeling approaches can help the rapid creation

of a complex enigneering network model significantly.

• Its object-oriented language can improve model reusability and expandability

significantly.

• It is capable of dynamic simulations.

• It provides various built-in component libraries.

25

And the disadvantages of Modelica are:

• The component-based acausal modeling approach does not necessarily provide

the benefit of computational speed.

• It does not support the changes of the model topological configuration during

simulation. This is an important feature for modeling damage.

• A steep learning curve. Modelica language is still not popular in engineering

and scientific fields, thus many modeling engineers may have to learn Modelica

to start with modeling implementation.

Based on the three problems in §1.3, the component-based acausal modeling ap-

proach can partially address the problem of model reconfiguration, but it is still lack

of the capabilities for solving the problems of damage modeling and computational

cost.

1.4.4 Graph Theory

Graph theory, also called network theory or circuit theory in some disciplinary fields,

has very diverse applications in many different disciplinary fields. In graph theory, a

graph refers to a mathematical object formed with points and interconnections be-

tween them [30, 2]. There are a lot of systems that can be represented with nodes and

connections in our world. Examples are physical networks such as fluid, electrical,

road, and computer networks, or more abstract networks such as economic chains,

human networks, and ecosystems. From the observations of broad applications, Evans

and Minieka even found the great potential of graph theory, as an integration environ-

ment or “unifying basis from which results from other fields can be collected, shared,

extended, and disseminated [23].”

As briefly mentioned, a graph is made of two elements, vertices (or nodes) and

edges (or lines). In usual graph implementations, an edge represents a notional or

26

physical route of the flow of (data) signal or physical medium between two nodes.

On the other hand, a node represents either a functional process or just a junction

point of incident edges, depending on its application domain. An example of a graph

is shown in Figure 16.

In order to describe the behavioral states of a system, graph theory employs

two different types of variables called the through variables and across variables.

In general, through variables represent flow properties held on edges, and across

variables represent potential properties on nodes. The notion of through and across

variables seems similar to that of flow and effort variables in bond graph, but the

actual attributes of through and across variables of a system are not necessarily the

same as the attributes used for flow and effort variables of a bond graph representation

of the same system [75].

The great strength of graph theory is in its various matrix tools for representing

a graph in the numerical format. an example among these matrix representations is

the incidence matrix, which describes the connectivity between vertices and edges in

a graph. Equation (4) is the incidence matrix of the linear graph representation in

Figure 16: Simple Electric Network and Corresponding Linear Graph [16]

27

Figure 16.

a b c d e f g

A =

1

2

3

4

5

6

































1 1 0 0 0 0 1

1 0 0 0 0 1 0

0 0 0 0 1 1 0

0 0 0 1 1 0 1

0 0 1 1 0 0 0

0 1 1 0 0 0 0

































(4)

Letting i indicate the ith row, and j indicate the jth column of an incidence matrix,

the ith row represents the ith node, and the jth column represents the jth edge of a

graph. For the graph in Figure 16, the element of matrix A, aij = 1 if the ith node and

the j edge are incident with each other, and aij = 0 if they are not. In addition to the

incidence matrix, Graph theory provides a number of different matrices representing

different aspects of the topological properties and characteristics of a graph. More

details of graph theory are also given in Chapter 4.

The matrix representation of graph theory is a very useful and important feature

for modeling physical networks, because a matrix form can be applied to computer

programming very easily and efficiently. Using those matrix formats, the automation

for generating computer models of different topologies can be made systematically

and flexibly, but still not requiring a high level of coding skills.

Based on the observations above, the benefits of the Graph theory approach can

be summarized as follows:

• A graphical representation of a model resembles the physical topology of an

actual system.

• The matrix representations of a graph model can facilitate the automation of

both damage modeling and model reconfiguration significantly.

28

• Incorporated with the matrix representation, there are a large number of re-

sources of analytic and numerical theories, methods, and techniques available

for design and optimization of a graph model.

• Graph theory naturally leads the users to systematic approaches for setting

variables, interfaces, processes, and model decomposition.

• It allows for multi-physics, multi-domain system modeling.

As for the shortcomings of the Graph theory approach, there seems just one is-

sue, which is also significant, to point out. Graph theory is suitable for studying the

properties and characteristics of the structure or topology of network-oriented prob-

lems. However, graph theory does not provide the modeling formalism or method

for analyzing the physical behavior inside the network. In other words, graph theory

alone does not provide the complete framework of modeling a certain physical sys-

tem, so a behavioral modeling approach should be developed separately for modeling

implementation.

Considering the three problems in §1.3, graph theory can provide great tools

for addressing both the problems of damage modeling and model reconfiguration.

Graph theory is not a complete solution, but can be useful ingredients of modeling

an large-scale engineering system. This evaluation about graph theory is also consis-

tent with Tam’s conclusion in his review on various M&S approaches for large-scale

reconfigurable engineering systems, stating that one of the bases for the M&S tool

development for such systems should be linear graph representation [75].

1.4.5 Summary of Comparisons Based on Research Problems

Figure 17 shows the comparisons summary of the methods and approaches investi-

gated in the previous sections, with respect to the three problems identified from the

capability gaps that domain specific modeling tools or models have in an integrated

M&S environment for a naval ship system.

29

Figure 17: Comparison of Modeling Approaches/Methods Based on Three Problems

Figure 17 clarifies that no single approach in the investigated methods and ap-

proaches is capable of addressing all the three problems, but a combination of some

of the methods and approaches, instead of a single one, may be a solution of the

problems. Based on Figure 17, such a combination can be of surrogate modeling and

graph theoretic approaches. Therefore, the two approaches are chosen and used as

the conceptual basis for developing and formulating a solution approach of the three

problems in this thesis.

1.5 Research Scope and Objective

Based on the problems identified previously in the integrated M&S of a naval sys-

tem, the research aims at developing a modeling method that is more suitable for

performing damage or failure analyses in a design process, especially in an early de-

sign phase. The scope of modeling is limited to individual domain models, particularly

types based on physical flow-based networks, such as fluid or electric power networks.

Thus, developing a method of integrating the domain specific models or signal-based

network modeling is outside of the research scope. Considering the research goal, the

successful development of the modeling method must solve the following challenges,

which are served as the research goals:

30

1. Model reconfiguration should be highly flexible and automation-friendly for it-

erative design analyses.

2. Damage scenarios must be taken as the input to a domain M&S environment.

3. In order to handle a large number of simulation cases, models must be compu-

tationally affordable.

4. Because of limited human and temporal resources, modeling should avoid in-

tensive involvement on deep expert knowledge of domain disciplines and coding

skills.

The development of the M&S method is validated by the implementation of the

M&S environment as the end-result. Although the application platform was chosen

as a military ship, the method is generic and can be applied to any engineering

platform that shares similar design paradigm – fail-proof design, design for reduced

manning, maintenance, and operational cost by high-level of autonomy or automation

of the system. In the thesis, the formulation is done for a fluid system which may

be frequently found in many complex engineering products, but the resulting M&S

formulation is expected to apply with minor modifications to electric power systems,

another very popular type of systems found in complex engineering systems, due to

their strong analogy to fluid systems.

1.6 Overview of M&S Formulation

Figure 18 describes the overview of the solution approach, which is constructed upon

two key ideas – topological modeling based on the digraph representation and compo-

nent behavior modeling with a neural net-based surrogate modeling technique. From

these two key concepts, various methods, tools, and techniques are developed as the

elements for formulating a M&S approach that addresses the research problems. The

31

two concepts and the elements developed from them for the formulation of the solution

approach are briefly explained in the following subsections.

Figure 18: Formulated Solution Approach for Identified Problems of Domain M&S

1.6.1 Graph-Based Topological Modeling for Flexible Model Reconfigu-
ration

Borrowed from the basic notion of Graph theory, a fluid network is represented by a

graph. In the numerical implementation, the graph is a composite object made of edge

and node objects and the incidence matrix as an attribute containing the information

of the connectivity between nodes and edges. All subsystems or components of a fluid

network are defined by corresponding edge objects in computer modeling, and this

composite object is called the topological model of a fluid network by the author.

In this modeling architecture, changes of the connection topology can be reflected

simply by changes of the model’s incidence matrix which should be automatically

generated by extracting the local connectivity information in all edges that forms

the current graph model. Reminding of numerical versatility of matrices, the graph-

based topological modeling can be a great enabler for automated manipulation of the

system topology for modeling damage and generating models of design alternatives.

32

As the name implies, a topological model describes only the connection topolog-

ical structure of a fluid system without the behavior – which is often dynamic – of

the system. In order to model the physical behaviors of the system, a number of be-

havioral models for different types of edge components of the fluid system model are

created and used to model the physical behaviors inside edge components. Numer-

ically, these behavioral models are implemented in the form of functions in Python,

and a group of the model functions is managed as a component model library. The

strategy of managing the topological model and the component models separately is

especially beneficial for increasing the system model’s scalability and plug-and-play

capability, which are all crucial for generating models of different design alternatives

in automation.

1.6.2 Surrogate Modeling of Dynamic System Components

The M&S approach included the additional, somewhat unusual setting, in which the

behavior models in the component model library are created by a surrogate modeling

technique for dynamic systems. This requires the presumed condition that there are

existing component models from which surrogate models can be built.

Then, is this approach really appropriate? This can be answered by explaining

why the other possible approaches are not feasible solutions. One straightforward

approach is creating all component models with an available domain M&S tool. If

the computational cost of the domain M&S tool is low, this will be a reasonable choice,

but often, it is not. Another approach may be hard-coding all the component models

from scratch, and if the behavior of each component can be modeled by simple physics

equations, this approach would be a solution that is both feasible and computationally

affordable. The problem, however, is that components of a fluid system are not easy

to model. Even a single valve on a pipeline exhibits highly nonlinear dynamics whose

relation with different valve opening ratio, flow speed, and geometric properties can

33

only be modeled based on empirical formulas and data, which lead to the necessity

of either in-depth expert knowledge, more man hours, or the use of a domain tool.

In summary, the surrogate modeling approach was formulated as follows: first,

component models were built using a commercial domain M&S tool or legacy tools;

then these models were translated into surrogate models and instantiated using a

general programming environment. By doing so, the new M&S scheme is computa-

tionally less expensive than the M&S with a domain tool, but still keeps the modeling

effort and cost less than modeling from scratch. In other words, the surrogate mod-

eling approach is an enabler for speeding up the fluid model when it is too slow to

perform design analyses.

1.6.3 Development of Damage Modeling Tools

Damage analysis often becomes the main activity for designing a more survivable and

resilient system, but the elements introduced so far are not fully capable of modeling

damages of a fluid system. Therefore, additional development is unavoidable for

addressing damage modeling. Compared to the modeling method of a fluid system

based on the graph-based topological modeling and the component-based surrogate

modeling approaches, damage modeling is more likely an art than a method, since

its approach is very application specific. The added formulation for damage analysis

to the developed modeling method contains two elements, which are damage bubble

and reference damage control model.

The damage bubble entity represents an explosion that causes actual damages onto

a system and the spatial properties of the explosion. In the numerical implementation,

its role is to identify the components that are affected by this explosion and change

the properties of them in accordance to the imposed damage.

Another damage modeling entity is the reference damage control model. A damage

analysis of a self-reconfigurable fluid system without any damage control effort is

34

meaningless, since the analysis would yield only a trivial solution of the total system

failure, but the control system model is not always available in the early design phase.

The reference damage control model is developed to do the role of an initial control

design in this case.

However, the essence of the damage modeling approach in this research is in the

algorithm of the automated generation of the reference damage control model. In the

formulated M&S environment, the reference damage control model is automatically

generated for a given graph model, whenever the graph model is regenerated or mod-

ified from its original configuration, so the simulation-based design process can still

be highly automated for damage analyses.

1.6.4 Numerical Implementation Environment

As the numerical environment, Python [78] was used for implementing the developed

modeling method. Python is an object-oriented scripting language, which is easier

to use and maintain than other lower level object-oriented programming languages

such as C++ or Java. With adding proper extensions to Python such as IPython

console and NumPy library, which are also used in the M&S environment, Python

also features a Matlab-like interactive shell and matrix data structures, which are

very convenient for scientific computing. All these features helped a faster and more

efficient development of the M&S environment.

Separately from the M&S environment implemented in Python, the generation of

component surrogate models for the component model library were performed with

Matlab R© Neural-Network Toolbox. The component surrogate modeling method is

developed based on the recurrent neural network (RNN) as the mathematical struc-

ture of the component surrogate models, which is introduced in Chapter 3 in detail.

For the RNN-based surrogate modeling implementation, Matlab R© Neural-Network

Toolbox provides an environment for powerful and rapid generation of RNN models

35

with its feature-rich, built-in libraries.

36

CHAPTER II

SURROGATE MODELING APPROACHES: IN THE

VIEW OF MODEL STRUCTURE

2.1 Introduction

Many of computer simulations in the design or optimization efforts are computation-

ally expensive. It is quite common that a single simulation takes from several minutes

to even a few days to run. However in the analysis for design and optimization, many

computation tasks require a large number of experimental simulation runs – from a

few dozen to hundreds of thousands – to identify the effects of certain design or input

variables have on the system responses, and the computational burden of a simulation

model is one of the major reasons to compromise either model fidelity or rigorousness

in the design and optimization processes.

One popular alternative to using computationally-expensive computer models is

to generate the surrogate models of those original models. Surrogate models are

based on a very simple idea. For a computer model, the functional relationship

between certain input variables and their responses can be approximated by some

simple mathematical or logical expression which is significantly cheaper to compute.

Since such an expression, or a surrogate model, is an approximation of the original

model, it is inevitable that the accuracy is compromised in some level, but by the

proper selections of the modeling ranges and surrogate modeling method, this loss

of accuracy can be acceptable in a practical sense, compared to a huge benefit of

computation speed.

In addition to the computational advantage, a surrogate model can deliver a few

additional benefits. Since a surrogate model is realized in a simple mathematical

37

expression (a polynomial is one of good examples), it can be implemented virtually in

any computational or programming environment with a trivial effort of coding. This

means a surrogate model can have far greater portability and interoperability than

its original model which is often created by using a certain domain modeling tools or

more complicated programming. Thus, in the case that the modeling environment of

a model is lack of linking or external-interface capability but the physics and math-

ematical expressions of the model is too complex to duplicate to another modeling

environment, the surrogate model may find another niche as a useful solution to such

an embarrassing problem.

2.1.1 Previous Works in Surrogate Modeling Approach

The currently available surrogate modeling methods can be categorized by their types

of model structures. In linear parametric modeling, the polynomial regression model-

ing approach, also known as the response surface methodology (RSM) [53, 7, 60],

is probably the most commonly used method because it generally uses a simple

quadratic (or cubic) polynomial as the model structure and the model can be fit-

ted by a simple algorithm like the linear least-squares method.

RSM is, however, not suitable for any problem with strong nonlinearity, which

requires nonlinear modeling approaches for better model accuracy. A popular ex-

ample of nonlinear modeling approaches is DACE (Design and Analysis of Computer

Experiments) method by Sacks et al. [62, 22]. DACE method is an interpolation mod-

eling framework specialized for deterministic computer simulations based on Gaussian

process modeling which is also known as Kriging in the field of geostatics. Another

popular example for nonlinear approaches is artificial neural networks (ANN or NN).

Both modeling approaches are discussed in more detail within this section.

There are many design applications of various surrogate modeling methods. A

few examples of them are: Mack et al. [44] applied RSM for the design case study

38

of a compact liquid-rocket radial turbine; Queipo et al. [60] applied and compared a

RS model, a Kriging (or DACE) model, and a radial basis function (RBF) network

model in the design optimization of a rocket’s liquid-propellant injector; Simpson et

al. [71] and Jeong et al. [35] performed a nozzle and a wing-section design respectively

using the Kriging modeling approach; Manik et al. [46] created a model of pavement

construction qualities, and Scharl and Mavris [65] created a parameterized forces and

moments model of aircraft using NN.

What can be observed from the earlier works is that the surrogate modeling meth-

ods have been mainly focused on static models rather than dynamic models since the

system-level design and optimization is mostly performed with just static models or

analyses. Although examples can be found for the dynamic surrogate modeling ap-

proaches (see Merwe et al. [77] for example), they are yet rare and are in need of many

improvements compared to static surrogate modeling approaches and applications.

2.1.2 Approach Based on System Identification

In this thesis, the solution for dynamic surrogate modeling is not formulated from just

the approaches available in the surrogate modeling communities but by combining

them with the methods of system identification, which has very sophisticated and

well-built theories and methods dedicated to dynamic systems and their identification.

In outline, surrogate modeling is comprised of two main steps, which are firstly

a computer experiment for generating the training data and then the model-fitting

by which a surrogate model is created from the training data. In fact, one can

easily recognize that the process of surrogate modeling is very similar to a usual

process of statistical regression except that the data is not from a real system but the

model of the system. In other words, a surrogate modeling method can be viewed

as just problem-specific recollections or reorganization of more general studies such

as regression analysis, approximation theories, or data analysis. The approach of

39

implanting system identification to surrogate modeling keeps the same skeletal two-

step process while providing elements that a static surrogate modeling is lacking, such

as more delicate choices of model structure, better consideration of model stability,

and the experimental design that is more proper for dynamic system modeling. And

first of all, some available methods and theories of those aspects, particularly the

model structure, is briefly reviewed in the rest of the chapter.

2.1.3 About System Identification

System identification is the subject of constructing or selecting mathematical models

of a dynamic system based on measured data [40, p.1][41, p.79].

According to the historical summary of system identification by Gevers [26], sys-

tem identification was originated from the field of statistical time-series analysis,

which became the reason that the literatures of system identification share many

jargons of statistical time-series analysis, such as AR, MA, ARX, and ARMAX, to

name a few. In 1960s, with the prosperity of modern control theory and the blooming

new theory of model-based control design, the scientific communities began to fuse

control theories with data-based system estimation approach, which led to the birth

of system identification as a distinct engineering field. Since then, system identifica-

tion has been a very important tool set for control engineering, as well as scientific

simulation, modeling, prediction, fault detection, etc. [8].

In this thesis, models are assumed to be black-box models, which means that

a modeling engineer has no a priori knowledge of the mathematical structures and

physics of the models and their processes. There is also a gray-box model of which

some of physics and mathematical structure is known so the identification problem

becomes to find only a few unknown parameters. A white model refers to the models

40

that is perfectly known in its physics and model structure. Most theories and meth-

ods of system identification assumes a discrete-time model instead of a continuous-

time model since a system produces the discrete data in practice. Therefore, only a

discrete-time system model is considered in this paper.

The following overview of the theoretic basics of system identification is largely

based on Ljung [41], Ljung and Glad [42], Janczak [34], and Pearson [59]. Additional

references for more specific topics are: Schetzen [67] and Ogunfunmi [57] for §2.3.1

and 2.3.4, and Sjöberg [72] for §2.3.3.

2.2 Overview of Linear Model Structures

For a linear system, a relation between the discrete inputs and outputs may simply

be expressed by the following linear difference equation:

y(t) + a1y(t− 1) + a2y(t− 2) + . . . + ana
y(t− na) =

b1u(t− 1) + b2u(t− 2) + . . . + bnb
u(t− nb) + e(t) (5)

where u(t) and y(t) is the system’s discrete input and output at time t and e(t) a

white-noise term representing model or equation error.

Equation (5) can be reorganized in the following way when it is used as a predictor

of a system output based on the previous data.

y(t) = −a1y(t− 1)− a2y(t− 2)− . . .− ana
y(t− na)

+ b1u(t− 1) + b2u(t− 2) + . . . + bnb
u(t− nb) + e(t) (6)

Now, let us define θ and ϕ(t) such that,

θ = [−a1 . . . − ana
b1 . . . bnb

]T

ϕ(t) = [y(t− 1) . . . y(t− na) u(t− 1) . . . u(t− nb)]
T

Then, Equation (6) is now expressed as,

y(t) = θT ϕ(t) + e(t) (7)

41

In Equation (7), θ is called the parameter vector, and ϕ(t) the regression vector of

a linear black-box model. The elements of vector ϕ(t) are called regressors. For the

linear model in Equation (7), the model identification problem becomes to find the

estimates of the unknown parameters θ with which the model best approximates the

system within the given data. As an algorithm for solving this problem, the most

straight forward example is the linear least squares method. Since the identified

model is just an approximation of the system, a linear model with a known estimate

of the vector θ is,

ŷ(t|θ) = θT ϕ(t) (8)

For a linear model, a transfer-function form is especially preferred in the control

communities because this form is especially convenient for many other applications

in controls, such as response characteristics analysis, stability analysis, and control

design. In order to obtain a simpler example, let us assume the error term in Equa-

tion (6) negligible, then the difference equation can be rewritten in the transfer-

function representation,

y(t) = G(q)u(t)

=
b1q

−1 + b1q
−2 + . . . + bnb

qnb

1 + a1q−1 + a2q−1 + . . . + ana
qna

u(t)

where q−1 denotes the backward time shift operator, which is y(t − 1) = q−1y(t).

There are various linear model structures, which can be efficiently described using

the transfer-function representation.

2.2.1 Auto-Regressive with Exogenous Input (ARX) Model

The linear model in Equation (6) is called an ARX model, which is one of the most

commonly used model type in the linear system identification. The regressors of the

ARX model are from the tapped delayed signals from the actual system output and

input as shown in Figure 19(a), and because of its structure, the ARX model is often

42

recognized and used as a prediction model. The transfer-function representation of

the ARX model in Equation (6) is slightly different than the above example because

of the error term so that,

A(q)y(t) = B(q)u(t) + e(t) (9)

or,

y(t) =
B(q)

A(q)
u(t) +

1

A(q)
e(t) (10)

The error term e(t) in the equation is not important if the stochastic effect in e(t) is

insignificant (i.e., the system is dominantly deterministic) so the term with the error

is often converted to the expression with the actual system output in practice, by

inserting e(t) = y(t) − θT ϕ(t) = y(t) − ŷ(t|θ) in Equation (9). Then, the transfer-

function of the ARX model can be expressed as,

ŷ(t|θ) = B(q, θ)u(t) + (1−A(q, θ))y(t) (11)

which is coincident with the linear difference equation in Equation (6).

2.2.2 Output-Error (OE) Model

The linear difference equation of OE model is given in Equations (12) and (13).

Figure 19(b) also shows the structure of OE model.

ŷ(t) + f1ŷ(t− 1) + f2ŷ(t− 2) + . . . + fnf
ŷ(t− nf)

= b1u(t− 1) + b2u(t− 2) + . . . + bnb
u(t− nb) (12)

y(t) = ŷ(t) + e(t) (13)

As described in Equation (12) and Figure 19(b), the structural difference of the OE

model from the ARX model is that its regressors are the delayed signal of the actual

input as well as the feedbacks of its own output estimates, instead of the real output

data from the system for the ARX model. Because of its structure, the OE model is

often recognized and used as a simulation model.

43

(a) ARX Model

(b) OE Model

Figure 19: Linear ARX and OE Models

In the problem of identifying the OE model, the parameter and the regression

vectors are defined by,

θ =
[

−f1 . . . − fnf
b1 . . . bnb

]T
(14)

ϕ(t) = [ŷ(t− 1|θ) . . . ŷ(t− na|θ) u(t− 1) . . . u(t− nb)]
T (15)

Based on Equations (12) and (13), the transfer function representation of the OE

model is,

y(t) =
B(q, θ)

F (q, θ)
u(t) + e(t) (16)

or the OE model can also be described by

ŷ(t|θ) =
B(q, θ)

F (q, θ)
u(t) (17)

44

The OE model structure that has the feedback of the outputs from itself as its

regressors make the identification problem of the OE model more complicated than

the ARX model because, unlike the ARX model which presumably has the true output

y(t − 1), . . . , y(t − na) as the given data, an OE model is only accessible to output

estimates ŷ(t− 1|θ), . . . , ŷ(y − nf |θ), and the true output values are unknown. As a

result, the identification problem has to be solved by a recursive learning algorithm

which takes significantly more computation time than batch learning algorithms.

Since the error term e(t) is also unknown, the choice of the initial value of ŷ(t −

1|θ), . . . , ŷ(y − nf |θ) becomes another nuisance problem in both the identification

problem and its application, if the effect or magnitude of e(t) is significant. However

for the deterministic problem where the effect of e(t) is negligible, the structure

of the OE model is more naturally suitable as a simulation model because most

simulation models contain the direct feedbacks of their own outputs in order to model

the dynamics of their systems, as the OE model does.

2.2.3 Other Models

Although not considered as important elements in the contexts of the thesis, several

other linear model structures – particularly FIR, ARMAX, and BJ models – are

briefly noted as a background information that may help readers understanding the

reasoning behind the flow of the thesis.

2.2.3.1 Finite Impulse Response (FIR) Model

The FIR model has the simplest structure among all the models presented here. The

difference equation of the FIR model is described as

y(t) = b1u(t− 1) + b2u(t− 2) + . . . + bnb
u(t− nb) + e(t) (18)

FIR models have only the time-series of the discrete input signals as the regressors

so no feedbacks are needed for both identification and simulation/prediction uses.

45

Inherently, this model structure is BIBO stable because the response is a linear com-

bination of the finite number of input samples. The FIR model performs well for

modeling a system with very fast impulse responses for which a reasonably small

number of input samples are enough; however, it is not a proper choice if the system

has a slow dynamics (i.e. a very small time constant) because it would need too many

delayed input samples as the regressors, for a good estimation ability. And obviously,

the FIR model is impossible to model unstable systems.

2.2.3.2 Auto-Regressive Moving-Average with Exogenous Input (ARMAX) Model

The ARMAX model is a general version of the ARX model with the added MA

(moving-average) part for describing the variation of the output responses corre-

sponding to history of the white noise-type error input. The difference equation of

the ARMAX model is,

y(t) =− a1y(t− 1)− a2y(t− 2)− . . .− ana
y(t− na)

+ b1u(t− 1) + b2u(t− 2) + . . . + bnb
u(t− nb)

+ c1e(t− 1) + c2e(t− 2) + . . . + cnc
e(t− nc) (19)

And, in the transfer-function form,

y(t) =
B(q)

A(q)
u(t) +

C(q)

A(q)
e(t) (20)

2.2.3.3 Box-Jenkins (BJ) Model

The BJ model is a generalization of the OE model, and it can be described by,

µ(t) = −f1µ(t− 1)− f2µ(t− 2)− . . .− fnf
µ(t− nf)

+ b1u(t− 1) + b2u(t− 2) + . . . + bnb
u(t− nb) (21)

w(t) = −c1w(t− 1)− c2w(t− 2)− . . .− cnc
w(t− nc)

+ d1e(t− 1) + d2e(t− 2) + . . . + ene
e(t− nb) (22)

y(t) = µ(t) + w(t) (23)

46

The transfer-function representation shows the model structure more clearly.

y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t) (24)

Also known as the auto-regressive integrated moving average (ARIMA) model in

the statistical time-series communities, the BJ model is basically the combination of

a OE model as the estimation of changes of the long-term trend of the output data

and an auto-regressive moving-average (ARMA) model that describes the short-term

stationary disturbance.

For a system without significant stochastic processes, a general model like AR-

MAX or BJ model just over-complicate the modeling problem. Since the application

in this thesis is for surrogate modeling a deterministic computer model, such general

models are less useful than the simpler ARX and OE models.

2.3 Overview of Nonlinear Model Structures

In the real world, the portion of linear systems is extremely smaller than that of

nonlinear systems, or strictly speaking, there is no such a thing as a linear system

but just a system with linear approximation. Despite of this fact, the studies of

linear systems have been incomparably more popular than those of nonlinear systems

because nonlinear systems are too hard to understand.

Since there is already the well-developed linear system theory, scientists and engi-

neers naturally have tried to project some of the knowledges, notations, or concepts

of the linear system theory to the study of nonlinear systems, and so has the field of

system identification.

Many literatures in nonlinear system identification use the acronyms like NARX

(‘N ’ denotes ‘nonlinear’), NOE, NARMAX, and NFIR, borrowing from those of the

linear system theory, as a notional classification of different nonlinear black-box mod-

els. However the way of classifying linear models seems not very effective for the

nonlinear models since it only specifies the definition of the regressors which is just

47

one aspect that characterizes nonlinear system models. What is more important is

on the mathematical formulations and structures that tie the model parameters or

coefficients and the regressors since a mathematical formulation of a model is the

main factor that determines what kind of the qualitative behaviors the model can

approximate. In this section, several typical model structures that are particularly

popular in nonlinear black-box modeling are introduced with the discussions of their

underlying mathematical formulations, strengths, and drawbacks.

2.3.1 Volterra Model

The Volterra series expansion as was first established by the mathematician Vito

Volterra but was first applied for nonlinear-system modeling in 1942 by Norbert

Wiener [67, p.7], who was also known as a founding father of the field of cybernetics.

Since than, the Volterra series expansion has been one of the most popular nonlinear

models [57, p.13].

For a time-invariant, SISO, continuous dynamic system, the mathematical map-

ping between inputs and outputs can be expressed using the continuous-time Volterra

series that is

y(t) = h0 +

∫

∞

−∞

h1(τ1)x(t− τ1)dτ1 +

∫

∞

−∞

∫

∞

−∞

h2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2

+

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

h3(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3

+ . . .

+

∫

∞

−∞

. . .

∫

∞

−∞

hn(τ1, . . . , τn)x(t− τ1) . . . x(t− τn)dτ1 . . . dτn + . . . (25)

where n = 1, 2, 3, . . . ,∞, and the terms

hn(τ1, . . . , τn) (26)

are known as Volterra kernels, which becomes 0 if τi < 0 for i = 1, . . . , n. The

functional form of the Volterra series looks similar to Taylor series, which implies

48

that the Volterra series is theoretically capable of modeling any continuous dynamic

systems, and it is frequently used as the model structuring basis for polynomial-based

modeling.

In the experimental and digital computing environments, a discrete-time, trun-

cated Volterra series is more useful than the analytic, continuous-time representation

in Equation (25). The discrete, finite-order version is expressed by

y(t) = h0 +

M
∑

i1=0

h1(i1)x(t− i1)

+
M
∑

i1=0

M
∑

i2=0

h2(i1, i2)x(t− i1)x(t− i2)

+

M
∑

i1=0

M
∑

i2=0

M
∑

i3=0

h3(i1, i2, i3)x(t− i1)x(t− i2)x(t− i3)

+ . . .

+

M
∑

i1=0

. . .

M
∑

in=0

hn(i1, . . . , in)x(t− i1) . . . x(t− in) (27)

where n = 1, 2, ..., N . In Equation (27), N is called the nonlinear order, which in-

dicates the number of terms of the Volterra series expansion, and M the dynamic

order, which indicates the number of delays of the inputs to the Volterra model. For

instance, assuming a SISO NFIR model, a Volterra model of M = 1 and N = 2 is,

y(t) = h0 + h1(0)u(t) + h1(1)u(t− 1)

+ h2(0, 0)u(t)2 + h2(0, 1)u(t)u(t− 1) + h2(1, 1)u(t− 1)2

and the problem becomes measuring six coefficients of the model.

The Volterra series expansion is a very powerful modeling tool that can model

virtually any continuous models with reliable accuracy. However, the identification

of the Volterra kernel is a difficult problem because the outputs from the terms of

Volterra series are not separable since they do not generate orthogonal outputs. An-

other problem is that the model tends to diverge once the input value goes out of a

49

certain range of the input. There is a limitation of the Volterra model in a practical

point of view too. From Equation (27), it is easily recognizable that the Volterra

model can go numerically too complex and expensive to estimate or use, even with a

few dimensions of input variables or the several orders of M and N of the model, so

that is not a feasible model in the case of MIMO/MISO, high-order discrete systems,

which are often met in practice. Table 3 summarizes the pros and cons of the Volterra

model as the model structure of surrogate modeling for dynamic systems.

Table 3: Pros and Cons of Volterra Model

Pros Cons

• Theoretically capable of modeling
any continuous dynamic systems.

• Identification of Volterra kernel is
difficult.

• Model diverges when inputs go out
of a certain range.

• Even with a few inputs or orders of
M and N, the model becomes numer-
ically too complicated and expensive
to estimate.

2.3.2 Kriging Method (or DACE Method)

Kriging is a statistical prediction modeling method developed in the field of spatial

statistics and geostatistics [29, 22]. Kriging method is also called Gaussian process

modeling, interchangably, especially in the field of machine learning and data analy-

sis [61].

In fact, what is called Kriging modeling method in the literatures of surrogate

modeling is mostly the DACE (Design and Analysis of Computer Experiments) frame-

work, which is an interpolation-based regression method proposed by Sacks at al. for

generating approximated models from deterministic, static computer models, inspired

50

from Kriging method [62]. Although, its original formulation is based on the assump-

tion of a static system, the brief introduction of the method of Sacks et al. may

be a good starting point to understand the underlying theoretic approaches of the

Kriging-based surrogate modeling.

The Kriging model is expressed by,

y(x) = f(x)T β + Z(x) (28)

with

f(x) = [f1(x) f2(x) . . . fm(x)]T

β = [β1 β2 . . . βm]T

where the vector input x ∈ R
p, f(x) a vector of linear regression equations which can

be, for instance, polynomials to just a constant mean value, and β a vector of the

coefficients for the regression equations. Z(x) is the Gaussian random process from

N(0, σ2) with its covariance calculated by

Cov[Z(x), Z(w)] = σ2R(θ, x, w) (29)

where R(θ, x, w) is the correlation between the two points x and w. At this point, σ

and θ are unknown, and the correlation R is assumed to be a parameterized function

of one-dimensional distance value of the two points.

This way of defining the correlation does a critical role of the formulation of

Kriging method. As a prediction point x gets far from a stationary, known sample

point w, the correlation of the known value at w for predicting at x becomes weaker,

eventually going to zero. In opposition, this correlation will be stronger as the points

gets closer. There are various choices of functions for estimating the correlation (see

[62, 38] for various correlation functions), but the most frequently used one may be

51

the exponential function expressed as,

R(θ, x, w) =

p
∏

k=1

exp
(

−θk |xk − wk|
2)

= exp

(

p
∑

k=1

−θk |xk − wk|
2

)

(30)

where θk, xk, and wk are the k-th elements of vectors θ, x, and w. There is also a

simplified version which uses a scalar value of θ for all directions of the distance, and

it is expressed as,

R(θ, x, w) = exp
(

−θ ‖x− w‖2l2
)

(31)

where, θ is a scalar, and the distance is just a Euclidean distance. Here, θ is the scaling

parameter that adjust the gradient of the correlation decay. The correlation decreases

more suddenly if θ gets larger, implying the two points have a weaker correlation.

The estimation of the model in Equation (28) is based on the response data from

a system. From n sample points s = [s1 s2 . . . sn]T , the following data are created,

Y =



















y(s1)

y(s2)

...

y(sn)



















, F =



















fT (s1)

fT (s2)

...

fT (sn)



















, Z =



















Z(s1)

Z(s2)

...

Z(sn)



















(32)

where F ∈ R
n×m and Y , Z ∈ R

n×1.

The correlation matrix R for all the sample points in s is defined by

R =



















R(θ, s1, s1) R(θ, s1, s2) · · · R(θ, s1, sn)

R(θ, s2, s1)
. . .

...

...
. . .

...

R(θ, sn, s1) · · · · · · R(θ, sn, sn)



















(33)

where R(θ, si, sj) is the correlation function of any two sample points in s, which

are calculated by the way that was described in (30). The correlation matrix R is

52

symmetric and in R
n×n. Applying the covariance in Equation (29) and the correlation

matrix R, the covariance matrix of the whole data is

cov(ZZ
T) = σ2

R (34)

Similarly, the correlation vector r(x) for computing the correlation between the

prediction point x and the data s is defined by,

r(x) = [R(θ, x, s1) R(θ, x, s2) . . . R(θ, x, sn)]T (35)

and the covariance of the same points are,

cov(Z(x), Z) = σ2r(x) (36)

Now, the best linear unbiased predictor (BLUP) is obtained by formulating the

linear predictor in a following way:

ŷ(x) = cT (x)Y (37)

The BLUP is obtained by finding the function vector c(x) that minimizes the mean

squared error of ŷ(x), i.e. by the least squares estimation for solving c(x).

MSE(ŷ(x)) = E[ŷ(x)− y(x)] (38)

Applying the assumption of the unbiased condition (E[ŷ(x)] = E[y(x)]), and with

somewhat lengthy derivations – which is not covered here (see Lee and Jung [38,

pp.8-12] for more details of deriving from (38) to (44)), the MSE can be expressed

as

MSE(ŷ(x)) = V ar[y(x)] + V ar[ŷ(x)]− 2 Cov[ŷ(x), y(x)] (39)

Each variance and covariance terms are obtained by using Equations from (32) to

(37) so the final expression of the MSE(ŷ(x)) can be,

MSE(ŷ(x)) = σ2
(

1 + cT (x)Rc(x)− 2cT (x)r(x)
)

(40)

53

and the solution that minimizes the MSE(ŷ(x)) is

c(x) = R
−1
[

r(x)− F (F T
R

−1
F)−1(F T

R
−1r(x)− f(x))

]

(41)

By substituting c(x) in Equation (37), the BLUP becomes

ŷ(x) =
[

rT (x)−
(

rT (x)R−1
F − fT

) (

F
T
R

−1
F
)

−1
F

T
]

R
−1

Y (42)

Then by introducing

β̂ =
(

F
T
R

−1
F
)

−1
F

T
R

−1
Y (43)

which gives a more clear expression of the estimator that is similar to Equation (28)

ŷ(x) = fT (x)β̂ + rT (x)R−1
(

Y − F β̂
)

(44)

In Equation (44), the first term represents a long-term, global approximation model,

and the second term is for any short-term Gaussian disturbances. The prediction

model is not yet completed because σ2 is unknown and the matrix R, the func-

tion vector r(x), and the regression coefficient β̂ are parameterized with θ which is

unknown.

In order to find the values of the parameter set θ, the maximum likelihood esti-

mation (MLE) performed. Since each response from the data is assumed to follow

the Gaussian random process, the likelihood function is given as,

L =
1

(2π)n/2
√

σn |R|
e

(Y −F β̂)T R
−1(Y −F β̂)

2σ2 (45)

By changing it to the log-likelihood function, Equation (45) can be expressed as,

ln L = −
n

2
ln 2π −

n

2
ln σ2 −

1

2
ln |R| −

(Y − F β̂)T
R

−1(Y − F β̂)

2σ2
(46)

The estimate of σ2 that maximizes ln L is obtained as,

argmax
σ2

(ln L) = σ̂2 =
(Y − F β̂)T

R
−1(Y − F β̂)

n
(47)

54

and then, by plugging Equation (47) into the log-likelihood function in Equation (46)

and eliminating any constant terms, the MLE becomes a problem of solving the

following minimization:

argmax
θ

(ln L) = argmin
θ

(

n ln σ̂2 − ln |R|

2

)

(48)

or

argmin
θ

(

σ̂2 |R|1/n
)

(49)

This minimization problem, of course, does not have a closed-form solution, so a

nonlinear iterative solver must be used to find the optimal value of the parameter

vector θ.

As aforementioned, the origin of DACE method is Kriging method in geostatistics,

where the data acquisition is often very expensive. With no doubt, Kriging method

has naturally been evolved to provide very good prediction performance even with

a small number of samples, and so thus the DACE method, the derivative of Krig-

ing method. The DACE method also provides the model’s full adaptability to the

data containing high-order nonlinearity, especially multi-modal responses, so that the

model fitting process can be done easily without requiring users a prior knowledge

of the model behaviors. Another key characteristic of the DACE model is that all

provided sample responses are exactly fitted, but it also means that the DACE model

may have a weak ability to fit for the data contaminated with random errors.

There are of course shortcomings of the DACE method. For the training data of

the size n, a DACE model requires the computation of the inverse matrix of Rn×n

and the correlation vector r(x) having n correlation functions (which are usually

Gaussian-type exponential functions). When it comes to the training data with a

large number of samples, the massive mathematical expression of the DACE model

causes significant computational burdens in both the training process and actual use of

the model for prediction or simulation. As explained beforehand, the training process

55

is a nonlinear optimization problem which requires the iterative solving approach,

and each iteration needs the inversion of R, the n×n correlation matrix which makes

the use of DACE modeling prohibitive even with the data with several thousands of

samples.

Recalling that one of the main reason for using a surrogate model is to take an

advantage of its cheaper computation cost, The Kriging model will no longer provide

such a merit if a large number of samples are needed or preferred. However, the

Kriging modeling method should be a very appealing approach especially for the

application of computer experiments if a small size of data is imposed, along with its

adaptability, nonlinear capability, and deterministic interpolation capability.

The applications of Kriging modeling have been mostly for generating static mod-

els. Although very few, there are efforts of applying the Kriging or Gaussian process

modeling method to dynamic modeling: Wang et al. [83] developed Gaussian Pro-

cess Dynamic Model (GPDM) method and used it for modeling human motion which

inherently needs a large-dimensional state space with the use of a small data set;

Kocijan et al. [36] introduced the identification of dynamic systems with Gaussian

process modeling. Although there are some additions of probabilistic or mathematical

tools for dynamic system modeling, those approaches were not significantly different

from the method for static models introduced above. The only significant difference is

that the discrete time delays of the system outputs were used as the part of the input

vector x. As a result, their approach for dynamic modeling has the same benefits and

drawback of the static modeling approach explained above.

After all, as the pros and cons of the DACE or Kriging model as the surrogate

model structure for dynamic system components are summarized in Table reftab:dace.

56

Table 4: Pros and Cons of DACE Model

Pros Cons

• Very good prediction with a small
sample set.

• Nonlinear mapping performance.

• No need for a prior knowledge of the
system response or system.

• Exactly fit on sample points.

• Not many examples of dynamic mod-
eling cases.

• n correlation functions for n size
data.

• Iterative training requires the inverse
of matrix Rn×n at each iteration.

2.3.3 Basis Function Expansion Models

The other very common approach is to use the basis-function expansion as the model

of a nonlinear system. In general, a parametric estimation model of a nonlinear

dynamic system can be expressed with a nonlinear mapping G(·) such as

ŷ(t|θ) = G(ϕ(t), θ) (50)

The nonlinear function G(·) can be approximated by the linear combination of a

sufficient number of (ideally) orthogonal bases in the function space for G(·). This

idea can be described as

G(ϕ(t), θ) =

n
∑

i

αigi(ϕ(t), βi, γi) (51)

where gi is a basis function, and the parameters αi, βi, and γi are the subset of the

model parameters θ. Among them, αi is a scalar, but βi and γi can be either scalars

or vectors.

A common mathematical form of gi is called a mother basis function, denoted

by κ(·), from which different functions gi are created based on the variation of the

parameters βi and γi. Specifically in a basis function, βi is referred to as the dilation

parameters, and γi as the translation parameters.

57

Based on how the regressors, dilation parameters, and translation parameters are

related in gi, there are three different types of mother basis functions, which are tensor

product, radial construction, and ridge construction [41, pp.150-151].

Assuming the regression vector ϕ ∈ R
m, the tensor product forms a basis function

gi in the following way,

gi(ϕ, βi, γi) =
m
∏

j=1

κ(βij(ϕj − γij)) (52)

where βij and γij are the elements of the vectors βi, γi ∈ R
m, with j = 1, 2, . . . , m.

The ridge construction of a basis function is somewhat simpler than the tensor

product, that is,

gi(ϕ, βi, γi) = κ(βT
i ϕ− γi) (53)

where βi ∈ R
m and γi ∈ R

1. Note that the mother basis function κ takes a scalar

input that is basically generated by the inner product of the dilation parameters βi

and the regression vector ϕ. A good example of the basis-function model using the

ridge construction is the famous single hidden-layer (SHL) feedforward NN with the

sigmoid function as the mother basis function. In the field of ANN, the basis function

is called an activation function.

Lastly, the radial construction is described by

gi(ϕ, βi, γi) = κ(βi ‖ϕ− γi‖) (54)

where, this time, βi is scalar and γi ∈ R
m. The the basis function is formed by the

Euclidean distance of the current values of the regressors ϕ(t) from a given center

point, γi. A well-known example based on the radial construction is the radial basis-

function (RBF) networks and wavelet networks.

In various basis-function expansion models, the two especially popular neural

network models – feedforward sigmoid networks and radial-basis function networks –

will be introduced further.

58

2.3.3.1 Feedforward Neural Networks with Sigmoid Activation Function

Motivated by biological neural networks, the artificial neural networks were created

from the field of artificial intelligence. In about three decades, NN have gained an

overwhelming popularity over almost all kinds of engineering fields, including design

and optimization, system identification, and controls too.

A simple scheme of the architecture of the feedforward neural net is in Figure 20.

The simplest form of feadforward neural nets consists of three layers: the input layer

Figure 20: Single Hidden Layer Feedforward Neural Network with Single Output

is just a simple place holder of the model inputs; the hidden layer consists of multiple

neurons (or nodes) that act as nonlinear mapping elements; and the output layer

is where outputs are yielded. The most common choices as the activation function

for the output layer are the linear function or linear saturated function but one can

always select nonlinear functions for its own purpose.

Neurons (Figure 21) located in hidden and output layers are characterized by their

activation function. In Figure 21, f(x) is an activation function, wi the weights of the

59

inputs to the neuron, and b a bias. In terms of basis-function expansion modeling in

Figure 21: A Notional Neuron

§2.3.3, f(x) is the basis function, wi the elements of the dilation parameter vector βi,

and b the translation parameter γi. For the sigmoid activation function, the logistic

function in Equation (55) and the hyperbolic tangent function in Equation (56) are

two very common choices.

f(x) =
1

1 + e−x
(55)

f(x) = tanh(x) =
ex − e−x

ex + e−x
(56)

Though the sigmoid neural net can have multiple hidden layers – this more gen-

eral architecture is also known as the famous multi-layer perceptron (MLP), a single

hidden layer (SHL) as shown in Figure 20 is popular and often enough for typical

use since a SHL neural net with the sigmoid activation function has been proven to

be able to approximate any smooth nonlinear system arbitrarily well [33], and are

simpler and numerically lighter than multi hidden layer neural nets.

A training process of a neural net is referred to as a back-propagation process. A

back-propagation process is basically a nonlinear optimization problem which finds

the best estimates of the weights and the biases of the NN that minimizes the output

error. A typical way of measuring the output error is the mean squared error (MSE).

Since the training process is a nonlinear optimization problem and involved with a

60

large dimension of variables (i.e., weights and biases), it tends to fall into local min-

ima, so the training process is often performed multiple times with different initial

conditions to have a better possibility to catch the global minimum or near-global

minima. Though a neural net is a universal approximator in theory, its actual appli-

cation is strongly limited by the complexity of the optimization problem, abilities of

currently available back-propagation algorithms, and computational burdens.

One of the other drawbacks of NN is that the structural properties of a NN such

as the number of hidden layers and nodes in each hidden layer should be, in general,

determined by experimental, trial-and-error approaches. As a result, a neural net in

use does not necessarily have an optimal structure. In order to address this issue,

several constructive learning algorithms have been developed largely in two completely

opposite approaches, one of which is network-growing, whose example is the cascade-

correlation learning algorithm [24], and another is network-pruning which includes

the optimal brain damage and the optimal brain surgeon algorithms [63, pp.221-237].

2.3.3.2 Radial-Basis Function Networks

The radial-basis function (RBF) network is recognized as a variant of neural networks

by many people but is, in fact, an older technology than neural nets and originated

from the conventional approximation theory, not the A.I. communities [20].

The architecture of the RBF nets is basically identical with that of the feedforward

NNs, except for its radial basis functions for the nodes of the hidden layers and the

absence of bias terms in the hidden nodes, as shown in Figure 22. Contrary to MLP

which allows multiple hidden layers in their structures, RBF-net only allows the single

hidden-layer structure.

A Gaussian function is one of commonly used radial-basis forms, that is

f(x) = exp

(

−
‖x− c‖2

2σ2

)

(57)

where, x and c ∈ R
m, c is called the center point, and σ the smoothness parameter

61

Figure 22: Radial-Basis Function Networks with Single Output

of the node. σ is used to adjust the influence of this node in the prediction of the

response at a point x. The Gaussian radial-basis function is very similar to the

correlation function of the DACE method in Equation (31), in §2.3.2, where the

parameters θ and w do the same role of 1/2σ2 and c of the radial-basis function in

Equation (57).

According to the general notations of basis-function expansions in §2.3.3, the

parameters c and σ can be referred to as the translation and the dilation parameters

of the radial-basis function. There are many other types of RBF of which several

examples can be found in [20], but in fact, any function f(·) can be chosen as a RBF

if it is continuous and monotonously convergent to 0 as x→∞.

The training process of RBF nets is quite different with that of MLPs. It can

be separated into two serial tasks. First, the determination of center points cj and

smoothness parameters σ (or σj for each node) are determined for the nodes of the

hidden layer, where j = 1, . . . , NHL is the index of the nodes in the hidden layer.

Then, the weights wij of the RBF outputs to the output layer is estimated, where

62

Table 5: Pros and Cons of Sigmoid-NN and RBF-Net Model

Pros Cons

• Proven nonlinear mapping capabil-
ity.

• Many NN tools available.

• Many well-developed training meth-
ods and frameworks available.

• Not for simulation (NOE) modeling.

• Requires a relatively large data set.

Sigmoid net RBFN Sigmoid net RBFN

• DACE-like behav-
ior when there are
n neurons for n

data points.

• Training provides
global minimum.

• Over-fit problem.

• No. of layers and
neurons found by
trial-and-error.

• Training easily fall
into local mini-
mum.

• Complicated data-
clustering analysis
required for train-
ing RBF-net.

i = 1, . . . , NOL, j = 1, . . . , NHL, and NOL is the number of nodes in the output layer.

The first task is performed either based on heuristic rules or data-clustering analyses.

The detailed approaches of those are well explained in Du and Swamy [20]. The

second task can just be performed with any linear least squares method.

The pros and cons of sigmoid-net and RBF-net are summarized and compared in

Table 5, based on the investigation of the two basis-function models. Regarding the

consideration of which network is a better choice between MLP and RBF nets, Du

and Swamy again provides a good demonstration result of the comparison MLP and

RBF nets. In its example study of beam-forming modeling of an antenna [20, pp.291-

292], RBF nets performed better in training speed and fitting performance, but MLP

was better in the generalization performance and the model speed in simulation.

63

2.3.3.3 Recurrent Neural Networks

The architectures of the previously discussed neural nets are suitable for modeling

static systems and some types of dynamic systems; however, they are not applicable

to NOE-type modeling, which is most preferred in the dynamic-system simulation en-

vironment. The recurrent neural network (RNN) [45, 63], a variant of neural networks

for the purpose of modeling of dynamic discrete systems and time-series forecasting,

addresses this problem with its structural capability of storing long-term memory of

input-output dynamics in their structure. The main difference between RNN and the

static, memoryless neural networks in the previous section is the addition of time-

lagged feedback connections in the network architecture. Otherwise, RNNs share

almost the same architecture with the static feedforward NNs.

Depending on where the feedback branches out, a recurrent neural network is

categorized as either an Elman network or a Jordan network. In an Elman network,

the outputs of hidden layers are fed back to the input layer. In a Jordan network, it

is the outputs of the network (i.e., the output layer) that are fed back to the input

layer. Figure 23 shows the simplified structures of both Elman and Jordan networks.

For dynamic surrogate modeling, a Jordan net may be a better choice because its

feedback structure is more suitable for simulation during which the outputs of the

model are supposed to be fed back anyway.

The identification of Elman nets requires recursive learning algorithms because

the feedbacks from the outputs of the neurons in a hidden layer are unknown until

the model is run and vary with the change of the weights throughout the training

process.

For Jordan nets, usual batch-mode learning algorithms, which are the same al-

gorithms used for the static feedforward neural nets, as well as recursive algorithms

can be used for the identification, with appropriate preprocessing of the the training

set. However, the identified model using a batch-mode approach – also called the

64

(a) Elman Net

(b) Jordan Net

Figure 23: Recurrent Neural Networks (For simplicity of description, bias terms are
omitted, and SISO is assumed.)

series-parallel approach – is less robust in simulation uses than the model obtained

by recursive identification. Anyway, this feature of a Jordan net can be very advan-

tageous especially when the size of the training data set is large, since the recursive

algorithms require significantly more computational burdens than the batch learning

algorithms as a large size of training data.

Some commonly used recursive algorithms for training RNN are backpropagation

through time algorithm (BPTT) by Werbos [85], real-time recurrent learning (RTRL)

by Williams and Zipser [87], and extended recursive least-squares algorithm (ERLS)

65

by Baltersee and Chambers [12].

Neural nets seem well suited to model nonlinear, dynamic black-box systems since

they are theoretically able to adapt themselves to model qualitative and quantitative

behaviors of the original systems by learning directly from the given training data,

instead of depending on a priori information of the systems. It is mainly possible

because of their highly general mathematical structures which are characterized only

by parameters within them.

However the structural generality also becomes one of the weaknesses of neural

nets. With the absence of any structural a priori information about the system

process, an identified NN model often suffers from the problems of local over-fit and

uneven error distribution of the model output, and it is hard to identify and control

those problems when generating an NN model. For static modeling, managing model

accuracy with a certain static error criterion representing the model’s output accuracy

such as model fit error (MFE) and model representation error (MRE) is good enough

for obtaining a model with a good accuracy, but this approach is not suitable in the

case of dynamic system modeling approaches. As a part of the inputs, the RNN

model has the output feedbacks which also contain the output errors from the model

at each simulation time step. Since a simulation is proceeded with the successive

feedbacks of the model output, the error contained in the model output is also fed

and propagates successively. This dynamic characteristics of error propagation, or the

error dynamics of the model, can affect the stability of the simulation significantly,

and unfortunately, dynamic black-box models with generalized model structures such

as the RNN models have considerably higher tendency to have model instability in

the simulation use than the structured models such as linear and polynomial models,

even if the model maintains reasonably small MRE or MFE. Furthermore, there seem

no good literatures and studies about predicting and controlling the error dynamics

of dynamic black-box models with generalized model structures. As a result, the

66

identification of a neural net-based dynamic surrogate model often requires a large size

of training data obtained from an extensive and rigorous set of computer experiments

in order to ensure the robustness, reliability, and stability of the model, but in some

case even such an effort seldom help a neural-net model overcome the poor modeling

performance due to the deficiency of its model structure.

2.3.4 Wiener Model: A Block-Oriented Nonlinear Parametric Model

As mentioned in §2.3.1, there are two main problems in the Volterra model. The first

problem is that the identification of the Volterra kernel is difficult because the terms

of Volterra series do not generate orthogonal outputs, and the second problem is that

the model response converges only with the limited ranges of the input space. In

order to address the problems, Wiener developed an alternative form of the Volterra

expansion. This new form of expansion is called the non-homogenenous G-functionals,

which creates orthogonal homogeneous Volterra functionals, under the assumption

that the system was excited by Gaussian white noises and the kernels were expanded

by an orthonormal function decomposition. A further introduction of the alternative

form of the Volterra representation, which is called the generalized Wiener model

representation is omitted here because of the complexity and the large volume of its

theoretical bases and mathematical derivations, but instead one can find its details

from Schetzen [67] and Ogunfunmi [57].

If the terms (which are called homogeneous G-functionals) of the Wiener repre-

sentation are further expanded using linear orthogonal bases such as Laguerre series,

the Wiener model reveals an interesting structure for nonlinear time-invariant sys-

tems modeling. Using the Wiener model representation with the nonlinear order N ,

a system model can be expressed by

yN(t) =
N
∑

p=0

Gp [kp; u(t)] (58)

where Gp is the pth order homogeneous G-functional with the Wiener kernel kp, which

67

is expressed as

Gp [kp; u(t)] =

∫

∞

0

. . .

∫

∞

0

kp(τ1, · · · , τp)u(t− τ1) . . . u(t− τp) dτ1 . . . dτp (59)

The pth order Wiener kernel can be expanded by the orthogonal bases such as La-

guerre [67, 79, 80] functions, so the kernel kp(·) in Equation (59) is now expressed

as

kp(τ1, · · · , τp) =
∞
∑

n1=0

· · ·
∞
∑

np=0

cn1··· np
ln1(τ1) · · · lnp

(τp) (60)

Then, by substituting Equations (59) and (60) to Equation (58), the model will be

yN(t) = k0 +

∞
∑

n1=0

cn1

∫

∞

0

ln1(τ1)u(t− τ1) dτ1

+
∞
∑

n1=0

∞
∑

n2=0

cn1n2

∫

∞

0

∫

∞

0

ln1(τ1)ln2(τ2)u(t− τ1)u(t− τ2) dτ1dτ2

+ · · ·

+

∞
∑

n1=0

· · ·

∞
∑

np=0

cn1···np

∫

∞

0

· · ·

∫

∞

0

ln1(τ1) · · · lnp
(τp) . . .

. . . u(t− τ1) · · ·u(t− τp) dτ1 · · · dτp + · · ·

+

∞
∑

n1=0

· · ·

∞
∑

nN=0

cn1···nN

∫

∞

0

· · ·

∫

∞

0

ln1(τ1) · · · lnN
(τN) . . .

. . . u(t− τ1) · · ·u(t− τN) dτ1 · · · dτN

(61)

By letting zn(t) be the output of the Laguerre filter ln, that is,

zn(t) =

∫

∞

0

ln(τ)u(t− τ)dτ (62)

Finally, using the notation in Equation (62), the Wiener model equation in (61) can

68

be expressed in the form of Equation (63):

yN(t) = k0 +
∞
∑

n1=0

cn1zn1(t)

+
∞
∑

n1=0

∞
∑

n2=0

cn1n2zn1(t)zn2(t)

+ · · ·

+

∞
∑

n1=0

· · ·

∞
∑

np=0

cn1···np
zn1(t) · · · znp

(t)

+ · · ·

+

∞
∑

n1=0

· · ·

∞
∑

nN=0

cn1···nN
zn1(t) · · · znN

(t) (63)

The Wiener model representation in Equation (63) tells important information about

nonlinear system modeling, which is, the system can be approximated by the combi-

nation of a parallel set of orthogonal linear models with memory (i.e., linear dynamic

models) in the form of Laguerre filters and a static nonlinear mapping from the out-

puts of the linear models zp(t) (with p = 1, . . . , N) to the system output yp(t), as

shown in Figure 24.

A significant number of researchers in the field of systems modeling and identifi-

cation have expressed considerable interest with the Wiener model structure, because

they can apply the well-developed linear theories for identifying or analyzing nonlin-

ear systems. Nowadays, general models that have the structure of a linear dynamic

block with a nonlinear static output mapping, or the systems with the same struc-

tural process are referred to as Wiener models, or Wiener systems, regardless of the

orthogonality considerations in their formulations.

Many modeling approaches have been developed based on this typified structure.

For instance, Hagenblad et al. [32] used an OE (output error)-type discrete-time

difference equation model as the linear block with the polynomial fit model as the

static nonlinear block, Janczak [34] also applied the OE-type difference equation

model for the linear block and MLP for the static nonlinear part, Westwick and

69

Figure 24: Structure of Wiener Model

Verhaegen [86] used MOESP (Multivariable Output-Error State-sPace) model as the

linear block and polynomial mapping as the nonlinear block, and Al-Duwaish et

al. [9] generated the linear model from the linearization of the nonlinear system at a

certain operating condition and applied NN for nonlinear static mapping. A common

characteristic of those approaches is that the linear block has the state feedback as

shown in Figure 25.

Figure 25: SISO Wiener Model with Feedback Linear Block

As briefly mentioned before, the models in the previous applications only adopted

the block-oriented structure of the Wiener model and were not formulated or derived

70

based on the mathematical formulation of the Wiener expansion in Equations (61)

and (63). It means that those models are not guaranteed to work for general non-

linear time-invariant systems as the Volterra and Wiener models are. In fact, one

of the assumptions in their formulations and applications was that the system to be

identified also had the same block structure in its process, which limits their uses for

nonlinear system modeling and yields relatively low model accuracy when they are

applied to nonlinear models without a similar process structure.

When it comes to black-box modeling, the Wiener model in Figure 25 introduces

a new state variable x(t), which is not measurable from its original system, and its

estimate x̂(t). Since this state variable is unknown during an identification process,

a recursive-type estimation algorithm, which is numerically more expensive than a

batch-mode algorithm, should be applied for the model identification. For simulation,

the initial values of its delayed feedbacks of x̂(t) should be given beforehand. Since

those values are unknown, there should be a process for estimating the initial values

before the simulation, which can be a cumbersome task. Instead of the process for the

estimation of initial values, there is an approach of neglecting the simulation outputs

Table 6: Pros and Cons of Wiener Model

Pros Cons

• Capable of modeling nonlinearity in
some level.

• Can apply well-developed linear the-
ories.

• Dynamic characteristics are deter-
mined by its linear dynamic block.

• Great model stability and robustness
by the linear dynamic block.

• Valid only for modeling a system
with Wiener structure, or model ac-
curacy will be very low.

• For OE linear model, a recursive
model identification algorithm is re-
quired. It is numerically more expen-
sive than batch-mode algorithms

• For OE linear model, a cumbersome
process of identifying the initial value
of x̂(t) is needed.

71

from the first a few time steps.

There are other choices that do not introduces feedbacks in the linear dynamic

block such as FIR models [31] or Laguerre filters [79, 80, 8] like the traditional Wiener

model formulation. In those cases, the simulation can only be run in a fixed initial

condition, which is x0 = 0, as opposed to the model with a feedback linear block that

can have an arbitrary initial condition for simulation. There is another drawback

when a FIR model is as the linear block, which is, a FIR model requires a large

number of input delays as regressors of the system model for good model accuracy.

A larger dimension of the regression vector means a more computational burden in

the identification of the model. More importantly in this research, it also means

the increased complexity of managing interfaces between component models and the

large size of data to be kept in the simulation of the aggregated system model. Lastly,

based on the investigation of the block-oriented Wiener model in this section, the pros

and cons are summarized in Table 6.

2.3.5 Other Block-Oriented Models

There are various other models based on the block-oriented approaches as well as the

Wiener model, and one of them is the Hammerstein model [28, 11]. In the structural

point of view, the Hammerstein model is simply the opposite of the Wiener model, so

the system inputs are fed into a static nonlinear block first and then a linear dynamic

block in sequence, as shown in Figure 26.

Figure 26: SISO Hammerstein Model

Another popular model is the Hammerstein-Wiener model. As the name implies,

its structure is characterized by the concatenation of the Hammerstein and the Wiener

72

models. Figure 27 is the simplified diagram of the Hammerstein-Wiener model.

Figure 27: SISO Hammerstein-Wiener Model

73

CHAPTER III

SURROGATE MODELING FOR DYNAMIC NONLINEAR

SYSTEM COMPONENTS

3.1 Introduction

The goal of this chapter is to formulate a surrogate modeling method for the com-

ponent models of a large-scale ship fluid network whose behaviors are nonlinear and

dynamic. The main focus in the development of the surrogate modeling method

is on achieving or providing: 1) a sufficient level of fidelity in both quantitative

and qualitative characteristics of the nonlinear, dynamic behaviors reliably; 2) model

parsimony, which can be translated as the computational efficiency of the resultant

surrogate model; 3) an efficient model-generation process by minimalizing the size of

the training data needed and reducing subjective or expert interventions through the

process so that a streamlined and largely automated surrogate modeling process is

established.

In order to achieve these three objectives in the development of the surrogate

modeling method, the following steps are proceeded as the development approach:

1. Design of surrogate model structure.

(a) Selection of baseline model structure.

(b) Design of model structure.

(c) Design of regression vector.

2. Formulation of surrogate modeling process.

3. Example study (validation)

74

The key for achieving the previous objectives is directly or indirectly linked to the

development of a good surrogate model structure. As the first step of building a model

structure, a baseline model structure is selected from the nonlinear model structures

that are investigated in Chapter 2. Since this baseline model structure may not

satisfy some of the goals that were defined, the further modification of the baseline is

performed in order to obtain a model structure that satisfies the goals better, and this

modification also needs the design of the regression vector which defines the input of

the surrogate model with the designed model structure. Then the improved model

structure is used as a common surrogate model structure for the generation of the

models of the fluid-system components.

Then, the process of generating a component surrogate model is developed. As

mentioned at the beginning of Chapter 2, this process is similar to a typical process of

static surrogate modeling in outline, but some task-level modifications are necessary

to customize the surrogate modeling process to be suitable for dynamic systems ap-

plications, the new model structure, and the regression vector of the model structure.

Finally, two simple examples are given as the validation of the developed surro-

gate modeling method. In each example, surrogate models are generated with both

the baseline and the modified structures, and the modeling performance and the

training efficiency of the developed surrogate modeling method are evaluated by the

comparison to the surrogate models with the baseline structure.

3.2 Design of Surrogate Model Structure

As the first step, a baseline model structure is chosen among the nonlinear model

structures that are investigated in Chapter 2. The selection is based on qualitative

evaluations of the characteristics of the model structures with respect to the goals

that are set for the development of the surrogate modeling method of dynamic system

components.

75

3.2.1 Selection of Baseline Model Structure

With revisiting and summarizing the pros and cons of the nonlinear model structures

in in Chapter 2, Figure 28 provides the relative performance, or capability ratings,

given to the model structures for the different requirements stated in §3.1, and the

brief reasons of scoring for those requirements follow. In the model structures listed

in Figure 28, the sigmoid- and RBF-nets are set to have the Jordan-net structure; in

other words, they have output feedbacks in their structures.

Modeling nonlinearity. All the models are scored high on modeling nonlinearity,

except for the Wiener model, since the Wiener model has a limitation in its application

for nonlinear system modeling. The Wiener model delivers acceptable accuracy, only

when it is used for modeling a system with Wiener structure.

Modeling dynamic systems. All the models are scored high on this capability,

except for the DACE model. The DACE model is scored moderate due to its few

literatures regarding its applications to dynamic systems. Lack of abundant research

examples in dynamic system modeling cases implies that the selection of the DACE

model could come with the risk of encountering with unknown technical difficulties

while applying to dynamic system modeling.

Model stability/robustness. In the case of dynamic system modeling, it is safe to

say that the reliability of a certain surrogate modeling approach can be represented

by its model stability when the resulting model is used in simulation. Here in the

thesis, the model stability of a surrogate model refers to the surrogate model’s ability

to maintain its model output error from the response of its original model within a

certain reasonable tolerance ε in simulation. It is distinguished from system stability

which is literally the stability of the actual system response with respect to time, in a

certain region or space characterized by system inputs and the transitions of system

states.

76

Figure 28: Comparison of Nonlinear Model Structures

77

In this sense, the Volterra model as a component surrogate model may not be a

good choice because of its high vulnerability to model divergence when the model

happens to operate outside input ranges covered by its training data. One may think

that this divergence problem can be avoided by carefully setting the simulation envi-

ronment, so the operation area of the simulation stays within the model’s input ranges

that would not cause the model divergence. Unfortunately, it is often very difficult

in practice to know such a simulation operation area for all component surrogate

models because of nonlinearity of the model response and complicated interactions of

component surrogate models with others.

Unlike the Volterra model, the DACE model does not have the model divergence

problem related to input ranges. the DACE model is, in the mathematical form, the

linear combination of the Gaussian distribution functions, whose centers are located

at the training data points. Since outputs of these Gaussian functions approach

zero as their inputs go to infinity, the DACE model is strongly bounded and tends

to be highly more stable than the Volterra model in the unexpected occasions of

simulation’s running outside the predesignated input ranges of the DACE model.

Similar to the DACE model, the both sigmoid- and RBF-net models are also

bounded and highly stable to the simulation runs outside their input ranges, since

the responses of their basis functions are all bounded. In fact, those RNN models still

have problems of model instability from a different source which is, as mentioned in

§2.3.3.3, the structural generality of the models, and this is also true to the DACE

model when it is used with the ouput feedbacks on it as a simulation model since this

model has a very generalized structure for nonlinear modeling too.

Model parsimony. The lowest score is given to the DACE model because it contains

n Gaussian functions for the training data set with n samples. The DACE model will

be very expensive for numerical implementation even with a few hundreds of samples

for the training data set. Although it is very hard to find the subtle superiority in

78

the performance of different models from this qualitative and subjective study, the

RNN models seem better than Volterra model regarding model parsimony, especially

when a large number of regressors are required. This is because the size of the NN

model appears to be less likely coupled with the size of regression vector than that

of the Volterra model. However, for a small amount of regressors, the Volterra model

can be more affordable for numerical implementation due to its simple and efficient

mathematical form, which is a polynomial function. Comparing between the two

RNN models, the sigmoid-net is known to require a less number of neurons than

the RBF-net for a given performance requirement [20]. Considering all these, the

sigmoid-RNN is rated as good, and the RBF-net and Volterra models are rated as

moderate. Rating the Wiener model is undetermined, since the model parsimony of

it is dependent on which model forms are chosen for the linear dynamic and nonlinear

static blocks of the model.

Training efficiency/easiness. As previously discussed in §ss:volterra and §2.3.2,

the identification algorithm of the Volterra model is complicated and numerically ex-

pensive, and the iterative identification process of the DACE model is also numerically

expensive. In the case of the Wiener model, the identification requires a recursive al-

gorithm whose computational cost is very high. Considering the numerical efficiency

of training a model and the easiness of implementing the training process, the RNN

models are advantageous over the other three models. Another advantage of RNN

models is that there are many free or commercial NN modeling framework tools avail-

able for both RNN models. Assuming the use of a batch-mode training algorithm

for training sigmoid- and RBF-nets, most of the training algorithms are basically

from the general-purpose nonlinear/linear solver or optimizer algorithms which are

easy to understand and implement. For the RBF-net, the training process consists

of two sub-processes: first, finding the parameters of the basis functions using data-

clustering analysis, and second, identifying the coefficients for the linear combination

79

of the basis functions, which can be performed with a simple least squares algorithm.

Although the implementation of data-clustering process can be somewhat compli-

cated, the training speed of an RBF-net is typically faster than that of a sigmoid-net

trained using a simple training algorithm [20].

Process automation. There can be a certain model structure that is more effi-

cient and easier for implementing automation of the training process than others, but

basicall an automated training environment can be created with any of the investi-

gated modeling structures, for the purpose of minimalizing the manual intervention

for generating surrogate models.

Based on the brief review above, it is safe to say that none of the investigated

model structures delivers all the desired capabilities for surrogate modeling of the

fluid-system components. Nevertheless, the review also shows that the sigmoid RNN

with output feedbacks may be the most reasonable and robust choice as the baseline

model structure, based on the ratings. The sigmoid RNN still needs improvements

in two capabilities, which are model stability and training efficiency, according to

the ratings in Figure 28. Therefore, the baseline structure is modified to achieve the

improvements in these two capabilities.

3.2.2 Choosing Fidelity of Transient Analysis: Transient Vs. Quasi-
Steady State Simulation

Before building surrogate models of fluid model components, the expected level of

fidelity on the transient modeling needs to be decided beforehand, because the ap-

proach for building models can differ depending on it. If the model is expected to

provide relatively high accuracy of transient responses and details of fast dynamics,

one must choose a dynamic surrogate model that contains some type of feedbacks for

a long-term memory of the transient dynamics.

80

In the opposite case, one can build just a static surrogate model to perform quasi-

steady state simulation which will be numerically lighter and easier to implement. An

example of quasi-steady state approaches is based on the extended-time simulation of

hydraulic systems [37]. In a simulation of a hydraulic system, the transient dynamics

is often so fast that its influence to the system-level characteristics and performance

can be considered negligible, when compared to its steady-state responses. In the

extended-time simulation scheme, the system transient response at each time step is

replaced by a steady state response at the current input values and system settings,

assuming that the inertia effect is negligible. This type of simulation should provide

good enough fidelity for some analyses for conceptual or preliminary design, although

the detailed design, where the transient effects like the water hammering and inertia

must become very important characteristics to know, will certainly need a high-fidelity

transient analysis. In the thesis, a demand of dynamic surrogate modeling is assumed

during the formulation of the model structure because it is obviously a more difficult

problem to solve than well-developed static surrogate modeling approaches.

3.2.3 Recurrent Neural Network with Block-Oriented Structure

The formulation of the RNN with a block-oriented structure starts from a plain

SHL RNN. As previously discussed in §2.3.3.3, the neural net has a very generalized

mathematical structure which allows for modeling an arbitrary nonlinear system, but

this generality of the structure often yields poor model stability and robustness in

simulation use.

A remedy for such a drawback may be to impose a predefined structure onto the

neural net model, like the Wiener structure in Figure 25. From one perspective, the

Wiener model structure can be interpreted as a linear approximation model of the

nonlinear system with an added transformation from linear estimates to local nonlin-

earity as a calibration of the estimates from the linear model. A linear identification

81

model has a lower fidelity than a nonlinear model, but is inherently more robust in

its predictions. Since the dynamic behavior of the whole model is predominantly

determined by the linear block, a model with the Wiener structure takes advantage

of the stability and reliability of the linear block, but is still capable of modeling

nonlinearity.

The formulation of the Wiener-structured RNN can start from an OE-type linear

model. Let us assume that the linear dynamic block model in Figure 25 is represented

by an OE-type difference equation given as

x̂(t) = f1x̂(t− 1) + · · ·+ fnf
x̂(t− nf) + b0u(t) + b1u(t− 1) + · · ·+ bnb

u(t− nb) (64)

The equivalent linear neural net can then be constructed as shown in Figure 29. By

Figure 29: A Linear Neural Model as Linear Dynamic Block of Wiener Structure

placing a SHL feedforward neural net as the static nonlinear block, the RNN with

the Wiener structure can be formed as shown in Figure 30. This structured RNN is

also an Elman net with two hidden layers. The NN with the Wiener structure can

be identified with any recursive back-propagation algorithm built for general RNNs,

which means one can take advantage of a number of well-developed neural net tools

available. So far the approach is basically identical with Janczak [34], except that the

82

Figure 30: Double Hidden-Layer Neural Net with Wiener Structure

Janczak’s linear model was not explicitly translated into the equivalent linear neural

layer.

The drawbacks of the Wiener-NN are three-fold. First, only a time-consuming

recursive learning algorithm is available for training such a neural-net structure. Sec-

ond, the model accuracy is very poor in the case of nonlinear systems that do not

have the Wiener structure. The benefit is that the model may provide the improve-

ment in model stability. Third, because it is still a Wiener model, the initial values of

the delayed state feedbacks must be estimated by a separate computational process

whenever a simulation starts.

In order to address the drawbacks, a new modification is applied to the Wiener-

NN, the idea being quite simple; just the hidden-layer feedbacks are replaced by the

output feedbacks. The modified model structure is shown in Figure 31.

In the linear dynamic model, the difference equation is now expressed as

ŷlin(t) = a1ŷ(t− 1) + · · ·+ naŷ(t− na) + b0u(t) + · · ·+ bnb
u(t− nb) (65)

where ŷlin(t) is the output estimate from the linear model, and ŷ(t− i) is the delayed

feedbacks of the output from the nonlinear block. From Equation (65), it can be

observed that the linear model is more similar to an ARX model than an OE model

since the model regression vector is not comprised of the delayed feedbacks of the

83

(a) Block Diagram View

(b) Equivalent Neural Net Representation

Figure 31: Block-Oriented Nonlinear Model with Output Feedback – the Modified
Wiener Structure

output from itself, but the output from the static nonlinear block. This is supposed

to provide an estimate closer to the real system response than the crude linear approx-

imation from the linear model. Still, the overall model is an OE model because the

inputs to the model are not from the tapped delay line of the true system response,

but from the feedbacks of the simulation model. In other words, this block-oriented

model is an NOE model of which the linear block has an ARX-like structure.

This modified block-oriented model can improve the three problems of the original

Wiener model. As shown in Figure 31(b), the neural-net model with the modified-

structure is now a Jordan net to which numerically more affordable batch learning

algorithms can be applied in order to identify the model. In a Wiener model, the

dynamic characteristics of the system are only modeled by the linear dynamic block.

84

In the model with the modified structure, the dynamic characteristics of the system

are approximated by the blended efforts of both nonlinear and linear blocks. As a

result, the model with the modified structure is expected to model a broader range

of nonlinearities and have better accuracy than the original Wiener-structured model

whose uses are somewhat limited to the systems with the Wiener structure. The

modified structure does not contain the delayed state feedbacks of the linear dynamic

block (i.e., the output of the linear block) so that the initial values of the delayed state

feedbacks do not have to be estimated for simulation. Because the delayed output

feedbacks are numerically more common and natural in simulation environments, the

model with the modified structure is easier to use in simulations. Also the initial

conditions are easy to set since they can be observed from the original system or

model.

With all those improvements, the modified block structure retains the beneficial

features of the Wiener structure. By applying the modified structure to the NN

model, the NN model will have the better model stability and robustness by the

ARX-like linear dynamic block. Because the model is realized in the NN, one can

take advantage of the rich and matured resources of the NN generation methods and

frameworks, and also well-developed numerical tools.

3.2.4 Design of Regression Vector

The purpose of surrogate modeling in this thesis is to enable the simulation-based

design process. Thus the generated surrogate models should not be for the simulation

of the system with only a single fixed design but also a group of design alternatives.

However the formulation of the surrogate modeling method has been so far with only

the consideration of simulating a system with a fixed design.

In order to realize the component surrogate models that can represent different

component configurations, the regression vector should include model parameters.

85

Figure 32: Classification of Variables as Regressors

Figure 32 is the classification of the variables that were used for dynamic surrogate

modeling in this research.

The simulation variables vary only during the simulation run. They are for a sur-

rogate model’s communication with other component surrogate models, simulation

scenarios, or controllers during a simulation, and the effect on the responses is mostly

dynamic. In contrast, the parameters vary only between simulations for model recon-

figuration. The change of the parameters also changes the overall system responses,

which will be static for each simulation. In other words, the (functional) mapping

from them to the system responses is static. Therefore, the variables affecting the

dynamics of the responses will be referred to as the dynamic variables, and those

changing the overall system responses statically (like changes of system design) will

be referred to as the static variables.

As previously described, the proposed RNN model in §3.2.3 has an ARX-like linear

dynamic layer and a static nonlinear layer. Reflecting the roles and characteristics of

the dynamic and the static variables, the dynamic variables were set to be inputs to

the linear dynamic layer, and the static variables to the static nonlinear layer.

There can be some simulation variable that is static even though it is used for

86

simulation. An example can be found from the dynamics of the fluid flow at a valve:

the functional relation between the flow rate and the valve opening ratio is dominantly

static; but the flow rate and pressure difference at the two and of the system boundary

has a dynamic relation. In that case, the pressure difference becomes the dynamic

variable connected to the linear dynamic layer but the valve opening value should be

the static variable connected to the static nonlinear layer even if it is one of simulation

variables.

3.3 Generation of Surrogate Model

This section introduces a RNN-based surrogate modeling process that was formu-

lated for the fluid model components. Figure 33 is the procedure of generating RNN

surrogates, and the detailed explanation of each step follows in the subsections.

Figure 33: RNN-Based Surrogate Modeling Process

87

3.3.1 Design of Experiments for Dynamic System Simulation

Design of Experiment (DOE) is “a systematic, rigorous approach to engineering

problem-solving that applies principles and techniques at the data collection stage [7]”

which is performed with a certain type of controlled experiments. In each experiment,

the responses of a process, product, or system of interest is observed with a different

set of the values of factors – the variables of which an experimenter studies the effect

to the responses.

The use of DOE for static simulations is straightforward; the inputs are placed as

the factors, the factor levels are defined, and then the DOE is created with the factors.

However, when it comes to dynamic system simulations, such an implementation is

not possible because neither the responses nor the factors’ effects to the responses are

static.

As pointed out in §3.2.4 and described in Figure 32, the approach of dynamic

surrogate modeling yields not only static variables but also dynamic variables. More-

over, system state variables can not be part of the factors of DOE because they are

uncontrollable during the simulation. As a result, the application of DOE for dynamic

system simulations necessitates a different strategy than that for static problems.

The strategy is set in the following way: a DOE is generated with the static

variables, and then another with the dynamic variables, excluding the state variables.

Each experiment design in the first DOE array sets the static variables of the surrogate

model, and a simulation is executed with the second DOE as the scheme for changing

the dynamic variables, based on a time sequence. Therefore, the total number of

simulation runs are determined by the first DOE, and the simulation time frame

and scenario applied to every simulation run are commonly defined by the second

DOE. This two stage-DOE strategy, which is also shown in Figure 34, happens to

be similar to the technique used for building DOEs for robust parameter design [89].

The difference is that the second DOE is not for the simulation scenario for varying

88

Figure 34: Experimental strategy for dynamic system simulations

89

dynamic variables but for different settings of noise variables as the experiment’s

condition.

3.3.1.1 DOE Generation for Static and Dynamic Variables

For deterministic, computer simulation-based experiments, space-filling designs [64]

are particularly popular. Examples of space-filling designs are maximum entropy de-

sign, maximum distance design, and Latin-hypercube design. As simpler alternatives

that space-filling design, the full factorial design and the random sampling are also

frequently used.

However, there are drawbacks in using space filling designs in some application.

The space filling design algorithm alone does not construct the design points on the

edges and corner points in the design space. Also, designers do not have the control

of the sampling resolution of each factor, but instead, it is done by a DOE construc-

tion algorithm. Lastly, the algorithm involves with complicated mathematical and

statistical processes so creating a DOE requires significant time and effort without

proprietary application tools or numerical library.

In the case that the edges and corner points of the given design space are consid-

ered important to evaluate, one good option may be a hybrid design. An example

of hybrid design is a space filling design combined with a low-resolution full facto-

rial design that fills the corners, edges, and surfaces of the design space. However,

this approach does not address the last two of the possible drawbacks of space filling

designs.

As a simple option, the author has used a custom design by a simple modification

of the full factorial design in similar applications [52]. This custom DOE is called

two-stage modified factorial design by the author, and it requires a relatively less

number of sample points than the full factorial design. A simple example of the

two-factor modified factorial design with five factor levels on each factor is shown

90

Figure 35: Modified Factorial Design, Two factors with Five Factor Levels

in Figure 35. The idea of the construction of this custom design is simple. A full

factorial design is made with the odd levels of the factors. Then another full factorial

design is made with the even levels and combined with the first one. The modified

factorial design seems a good option to choose when the size of DOE and the three

problems of space-filling designs matter.

3.3.1.2 Ranges and Sampling Resolutions of Variables

In order to perform a computer simulation based on DOE, the ranges of the factors

and the resolution of the factor levels have to be determined. Unfortunately, their

appropriate values are problem-specific, and have to be identified using trial-and-error

approaches or engineer’s intuition.

Logically, the DOE with narrower factor ranges is more advantageous in efficiency

of model generation since fewer experiments will be needed than that with broader

factor ranges for the same sampling density. However, assigning a very tight range

91

can make the surrogate models unstable since there is a greater possibility of the

simulation’s running outside the range of the variables. A higher sampling resolution

is also favorable for accuracy of a surrogate model but comes with the steep increase

of computational cost.

3.3.2 Computer Experiment and Data Extraction

After the two-stage DOE and the ranges and resolutions of its factors are determined,

computer simulations are run based on the DOE, and the raw data of the time-series

responses from the simulations are obtained. The data for training neural nets are

sampled out from the raw data. In a typical setting, the time-series response is the

transient response of the system state variables, which are the outputs as well as the

inputs of the surrogate model to be made. More specifically speaking, the current

states are the function of the previous values of themselves, or auto-regressive.

3.3.2.1 Preprocessing of Simulation Results

In order to generate a neural surrogate model with a batch-mode training algorithm,

the raw data should be preprocessed in a way that serializes the coupling of the

outputs and inputs made by the recursion of the state variables. As an example, pre-

processing of the data from the simulation of a SISO system is depicted in Figure 36.

In the example, the number of the delayed feedbacks of the state x(t) is two, and the

tapped delays of the dynamic input ud(t) is just one. The model also has a static

input us, either for the simulation, or as a static parameter.

In a batch-mode algorithm, the model is treated as a prediction model whose state

values are all extracted from the data of the real system, even when it is actually a

simulation (OE-type) model that takes the delayed outputs from itself. In a batch-

mode training of a surrogate model, the true values of the state variables are accessible

from the simulation result so the delayed state feedbacks to the surrogate model are

tapped directly from it without having to execute the current surrogate model to

92

Figure 36: Preprocessing of Simulation Data for Batch-Mode Training of NN Sur-
rogate Model

obtain the output estimates.

Since the array of the time-series history of the state variable is already given in a

fixed time frame, the state variable array with a backward-shift of the discrete time

step is equivalent to the array of the state feedback with a discrete-time delay. In

Figure 36, the output (or target) part of the training data is occupied by the last

n − 1 (from 2 to n) elements of the original array of state values. Then the input

data includes the two n− 1 sized arrays of the state feedbacks, one with 1 to n− 1,

and another with 0 to n− 2.

The processed training data can be used for any batch learning algorithm. During

the training process, the neural net is just a feedforward NN that has tapped delays

of the states as one of its inputs, although it is an RNN in actual simulation uses.

93

3.3.2.2 Data Normalization

When there are large differences in the order of magnitude among the variable values

in the training data, it is strongly recommended that the training data be normalized.

If such magnitudes are significantly different, the weights associated with the inputs

with large magnitudes become abnormally larger than the rest, causing numerical

difficulties in the learning process of the neural network [63]. Typically, the learning

process of neural networks becomes more stable, yields more accurate mapping, and

requires fewer iterations when the data are normalized [73]. There are several com-

mon methods for normalization, and in this research, the simple method of linearly

transforming all the variables in the training data to the range of [-1, 1] was used.

3.3.3 Training, Testing, and Launching NN Surrogate Model

The performance of the neural network training depends strongly on the chosen back-

propagation rule (i.e., training rule), thus the choice of a backpropagation rule is

critical in setting up neural network training. As guidance, Seiffert [68] presented a

good summary about the characteristics of different propagation rules, clarifying that

the second-order training methods have exceptional performance compared to oth-

ers. Among many available learning algorithms, Levenberg-Marquardt (LM) is one

of the more popular choices since it requires less computation time and fewer training

epochs, although this algorithm has the penalty of higher memory consumption.

In many neural-net applications for function approximation or modeling, there is

a secondary data set called the validation set, which is used for preventing the neural

net from over-fitting. For each iteration of training the neural net and evaluating the

training errors using the training set, the validation error of the neural net is also

evaluated using the validation set in order to measure the generalization performance

of it. For an iteration, both the training and the validation errors are supposed

to be decreased if over-fitting does not occur, but at some point of iteration, the

94

validation error begins to increase while the training error still keep decreasing. Then

the backpropagation algorithm considers it as the indication that over-fitting begins

and stops the training process. This logic is referred to as early stopping.

Another way of avoiding the problem of over-fitting of a neural net is just using

training data that is far larger than the degree of freedom of a neural net. In that

case, using validation data is unnecessary.

Once a neural net is trained, it is tested with a fresh set of data called test data and

finally used as a surrogate model. Since the mathematical form of a neural net model

is relatively simple, it can be implemented with any scientific computing language

making the model implementation very flexible to the user’s modeling environment.

3.4 Example Study

In this example demonstration, the surrogate modeling method for fluid model com-

ponents is tested and evaluated by applying it to two simple nonlinear systems, which

are a nonlinear RLC circuit and a cooling-water pipeline with an heat exchanger and

a flow control valve. For each example, two RNN models – one with the baseline

structure, which is a simple SHL Jordan-type RNN, and another with the modified

block structure proposed in §3.2 – are generated using the surrogate modeling process

in §3.3. Then, the two surrogate models are compared with respect to model accuracy,

stability, and training efficiency as the validation and demonstration of the benefits

of the RNN-based surrogate modeling method with the modified block structure.

3.4.1 Nonlinear RLC Circuit

The first test model is a RLC-circuit with nonlinear inductance. The circuit layout is

shown in Figure 37. The nonlinear inductor model is borrowed from the test model

of Meliopoulos and Stefopoulos [50]. With the circuit layout in Figure 37, the system

95

Figure 37: Simple RLC Circuit with Nonlinear Inductance

model equation is expressed as

dλ

dt
= vC (66)

dvC

dt
=

U

RC
−

vC

RC
−

iL
C

iL = iL0

(

λ

λ0

)n

sgn(λ)

where λ is inductor flux, vC is capacitor voltage, iL is inductor current, and U is

source voltage. λ0 and iL0 are the initial values of λ and iL. The system parameters

and initial values of the model are given in Table 7. The numerical RLC model and

Table 7: Model Settings of Nonlinear RLC Circuit

R (Ω) C (F) iL0 (A) λ0 (Wb) n

2 1.5× 10−3 10 0.07 8

the two NN models were implemented into Matlab R©.

3.4.1.1 Generation of NN Models

The configurations of the NN models with two different model structures are given in

Table 8. The original system model has two state variables, which are the inductor

96

current and the capacitor voltage in the RLC circuit, and these two states are set as

the outputs of the NN surrogate models. In Table 8, the baseline SHL NN model is

referred to as the plain NN model, whose hidden layer consists of 10 neurons with

the hyperbolic tangent activation function. On the other hand, the block structured

NN has two hidden layers, which are one linear layer and one nonlinear layer. The

linear layer has two linear neurons, which are set to be the same amount as the state

variables of the system. The nonlinear layer has 10 neurons with the hyperbolic

tangent activation function, like the plain NN model. Comparing the configurations

Table 8: Configuration of Two NN Surrogate Model Structures of Nonlinear RLC
Circuit

Plain NN Block structured NN

Net structure: Single hidden layer
Double hidden layer

Layer 1: Layer 2:

Activation functions: Hyperbolic tangent Linear Hyperbolic tangent
Input variables: iL(t− 1), vC(t− 1), U(t− 1) iL(t− 1), vC (t− 1), U(t − 1) Not assigned

No. of hidden nodes: 10 2 10
Degree of freedom: 62 60
Output variables: iL(t), vC(t) iL(t), vC(t)

of the NN models in Table 8, the model with the modified block structure has two

additional linear neurons over the the SHL NN model; however the block-structured

NN model has a lower degree-of-freedom (the total number of model parameters such

as weights and biases of an NN model) than the SHL NN model, due to its bottle-neck

structure between the linear and nonlinear layers of the model.

In order to generate the common training data set of the NN models, a simulation

was run with the original RLC model implemented in Matlab, with the following

simulation settings:

• Simulation time step, ∆t: 1× 10−5 sec.

• Simulation end time: 0.2 sec.

97

• Simulation input U : Series of 6 different step variations whose values are uni-

formly picked from U ∈ [0, 10] (in voltage). Those uniformly picked values are

permutated before use.

The values and variation of U during the simulation is shown in Figure 39(c). During

the simulation, the system state variables iL and vC were recorded as the output

data. For the NN models, the order of delays for feedback of the outputs is just one,

so preprocessing of the simulation result data that is described in §3.3.2.1 was not

necessary.

In addition to the simulation for generating the training set of the NN models,

another simulation was performed to generate the test data set. In this simulation,

the source voltage U was just randomly changed for six times from U ∈ [0, 10].

The training processes of the NN models were performed with the training data

set obtained. For each surrogate model configuration, the training was performed five

times with this common training data set, in order to evaluate the effect of the model

structures to the performance and stability of the generated models. The training

was set to stop if either the training MSE reached 5× 10−9, or the training iteration

achieved the maximum epochs, which was set as 500. As the training algorithm, LM

algorithm was chosen for all the NN models.

Tables 9(a) and 9(b) are the training results of the plain and the block structured

NN models respectively. According to the training results in Table 9, the block

structured NN models outperform the plain NN models based on both the average and

the best training MSE of the five trained NN models for each structure. This indicates

that the modified block structure actually helped achieving better model accuracy

that the plain SHL structure. Figure 38 shows the plots of actual vs. predicted

outputs of the two NN models with the best test MSE, which are picked from the

two groups. Although the training results in Table 9 shows the block structured NN

model has better model accuracy, the plain NN model also seemed to provide good

98

Table 9: Training Results from Two Groups of NN Models of Nonlinear RLC Circuit Model

(a) Plain NN

Trial No. 1 2 3 4 5 Average Best

Training set MSE: 6.2377× 10−9 7.4408× 10−9 1.2542× 10−8 7.4053× 10−9 6.3166× 10−9 4.7989× 10−9 6.2377× 10−9 (No. 1)
Test set MSE: 4.5546× 10−8 1.8254× 10−8 2.5471× 10−8 4.6895× 10−8 1.4477× 10−8 3.0129× 10−8 1.4477× 10−8 (No. 5)

Training time (sec): 322.1 318.8 324.6 320.1 318.0 320.7 318.0
Epochs: 500 500 500 500 500 500 500

Training stopped by: Max. epochs Max. epochs Max. epochs Max. epochs Max. epochs

(b) Block Structured NN

Trial No. 1 2 3 4 5 Average Best

Training set MSE: 4.9870× 10−9 4.9853× 10−9 1.0839× 10−8 4.8272× 10−9 4.9889× 10−9 6.1255× 10−9 4.8272× 10−9 (No. 4)
Test set MSE: 1.2892× 10−8 9.8326× 10−9 8.9613× 10−9 6.1393× 10−9 1.2024× 10−8 9.9698× 10−9 6.1393× 10−9 (No. 4)

Training time (sec): 26.4 59.9 183.5 132.6 73.5 95.2 26.4
Epochs: 72 166 500 365 198 260.2 72

Training stopped by: Max. epochs Max. epochs Error criterion Error criterion Error criterion

99

(a) Plain NN, Trial No. 5

(b) Block Structured NN, Trial No. 4

Figure 38: “Actual Vs. Predicted” Plot of Two NN Models of Nonlinear RLC
Circuit with Test Data Set

enough accuracy, at least, based on the static evaluation of Figure 38.

The training speed of the block structured NN models was also significantly faster

than that of the plain NN models. In Figure 9(b), the average training time of the

block structured NN models was 95.2 seconds, which is about 3.4 times faster than

100

that of the plain NN models. The best training time was about 12 times faster too.

These numbers indicate that the modified structure improved both the model training

performance and efficiency significantly.

3.4.1.2 Simulation Test of NN Models

Since the static evaluation of the training error of an NN model does not show the

model stability and robustness in simulation, The NN models of the two different

structures were also tested through the simulation runs. Firstly, the NN models with

the best training MSE were picked from the model groups of the two structures,

and ran with the input U variations that were used for generating the training data

set. The variations of U during the simulation test is shown in Figure 39(c). Fig-

ure 39 is the comparison of the simulation results from the plain NN model, the block

structured NN model, and the original Matlab model.

Based on the training performance results in Table 9(a) and Figure 38(a), the

plain NN model with the best training MSE seemed to have good enough model

accuracy for reliable simulation, but the simulation result in Figure 39 showed it was

actually not. At about 0.07 second time point of the simulation, the plain NN model

began to yield the simulation error rapidly, and then this large error disappeared

after the simulation passed about 0.1 second time point. On the other hand, the

block structured NN model provided an accurate simulation result that was closed to

the result of the original Matlab model.

In order to test whether the problem observed from the plain NN model is a general

symptom of the plain NN models in this RLC circuit example, and the greater model

stability of the block-structured NN model is true to all the other block-structured

models, all the five NN models of each NN structure were ran for the simulations.

This time, the variations of input U in the generation of the test data set were

applied in the simulations, so both input U and the responses of the original model

101

0 0.05 0.1 0.15 0.2
−4

−2

0

2

4

6

8

10

12

Time (sec)

In
du

ct
an

ce
 c

ur
re

nt
, i

L (
A

)

Actual
Plain NN
Blocked NN

(a) Result Comparisons of Inductance Current

0 0.05 0.1 0.15 0.2
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (sec)

C
ap

ac
ita

nc
e

vo
lta

ge
, V

C
 (

V
)

Actual
Plain NN
Blocked NN

(b) Result Comparisons of Capacitance Voltage

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7

8

9

10

Time (sec)

S
ou

rc
e

(in
pu

t)
 v

ol
ta

ge
, U

 (
V

)

(c) Source (Input) Voltage Variation During Simula-
tion

Figure 39: Training Results of Two NN Models with the Best Training MSE for
Nonlinear RLC Circuit

102

can contains the patterns that were not included in the training data set. Figure 40

is the simulation results.

0 0.05 0.1 0.15 0.2
−4

−2

0

2

4

6

8

10

12

Time (sec)

In
du

ct
an

ce
 c

ur
re

nt
, i

L (
A

)

Actual
Plain NNs 1−5

0 0.05 0.1 0.15 0.2
−5

−4

−3

−2

−1

0

1

2

3

4

Time (sec)

C
ap

ac
ita

nc
e

vo
lta

ge
, V

C
 (

V
)

Actual
Plain NNs 1−5

(a) Plain NN

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

Time (sec)

In
du

ct
an

ce
 c

ur
re

nt
, i

L (
A

)

Actual
Blocked NNs 1−5

0 0.05 0.1 0.15 0.2
−5

−4

−3

−2

−1

0

1

2

3

Time (sec)

C
ap

ac
ita

nc
e

vo
lta

ge
, V

C
 (

V
)

Actual
Blocked NNs 1−5

(b) Block Structured NN

Figure 40: Simulation Runs of the Two NN Model Groups of Nonlinear RLC Circuit
with Test Set

As shown in Figure 40(a), all five plain NN models apparently lost their model

stability and produced severe errors at the same simulation time point, which is about

0.11 seconds. Interestingly, the inductance current iL was within the range of 0 to

2 when the models lost their stability in the two simulation tests in Figure 39 and

Figure 40. Therefore, it is speculated that the cause of the model instability may be

related to a certain region of the output-feedback values, but identifying the exact

cause will need a furthermore analysis for investigation. On the contrary, all the block

structured NN models yielded the simulation results with acceptable accuracy. This

103

simulation results safely lead to the conclusion that the developed block structure

can provide better training performance and efficiency, model stability, and higher

robustness for output prediction in surrogate modeling for the RLC circuit example.

3.4.2 Heat Exchanger Unit with Flow Control Valve

The second example is one of the heat exchanger units of CW-RSAD, which is shown

in Figure 41. The model has two input variables, which are the valve opening ratio

Ov and the pressure difference ∆P held though the two ends of the heat exchanger

pipeline. Ov has a scale of 0 to 1, where 0 means that the valve is completely closed,

and 1 means that it is completely open. The volumetric flow rate q of the model is

the system state variable, which is chosen as the output of the surrogate models in

this example. Table 10 is the specification of the heat exchanger unit.

Figure 41: Diagram of Heat Exchanger Unit Example

Table 10: Heat Exchanger Unit Specification

Pipeline Heat exchanger Valve

Tot. pipe length: 12 ft Pipe area: 0.197 in2 Diameter: 0.5 in
Diameter: 0.5 in Loss coeff.:1.5

Hydraulic Diameter:0.5 in

104

The original model of the heat exchanger unit was created using Flowmaster R©V7,

and this Flowmaster model was connected to Matlab using a COM interface, in order

to perform the computer experiments and process the simulation data for generating

both training and test data sets. Then, as done in the example of the nonlinear

RLC circuit, the NN models were generated using those data sets in the Matlab

environment.

3.4.2.1 Generation of NN Models

The NN models were configured in the similar way to the first example case in §3.4.1.1,

and the NN model configuration specification is given in Table 11. The differences are

mainly on the connection of the input variables to the block structured NN model.

In Flowmaster V7, the effect of valve opening ratio Ov to volumetric flow rate q is

modeled statically, therefore, their relationship is static in the training data too. This

means that, based on the approach in §3.2.4, Ov becomes the static variable, while

∆P remains as the dynamic variable. Thus, according to Figure 32 and §3.2.4, Ov

was given as the input to the nonlinear second hidden layer, while ∆P was assigned

as the input to the linear first hidden layer of the block structured NN model.

Table 11: Configuration of the Two NN Surrogate Model Structures of Heat Ex-
changer Unit

Plain NN Block structured NN

Net structure: Single hidden layer
Double hidden layer

Layer 1: Layer 2:

Activation functions: Hyperbolic tangent Linear Hyperbolic tangent
Input variables: q(t− 1),∆P (t− 1), Ov(t) q(t− 1),∆P (t− 1) Ov(t)

No. of hidden nodes: 10 1 10
Degree of freedom: 51 45
Output variables: q(t) q(t)

Because there were both static and dynamic variables in the regression vector of

the block-structured NN surrogate models, the computer experiment was performed

with the two-stage experimental design introduced in §3.3.1, in order to generate the

105

training data set. However, there is only one factor for each stage, both the static

and dynamic DOE were created just by uniformly distributing sample points, instead

of using the modified factorial DOE in Figure 35. For the first stage DOE with the

static variable, 11 sample points of Ov were uniformly placed in the range of [0, 1],

and for the second stage with the dynamic variable, 13 sample points of ∆P were

uniformly picked from [−5 × 10−4, 1 × 105]. Consequently, the generation of the

training data set was performed with 11 simulation runs with different Ov values, in

each of which the sample points of ∆P were randomly permutated, and used as the

scenario of the ∆P variations during each simulation. For the generation of the test

data set, a single simulation was run with the 10 random sets of the Ov and ∆P pair

as the input scenario.

The training processes of the two groups of the NN models were performed with

the training data set obtained. As was in the first example case in §3.4.1.1 the training

was performed five times for each surrogate model structure with the same training

data, in order to evaluate the effect of the model structures to the performance and

stability of the generated models. The training was set to stop if either the training

MSE reached 5×10−9 or the training iteration achieved the maximum epochs, which

was set as 500. As the training algorithm, LM algorithm was chosen for both NN

models. The training results were given in Table 12.

Tables 12(a) and 12(b) are the training results of the plain and the block struc-

tured NN models respectively, and these training results are consistent with those of

the RLC circuit example in §3.4.1.1, showing that the block structured NN models

outperformed the plain NN models in both the average and the best training MSE.

Figure 38 shows the plots of actual vs. predicted outputs of the NN models with

the best test MSE, which were picked from the two NN model groups with different

model structures. Although not significant, Figure 38 shows that the outliers from the

test of the block structured NN model are less spread than those from the plain NN

106

Table 12: Training Results of Two NN Model Groups of Heat Exchanger System

(a) Plain NN

Trial No. 1 2 3 4 5 Average Best

Training set MSE: 3.5609× 10−6 8.8035× 10−6 4.6208× 10−6 3.4656× 10−6 3.2052× 10−6 4.7312× 10−6 3.2052× 10−6 (No. 5)
Test set MSE: 3.0385× 10−4 3.1160× 10−4 2.6629× 10−4 2.9953× 10−4 2.8758× 10−4 2.9377× 10−4 2.6629× 10−4 (No. 3)

Training time (sec): 104.8 104.4 104.4 104.6 104.4 104.5 104.4
Epochs: 500 500 500 500 500 500 500

Training stopped by: Max. epochs Max. epochs Max. epochs Max. epochs Max. epochs

(b) Block Structured NN

Trial No. 1 2 3 4 5 Average Best

Training set MSE: 2.7326× 10−6 1.7462× 10−6 9.9629× 10−7 9.9897× 10−7 9.9347× 10−7 1.4935× 10−6 9.9347× 10−7 (No. 5)
Test set MSE: 2.1417× 10−4 7.2219× 10−5 9.4172× 10−4 9.0177× 10−5 1.1590× 10−4 2.8704× 10−4 7.2219× 10−5 (No. 2)

Training time (sec): 37.2 37.3 15.9 28.1 6.2 24.9 6.2
Epochs: 500 500 212 371 80 332.6 80

Training stopped by: Max. epochs Max. epochs Error criterion Error criterion Error criterion

107

(a) Plain NN, Trial No. 3

(b) Block Structured NN, Trial No. 2

Figure 42: “Actual Vs. Predicted” Plot of Two NN Models of Heat Exchanger
System with Test Data Set

model, reflecting the block-block structured NN model has the better model mapping

accuracy, but the plain NN model also seemed to provide good enough accuracy.

The improvement of the training speed from the block structured NN model was

also similar to that of the result from the first example test. From Table 12, the block

108

structured NN models’ average training speed was 24.9 seconds, which was about 4.3

times faster the plain NN models, and their best was 9.2 seconds, which was 11.3

times faster than the plain NN models.

3.4.2.2 Simulation Test of NN Models

For this heat-exchanger modeling example, the simulation test based on the training

data set was not performed because the size of the training data set was too large to

be shown here. Instead, the simulation test was only done using the test data set.

Figure 43 is the simulation result from two plain NN models, two block structured

NN models, and the original Matlab model of the heat exchanger system. For the

NN models, only those with the best training and test MSE were tested from the ten

NN models created.

In this second test, both the plain and the block structured NN models did not

have large model errors, which were seen from the plain NN models of the first

example case in Figure 40(a). It was probably because the heat exchanger system

had less demanding dynamics, which was relatively slow and monotonous, than the

RLC circuit’s fast and oscillatory dynamics.

However, from about 1.2 to 3 seconds in the simulations, there were relatively

large errors from the result of the two plain NN models, which were not found from

the simulations of the block structured NN models. Interestingly, during that time

period, Ov had a very small value, which was 0.1298 for t = 1.2 to 1.8 seconds, and

0.0 for t = 1.8 to 2.4 seconds. This implies that the relative poor model accuracy

occurs when Ov value is very small or zero. The reason may be from the plain NN’s

experiencing difficulties in mapping the static but very strong nonlinear relationship

between the valve opening ratio and the flow. When the valve is being completely

closed, the flow friction through the valve is considered to be infinity, and in this

condition, the flow value becomes zero no matter how much ∆P is given to the

109

0 1 2 3 4 5 6

−2

−1

0

1

2

3

4

5

6

7

8
x 10

−4

Time (sec)

V
ol

um
et

ric
 F

lo
w

 r
at

e
(m

3 /s
ec

)

Actual
NN w/ best training MSE
NN w/ best test MSE

(a) Plain NN

0 1 2 3 4 5 6

−2

−1

0

1

2

3

4

5

6

7

8
x 10

−4

Time (sec)

V
ol

um
et

ric
 F

lo
w

 r
at

e
(m

3 /s
ec

)

Actual
NN w/ best training MSE
NN w/ best test MSE

(b) Block Structured NN

Figure 43: Simulation Runs of NN Models with Another Test Set

system.

In contrast, such large errors do not exist in the simulation results from the block-

structured NN models, implying that the output-feedback block structure, and the

approach of handling dynamic and static variables separately, improve the accuracy of

an NN model significantly. Although the block structured NN models outperformed

the baseline plain NN models in the overall model accuracy, Figure 43(b) shows that

these block structured models also have some considerable errors. At 1.8 second

110

time point of the simulation, the two block structured NN models have very sharp

and large overshoot of the errors. Thus, addressing this problem can be a part of

future research. In this research, the following simple correction will be added, when

such a problem is encountered in the application of the developed surrogate modeling

approach; if Ov = 0, q is also set to 0.

3.4.3 Conclusions

In order to test and validate the RNN-based surrogate modeling method for dyanmic

system components, the example study was performed with the two simple nonlin-

ear systems, which were the RLC circuit with nonlinear inductance and the heat

exchanger unit with a single flow control valve. Setting the SHL Jordan-type RNN

as the baseline surrogate model structure, both the baseline and the newly designed

block structures were applied to generate the surrogate models of the two systems,

for demonstration, and the model training speed, stability during simulation, and

accuracy were compared between the models with the baseline and the block struc-

ture, in order to validate the developed surrogate modeling method introduced in this

chapter.

The study showed that, at least for the cases of the two systems in the example

study, applying the developed surrogate modeling method, with the newly designed

block-oriented RNN structure, improved training speed, model stability, and model

accuracy over the surrogate modeling approach with the baseline surrogate model

structure. Despite the successful result of the example study, this result is still not

solid enough to conclude that the block-oriented RNN structure can improve the

surrogate models’ training speed and model stability in all cases of nonlinear system

applications, since there is always a possibility of finding counter examples. It is

simply a limitation of an experiment-based, inductive validation approach.

Consequently, the study about the model structure-based approach for improving

111

performances of surrogate modeling in this chapter does the role of opening up, or

initializing, further future research for maturing such an approach, and solidifying the

theoretical background. These future research activities will include either performing

a larger number of test cases using the developed method, or deriving the analytical

proof for solidifying the validation. Another good research direction is to investigate

many other block structures than the Wiener inspired structure. At this point, the

surrogate modeling method developed in this chapter will be used as the framework for

generating the behavioral models of a naval fluid system, in the final implementation

example in Chapter 5.

112

CHAPTER IV

GRAPH-BASED TOPOLOGICAL AND DAMAGE

MODELING

In the developed M&S environment, a graph topological model does the role of weav-

ing all component surrogate models together and enabling a systematic approach of

damage modeling and model reconfiguration. In this chapter, the theoretical back-

ground and formulation of graph-based topological modeling, and subsequently, the

algorithmic tools for the damage analysis of the fluid systems of a military ship.

4.1 Graph-Based Topological Modeling

As introduced in §1.4.4, graph theory has been used for many different fields, and

among them, the graph application of linear electrical networks [16, 17] was worth a

special attention since it had well-developed and matured modeling methodologies,

and electrical networks had a striking analogy with fluid networks so it could provide

a starting point of developing the M&S method of a fluid network for damage analysis.

An electrical network can be represented in the form of a graph, like the simple

example given in Figure 44. In the graph of Figure 44, its edges are denoted by

Figure 44: Simple Electric Network and Its Digraph

113

ei and nodes by vj, where i = 1, . . . , 5 and j = 1, . . . , 4. Comparing the graph

with its original electrical network model, it can be found that edges represent the

actual physical components, and nodes are the entities for defining common boundary

conditions between the adjacent components.

The graph in Figure 44 is especially referred to as a digraph, a graph with nominal

directivity as properties of the edges. Here, the term “nominal” means that the

direction is not necessarily that of the actual flow in the system but just a basis of

the sign convention upon which the actual flow direction is indicated numerically. For

instance, if there is an electric current i2 on e2 of the digraph in Figure 44 and its

flow direction is opposite of the nominal direction of e2, i2 is a minus value.

Graph theory employs the notion of through and across variables in order to

describe the state of a system, but in some application domain, it is more proper to

use the notion of flow and potential variables instead of through and across variables.

Flow variables are basically identical to through variables. Potentials can be expressed

in two different forms, one is the node potentials which are the same as potential

properties in typical physical systems, and another is the edge potentials that are

simply the differences between the node potentials at the two adjacent nodes of an

edge. Based on the above definition, it can be known that edge potentials are the

same as across variables.

For an electrical network, flows are the currents, node potentials the node voltages,

and edge potentials the voltages (i.e., differences of the node voltages on edges) in the

network. Similarly, for a fluid network, flows are the flow rates, node potentials the

pressures at nodes, and edge potentials the pressure differences on edges. Figure 45

shows the flow and potential variables in the example of a electric resistor component.

114

Figure 45: Digraph with Flow and Edge Potential Variables for a Resistor

4.1.1 Basic Mathematical Denotations of Graph

Here, a few mathematical definitions of a graph that will be useful in the later sec-

tions is briefly introduced. In this thesis, the mathematical definitions, symbols, and

denotations of graph theory are based on Diestel [18], Bollobás [14], and Deo [17].

A graph G is defined as an ordered pair of disjoint sets (V ,E) such that E ⊆ V (2),

which means, with the superscript of set V , that any element in E is a two-element

subset of V). V and E are called the vertex set and the edge set of G, and sometimes

V and E are also expressed by V (G) and E(G) to clearly show V and E are the

subsets of graph G. The order of G, denoted by |G|, is the number of vertices in G.

As the more general notion, the number of elements in a set X, called cardinality, is

denoted by |X|. The size of G, which is denoted by ||G||, is the number of edges in G.

In other words, the order of G equals to the cardinality of V (G), which is expressed

as |G| = |V (G)|, and the size of G equals to the cardinality of E(G), which can be

expressed as ||G|| = |E(G)|.

If x, y ∈ V are joined by a common edge xy, then they are adjacent vertices of

G, and incident with edge xy. The total number of adjacent vertices of x ∈ V is the

degree of vertex x, denoted by dG(x) or d(x). The minimal degree of the vertices in

graph G is denoted by δ(G) and the maximal degree by ∆(G).

115

4.1.1.1 Incidence Matrix

For a digraph G with n = |V (G)| and m = |E(G)|, its incidence matrix, denoted by

A, is defined by

aij =























−1 if ej directs into vi

0 if ej is not incident with vi

1 if ej directs out of vi

(67)

where, i = 1,. . .,n and j = 1,. . .,m. Again, the signs of the elements in the inci-

dence matrix are determined based on the nominal direction of edges, not the actual

direction of the flow in edges.

The following matrix is the incidence matrix of the graph of the simple electric

network shown in Figure 44. Each row of the incidence matrix represents a node

with the index that corresponds to the index of the row, and in the similar way, each

column represents an edge of the graph.

A =



















e1 e2 e3 e4 e5

v1 −1 1 0 0 0

v2 0 −1 1 0 1

v3 0 0 −1 1 0

v4 1 0 0 −1 −1



















(68)

In the incidence matrix, there is always a linearly dependent row in the row space of

A. Since a matrix is required to have a full rank in many numerical applications, a

reduced incidence matrix, which is obtained simply by erasing the row representing

the node with a fixed potential value in A, is used. Assuming that the potential of

v4 is known and fixed, the reduce incidence matrix AR is expressed as,

AR =













e1 e2 e3 e4 e5

v1 −1 1 0 0 0

v2 0 −1 1 0 1

v3 0 0 −1 1 0













(69)

116

which is now linearly independent.

The reduced incidence matrix AR is very useful for identifying and generating the

constraints imposed by the inter-connection topology of a network system. With inci-

dence matrix AR of the graph model in Figure 44, Equation (70) delivers a complete

set of the algebraic equations of Kirchoff’s Current Law (KCL) [16], or more generally

speaking, the flow-conservation law [70] of an incompressible flow network.

AR · ~q = 0 (70)

In Equation (70), ~q is the edge flow vector whose elements represent the flow values

on edges, and the sign convention of the flow values in ~q determined based on the

edges’ nominal directions as described in §4.1. Thus, by applying Equation (70), the

KCL equations of the electric circuit model in Figure 44 are expressed as,

AR · ~q =













−1 1 0 0 0

0 −1 1 0 1

0 0 −1 1 0





























q1

q2

q3

q4

q5

















=

−q1 + q2 = 0

−q2 + q3 + q5 = 0

−q3 + q4 = 0

(71)

4.1.1.2 Node-to-Edge Potential Transformation

Figure 46 shows the relation between node and edge potentials in the digraph model

in Figure 44. In the figure, xi is the node potential assigned to node vi, and ∆xj the

edge potential on edge ej, with i = 1, . . . , n and j = 1, . . . , m. An edge potential is

expressed as,

∆xj = xj
in − xj

out (72)

where, xj
in is the node potential of the in-node – a node from which the edge flow

direction begins – of edge ej, and xj
out the node potential of the out-node of ej . For

example, the edge potential of e3 is ∆x3 = x2 − x3, as shown in Figure 46.

The relationship between node and edge potentials of a graph can be represented

117

Figure 46: Relations between Node and Edge Potentials

by the following simple equation.

~∆x = AT~x (73)

The matrix transpose of an incidence matrix, T = AT is also referred to as the

transformation matrix. Applying Equation (73), all the edge potentials of the graph

model in Figure 46 is,



























∆x1

∆x2

∆x3

∆x4

∆x5



























=



























−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1

0 1 0 −1













































x1

x2

x3

x4



















=



























−x1 + x4

x1 − x2

x2 − x3

x3 − x4

x2 − x4



























(74)

4.1.1.3 Laplace Matrix

For a digraph G with n = |G|, A Laplace matrix L(n× n) of G is defined by

lij =























d(vi) if i = j

−1 if i 6= j and vi is adjacent to vj

0 otherwise

(75)

118

where, d(vi) is the degree of vi and i = 1, . . . , n. The Laplace matrix can also be

obtained from an incidence matrix of G by computing

L = AAT (76)

Therefore, if the incidence matrix A of a graph G is identified, both the transformation

matrix T and the Laplace matrix L of G can be computed with simple linear algebraic

operations. Plugging the incidence matrix in Equation (68) to Equation (76), the

Laplace matrix of the graph model in Figure 44 is given as,

L =



















2 −1 0 −1

−1 3 −1 −1

0 −1 2 −1

−1 −1 −1 3



















(77)

As mentioned in §4.1.1.1, the incidence matrix A is lack of the linear independence,

so does the Laplace matrix L since L = AAT . Therefore, a reduced Laplace matrix,

denoted by LR in (78), may need in some numerical computing.

LR =













2 −1 −1

−1 3 −1

−1 −1 3













(78)

4.1.2 Numerical Implementation of Graph Model

Figure 47 is the basic structure of the object classes in the numerical implementa-

tion of graph-based topological modeling. Just for the clarity of describing the class

relations, only a few important attributes of the classes were shown in the diagram

although there are more attributes and methods defining the classes. The Graph-

Model class stores the references – variables representing memory addresses – of all

edge and node objects using Python’s built-in list data type. As the essential prop-

erty representing the connections among all the edges belonging to the graph model,

119

the GraphModel class has its incidence matrix as its attribute. Although not shown

in Figure 47, the GrphModel class also has the methods for adding and removing

edges and nodes, and generating the incidence matrix by extracting the connectivity

information from the edge objects. Whenever the configuration of the graph model is

changed by adding or removing edges, the incidence matrix also has to be regenerated

to reflect the changes of the connection among them the changes.

4.1.2.1 Edges and Nodes of Graph Model

An edge in a graph always has two nodes incident with itself. If it is an edge of a

digraph, then it should also have the directional property. In the implementation of

the graph modeling, an edge object has two associated node objects that are linked to

it, with the object reference variables in it. The two node objects in the edge object

are distinguished as in- and out- nodes, where the in-node is the node from which the

edge nominal direction starts, and the out-node is the one to which the edge nominal

direction heads.

Flow, node potential, and edge potential variables are also stored and managed in

the different objects based on their nature. Node potential values are stored in node

objects, and both flow and edge potential values are stored in edge objects. The flow

in the edge object needs a physics model which can not be provided by a graph, so each

edge object imports a predefined physics model function from the component model

library as shown in Figure 47. The model attribute in the Edge class in Figure 47 is

a “function reference” variable which keeps the memory address of the linked model

function in the library and is used for calling the function to compute the flow in the

edge. An edge object and a model function are not necessarily one-to-one matching

so a single model function can be linked to multiple edge objects, but, of course, an

edge object can be associated with a single model function in the library.

120

(a) Simplified Classes Structure

(b) UML Class Diagram

Figure 47: Elementary Classes for Graph-Based Modeling

121

Moving the scope more specifically to a fluid system, a static model of incompress-

ible flow in an edge component is generally a function of the pressure difference on

the component. Considering that the component may have additional input to the

function such as control inputs and model parameters for a design purpose and/or

model reusability, the model function has a typical form which can be expressed as,

q = f(∆P, cv, prm) (79)

where f is the model function which is nonlinear, q the volumetric flow rate, ∆P

the pressure difference, cv a set of the control variables, and prm a set of the model

parameter of the edge component. For a dynamic discrete model case, the model

function needs an additional input which is the delayed state variable. Therefore, the

dynamic model can be described by

x(t) = f (x(t−∆t), ∆P (t), cv(t), prm)

q(t) = x(t)
(80)

where ∆t is a model time step, and x(t) is the state variable that is scalar in this

case and identical with flow rate q(t). This model function is, in this thesis, created

by the surrogate modeling approach which is covered in Chapter 3.

A graph-based model of a fluid system can be developed based on the basic mod-

eling components described above. Let us consider a simple fluid system and the

corresponding graph representation shown in Figure 48, where qi is the flow rate of

the ith edge, and Pj the pressure at the jth node.

In the graph-based topological modeling method for fluid systems, edges are dis-

tinguished and managed into four types, which are normal, source, sink, and damaged.

Similarly, every node is in one of three types, which are normal, damage, and refer-

ence. The properties of the types of edges and nodes are explained in Table 13. For

the fluid model in Figure 48, the translation to the graph representation is straightfor-

ward, except for the component with the pump-chiller-reservoir combination, which

122

Figure 48: Graph Representation of Simple Fluid Model (HEx: heat exchanger, P:
pump, C: chiller)

Table 13: Edge and Node Types

(a) Edge Types

Edge Types Properties

Normal: Normal edges.
Source&

Imaginary edges used to model flow singularities.
Sink:

Damaged: Damaged edges. See §4.2 for details

(b) Node Types

Node Types Properties

Normal: Normal nodes.
Damage: Nodes representing the ambiance. Place at the ruptured

end of a damaged edge. Their node pressures are set to
ambient pressure.

Reference: Nodes whose pressure values are given and fixed.

could be too complicated to be modeled as a single edge. Therefore, it can be sug-

gested that the component be further decomposed into simpler pieces, and this can

be regarded as a reasonable decision for this simple fluid model. The problem is

that a realistic fluid system could have significantly more complicated pump-chiller-

reservoir networks (see Figure 49 as an example) than the one in Figure 48, having

several inner-looping pipelines which make it hard to decompose the subnetwork into

a few two-node components. Such an approach also makes the model topology overly

complicated for the model’s purpose.

123

Figure 49: Flowmaster V7 Model of Pump-Chiller-Reservoir Sub-Network in CW-
RSAD

When creating a model of the pump-chiller-reservoir unit using a surrogate mod-

eling technique, the component model can not be in the form of Equations (79) and

(80) because it is not a function of the pressure difference but the node pressures of

the in and out nodes, and the inlet and outlet flow rates are not always the same

anymore (e.g., the fluid can shed from the reservoir) in some cases including a system

rupture. In order to address this oddity of this component, it can be represented as

the combination of two edges – one source type and one sink type – rather than a

single edge, as shown in Figure 50. In this setting, the two edges are linked by an

artificial reference node with zero-pressure value. By doing so, the pressure differ-

ences collected at the two edges are the same as the node pressures of the in and out

node of the pump-chiller-reservoir unit, which are, in in Figure 50, −P1 for the sink

edge and P2 for the source edge, and the possible differences between the inlet and

outlet flow rates can be successfully expressed by the two edges without violating the

unified definition of interfacing between edge components.

124

Figure 50: Edge of Pump-Chiller-Reservoir Sub-Network and Conversion to Source-
Sink Edge Pair

Remembering that the two edges actually represent the single component, they

use the same component model function and are totally coupled in their responses. As

a result, they are defined as coupled edge objects using the CoupledEdge class (shown

in Figure 47(b)), a derivative of Edge class. A coupled edge stores the list of edges

coupled with it in the couple attribute and accesses their input and output variables

whenever it calls the shared model function for computing the flow rate. Figure 51

describes the objects and their association inside the graph model instantiation of the

simple fluid network given in Figure 48.

4.1.2.2 Connectivity Modeling using Incidence Matrix

The GraphModel class has the two incidence matrices Atot and A as shown in Fig-

ure 52. Atot is the full incidence matrix of all nodes and edges of a graph model.

Assuming the number of normal nodes p, p×m matrix A in Figure 52 is the reduced

version of Atot and contains only the incidences of the normal nodes from Atot.

In order to identify the KCL-based algebraic constraints of the graph model, the

GraphModel class uses Equation (70) with A, instead of Atot, because the pressure

125

Figure 51: Object Diagram of Simple Fluid Model

Figure 52: Incidence Matrix Data Structure in GraphModel Class

values of damage nodes and reference nodes are given, and the rows representing

damage and reference nodes in Atot are all linearly dependent vectors. However, the

other M&S formulations except for this use Atot because Atot contains the complete

information of the model connection topology.

126

4.1.2.3 Topological Layout vs. Geometric Layout

For the design of a physical network such as a fluid and an electrical network, the

geometric layout of its components is an important property for the analysis for

survivability. However, such a property is also largely unknown in the early design

phase or subject to be changed frequently until the detail design phase. In order

to handle this vagueness in the knowledge of the geometric layout, the modeling

method extensively uses the connection topological layout of the graph model instead

of the geometric layout. Here, the topological layout means the relative locations of

inter-connected components and connection points.

For the numerical implementation, the topological coordinates were created just as

the Cartesian coordinates were defined. The difference of the topological coordinates

from the Cartesian coordinates is that the points and the distances in the former do

not indicate the actual spatial locations and distances but just the relative locations

in an imaginary space. For instance, Figure 53 shows all the node objects of a graph

model with their topological locations. For edges, the topological locations were set

as the middle point of the linear connection of the two incident nodes.

Although the topological layout is lack of the geometric and spatial information of

the components and their connections of a system, it can still allow damage analyses

of a physical network within a level of fidelity that can be acceptable in an early

design phase, since the system response to damages or failures is strongly affected by

how the system components are concatenated with the damaged components rather

than geometric details regarding the damages/failures and the system components.

Consequently, it contributes to bring forward the damage analysis, which was typically

possible in the later design processes, to an early design phase.

127

Figure 53: Toplogical Coordinates on Graph Model in Figure 44

4.2 Damage Modeling

The proposed M&S formulation sets two elements for the damage analysis with graph-

based modeling of fluid systems. The first one is a damage entity, whose role is to

change the topology of a graph model and the properties of the edges and nodes

in the graph model, in order to model the system after a damage has occurred.

The second element for damage modeling is a damage control model. A damage

analysis of a smart actuator-equipped reconfigurable fluid system without any damage

control effort is meaningless, since the analysis would yield only a trivial solution of

the total system failure by the eventual shedding of all the fluid out. Considering

that the control development is mostly done in the later design processes, the M&S

environment must include a proper control model as a part of its whole package so

it can provide the conceptual or preliminary level damage analysis without having to

wait for the control design to be delivered. Lastly, as an essential part of developing

the damage control model, an algorithm for auto-generation of damage control model

for a given graph model is developed. This auto-generation algorithm is important for

keeping the M&S environment highly flexible for automated model reconfiguration in

128

the design-oriented analysis in the early design stages.

4.2.1 Damage Bubble

Since the application is the M&S of a military ship, the causes of damage of interest

are explosions from hostile actions, such as projectile shots, anti-ship missile attacks,

and mine explosions. Each of These damages on the system can be represented simply

by a “damage bubble” object, a sphere with its topological location and volume

property. When it is placed in the topological space of the fluid model, the bubble

object removes or changes the nodes and the edges that are immersed in it in order

to model damage in the system. Figure 54 shows a damage bubble on the fluid model

in Figure 48. The process of the damage bubble object for reconfiguring an original

Figure 54: Rupture in Simple Fluid System

fluid system model to a damaged system model consists of the following steps:

1. Create a damage bubble object at simulation time t = tdmg. The location, size,

and damage triggering time tdmg are all defined by a damage scenario which is

129

simulation input.

2. Identify the whole or part of each edge body and associated nodes that are

inside the damage bubble.

3. Eliminate or modify the identified components of the model.

4. Place damage nodes at the open ends of the damaged edges after their damaged

portions were eliminated.

The damage nodes in the last step of the process represent the open-ends of damaged

pipelines. When a pipe is ruptured, its ruptured end is exposed to the ambiance

whose pressure can be considered to be constant as simplification. In modeling im-

plementation, the damage node objects have a fixed pressure value of 1.1 bar and

placed to represent the end of ruptured pipelines open to the ambiance. In the next

section, the logics of identifying and applying damages of the component of a graph

model is introduced in more detail.

4.2.1.1 Identification and Elimination/Modification of Damaged Components of
Graph Model

The logic underlying the identification of the damaged components of a graph model

is based on the a simple practice of analytic geometry for finding the intersections

between a line and a sphere, which are shown in Figure 55. For simplicity of the M&S,

all edges are straight lines in the topological coordinates. For an edge, let the coor-

dinates of the in and out nodes be Xin = [xin, yin, zin]T and Xout = [xout, yout, zout]
T .

Then any point X = [x, y, z]T on the edge can be expressed by

X = Xin + t · (Xout −Xin) (81)

When t in Equation (81) is 0 ≤ t ≤ 1, point X is on the edge; otherwise, X is on the

line extended to outside of the edge, which is drawn as the dotted line in Figure 55.

130

Figure 55: Junction Points between Edge and Sphere

Considering the damage bubble with the center at Xc = [xc, yc, zc] and the radius r,

the distance d between a point on the edge and the center of the bubble is,

d = ‖X −Xc‖ (82)

or,

d2 = ‖Xin + t · (Xout −Xin)−Xc‖
2 (83)

By substituting ∆Xic = Xin − Xc and ∆Xoi = Xout − Xin to Equation (83), and

reorganizing it, the distance equation becomes a quadratic polynomial equation of t,

which is expressed as,

d2 = at2 + bt + c

where,

a = ‖∆Xoi‖
2

b = 2· < ∆Xoi, ∆Xic >

c = ‖∆Xic‖
2

(84)

If a straight line intersects with a sphere, there exist one to two intersection points

whose distance from the center of the sphere Xc is radius of the sphere r. These

intersections can be found by setting d = r in Equation (84) and solving for the roots

of the equation r2 = at2 + bt + c. In the case that there is only one intersection, then

131

t1 = t2. Letting t1 and t2 denote the two intersection points, the corresponding two

intersection points are marked as red points in Figure 55.

However, the existence of intersections does not necessarily mean that an edge,

not the line that includes the extension of the edge, is in the sphere. Assuming there

exist intersections, the placement of these intersections can be represented by one of

the four cases in Figure 56. In Figure 56, L is the length of an edge component, and

the intersections are marked by red points. Then, the four intersection placement

cases in Figure 56 can be interpreted as the following damage cases:

1. t1 ≤ 0 ≤ t2 < 1: L · t2 of the edge including the in-node is damaged.

2. 0 < t1 ≤ t2 < 1: Only the inner area of the edge is damaged. The edge is now

broken into two pieces with the length L · t1 and L · (1− t2) respectively.

3. 0 < t1 ≤ 1 ≤ t2: L · (1− t1) of the edge including the out-node is damaged.

4. t1 ≤ 0 and 1 < t2: The entire edge including the two incident nodes is damaged.

In the M&S, the above logic is implemented as the process of the damage bubble

object and used to identify and eliminate/modify the damaged components. The

notional damage simulation process with the damage bubble object is described using

the UML activity diagram in Figure 57. The actual algorithm is more complicated

but follows this notional process. In the activity diagram in Figure 57, yellow square

boxes are data entities or objects that are created as a result of activities. These

entities are again used as the inputs to other activities. The activity diagram in

Figure 57 shows only the process of applying damage using a damage bubble object

as simplification. For a description of more comprehensive process flow for damage

simulation, see Figure 66. In Figure 57, the dotted box represents the iterative routine

of the four case-based damage identification algorithm that was just explained, and

this routine is performed for all the edges, applying and updating the changes of

132

(a) Case 1: t1 ≤ 0 ≤ t2 < 1

(b) Case 2: 0 < t1 ≤ t2 < 1

(c) Case 3: 0 < t1 ≤ 1 ≤ t2

(d) Case 4: t1 ≤ 0 and 1 < t2

Figure 56: Four Cases of Intersection Placement Representing Different Damage
Cases of Edge

133

Figure 57: Implementation of Damage Bubble in Simulation

134

the properties of the edge and the node objects in a graph model object. With

this updated graph model object, the simulation is continued to generate the system

responses after the damage occurred.

4.2.1.2 Limitations and Possible Expansions of Damage Bubble Application

The damage bubble developed here is a low-fidelity representation of damage by ex-

plosions on the body of a naval military system; however, as more information for

modeling damage is accessible and higher fidelity damage modeling is necessary, the

damage bubble object and its process can be modified to be a more sophisticated

representation of such a type of damage. One example case is to include a proba-

bilistic approach in determining damaged elements and the damage levels of them.

In the current damage bubble object, the process of identifying damaged components

and applying damage in a graph model is performed simply by checking whether

the components are inside the damage bubble or not. More realistically, however,

the component damages and the intensity of the damage should be represented by

probabilistic modeling, rather than such simple “yes or no”-type modeling. Further-

more, the probability of both damage and damage intensity of a component must be

a function of various factors, including ship geometry, fire and temperature, time, and

component material and reliability. For instance, a component will have higher prob-

ability of being damaged as it is closer to the center of a damage bubble. However,

if there is a bulkhead between the component and the center of the damage bubble,

the probability of being damaged must be decreased.

4.2.2 Reference Damage Control Model

The developed M&S incorporates an element called the reference damage control

model, which is designed to deliver a near-ideal control performance without the

considerations of technological and economic viabilities. The development of such a

concept stems from the following two design concerns. First, the development of a

135

reconfigurable engineering system is a multidisciplinary problem involving both the

plant design and the control system design. A typical approach to a multidisciplinary

problem is the serial or parallel executions of the domain-level iterative design pro-

cesses in which the designs of the other domain systems are all fixed until they are

updated in the system-level iteration. In this approach, a reference control model can

be an initial control design when the local iterative process for the plant design is

executed. Second, a control baseline is needed in order to measure the performance of

the ongoing control design, and the reference control model can be used as a baseline

design that provides an estimation of the ideal performance that a control design can

achieve.

The reference control model is developed by removing many design constraints

so that the model can have the near-maximum performance, but it does not nec-

essarily mean that the model is also free from the key philosophy or paradigm to

be achieved from the control system design. Since a highly distributed, agent-based

control architecture is the underlying design paradigm used by the Navy, it is kept as

the development architecture of the reference damage control model. For the M&S

of the ship fluid system, the reference damage control model was developed with the

following presumptions that remove the constraints that potentially limit the control

performances:

1. There is no communication delay, i.e., no consideration of network latency. This

also implies no control instability by signal delays.

2. The communication network causes no noise and bias of signals.

3. The cost of networking is not considered. A controller unit can access any signal

required for its process.

4. Perfect sensing. There is no error induced from sensory processing or hardware.

136

5. There is no control hardware and software induced delay such as micro-controllers’

processing time and the inefficiency of control algorithms.

As previously stated, the reference damage control model is a model of a dis-

tributed control system. It consists of multiple component-level control units or

agents, which are attached at local actuators of the system plant, providing reflex-

ive and collaborative actions in order to isolate the ruptures in a fluid system. The

reference damage control model is designed to be single-layered, meaning that it

does not have high-level inferences and intelligence which are mostly implemented

by multi-layer, hierarchical control architecture. The reasons for applying such a

simple architecture are that, 1) the development of a properly working layered con-

trol system model alone is a highly difficult and complicated research activity, so it

had to be avoided, 2) a simple, single layer control model is good enough for the

reactive action of damage isolation and so is for simulation-based damage analysis

for plant design, and 3) the layered architecture with higher-level intelligence makes

the resulting control system model less reconfigurable and scalable, so the modeling

environment becomes less model-reconfigurable.

4.2.2.1 Component-Level Control Agents

The reference damage control model is realized by the aggregation of component-

level control units, so developing an entire control system model is highly dependent

on proper development of its individual control unit. Every control agent object in

the modeling environment basically contains two main information for control action.

The first one is the information of the neighboring control units and the operational

status of them, and the second one is the internal control process, which is performed

based on the status information gathered from its neighborhood. This local control

process of each control unit results in collaboration with neighboring controllers and

isolation of a rupture. Figure 58 is the simplified description of the control unit object

137

implemented for modeling a controller attached to the component represented by edge

e2.

Figure 58: Composition of Component-Level Control Unit of Smart Valve in Sim-
plified View

In the implementation of a control unit object for controlling a valve, the neigh-

bors list attribute represents the physical connections for communication between a

controller and its neighbors. The neighbors of a control unit are defined based on

their flow-based adjacency to the control unit; for instance, the controller attacted

on edge e2 in Figure 58 has the controllers on e3, e4, and e5 as its neighbors, since

they are adjacent with the controller on e2 based on flow connectivity. Again, the

neighbors list represents the physical communication lines or (wireless) connections

between the control unti and its neighbors. Through the communication lines, the

138

controller and its neighboring controllers share the measurement of the flow rate at

the valves on which they are embedded.

Along with the neighbors list, there is another attribute associated with it. adj mat,

which is actually a local version of incidence matrix for the process of an individual

controller, contains the information about how a controller is connected with each of

the neighbors. adj mat attribute is a two-row matrix. The first row represents the

“in-flow” side connections, and the second row represents the “out-flow” side con-

nections with the neighbors, based on the nominal flow direction given to each edge.

An example of this local incidence matrix is also given in Figure 58. This matrix is

almost identical with an incidence matrix created with only in- and out-nodes of an

edge with a controller. The difference is that the nonzero elements in adj mat matrix

do not mean the incidences of arbitrary edges but the flow-based connectivities of

neighboring controller-attached edges to the two nodes of another controller-attached

edge, and the columns of this matrix represents the neighboring controllers, instead

of all edges in a graph model.

Using the neighbors list, the flow rates gathered from the neighboring controllers,

and the adj mat matrix, the process of a control unit checks whether there is a flow

leak by system rupture located between itself and the neighbors. The algorithm is

simple; a controller checks the flow continuity between itself and its neighbors by

computing a simple matrix operation given as,

ǫ = X(ei)~qnb(ei) +







qi

−qi






(85)

where X(ei) is the local adjacency matrix (adj mat), ~qnb(ei) is the vector of the flow

rates from neighbors, and qi is the flow rate measured in the controller attached on ei.

If any element of the two dimensional vector ǫ is not close to zero within a numerical

threshold ε, the controller assumes that there is flow discontinuity caused by system

rupture on the pipeline between itself and its neighbors, and it closes the valve on

139

which it is attached, as a reaction to isolate the rupture. Since every individual

controller that identifies a rupture will close its valve, ruptures on the system will be

isolated eventually.

4.2.2.2 Numerical Implementation of Reference Damage Control Model

The classes for the reference damage control modeling are shown in Figure 59. DmgC-

trlSys class represents a damage control system, and SmartValve and CpAgent classes

represent the controller-embedded smart valve units and the control units for chiller-

pump sub-networks. As aforementioned, the reference damage control system is basi-

cally a non-hierarchically aggregated system of multiple smart valves and controllers

of chiller-pump sub-networks. The smart valve object processes its behavior based

on the local rules and sensor reading from the surrounding environment such as the

flow and damage of the neighboring smart valves, creating reflexive and cooperative

actions of isolating ruptures in the system. The chiller-pump network controller is

similar to the smart valve except that it controls pump units and multiple valves in

the sub-network.

Figure 59: Distributed Reference Damage Control Modeling Classes

In Figure 59, both SmartValve and CpAgent classes have the attributes ports hl,

port ll, and ports nb as the communication channels to the control units of their

upper layer, lower layer, and neighborhood. For the current application, there is no

supervisory hierarchy so upper units do not exist, while the lower-layer units are just

140

the edge components that contain valves or pumps. The neighbors are the other

controllers that have direct pipeline connections with it.

The adj mat attribute in SmartValve and CpAgent classes represents the local

connectivity to its neighboring controllers. For example, the local adjacency matrix

X(e2) for the valve on edge e2 in Figure 48 is

X(e2) =







e3 e4 e5

in− flow 0 1 −1

out− flow 1 0 0






(86)

where the smart valves on e3 and e4 and the chiller-pump net controller attached on

e5 (and e6) should be in the neighbor list of the valve object. Equation (86) is the

adj mat matrix of the controller attached to e2. As previously stated, the two rows

describe controller connectivities at the upstream (in-flow) and downstream (out-

flow) directions based on the edge direction on e2, and the column length is the same

as the number of neighbors. The elements of the matrix follow the notation of the

incidence matrix.

The attribute health in SmartValve and CpAgent classes indicates the health

condition of a device. Currently, it can have only two different values, which are

1 for the “healthy” condition and 0 for the “destroyed” condition. Once a smart

valve object receives a 0 signal for the health condition from any of its neighbors, it

closes its valve immediately without checking the local continuity.

4.2.2.3 Limitations and Possible Expansions of Component-Level Control Agent
Implementation

The reference damage control model is never created for the intention to model a

control system with a high level of reality and sophistication. It is just a numerical tool

developed for marginally enabling the damage analysis of a ship fluid plant in the early

design stage. Therefore, there are many parts that are abandoned in the development

of the control agent model, in order to keep the M&S problem simple and flexible

141

and maintain the modeling efficiency. One of many missing parts in control-agent

modeling is the controller’s process for managing device failures in order to achieve

the better robustness of the ship system. The malfunction of a smart actuator can

be caused not only by the external factors such as explosion and physical rupture,

but also by the device failure, which is from the component’s nature of reliability.

For example, the valve actuator of a smart-valve component can be broken and stuck

in a certain valve opening states; or the embedded micro-controller in the smart

valve can experience physical or software-caused faults, such as short/open-circuit

and code bugs. Each control unit and the distributed control system must be able

to manage such malfunctions in a way to minimalize the disturbance to the ship

system-level operation and performance. When it comes to including the analysis

of system robustness to device failures early in the design processes, the reliability

data of various devices of interest and probabilistic failure modeling of the plant are

also required in that stage. Also, the control laws of identifying device failures and

reacting to prevent the ship system from cascading failure have to be developed and

added to the local processes of the component-level control units.

4.2.3 Automatic Generation of Reference Damage Control Model

The proposed modeling environment automatically generates the reference damage

control model for a given graph model. This feature is important because the M&S

environment will not be useful for design analyses if the damage control model must

be created or modified manually whenever the model configuration changes. As pre-

viously described in §4.2.2.1, the reference damage control system is an aggregation

of multiple component-level control agents. In order to automate the generation of

the reference damage control model, an automation algorithm must be able to create

its control agents, and identify the neighbors and the local adjacency matrix adj mat

of every control agent. Since the whole purpose of this automation algorithm is to

142

obtain a reference damage control model for every newly reconfigured plant model,

the algorithm must be able to extract the topological and other configuration infor-

mation of the plant model, and use them in order to regenerate a properly working

damage control model. Therefore, the developed auto-generation algorithm uses the

incidence matrix of the graph-based fluid model as the main input, since the incidence

matrix is an extracted form of information of the model’s topological connectivity,

and the M&S environment is developed to update the incidence matrix according to

changes in the topological configuration of the model.

The automation algorithm is constructed of the edge contraction [14, 17] in graph

theory and the generation of the edge adjacency matrix with the controller-attached

edges of a graph model. The basic steps of the algorithm for auto-generation of the

reference damage control model are as follows:

1. Identify all the edges that will not have control units, in a graph model.

2. Create another incidence matrix Ace that is constructed only with the controller-

attached edges in the graph model. Ace is obtained by performing edge contrac-

tions for all the edges without controllers from the original incidence matrix A

of the graph model.

3. Generate the edge adjacency matrix Xce using Ace, the new incidence matrix

with the controlled edges.

4. Create controller objects for the controller-attached edges. Identify the neigh-

bors list and the local adjacency matrix of each controller object using Ace and

Xce.

The second step in the algorithm, which is the process of edge contraction, comprises

two procedures, the deletion of an edge and the fusion of the two incident nodes of

the deleted edge. Figure 60 shows an example of the contraction of e1 in the graph

143

Figure 60: Contraction of Edge e1

model of a smart valve-equipped fluid system in Figure 58. As shown in Figure 60, e1

is removed, and the two previously adjacent nodes v1 and v2 are fused as v1 after the

edge contraction. The contraction of e1 can also be expressed by the manipulation of

the incidence matrix. Figure 61 describes the steps of the contraction of e1, associated

with the corresponding incidence matrix manipulation. The step of generating Ace

from A using the edge contraction is performed with another three sub-steps. In

Figure 61, the first sub-step is equivalent to the identification of the edge to be

contracted, and the nodes of the edge. In this step, first, the column representing the

edge to be contracted is chosen from the incidence matrix A. Then, the two rows with

nonzero elements in this column are selected. These two rows in matrix A represents

the two nodes that are adjacent though the edge. As shown in Figure 61, e1 is the

edge to be contracted, so the 1st column is selected. Next, the 1st and 2nd rows of

A are selected, since they are the two nonzero elements in the 1st column. On the

incidence matrix for the first step in Figure 61, these two rows are enclosed with a

blue rectangle.

The second sub-step in Figure 61 is equivalent to the fusion of two nodes. The

vector summation of the 1st and 2nd rows of A is performed and the result of the

summation replaces the 1st row of A. After the summation process, the lst row has

the incidence information of the fused node, which is v1 after the contraction of e1.

Since v2 is absorbed into v1, the 2nd row is erased from A.

144

Figure 61: Manipulation of Incidence Matrix for Contraction of Edge e1

145

The third sub-step is equivalent to the deletion of edge e1. After the second step,

the column representing the edge to be deleted must be a zero vector, which means

this edge has no connection with the rest of the elements in the graph model, so this

column is removed from A.

In the auto-generation algorithm, these three sub-steps of the edge contraction

must be iterated for all the edges without controllers. Completion of the iterative

edge contraction actually generates the incidence matrix Ace, which has only the

controller-attached edges for its columns. In the simple graph model in Figure 60, e1

is the only edge without a controller, so the algorithm enters the third step, which

is the generation of the edge adjacency matrix of the controller attached edges. In

order to obtain this matrix, first, the following matrix operation is performed:

Xce = AT
ceAce (87)

Next, all the diagonal elements of Xce are replaced with zero values. The resulting

new Xce is a symmetric m ×m matrix (where m = |E(G)|). This matrix provides

the adjacency of the edges of the graph and is very similar to the Laplace matrix in

graph theory, which also provides the adjacency of its nodes. If there is a nonzero

off-diagonal element, which is Xce(i, j) with i, j = 1, . . . , m and i 6= j, then the ith

edge is adjacent with the jth edge. For this reason, the author refer to the Xce matrix

as the edge adjacency matrix of a graph. Equation (88) is the edge adjacency matrix

of the controller-attached edges for the example case in Figures 60 and 61.

Xce =



























e2 e3 e4 e5 e6

e2 0 −1 1 −1 0

e3 −1 0 0 0 1

e4 1 0 0 −1 0

e5 −1 0 −1 0 0

e6 0 1 0 0 0



























(88)

146

Figure 62: Extraction of Neighbors List and Local Adjacency Matrix (adj mat) of
Controller on e2

In the final step of the algorithm, the neighbors list and the local adjacency

matrix of every control unit in the system are extracted from Ace and Xce that were

generated from the previous steps. This process is described using the example case

for the control unit attached on edge e2 in Figure 58, which is shown in Figure 62.

The process begins from Xce in Equation (88). As previously explained, the nonzero

elements of each row or column of this symmetric m × m matrix represents the

corresponding edge’s adjacency with the other edges. According to Equation (88),

e2 is represented by the 1st row, which is highlighted by the solid rectangle on Xce,

in Figure 62. From the 1st row, the columns with nonzero elements indicate that

e3, e4, and e5, are adjacent with e2, therefore, the controllers on those edges are the

neighbors of the controller on e2. In Figure 62, the columns for e3, e4, and e5 in

matrix Xce are highlighted by the dotted rectangle.

The next step of the process is to find the local adjacency matrix. In order to find

it, first, the column representing e2 is selected from Ace, and then, the two rows with

nonzero elements in this column are selected. Between the two rows, the row with

-1 in A represents the edges’ incidences with the in-node of e2, and the row with 1

147

represents their incidences with the out-node of e2. Since the edges representing the

neighboring controllers are already identified using Xce, which is also highlighted by

the dotted box on Ace in Figure 62, the matrix elements that are enclosed by both

the solid and the dotted boxes of Ace comprises the local adjacency matrix adj mat

of the controller on e2. In Figure 62, these elements are also indicated by the gray

color on Ace matrix. This process is iterated for all the controller-attached edges.

The complete algorithm for identifying the local adjacency matrix of control units

are also described in Algorithm 1.

Algorithm 1 Identify Local Adjacency Matrix
Ace = Incidence matrix of the edges with controller objects

n = No. of rows of Ace

m = No. of columns of Ace {= len ce}

C = Adjacency matrix of the edges with controller objects

ce = Python list of m controller-attached edges

for j = 1 to m do
for i = 1 to n do

if Ace[i, j] = 1 then
row1← Ace[i, :]

else if Ace[i, j] = −1 then
row2← Ace[i, :]

end if
end for
for i = 1 to m do

if Xce[i, j] is not 0 then
Stack ce[i] in ce[j].neighbor
if row1 is not empty then

Append row1[i] in ce[j].adj mat[1,]
end if
if row2 is not empty then

Append row2[i] in ce[j].adj mat[2,]
end if

end if
end for

end for

148

4.3 Model Integration and Simulation

4.3.1 Model Set-Up

The model setup process (Figure 63) starts with the generation of the library of

component-level surrogate models, as discussed in Chapter 3. These component sur-

rogate models are created from an original model that were generated using a domain

specific modeling tool, even though it is not shown in the model setup process in

Figure 63. Next, a baseline graph model is generated based on the modeler’s input

file that describes node and edge properties of the graph model. Figure 64 shows how

Figure 63: UML Activity Diagram of Model Set-Up Process before Simulation

the model generation was implemented in the Python-based M&S environment. The

text file, “comp.txt” in Figure 64 contains the user definition of all the edges such

as in and out node coordinates, the name of the component model function, edge

type, edge component name, control variables, and model parameters. When a graph

model object is created, in a M&S code, by reading the comp.txt file and creating

the objects of edges and nodes accordingly. For more complete example of the model

initiation input file, see Appendix B.1.1 Figure 65 describes a simplified process flow

about the generation of the component surrogate models and the graph-based model.

Based on an original model developed in an domain-specific modeling tool, a model-

ing engineer create the sketch or conceptual map of the graph representation of the

149

Figure 64: User Inputs for Initializing Graph Model

Figure 65: Simplified Diagram of Graph-Based Model Generation Process Flow

original model. Edges of the graph representation are grouped by the configurational

commonality of them, and for each group of edges, regressors and outputs of a com-

ponent surrogate model are defined. Then, the component surrogate model is built,

which becomes the common component behavioral model for the edges of the group.

With the component surrogate models and the graph representation, node and edges

objects are implemented, and these objects form the graph-based model object.

Once the graph model object is created, it becomes the input for generating two

more model objects for a damage analysis. These are the damage planner and the

reference damage control model objects. The damage planner object has a list of

damage scenarios that are defined by different values of the center point and the

radius of a damage bubble. During each simulation, a damage planner reads a set of

the properties for a damage bubble in the list in order, and creates a damage bubble

150

Figure 66: Simulation Process

object when damage is triggered at simulation time t = tdmg, which is set by a user.

The current damage planner object generates only one damage bubble per simulation

run, so it needs to be modified if more bubbles are necessary. Also, based on the

algorithm in §4.2.3, the reference damage control model is generated automatically

for a given graph model.

4.3.2 Simulation Process and Jacobian Computation

The model objects and the component model library then enter the simulation pro-

cess. The UML activity diagram in Figure 66 shows a simplified process for a single

simulation run. The swim-lane partitions in Figure 66 represent the process separa-

tions of different objects. The simulation begins with initializing the pressures at all

the nodes and the flow rates on all the edges in the graph-based model. For each dis-

crete simulation time step, the estimate of ~qt, which is the vector of flow rates of the

edges for the current time step, is computed by executing the component behavioral

151

models connected to all the edges in the graph model object. These model functions

are all in the form of qt = fNN(qt−1, ∆Pt, . . .), and since the previous values of the

node pressures ~Pt is unknown yet, ~Pt−1 is used as the estimate of ~Pt for the initial

computation of ~qt. These initial estimate of flow rates ~qt would not necessarily satisfy

the KCL constraints given by the connection topology of the graph-based model, a

nonlinear iterative solution process is performed for each time step, in order to find ~Pt

that produces ~qt satisfying the KCL constraints. Since this iterative solution process

is the core of the simulation process, the details of the solution algorithm is given

in Algorithm 2, which uses Newton method as the nonlinear solver. As described in

line 2 in Algorithm 2, the solver begins its process with the node pressures and the

edge flow rates from the previous simulation time step as the input, but in the very

beginning of the simulation, ~Pt−1 = ~P0 and ~qt−1 = ~q0.

When the simulation triggers damage, which is scheduled at simulation time tdmg,

the simulation executes the additional process of creating and applying a damage

bubble object to the graph-based model. The process in the damage bubble object

identifies and modifies, or removes, the damaged components of the graph model.

As a result, the simulation has a new model that was reconfigured by the damage

bubble object. With this damaged model, the simulation performs the same routine

of iterative solution process of finding ~Pt and ~qt as previously described. The damaged

model also induces the reaction of the reference damage control model for identifying

and isolating the damage in the graph-based model.

In Algorithm 2, the volumetric flow rate models are functions of pressure, the goal

of the solver is to find the correct ~Pt values that produce the ~qt satisfying A~qt(~Pt) = 0,

in other words, the flow conservation (or KCL) constraints imposed by the network

connection topology. This requires an iterative solution method, because the com-

ponent model of each edge, which computes qt, is a nonlinear function. Algorithm 2

uses the Newton method in which Jacobian J of the vector h, the flow sums at the

152

Algorithm 2 Solution Process

1: GIVEN: g model : GraphModel {graph model object}
2: GIVEN: Pt−1, qt−1 {Type: array. Previous values of pressures and flow rates}
3:

4: Nn = no. of nodes
5: Ne = no. of edges
6: node = g model.node
7: edge = g model.edge
8: Pt = Pt−1 {Use Pt−1 as the first guess of Pt}
9: for i = 1 to Ne do

10: edge[i].qt−1 = qt−1[i]
11: end for
12: loop
13: for i = 1 to Nn do
14: node[i].npt = Pt[i] {npt = node pressure at time t}
15: end for
16: A = g model.get A() {A: incidence matrix}
17: qt = g model.get qt() {Execute edge.model(q(t − 1), ∆P (t), cv(t), prm) for

all edges}
18: h = A · qt

19: if ‖h‖ ≤ ǫ then
20: Escape loop
21: end if
22: J = jacobian()
23: Pt = Pt − J−1h
24: end loop
25: return Pt, qt

nodes, which represent the KCL constraints, can be computed using the available

topological information of the system. For convenience, ~Pt = ~P and ~qt = ~q in the

following derivation.

The Jacobian of vector h(~P (t)) is given by

J(i, j) =
∂hi

∂Pj
(89)

where i and j are integers such that 1 ≤ i, j ≤ p of the graph G, and p is the number

of normal nodes. Also recalling that, hi = Ai · ~q(~P) where Ai denotes the ith row of

A, and ~q(~P) is the |E(G)| length vector of edge flow rates at time t, the Jacobian is

153

given as

J(i, j) = ∂
∂Pj

Ai~q

= Ai
∂~q
∂Pj

= Ai

[

∂q1

∂Pj

∂q2

∂Pj
· · · ∂qk

∂Pj
· · · ∂qm

∂Pj

]T

(m = |E(G)|)

(90)

In fact, the flow rate qk of the kth edge takes the pressure difference as an input,

which can be expressed as

qk(∆P) = qk(Pin − Pout) (91)

where Pin and Pout are the pressure at the in and out nodes of the kth edge. By the

chain rule, this leads to three different cases in the calculation of
∂qk

∂Pj

which are

∂qk

∂Pj
=























∂qk

∂∆P
if Pin = Pj

− ∂qk

∂∆P
if Pout = Pj

0 otherwise

(92)

With a careful observation of Aj , it is already known that:

ajk =























1 if kth edge has a flow out of jth node

−1 if kth edge has a flow into jth node

0 otherwise

(93)

By associating this observation of Equation (93), Equation (92) can be expressed

more simply as,

∂qk

∂Pj

= ajk
∂qk

∂∆P
(94)

Now plugging Equation (94) into Equation (90), the entire J matrix is,

J = A ·





















a11
∂q1

∂∆P
a21

∂q1

∂∆P
· · · an1

∂q1

∂∆P

a12
∂q2

∂∆P
a22

∂q2

∂∆P
· · · an2

∂q2

∂∆P
...

...
. . .

...

a1m
∂qm

∂∆P
a2m

∂qm

∂∆P
· · · anm

∂qm

∂∆P





















= A ·





















∂q1

∂∆P
· AT

1

∂q2

∂∆P
· AT

2

...

∂qm

∂∆P
· AT

m





















(95)

154

Figure 67: Interactions of Elements Model Reconfiguration

So the Jacobian, J can be computed with the derivatives of the m edge model func-

tions and the incidence matrix A. The numerical implementations of both the itera-

tive solver and Jacobian algorithms can be found in Appendix B.3.3.

The graph-based model in the M&S environment can be changed during simulation

by damage on the system, or before simulation for model reconfiguration according to

design changes of the system. With a change of the graph-based model, the Jacobian

matrix in the simulation environment and the reference damage control model are au-

tomatically regenerated. Figure 67 is a simplified diagram describing the interactions

between the elements in the M&S environment when model reconfigurations occur.

155

CHAPTER V

IMPLEMENTATION EXAMPLE

5.1 Brief Introduction of Chilled-Water Model of Notional

Ship

The demonstration model in Figure 69 is basically a scaled-down version of CW-RSAD

model that was created by NSWC-CD [39, 66]. CW-RSAD is a 1/4 scaled-down

physical model of about half of the chilled-water system of the notional DDG-51 class

destroyer. The demonstration model for this research was named the notional-YP

(Yard patrol craft) fluid system model, since its geometric or spatial layout mimicked

that of YP-676, which is used as a training craft in the U.S. Naval Academy [6, 21].

As a part of the ONR-funded IRIS (Intelligent Reconfigurable Integrated Systems)

Figure 68: YP-676 Yard-Patrol Craft

project in Aerospace Design Laboratory of Georgia Institute of Technology, the YP

fluid model was created using Flowmaster R©V7, a 1-D pipeline M&S tool, which

156

has also been used as a domain M&S tool in the NSWC-CD’s integrated simulation

environment for damage propagation analysis. The system configuration consists of

Figure 69: Chilled-Water Cooling Model of Notional YP and Rupture Location

a pair of redundant pump-chiller sub-networks and seven heat exchanger units for

serving six thermal service loads. The heat exchanger units HEX no.4 and HEX no.5

in Figure 69 are a redundant pair serving a single thermal service load, and each heat

exchanger has either one or two (as redundancy) flow control valves in it. Similarly,

each pump-chiller sub-network contains two pumps as redundancy and a reservoir

for an extra water resource in an emergency. The system has 18 smart valves for

automated damage isolation.

Figure 69 shows how damage modeling was implemented in the Flowmaster model.

Applying the Navy’s approach that was introduced in §1.3.1, a rupture valve, which

is shown on the upper right corner of Figure 69, was created at a location at which a

damage was scheduled to occur during a simulation.

157

5.2 Graph-Based Surrogate Model for Notion YP Fluid Sys-
tem

5.2.1 Graph-Based Representation

The first step was the translation of the notional-YP fluid model into a graph-based

representation, such as the one given in Figure 70. In this representation, the model

has 52 edge components and 40 nodes, but all the components belong to one of five

different component types. In other words, all the edge components can be repre-

sented by five component models with appropriate choices of model parameters for

higher reusability. Table 14 is the list of the component models defined in the graph-

based model representation, and the initial values of control variables and parameters

of the 52 edge components can be found from the graph-model initialization input

file in Appendix B.1.1.

As in Table 14, the PC model (pump-chiller model) has two flow rates and two

node pressures as the part of its inputs and is represented by two inter-coupled edges

in the graph model as explained in §4.1.2.1. Although not shown in the Figure 70,

each PC edge component are constructed of two edges, which are connected by a

reference node. For modeling simplicity, the reservoirs are set to provide unlimited

water resources, but in reality, they have only a finite amount of the water and

would be depleted in a short time, if a rupture occurs in the system, but there is

no reaction of damage isolation. As described in §4.1.2.3, the nodes were defined by

their topological coordinates.

5.2.2 Generation of Component Surrogate Models

Seven NN-surrogate models were created to model the five different types of compo-

nents described in Table 14. Table 15 shows the specification of the NN-surrogate

models. In the numerical implementation, these component models are all defined in

158

Figure 70: Graph Representation of YP Fluid Model

159

Table 14: Edge Component Types

Name Component type No. of comps State vars Boundary cond. Control vars Parameters

PIPE Simple pipe 14 q (m3/s) ∆P (Pa) None l (length,m)
VPIPE Pipe with a valve 30 q ∆P v1 (0 to 1) l, d (diameter,m)
SVC-1V Svc load with a valve 1 q ∆P v1 None
SVC-2V Svc load with two valves 6 q ∆P v1, v2 None

PC Pump-chiller sub-net 2 qin, qout Pin, Pout v1, ωpmp (rad/s) None

160

components.py file, which is given in Appendix B.3.2 and works as the component-

model library.

First, the component model was built using the Flowmaster R© tool and connected

to Matlab R© using a COM interface in order to perform the computer experiments.

Then the training data was created according to the settings and process in §3.3. For

each surrogate model, the training was performed five times with the same training

data, and then the NN model with the smallest training MSE was chosen as the final

model.

Particularly for the VPIPE model, four different NN-surrogate models were cre-

ated to represent it. This was done to achieve better accuracy and efficiency in

modeling. During the several trial-and-error iterations for creating a surrogate model

of the VPIPE model, the inclusion of both pipe length and diameter into the input

space turned out to be a less suitable decision since the response data from the com-

puter experiment came with a very large order of magnitude, which deteriorated the

accuracy of the resulting surrogate model. In fact, the YP fluid system was made of

pipes with only three different diameters so the approach of creating a separate sur-

rogate model for each pipe diameter resulted in a good accuracy without sacrificing

affordability of modeling.

Although most of the surrogate models had relatively large training data, the

computational cost for both computer experiments and training the models were not

considerably high, except for the PC model. The computing hardware had an Intel

Core II Duo processor and 2 Gbyte memory, and for all the models other than the

PC model, the computational time for the computer experiment was well less than

one hour and a single training took only a few minutes. On the other hand, the PC

model, which had the most complicated configuration among the component models,

needed significantly longer time – about 4 to 5 hours of computing time – than others.

While testing the surrogate models with valves, a common problem was that their

161

Table 15: NN-Surrogate Models Specification

Name NN-functions Input range Data size No. of neurons Training MSE Test MSE

PIPE pipe
−0.001 ≤ q ≤ 0.001

21, 511 6 1.1351× 10−4 3.1619× 10−4−104 ≤ ∆P ≤ 104

0.5 ≤ l ≤ 5

VPIPE

vpipe 0127
d = 0.0127 −0.001 ≤ q ≤ 0.001

37, 817 8 8.3003× 10−4 1.7213× 10−3

0.3 ≤ l ≤ 1.5 −105 ≤ ∆P ≤ 105

vpipe 01905
d = 0.01905 0 ≤ v1 ≤ 1

102, 285
8

1.9484× 10−3 2.9164× 10−3

0.3 ≤ l ≤ 6.5

vpipe 0254 sdp
d = 0.0254 −0.001 ≤ q ≤ 0.001

26, 694 8 1.0910× 10−5 4.9561× 10−5

2 ≤ l ≤ 7 −4× 103 ≤ ∆P ≤ 3× 103

vpipe 0254
0 ≤ v1 ≤ 1 −0.0005 ≤ q ≤ 0.0005

29, 271 16 2.0953× 10−5 3.1013× 10−3

−7× 104 ≤ ∆P ≤ 7× 104

SVC-1v svc 1v
−0.0005 ≤ q ≤ 0.0005

10, 077 7 1.1351× 10−4 3.1619× 10−4−1× 105 ≤ ∆P ≤ 1× 105

0 ≤ v1 ≤ 1

SVC-2v svc 2v
−0.0003 ≤ q ≤ 0.0003

10, 077 11 1.8831× 10−5 4.5144× 10−5−5× 104 ≤ ∆P ≤ 1× 105

0 ≤ v1 ≤ 1

PC pc
−0.001 ≤ qin, qout ≤ 0.002

13, 200 11 5.7994× 10−4 9.3825× 10−4105 ≤ Pin ≤ 2.5× 105, 105 ≤ Pout ≤ 4.5× 105

0 ≤ v1 ≤ 1, 0 ≤ ωpmp ≤ 400

162

accuracy was insufficient when the valve input was close to zero (i.e., a complete clo-

sure). To address this problem, the following scheme of error correction was applied:

qt =











fNN (qt−1, ∆P, v, . . .) , if v > ǫ

ea(v−ǫ)fNN (qt−1, ∆P, v, . . .) , if v ≤ ǫ
(96)

where, ǫ is a threshold of valve opening value that is close to zero. This scheme works

as follows: a decimal fraction value multiplies the surrogate model output to reduce

its magnitude when the valve input is close to zero. For this particular case, the

coefficient a was set in the range of 17 to 35 and the valve input threshold ǫ was set

to 0.05, which gave the effect of multiplying some value within 0.2 to 0.4 to the model

output when the valve was completely closed.

5.3 Simulation-Based Design Analysis

All simulations ran with a discrete time step of 0.05 second, and as the initial setting

of the simulations, the PC no.1 sub-net operated with a single pump turned on with

a fixed speed of 200 rad/s (about 1910 RPM), while PC no.2 was in off-state. When

PC no.1 was damaged, the controller on PC no.2 turned the pump in the PC no.2

on in order to continue the system-level operation. The 18 damage control valves,

which were placed throughout the two looped pipelines and their by-pass lines, were

connected to the reference damage control model created by the algorithm in §4.2.3.

Three analyses were included in this demonstration. The first was the verification

of the graph-based surrogate model by performing an open-loop damage simulation.

In the first analysis, the simulations of both the Flowmaster and the graph-based

models of the YP fluid system were executed with no damage control attached. As

the damage scenario for both models, a rupture occurred at the two second point

of the simulation with the location on (7,4,0) in Figure 70. Next, the accuracy and

the computational cost of the graph-based surrogate model were compared to the

Flowmaster counterpart, based on the simulation results from the two models. As

163

an additional setting to mimic the condition that the two models were run under an

integrating framework, both the Flowmaster and the graph-based surrogate models

were linked to ModelCenter R© 7.0 using its script-wrapping support, as shown in

Figure 71.

Figure 71: ModelCenter R©7.0 Environment

As the second analysis, a simulation-based damage experiment was performed

with 28 different damage locations. For all simulation runs, a damage was set to be

triggered at the one second point of the simulation. A damage bubble representing

the damage was set to the same radius of 0.7 for all simulations, and the 28 damage

locations were uniformly distributed through the system and are given in Figure 76(b).

For each simulation run, the operational recovery capability of the fluid system was

quantified and plotted, as an example of how this model may help the system engineers

explore and build intuition for designing more resilient systems.

In the last analysis, the design alternatives with different smart-valve placement

were generated from the original fluid system in Figure 70, and the damage experi-

ments were performed for them to find out the designs that delivers better recovery

capability than the original system.

164

5.3.1 Model Verification

The analysis was performed with the simulation running for 5 seconds of simulation

time, and the response comparison is shown in Figures 72 and 73. As in Figure 72(a),

the graph-based surrogate model took 4.48 secs which was 12.6 times faster than the

Flowmaster model, which took 56.48 secs. However, as a compromise to the benefit in

the computational cost, the graph-based surrogate model contained errors and biases

in its response compared to the responses of the Flowmaster model.

These errors and biases could come from a combination of various reasons, but the

highest contributor is more likely the insufficient model accuracy of the PC surrogate

model. The PC Flowmaster model had very slower dynamics than other models, and

needed significantly longer simulation time to reach its steady state than the other

component surrogate models, resulting in the excessively large size and generation

time of the raw data (time-series responses) from the computer simulations using it.

As a way to mitigate these problems, when the two-stage experimental design (see

§3.3.1) was built and executed for the PC model, only 30% of the original second-stage

DOE were chosen randomly and used as the scenario at each simulation. Also, for

the computer experiment, a maximum simulation time was set for all the simulation

runs so the simulations stop even if they did not reach the steady-state responses,

in order to keep the raw data from being excessively large to manage. With these

two settings, the computational time for generating the training data from the PC

Flowmaster model was about 4 to 5 hours as previously mentioned in §5.2.2. It is

significantly faster than the computation with the full, original size of the DOE with

dynamic variables and no final-time threshold during simulation, which may take

a few days to be completed. However, the PC surrogate model was created from

insufficiently large enough training data set for its dimension and size of input space,

so this led to higher prediction errors for the PC surrogate model when in use.

165

(a) Computation time (b) Pump-chiller net no.1

(c) Pump-chiller net no.2 (d) Heat Exchanger No.1

(e) Heat Exchanger No.2 (f) Heat Exchanger No.3

Figure 72: Comparison of the Responses of Flowmaster and Graph-Based Surrogate Model with the Rupture at (7,4,0), Part
1

166

(a) Heat Exchanger No.4 (b) Heat Exchanger No.5

(c) Heat Exchanger No.6 (d) Heat Exchanger No.7

(e) Total Rupture Flow

Figure 73: Comparison of the Responses of Flowmaster and Graph-Based Surrogate Model with the Rupture at (7,4,0), Part
2

167

Despite this problems, the graph-based surrogate model is still very useful, espe-

cially for the early phase of the design process. In practice, the Flowmaster model is

not necessarily more accurate than the graph-based surrogate model when it comes to

modeling in the early design stage because a large portion of the system detail is still

unknown or undecided. Instead, what is needed more in the early design stage is a

computationally affordable model that lets a designer run a large number of analysis

cases for exploring as large a design space as possible, meaning that the graph-based

model can be an attractive choice to serve the purpose.

5.3.2 Damage Analysis of Notional YP Fluid Model

In the second analysis, the system was closed by the reference damage control loop

(see §4.2.2), and each of the 28 simulations ran for 10 seconds of simulation time.

Figure 74 shows the different locations of the centers of the damage bubbles in the

28 simulation cases.

Figure 74: Damage Locations for 28 Simulation Cases

Figure 75 shows the comparison of two of the open-loop and the closed-loop re-

sponses for the graph-based surrogate model with the same damage condition as the

one in the first analysis. In Figure 75(a), right after the rupture occurred at the one

168

0 2 4 6 8 10
Time (sec)

0.00006

0.00007

0.00008

0.00009

0.00010

0.00011

0.00012

0.00013

V
o
lu

m
e
tr

ic
 f

lo
w

 r
a
te

 (
m

^
3

/s
)

Heat Exchanger No.1

Open-loop
Closed-loop

(a) Flow Rate at Heat Exchanger No.1

0 2 4 6 8 10
Time (sec)

�0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
o
lu

m
e
tr

ic
 f

lo
w

 r
a
te

 (
m

^
3

/s
) Rupture flow & Damage valve positions

Open-loop
Closed-loop

0 2 4 6 8 10
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

V
a
lv

e
 o

p
e
n
in

g
 r

a
ti

o
n Valve at (7,2,0)

Valve at (5.5,4,0)

(b) Total Rupture Flow and Damage Control Valve Inputs

Figure 75: Comparison of Open-Loop and Closed-Loop Responses of YP-Fluid
System with Rupture at (7,4,0)

second point of the simulation, the closed-loop system had a similar sudden drop

in flow rate as in the open-loop system, but eventually settled into a new recovered

steady state due to the successful isolation of the rupture. Although Figure 75 is only

one of the 28 results, the other behaviors are similar to Figure 75.

Figure 75(a) reveals an interesting aspect of the recovered steady state of the

system, which is that the flow rates at the heat exchanger units are usually increased

after the system recovers from a rupture. It happens when the closure of damage

169

control valves isolates not only a rupture, but also a heat exchanger unit near the

rupture from the rest of the system, so the total number of working heat exchangers

that share the chilled-water resource provided by the PC component decreases. As

a result, the amount of the chilled water available for each heat exchanger increases

after the system is recovered.

5.3.2.1 Defining Operation Capability Rate of YP-Fluid System

In order to quantify and measure the system recovery performance for every simula-

tion case, the operation capability rate (OCR) of the YP-fluid system was defined in

the following way:

OCR =
w1q̃

f
1 + w2q̃

f
2 + w3q̃

f
3 + w4 ·max

(

q̃f
4 , q̃f

5

)

+ w5q̃
f
6 + w6q̃

f
7

w1qo
1 + w2qo

2 + w3qo
3 + w4 ·max (qo

4, q
o
5) + w5qo

6 + w6qo
7

(97)

and

q̃f
i =











qf
i , if qf

i ≤ qo
i

qo
i , otherwise

(98)

where, qo
i and qf

i (i=1,. . . ,7) were the initial and the final values of the volumetric

flow rates at the 7 heat exchanger units, and wj (j = 1, . . . , 6) were the weight

coefficients for the six thermal service loads in the system. In Equation (97), the

terms w4 · max (qo
4, q

o
5) and w4 · max

(

q̃f
4 , q̃f

5

)

reflected the fact that the two heat

exchangers HEX no.4 and HEX no.5 were a redundant pair serving a single service

load.

The OCR has a scale of 0 to 1 which represents a measure of how well the recovered

system maintained its chilled-water delivery capacity from the level of the system be-

fore a damage. Given the formulation of Equation (97), the OCR estimation strongly

relies on the right choice of the weight coefficients which represent the service load

priorities based on customer requirements, mission profile, and design philosophy. In

this analysis they were chosen by the author for demonstration purposes and are given

in Table 16.

170

Table 16: Thermal Service Loads

Load No. : 1 2 3 4 5 6

Load Name : IED Eng Rm Radar CIC Fuel Cell EM Gun
wj : 2 6 5 8 4 6

HEX No. : 1 2 3 4 5 6 7

A system’s recovery performance should not be measured exclusively using the

final system state after recovery, but also by how quickly the system recoveres. The

OCR in Equation (97) was not formulated using this criterion because the model

has no control-induced delay or failure in damage control efforts. However, in a real

application to control development and test, the recovery speed must be taken into

account in the formulation of OCR.

5.3.2.2 Results

Figure 76 is the OCR result of the damage analysis performed with the 28 damage

cases. In Figure 76, the average value of the OCR in the damage analysis was

0.80, meaning that the system’s overall capability to recover from a single rupture

was quite good, although the system still had room for improvements. The result

has a few interesting patterns, one of which is that simulations 8, 18, 23, and 25 not

only yielded the four lowest OCR values, but also all had the same damage area in

the mid-area of the port side of the system, as shown in Figure 77. This particular

pattern in the analysis result clearly shows the problem area for more survivable and

resilient system design. Based on the result, a design engineer can create a number of

design alternatives with different schemes of control strategy, valve placement, bypass

pipeline placement, or service load locations, and then perform the same routine

of modeling and damage analyses introduced here to evaluate the group of design

alternatives in an automated manner. Among those various analysis approaches,

the analysis for optimal valve placement was performed as the next step, based on

171

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Simulation no.

0.0

0.2

0.4

0.6

0.8

1.0

O
p
e
ra

ti
o
n
 c

a
p
a
b
ili

ty
 r

a
te

Operation capability comparison

(a) Operation Capability Rates

(b) System Failure Status

Figure 76: Result of Damage Analysis

172

Figure 77: Rupture Locations for Damage Simulations with the Four Lowest OCR
Values

the combinatorial generation of the designs with different valve placements and the

evaluation of the recovery performances of them.

5.3.3 Design Analysis for Optimal Smart-Valve Placement

In the damage analysis result shown in Figure 76, another useful pattern that can be

found is that the system’s OCR values evaluated for simulations 0 to 9 are almost

identical with the OCR values from simulations 10 to 19. This pattern can be ex-

plained by that the system’s upper and lower pipelines are the exact mirror images

of each other, including the valve locations in the pipelines. The rest of the simula-

tion results conform this interpretation. Simulations 21, 24, 25, and 27, which had

damages on the upper pipeline, yielded almost the same OCR values as simulations

20, 22, 23, and 26, which had damages on the lower pipeline.

Based on the above observation, the configuration of the YP-fluid system can be

represented simply by the partial topology of either the upper or the lower pipeline.

Similarly, the damage analysis will be sufficient with either the upper or the lower

173

Figure 78: Original Smart-Valve Placement of YP-Fluid Model

pipeline area, because these two areas only yield redundant OCR measurement results.

When the upper pipeline is chosen as the representation of the YP-fluid system, the

system topology can be described by Figure 78, assuming the configuration of the

lower pipeline is the exact mirror image of that of the upper pipeline. The circles

with “V” indicate the smart valves for damage control.

For the simplicity and efficiency of the analysis, the focused area, which is in-

dicated by the dotted box in Figure 78, is defined. This focused area encloses the

problem area identified from the damage analysis in §5.3.2.2, which is the mid-section

of the port side of the system. The analysis is not performed for the outside of the

dotted box because the system already achieved considerably good recovery capability

for the damage on that area.

5.3.3.1 Analysis Approach

The analysis process starts with the construction of a “bare” model by eliminating all

the valves inside the dotted box from the original YP-fluid model shown in Figure 78.

In the numerical implementation, the bare model is created simply by replacing all

the VPIPE edge components in the dotted box into PIPE edge components. The

bare YP-fluid model is shown in Figure 79. In the initialization input file for the bare

174

model in Appendix B.2.1, pipe component model is assigned to all the edges in the

dotted box.

Figure 79: Bare Model of YP-Fluid System and Its Damage Locations

The bare model has seven candidate locations, which are denoted by 1 to 7 in

Figure 79, for placing smart valves. The models for evaluation are generated based on

the full combinatorial variations of valve placement on these seven locations, resulting

in creation of the system models with 2 to 6 valves in the dotted box in Figure 79.

The numbers of the generated models for the systems with different valve amounts

are given in Table 17.

Table 17: Number of Generated Models for YP-Fluid Systems with Different Valve
Amounts

Valve amount: 2 3 4 5 6

No. of models: 21 35 35 21 7

Total: 119

Figure 79 also shows the damage locations for 9 simulation cases. These locations

are selected from the 28 damage locations that were used in the damage analysis in

§5.3.2.

175

Figure 80: Number of Smart Valves vs. Average OCR

With the 9 damage locations shown in Figure 79, the same damage analysis routine

as §5.3.2 is executed for each model of 119 models, providing the estimation of the

OCR values of all 9 damage cases and the average OCR of each system model.

5.3.3.2 Results

Figure 80 is the plot of the average OCR values from the simulations of all 119 models.

The average OCRs are plotted with respect to the number of valves that the system

models have on the 7 predefined locations in the bare model, as shown in Figure 79.

The blue line indicates the average OCR of the original YP-fluid model in Figure 78,

which is referred to as the baseline model in the result.

According to the result of the average OCRs, there are only six system configura-

tions that provide improvement in the overall recovery performance from the original

176

configuration. Also comparing the results of the 5- and the 6-valve configurations, it

is shown that adding one more valve from the system with 5 valves brings little or no

improvement in the maximum average OCR.

Anyway, since the goal of this analysis is to find the valve placement that provides

the best recovery performance, the model with the maximum average OCR was down-

selected from each group of models with the same number of valves. Figures 81 and 82

show the five models that give the maximum average OCRs among the 2- to 6-valve

systems.

(a) For 2-Valve Configuration

(b) For 3-Valve Configuration

Figure 81: Smart-Valve Placement of Design with Maximum Average OCR for
Different Valve Amount, Part 1

177

(a) For 4-Valve Configuration

(b) For 5-Valve Configuration

(c) For 6-Valve Configuration

Figure 82: Smart-Valve Placement of Design with Maximum Average OCR for
Different Valve Amount, Part 2

178

One interesting pattern in the model topologies of the five models shown in Fig-

ures 81 and 82 is that everyone of the five models keeps the valve placement of the

models with a smaller number of valves. If this pattern is true for many similar ap-

plications, knowing this pattern will be very useful for the design process for optimal

valve placement, since the optimal location of every additional valve from the current

design can easily be found.

Another result set is the plots of the OCR values for the 9 damage simulation

cases with the five models, with comparison to the baseline model. Figure 83 shows

the results of the 2-valve and the 3-valve models.

0:
(3

.5
,0

.0
,2

.0
)

1:
(5

.2
5,

0.
0,

2.
0)

2:
(7

.0
,0

.0
,2

.0
)

3:
(3

.5
,4

.0
,2

.0
)

4:
(5

.2
5,

4.
0,

2.
0)

5:
(7

.0
,4

.0
,2

.0
)

6:
(4

.0
,1

.0
,2

.0
)

7:
(4

.0
,3

.0
,2

.0
)

8:
(7

.0
,2

.0
,2

.0
)

Sim no.: damage location

0.0

0.2

0.4

0.6

0.8

1.0

O
p
e
ra

ti
o
n
 c

a
p
a
b
ili

ty
 r

a
te

Baseline
2 valves
3 valves

Figure 83: OCR Values of Tested Damage Cases for the Best Designs in 2- to
3-Valve Configurations

In fact, the baseline model is also one of the 4-valve models so Figure 83 shows

how much degradation of the damage recovery performance is expected by decreasing

the amount of smart valves from the baseline design. According to Figure 83, the

design with 2-valve configuration for the focused area results in a significant level of

degradation in system survivability. On the other hand, the 3-valve design yields only

179

a subtle degradation from the baseline design.

Figure 84 shows the comparison between the baseline design, which is one of the

4-valve system, and the optimal design in the 4-valve configuration. Even with the

same amount of smart valves, the optimal design delivers a more favorable OCR

profile, which is flatter and more consistent through all the damage cases than that

of the baseline design. Especially, the improvement on the problem area, the mid-

section of the port side, is significant; for simulations 4 and 7 in Figure 84, the OCR

values of the baseline model are 0.54 and 0.60, but those of the optimal model are

0.78 and 0.79.

0:
(3

.5
,0

.0
,2

.0
)

1:
(5

.2
5,

0.
0,

2.
0)

2:
(7

.0
,0

.0
,2

.0
)

3:
(3

.5
,4

.0
,2

.0
)

4:
(5

.2
5,

4.
0,

2.
0)

5:
(7

.0
,4

.0
,2

.0
)

6:
(4

.0
,1

.0
,2

.0
)

7:
(4

.0
,3

.0
,2

.0
)

8:
(7

.0
,2

.0
,2

.0
)

Sim no.: damage location

0.0

0.2

0.4

0.6

0.8

1.0

O
p
e
ra

ti
o
n
 c

a
p
a
b
ili

ty
 r

a
te

Baseline
4 valves

Figure 84: OCR Values of Tested Damage Cases for the Best Design in 4-Valve
Configuration

Lastly, Figure 85 shows how much improvement the design with more smart valves

can provide compared to the baseline and the 4-valve optimal designs. As shown in

Figure 85, the 5-valve optimal design yields further improvements from the 4-valve

optimal design. However, as mentioned earlier, the 6-valve design provides almost

no improvement from the 5-valve design for the given damage cases. Assuming the

180

0:
(3

.5
,0

.0
,2

.0
)

1:
(5

.2
5,

0.
0,

2.
0)

2:
(7

.0
,0

.0
,2

.0
)

3:
(3

.5
,4

.0
,2

.0
)

4:
(5

.2
5,

4.
0,

2.
0)

5:
(7

.0
,4

.0
,2

.0
)

6:
(4

.0
,1

.0
,2

.0
)

7:
(4

.0
,3

.0
,2

.0
)

8:
(7

.0
,2

.0
,2

.0
)

Sim no.: damage location

0.0

0.2

0.4

0.6

0.8

1.0

O
p
e
ra

ti
o
n
 c

a
p
a
b
ili

ty
 r

a
te

Baseline
4 valves
5 valves
6 valves

Figure 85: OCR Values of Tested Damage Cases for the Best Designs in 4- to
6-Valve Configurations

5-valve design is chosen as the final design, the final status of the system components

after damages are shown for the baseline and the 5-valve designs in Figure 86, and

Figure 86(b) shows that the reason for the improved OCR of the 5-valve design over

the baseline is due to the improved survivability of the HEX no.2 component. In

the 5-valve design, the HEX no.2 component is not down by the damage at the

mid-section of the port side of the system.

5.4 Conclusions

This M&S example demonstrated a design oriented application of the developed M&S

environment. First, a model of the fluid system in the notional YP was created

based on the graph-based, component surrogate modeling approach, and the model’s

accuracy and other performances were evaluated. As a next step, a simulation-based

damage analysis was performed to explore the design alternatives with various smart

valve amounts and locations, as a way to find a YP-Fluid system design that could

181

provide better survivability and resiliency to system damages or failures than the

original baseline design.

The demonstration shows that the developed method is capable of delivering a

computationally efficient, flexible, and automation-friendly M&S environment which

can enable a more rigorous damage analysis in the early design stage. The M&S

method is also expected to facilitate the design-space exploration for numerous topo-

logical and component-wise configurations, with its flexible environment that is suit-

able for building analysis automations.

182

(a) Baseline Model

(b) 5-Valve Optimal Model

Figure 86: Component Status Comparison Between Baseline and 5-Valve Optimal
Designs of YP-Fluid System

183

CHAPTER VI

CONCLUSIONS

In this chapter, the approaches and developments in this thesis are reviewed based

on the research problems identified in §1.3. Then, the drawbacks and limitations

of the developed modeling method are pointed out, and the directions of the future

research for improving the modeling method are also discussed from those weaknesses

and limitations. Lastly, the future research directions in the view of the potential

extension of the application domain of the thesis work are briefly introduced.

6.1 Review Based on Research Problems and Goals

The research motivation of the thesis started from the observation of the problems

in the current simulation-based approaches for developing fail-proof, integrated en-

gineering systems of a naval military platform. Among many problems, the author

specifically focused on the capability gaps in the domain-level simulation for the

simulation-based design of fail-proof engineering systems. These identified gaps were

damage modeling capability, and flexible model reconfiguration, and simulation speed

as found in §1.3. In order to answer the solutions to the three problems, the author

developed the graph-based component surrogate modeling method, and the modeling

method is reviewed in order to check how well it addresses the three problems to be

solved.

6.1.1 Problem 1: Damage Modeling

The fundamental elements of the solution approach, not only for the problem of dam-

age modeling, but also for the other two problems, are the graph-based topological

modeling method and the separated management of the component behavior model

184

library. The two elements in the M&S formulation are the key enablers to build highly

flexible fluid network models that are reconfigurable both before and during simula-

tion, but these two elements are not sufficient for modeling damages of fluid systems.

As the application-specific solution for augmenting the damage modeling feature on

top of the basic two elements for flexible and reconfigurable modeling environment,

the damage modeling tools such as damage bubble class, reference control model,

and the auto-generation algorithm of reference control model are developed. As a

result, as demonstrated in §5.3.2, the model based on the developed M&S approach

exhibited a high level of rigorousness in damage analysis that could not be expected

from currently available pipeline fluid-modeling tools.

6.1.2 Problem 2: Model Reconfiguration

Along with the graph topological modeling and the component model library, the

object-oriented script-based modeling environment contributes the environment for

automated model reconfiguration. There can be three different cases in model re-

configuration, which are, changes of connection topology without changes in behavior

models of the components, changes of behavior models of components without chang-

ing their connectivity, and changes of both component behaviors and their topologies.

The first case is easily programmable in a way to changing the component models of

edges to any other models in the component library, which is managed by linking a

selected model function to the model attribute of edge objects. For the second case,

the incidence matrix of graph theory as the instantiation of the connection topology

of the fluid model makes the connection topology of the model highly reconfigurable

both before and during the simulation. The third case can be implemented by com-

bining the two modeling features for the first two cases. Among the three cases,

the first case was demonstrated in §5.3.3, and for the second and third cases, damage

modeling and simulation is a specific use-case of the third case, so they were indirectly

185

demonstrated in §5.3.2 and §5.3.3.

6.1.3 Problem 3: Simulation Cost

In order to improve the speed of the simulation-based analysis for the naval fluid

system, the M&S method applies the surrogate modeling technique for generating

dynamic component behavioral models. In §3.1, the requirements were set for the

surrogate modeling approach applied to the fluid system components, and they are

summarized as follows:

1. Sufficient level of fidelity in nonlinear dynamic systems modeling.

2. Model parsimony for computational efficiency.

3. Surrogate modeling process that is simple, efficient, and automation-friendly,

with minimal data generation required.

Based on the literature search of available surrogate modeling techniques and meth-

ods in Chapter 2, RNN was selected as the most suitable surrogate model structure

among them, but the surrogate modeling approach based on a plain RNN still needed

improvements in model stability and robustness, and training efficiency to satisfy all

the requirements. As a result, the output-feedback block structure for RNN and

various other tools were developed for RNN-based surrogate modeling.

The RNN-based surrogate modeling method was validated in the two example

implementations in §3.4, showing the significant improvements in not only model

stability and robustness but also model training efficiency and accuracy over the

plain RNN. The improvements of model stability and accuracy also indirectly mean

the reduced data size required for training RNN. In order to ensure the model stability

and accuracy of a plain RNN, the training data must fill the response space very

densely, and the trained RNN should be validated with the separate validation data

set. However, the block structure in §3.2 augments the RNN’s model stability so

186

significantly that the RNN with this block structure does not have to rely on the

massive size of a training data set or a validation data set in order to ensure model

stability and robustness.

6.2 Drawbacks and Limitations

The developed modeling method has weaknesses and limitations, which provide open

questions for future research. In this section, some of the weaknesses and limitations

that were identified by the author are briefly introduced and discussed.

6.2.1 Limited Data Accessibility of Component Surrogate Models

The developed modeling method applies the RNN-based surrogate modeling approach

in order to create component models of a fluid network system. The drawback of

the surrogate modeling approach is that, once the surrogate model is created, it is

impossible to access any data or information other than the model outputs defined

during the surrogate model generation process. In order to access the additional

data, the surrogate model should be regenerated with a new training data set which

is generated by the fresh execution of computer experiment. For such components,

therefore, physics-based modeling will be a better choice than surrogate modeling.

6.2.2 Difficulties in Predicting and Controlling Accuracy of Component
Surrogate Models

A big problem of system modeling based on the aggregation of component surro-

gate models is that the model accuracy is extremely difficult to predict. This error-

prediction problem can be summarized to the two smaller problems of:

1. Proper definition of model error for dynamic systems.

2. Identification of the mechanism of error propagation in an aggregated model.

The difficulty in answering the first question was from the feedback structure of the

dynamic simulation model. For a static model, the model accuracy can be measured

187

by the error between the actual and the predicted outputs. For a dynamic model,

the predicted output is fed back to the model in order for the model to generate the

output for the next time step, meaning that the error in the predicted output is also

fed into the model and affects the model output for the next time step. This error

propagation, or the error dynamics, of the dynamic model is very important because

the instability of the error dynamics is the main cause of the model instability. In the

implementation examples in §3.4 and §5.3, the MSEs measured from the training and

test data sets were used as the measurement of model accuracy of all the surrogate

models, but these two MSEs are not the adequate choice of the model accuracy

measurement for the dynamic models since they are lack of the information about

the stability of error dynamics.

The second problem is about knowing how the error is propagated from one com-

ponent model to another. This mechanism of error propagation in the system is

believed to be dependent on both the connection topology of its component models

and the local error dynamics of each component model, which again, leads to the first

problem. Because of the complexity in predicting the error for the type of system

models covered in the thesis, it is mostly left as the part of future research.

6.2.3 Linear Edge-Based Component Definition

The developed modeling method only allows the linear edge, which comprises two

nodes and a single flow property as the definition of components. This single way of

defining components can be troublesome when it comes to modeling with components

that consist of multiple nodes and flows and can not be decomposed any further into

linear edge components. A good example of such components in fluid systems is a

T-junction, which has three nodes and three different flow values.

In the graph-based topological modeling method, there is another limitation,

188

which is, a system with multi-graph topology can not be implemented. The cur-

rent numerical implementation of the connection topology is heavily utilizing the

incidence matrix of linear graph theory, which does not have capability of modeling

several characteristic elements of multi-graph such as self-loops and multiple edges

on common two nodes.

6.2.4 Modeling of Compressible-Flow Systems

A component in the developed modeling method is defined by an edge of a graph, and

the flow through an edge is assumed to be unique. However, for a compressible-flow

system, this assumption is not true. In order for the graph-based component-surrogate

modeling method to be applicable to compressible-flow systems, its component def-

inition and component modeling process must be further developed, or modified, to

address the flow value changes within edges caused by the compressibility effect.

6.3 Future Research

Although the graph-based component surrogate modeling method has been developed

based upon the applications to a ship fluid system, it has potential merits as the

solutions of many M&S challenges in different domains of application.

6.3.1 Application Expansion to Electric Power Distribution Systems

The DC electric power networks have strong physical analogies to fluid network sys-

tems so it may be a natural path of the future research to expand the application of

the graph-based component surrogate modeling method to electrical systems mod-

eling. This expansion of the application domain can bring synergistic benefits in

simulation-based design of many large-scale engineering systems, since the today’s

“more-electric” systems have strong coupling of electric power and thermal manage-

ment using fluid systems, and the graph-based M&S environment for the integrated

analysis of both the electrical and the fluid cooling systems will be an enabler to bring

189

a more sophisticated and holistic trade study of a large-scale engineering system into

early design stage.

6.3.2 Simulation-Based Analysis for Energy Optimized Aircraft (EOA)

One of the goals in Integrated Vehicle & Technology (INVENT) program initiated

by the U.S. Air Force Research Laboratory (AFRL) is to bring the platform-level

energy optimization early into the design process of today’s more electric, more in-

tegrated aircraft [82]. This approach has led to a multitude of challenges, and one

of them is that the aircraft is composed of a large number of components that are

modeled using physics-based, time-domain modeling, so the resulting high-fidelity

aircraft model becomes computationally too expensive to use in the mission-level or

system-level optimization analyses. In order to address this problem, AFRL tries to

perform system-level M&S by generating the reduced-fidelity models of various sub-

systems and components, such as thermal management, electric power distribution

and management, and electronics devices.

Considering the AFRL’s M&S approach, the RNN-based surrogate modeling method

developed in this thesis can be a solution for fast and robust creation of the reduced-

order time-domain models for the components such as fluid-based cooling units, elec-

tric power components, and electronics devices in the aircraft system. In addition to

the RNN-based surrogate modeling approach, the graph-based topological modeling

method for weaving the components for fluid and electrical components can provide a

flexible and dynamic modeling environment for system-level optimization in various

aspects including energy, sensor, and survivability optimizations.

190

APPENDIX A

FLOW CONTINUITY-CHECK THRESHOLD OF

SMART-VALVE CONTROL AGENTS

As previously described in §4.2.2 and §4.2.2.1, the reference damage control system

is an aggregated system of control units embedded on the system components. These

component-level control units are attached at smart valves and pump-chiller subnet-

works, and close their valves if flow discontinuities are detected by comparing the flow

rates measured from the neighboring controllers with those measured from their own

valves using the criterion in Equation (85). This criterion uses ε as a threshold for

determining whether flow is continuous or not, which means that different selection of

the value of ε can affect the control unit’s performance of detecting a rupture around

it, and furthermore, the performance of the reference damage control model.

This appendix provides a short case-study of testing the effect of the flow continu-

ity threshold value varepsilon to the rupture isolation performance of the reference

damage control model. As the test platform, the notional YP-fluid model in Chapter 5

and its reference damage control model are reused.

Logically, the lower bound of the possible varepsilon value is determined by the

numerical tolerance used in the iterative solution process in the simulation, which

is Algorithm 2 in §4.3.2. If ε in the control units is set smaller than this numerical

tolerance, the reference damage control model will not be able to distinguish between

the event of flow discontinuity and the numerical error of the simulation, raising the

false detection of system rupture. The numerical tolerance of the iterative solution

process in the simulation of the YP-fluid model is set to 10−7. This is an absolute

tolerance applied for checking the numerical convergence of the norm of vector h in

191

Algorithm 2, which is the vector of flow sums at the nodes, and represents the KCL

constraints of the graph-based model. In the simulation of the YP-fluid model, there

is a secondary tolerance that is set to 8×10−6. Since the component behavioral models

for the edges of the system are all RNN surrogate models, the simulation sometimes

have difficulties in being converged within the accuracy of the original convergence

tolerance when the simulation happens to be performed at the operation region that is

outside the input spaces of some of the surrogate models. In that case, the secondary

tolerance works as a relaxed convergence criterion. If this secondary tolerance is also

violated in the simulation, then the simulation process sends a warning message, and

does not feed the model response output to the control system model in order to

prevent the control model from falling into false detection of ruptures. Thus, with

considering 10−7 as a hard limit, and 8 × 10−6 as a soft limit, the flow continuity

threshold ε of the control units for the YP-fluid system model was set to 1.5× 10−5

in the demonstration of Chapter 5.

The test is performed by executing the same damage experiment as the one with

28 damage cases in §5.3.2, with five different values of ε, which are 10−6, 1.5× 10−5,

10−4, 5×10−4, and 10−3. The first value is between the hard and soft lower limits of ε,

and the second value is the same as the one used in the demonstration of Chapter 5.

As in §5.3.2, the result of each damage experiment is presented by the plot of OCR

vs. simulation numbers, which is Figure 87. In Figure 87, all the damage experiments

yield almost the identical OCR results, except for the one with the largest setting of ε,

which is 10−3. Actually, the results show that the control system with ε = 10−3 fails to

detect and isolate ruptures in many of the 28 different damage cases. Figure 88 reveals

the reason for the control system’s failure to detect and isolate ruptures. Figure 88 is

the plot of the total rupture flow rates result from simulation no.9 in all five damage

experiments with different ε values. In simulation no.9, a rupture is given at (7, 4,

0), as shown in Figure 74. Figure 88 shows that the control reaction to the rupture

192

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Simulation no.

0.0

0.2

0.4

0.6

0.8

1.0

O
p
e
ra

ti
o
n
 c

a
p
a
b
ili

ty
 r

a
te

1e-6
1.5e-5
1e-4
5e-4
1e-3

Figure 87: Damage Analysis Results with Different Values of ε in Control Units

0 2 4 6 8 10
Time (sec)

�0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

V
o
lu

m
e
tr

ic
 f

lo
w

 r
a
te

 (
m

^
3

/s
)

1e-6
1.5e-5
1e-4
5e-4
1e-3

Figure 88: Total Rupture Flow Rate from Simulation No.9 with Different Values of
ε in Control Units

193

becomes slightly delayed as the value of ε becomes larger. With ε = 10−3, the control

system can not detect the rupture any more, since the magnitude of the rupture flow

in the system is still smaller than the threshold ε = 10−3 in the control units. The

result clearly shows that the selection of ε for control units must be bounded by

the expected magnitude of the rupture flow rate in the damage analysis, in order to

develop a reliable reference damage control model.

194

APPENDIX B

SOURCE CODE

The chapter provides Python execution mains, input script files, codes of model

libraries created for the demonstrations in Chapter 5. Table 18 is the list of the Python

module files, with the brief description of them. The M&S environment implemented

Table 18: Python Files for M&S of Notional YP-Fluid System

Package/Module-File Description

notional yp.txt (B.1.1): Graph-based model initialization file input
for generating the graph-based fluid system
model in §5.3.2. Has the configuration infor-
mation of the entire fluid network model.

yp run3.py (B.1.2): Analysis execution main for the demonstra-
tion in §5.3.2.

yp bare model.txt (B.2.1) : Initialization file input for generation the
bare model in §5.3.3.

comb anal.py (B.2.2): Analysis execution main for the demonstra-
tion in §5.3.3.

my modules

cen model.py (B.3.1): Contains node, edge, and graph classes.

components.py (B.3.2): Contains all component RNN-surrogate
models

simul.py (B.3.3): Contains damage planner, damage bubble,
and solver classes.

control.py (B.3.4): Contains component-level control agent, and
reference damage control system classes.

post proc.py (B.3.5): Has Recorder class for storing, replaying, vi-
sualizing the simulation results, and a few
other function for post-processing and ana-
lyzing the results.

in Python consists of three parts of program codes, which are a model initialization

script file, an execution-main script, and the my modules package. The my modules

195

package is a package of the Python modules (files containing the definitions of files

and classes) that are the implementation of the methods and tools developed in this

thesis. For details regarding the codes, refer to the comments in them.

B.1 Execution Main and Initialization Scripts for for §5.3.2

B.1.1 notional yp.txt

The first three lines of the initialization script are the definition of the lower and

upper bounds for three dimensional topological coordinates. In the two dimensional

case, the lower and upper bounds for z-coordinate are all set to zero.

After the “edge:” keyword, each line defines the configuration of an edge, whose

information is separated by spaces or tabs. The configuration information is given

in the following order in a single line: the topological coordinates of the in-node,

topological coordinates of the out-node, function name of a component behavioral

model linked to the edge, type of the edge (normal, source, sink, or damaged), name

of the edge component, control input variables and their initial values, and model

parameters and their values.

When the defined in-node or out-node is a reference node, then “ref@” must be

added in front of the coordinate. For assigning a component behavioral model to the

edge, the assigned model function also must exist in the component library, which is

components.py module.

Lower and upper bounds of the topological coordinates.

Lower Upper

x_bound: 0 7

y_bound: 0 4

z_bound: 0 3

NodeIn, NodeOut, model-func-name, edge-type, model-name,

ctrl inputs, params

choices of node types: nrml(default), dmg, ref

choices of edge types: nrml, dmg, src, snk

196

edge:

[0,0,0] [1,0,0] pipe nrml pipe_lp_1 {} {’l’:3.048}

[1,0,0] [2,0,0] vpipe nrml pipe_lp_2 {’v1’:1} {’r’:0.0254,’l’:6.096}

[2,0,0] [4,0,0] vpipe nrml pipe_lp_3 {’v1’:1} {’r’:0.0254,’l’:6.096}

[4,0,0] [5,0,0] pipe nrml pipe_lp_4 {} {’l’:3.048}

[5,0,0] [6,0,0] vpipe nrml pipe_lp_5 {’v1’:1} {’r’:0.0254,’l’:6.096}

[6,0,0] [7,0,0] pipe nrml pipe_lp_6 {} {’l’:3.048}

[7,0,0] [7,4,0] vpipe nrml pipe_lp_7 {’v1’:1} {’r’:0.0254,’l’:6.096}

[7,4,0] [6,4,0] pipe nrml pipe_lp_8 {} {’l’:3.048}

[6,4,0] [5,4,0] vpipe nrml pipe_lp_9 {’v1’:1} {’r’:0.0254,’l’:6.096}

[5,4,0] [4,4,0] pipe nrml pipe_lp_10 {} {’l’:3.048}

[4,4,0] [3,4,0] pipe nrml pipe_lp_11 {} {’l’:3.048}

[3,4,0] [2,4,0] vpipe nrml pipe_lp_12 {’v1’:1} {’r’:0.0254,’l’:6.096}

[2,4,0] [0,4,0] pipe nrml pipe_lp_13 {} {’l’:3.048}

[0,4,0] [0,0,0] vpipe nrml pipe_lp_14 {’v1’:1} {’r’:0.0254,’l’:6.096}

[4,4,0] [4,2,0] vpipe nrml bps_lp_1 {’v1’:1} {’r’:0.01905,’l’:6.096}

[4,2,0] [4,0,0] vpipe nrml bps_lp_2 {’v1’:1} {’r’:0.01905,’l’:6.096}

[0,0,2] [1,0,2] pipe nrml pipe_hp_1 {} {’l’:3.048}

[1,0,2] [2,0,2] vpipe nrml pipe_hp_2 {’v1’:1} {’r’:0.0254,’l’:6.096}

[2,0,2] [4,0,2] vpipe nrml pipe_hp_3 {’v1’:1} {’r’:0.0254,’l’:6.096}

[4,0,2] [5,0,2] pipe nrml pipe_hp_4 {} {’l’:3.048}

[5,0,2] [6,0,2] vpipe nrml pipe_hp_5 {’v1’:1} {’r’:0.0254,’l’:6.096}

[6,0,2] [7,0,2] pipe nrml pipe_hp_6 {} {’l’:3.048}

[7,0,2] [7,4,2] vpipe nrml pipe_hp_7 {’v1’:1} {’r’:0.0254,’l’:6.096}

[7,4,2] [6,4,2] pipe nrml pipe_hp_8 {} {’l’:3.048}

[6,4,2] [5,4,2] vpipe nrml pipe_hp_9 {’v1’:1} {’r’:0.0254,’l’:6.096}

[5,4,2] [4,4,2] pipe nrml pipe_hp_10 {} {’l’:3.048}

[4,4,2] [3,4,2] pipe nrml pipe_hp_11 {} {’l’:3.048}

[3,4,2] [2,4,2] vpipe nrml pipe_hp_12 {’v1’:1} {’r’:0.0254,’l’:6.096}

[2,4,2] [0,4,2] pipe nrml pipe_hp_13 {} {’l’:3.048}

[0,4,2] [0,0,2] vpipe nrml pipe_hp_14 {’v1’:1} {’r’:0.0254,’l’:6.096}

[4,4,2] [4,2,2] vpipe nrml bps_hp_1 {’v1’:1} {’r’:0.01905,’l’:6.096}

[4,2,2] [4,0,2] vpipe nrml bps_hp_2 {’v1’:1} {’r’:0.01905,’l’:6.096}

197

[2,4,1.8] [2,4,2] vpipe nrml out_pc1 {’v1’:1} {’r’:0.01905,’l’:0.6096}

ref@[2,4,1] [2,4,1.8] cp,0,snk,0 src pc1_out {’v1’:1,’v2’:0,’ps1’:200,’ps2’:0} {}

[2,4,0.2] ref@[2,4,1] cp,1,src,0 snk pc1_in {} {}

[2,4,0] [2,4,0.2] vpipe nrml in_pc1 {’v1’:1} {’r’:0.01905,’l’:0.6096}

[2,0,1.8] [2,0,2] vpipe nrml out_pc2 {’v1’:0} {’r’:0.01905,’l’:0.6096}

ref@[2,0,1] [2,0,1.8] cp,0,snk,0 src pc2_out {’v1’:1,’v2’:0,’ps1’:0,’ps2’:0} {}

[2,0,0.2] ref@[2,0,1] cp,1,src,0 snk pc2_in {} {}

[2,0,0] [2,0,0.2] vpipe nrml in_pc2 {’v1’:0} {’r’:0.01905,’l’:0.6096}

[1,0,2] [1,0,0] svc_2v nrml svc1 {’v1’:1,’v2’:0} {}

[3,4,2] [3,4,1.8] vpipe nrml in_svc2 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[3,4,1.8] [3,4,0.2] svc_1v nrml svc2 {’v1’:1} {}

[3,4,0.2] [3,4,0] vpipe nrml out_svc2 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[4,2,2] [4,2,0] svc_2v nrml svc3 {’v1’:1,’v2’:0} {}

[5,0,2] [5,0,1.8] vpipe nrml in_svc4 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[5,0,1.8] [5,0,0.2] svc_2v nrml svc4 {’v1’:1,’v2’:0} {}

[5,0,0.2] [5,0,0] vpipe nrml out_svc4 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[5,4,2] [5,4,1.8] vpipe nrml in_svc5 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[5,4,1.8] [5,4,0.2] svc_2v nrml svc5 {’v1’:1,’v2’:0} {}

[5,4,0.2] [5,4,0] vpipe nrml out_svc5 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[6,0,2] [6,0,0] svc_2v nrml svc6 {’v1’:1,’v2’:0} {}

[6,4,2] [6,4,0] svc_2v nrml svc7 {’v1’:1,’v2’:0} {}

B.1.2 yp run3.py

1 from my modules . cen model import ∗

2 from my modules . s imul import ∗

3 from my modules . c on t r o l import ∗

4 import my modules . components as comps

5 from my modules . po s t pro c import ∗

6 from numpy import ∗

7 import cP i ck l e

8 import copy

9 import time

198

10

11 # −−−

12 # Generate a l i b r a r y o f component model f un c t i on s .

13

14 c l i b = d i c t ()

15 # Svc load with a s i n g l e v a l v e :

16 c l i b [’ svc 1v ’]=comps . svc 1v

17

18 # Svc load with doub le va l v e s :

19 c l i b [’ svc 2v ’]=comps . svc 2v

20

21 # Chi l l e r−pump un i t :

22 c l i b [’ cp ’]=comps . cp

23

24 # Pipe without va l v e :

25 c l i b [’ pipe ’]=comps . pipe

26

27 # Pipe with va l v e :

28 c l i b [’ vpipe ’]=comps . vpipe

29

30

31 # −−

32 # Creat ion o f a graph model

33

34 comp ts = time . c l o ck ()

35

36 # Feed the ’ n o t i ona l yp . t x t ’ f i l e and the component l i b a r y to crea t e

37 # a graph model .

38 mdl = GraphModel (’ . / no t i ona l yp . txt ’ , c l i b)

39

40 # I n i t i a l i z e the node pres su re .

41 n nodes = mdl .A. shape [0]

199

42 i n i np = 135000∗ ones (n nodes)

43 mdl . s e t np (i n i np)

44

45

46 dt = 0 .05 # time s t ep o f s imu la t ion .

47 s l v r = So lve r (mdl , dt , 1 e−7 ,5) # I n i t i a l i z e s o l v e r o b j e c t .

48

49 # Run s imu la t ion to ob t a in i n i t i a l c ond i t i on s .

50 for i in xrange (7 0) :

51 s l v r . r un to nex t t ime s t ep ()

52 mdl . empty data () # Reset the data s t orage

53 mdl . t=0 # Reset the s imu la t ion time

54 in i md l = cP ick l e . dumps (mdl , 1) # Store the i n i t i a l model .

55 #−−

56 # Damage s imu la t ion .

57

58 t f = 10 # Final t ime o f s imu la t ion .

59

60 # Damage ranges and g r i d den s i t y .

61 x s e t = [0 , 7 , 5]

62 y s e t = [0 , 4 , 2]

63 z s e t = [0 , 2 , 2]

64 d rad = 0 .7 # Damage bubb l e rad iu s .

65 t dmg = 1 # Time t ha t a damage occurs .

66

67 # Create damage s e t .

68 dmg set = DamageSet (x set , y set , z s e t , d rad , t dmg)

69

70 # Addi t iona l cu s t omiza t ion o f the damage s e t .

71 more set = [[0 , 2 , 0] , [0 , 2 , 2] , [4 , 1 , 0] , [4 , 3 , 0] , \

72 [4 , 1 , 2] , [4 , 3 , 2] , [7 , 2 , 0] , [7 , 2 , 2]]

73 dmg set . damage set = append (dmg set . damage set , more set , a x i s=0)

200

74 dmg set . s i z e = dmg set . damage set . shape [0]

75

76 # Se t t i n g d e f a u l t component model and parameters f o r damaged components

77 d f l t mode l = c l i b [’ pipe ’]

78 df l t prm = { ’ l ’ : 0 . 5 , ’ r ’ : 0 . 0 254}

79 r up t p r e s s = 110000 # Pressure s e t t i n g f o r the damage nodes

80

81 # I n i t i a l i z e data recorder

82 r e co rde r = Recorder ()

83 comp t = (time . c l o ck ()− comp ts)

84 print ” i n i t ” , comp t

85 t ime dat = ze ro s (dmg set . s i z e)

86

87 # Damage s imu la t ion body :

88 for i in xrange (dmg set . s i z e) :

89 comp ts = time . c l o ck ()

90 mdl 2 = cP ick l e . l o ads (in i md l) # Load the i n i t i a l graph model

91 s l v r . s e t mode l (mdl 2) # Connect the model to s o l v e r

92

93 # Create the r e f e r en c e damage con t r o l model

94 dcs = DmgCtrlSys ()

95 dcs . s e tup cp agent s (mdl 2 , dt)

96 dcs . s e tup smar t va lve s (mdl 2 , dt)

97 dcs . connect (mdl 2)

98

99 # Update c o n t r o l l e r s in the model .

100 for ag in dcs . agent :

101 ag . u pda t e s e l f ()

102 for ag in dcs . agent :

103 ag . update por ts ()

104

105 # Load damage bubb l e from damage s e t .

201

106 dmg bbl = dmg set . g o t o s e t (i)

107 dmg bbl . d f l t mode l = df l t mode l

108 dmg bbl . d f l t prm = df l t prm

109

110 # Connect the bubb l e and data recorder o b j e c t s to the s o l v e r .

111 s l v r . dmg bubble = dmg bbl

112 s l v r . r e co rde r = reco rde r

113

114 # Run damage s imu la t ion u n t i l t he f i n a l t ime t f .

115 t = 0

116 while t <= t f :

117 i f s l v r . c o n v f l a g == 1 :

118 for ag in dcs . agent :

119 ag . u pda t e s e l f ()

120 for ag in dcs . agent :

121 ag . update por ts ()

122 for ag in dcs . agent :

123 ag . p ro ce s s ()

124 s l v r . r un to nex t t ime s t ep ()

125 t +=dt

126 comp t = (time . c l o ck ()− comp ts)

127

128 # Store the e n t i r e model in t o the data recorder o b j e c t .

129 r e co rde r . s tack mode l (mdl 2)

130 r e co rde r . s t a c k r e s ()

131 print i , comp t

132 t ime dat [i] = comp t

B.2 Execution Main and Initialization Scripts for §5.3.3

B.2.1 yp bare model.txt

Lower and upper bounds of the coordinates of

node positions.

Lower Upper

202

x_bound: 0 7

y_bound: 0 4

z_bound: 0 3

NodeIn, NodeOut, c-model-type, model-name, ctrl inputs, params

choices of node types: nrml(default), dmg, ref

choices of edge types: nrml, dmg, src, snk

edge:

[0,0,0] [1,0,0] pipe nrml pipe_lp_1 {} {’l’:3.048}

[1,0,0] [2,0,0] vpipe nrml pipe_lp_2 {’v1’:1} {’r’:0.0254,’l’:6.096}

[2,0,0] [4,0,0] vpipe nrml pipe_lp_3 {’v1’:1} {’r’:0.0254,’l’:6.096}

[4,0,0] [5,0,0] pipe nrml pipe_lp_4 {} {’l’:3.048}

[5,0,0] [6,0,0] pipe nrml pipe_lp_5 {} {’l’:6.096}

[6,0,0] [7,0,0] pipe nrml pipe_lp_6 {} {’l’:3.048}

[7,0,0] [7,4,0] vpipe nrml pipe_lp_7 {’v1’:1} {’r’:0.0254,’l’:6.096}

[7,4,0] [6,4,0] pipe nrml pipe_lp_8 {} {’l’:3.048}

[6,4,0] [5,4,0] pipe nrml pipe_lp_9 {} {’l’:6.096}

[5,4,0] [4,4,0] pipe nrml pipe_lp_10 {} {’l’:3.048}

[4,4,0] [3,4,0] pipe nrml pipe_lp_11 {} {’l’:3.048}

[3,4,0] [2,4,0] vpipe nrml pipe_lp_12 {’v1’:1} {’r’:0.0254,’l’:6.096}

[2,4,0] [0,4,0] pipe nrml pipe_lp_13 {} {’l’:3.048}

[0,4,0] [0,0,0] vpipe nrml pipe_lp_14 {’v1’:1} {’r’:0.0254,’l’:6.096}

[4,4,0] [4,2,0] pipe nrml bps_lp_1 {} {’l’:6.096}

[4,2,0] [4,0,0] pipe nrml bps_lp_2 {} {’l’:6.096}

[0,0,2] [1,0,2] pipe nrml pipe_hp_1 {} {’l’:3.048}

[1,0,2] [2,0,2] vpipe nrml pipe_hp_2 {’v1’:1} {’r’:0.0254,’l’:6.096}

[2,0,2] [4,0,2] vpipe nrml pipe_hp_3 {’v1’:1} {’r’:0.0254,’l’:6.096}

[4,0,2] [5,0,2] pipe nrml pipe_hp_4 {} {’l’:3.048}

[5,0,2] [6,0,2] pipe nrml pipe_hp_5 {} {’l’:6.096}

[6,0,2] [7,0,2] pipe nrml pipe_hp_6 {} {’l’:3.048}

[7,0,2] [7,4,2] vpipe nrml pipe_hp_7 {’v1’:1} {’r’:0.0254,’l’:6.096}

[7,4,2] [6,4,2] pipe nrml pipe_hp_8 {} {’l’:3.048}

[6,4,2] [5,4,2] pipe nrml pipe_hp_9 {} {’l’:6.096}

[5,4,2] [4,4,2] pipe nrml pipe_hp_10 {} {’l’:3.048}

203

[4,4,2] [3,4,2] pipe nrml pipe_hp_11 {} {’l’:3.048}

[3,4,2] [2,4,2] vpipe nrml pipe_hp_12 {’v1’:1} {’r’:0.0254,’l’:6.096}

[2,4,2] [0,4,2] pipe nrml pipe_hp_13 {} {’l’:3.048}

[0,4,2] [0,0,2] vpipe nrml pipe_hp_14 {’v1’:1} {’r’:0.0254,’l’:6.096}

[4,4,2] [4,2,2] pipe nrml bps_hp_1 {} {’l’:6.096}

[4,2,2] [4,0,2] pipe nrml bps_hp_2 {} {’l’:6.096}

[2,4,1.8] [2,4,2] vpipe nrml out_pc1 {’v1’:1} {’r’:0.01905,’l’:0.6096}

ref@[2,4,1] [2,4,1.8] cp,0,snk,0 src pc1_out {’v1’:1,’v2’:0,’ps1’:200,’ps2’:0} {}

[2,4,0.2] ref@[2,4,1] cp,1,src,0 snk pc1_in {} {}

[2,4,0] [2,4,0.2] vpipe nrml in_pc1 {’v1’:1} {’r’:0.01905,’l’:0.6096}

[2,0,1.8] [2,0,2] vpipe nrml out_pc2 {’v1’:0} {’r’:0.01905,’l’:0.6096}

ref@[2,0,1] [2,0,1.8] cp,0,snk,0 src pc2_out {’v1’:1,’v2’:0,’ps1’:0,’ps2’:0} {}

[2,0,0.2] ref@[2,0,1] cp,1,src,0 snk pc2_in {} {}

[2,0,0] [2,0,0.2] vpipe nrml in_pc2 {’v1’:0} {’r’:0.01905,’l’:0.6096}

[1,0,2] [1,0,0] svc_2v nrml svc1 {’v1’:1,’v2’:0} {}

[3,4,2] [3,4,1.8] vpipe nrml in_svc2 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[3,4,1.8] [3,4,0.2] svc_1v nrml svc2 {’v1’:1} {}

[3,4,0.2] [3,4,0] vpipe nrml out_svc2 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[4,2,2] [4,2,0] svc_2v nrml svc3 {’v1’:1,’v2’:0} {}

[5,0,2] [5,0,1.8] vpipe nrml in_svc4 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[5,0,1.8] [5,0,0.2] svc_2v nrml svc4 {’v1’:1,’v2’:0} {}

[5,0,0.2] [5,0,0] vpipe nrml out_svc4 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[5,4,2] [5,4,1.8] vpipe nrml in_svc5 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[5,4,1.8] [5,4,0.2] svc_2v nrml svc5 {’v1’:1,’v2’:0} {}

[5,4,0.2] [5,4,0] vpipe nrml out_svc5 {’v1’:1} {’r’:0.0127,’l’:1.2192}

[6,0,2] [6,0,0] svc_2v nrml svc6 {’v1’:1,’v2’:0} {}

[6,4,2] [6,4,0] svc_2v nrml svc7 {’v1’:1,’v2’:0} {}

B.2.2 comb anal.py

1

2 import sys

3 sys . path . append (’C:\\My Data\\ s h a r e f o l d e r \\mythesis−python \\ s r c \\my modules ’)

204

4 from cen model import ∗

5 from s imul import ∗

6 from c on t r o l import ∗

7 import components as comps

8 from po s t pro c import ∗

9 from numpy import ∗

10 import cP i ck l e

11 import copy

12 import time

13

14

15 def f a c a c c (n l eve l , prev mat=None) :

16 ’ ’ ’

17 This func t ion i s used in genFFD func t ion as a subrou t ine f o r c r ea t i n g

18 a f u l l f a c t o r i a l de s i gn

19 ’ ’ ’

20 i f n l e v e l i s not 0 :

21 i f prev mat == None :

22 new mat = arange (n l e v e l)

23 new mat . shape=(n l eve l , 1)

24 else :

25 m = prev mat . shape [0]

26 new mat = None

27 for i in arange (n l e v e l) :

28 new vec = ones (m)∗ i

29 tran mat = i n s e r t (prev mat , 0 , new vec , a x i s=1)

30 i f new mat == None :

31 new mat = tran mat

32 else :

33 new mat = append (new mat , tran mat , a x i s=0)

34 else :

35 new mat = prev mat

205

36 return new mat

37

38 def genFFD(n l e v e l) :

39 ’ ’ ’

40 Creates a f u l l f a c t o r i a l exper imenta l de s i gn

41 Input s :

42 n l e v e l = n−dim array or l i s t . Each element i s the number

43 o f l e v e l s o feach f a c t o r

44 Outputs :

45 Fu l l f a c t o r i a l de s i gn (numpy array−t ype)

46 ’ ’ ’

47 i f i s i n s t a n c e (n l eve l , ndarray) == False :

48 n l e v e l=array (n l e v e l)

49 f f d = None

50 for i in xrange (n l e v e l . shape [0]−1 ,−1 ,−1):

51 f f d = fa c a c c (n l e v e l [i] , f f d)

52 return f f d

53

54 def bin combinat ion (n d i g i t) :

55 ’ ’ ’

56 This func t ion crea t e a l i s t o f f u l l f a c t o r i a l b inary combinat ions .

57 Input s :

58 n d i g i t = number o f d i g i t s o f the b inary combinat ion .

59 Output :

60 L i s t o f n−d i g i t , f u l l f a c t o r i a l b inary combinat ions .

61 The l i s t i s organ ized as the Python d i c t i ona r y format , based

62 on the number o f 1 s in the combinat ions .

63 ex)

64 Output [2] = l i s t o f the combinat ions wi th two 1 s .

65 ’ ’ ’

66 b i n l i s t = genFFD(2∗ ones (n d i g i t))

67 cmb dic = {}

206

68 for i in xrange (n d i g i t +1):

69 cmb dic [i]= []

70

71 for a in b i n l i s t :

72 n va lve = sum(a)

73 cmb dic [n va lve]+=[l i s t (a)]

74

75 return cmb dic

76

77

78

79 ############################### Scr i p t main . ##############################

80

81

82 # Generate a l i b r a r y o f component model f un c t i on s .

83

84 c l i b = d i c t ()

85 # Svc load with a s i n g l e v a l v e :

86 c l i b [’ svc 1v ’]=comps . svc 1v

87

88 # Svc load with doub le va l v e s :

89 c l i b [’ svc 2v ’]=comps . svc 2v

90

91 # Chi l l e r−pump un i t :

92 c l i b [’ cp ’]=comps . cp

93

94 # Pipe without va l v e :

95 c l i b [’ pipe ’]=comps . pipe

96

97 # Pipe with va l v e :

98 c l i b [’ vpipe ’]=comps . vpipe

99

207

100 # Generate the f u l l f a c t o r i a l b inary combinat ions .

101 cmb dic = bin combinat ion (7)

102 n v a l v e s e t = [2 , 3 , 4 , 5 , 6] # Valve amounts i n v e s t i g a t e d in ana l y s i s

103

104

105 # b i n s e t r e p r e s en t s the f o l l ow i n g p ipe s in order :

106 # [’ p ipe 4 ’ , ’ p ipe 5 ’ , ’ p ipe 9 ’ , ’ p ipe 10 ’ , ’ p ipe 11 ’ , ’ bps 1 ’ , ’ bps2 ’]

107 # 0 1 2 3 4 5 6

108 #

109 # The ind i c e s o f the edge e lements in the focused area

110 # (see Figure 63) are g iven as f o l l ow s .

111 e i d = [3 , 4 , 8 , 9 , 1 0 , 1 4 , 1 5]

112

113 # Create the r e s u l t data s t orage .

114 r e s u l t = {}

115 for n va lve in n v a l v e s e t :

116 r e s u l t [n va lve]= []

117

118

119 for n va lve in n v a l v e s e t :

120

121 for s e t i d , b i n s e t in enumerate (cmb dic [n va lve]) :

122 # −−−

123 # Creat ion o f a graph model

124 comp ts = time . c l o ck ()

125

126 # Feed the ’ yp bare mode l . t x t ’ f i l e and the component l i b a r y

127 # to crea t e a bare graph model .

128 mdl = GraphModel (’ yp bare model . txt ’ , c l i b)

129

130 # Reconf igure the model −−−

131

208

132 e = mdl . edge [’ nrml ’] # Cal l a l l normal edges

133 for b , v in enumerate (b i n s e t) :

134 i=e i d [b]

135 j=i +16

136

137 # change a PIPE edge to a VPIPE edge based on

138 # the binary s t r i n g , b i n s e t .

139 i f v == 1 :

140 e [i] . model = comps . vpipe

141 e [j] . model = comps . vpipe

142 e [i] . cv [’ v1 ’]=1

143 e [j] . cv [’ v1 ’]=1

144 e [i] . r e s da t [’ v1 ’]= []

145 e [j] . r e s da t [’ v1 ’]= []

146 i f ’ bps ’ in e [i] . name :

147 e [i] . prm [’ r ’]=0.01905

148 e [j] . prm [’ r ’]=0.01905

149 else :

150 e [i] . prm [’ r ’]=0.0254

151 e [j] . prm [’ r ’]=0.0254

152

153 # −−

154

155 # I n i t i a l i z e the node pres su re .

156 n nodes = mdl .A. shape [0]

157 i n i np = 135000∗ ones (n nodes)

158 mdl . s e t np (i n i np)

159

160 dt = 0 .05 # time s t ep o f s imu la t ion .

161 s l v r = So lve r (mdl , dt , 1 e−7 ,5) # I n i t i a l i z e s o l v e r o b j e c t .

162

163 # Run s imu la t ion to ob t a in i n i t i a l c ond i t i on s

209

164 for i in xrange (7 0) :

165 s l v r . r un to nex t t ime s t ep ()

166 mdl . empty data () # Reset the data s t orage .

167 mdl . t=0 # Reset the s imu la t ion time .

168 in i md l = cP ick l e . dumps (mdl , 1) # Store the i n i t i a l model .

169

170 #−−−

171 # Setup damage s imu la t ion .

172

173 t f = 10 # Final t ime o f s imu la t ion .

174 d rad = 0 .7 # Damage bubb l e rad iu s .

175 t dmg = 1 # Time at whcih a damage occurs .

176

177 # Create damage s e t .

178 dmg set . damage set=array ([[3 . 5 , 0 , 2] , [5 . 2 5 , 0 , 2] , [7 , 0 , 2] , [3 . 5 , 4 , 2] , \

179 [5 . 2 5 , 4 , 2] , [7 , 4 , 2] , [4 , 1 , 2] , [4 , 3 , 2] , [7 , 2 , 2]])

180 dmg set . s i z e = dmg set . damage set . shape [0]

181

182 # Se t t i n g d e f a u l t component model and parameters f o r damaged

183 # components .

184 d f l t mode l = c l i b [’ pipe ’]

185 df l t prm = { ’ l ’ : 0 . 5 , ’ r ’ : 0 . 0 1905}

186 r up t p r e s s = 110000 # Pressure s e t t i n g f o r the damage nodes

187

188 # I n i t i a l i z e data recorder

189 r e co rde r = Recorder ()

190 t ime dat = ze ro s (dmg set . s i z e)

191

192 #−−−

193 # Damage s imu la t ion body :

194 for i in xrange (dmg set . s i z e) :

195 print ’ Case with n va lve : ’+s t r (n va lve)+ ’ , sim no . : ’+s t r (i)

210

196 comp ts = time . c l o ck ()

197 mdl 2 = cP ick l e . l o ads (in i md l) # Load the i n i t i a l graph model

198 s l v r . s e t mode l (mdl 2) # Connect the model to s o l v e r

199

200 # Create the r e f e r en c e damage con t r o l model

201 dcs = DmgCtrlSys ()

202 dcs . s e tup cp agent s (mdl 2 , dt)

203 dcs . s e tup smar t va lve s (mdl 2 , dt)

204 dcs . connect (mdl 2)

205

206 # Update c o n t r o l l e r s in the model .

207 for ag in dcs . agent :

208 ag . u pda t e s e l f ()

209 for ag in dcs . agent :

210 ag . update por ts ()

211

212 # Load damage bubb l e from damage s e t .

213 dmg bbl = dmg set . g o t o s e t (i)

214 dmg bbl . d f l t mode l = df l t mode l

215 dmg bbl . d f l t prm = df l t prm

216

217 # Connect the bubb l e and data recorder o b j e c t s to the s o l v e r .

218 s l v r . dmg bubble = dmg bbl

219 s l v r . r e co rde r = reco rde r

220

221 # Run s imu la t ion u n t i l t he f i n a l t ime t f .

222 t = 0

223 while t <= t f :

224 i f s l v r . c o n v f l a g == 1 :

225 for ag in dcs . agent :

226 ag . u pda t e s e l f ()

227 for ag in dcs . agent :

211

228 ag . update por ts ()

229 for ag in dcs . agent :

230 ag . p ro ce s s ()

231 s l v r . r un to nex t t ime s t ep ()

232 t +=dt

233 comp t = (time . c l o ck ()− comp ts)

234

235 # Store the e n t i r e model in t o the data recorder o b j e c t .

236 r e co rde r . s tack mode l (mdl 2)

237 r e co rde r . s t a c k r e s ()

238 print i , comp t

239 t ime dat [i] = comp t

240

241 # Store r e s u l t s in the r e s u l t data s t orage .

242 oc r da t=reco rde r . op capa ra te (1)

243 ave oc r=mean(oc r da t [1])

244

245 r e co rde r . s a v e r e s da t (’ v ’+s t r (n va lve)+ ’ n ’+s t r (s e t i d))

246 r e s u l t [n va lve]+=[[b in s e t , o c r da t [1] , ave ocr , t ime dat]]

247

248 # Save the e n t i r e r e s u l t data in to a re s . f i l e .

249 r e s u l t [’ dmg set ’]=dmg set . damage set

250 f=open (’ r e s u l t . r e s ’ , ’w ’)

251 cP i ck l e . dump(r e s u l t , f)

252 f . c l o s e ()

B.3 my modules Package

B.3.1 cen model.py

1 from numpy import ∗

2 from numpy . l i n a l g import norm

3 from components import ∗

4 import copy

5 import sys

212

6

7 class Node :

8 ’ ’ ’

9 . pos : t o p o l o g i c a l po s i t i on o f the node

10 . np : node p o t e n t i a l

11 . i d : node id

12 . d i s t : t o p o l o g i c a l d i s t an c e from the o r i g i n po in t

13 ’ ’ ’

14

15 def i n i t (s e l f , type=’ nrml ’ , pos=None , np=150000):

16 s e l f . type = type # Node type

17 s e l f . pos = pos # Topo log i ca l coord . o f node

18 s e l f . np = np # Node po t e n t i a l va lu e

19 s e l f . id = 0 # Node index

20 s e l f . s e t d i s t () # Distance from the o r i g i n

21 s e l f . r e s da t = [] # Local data s t orage dur ing s imu la t ion

22

23

24 def s e t d i s t (s e l f) :

25 i f s e l f . pos != None :

26 s e l f . d i s t = norm(s e l f . pos)

27 else :

28 s e l f . d i s t = None

29

30 def s t a c k r e s (s e l f) :

31 # Store the r e s u l t o f the node p o t e n t i a l dur ing s imu la t ion .

32 s e l f . r e s da t += [s e l f . np]

33

34

35

36 class Edge :

37

213

38 def i n i t (s e l f , type=’ nrml ’ , node in=Node () , node out=Node () ,\

39 c model = None , name=None) :

40

41 s e l f . type = type # Edge type

42 s e l f . node in = node in # In−node o b j e c t r e f e r en c e

43 s e l f . node out = node out # Out−node o b j e c t r e f e r en c e

44 s e l f . model = c model # Component func t ion r e f e r en c e

45 s e l f . way pt = None # Not used cu r r en t l y .

46 s e l f . name = name # Edge name (s t r i n g) .

47 s e l f . id = 0 # Index o f an edge

48 s e l f . g e t po s () # Compute t o p o l o g i c a l coord . o f edge

49 s e l f . xt = 0 # Sta t e v a r i a b l e in t

50 s e l f . x t 1 = 0 # Sta t e v a r i a b l e in t−1

51 s e l f . cv = {} # Control v a r i a b l e s (d i c t type)

52 s e l f . prm = {} # Parameters (d i c t type)

53 s e l f . r e s da t = { ’ x t 1 ’ : [] , ’ ep ’ : [] } # Local s t orage f o r sim r e s u l t

54

55 def c a l l (s e l f , x t 1=None , bc=None , cv=None , prm=None) :

56 ’ ’ ’

57 Computes the s t a t e va lu e o f the model at the current s imu la t ion time .

58 Input s :

59 x t 1 : (f l o a t) S ta t e va lu e at T−1

60 bc : (f l o a t) Boundary cond i t ion . I t i s u s u a l l y an edge p o t e n t i a l

61 in an edge component .

62 cv : (f l o a t d i c t) Control v a r i a b l e s .

63 Output :

64 (f l o a t) The current model s t a t e .

65 ’ ’ ’

66 i f xt 1==None : xt 1=s e l f . x t 1

67 i f bc==None : bc=s e l f . ep

68 i f cv==None : cv=s e l f . cv

69 i f prm==None : prm=s e l f . prm

214

70 xt = s e l f . model (xt 1 , bc , cv , prm)

71 return xt

72 ’ ’ ’ ’ ’ ’

73 def ge t ep (s e l f) :

74 # Compute edge p o t e n t i a l .

75 ep = s e l f . node in . np−s e l f . node out . np

76 return ep

77

78 ep = proper ty (f g e t = ge t ep)

79

80 def ge t po s (s e l f) :

81 # Compute t o p o l o g i c a l po s i t i on .

82 i f s e l f . node in . pos != None :

83 i f s e l f . node out . pos != None :

84 s e l f . pos = (s e l f . node in . pos+s e l f . node out . pos)/2

85 else :

86 s e l f . pos = s e l f . node in . pos

87 else :

88 i f s e l f . node out . pos != None :

89 s e l f . pos = s e l f . node out . pos

90 else :

91 s e l f . pos = None

92

93 def s e t i n i t c v (s e l f , i n i t c v) :

94 # se t i n i t i a l va lu e s to con t r o l v a r i a b l e s .

95 s e l f . cv = i n i t c v

96 for k in i n i t c v . keys () :

97 s e l f . r e s da t [k] = []

98

99 def s e t i n i t p rm (s e l f , i n i t p rm) :

100 # Set i n i t i a l va lu e s to parameters .

101 s e l f . prm = in i t p rm

215

102

103 def s e t node i n (s e l f , node in) :

104 # Set in−node .

105 try :

106 i s i n s t a n c e (node in , Node)

107 except :

108 print ’ node in should be the Node c l a s s . ’

109 import sys

110 sys . e x i t (1)

111

112 s e l f . node in = node in

113 s e l f . g e t po s ()

114

115 def s e t node out (s e l f , node out) :

116 # se t out−node .

117 try :

118 i s i n s t a n c e (node out , Node)

119 except :

120 print ’ node out should be the Node c l a s s . ’

121 import sys

122 sys . e x i t (1)

123

124 s e l f . node out = node out

125 s e l f . g e t po s ()

126

127 def s t a c k r e s (s e l f) :

128 # Store the r e s u l t o f edge p rope r t i e s dur ing s imu la t ion .

129 # Stores x (t−1) and edge p o t e n t i a l .

130 s e l f . r e s da t [’ x t 1 ’] += [s e l f . x t 1]

131 s e l f . r e s da t [’ ep ’] += [s e l f . ep]

132 for k , v in s e l f . cv . i tems () :

133 s e l f . r e s da t [k] += [v]

216

134

135 def g e t f l ow (s e l f ,∗∗ kwargs) :

136 # Compute x (t) us ing component model

137 ’ ’ ’

138 Input s :

139 ∗∗ kwargs : the d i c t i ona r y ’ key=va lue ’ pa i r s f o r de f i n in g con t r o l

140 v a r i a b l e s

141 Outputs :

142 The ’ f l ow ’ va lu e at time t . The f l ow va lu e i s a l s o s t ored in the

143 proper t y s e l f . f l ow .

144 ’ ’ ’

145 i f kwargs != {} :

146 s e l f . cv . update (kwargs)

147 s e l f . xt = s e l f ()

148

149 class CoupledEdge(Edge) :

150

151 def i n i t (s e l f , type=’ nrml ’ , node in=Node () , node out=Node () ,\

152 c model = None , cp l i dx =0,name=None) :

153 Edge . i n i t (s e l f , type , node in , node out , c model , name)

154 s e l f . c p l i dx = cp l i dx # Index ing o f the in t e r−coup led edges

155 s e l f . couple = [] # Li s t o f the in t e r−coup led edges

156

157 def c a l l (s e l f , x t 1=None , bc=None , cv=None , prm=None) :

158 ’ ’ ’

159 Computes the s t a t e va lu e o f the model at the current s imu la t ion time .

160 Input s :

161 x t 1 : (f l o a t) S ta t e va lu e at T−1

162 bc : (f l o a t) Boundary cond i t ion . I t i s u s u a l l y an edge p o t e n t i a l

163 in an edge component .

164 cv : (f l o a t d i c t) Control v a r i a b l e s .

165 Output :

217

166 (f l o a t) The current model s t a t e .

167 ’ ’ ’

168 i f xt 1==None : xt 1=s e l f . x t 1

169 i f bc==None : bc=s e l f . ep

170 i f cv==None : cv=s e l f . cv

171 i f prm==None : prm=s e l f . prm

172

173 x t 1 a l l = []

174 b c a l l = []

175 c v a l l ={}

176 prm al l = {}

177 x t 1 a l l . i n s e r t (s e l f . cp l idx , xt 1)

178 b c a l l . i n s e r t (s e l f . cp l idx , bc)

179 c v a l l . update (cv)

180 prm al l . update (prm)

181 for a comp in s e l f . couple :

182 x t 1 a l l . i n s e r t (a comp . cp l idx , a comp . xt 1)

183 b c a l l . i n s e r t (a comp . cp l idx , a comp . ep)

184 c v a l l . update (a comp . cv)

185 prm al l . update (a comp . prm)

186 xt = s e l f . model (x t 1 a l l , b c a l l , c v a l l , prm a l l) [s e l f . c p l i dx]

187 return xt

188

189 class GraphModel :

190 ’ ’ ’ ’ ’ ’

191 def i n i t (s e l f , f i l e=None , c l i b=None) :

192 s e l f . A tot = 0 # Complete inc idence matrix

193 s e l f .A = 0 # Reduced inc idence matrix

194 s e l f . L = 0 # Laplace matrix

195 s e l f . q = 0 # Flow vec t or

196 s e l f . S = 0 # Source f l ow vec t or

197 s e l f .R = 0 # Rupture f l ow vec t or

218

198 # Storage o f edge o b j e c t r e f e r en c e s .

199 s e l f . edge ={ ’ nrml ’ : [] , ’dmg ’ : [] , ’ s r c ’ : [] , ’ snk ’ : [] }

200 # Storage o f node o b j e c t r e f e r en c e s .

201 s e l f . node ={ ’ nrml ’ : [] , ’dmg ’ : [] , ’ r e f ’ : [] }

202 s e l f . t = 0 # Sim time

203 s e l f . t da t = [] # Sim time data

204

205 i f f i l e i s not None : # Check i f component l i b r a r y i s g iven .

206 try :

207 c l i b i s None

208 except :

209 print ”You should prov ide c l i b as an input . ”

210 s e l f . c l i b = c l i b

211 s e l f . c r ea te f r om data (f i l e)

212

213

214 def c r ea te f r om data (s e l f , f i l e) :

215 ’ ’ ’

216 Create graph components based on the i n i t i a l i z a t i o n f i l e .

217 . f i l e : Data f i l e name (s t r i n g)

218 ’ ’ ’

219 coup l e s t a ck={}

220 f = open (f i l e , ’ r ’)

221 words = f . r e ad l i n e () . s p l i t ()

222 data type = 0

223 while words != [] :

224 # I t e r a t i o n rou t ine :

225

226 # f i r s t choose what to do .

227 i f ’#’ in words [0] :

228 data type = 0

229 pass

219

230 e l i f words [0] == ’ edge : ’ :

231 data type = 1

232 words=f . r e ad l i n e () . s p l i t ()

233 e l i f words [0] == ’ x bound : ’ :

234 data type = 0

235 s e l f . x bound = [f l o a t (words [1]) , f l o a t (words [2])]

236 e l i f words [0] == ’ y bound : ’ :

237 data type = 0

238 s e l f . y bound = [f l o a t (words [1]) , f l o a t (words [2])]

239 e l i f words [0] == ’ z bound : ’ :

240 data type = 0

241 s e l f . z bound = [f l o a t (words [1]) , f l o a t (words [2])]

242

243 # Then do the assignment .

244

245 i f data type == 1 :

246 node = []

247 for i in xrange (2) :

248 i f ’@ ’ in words [i] :

249 node in fo = words [i] . s p l i t (’@ ’)

250 type = node in fo [0]

251 pos = array (eva l (node in fo [1]) , dtype=f l o a t)

252 i f type == ’ r e f ’ :

253 a node = Node (type , pos , 0)

254 e l i f type == ’dmg ’ :

255 a node = Node (type , pos ,110000)

256 e l i f type == ’ nrml ’ :

257 a node = Node (type , pos)

258 else :

259 type = ’ nrml ’

260 pos = array (eva l (words [i]) , dtype=f l o a t)

261 a node = Node (type , pos)

220

262 node . append (a node)

263 i f ’ , ’ in words [2] :

264 edg e i n f o = words [2] . s p l i t (’ , ’)

265 an edge = CoupledEdge(words [3] , node [0] , node [1] , \

266 s e l f . c l i b [e dg e i n f o [0]] , eva l (e dg e i n f o [1]) \

267 , words [4])

268 c oup l e s t a ck [an edge] = ” s e l f . edge [’ ”+edg e i n f o [2]+ ” ’]\

269 [”+edg e i n f o [3]+ ”] ”

270 else :

271 an edge = Edge(words [3] , node [0] , node [1] , \

272 s e l f . c l i b [words [2]] , words [4])

273 an edge . s e t i n i t c v (eva l (words [5]))

274 an edge . s e t i n i t p rm (eva l (words [6]))

275 s e l f . add edge (an edge)

276

277 # End of i t e r a t i o n rou t ine

278 words = f . r e ad l i n e () . s p l i t ()

279 else :

280 f . c l o s e ()

281 for key , va lue in c oup l e s t a ck . items () :

282 key . couple . append (eva l (va lue))

283 s e l f . update model ()

284

285

286 def i n f o (s e l f , which) :

287 ’ ’ ’

288 Gives in f o . o f graph components .

289 Input :

290 s i n g l e s t r i n g among ’ edge ’ , ’ node ’ , ’ source ’ , ’ s ink ’ , and ’damage ’

291 Output :

292 A l i s t o f the corresponding o b j e c t s wi th a few u s e f u l i n f o .

293 ’ ’ ’

221

294 i f which == ’ node ’ :

295 for type in [’ nrml ’ , ’ r e f ’ , ’dmg ’] :

296 print type

297 for i in xrange (l en (s e l f . node [type])) :

298 print i , s e l f . node [type] [i] . pos , s e l f . node [type] [i] . np

299 e l i f which == ’ edge ’ :

300 for type in [’ nrml ’ , ’dmg ’ , ’ s r c ’ , ’ snk ’] :

301 print type

302 for i in xrange (l en (s e l f . edge [type])) :

303 an edge = s e l f . edge [type] [i]

304 print i , an edge . pos , an edge . model , an edge . name\

305 , an edge . xt 1 , an edge . ep

306

307 def g e t e d g e d i c t (s e l f) :

308 # Gives the edge o b j e c t r e f e r en c e s in the d i c t data type .

309 # keyword i s the name o f an edge .

310 edges = s e l f . edge

311 e d g e l i s t = edges [’ nrml ’]+ edges [’ s r c ’]+ edges [’ snk ’]+ edges [’dmg ’]

312 edg e d i c t = {}

313 for an edge in e d g e l i s t :

314 edg e d i c t [an edge . name]=an edge

315 return edg e d i c t

316

317 def g e t node d i c t (s e l f) :

318 # Gives the node o b j e c t r e f e r en c e s in the d i c t data type .

319 # keyword i s the t o p o l o g i c a l coord . o f a node .

320 nodes = s e l f . node

321 n o d e l i s t = nodes [’ nrml ’]+nodes [’ r e f ’]+nodes [’dmg ’]

322 node d i c t ={}

323 for a node in e d g e l i s t :

324 node d i c t [a node . pos]=a node

325 return node d i c t

222

326

327 def setA (s e l f) :

328 # Update the A tot

329 edges = s e l f . edge

330 nodes = s e l f . node

331 e d g e l i s t = edges [’ nrml ’]+ edges [’ s r c ’]+ edges [’ snk ’]+ edges [’dmg ’]

332 n o d e l i s t = nodes [’ nrml ’]+nodes [’ r e f ’]+nodes [’dmg ’]

333 s e l f . A tot=ze ro s ((l en (n o d e l i s t) , l en (e d g e l i s t)) , dtype=in t e g e r)

334 for i in xrange (l en (e d g e l i s t)) :

335 m = n o d e l i s t . index (e d g e l i s t [i] . node in)

336 n = n o d e l i s t . index (e d g e l i s t [i] . node out)

337 s e l f . A tot [m, i]=1

338 s e l f . A tot [n , i]=−1

339 s e l f .A = s e l f . A tot [: l en (nodes [’ nrml ’]) , :]

340

341

342

343 def s e tq (s e l f) :

344 # Update the f l ow vec t or .

345

346 edges = s e l f . edge

347 e d g e l i s t = edges [’ nrml ’]+ edges [’ s r c ’]+ edges [’ snk ’]+ edges [’dmg ’]

348 s e l f . q = array ([an edge . xt for an edge in e d g e l i s t])

349 # s e l f . q t o t = array ([an edge . x t f o r an edge in e d g e l i s t])

350 # s e l f . q = q t o t [: l en (edges [’ nrml ’])]

351

352

353 def se tS (s e l f) :

354 # Update the source/ s ink vec t or

355 n nodes = len (s e l f . node [’ nrml ’])

356 s e l f . S = ze ro s (n nodes)

357 for a s r c in s e l f . edge [’ s r c ’] :

223

358 s e l f . S [a s r c . node out . id] = a s r c . xt

359 for a snk in s e l f . edge [’ snk ’] :

360 s e l f . S [a snk . node in . id] −= a snk . xt

361

362

363 def setR (s e l f) :

364 # Update the rupture f l ow vec t or

365 dmg l i s t = s e l f . edge [’dmg ’]

366 s e l f .R = ze ro s (l en (s e l f . node [’ nrml ’]))

367 for a dmg in dmg l i s t :

368 i f a dmg . node out . type == ’dmg ’ :

369 s e l f .R[a dmg . node in . id]=−a dmg . xt

370 else :

371 s e l f .R[a dmg . node out . id]=a dmg . xt

372

373 def setL (s e l f) :

374 # Update Laplace matrix

375 s e l f . L = inne r (s e l f .A, s e l f .A)

376

377

378 def update model (s e l f) :

379 # Update a l l .

380 s e l f . setA ()

381 s e l f . setL ()

382 s e l f . s e tq ()

383 s e l f . s e tS ()

384 s e l f . setR ()

385

386 def get np (s e l f) :

387 # Extract the node p o t e n t i a l s in the graph model

388 np = array ([nd . np for nd in s e l f . node [’ nrml ’]])

389 return np

224

390

391 def s e t np (s e l f , vec) :

392 # Set node p o t e n t i a l va lu e s in the graph model

393 n o d e l i s t = s e l f . node [’ nrml ’]

394 for i in xrange (l en (n o d e l i s t)) :

395 n o d e l i s t [i] . np = vec [i]

396

397

398 def ge t ep (s e l f) :

399 # Obtain a l l edge p o t e n t i a l s in the graph .

400 ep = array ([eg . ep for eg in s e l f . edge [’ nrml ’]])

401 return ep

402

403 def empty data (s e l f) :

404 # Reset data s t orage .

405 nodes = s e l f . node

406 edges = s e l f . edge

407 for a node in nodes [’ nrml ’]+nodes [’ r e f ’]+nodes [’dmg ’] :

408 a node . r e s da t = []

409 for an edge in edges [’ nrml ’]+ edges [’ s r c ’]+ edges [’ snk ’]+edges [’dmg ’] :

410 for k in an edge . r e s da t . i t e r k e y s () :

411 an edge . r e s da t [k] = []

412 s e l f . t da t = []

413

414

415 def add edge (s e l f , an edge) :

416 # Add an edge to graph model

417 n o d e l i s t = []

418 for k in s e l f . node . keys () :

419 n o d e l i s t += s e l f . node [k]

420

421 for a node in n o d e l i s t :

225

422 i f (an edge . node in . pos == a node . pos) . a l l () :

423 an edge . node in = a node

424 break

425 else :

426 s e l f . add node (an edge . node in)

427

428

429 for a node in n o d e l i s t :

430 i f (an edge . node out . pos == a node . pos) . a l l () :

431 an edge . node out = a node

432 break

433 else :

434 s e l f . add node (an edge . node out)

435

436 s e l f . edge [an edge . type] += [an edge]

437 s e l f . edge [an edge . type] [− 1] . id = len (s e l f . edge [an edge . type])−1

438 s e l f . update model ()

439

440

441

442 def remove edge (s e l f , an edge) :

443 # Remove an edge in graph model

444 ’ ’ ’

445 The edge to be removed i s assumed to be one o f the edge o b j e c t s

446 in a graphModel o b j e c t (e . g . A. edge) .

447 ’ ’ ’

448 e d g e l i s t=s e l f . edge [an edge . type]

449 e d g e l i s t . remove (an edge)

450 for i in xrange (l en (e d g e l i s t)) :

451 e d g e l i s t [i] . id = i

452 s e l f . update model ()

453

226

454 n o d e l i s t=s e l f . node [an edge . node in . type]

455 orph node chk = n o d e l i s t . index (an edge . node in)

456 i f (s e l f .A[orph node chk , :]==0) . a l l () :

457 n o d e l i s t . remove (an edge . node in)

458 for i in xrange (l en (n o d e l i s t)) :

459 n o d e l i s t [i] . id = i

460

461 n o d e l i s t=s e l f . node [an edge . node out . type]

462 orph node chk = n o d e l i s t . index (an edge . node out)

463 i f (s e l f .A[orph node chk , :]==0) . a l l () :

464 n o d e l i s t . remove (an edge . node out)

465 for i in xrange (l en (n o d e l i s t)) :

466 n o d e l i s t [i] . id = i

467 s e l f . update model ()

B.3.2 components.py

1 from numpy import ∗

2 import copy

3

4 def tramnmx(x , x min , x max) :

5 return 2∗(x − x min)/ (x max − x min)−1

6

7 def postmnmx(yn , y min , y max) :

8 return (yn+1)/2∗(y max−y min)+y min

9

10

11 def svc 2v (xt 1 , bc , cv , prm) :

12 x = array (xt 1 , dtype=f l o a t)

13 x = append (x , bc)

14 x = append (x , [cv [’ v1 ’] , cv [’ v2 ’]])

15 try :

16 svc 2v . b1

17 except :

227

18 svc 2v . b1=array ([−0 .403177952467408 ,])

19 svc 2v . iw1=array ([[0 . 6 43235935305463 ,0 . 33278775193152 ,] ,\

20])

21 svc 2v . b2=array ([−0.411336700943652 ,−0.22611450035137 ,\

22 −8.42624415802863 ,−4.57147842510292 ,−0.330952340870594,\

23 0.286029916201246 ,9 .51305573449424 ,−1.3624903798612 ,\

24 −0.995320877580977 ,0 .537985803263872 ,])

25 svc 2v . iw2=array ([[0 . 0 714896740141171 ,0 . 124308795738995 ,] ,\

26 [0 .0242441954149286 ,−0 .242538338148743 ,] ,\

27 [−4.55392432505877 ,−4.66960053358728 ,] ,\

28 [−1.43335059359974 ,−1.53166556026716 ,] ,\

29 [0 .0708805796681024 ,0 .125638424118948 ,] ,\

30 [0 .183070644737504 , −0 .056157845478681 ,] ,\

31 [5 . 2761727358014 ,5 . 39474034211337 ,] ,\

32 [0 .084608131045956 ,0 .147372301198779 ,] ,\

33 [1 .0506297378929 ,−11 .9293135157161 ,] ,\

34 [−0.0760006138515422 ,−0.126590360533179 ,] ,\

35])

36 svc 2v . lw1=array ([[−3 .4462330348185 ,] ,\

37 [−0 .542191481408433 ,] ,\

38 [0 . 80755937725042 ,] ,\

39 [−1 .01341095849417 ,] ,\

40 [−2 .83974604045263 ,] ,\

41 [0 . 50754871664009 ,] ,\

42 [−0 .801381796064937 ,] ,\

43 [−1 .20213023705471 ,] ,\

44 [−5 .74208780513262 ,] ,\

45 [4 . 4153876027629 ,] ,\

46])

47 svc 2v . b3=array ([−0 .453891928155915 ,])

48 svc 2v . lw2=array ([[2 .94936641864294 , −0 .501689548727145 ,\

49 −4.33470770532195 ,0 .433940266592169 ,−2.63198105874181 ,\

228

50 0.372434579799262 ,−3.57198182181452 ,−0.636037498946495 ,\

51 0 .00108017389824621 ,0 .758199584717331 ,] ,\

52])

53 svc 2v . x min=array ([−0.000299796255631329 ,−50000 ,0 ,0 ,])

54 svc 2v . x max=array ([0 . 000299943261161827 ,100000 ,1 , 1 ,])

55 svc 2v . y min=array ([−0 .000299933385146379 ,])

56 svc 2v . y max=array ([0 . 000299985845887199 ,])

57

58 xn = tramnmx(x , svc 2v . x min , svc 2v . x max)

59

60 y l 1 = inne r (svc 2v . iw1 , xn [: 2])+ svc 2v . b1

61 y l 2 = tanh (inne r (svc 2v . lw1 , y l 1)+ inne r (svc 2v . iw2 , xn [2 :])+ svc 2v . b2)

62 y = inne r (svc 2v . lw2 , y l 2)+svc 2v . b3

63 return postmnmx(y , svc 2v . y min , svc 2v . y max) [0]

64

65 def svc 1v (xt 1 , bc , cv , prm) :

66 x = array (xt 1 , dtype=f l o a t)

67 x = append (x , bc)

68 x = append (x , [cv [’ v1 ’]])

69 try :

70 svc 1v . b1

71 except :

72 svc 1v . b1=array ([−0 .583122932082598 ,])

73 svc 1v . iw1=array ([[0 . 3 7656113493791 ,0 . 165164324632059 ,] ,\

74])

75 svc 1v . b2=array ([−1.45705456462713 ,4 .63915544098338 ,\

76 −3.44660278816248 ,0 .36680376394936 ,6 .82793180652776 ,\

77 0 .368368065322034 ,])

78 svc 1v . iw2=array ([[−1 .59988528730233 ,] ,\

79 [0 . 334543746249295 ,] ,\

80 [0 . 049274148148873 ,] ,\

81 [−0 .412887536557245 ,] ,\

229

82 [9 . 70446015255161 ,] ,\

83 [−0 .660781163120365 ,] ,\

84])

85 svc 1v . lw1=array ([[−1 .08660407076284 ,] ,\

86 [−3 .79312535007853 ,] ,\

87 [−5 .94497899956459 ,] ,\

88 [0 . 0487255974882004 ,] ,\

89 [−6 .54974804274007 ,] ,\

90 [−0 .291478251193739 ,] ,\

91])

92 svc 1v . b3=array ([0 . 270258273388033 ,])

93 svc 1v . lw2=array ([[−0.546132517009071 ,−1.1395492938795 ,\

94 −0.11454017366658 ,8 .19432738793683 ,0 .327227515281873 ,\

95 −5.0716205960296 ,] ,\

96])

97 svc 1v . x min=array ([−0.000499407951209851 ,−100000 ,0 ,])

98 svc 1v . x max=array ([0 . 000497025935259093 ,100000 ,1 ,])

99 svc 1v . y min=array ([−0 .000499346034219654 ,])

100 svc 1v . y max=array ([0 . 000499771370327245 ,]}

101

102 xn = tramnmx(x , svc 1v . x min , svc 1v . x max)

103

104 y l 1 = inne r (svc 1v . iw1 , xn [: 2])+ svc 1v . b1

105 y l 2 = tanh (inne r (svc 1v . lw1 , y l 1)+ inne r (svc 1v . iw2 , xn [2 :])+ svc 1v . b2)

106 y = inne r (svc 1v . lw2 , y l 2)+svc 1v . b3

107 return postmnmx(y , svc 1v . y min , svc 1v . y max) [0]

108

109

110 def cp (xt 1 , bc , cv , prm) :

111 x = array (xt 1 , dtype=f l o a t)

112 x = append (x , bc)

113 x[2]=−x [2]

230

114 x = append (x , [cv [’ v1 ’] , cv [’ ps1 ’]])

115 try :

116 cp . b1

117 except :

118 cp . b1=array ([0 . 0489904381537137 ,1 . 13644075211915 ,])

119 cp . iw1=array ([[−0 .525796183426231 ,0 .0192782911616325 ,\

120 0.154217122353081 ,−0.00306133003894085 ,] ,\

121 [0 .615191748886452 ,0 .102512901557262 ,−0.182102525499998 ,\

122 0 .0214476072620936 ,] ,\

123])

124 cp . b2=\

125 ar ray ([−1.89204471174595 ,0 .0344059476555241 ,\

126 −0.0320653909948023 ,1 .51288680922981 ,−3.6519977277266 ,\

127 −3.63131551527321 ,3 .65276359754262 ,0 .22248668152001 ,\

128 −3.65074623502132 ,1 .50454827855458 ,])

129 cp . iw2=array ([[0 .0178131489728337 , −1 .12123711514336 ,] ,\

130 [0 .234357275896735 ,0 .785708489179496 ,] ,\

131 [0 .0522225021503697 ,0 .852473149704312 ,] ,\

132 [−0.0328117710483785 ,−0.651051476301202 ,] ,\

133 [−3 .92429546617008 ,0 .498279864303038 ,] ,\

134 [−4 .09534057873157 ,0 .638523158404742 ,] ,\

135 [0 .000279275082042311 ,0 .0123095457831633 ,] ,\

136 [−0 .11481872672073 ,0 .734734894682054 ,] ,\

137 [−3 .02051106223508 ,0 .306505472915975 ,] ,\

138 [−0 .0647526268147423 ,1 .66988409081991 ,] ,\

139])

140 cp . lw1=array ([[3 .43329806921937 , −2 .24616094270238 ,] ,\

141 [−1 .09768448721661 ,0 .736039661516823 ,] ,\

142 [−1 .18830768627075 ,0 .872904017923657 ,] ,\

143 [0 .360700852490147 , −0 .388997731228925 ,] ,\

144 [−0.612338007383116 ,−0.0403040667495736 ,] ,\

145 [−0.979852328329821 ,−0.0815320390826407 ,] ,\

231

146 [−3.79013945739699 ,−3.19467304486502 ,] ,\

147 [−1 .04713271264814 ,0 .791836836443043 ,] ,\

148 [−0 .285115896429936 ,0 .0866149372692415 ,] ,\

149 [−1 .33308891945178 ,0 .469298202473634 ,] ,\

150])

151 cp . b3=array ([−2.80838100219508 ,−0.442879938961615 ,])

152 cp . lw2=array ([[0 .335115175380668 ,1 .63575209456726 , −2 .68140339429855 ,\

153 −0.951733966917486 ,3 .31551908986134 ,−1.82312457170654 ,\

154 0.0426994969396584 ,2 .49409270219835 ,−4.53980654966542 ,\

155 −0.470449369827458 ,] ,\

156 [−0.0125660189890549 ,0 .0198181499835772 ,0 .0100659482519615 ,\

157 −0.13129802166065 ,0 .235816958593532 ,−0.151630742298007 ,\

158 −2.21808254323842 ,0 .0445207304417349 ,−0.253936436139287 ,\

159 −0.0368347385572102 ,] ,\

160])

161 cp . x min=array ([−1.32963267830196e−010 ,−0.000908858231239424,\

162 100000 ,100000 ,0 , 0 ,])

163 cp . x max=array ([0 .00124845914803711 ,0 .00189215940887209 ,450000 ,\

164 250000 ,1 , 400 ,])

165 cp . y min=array ([−1.32963267830196e−010 ,−0.000908858231239424 ,])

166 cp . y max=array ([0 . 00124845914803711 ,0 . 00189215940887209 ,])

167 xn = tramnmx(x , cp . x min , cp . x max)

168

169

170 y l 1 = inne r (cp . iw1 , xn [: 4])+ cp . b1

171 y l 2 = tanh (inne r (cp . lw1 , y l 1)+ inne r (cp . iw2 , xn [4 :])+ cp . b2)

172 y = inne r (cp . lw2 , y l 2)+cp . b3

173 i f x [4] <=0.1:

174 ys = postmnmx(y , cp . y min , cp . y max)∗ exp (69 .08/4∗ (x [4] −0 .1))

175 else :

176 ys = postmnmx(y , cp . y min , cp . y max)

177 return ys

232

178 return postmnmx(y , cp . y min , cp . y max)

179

180

181 def pipe (xt 1 , bc , cv , prm) :

182 x = array (xt 1 , dtype=f l o a t)

183 x = append (x , bc)

184 x = append (x , [prm [’ l ’]])

185 i f x [−1] < 0 . 7 :

186 x [−1] = 0 .7

187 try :

188 pipe . b1

189 except :

190 pipe . b1=array ([−0 .722645087070832 ,])

191 pipe . iw1=array ([[−0 .43779009279619 ,−0 .044495749083984 ,] ,\

192])

193 pipe . b2=array ([−0.500371857384726 ,0 .800020085270251 ,\

194 0 .493695739179278 ,−4 .45917340364765 ,3 .22203851680239 ,])

195 pipe . iw2=array ([[−0 .127324154499375 ,] ,\

196 [−0 .675769286561483 ,] ,\

197 [−0 .429313396883844 ,] ,\

198 [1 . 009556491894 ,] ,\

199 [0 . 764809439527272 ,] ,\

200])

201 pipe . lw1=array ([[−0 .8544646246795 ,] ,\

202 [0 . 978338088341976 ,] ,\

203 [0 . 674978688777447 ,] ,\

204 [−5 .07643947281922 ,] ,\

205 [2 . 44809362002147 ,] ,\

206])

207 pipe . b3=array ([−0 .154527122875052 ,])

208 pipe . lw2=array ([[2 . 0 1546446805134 ,0 . 421382595252777 ,\

209 −1.26605905668604 ,0 .0140161229334608 ,−0.114816716873872 ,] ,\

233

210])

211 pipe . x min=array ([−0 .000999731838454432 ,−10000 ,0 .5 ,])

212 pipe . x max=array ([0 . 000998936066170416 ,10000 ,5 ,])

213 pipe . y min=array ([−0 .000999922140080304 ,])

214 pipe . y max=array ([0 . 000999070607852158 ,])

215

216 xn = tramnmx(x , pipe . x min , pipe . x max)

217

218 y l 1 = inne r (pipe . iw1 , xn [: 2])+ pipe . b1

219 y l 2 = tanh (inne r (pipe . lw1 , y l 1)+ inne r (pipe . iw2 , xn [2 :])+ pipe . b2)

220 y = inne r (pipe . lw2 , y l 2)+pipe . b3

221 return postmnmx(y , pipe . y min , pipe . y max) [0]

222

223 def vpipe 127 (x) :

224 i f x [−1] < 0 . 5 :

225 x [−1] = 0 .5

226 try :

227 vpipe 127 . b1

228 except :

229 vpipe 127 . b1=array ([−0 .0510665578773549 ,])

230 vpipe 127 . iw1=array ([[0 . 9 59585939020714 ,0 . 700380369079835 ,] ,\

231])

232 vpipe 127 . b2=array ([2 .22111219764168 ,1 .15032392308498 ,\

233 −0.0964031438028126 ,0 .310465730214223 ,−1.02912528084642 ,\

234 1.06778583889189 ,−0.931426360825884 ,])

235 vpipe 127 . iw2=array ([[−1 .00767842344865 ,−0 .112610634234768 ,] ,\

236 [−0.478339787605095 ,−0.00134991663890141 ,] ,\

237 [0 .631117908111167 ,0 .0875647409550213 ,] ,\

238 [0 .333505543758612 ,−0 .0974041743992097 ,] ,\

239 [0 .649476953620522 ,−0 .0126161444606362 ,] ,\

240 [−0 .797920885590477 ,0 .0354739773511861 ,] ,\

241 [−0 .492689606360934 ,0 .0589309609776407 ,] ,\

234

242])

243 vpipe 127 . lw1=array ([[0 . 6 0 4 0 0 2 5 6 676 938 2 ,] ,\

244 [0 . 0368488663710622 ,] ,\

245 [0 . 618445221091317 ,] ,\

246 [5 . 76390087348398 ,] ,\

247 [0 . 140766399515174 ,] ,\

248 [1 . 29165239352796 ,] ,\

249 [1 . 05042804425546 ,] ,\

250])

251 vpipe 127 . b3=array ([−5 .95790273363427 ,])

252 vpipe 127 . lw2=array ([[−1 .47977898763016 ,14 .9880477399079 ,\

253 0 .675066167589956 ,0 .0448182808629973 ,6 .47685142504861 ,\

254 −0.229431256861141 ,−0.580339970601853 ,] ,\

255])

256 vpipe 127 . x min=array ([−0 .000999923830254839 , −100000 ,0 ,0 .3 ,])

257 vpipe 127 . x max=array ([0 . 000998783917717905 ,100000 ,1 , 1 . 5 ,])

258 vpipe 127 . y min=array ([−0 .000999799270325252 ,])

259 vpipe 127 . y max=array ([0 . 000999445844846383 ,])

260

261 xn = tramnmx(x , vp ipe 127 . x min , vp ipe 127 . x max)

262

263 y l 1 = inne r (vp ipe 127 . iw1 , xn [: 2])+ vpipe 127 . b1

264 y l 2 = tanh (inne r (vp ipe 127 . lw1 , y l 1)\

265 +inne r (vp ipe 127 . iw2 , xn [2 :])+ vpipe 127 . b2)

266 y = inne r (vp ipe 127 . lw2 , y l 2)+vpipe 127 . b3

267 return postmnmx(y , vp ipe 127 . y min , vp ipe 127 . y max) [0]

268

269 def vpipe 1905 (x) :

270 i f x [−1] < 0 . 5 :

271 x [−1]=0.5

272 try :

273 vpipe 1905 . b1

235

274 except :

275 vpipe 1905 . b1=array ([1 . 3 6 8 7 575 5835991 ,])

276 vpipe 1905 . iw1=array ([[0 . 8 99565135459478 ,0 . 343075141096446 ,] ,\

277])

278 vpipe 1905 . b2=array ([4 .13919295545714 ,2 .57782245519917 ,\

279 −2.23013427607142 ,1 .86114219649325 ,0 .0514370612408742 ,\

280 11.6440644036579 ,−0.560040285619765 ,])

281 vpipe 1905 . iw2=array ([[1 . 2 3273436664902 ,0 . 00182297874901823 ,] ,\

282 [2 .48370752208954 ,−0 .910373112937128 ,] ,\

283 [0 .130911817895199 ,0 .344292472771948 ,] ,\

284 [0 .916990899608765 ,0 .0133814576823347 ,] ,\

285 [0 .0390150826101735 ,0 .0592627481285842 ,] ,\

286 [8 .99263158747699 , −0 .00854628308211276 ,] ,\

287 [−0.118751825674156 ,−0.206915719335347 ,] ,\

288])

289 vpipe 1905 . lw1=array ([[−0 .968938953226134 ,] ,\

290 [5 . 05331095660151 ,] ,\

291 [2 . 88221279933273 ,] ,\

292 [0 . 875250395918153 ,] ,\

293 [0 . 285230841972612 ,] ,\

294 [−2 .83794761379428 ,] ,\

295 [0 . 37115561345349 ,] ,\

296])

297 vpipe 1905 . b3=array ([2 . 3 8 5 8 091 3986778 ,])

298 vpipe 1905 . lw2=array ([[3 . 5 709882774559 ,3 . 29690419657745 ,\

299 −0.0732992810491271 ,−10.6448720743607 ,3 .6316286804983 ,\

300 −0.0249871776473446 ,0 .841168229489061 ,] ,\

301])

302 vpipe 1905 . x min=array ([−0 .000999745926433204 ,−100000 ,0 ,0 .3 ,])

303 vpipe 1905 . x max=array ([0 . 000999651153384713 ,100000 ,1 , 6 . 5 ,])

304 vpipe 1905 . y min=array ([−0 .0009999764105342 ,])

305 vpipe 1905 . y max=array ([0 . 00099989972631468 ,])

236

306

307 xn = tramnmx(x , vp ipe 1905 . x min , vp ipe 1905 . x max)

308

309

310 y l 1 = inne r (vp ipe 1905 . iw1 , xn [: 2])+ vpipe 1905 . b1

311 y l 2 = tanh (inne r (vp ipe 1905 . lw1 , y l 1)+\

312 inne r (vp ipe 1905 . iw2 , xn [2 :])+ vpipe 1905 . b2)

313 y = inne r (vp ipe 1905 . lw2 , y l 2)+vpipe 1905 . b3

314 i f x [2] <=0.05:

315 ys = postmnmx(y , vp ipe 1905 . y min , vp ipe 1905 . y max) [0] \

316 ∗exp (69 .08/2∗ (x [2] −0 .05))

317 else :

318 ys = postmnmx(y , vp ipe 1905 . y min , vp ipe 1905 . y max) [0]

319 return ys

320

321 def vpipe 254 sdp (x) :

322 try :

323 vpipe 254 sdp . b1

324 except :

325 vpipe 254 sdp . b1=array ([−0 .0636768303109408 ,])

326 vpipe 254 sdp . iw1=array ([[−0.555741792107273 ,−0.0122647952398165 ,] ,\

327])

328 vpipe 254 sdp . b2=array ([−0.253644812403496 ,−0.804912732631754 ,\

329 0 .634384497660935 ,0 .706735508112529 ,1 .10718223152414 ,\

330 1 .47987665977575 ,3 .56776031360815 ,])

331 vpipe 254 sdp . iw2=array ([[0 . 2 78561878168683 ,0 . 000553426546447999 ,] ,\

332 [1 . 78200757064552 ,0 . 412419842164154 ,] ,\

333 [−0.247278136978737 ,−0.025678951610713 ,] ,\

334 [1 . 58409192109964 ,0 . 370916402319805 ,] ,\

335 [−0.535353546254542 ,−0.0901005256501447 ,] ,\

336 [−0 .105581278510097 ,0 .376908095675417 ,] ,\

337 [1 . 87625852060181 ,0 . 386659132360343 ,] ,\

237

338])

339 vpipe 254 sdp . lw1=array ([[0 . 6 6 7 2 6 3 9 4 169 963 9 ,] ,\

340 [−2 .72753841587263 ,] ,\

341 [0 . 666605117356617 ,] ,\

342 [−1 .25390363923288 ,] ,\

343 [1 . 28085295078606 ,] ,\

344 [−12 .3598211701449 ,] ,\

345 [−5 .43824197477544 ,] ,\

346])

347 vpipe 254 sdp . b3=array ([1 . 5 9 3 8 1 2249185 62 ,])

348 vpipe 254 sdp . lw2=array ([[−1.17924159357458 ,−0.0365516451414706 ,\

349 −3.68629777049936 ,−0.0756732972648056 ,1 .07781123264949 ,\

350 −0.00612742506573572 ,−0.770369258079715 ,] ,\

351])

352 vpipe 254 sdp . x min=array ([−0.00099920532013025 ,−4000 ,0 ,2 ,])

353 vpipe 254 sdp . x max=array ([0 . 000997215835240223 ,4000 ,1 , 7 ,])

354 vpipe 254 sdp . y min=array ([−0 .000973318511625282 ,])

355 vpipe 254 sdp . y max=array ([0 . 000968587716533465 ,])

356 i f x [3] < 2 . 5 :

357 x [3] = 2 .5

358 xn = tramnmx(x , vp ipe 254 sdp . x min , vp ipe 254 sdp . x max)

359

360

361 y l 1 = inne r (vp ipe 254 sdp . iw1 , xn [: 2])+ vpipe 254 sdp . b1

362 y l 2 = tanh (inne r (vp ipe 254 sdp . lw1 , y l 1)+\

363 inne r (vp ipe 254 sdp . iw2 , xn [2 :])+ vpipe 254 sdp . b2)

364 y = inne r (vp ipe 254 sdp . lw2 , y l 2)+vpipe 254 sdp . b3

365 i f x [2] <=0.05:

366 ys = postmnmx(y , vp ipe 254 sdp . y min , vp ipe 254 sdp . y max) [0] \

367 ∗exp (69 .08/2∗ (x [2] −0 .05))

368 else :

369 ys = postmnmx(y , vp ipe 254 sdp . y min , vp ipe 254 sdp . y max) [0]

238

370 return ys

371

372

373 def vpipe 254 (x) :

374 try :

375 vpipe 254 . b1

376 except :

377 vpipe 254 . b1=array ([−0 .294483183501346 ,])

378 vpipe 254 . iw1=array ([[−0 .600385382331592 ,−0 .424793393380238 ,] ,\

379])

380 vpipe 254 . b2=array ([−7.74370830861366 ,0 .593281730027768 ,\

381 −2.56867638630015 ,−0.0572371515300161 ,0 .0328733845949659 ,\

382 −1.82687136736938 ,−1.50406862149836 ,0 .731074186500534 ,\

383 −4.09209874680234 ,4 .08813248576604 ,5 .50175733945317 ,\

384 −0.698529944446116 ,8 .62032280386742 ,−8.20852861920296 ,\

385 −8.49896203577908 ,])

386 vpipe 254 . iw2=array ([[−5 .41518849165587 ,0 .00142526234507933 ,] ,\

387 [−1.29919857903066 ,−1.8501684029622 ,] ,\

388 [0 .00249922603094099 , −0 .127311839505703 ,] ,\

389 [0 .0778384648131845 ,0 .0913091215633245 ,] ,\

390 [−0.0845441257440447 ,−0.121205694719303 ,] ,\

391 [−1 .64630873085545 ,0 .0666672856002693 ,] ,\

392 [1 .69136606672478 , −1 .28758863494888 ,] ,\

393 [0 .699671223666673 ,−2 .05937493355888 ,] ,\

394 [−6 .19641694759062 ,0 .0193613076720055 ,] ,\

395 [6 .2655511279203 , −0 .0198760616593509 ,] ,\

396 [2 .73406040049057 ,−0 .136115676218369 ,] ,\

397 [−3 .76445780137563 ,3 .10934514833497 ,] ,\

398 [8 .82184541444878 ,0 .0170167996372364 ,] ,\

399 [−8.19162288833985 ,−0.0162734628490648 ,] ,\

400 [−8.34746751585979 ,−0.0177589665973259 ,] ,\

401])

239

402 vpipe 254 . lw1=array ([[−3 .47200060985354 ,] ,\

403 [−2 .55510247864857 ,] ,\

404 [−1 .12013804328657 ,] ,\

405 [−0 .411371739201308 ,] ,\

406 [−0 .660536499712842 ,] ,\

407 [2 . 60287698445256 ,] ,\

408 [1 . 2859730297526 ,] ,\

409 [−1 .62121531863431 ,] ,\

410 [−0 .261379873820507 ,] ,\

411 [0 . 159535743447367 ,] ,\

412 [5 . 07094657353168 ,] ,\

413 [−3 .39356494875782 ,] ,\

414 [−1 .65387728299081 ,] ,\

415 [1 . 85665556993033 ,] ,\

416 [2 . 16975511919364 ,] ,\

417])

418 vpipe 254 . b3=array ([1 . 7 3 0 7 1 246770589 ,])

419 vpipe 254 . lw2=array ([[−0.265098896426814 ,−0.00586749879714345 ,\

420 1 .74497737674192 ,1 .66851707634676 ,1 .3886118566969 ,0 .232416100685957 ,\

421 −0.013173159420462,−0.00682479141158398,−1.03308420809935 ,\

422 −1.00517150941908 ,0 .0977627194777375 ,0 .00341936350183569 ,\

423 3 .66615495730773 ,8 .44207332103058 ,−4 .16988224061704 ,] ,\

424])

425 vpipe 254 . x min=array ([−0.000499993191012689 ,−70000 ,0 ,2 ,])

426 vpipe 254 . x max=array ([0 . 00049998369025326 ,70000 ,1 , 7 ,])

427 vpipe 254 . y min=array ([−0 .000499989572489278 ,])

428 vpipe 254 . y max=array ([0 . 00049998369025326 ,])

429

430 i f x [3] < 2 . 5 :

431 x [3] = 2 .5

432 xn = tramnmx(x , vp ipe 254 . x min , vp ipe 254 . x max)

433

240

434 y l 1 = inne r (vp ipe 254 . iw1 , xn [: 2])+ vpipe 254 . b1

435 y l 2 = tanh (inne r (vp ipe 254 . lw1 , y l 1)+\

436 inne r (vp ipe 254 . iw2 , xn [2 :])+ vpipe 254 . b2)

437 y = inne r (vp ipe 254 . lw2 , y l 2)+vpipe 254 . b3

438

439 i f x [2] <=0.05:

440 ys = postmnmx(y , vp ipe 254 . y min , vp ipe 254 . y max) [0] \

441 ∗exp (69 .08/2∗ (x [2] −0 .05))

442 else :

443 ys = postmnmx(y , vp ipe 254 . y min , vp ipe 254 . y max) [0]

444 return ys

445

446

447

448 def vpipe (xt 1 , bc , cv , prm) :

449 x = array (xt 1 , dtype=f l o a t)

450 x = append (x , bc)

451 x = append (x , [cv [’ v1 ’] , prm [’ l ’]])

452 r = prm [’ r ’]

453 try :

454 vpipe . d 127

455 except :

456 vpipe . d 127 = vpipe 127

457 vpipe . d 1905 = vpipe 1905

458 vpipe . d 254 sdp = vpipe 254 sdp

459 vpipe . d 254 = vpipe 254

460

461 i f r > 0 . 0 2 2 2 :

462 i f bc < 4000 and bc > −4000:

463 return vpipe . d 254 sdp (x)

464 else :

465 return vpipe . d 254 (x)

241

466 e l i f r > 0 . 0 1 5 9 :

467 return vpipe . d 1905 (x)

468 else :

469 return vpipe . d 127 (x)

B.3.3 simul.py

1 import sys

2 from numpy import ∗

3 from numpy . l i b . f un c t i o n ba s e import l i n space , append

4 from numpy . l i n a l g import norm , s o l v e

5 from cen model import Node

6 import copy

7

8

9 class DamageSet :

10 ’ ’ ’

11 Makes a l i s t o f damage scenar ios f o r a g iven 3−d g r i d .

12 . x s e t , y s e t , z s e t = [lowerBound , UpperBound , GridDensity]

13 where ,

14 lowerBound : Lower bound o f each coord ina t e o f the

15 t o p o l o g i c a l g r i d

16 upperBound : Upper bound . . .

17 GridDensity : Number o f g r i d between the lower and upper bound

18

19 . d Rad = rad iu s o f a damage bubb l e which r ep r e s en t s a s p h e r i c a l damage

20 reg ion in the t o p o l o g i c a l graph model

21 ’ ’ ’

22

23 def i n i t (s e l f , x set , y set , z s e t , d rad , t dmg) :

24 s e l f . x s e t=l i n s pa c e (x s e t [0] , x s e t [1] , x s e t [2])

25 s e l f . y s e t=l i n s pa c e (y s e t [0] , y s e t [1] , y s e t [2])

26 s e l f . z s e t=l i n s pa c e (z s e t [0] , z s e t [1] , z s e t [2])

27 s e l f . d rad=d rad # Radius o f damage bubb l e

242

28 s e l f . t dmg = t dmg # Damage time

29 s e l f . s i z e=None # Size o f the damage l i s t

30 s e l f . index = None

31 s e l f . b u i l d s e t s ()

32

33 def b u i l d s e t s (s e l f) :

34 # Create the damage l i s t .

35 s e l f . damage set=ze ro s ((1 , 3))

36 for zPt in s e l f . z s e t :

37 for yPt in s e l f . y s e t :

38 for xPt in s e l f . x s e t :

39 s e l f . damage set = append (s e l f . damage set ,\

40 [[xPt , yPt , zPt]] , a x i s=0)

41 s e l f . damage set = de l e t e (s e l f . damage set , 0 , 0)

42 s e l f . s i z e = s e l f . damage set . shape [0]

43

44

45 def g e t n e x t s e t (s e l f) :

46 # Load the nex t damage from the l i s t

47 i f s e l f . index i s None :

48 s e l f . index=0

49 else :

50 s e l f . index+=1

51

52 a bubble = DamageBubble(s e l f . damage set [s e l f . index , :] \

53 , s e l f . d rad , s e l f . t dmg)

54

55 return a bubble

56

57

58 def g o t o s e t (s e l f , index) :

59 # Load the damage on a ce r t a in index o f the l i s t

243

60 try :

61 (index >= 0) and (index < s e l f . s i z e)

62 except :

63 print ’ Index out o f the l i s t o f damage s e t s . ’

64

65 s e l f . index=index

66 a bubble = DamageBubble(s e l f . damage set [s e l f . index , :] , \

67 s e l f . d rad , s e l f . t dmg)

68 return a bubble

69

70

71 def r e s e t i n d e x (s e l f) :

72 # Reset the current indexer to 0 .

73 s e l f . index = None

74

75

76 class DamageBubble :

77 ’ ’ ’

78 . c p t : 3−dim coord . o f the cen t e r o f a damage bubb l e

79 . r : rad iu s o f the bubb l e

80 ’ ’ ’

81 def i n i t (s e l f , center , rad , t dmg , d f l t mode l=None , d f l t prm ={}):

82 s e l f . c p t = cente r # Topo . coord . o f damage cen t e r

83 s e l f . r = rad # Damage rad iu s

84 s e l f . t dmg = t dmg # Damage time

85 s e l f . dmg applied = False # Flag . I f damage was app l ied , True

86 s e l f . d f l t mode l = df l t mode l # Function r e f e r en c e o f d e f a u l t model

87 s e l f . d f l t prm = df l t prm # Param of d e f a u l t model

88 s e l f . np dmg = 110000 # Pressure o f damage nodes

89

90

91 def c a l l (s e l f , g model) :

244

92 # g model : graph model o b j e c t r e f e r en c e

93

94 ’ ’ ’

95 p t i n : in−node coord ina t e

96 p t ou t : out−node coord ina t e

97 When prov id ing the above input s , the func t ion re tu rns a boo lean

98 va lu e ”True” i f the edge (or the par t o f i t) i s i n s i d e the bubb l e

99 or ”False ” i f ou t s i d e i t .

100

101 The a l gor i t hm i s based on a s imple c a l c u l u s : i f a l i n e meets a

102 sphere o f a damage , t h i s means the s u b s i t u t i o n o f the l i n e

103 equat ion X=vec (a)+t ∗ vec (b) in t o the s p h e r i c a l equat ion

104 (vec (X)−vec (Xc))ˆT ∗ (vec (X)−vec (Xc)) = Rˆ2 has at l e a s t one

105 s o l u t i o n o f t wi th the range o f 0 <= t <= 1 , t h e r e f o r e the

106 de c i s i on can be made by s o l v i n g the 2nd order po lynomia l equat ion .

107

108 I f the input has on ly one parameter , which i s p t in , i t cons ider s

109 i t as an at tempt to check the damage o f a node . I f the l o ca t i on o f

110 a node i s i n s i d e the damage bubb le , i t g i v e s out the boo lean

111 outpu t ”True .”

112 ’ ’ ’

113

114 # Known va lues :

115 r = s e l f . r

116 c pt = s e l f . c p t

117 np dmg = s e l f . np dmg

118 edge = g model . edge

119 node = g model . node

120

121 # for an edge in edge :

122 for an edge in edge [’ nrml ’]+edge [’ s r c ’]+ edge [’ snk ’] :

123 node in = an edge . node in

245

124 node out = an edge . node out

125 p t i n = node in . pos

126 pt out = node out . pos

127

128 # ” Is i t damaged” check :

129 d1 = pt in−s e l f . c p t

130 d1 sqr = inne r (d1 , d1)

131 d2 = pt out−s e l f . c p t

132 d2 sqr = inne r (d2 , d2)

133 r s q r = r ∗∗2

134

135 # Line eqn (with t , the 1−D loca t i on o f d i r vec t or l en g t h) :

136 d i r v e c = pt out − p t i n

137

138 # eqn o f the d i s t btw the l i n e and cen t e r o f damage bubb l e

139 # (a∗ t ˆ2+b∗ t+c−r ˆ2 = 0) :

140 a = inne r (d i r vec , d i r v e c)

141 b = 2∗ i nne r (d i r vec , d1)

142 c = d1 sqr − r s q r

143 D = b∗∗2 − 4∗a∗c

144

145 i f D >= 0 :

146 t low = (−b−D∗∗0 .5)/2/ a

147 t h igh = (−b+D∗∗0 .5)/2/ a

148 i f an edge . type == ’ nrml ’ :

149

150

151 i f t low > 1 or t h i gh < 0 :

152 # Do nothing un l e s s an edge i s i n s i d e the bubb l e .

153 pass

154

155 e l i f t low <= 0 and t h i gh <= 1 :

246

156 # ∗∗∗ node in i s damaged

157

158 # crea t e a DamageNode

159 new pos = pt i n + t h igh ∗ d i r v e c

160 new d node = Node (’dmg ’ , new pos , np dmg)

161

162 # change the l en g t h

163 i f an edge . prm . has key (’ l ’) :

164 an edge . prm [’ l ’] = (1− t h i gh)∗ an edge . prm [’ l ’]

165 else :

166 an edge . prm [’ l ’] = s e l f . d f l t prm [’ l ’]

167 i f an edge . prm . has key (’ r ’) == False :

168 an edge . prm [’ r ’] = s e l f . d f l t prm [’ r ’]

169

170 # i f t here i s more 50% of damage , the edge i s

171 # assumed to be j u s t a pipe (d e f a u l t component

172 # model) , which doesn ’ t have any con t r o l dev i ce .

173 i f t h i gh >= 0 . 5 :

174 an edge . model=s e l f . d f l t mode l

175 an edge . cv ={}

176 i f node in in node [node in . type] :

177 node [node in . type] . remove (node in)

178 an edge . node in = new d node

179 node [’dmg ’] . append (new d node)

180 edge [an edge . type] . remove (an edge)

181 an edge . type = ’dmg ’

182 an edge . g e t po s ()

183 edge [’dmg ’] . append (an edge)

184

185 e l i f t low <= 0 and t h i gh >= 1 :

186 # Ent ire edge damaged and disappeared

187

247

188 an edge . model = s e l f . d f l t mode l

189 an edge . cv = {}

190 i f an edge . prm . has key (’ l ’) == False :

191 an edge . prm [’ l ’] = s e l f . d f l t prm [’ l ’]

192 i f an edge . prm . has key (’ r ’) == False :

193 an edge . prm [’ r ’] = s e l f . d f l t prm [’ r ’]

194 i f node in in node [node in . type] :

195 node [node in . type] . remove (node in)

196 i f node out in node [node out . type] :

197 node [node out . type] . remove (node out)

198 edge [an edge . type] . remove (an edge)

199

200 e l i f t low > 0 and t h i gh < 1 :

201 # ∗∗∗∗Only edge body damaged

202

203 another = copy . deepcopy (an edge)

204 another . node in = an edge . node in

205 another . node out = an edge . node out

206 i f t h i gh > 0 . 5 :

207 edge1 = another # An edge a t t ached to node in

208 edge2 = an edge # An edge a t t ached to node out

209 else :

210 edge1 = an edge

211 edge2 = another

212

213 # ∗∗Firs t , the former node in s i d e :

214 new pos = pt i n + t low ∗ d i r v e c

215 new d node = Node (’dmg ’ , new pos , np dmg)

216

217 # change the l en g t h

218 i f edge1 . prm . has key (’ l ’) :

219 edge1 . prm [’ l ’] = t low ∗ edge1 . prm [’ l ’]

248

220 else :

221 edge1 . prm [’ l ’] = s e l f . d f l t prm [’ l ’]

222 i f edge1 . prm . has key (’ r ’) == False :

223 edge1 . prm [’ r ’] = s e l f . d f l t prm [’ r ’]

224

225 # i f t here i s more 50% of damage , the edge i s

226 # assumed to be j u s t a pipe (d e f a u l t component

227 # model) , which doesn ’ t have any con t r o l dev i ce .

228 i f t low < 0 . 5 :

229 edge1 . model=s e l f . d f l t mode l

230 edge1 . cv = {}

231 edge1 . node out = new d node

232 node [’dmg ’] . append (new d node)

233 i f edge1 == an edge :

234 edge [edge1 . type] . remove (edge1)

235 edge1 . type = ’dmg ’

236 edge1 . g e t po s ()

237 edge [’dmg ’] . append (edge1)

238

239 # ∗∗Second , the former node out s i d e :

240 new pos = pt i n + t h igh ∗ d i r v e c

241 new d node = Node (’dmg ’ , new pos , np dmg)

242 edge2 . node in = new d node

243

244 # change the l en g t h

245 i f edge2 . prm . has key (’ l ’) :

246 edge2 . prm [’ l ’] = (1− t h i gh)∗ edge2 . prm [’ l ’]

247 else :

248 edge2 . prm [’ l ’] = s e l f . d f l t prm [’ l ’]

249 i f edge2 . prm . has key (’ r ’) == False :

250 edge2 . prm [’ r ’] = s e l f . d f l t prm [’ r ’]

251

249

252 # i f t here i s more 50% of damage , the edge i s

253 # assumed to be j u s t a pipe (d e f a u l t component

254 # model) , which doesn ’ t have any con t r o l dev i ce .

255 i f t h i gh >= 0 . 5 :

256 edge2 . model=s e l f . d f l t mode l

257 edge2 . cv = {}

258 node [’dmg ’] . append (new d node)

259 i f edge2 == an edge :

260 edge [edge2 . type] . remove (edge2)

261 edge2 . type = ’dmg ’

262 edge2 . g e t po s ()

263 edge [’dmg ’] . append (edge2)

264

265 e l i f (t low > 0 and t low <= 1) and t h i gh >= 1 :

266 # ∗∗∗∗node out i s damaged

267

268 # change the node to DamageNode

269 new pos = pt i n + t low ∗ d i r v e c

270 new d node = Node (’dmg ’ , new pos , np dmg)

271 an edge . node out = new d node

272

273 # change the l en g t h

274 i f an edge . prm . has key (’ l ’) :

275 an edge . prm [’ l ’] = t low ∗ an edge . prm [’ l ’]

276 else :

277 an edge . prm [’ l ’] = s e l f . d f l t prm [’ l ’]

278 i f an edge . prm . has key (’ r ’) == False :

279 an edge . prm [’ r ’] = s e l f . d f l t prm [’ r ’]

280

281 # i f t here i s more 50% of damage , the edge i s

282 # assumed to be j u s t a pipe (d e f a u l t component

283 # model) , which doesn ’ t have any con t r o l dev i ce .

250

284 i f t low <= 0 . 5 :

285 an edge . model=s e l f . d f l t mode l

286 an edge . cv = {}

287 i f node out in node :

288 node [node out . type] . remove (node out)

289 node [’dmg ’] . append (new d node)

290 edge [an edge . type] . remove (an edge)

291 an edge . type = ’dmg ’

292 an edge . g e t po s ()

293 edge [’dmg ’] . append (an edge)

294

295 e l i f an edge . type == ’ s r c ’ or an edge . type ==’ snk ’ :

296 # In the case o f source or s ink edges , do the f o l l ow i n g .

297

298 i f t low > 1 or t h i gh < 0 :

299 pass

300 e l i f t low <= 0 :

301 # ∗∗∗ node in i s damaged

302

303 # crea t e a DamageNode

304 i f node in in node [node in . type] :# Remove node−in

305 node [node in . type] . remove (node in)

306

307 i f t h i gh < 1 :

308 new pos = pt i n + t h igh ∗ d i r v e c

309 new d node = Node (’dmg ’ , new pos , np dmg)

310

311 # I f i t ’ s source , use d e f a u l t model

312 i f an edge . type == ’ s r c ’ :

313 an edge . model=s e l f . d f l t mode l

314

315 # change the l en g t h

251

316 i f an edge . prm . has key (’ l ’) :

317 an edge . prm [’ l ’] \

318 = (1− t h i gh)∗ an edge . prm [’ l ’]

319 else :

320 an edge . prm [’ l ’] = s e l f . d f l t prm [’ l ’]

321 i f an edge . prm . has key (’ r ’) == False :

322 an edge . prm [’ r ’] = s e l f . d f l t prm [’ r ’]

323 an edge . node in = new d node

324 node [’dmg ’] . append (new d node)

325 edge [an edge . type] . remove (an edge)

326 an edge . type = ’dmg ’

327 an edge . g e t po s ()

328 edge [’dmg ’] . append (an edge)

329

330 e l i f t h i gh >= 1 : # Ent ire edge i s de s t royed .

331 i f node out in node [node out . type] :

332 node [node out . type] . remove (node out)

333 edge [an edge . type] . remove (an edge)

334

335 e l i f t low > 0 :

336 # ∗∗∗∗node out i s damaged

337

338 # change the node to DamageNode

339 i f t h i gh < 1 : # Only inner body damaged

340 an edge2 = copy . deepcopy (an edge)

341 an edge2 . node out = an edge . node out

342 new pos = pt i n + t h igh ∗ d i r v e c

343 new d node = Node (’dmg ’ , new pos , np dmg)

344 an edge2 . node in = new d node

345 i f an edge2 . type == ’ s r c ’ :

346 an edge2 . model=s e l f . d f l t mode l

347

252

348 # change the l en g t h

349 i f an edge2 . prm . has key (’ l ’) :

350 an edge2 . prm [’ l ’] = t h igh ∗ an edge . prm [’ l ’]

351 else :

352 an edge2 . prm [’ l ’] = s e l f . d f l t prm [’ l ’]

353 i f an edge2 . prm . has key (’ r ’) == False :

354 an edge2 . prm [’ r ’] = s e l f . d f l t prm [’ r ’]

355 node [’dmg ’] . append (new d node)

356 an edge2 . type = ’dmg ’

357 an edge2 . g e t po s ()

358 edge [’dmg ’] . append (an edge2)

359

360 e l i f t h i gh >= 1 :

361 i f node out in node :

362 node [node out . type] . remove (node out)

363

364 new pos = pt i n + t low ∗ d i r v e c

365 new d node = Node (’dmg ’ , new pos , np dmg)

366 an edge . node out = new d node

367

368 # i f i t ’ s s ink , use the d e f a u l t model :

369 i f an edge . type == ’ snk ’ :

370 an edge . model=s e l f . d f l t mode l

371

372 # change the l en g t h

373 i f an edge . prm . has key (’ l ’) :

374 an edge . prm [’ l ’] = t low ∗ an edge . prm [’ l ’]

375 else :

376 an edge . prm [’ l ’] = s e l f . d f l t prm [’ l ’]

377 i f an edge . prm . has key (’ r ’) == False :

378 an edge . prm [’ r ’] = s e l f . d f l t prm [’ r ’]

379

253

380 node [’dmg ’] . append (new d node)

381 edge [an edge . type] . remove (an edge)

382 an edge . type = ’dmg ’

383 an edge . g e t po s ()

384 edge [’dmg ’] . append (an edge)

385

386 edge = g model . edge

387 for k in edge . keys () :

388 a group = edge [k]

389 for i in xrange (l en (a group)) :

390 a group [i] . id = i

391 node = g model . node

392 for k in node . keys () :

393 a group = node [k]

394 for i in xrange (l en (a group)) :

395 a group [i] . id = i

396 g model . update model ()

397 s e l f . dmg applied = True

398

399

400 class So lve r :

401 ’ ’ ’

402 c l a s s doc

403 ’ ’ ’

404 def i n i t (s e l f , g model , dt =0.05 , a b s t o l=1e−6,dp=10):

405 # g model : graph model o b j e c t r e f e r en c e

406

407 s e l f . s e t mode l (g model)

408 s e l f . a b s t o l = ab s t o l # Tolerance o f the s o l v e r

409 s e l f . dp = dp # dP in the Newton s o l v e r

410 s e l f . dt = dt # Sim time s t ep

411 s e l f . r e co rde r = None # Object r e f e r en c e o f data recorder

254

412 s e l f . dmg bubble = None # Object r e f e r en c e o f damage bubb l e

413 s e l f . dmg appl ied = False # Flag . I f damage i s app l ied , True .

414 s e l f . c o n v f l a g = 1 # Convergence f l a g

415

416 #˜ de f c a l l (s e l f) :

417

418

419 def se t mode l (s e l f , g model) :

420 # I n i t i a l i z e s o l v e according to graph model .

421

422 s e l f . model = g model

423 n nodes = len (g model . node [’ nrml ’])

424 s e l f . np = ze ro s (n nodes)

425 g model . J = ze ro s ((n nodes , n nodes))

426 s e l f . f a i l = 0

427

428

429 def r un to nex t t ime s t ep (s e l f) :

430 # Run s imu la t ion f o r one time s t ep .

431

432 g model = s e l f . model

433 dmg bbl = s e l f . dmg bubble

434 r e co rde r = s e l f . r e co rde r

435

436 # Apply damage when s im t >= t dmg

437 i f (dmg bbl i s not None) and \

438 (dmg bbl . dmg applied i s False) and \

439 (g model . t >= dmg bbl . t dmg) :

440 i f r e co rde r != None :

441 r e co rde r . s tack mode l (g model)

442 dmg bbl (g model)

443 g model . empty data ()

255

444

445 nodes = g model . node

446 edges = g model . edge

447 np = g model . get np ()

448 a b s t o l = s e l f . a b s t o l

449

450 # Store a l l t he data to l o c a l s t o r ag e s .

451 [a node . s t a c k r e s () for a node in \

452 nodes [’ nrml ’]+nodes [’ r e f ’]+nodes [’dmg ’]]

453 e d g e l i s t = edges [’ nrml ’]+ edges [’ s r c ’]+ edges [’ snk ’]+ edges [’dmg ’]

454 [an edge . s t a c k r e s () for an edge in e d g e l i s t]

455 g model . t da t . append (g model . t)

456

457 cnt = 0

458 s e l f . c o n v f l a g = 1 # re s e t c on v f l a g to 1

459 while cnt <= 150 :

460 # I t e r a t i v e s o l v e r rou t ine

461

462 # Update x (t) .

463 [an edge . g e t f l ow () for an edge in e d g e l i s t]

464 g model . s e tq ()

465

466 # Compute KCL equat ion . Stop i t e r a t i o n i f KCL i s s a t i f i e d .

467 k c l e q = inne r (g model .A, g model . q)

468 i f norm(k c l e q) <= ab s t o l :

469 break

470 s e l f . j a cob ian () # Compute Jacobian

471

472 # Update the node pres su re .

473 d np = so l v e (g model . J , k c l e q)

474 max mv = max(abs (d np))

475 i f max mv > 20000 :

256

476 # This i s j u s t f o r improving numerical s t a b i l i t y .

477 # I f the dP es t imat e s are too large , j u s t shr ink them .

478 np = np − (20000/max mv)∗ d np

479 else :

480 np = np − d np

481 g model . s e t np (np)

482 cnt+=1

483

484 # Update x (t−1) f o r nex t t ime s t ep . x (t−1)=x (t) .

485 for an edge in e d g e l i s t :

486 an edge . xt 1 = an edge . xt

487 g model . t += s e l f . dt

488

489 # I f s imu la t ion have d i f f i c u l t i e s in convergence , g i v e warning

490 # message .

491 i f cnt >= 100 :

492 e = norm(k c l e q)

493 print ” So lu t i on not converged at t=”+s t r (g model . t)+” , with e =”\

494 +s t r (e)

495 i f e > 8e−6:

496 # Worst case , f l a g down , so c o n t r o l l e r s s k i p the ou tpu t s .

497 print” convergence f l a g down”

498 s e l f . c o n v f l a g = 0

499

500

501

502 def j a cob ian (s e l f) :

503 # jacob ian J from KCL equat ion s e t

504 # See Algorithm 2.

505 dp = s e l f . dp

506 g model=s e l f . model

507 A = g model .A

257

508 L= g model .L

509 edges = g model . edge [’ nrml ’]+g model . edge [’ s r c ’] \

510 +g model . edge [’ snk ’]+g model . edge [’dmg ’]

511 n nodes , n edges = A. shape

512 J = ze ro s ((n nodes , n nodes))

513 dqdp vec = ze ro s (n edges)

514 dqdp vec = [(an edge (bc=an edge . ep+dp) − an edge . xt)/dp \

515 for an edge in edges]

516 for i in xrange (n nodes) :

517 nonze ro in Ai = s e l f . f i n d (A[i] , 0 , Fa l se)

518 nonz e r o i n L i = s e l f . f i n d (L [i] , 0 , Fa l se)

519 for j in nonz e r o i n L i :

520 i f j == i :

521 sum = 0

522 for k in nonze ro in Ai :

523 sum += dqdp vec [k]

524 J [i , j]=sum

525 else :

526 for k in nonze ro in Ai :

527 i f A[j , k] != 0 :

528 J [i , j] = −dqdp vec [k]

529 break

530 g model . J=J

531

532 def f i n d (s e l f , vec , value , l o g i c=True) :

533 y = []

534 for i in xrange (l en (vec)) :

535 i f l o g i c i s True :

536 i f vec [i] == va lue :

537 y . append (i)

538 else :

539 i f vec [i] != va lue :

258

540 y . append (i)

541 y = array (y)

542 return y

543

544 model = proper ty (f g e t=lambda s e l f : s e l f . model , f s e t=set mode l)

B.3.4 control.py

1 from numpy import ∗

2 from numpy . l i n a l g import norm

3

4 def edge adj mat (A) :

5 # Create an edge adjacency matrix

6 adj mat = inne r (A.T,A.T)−2∗ eye (A. shape [1])

7 return adj mat

8

9

10 def s v i n c (edge id , A) :

11 # Create an inc idence matrix o f the c on t r o l l e r−a t t ached edges .

12 # inpu t s :

13 # edge i d = ind i c e s o f the c on t r o l l e r−a t t ached edges .

14 # A = Incidence matrix o f graph model .

15

16 i d s e t = copy (edge id)

17

18 # Next , perform node merging

19 A sm = copy (A)

20 edges = range (A. shape [1])

21 n ew l i s t = []

22 for e in edges :

23 i f e not in edge id :

24 n ew l i s t . append (e)

25 edges = n ew l i s t

26 for e in edges :

259

27 row = []

28 c o l = A sm [: , e]

29 for i , v in enumerate (c o l) :

30 i f v != 0 :

31 row . append ((i , A sm [i , :]))

32 i f l en (row) == 2 :

33 break

34 i f row==[]:

35 pass

36 else :

37 A sm [row [0] [0]] = row [0] [1] + row [1] [1]

38 A sm = de l e t e (A sm , row [1] [0] , 0)

39 A sm = de l e t e (A sm , edges , 1)

40 # M = edge adj mat (A sm)

41 return A sm

42

43 class OPin :

44 # Represent a data s i g n a l pin .

45 def i n i t (s e l f) :

46 s e l f . q = None # Flow ra t e

47 s e l f . hs = None # Health s t a t u s

48 s e l f . dmg = False # Damage f l a g

49

50

51 class Port :

52 # Port t ha t con ta in s two pins , input− and output− pins .

53 def i n i t (s e l f , an agent=None) :

54 s e l f . o p in = OPin () # Output−pin

55 s e l f . to = None # Con t r o l l e r o b j e c t r e f e r en c e

56 s e l f . i p i n = None # Input−pin

57 i f an agent != None :

58 s e l f . to = an agent

260

59

60

61

62 class Agent :

63 # Base c o n t r o l l e r c l a s s d e f i n i t i o n .

64 def i n i t (s e l f) :

65 s e l f . por ts nb = [] # Li s t o f por t s f o r ne ighbor s

66 s e l f . p o r t s h l = [] # Li s t o f por t s f o r upper−l a y e r un i t s

67 s e l f . p o r t s l l = [] # Li s t o f por t s f o r Lower−l a y e r un i t s

68 s e l f . dt = 0 # Con t r o l l e r t ime s t ep

69 s e l f . hea l th = 1 # Con t r o l l e r i n i t i a l h ea l t h s t a t u s

70

71 def upda t e s e l f (s e l f) :

72 # Update i n t e r n a l s t a t e s .

73

74 pass

75

76 def proce s s (s e l f) :

77 # Control law d e f i n i t i o n s .

78

79 pass

80

81 def update por ts (s e l f) :

82 # read and wr i t e the va lu e s to the por t s

83 pass

84

85

86

87 class SmartValve (Agent) :

88 # Smart va l v e c o n t r o l l e r s on p i p e l i n e s .

89

90 def i n i t (s e l f , an edge , dt = 0 .05 , v a l v e i d = ’ v1 ’) :

261

91 Agent . i n i t (s e l f)

92 # Connection with a lower un i t

93 s e l f . p o r t s l l = an edge # An edge with va l v e con t r o l v a r i a b l e

94 s e l f . dt = dt

95 s e l f . v i d = va l v e i d # Valve name in cv d i c t i ona r y in an edge .

96 s e l f . dmg = False

97 s e l f . va lv e speed = 0.25 # Valve open and c l o s e speed . / sec .

98 s e l f . adj mat = [[] , []] # Local adjacency matrix

99

100

101 def upda t e s e l f (s e l f) :

102 an edge = s e l f . p o r t s l l

103 s e l f . q = an edge . xt 1

104 s e l f . np = (an edge . node in . np + an edge . node out . np)/2

105 s e l f . hea l th = s e l f . h e a l t h s i g ()

106 i f s e l f . hea l th != 0 :

107 s e l f . v = an edge . cv [’ v1 ’]

108

109

110 def proce s s (s e l f) :

111 ## s e l f . u p d a t e s e l f ()

112 i f s e l f . hea l th != 0 :

113 i f s e l f . dmg == False :

114 i f s e l f . dmg test () == True :

115 s e l f . dmg = True

116 else :

117 for a po r t in s e l f . por ts nb :

118 i f a po r t . i p i n . hs == 0 :

119 s e l f . dmg = True

120 break

121 e l i f s e l f . dmg == True and s e l f . v > 0 :

122 i f s e l f . v > 0 . 1 :

262

123 s e l f . v = s e l f . v − s e l f . va lv e speed ∗ s e l f . dt

124 else :

125 s e l f . v = s e l f . v − 0 .5∗ s e l f . va lv e speed ∗ s e l f . dt

126

127 i f s e l f . v < 0 :

128 s e l f . v = 0

129 # Update c t r l s o f i t s p l an t :

130 s e l f . p o r t s l l . cv [’ v1 ’] = s e l f . v

131

132 def update por ts (s e l f) :

133 for a po r t in s e l f . por ts nb :

134 a po r t . o p in . q = s e l f . q

135 a po r t . o p in . hs = s e l f . hea l th

136

137

138

139 def dmg test (s e l f) :

140 # Check l o c a l f l ow conserva t ion

141 A = array (s e l f . adj mat)

142 Q = array ([x . i p i n . q for x in s e l f . por ts nb])

143 f c = inne r (A,Q)+array ([s e l f . q,− s e l f . q])

144 ## i f f c [0] < −1e−5 or f c [1] < −1e−5:

145 i f norm(f c) >= 1 .5 e−5:

146 # Check i f t he r i s net s ink between i t s e l f and ne ighbor s .

147 return True

148 else :

149 return False

150

151

152 def h e a l t h s i g (s e l f) :

153 i f s e l f . p o r t s l l . cv == {} :

154 return 0

263

155 else :

156 return 1

157

158

159 class CpAgent (Agent) :

160 # Con t r o l l e r un i t f o r c h i l l e r −pump subnetwork

161

162 def i n i t (s e l f , dt = 0 .05 , op ps = 200) :

163 Agent . i n i t (s e l f)

164 s e l f . port pmp = []

165 s e l f . dt = dt

166 s e l f . dmg = False

167 s e l f . va lv e speed = 0.25

168 # Pump speed r i s e per sec when turned on .

169 # When turned o f f , pump speed ∗1 . 5 .

170 s e l f . pump speed = 50

171 s e l f . op pump speed = op ps

172 s e l f . adj mat = [[] , []]

173

174

175

176 def upda t e s e l f (s e l f) :

177 lu = s e l f . p o r t s l l

178 s e l f . q = [an edge . xt 1 for an edge in lu]

179 s e l f . hea l th = s e l f . h e a l t h s i g ()

180 i f s e l f . hea l th != 0 :

181 s e l f . v = array ([an edge . cv [’ v1 ’] for an edge in\

182 [lu [0] , lu [2] , lu [3]]])

183 s e l f . ps = s e l f . p o r t s l l [2] . cv [’ ps1 ’]

184

185 def proce s s (s e l f) :

186 #˜ i f s e l f . h e a l t h != 0 :

264

187 i f s e l f . dmg == False :

188 i f s e l f . dmg test () == True :

189 # Check the damage o f i t s e l f

190 s e l f . dmg = True

191 else :

192 # Check i f ne i ghbor s ’ h ea l t h

193 for a po r t in s e l f . por ts nb :

194 i f a po r t . i p i n . hs == 0 :

195 s e l f . dmg = True

196 break

197 # I f ne ighbor ing pump net i s damaged , turn i t s e l f on :

198 i f s e l f . port pmp . i p i n . dmg == True :

199 i f s e l f . v [0] < 1 :

200 s e l f . v = s e l f . v + s e l f . va lv e speed ∗ s e l f . dt∗ ones (3)

201 i f s e l f . v [0] > 1 :

202 s e l f . v = ones (3)

203 op ps = s e l f . op pump speed

204 i f s e l f . ps < op ps :

205 s e l f . ps = s e l f . ps + s e l f . pump speed∗ s e l f . dt

206 i f s e l f . ps > op ps :

207 s e l f . ps = op ps

208 # Update c t r l s to i t s p l an t :

209 s e l f . p o r t s l l [0] . cv [’ v1 ’]= s e l f . v [0]

210 s e l f . p o r t s l l [3] . cv [’ v1 ’]= s e l f . v [2]

211 s e l f . p o r t s l l [2] . cv [’ ps1 ’] = s e l f . ps

212

213 e l i f s e l f . dmg == True :

214 i f s e l f . v [0] > 0 . 1 :

215 s e l f . v = s e l f . v − s e l f . va lv e speed ∗ s e l f . dt∗ ones (3)

216 e l i f s e l f . v [0] > 0 :

217 s e l f . v = s e l f . v − 0 .5∗ s e l f . va lv e speed ∗ s e l f . dt∗ ones (3)

218 i f s e l f . v [0] < 0 :

265

219 s e l f . v = array ([0 , 0 , 0])

220 i f s e l f . ps > 0 :

221 s e l f . ps = s e l f . ps − s e l f . pump speed∗ s e l f . dt

222 i f s e l f . ps < 0 :

223 s e l f . ps = 0

224 # Update c t r l s to i t s p l an t :

225 s e l f . p o r t s l l [2] . cv [’ ps1 ’] = s e l f . ps

226 s e l f . p o r t s l l [0] . cv [’ v1 ’]= s e l f . v [0]

227 s e l f . p o r t s l l [3] . cv [’ v1 ’]= s e l f . v [2]

228 #˜ s e l f . p o r t s l l [2] . cv [’ v1 ’]= s e l f . v [1]

229

230 def update por ts (s e l f) :

231 adj mat = s e l f . adj mat

232 # in−node connect ions :

233 for i , v in enumerate (adj mat [0]) :

234 i f v != 0 :

235 s e l f . por ts nb [i] . o p in . q = s e l f . q [1]

236 s e l f . por ts nb [i] . o p in . hs = s e l f . hea l th

237 # out−node connect ions :

238 for i , v in enumerate (adj mat [1]) :

239 i f v != 0 :

240 s e l f . por ts nb [i] . o p in . q = s e l f . q [2]

241 s e l f . por ts nb [i] . o p in . hs = s e l f . hea l th

242 # pump net communication :

243 s e l f . port pmp . o p in . dmg = s e l f . dmg

244 s e l f . port pmp . o p in . hs = s e l f . hea l th

245

246

247

248 def dmg test (s e l f) :

249 # Check l o c a l f l ow conserva t ion

250 A = array (s e l f . adj mat)

266

251 Q = array ([x . i p i n . q for x in s e l f . por ts nb])

252 f c = inne r (A,Q)+array ([s e l f . q [1] ,− s e l f . q [2]])

253 i f norm(f c) >= 1 .5 e−5:

254 # Check i f t he r i s net s ink between i t s e l f and ne ighbor s .

255 return True

256 else :

257 return False

258

259

260 def h e a l t h s i g (s e l f) :

261 lu = s e l f . p o r t s l l

262 hs = 1

263 for i in [0 , 2 , 3] :

264 i f lu [i] . cv == {} :

265 hs = 0

266 s e l f . dmg = True

267 break

268 return hs

269

270

271 class CtrlSystem :

272 # Base con t r o l system c l a s s

273 def i n i t (s e l f) :

274 s e l f . agent = []

275 s e l f . e dg e i d = []

276 s e l f . n l a y e r = 0

277

278

279 class DmgCtrlSys (CtrlSystem) :

280 # Damage con t r o l system c l a s s

281 def i n i t (s e l f) :

282 CtrlSystem . i n i t (s e l f)

267

283

284 def s e tup cp agent s (s e l f , g model , dt =0.05 , key=’ pc ’ , n cp =2):

285 # Scan the edges in graph model and

286 # crea t e c h i l l e r −pump c o n t r o l l e r o b j e c t s

287

288 edges = g model . edge [’ nrml ’]+g model . edge [’ s r c ’]+g model . edge [’ snk ’]

289 for cp id in range (1 , n cp +1):

290 cp = CpAgent (dt)

291 cp . p o r t s l l = [None]∗4

292 e i d = [0] ∗ 4

293 for i , an edge in enumerate (edges) :

294 i f (’ i n ’+key+s t r (cp id)) in an edge . name :

295 cp . p o r t s l l [0] = an edge

296 e i d [0] = i

297

298 e l i f (key+s t r (cp id)+ ’ i n ’) in an edge . name :

299 cp . p o r t s l l [1] = an edge

300 e i d [1] = i

301

302 e l i f (key+s t r (cp id)+ ’ out ’) in an edge . name :

303 cp . p o r t s l l [2] = an edge

304 e i d [2] = i

305

306 e l i f (’ out ’+key+s t r (cp id)) in an edge . name :

307 cp . p o r t s l l [3] = an edge

308 e i d [3] = i

309

310 i f (s e l f . agent != []) and (s e l f . e dg e i d [−1] > e i d [−1]) :

311 for i , x in enumerate (s e l f . e dg e i d) :

312 i f e i d [−1] < x [1] :

313 s e l f . agent . i n s e r t (i , cp)

314 s e l f . e dg e i d . i n s e r t (i , e i d [−1])

268

315 else :

316 s e l f . agent += [cp]

317 s e l f . e dg e i d += [e i d [−1]]

318

319 def s e tup smar t va lve s (s e l f , g model , dt) :

320 # Scan the edges in graph model , and crea t e smart v a l v e o b j e c t s .

321

322 edges = g model . edge [’ nrml ’]

323 for m, an edge in enumerate (edges) :

324 i f (’ pipe ’ in an edge . name) or (’ bps ’ in an edge . name) :

325 i f ’ v1 ’ in an edge . cv . keys () :

326 id = m

327 sv = SmartValve (an edge , dt , ’ v1 ’)

328 i f (s e l f . agent != []) and (s e l f . e dg e i d [−1] > id) :

329 for i , x in enumerate (s e l f . e dg e i d) :

330 i f id < x :

331 s e l f . agent . i n s e r t (i , sv)

332 s e l f . e dg e i d . i n s e r t (i , id)

333 break

334 else :

335 s e l f . agent += [sv]

336 s e l f . e dg e i d += [id]

337

338

339 def connect (s e l f , g model) :

340 # Connect a l l t he c o n t r o l l e r o b j e c t s through t h e i r por t s

341 # according to the inc idence matrix o f c on t r o l l e r−a t t ached

342 # edges and the edge adjacency matrix

343

344 ag = s e l f . agent

345 edge id = s e l f . e dg e i d

346 n ag = len (ag)

269

347 # Connect a l l t he smart v a l v e s and pump network c t r l e r s :

348 A ag = sv i n c (edge id , g model . A tot)

349 M = edge adj mat (A ag)

350 for i , an ag in enumerate (ag) :

351 for j , a in enumerate (A ag [: , i]) :

352 i f a == 1 :

353 row1 = A ag [j , :]

354 e l i f a == −1:

355 row2 = A ag [j , :]

356 for j in xrange (i , n ag) :

357 i f M[i , j] != 0 :

358 an ag . por ts nb += [Port (ag [j])]

359 ag [j] . por ts nb += [Port (an ag)]

360 an ag . por ts nb [−1] . i p i n = ag [j] . por ts nb [−1] . o p in

361 ag [j] . por ts nb [−1] . i p i n = an ag . por ts nb [−1] . o p in

362 for j , a in enumerate (M[i , :]) :

363 i f j != i and a != 0 :

364 an ag . adj mat [0] += [row1 [j]]

365 an ag . adj mat [1] += [row2 [j]]

366 # Connect among pump network c t r l e r s :

367 pmp ag = []

368 for an ag in ag :

369 i f i s i n s t a n c e (an ag , CpAgent) :

370 pmp ag += [an ag]

371 n = len (pmp ag)

372 for i in xrange (n−1):

373 pmp ag [i] . port pmp = Port (pmp ag [i +1])

374 pmp ag [i +1] . port pmp = Port (pmp ag [i])

375 pmp ag [i] . port pmp . i p i n = pmp ag [i +1] . port pmp . o p in

376 pmp ag [i +1] . port pmp . i p i n = pmp ag [i] . port pmp . o p in

B.3.5 post proc.py

1 from copy import deepcopy

270

2 from pylab import ∗

3 import cen model

4

5 class Recorder :

6 # Records s imu la t ion r e s u l t .

7 # Used to p l o t and r e t r i e v e the r e s u l t .

8

9 def i n i t (s e l f) :

10 s e l f . s to r ag e = [] # Storage o f mu l t i p l e s imu la t ion r e s u l t s .

11 s e l f . s i z e = 0 # Size o f s t orage

12 s e l f . r e s = [] # Resu l t o f a s i n g l e s imu la t ion run

13 s e l f . g model = None

14

15 def s tack mode l (s e l f , g model) :

16 # Stores a graph model in t o the r e s u l t . a l l t he data i s s t ored l o c a l l y

17 # in s i d e graph model .

18

19 s e l f . r e s += [deepcopy (g model)]

20

21 def s t a c k r e s (s e l f) :

22 # Stacks the r e s u l t in t o s t orage .

23

24 s e l f . s to r ag e += [s e l f . r e s]

25 s e l f . s i z e += 1

26 s e l f . r e s = []

27 s e l f . g model = None

28

29 def g e t r e s (s e l f , r e s i d) :

30 # Ret r i eve a r e s u l t by the s imu la t ion no .

31

32 return s e l f . s to r ag e [r e s i d]

33

271

34 def p lo t (s e l f , r e s i d , edge name , var = None) :

35 # Plot a r e s u l t o f s t ored in a s p e c i f i c edge .

36 # Inputs :

37 # re s i d = re su l t , or s imu la t ion no .

38 # edge name = name of an edge

39 # var = name of the v a r i a b l e to be i n v e s t i g a t e d

40

41 r e s = s e l f . g e t r e s (r e s i d)

42 edge name = [edge name]

43

44 da t s e t = {}

45 for a name in edge name :

46 da t s e t [a name] = None

47 for i , mdl in enumerate (r e s) :

48 edges = mdl . edge [’ nrml ’]+mdl . edge [’ s r c ’]\

49 +mdl . edge [’ snk ’]+mdl . edge [’dmg ’]

50 for an edge in edges :

51 i f an edge . name in edge name :

52 a name = an edge . name

53 i f da t s e t [a name] == None :

54 da t s e t [a name] = an edge . r e s da t . copy ()

55 da t s e t [a name] [’ in node ’] = \

56 an edge . node in . r e s da t [:]

57 da t s e t [a name] [’ out node ’] = \

58 an edge . node out . r e s da t [:]

59 else :

60 for k , v in an edge . r e s da t . i t e r i t em s () :

61 da t s e t [a name] [k] += v

62 da t s e t [a name] [’ t ’] += mdl . t da t [:]

63 da t s e t [a name] [’ in node ’] += \

64 an edge . node in . r e s da t [:]

65 da t s e t [a name] [’ out node ’] += \

272

66 an edge . node out . r e s da t [:]

67 i f i == 0 :

68 da t s e t [a name] [’ t ’] = mdl . t da t [:]

69 else :

70 da t s e t [a name] [’ t ’] += mdl . t da t [:]

71 f i g u r e ()

72

73 i f var == None :

74 # Plot x t 1 f i r s t

75 subplot (211)

76 hold (True)

77 for a name in da t s e t . i t e r k e y s () :

78 dat = da t s e t [a name]

79 n = len (dat [’ x t 1 ’])

80 t = dat [’ t ’] [: n]

81 p lo t (t , dat [’ x t 1 ’] , l a b e l=a name)

82 hold (Fa l se)

83 t i t l e (’ Resu l t No . ’+s t r (r e s i d))

84 y l a b e l (’ Vol . f low ra te (mˆ3/ s) ’)

85 x l a b e l (’Time (s e c) ’)

86 legend ()

87 g r id (True)

88 # Plot np

89 subplot (212)

90 hold (True)

91 for a name , dat in da t s e t . i t e r i t em s () :

92 dat = da t s e t [a name]

93 n = len (dat [’ in node ’])

94 t = dat [’ t ’] [: n]

95 p lo t (t , dat [’ in node ’] , l a b e l=a name+’ , in node ’)

96 n = len (dat [’ out node ’])

97 t = dat [’ t ’] [: n]

273

98 p lo t (t , dat [’ out node ’] , l a b e l=a name+’ , out node ’)

99 hold (Fa l se)

100 y l a b e l (’ Presure (Pa) ’)

101 x l a b e l (’Time (s e c) ’)

102 legend ()

103 g r id (True)

104 subplot (212)

105 hold (True)

106 else :

107 hold (True)

108 for a name in da t s e t . i t e r k e y s () :

109 dat = da t s e t [a name]

110 n = len (dat [var])

111 t = dat [’ t ’] [: n]

112 p lo t (t , dat [var] , l a b e l=a name)

113 hold (Fa l se)

114 t i t l e (’ Resu l t No . ’+s t r (r e s i d))

115 y l a b e l (var)

116 x l a b e l (’Time (s e c) ’)

117 legend ()

118 g r id (True)

119 show ()

120

121 def op capa ra te (s e l f , o mode=0):

122 ’ ’ ’

123 op capa ra t e (s e l f , o mode=0):

124 o mode = 0 : s imple p l o t t i n g

125 = 1 : re turn the t u p l e (expt no , op capa ra t e) o f l i s t

126 = 2 : Do both

127 Compute the opera t ion c a p a b i l i t y r a t e s o f a l l t he s imu la t ion runs

128 s t ored .

129 ’ ’ ’

274

130 def op cap (edge , idx = 0) :

131 ’ ’ ’

132 i dx : f o r the b a s e l i n e capac i t y es t imat ion , 0

133 f o r f i n a l s t a tu s , −1

134 Edit ’ e ’ and ’w ’ i f you want model and weight f o r

135 d i f f e r e n t mission scheme

136 ’ ’ ’

137 # Name of the edges wi th s e r v i c e l oads :

138 # IEP , Eng rm , Radar , CIC1 , CIC2 , FCell , EMgun

139 e = [’ svc1 ’ , ’ svc2 ’ , ’ svc3 ’ , ’ svc4 ’ , ’ svc5 ’ , ’ svc6 ’ , ’ svc7 ’]

140 # Weights o f each loads , 1 to 10

141 # IEP , Eng rm , Radar , CIC , FCell , EMgun

142 w = [2 , 6 , 5 , 8 , 4 , 6]

143

144 y = []

145 i f idx == 0 :

146 for x in e :

147 y += [abs (edge [x] . r e s da t [’ x t 1 ’] [idx])]

148 op cap . y0 = y

149 else :

150 for i , x in enumerate (e) :

151 y temp = abs (edge [x] . r e s da t [’ x t 1 ’] [idx])

152 i f y temp > op cap . y0 [i] :

153 y temp = op cap . y0 [i]

154 y += [y temp]

155 C = w[0] ∗ y [0] + w[1] ∗ y [1] + w[2] ∗ y [2]

156 i f y[3]>=y [4] :

157 C += w[3] ∗ y [3]

158 else :

159 C += w[3] ∗ y [4]

160 C += (w[4] ∗ y [5] + w[5] ∗ y [6])

161 return C

275

162

163 n = len (s e l f . s to r ag e)

164 op c dat = []

165 for i in xrange (n) :

166 r e s = s e l f . g e t r e s (i)

167 edge = r e s [0] . g e t e d g e d i c t ()

168 t dmg = r e s [0] . t da t [−1]

169

170 # Compute i n i t i a l c a p a b i l i t y :

171 C0 = op cap (edge , 0)

172 for j , t in enumerate (r e s [1] . t da t) :

173 i f t > t dmg+8:

174 c r t = j

175 break

176

177 # Check i f the system went t o t a l f a i l u r e by the damage :

178 # I f the rupture i s not i s o l a t e d f o r 8 sec s a f t e r rupture ,

179 # the system i s cons idered as t o t a l f a i l u r e .

180 to t q = 0

181 for an edge in r e s [1] . edge [’dmg ’] :

182 i f i s i n s t a n c e (an edge , cen model . CoupledEdge) :

183 pass

184 else :

185 t o t q += an edge . r e s da t [’ x t 1 ’] [c r t]

186 i f t o t q > 2e−5:

187 t o t f a i l u r e = True

188 else :

189 t o t f a i l u r e = Fa lse

190

191 # Compute the f i n a l c a p a b i l i t y a f t e r damage :

192 i f t o t f a i l u r e == False :

193 edge = r e s [1] . g e t e d g e d i c t ()

276

194 C = op cap (edge ,−1)

195 else :

196 C = 0

197 op c dat += [C/C0]

198

199 i f o mode==0 or o mode==2:

200 f i g u r e ()

201 p lo t (range (n) , op c dat , ’−o ’)

202 x = []

203 for i in range (n) :

204 x += [s t r (i)]

205 x t i c k s (range (n) , x)

206 x l a b e l (” S imulat ion no . ”)

207 y l a b e l (”Operation c a p a b i l i t y r a te ”)

208 t i t l e (”Operation c a p a b i l i t y comparison”)

209 xlim (0 , range (n))

210 ylim (0 ,1)

211 g r id (True)

212 show ()

213 i f o mode==1 or o mode==2:

214 return (range (n) , op c dat)

215

216 def whos down (s e l f , r e s i d , o mode=0):

217 ’ ’ ’

218 whos down (s e l f , r e s i d , o mode=0):

219 r e s i d : r e s u l t i d

220 o mode :=0 , p r in t the l i s t

221 =1, re turn the l i s t

222

223 Function f o r check ing which s e r v i c e components are down .

224 ’ ’ ’

225 mdl=s e l f . g e t r e s (r e s i d) [−1]

277

226 down l i s t = []

227 for k , e in mdl . g e t e d g e d i c t () . i t e r i t em s () :

228 i f ’ svc ’ in k :

229 q = e . xt 1

230 i f abs (q) < 1e−5:

231 print k+” (” ,q , ”) ”

232 down l i s t . append (k)

233 i f ’ pc ’ in k :

234 i f e . cv . has key (’ ps1 ’) :

235 ps1=e . cv [’ ps1 ’]

236 i f ps1 < 10 :

237 print k+” i s o f f or down (” , ps1 , ” rad/ s) ”

238 down l i s t . append (k)

239 else :

240 print k+” i s on (” , ps1 , ” rad/ s) ”

241

242

243 def ge t edge da t (s e l f , r e s i d , edge name , o mode=0, f name=None) :

244 ’ ’ ’

245 g e t e d g e d a t (r e s i d , edge name , o mode=0):

246 r e s i d : r e s u l t i d

247 edge name : a s i n g l e s t r i n g o f an edge name

248 o mode : = 0 , re turned outpu t

249 = 1 , . x l s f i l e , d e f a u l t name i s the edge name

250 Jus t prov ide s the data o f a va r i a b l e , in s t ead o f p l o t t i n g .

251 ’ ’ ’

252 r e s = s e l f . g e t r e s (r e s i d)

253 dat = { ’ t ’ : [] , ’ p in ’ : [] , ’ p out ’ : [] }

254 for mdl in r e s :

255 e = mdl . g e t e d g e d i c t ()

256 a e = e [edge name]

257

278

258 for k , d in a e . r e s da t . i t e r i t em s () :

259 i f dat . has key (k) :

260 dat [k]+=d

261 else :

262 dat [k]=d

263 dat [’ p in ’]+=a e . node in . r e s da t

264 dat [’ p out ’]+=a e . node out . r e s da t [:]

265 dat [’ t ’]+=mdl . t da t [:]

266

267 i f o mode == 1 :

268 import pyExce le ra tor as pyx

269 wb = pyx . Workbook ()

270 ws = wb. add sheet (’ 0 ’)

271 c o l= 0

272 ws . wr i t e (0 , co l , ’ t ’)

273 for i , v in enumerate (dat [’ t ’]) :

274 ws . wr i t e (i +1, co l , s t r (v))

275 c o l=1

276 for k , d in dat . i t e r i t em s () :

277 i f k == ’ t ’ :

278 pass

279 else :

280 ws . wr i t e (0 , co l , k)

281 for i , v in enumerate (d) :

282 ws . wr i t e (i +1, co l , s t r (v))

283 c o l+=1

284

285 i f f name == None :

286 f n = ” r e s ” + s t r (r e s i d) + ” ” + edge name + ” . x l s ”

287 else :

288 f n = f name+” . x l s ”

289 wb . save (f n)

279

290 else :

291 return dat

292

293

294 def s a v e r e s da t (s e l f , f name) :

295 # Save the current data

296 # Fi l e ex t en s ion i s ” . r e s .”

297

298 import cP i ck l e as p

299 f = open (f name+” . r e s ” , ’w ’)

300 p .dump(s e l f . s to rage , f)

301

302 def l o a d r e s d a t (s e l f , f name) :

303 # Load a saved data

304 # Fi l e ex t en s ion i s ” . r e s .”

305

306 import cP i ck l e as p

307 f = open (f name+” . r e s ” , ’ r ’)

308 s e l f . s to r ag e=p . load (f)

309 s e l f . s i z e=len (s e l f . s to r ag e)

310

311 def check var (mdl , var name) :

312 # Check f i n a l va lu e s o f a c e r t a in v a r i a b l e or parameter in every edge

313 # of a graph model

314 # input :

315 # var name = name (s t r i n g) o f a v a r i a b l e or parameter

316

317 edges=mdl . edge [’ nrml ’]+mdl . edge [’dmg ’]+mdl . edge [’ s r c ’]+mdl . edge [’ snk ’]

318 for e in edges :

319 i f e . cv . has key (var name) :

320 print e . name , ” : ” , e . cv [var name]

321 e l i f e . prm . has key (var name) :

280

322 print e . name , ” : ” , e . prm [var name]

323 e l i f var name == ” xt 1 ” :

324 print e . name , ” : ” , e . xt 1

325 e l i f var name == ”xt” :

326 print e . name , ” : ” , e . xt

327 e l i f var name == ”ep” :

328 print e . name , ” : ” , e . ep

329 e l i f var name == ”np” :

330 print e . name , ” : ” , e . node in . np , ” , ” , e . node out . np

281

REFERENCES

[1] “About Bond Graphs.” [Online] http://www.bondgraph.info/about.html. [Retrieved April 8,
2008].

[2] “Britannica Online Encyclopedia.” [Online] http://www.britannica.com. [Retrieved April 16,
2008].

[3] “DC (Damage Control) Museum, NAVSEA-USS Stark.” [Online]
http://www.dcfp.navy.mil/mc/museum/STARK/Stark3.htm. [Retrieved February 25,
2008].

[4] “USS Princeton (CG 59).” [Online] http://www.navybuddies.com/cg/cg59.html. [Retrieved
February 26, 2008].

[5] “USS Stark on Fire.” [Online] http://www.navybook.com/nohigherhonor/pic-stark.shtml. [Re-
trieved February 25, 2008].

[6] “Yard patrol craft (yp 676).” [Online] http://www.boats.dt.navy.mil/pg2/YP676.htm. [Re-
trieved November 06, 2008].

[7] NIST/SEMATECH e-Handbook of Statistical Methods. National Institute of Standards and
Technology, October 2008. http://www.itl.nist.gov/div898/handbook/.

[8] Aadaleesan, P., Miglan, N., Sharma, R., and Saha, P., “Nonlinear System Identification
Using Wiener Type Laguerre – Wavelet Network Model,” Chemical Engineering Science, vol. 63,
pp. 3932–3941, April 2008.

[9] Al-Duwaish, H., Karim, M., and Chandrasekar, V., “Use of multilayer feedforward neural
networks in identification and control of wiener model,” in IEEE Proceedings-Control Theory
and Applications, vol. 143, pp. 255–258, 1996.

[10] Bachkosky, J., D. Katz, R. R., and Weldon, W., “Naval Electromagnetic (EM) Gun
Technology Assessment,” Tech. Rep. NRAC 04-01, Naval Research Advisory Committee, 800
North Quincy Street Arlington, VA 22217-5660, February 2004.

[11] Bai, E.-W., “Decoupling the linear and nonlinear parts in hammerstein model identification,”
Automatica, vol. 40, pp. 671–676, 2004.

[12] Baltersee, J. and Chambers, J., “Nonlinear adaptive prediction of speech with a pipelined
recurrent neural network,” IEEE Transactions on Signal Processing, vol. 46, pp. 2207–2216,
August 1998.

[13] Bellman, R. E., Adaptive Control Processes: A Guided Tour. New York: Princeton University
Press, 1961.

[14] Bollobás, B., Modern Graph Theory. Graduate Texts in Mathematics, New York, NY:
Springer, 1998.

[15] Croegaert, M., Shapiro, S., Callahan, B., and Roach, J., “Evaluating Intelligent Fluid
Automation Systems using a Fluid Network Simulation Environment,” in 13th International
Ship Control Systems Symposium, (Orlando, Florida), 2003.

[16] Davis, T. W. and Palmer, R. W., Computer-Aided Analysis of Electrical Networks. Colum-
bus, Ohio: Charles E. Merrill Publishing Co., 1973.

[17] Deo, M., Graph Theory with Applications to Engineering and Computer Science. Series in
Automatic Computation, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1974.

282

[18] Diestel, R., Graph Theory. Graduate Texts in Mathematics, Heidelberg, NY: Springer,
3rd ed., 2005.

[19] Doerry, N., Robey, H., Amy, J., and Petry, C., “Powering the Future with the Integrated
Power System,” Naval Engineering Journal, pp. 267–282, May 1996.

[20] Du, K. L. and Swamy, M., Neural Networks in a Softcomputing Framework. Springer, 2006.

[21] Dunnington, L., Stevens, H., and Grater, G., “Integrated Engineering Plant for Future
Naval Combatants - Technology Assessment and Demonstration Roadmap,” Tech. Rep. MSD-
50-TR-2003/01, Anteon Corp., January 2003.

[22] Etman, L., “Design and Analysis of Computer Experiments: the method of Sacks et al.,” in
Engineering Mechanics Report, no. WFW 94.098, Eindhoven University of Technology, 1994.

[23] Evans, J. R. and Minieka, E., Optimization Algorithm for Networks and Graphs. New York:
Mercel Dekker Inc., 2nd ed., 1992.

[24] Fahlman, S. E. and Lebiere, C., “The cascade-correlation learning architecture,” Tech.
Rep. CMU-CS-90-100, School of Computer Science, Carnegie Mello University, Pittsburgh, PA
15213, 1991.

[25] Fritzson, P., Tutorial, Introduction of Object-Oriented Modeling and Simulation with Open-
Modelica, 2006.

[26] Gevers, M., System Identification without Lennart Ljung: What would have been different?,
ch. 13, pp. 61–85. Lund, Sweden: Studentlitteratur, 2006.

[27] Gilmore, M., “The Navy’s DD(X) Destroyer Program.” Congressional Budget Office testi-
mony, July 2005.

[28] Giri, F., Chaoui, F., Haloua, M., Rochdi, Y., and Naitali, A., “Hammerstein model
identification,” in Proceedings of the 10 th Mediterranean Conference on Control and Automa-
tion, July 2002.

[29] Giunta, A., Watson, L., and Koehler, J., “A Comparison of Approximation Modeling
Techniques: Polynomial Versus Interpolating Models,” 7th AIAA/USAF/NASA/ISSMO Sym-
posium on Multidisciplinary Analysis & Optimization, September 1998.

[30] Gross, J. L. and Yellen, J., eds., HandBook of Graph Theory. Discrete Mathematics and
Its Applications, Boca Raton, Florida: CRC Press LLC, 2004.

[31] Hagenblad, A., Aspects of the Identification of Wiener Models. PhD thesis, Linköpings
University, SE-581 83 Linköping, Sweden, 1999.

[32] Hagenblad, A., Ljung, L., and Wills, A., “Maximum likelihood identification of wiener
models,” Automatica, vol. 44, pp. 2697–2705, 2008.

[33] Hecht-Nielson, R., “Kolmogorov’s Mapping Neural Network Existence Theorem,” in IEEE
International Conference on Neural Networks, vol. 3, pp. 11–13, 1987.

[34] Janczak, A., Identification of Nonlinear Systems Using Neural Networks and Polynomial
Models: A Block-Oriented Approach. Lecture Note in Control and Information Sciences, Berlin
Heidelberg, Germany: Springer-Verlag, 2005.

[35] Jeong, S., Murayama, M., and Yamamoto, K., “Efficient optimization design method using
kriging method,” Journal of Aircraft, vol. 42, no. 2, pp. 413–420, 2005.

[36] Kocijan, J., Girard, A., Banko, B., and Murray-Smith, R., “Dynamic System Identifi-
cation with Gaussian Process,” Mathematical and Computer Modelling of Dynamical Systems,
vol. 11, pp. 411–424, December 2005.

[37] Larock, B. E., Jeppson, R. W., and Watters, G. Z., Hydraulics of Pipline Systems. 2000
Corporate Blvd., N.W., Boca Raton, Florida 33431: CRC Press LLC, 2000.

283

[38] Lee, T. H. and Jung, J. J., “Kriging metamodel based optimization.” School of Mechanical
Engineering, Hanyang University, Seoul, South Korea, Accquired in 2006.

[39] Lively, K. A., Scheidt, D. H., and Drew, K. F., “Mission Based Engineering Plant Con-
trol,” ASNE Rconfiguration and Survivability Symposium, February 2005.

[40] Ljung, L., “System identification, to be included in the control handbook, edited by w.
levine,” tech. rep., Dept of EE. Linköping University, S-581 83 Linköping, Sweden, May 1995.
http://www.control.isy.liu.se/publications.

[41] Ljung, L., System Identification. PTR Prentice Hall Information and System Sciences Series,
New Jersey: Prentice Hall, 1999.

[42] Ljung, L. and Glad, T., Modeling of Dynamic Systems. 113 Sylvan Avenue, Englewood Cliff,
NJ 07632: Prentice Hall, Inc., 1994.

[43] Luers, A. C., Hil, S. A., Scheffey, J. L., Pham, H. V., and Farleyl, J. P., “The
Evaluation of the Autonomic Fire Suppression System Concept of Operations and PDA Cooling
Effectiveness,” Tech. Rep. ADA417406, Naval Research Lab, Washington DC, September 2003.

[44] Mack, Y., Goel, T., Shyy, W., and Haftka, R., Evolutionary Computation in Dynamic
and Uncertain Environments, vol. 51 of Studies in Computational Intelligence. Springer, 2007.

[45] Mandic, D. and Chambers, J., Recurrent neural networks for prediction: learning algorithms,
architectures, and stability. New York: Wiley, 2001.

[46] Manik, A., Goplakrishnan, K., Singh, A., and Yan, S., “Neural Networks Surrogate
Models for Simulatiing Payment in Pavement Construction,” Journal of Civil Engineering and
Management, vol. 14, no. 4, pp. 235–240, 2008.

[47] Margolis, D. and Shim, T., “Bond Graph Modelling for Non-Linear Hydro-Mechanical Sys-
tems,” in Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body
Dynamics, vol. 219, pp. 371–382, Professional Engineering Publishing, 2005.

[48] MathworksTM, Simulink R©7 Getting Started Guide, 2009.

[49] Mavris, D. N. and Kirby, M. R., “Technology identification, evaluation, and selection for
commercial transport aircraft,” in 58th Annual Conference of Society of Allied Weight Engi-
neers, Inc, (San Jose, California), Society of Allied Weight Engineers (SAWE), Inc., 24-26 May
1999.

[50] Meliopoulos, A. P. and Stefopoulos, G. K., “Improved Numerical Integration Method
for Power/Power Electronic Systems Based on Three-Point Collocation,” in Proceedings of the
44th IEEE Conference on Decision and Control, and the European Control Conference, (Seville,
Spain), pp. 6780–6787, December 2005.

[51] Modelica Association, “ModelicaTM— A Unified Object-Oriented Language for Physical
Systems Modeling, Tutorial, Version 1.4.” [Online] http://www.modelica.org/publications, De-
cember 2000.

[52] Moon, K., Weston, N., and Mavris, D., “A Method for Speeding Up the Time-Domain
Simulation of a Complex System Using Surrogate Modeling Technique,” in ASNE Automation
and Control Conference, (Biloxi, MS), 2007.

[53] Myers, R. H. and Montgomery, D. C., Response Surface Methodology:Process and Product
Optimization Using Designed Experiments. New York: John Wiley & Sons, Inc., 1995.

[54] Naval Surface Warfare Center Dahlgren Division, “Open Architecture (OA) Com-
puting Environment Design Guidance, Version 1.0.” Prepared for Program Executive Office,
Integrated Warfare Systems, 17320 Dahlgren Road, Dahlgren VA 22448-5100, August 2004.

[55] NavSource Naval History, “USS Zumwalt (DDG-1000).” Online,
http://www.navsource.org/archives/05/011000.htm, March 2010.

284

[56] Oden, J. T., Belytschko, T., Fish, J., Hughs, T. J., Johnson, C., Keyes, D., Laub, A.,
Petzold, L., Srolovitz, D., and Yip, S., “Simulation-based engineering and science: Revo-
lutionizing engineering science through simulation.” Report of the National Science Foundation
Blue Ribbon Panel on Simulation-Based Engineering Science, May 2006.

[57] Ogunfunmi, T., Adaptive Nonlinear System Identification: The Volterra and Wiener Model
Approaches. Signals and Communication Technology, Springer, 2007.

[58] O’Rourke, R., “Navy DDG-1000 Destroyer Program: Background, Oversight Issues, and
Options for Congress.” Congressional Research Service, Report for Congress, October 2007.
RL32109.

[59] Pearson, R. K., Discrete-Time Dynamic Models. A Series of Textbooks and Monographs,
198 Medison Avenue, New York, New York 10016: Oxford University Press, Inc., 1999.

[60] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Tucker,

K. P., “Surrogate-Based Analysis and Optimization,” Progress in Aerospace Sciences, vol. 41,
pp. 1–28, 2005.

[61] Rasmussen, C. E. and Williams, C., Gaussian Processes for Machine Learning. No. ISBN
0-262-18253-X, the MIT Press, 2006.

[62] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., “Design and Analysis of
Computer Experiments,” Statistics Science, vol. 4, pp. 409–423, November 1989.

[63] Samarasinghe, S., Neural Networks for Applied Sciences and Engineering: From Fundamen-
tals to Complex Pattern Recognition. Boca Raton, FL: Auerbach Publications, 2007.

[64] SAS Institute Inc., JMP Design of Experiments Guide Release 7. SAS Institute Inc., Cary,
NC, 2007.

[65] Scharl, J. and Mavris, D., “Building Parametric and Probabilistic Dynamic Vehicle Mod-
els using Neural Networks,” in AIAA Modeling and Simulation Technologies Conference and
Exhibit, (Montreal, Canada), August 2001.

[66] Scheidt, D. H., “Intelligent Agen-Based Control,” in Johns Hopkins APL Technical Digest,
vol. 23, pp. 383–395, 2002.

[67] Schetzen, M., The Volterra and Wiener Theories of Nonlinear Systems. John Wiley & Sons,
Inc., 1980.

[68] Seiffert, U., “Training of Large-Scale Feed-Forward Neural Networks,” International Joint
Conference on Neural Networks, July 2006.

[69] Seman, A. J., Toomey, K., and Lang, S., “Reduced Ship’s crew-by Virtual Presence
(RSVP) Advanced Technology Demonstration (ATD) Final Report,” Tech. Rep. NSWCCD-
65-TR-2003/00, Naval Surface Warfare Center Carderock Division, Ship Systems Engineering
Station, 5001 S Broad St Philadelphia Pa 19112-5083, February 2003.

[70] Shai, O. and Preiss, K., “Graph theory representations of engineering systems and their
embedded knowledge,” Artificial Intelligence in Engineering, vol. 13, pp. 273–285, 1999.

[71] Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F., “Kriging Models for
Global Approximation in Simulation-Based Multidisciplinary Design Optimization,” AIAA
Journal, vol. 39, pp. 2233–2241, December 2001.

[72] Sjöberg, J., Non-Linear System Identification with Neural Networks. PhD thesis, Linköping
University, S-581 83 Linköping, Sweden, 1995.

[73] Sola, J. and Sevilla, J., “Importance of Input Data Normalization for the Application of
Neural Networks to Complex Industrial Problems,” in IEEE Transactions on Nuclear Science,
vol. 44, June 1997.

285

[74] Spindel, R., S. Laska, J. C.-B., Cooper, D., Hegmann, K., and Hogan, R., “Optimized
Surface Ship Manning,” Tech. Rep. NRAC-00-1, Naval Research Advisory Committee, 800
North Quincy Street Arlington, VA 22217-5660, April 2000.

[75] Tam, K.-S., “Modeling Approaches for Large-Scale Reconfigurable Engineering Systems,” in
Proceedings of World Academy of Science, Engineering and Technology, vol. 17, pp. 135–140,
December 2006.

[76] United States Government Accountability Office, “Challenges Facing the DD(X)
Destroyer Program.” Report to the Chairman, Subcommittee on Projection Forces, Committee
on Armed Forces, House of Representatives, September 2004. GAO-04-973.

[77] van der Merwe, R., Leen, T. K., Lu, Z., Frolov, S., and Baptista, A. M., “Fast
Neural Network Surrogates for Very High Dimensional Physics-Based Models in Computational
Oceanography,” Neural Networks, vol. 20, pp. 462–478, 2007.

[78] van Rossaum, G., Python Tutorial, Release 2.6.5. Python Software Foundation, March 2010.

[79] Visala, A., “Identification of Wiener-MLP with feedback NOE-model with extended Kalman
filter,” in Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelli-
gence. The 1998 IEEE International Joint Conference on, vol. 2, (Anchorage, AK), pp. 1281–
1286, May 1998.

[80] Visala, A., Pitkänen, H., and Aarne, H., “Modeling of chromatographic separation process
with wiener-mlp representation,” Journal of Process Control, vol. 11, pp. 443–458, 2001.

[81] Walks, J. P. and Mearman, J. F., “Integrated Engineering Plant,” ASNE Reconfiguration
and Survivability Symposium, February 2005.

[82] Walters, E. A., Iden, S., Borger, W., and Wampler, B., “INVENT modeling, simula-
tion, analysis and optimization,” in 48th AIAA Aerospace Science Meeting Including the New
Horizons Forum and Aerospace Exposition, (Orlando, Florida), 4-7 January 2010.

[83] Wang, J. M., Fleet, D. J., and Hertzmann, A., “Gaussian Process Dynamical Model,” in
Proc. Neural Information Processing Systems, December 2005.

[84] Wellstead, P. E., Introduction to Physical System Modelling. Academic Press Ltd., 1979.

[85] Werbos, P., “Backpropagation through time: What it does and how to do it,” in proceedings
of the IEEE, vol. 78, pp. 1550–1560, October 1990.

[86] Westwick, D. and Verhaegen, M., “Identifying MIMO Wiener Systems using Subspace
Modeling Identification Methods,” Signal Processing, vol. 52, pp. 235–258, October 1996.

[87] Williams, R. and Zipser, D., “Experimental analysis of the real-time recurrent learning
algorithm,” Connection Science, vol. 1, no. 1, pp. 87–111, 1989.

[88] Work, R., O’Rourke, R., Labs, E., and McCarthy, J., “Recapitalizing and Modernizing
the Navy’s Surface Battle-Line.” Testimony published by Center for Strategic and Budgetary
Assessment, March 2006.

[89] Wu, C.-F. J. and Hamada, M., Experiments: Planning, Anlysis, and Prameter Design Op-
timization. John Wiley & Sons, Inc., 2000.

[90] Zink, M. G., Brown, K., Dalessandro, D., and Longo, D., “Domino - simulating systems
of systems.” Advanced Automation and Controls R&D, NAVSEA Warfare Centers, Philadel-
phia, 2009.

286

