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Abstract

Character-level models have been used exten-
sively in recent years in NLP tasks as both
supplements and replacements for closed-
vocabulary token-level word representations.
In one popular architecture, character-level
RNNS, typically LSTMs, form a bottom tier
creating a word representation for a sequence
tagger used to predict token-level annotations
such as part-of-speech (POS) tags.

In this work, we examine the behavior of POS
taggers from the perspective of individual hid-
den units within the character-level LSTM.
Analysis of activation patterns on a macro
scale allows us to identify the ways in which
the burden of POS detection is spread across
the hidden layer in different languages, as
a function of their morphological properties.
Using ablation tests, we show how different al-
locations of forward and backward units affect
model arrangement and performance in dif-
ferent categories of languages. We use these
results to offer heuristics for hyperparameter
selection that are based on known linguistic
traits.

1 Introduction

Neural models that learn representations for enti-
ties below the word level are becoming a standard
in natural language processing tasks (e.g., Bo-
janowski et al., 2017; Peters et al., 2018). In par-
ticular, character representations have been shown
to handle out-of-vocabulary words in supervised
tagging tasks (Ling et al., 2015; Lample et al.,
2016). These advantages generalize across mul-
tiple languages, where morphological formation
may differ greatly but the character composition
of words remains a relatively reliable primitive
(Plank et al., 2016).

While the advantages of character-level models
are readily apparent, less is understood about the
exact mechanism by which these models encode

linguistic knowledge about morphology and or-
thography. Different languages exhibit character-
word correspondence in very different patterns,
and yet the bi-directional LSTM appears to be, or
is assumed to be, capable of capturing them all. In
large multilingual settings, it is not uncommon to
tune hyperparameters on a handful of languages,
and apply them to the rest (e.g., Pinter et al., 2017).

In this work, we challenge this implicit gener-
alization. We train character-based sequence tag-
gers on a large selection of languages exhibiting
various strategies for word formation, and sub-
ject the resulting models to a novel analysis of
the behavior of individual units in the character-
level Bi-LSTM hidden layer. This reveals dif-
ferences in the ability of the Bi-LSTM architec-
ture to identify parts-of-speech, based on typolog-
ical properties: hidden layers trained on agglutina-
tive languages find more regularities on the char-
acter level than in fusional languages; languages
that are suffix-heavy give a stronger signal to the
backward-facing hidden units, and vice versa for
prefix-heavy languages. In short, character-level
recurrent networks function differently depending
on how each language expresses morphosyntactic
properties in characters.

These empirical results motivate a novel Bi-
LSTM architecture, in which the number of hid-
den units is unbalanced across the forward and
backward directions. We find empirical corre-
spondence between the analytical findings above
and performance of such unbalanced Bi-LSTM
models, allowing us to translate the typological
properties of a language into concrete recommen-
dations for model selection.

'All of our code will be made available upon publication.



2 Related Work

Several recent papers attempt to explain neural
network performance by investigating hidden state
activation patterns on auxiliary or downstream
tasks. On the word level, Linzen et al. (2016)
trained LSTM language models, evaluated their
performance on grammatical agreement detection,
and analyzed activation patterns within specific
hidden units. We build on this analysis strategy as
we aggregate (character-) sequence activation pat-
terns across all hidden units in a model into quan-
titative measures.

Substantial prior work exists on the character
level as well (Karpathy et al., 2015; Vania and
Lopez, 2017; Kementchedjhieva and Lopez, 2018;
Gerz et al., 2018). Smith et al. (2018) examined
the character component in multilingual parsing
models empirically, comparing it to the contribu-
tion of POS embeddings and pre-trained embed-
dings. Chaudhary et al. (2018) leveraged cross-
lingual character-level correspondence to train
NER models for low-resource languages. Most
related to our work is Godin et al. (2018), who
compared CNN and LSTM character models on a
type-level prediction task on three languages, us-
ing the post-network softmax values to see which
models identify useful character sequences. Un-
like their analysis, we examine a more applied
token-level task (POS tagging), and focus on the
hidden states within the LSTM model in order to
analyze its raw view of word composition.

Our initial analysis targeted the characteriza-
tion of unit roles, where a single hidden unit is
observed to have some specific function. Find-
ings from e.g. Linzen et al. (2016) suggest that
a single hidden unit can learn to track complex
syntactic rules. Radford et al. (2017) find that a
character level language model can learn a single
unit that tracks sentiment without being directly
supervised. (Kementchedjhieva and Lopez, 2018)
also examine individual units in a character model
and find complex behavior by inspecting activa-
tion patterns by hand. In contrast, our initial met-
rics were motivated by discovering these units au-
tomatically.

3 Tagging Task

We train a set of LSTM tagging models, follow-
ing the setup of Ling et al. (2015). A word rep-
resentation trained from a character-level LSTM
submodule is fed into a word-level bidirectional

Language Affix!  Morph  POS Accuracy %
synth  Dev Test

Arabic S int 96.11 95.93
Bulgarian S fus 97.91 97.80
Coptic p agg 92.54 92.51
Danish S fus 95.59 95.46
Greek S fus 96.13 96.46
English S fus 93.65 93.30
Spanish S fus 95.75 95.00
Basque = agg 92.99 92.43
Persian S fus 96.07 96.10
Irish = fus 89.35
Hebrew S int 95.71 94.60
Hindi S fus 95.03 94.91
Hungarian S agg 94.14 92.00
Indonesian S is0 92.55 92.68
Italian S fus 96.82 96.95
Latvian S fus 94.70 93.09
Russian S fus 95.29 95.25
Swedish S fus 95.80 95.73
Tamil S agg 86.46 87.58
Thai 0 fus 91.37

Turkish S agg 92.08 92.48
Ukrainian S fus 95.68 95.26
Vietnamese 1] iso 88.51 86.58
Chinese S is0 93.05 93.11

Table 1: Attributes and tagging accuracy by lan-

guage (Irish and Thai do not have both dev and test
sets). TAffixation: S/s is strongly/weakly suffixing;
P/p is strongly/weakly prefixing; = is equally prefix-
ing/suffixing; () is little affixation. *Morphological syn-
thesis: agglutinative, fusional, introflexive, isolating.

LSTM, with each word’s hidden state subse-
quently fed into a two-layer perceptron producing
tag scores, which are then softmaxed to produce
a tagging distribution. For languages with addi-
tional morphosyntactic attribute tagging, we fol-
low the architecture in Pinter et al. (2017) where
the same word-level Bi-LSTM states are used to
predict each attribute’s value using its own per-
ceptron+softmax scaffolding. In order to produce
informative character models, we do not include
word-level embeddings, pre-trained or otherwise,
in our setup. Hyperparameters , failed models, and
data preparation details are given in Appendix C.

3.1 Language Selection

As our goal is to examine the relationship between
character-level modeling and linguistic properties,
we drove language selection based on two mor-
phological properties deemed relevant to the archi-
tectural effects examined. All 24 datasets were ob-
tained from Universal Dependencies (UD) version
2.3 (Nivre et al., 2018), and linguistic properties
were found in the World Atlas of Language Struc-
tures (Bickel and Nichols, 2013; Dryer, 2013).



The selected languages and their properties are
presented in Table 1.

Affixation. To evaluate the role of forward and
backward units in a bidirectional model, we se-
lected all languages available in UD which are
not classified as either weakly or strongly suffix-
ing in inflectional morphology (the vast majority
of UD languages). This includes a single prefix-
ing language (Coptic), two equally suffixing and
prefixing languages (Basque and Irish), and two
languages with little affixation (Thai and Viet-
namese).

Morphological Synthesis. Linguistically func-
tional features vary between being expressed as
distinct tokens (isolating languages), detectable
unique character substrings (agglutinative), fused
together but still distinguishable from the stem
(fusional), and non-linearly represented within
the word form (introflexive). This property has
previously been found to affect performance in
character-level models (Pinter et al., 2017; Gerz
et al., 2018; Chaudhary et al., 2018), and thus we
select representatives of each group.

3.2 Results

In our basic setup, we represent words using a con-
catenation of the final states from a bidirectional
character-level LSTM with 64 forward and back-
ward hidden units each. The results for POS tag-
ging, presented in Table 1, are on par with similar
models (Plank et al., 2016, for example) despite
not including a word-level type embedding com-
ponent. We attribute this success to our large char-
acter embedding size of 256, corroborating find-
ings reported by Smith et al. (2018).

4 Analysis

We next analyze the models trained on the tag-
ging task in an attempt to see how their character-
level hidden states encode different manifestations
of linguistic information. 2

4.1 Metrics

For each language, we run the character-level
BiLSTM from the trained tagger on POS-
unambiguous word types occurring frequently
in the training set, grouped into their parts of

2 Appendix D. contains the details of an additional
method involving direct analysis of the weight matrix, de-
veloped prior to our focus on hidden states.
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Figure 1: Activations of the English model’s unit 42
(forward) on the word characterizing. byaq is 0.96 (the
drop from the second i to 1), and byy,|.| is 0.42.

speech.? On each word w, we observe each hidden
unit h;’s activation level (output) on each charac-
ter hf. We obtain a base measure b(w, i) based
on the activation pattern. For example, an average
absolute base measure is defined as the average of
absolute value activations:

|wl

. 1 c
bavg|~\(wa Z) = m cz:yhz |

The max absolute diff base measure is defined as:

bra(10,7) = e[S+ h].
Figure 1 demonstrates these two metrics for a sam-
ple (word, unit) pair.

Motivated by automatic discovery of unit roles,
we developed an initial metric based only on the
difference between base metric averages for nouns
and verbs, on a particular hidden unit s.

2. b(ny, 1) 2ok bk, 9)

| [l

Where n and v are sets of unambiguous nouns and
verbs as defined previously, sampled so |v|= |n]|.
For clarity, we will refer to this as PPDI, or Pair-
wise POS Discrimination Index. Figure 2 shows
PPDI values on each of the 128 hidden units in
an early English model, using the b, metric.
Clearly, the last 64 units (the backward units) be-
have differently. The large spikes indicate units
that have a high average value when processing a
verb as opposed to a lower value when processing
a noun.

*We used 8 as our frequency threshold, and define unam-
biguous forms as ones tagged at least 60% of the time with a
given POS.
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Figure 2: PPDI values for 128 units in an English
model, comparing nouns and verbs using the byyg).|
metric.

PPDI allows for intuitive analysis, but it can-
not capture more complicated hidden unit behav-
ior and is limited to pairwise comparisons. To ad-
dress these issues, we derive a language-level met-
ric for each hidden unit, based on the principle of
Mutual Information (MI). The base metric’s range
((0,1) for byyg|» [0,2) for bmag) is divided into
B bins of equal size, and base activations from
each word are summed across each of the 7' POS
tag categories”®, then normalized to produce a joint
probability distribution. The mutual information
is computed as:

T B
> > P(t,b)[In P(t,b) — In P(t) — In P(b)],

t=1 b=1

and we call the resulting number the POS-
Discrimination Index, or PDI. Intuitively, a higher
PDI implies that the unit activates differently on
words of different parts of speech.

At this point a language produces a set of dj,
PDIs, one for each unit. We order them from
high to low, and define two language-level met-
rics. The mass is the sum of PDI values for all
units, M(L) := 3% PDI(L, ). The head for-
wardness is the proportion of forward-directional
units before the point at which half of the mass ac-
cumulates (in a random setup, this number would
tend to 0.5):

Hk S PDI(L,i) < % A hy is forward})

Hk S PDI(L, i) < %}‘

These correspond, in theory, to the model’s ability

“We omit the following ‘character-simple’ part-of-speech
tags: INTJ, NUM, PROPN, PUNCT, SYM, X.
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Figure 3: Distribution of PDI values (b,yg).|) across hid-
den units in Coptic and English, shown in ordered PDI
values from largest to smallest, with blue (orange) bars
indicating forward (backward) units. The black line de-
marcates the median point of mass accumulation.

to tell POS apart, and to the relative importance of
forward and backward units in that role.

4.2 PDI Patterns

We present the PDI patterns on the b,,.| base
measure with B = 16 bins for Coptic, a prefixing
agglutinative language, and English, a suffixing
fusional language, in Figure 3.°> Consistent with
other agglutinative languages, Coptic’s cumulative
mass is very large (M(cop) = 58.1), suggest-
ing the predictive qualities of the sequence-based
LSTM allows good discrimination from the char-
acter signal. M(eng) = 16, demonstrating the
difficulty presented by fusional languages. The ac-
cumulation of 71% forward (80% backward) units
in the head of the Coptic (English) chart suggests
an interesting relationship between affixation and
LSTM direction: LSTM units are likely to hone
in on the POS-indicative signals in the beginning
of their run. Unfortunately, since no other prefix-
ing languages are available in UD, we were not
able to pursue this hypothesis further. We do note
that languages with little or balanced affixation
presented directionality statistics between those of
Coptic and English.

4.3 Asymmetric Bidirectionality

Using these observations, we conduct a direction-
ality balance study, where we vary the number of
hidden units in each of the forward and backwards
dimensions. Our analyzed models use 64 forward
and 64 backward units (denoted hereafter 64/64),
and we thus trained models with imbalanced di-
rectionality (128/0, 96/32, 32/96, 0/128). We test
the hypothesis that imbalanced models affect lan-
guages differently based on their linguistic prop-
erties and statistical metrics.

>Trends for byag are similar.
®The full scope of this analysis is available in Appendix B.



Language  128/0 96/32  64/64 32/96 0/128
Type (base)
Inflectional Affixation Categories
S. suffix +0.23  +0.05 9451 -0.12 -0.03
W. suffix +0.15 +0.20 9547 -0.13 +0.02
Equal p/s +0.50 +0.32 9092 -0.13 -0.03
Little aff. -0.08 -0.18 89.81 -0.13 +0.11
W. prefix +0.56 +0.33 92.58 +0.56 +0.38
Morphological Synthesis Categories

Introflex. +0.10 +0.10 95.83 +0.01 +0.07
Fusional +0.20 +0.04 94.89 -0.03 +0.06
Agglutina.  +0.54 +0.30 91.72 -0.28 -0.17
Isolating -0.01  -0.10 91.28 -0.18 +0.03
Overall +0.23  +0.08 93.86 -0.10 +0.01

Table 2: Imbalanced models’ mean POS accuracy on
UD development data (differences from three random
base model runs averaged; boldfaced when significant
at p < 0.05 using a paired two-tailed z-test).

The results for this study are presented in Ta-
ble 2 as averages for the language categories
listed in Table 1. The full results are available
in Appendix A. One trend is the preference of
agglutinative languages for imbalanced models,
whereas the other languages are little affected by
this change. This could be explained by the in-
crease in inter-unit interaction in the larger direc-
tion of an imbalanced model — contiguous char-
acter sequences consistently code reliable linguis-
tic features in these languages. A second find-
ing is the slight bias of suffixing languages to-
wards more forward units and of the prefixing lan-
guage to more backward units, indicating that hid-
den LSTM units are better in detecting formations
close to their final state. We also note the stabil-
ity of introflexive and little-affixing languages to
directionality balance, possibly owing to the rel-
atively small significance of contiguous character
sequences in detecting word role. Lastly, we point
out that the compromise sesquidirectional models
96/32 and 32/96 did not tend to stand out signifi-
cantly on our tested language categories.

5 Future Work

Future work could investigate the practical impli-
cations of our observations. Our work here as-
sumes a fixed combined forward + backward di-
mension of 128. However, depending on the im-
plementation of the network, it may be more prac-
tical to consider networks with identical parame-
ter counts (an RNN with hidden size 128 has more
parameters than 2 RNNs with hidden size 64).

Our experiments involved only a single prefix-
ing language (Coptic). Additional datasets for pre-
fixing languages could reveal further insights. Fu-
ture work could also consider the creation of syn-
thetic languages to test the extremes of the trends
we observe.

Further investigation of unit roles could take
several directions. If multiple units are respon-
sible for discriminating between certain parts of
speech, redundant units could be pruned to com-
press the model. Additionally, our PDI metric
could be use to create an interpretability measure,
as a model where distinct units are responsible for
certain morphological properties could be consid-
ered more interpretable. In this case, PDI would
allow for comparisons independent of accuracy.

6 Conclusion

While character-level Bi-LSTM models compute
meaningful word representations across many lan-
guages, the way they do it depends on each lan-
guage’s typological properties. These observa-
tions can guide model selection: for example,
in agglutinative languages we observe a strong
preference for a single direction of analysis, mo-
tivating the use of unidirectional character-level
LSTMs for at least this type of language.
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Language 128/0  96/32 64/64 32/96 0/128
Arabic 96.32 96.11 96.06 96.11 96.14
Bulgarian 98.00 9784 97.84 97.69 97.74
Coptic 93.14 9291 9258 93.14 9296
Danish 96.07 95.56 95.61 9556 95.58
Greek 96.13 9593 96.01 9596 95.98
English 93.82 93.69 93.65 93.81 93.88
Spanish 9576 9556 95.64 95.63 95.81
Basque 93,51 93.10 92.89 9241 9293
Persian 96.25 96.27 96.11 9598 96.13
Irish 89.33 89.39 88.96 89.17 88.86
Hebrew 95.55 9575 9560 9557 95.67
Hindi 95.51 95.14 95.12 95.03 9540
Hungarian 9432 9451 9420 93.88 93.83
Indonesian 9248 9233 9249 9252 92.50
Italian 9698 96.84 96.87 96.82 97.04
Latvian 95.05 9499 94.69 9445 94.66
Russian 9549 9540 9532 9529 9534
Swedish 95.89 9549 9565 9557 95.58
Tamil 87.25 87.09 86.88 8575 85.99
Thai 91.22 91.19 9139 9146 91.55
Turkish 93.10 9249 92.06 92.05 92.05
Ukrainian 9571 9574 95.63 95.64 95.70
Vietnamese 88.24 88.06 88.23 87.90 88.28
Chinese 93.07 93.15 93.12 92.88 93.15

Table 3: Full balance model accuracy scores. 64/64
numbers are averaged over three random seed runs.

A Full Imbalance Scores

Table 3 presents all scores for balance-different
models (experiment in § 4.3).

B Full PDI Scores

Table 4 presents the full numbers for the PDI cal-
culation on all languages.

C Experimental Details

Dataset Selection and Preparation. Most lan-
guages have only a single UD 2.3 treebank. For
languages with multiple treebanks we selected the
largest, except in the cases of Spanish and Indone-
sian, where we selected the GSD treebanks. The
Irish IDT treebank had only a train and test split,
so we used the test set for early stopping. The Thai
PUD treebank only provided a single dataset with
1000 instances, which we shuffled and partitioned
into a 850/150 split. Tokens were normalized to
remove noisy data: tokens containing ‘http’ were
replaced with ‘URL’ and tokens containing ‘@’
were replaced with ‘EMAIL’. This was most rele-
vant (293 replacements) for the English treebank,
which contained many long URLs.

Hyperparameters. The tagger is a hierarchical
model, in which a character-level LSTM is used
to create word level representations, which are fed

Language Mass Mass % of forward
median units until
idx median
Tamil 71.0 55 49.1
Irish 62.0 56 429
Coptic 58.1 56 714
Hungarian 479 55 50.9
Greek 31.2 55 45.5
Turkish 30.1 54 57.4
Russian 259 54 40.7
Thai 25.9 55 473
Ukrainian 25.0 54 37.0
Vietnamese  24.2 55 36.4
Chinese 23.8 47 42.6
Danish 21.7 54 44 4
Swedish 20.8 53 34.0
Basque 20.6 51 64.7
Indonesian 20.3 45 71.1
Latvian 17.0 52 423
Spanish 16.1 45 333
English 16.0 50 20.0
Bulgarian 15.6 52 46.2
Italian 14.1 48 56.2
Arabic 12.6 46 58.7
Hebrew 11.4 51 74.5
Persian 10.3 50 46.0
Hindi 8.4 51 41.2

Table 4: PDI statistics for UD 2.3 models, bavg‘_| metric,
sorted by the mass metric (sum of PDIs). Agglutinative
languages in bold, introflexive in italics.

into a second LSTM that predicts the word level
tags. The character-level LSTM (in the baseline
scenario) is bidirectional with a total hidden state
size of 128 (64 units in each direction). For all
models, the word-level LSTM is bidirectional with
2 layers and a hidden state size of 128, with 50%
dropout applied in the style of Gal and Ghahra-
mani (2016). The character embedding size is
fixed throughout at 256. The hidden state of the
word level LSTM is used to predict the tags using
a separate MLP for each attribute. Each MLP has
a single hidden layer that is the same size as the
tagset size for that attribute, and includes a tanh
nonlinearity. Models were trained for up to 80
epochs, and we select the model with the high-
est POS tagging accuracy on the dev set. Train-
ing used SGD with 0.9 momentum, and all models
were implemented using DyNet 2.0 (Neubig et al.,
2017).

Failed Models. To facilitate direct analysis of
a weight matrix, we considered using a vanilla
RNN as the character level encoding mechanism.
Preliminary experiments indicated that this model
would not reach acceptable tagging performance
levels. Other preliminary experiments found that



dropout at the word level seemed to greatly in-
crease the stability of the model. English mod-
els could be trained for many epochs past conver-
gence without signs of over-fitting, but only when
using dropout.

D Additional Methods

Prior to our focus on hidden state analysis, we con-
sidered directly analyzing the weight matrix of an
RNN (or the gate matrices in an LSTM). Our goal
was to create a metric that would identify sim-
ilar weight matrices, with the hope that models
trained on languages with similar morphological
properties would have similar matrices. One such
candidate was the mathematical concept of ma-
trix similarity (i.e. two matrices that represent the
same linear operation after a possible change of
basis for one). To test the suitability of this met-
ric, we trained an English model using a vanilla
RNN as the character encoder. We then applied a
change of basis to the weight matrix (generating
several mathematically similar matrices), and in-
serted these into new models as frozen parameters.
The hope was that we could replace a weight ma-
trix with a mathematically similar matrix and the
model could learn to adapt to the similar matrix
more quickly than if training from scratch. This
would imply that a mathematically similar matrix
is still useful to a network. Unfortunately, prelim-
inary experiments did not suggest that this was the
case, so we abandoned this line of inquiry.



