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SUMMARY 

Ion exchange membranes (IEMs) play an important role in a reverse 

electrodialysis (RED) system for salinity gradient power generation. Challenges exist in 

the selection of appropriate membrane materials in order to reduce the capital cost of 

membrane manufacturing and in the design of proper RED membranes to optimize the 

energy-producing process. This work presents the synthesis of hybrid cation exchange 

membranes by incorporating two well-known inexpensive organic polymers with great 

film-forming ability. Sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) (sPPO) 

polymer mixed with sulfated polyvinyl alcohol (sPVA) has been proved to have great 

potential as a candidate for RED membranes. The prepared membranes with 2 to 10 wt% 

sPVA have improved the permselectivity up to 87 % and reduced area resistance down to 

1.31 ohm cm-2, which is comparable to the commercially available FKS (Fumasep®, 

Germany) membranes. The best performance was achieved with hybrid membrane 

containing 5 wt% of sPVA which resulted in a gross power density at 0.46 W/m2. This 

power density is 14% greater than that achieved using commercial FKS membranes. This 

study shows a great potential of using organic-organic hybrid membranes for the RED 

power generation system. 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

1.1 Technology Background 

Environmental issues including global warming, and pollution of air and water have 

caused severe obstacles for the development of human society. With the processes of 

worldwide industrialization and urbanization[1], more and more resources and energy are 

consumed irreversibly. The majority of the energy comes from fossil fuels, burning of 

which may generate greenhouse gases as well as many other pollutants. According to 

the International Energy Agency’s Energy Technology Perspectives 2012 (IEA ETP2012) 

emission scenario, if human beings were to keep on today’s energy consumption pattern, 

the world’s annual energy consumption may reach 25.5 TW with a 6 degrees increase in 

the global temperature by 2050. This is going to change entire climate system and cause 

huge environmental, ecological and even economical disasters such as melting of iceberg, 

global climate change, new energy crisis, environmental and economical degradation, 

etc.[2]  

 

Since energy consumption is a vital factor associated with many environmental problems, 

solving the energy problems may contribute greatly to solving above-mentioned 

environmental issues. Therefore, it is essential for the world to find a way to solve the 

energy problems. There are several methods to resolve the energy-related issues, such as 

changing the structure of energy industry, lowering the energy consumption, improving 

energy usage efficiency, and developing new energy source. However, changing the 

energy industry structure needs an extremely long and complicated process, not to 
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mention the difficulty to reduce energy consumption and keep the world’s pace of 

development at the same time. Under the circumstance of keeping the widest use of fossil 

fuels in future decades, improving efficiency of energy usage is also facing huge 

challenges. As a result, developing cleaner and more efficient renewable energy sources 

becomes a feasible and promising solution. 

 

Renewable energy takes the advantage of sustainable resources in nature. Coming from 

sunlight and its effects on Earth (wind, tides, etc.), most kinds of renewable energy are 

pollutant-free and thus show their potential for the protection of environment compared 

to fossil fuels. However, renewable energy accounted for only 1% of the total energy 

source in 2006 [3]. The development of the renewable energy is limited because of 

people’s concerns on the engineering practicality, reliability, possibility for application, 

and economy and necessarily scaling for sizable power production [2]. Nevertheless, the 

need for cleaner energy still inspire scientists to conduct research in this area and they 

have studied a number of advanced technologies and made some great breakthroughs.  

 

Currently there are several types of well-developed renewable energy options such as 

solar energy, wind energy, biofuel, hydro energy, tidal, and ocean wave, etc. To take 

advantage of solar energy, photovoltaics (PV) technology is used. Silicon batteries are 

needed to absorb the solar radiation and directly transfer it into electricity [2]. We can 

collect wind power to drive the rotation of windmill fan, and then the kinetic energy is 

transferred into electricity. Biofuel is another type of energy. Through heat transfer or 

chemical reactions, biomass is converted into energy. However, some opponents have the 
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view that making biofuel by biomass is not actually an environmental friendly method 

because the transformation processes increase the carbon footprint.  

 

Oceans provide human beings with extraordinary amount of energy [4]. As mentioned 

above, hydro energy and tidal energy are all provided by the ocean.  Scientists and 

engineers are looking for appropriate methods to harvest energy from these sources. 

Renewable energy can also be obtained by transferring the chemical potential between 

sea water and river water into electricity, which is usually referred to as salinity gradient 

energy [5, 6]. In 1954, R.E. Pattle et al. introduced the idea of mixing fresh and salt water 

to generate power.[7] Power generated by the method in this way is sometimes called 

“blue energy” [8]. Several advantages, like abundant, even infinite energy source (sea 

water, concentrated brines, etc.), non-pollutant and low cost, envisage the promising 

future of blue energy. According to the estimation, the annual energy generation by 

salinity gradient power is 2.6TW [9, 10], which is around 20% of the worldwide energy 

demand.  

 

1.2 PRO and RED 

There are two main technologies extracting power form salinity gradient: pressure-

retarded osmosis (PRO) [11] and reverse electrodialysis (RED)[10, 12]. In a PRO system, 

seawater is pressurized by pump and goes into the high salinity solution chamber. Water 

from the low concentration chamber permeates through a semi-permeable membrane to 

the high salinity draw side. Through this process, power is generated by depressurizing 

the permeate through the hydroturbine [13]. PRO is suitable for mixing high 
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concentration brines[6]. National power cooperation of Norway has built the first osmosis 

power plant in the world (Statkraft osmotic power prototype in Hurum) and has the 

capacity of 4 KW. This plant uses membranes made of polyimide, which can achieve the 

power density of 1 W/m2. However, PRO has several drawbacks: Pumping is required to 

provide high pressure to drive the water to the pressurized side, which requires large 

amount of energy; the membrane cost is high while its life cycle is relatively short.   

 

In comparison to PRO, RED is another membrane-based technology and is suitable for 

power generation because of lighter membrane fouling issues and relatively high energy 

efficiency [14, 15]. An RED system uses ion exchange membranes (IEMs) rather than 

semi-permeable membranes. IEMs selectively permeate ions through the membranes and 

generate the chemical potential and ion flow across series of IEMs, and a set of electrodes 

on both ends are then used to form a circuit. 

 

RED is the inverse of electrodialysis (ED). ED aims to apply a voltage to the system 

consisted of IEMs and spacers, to increase the chemical potential due to the migration of 

ions, and finally to desalinate the salt water. Both RED and ED systems rely on ion 

exchange membranes to reach their technical goals. 

 

In an RED system, as shown in Fig.1, two different water sources, salt water and dilute 

water are fed into a stack. The stack is separated by several chambers. These chambers 

are separated by alternating series of cation exchange membranes (CEMs) and anion 

exchange membranes (AEMs) with spacers. Through these chambers, salt water and 
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dilute water are pumped alternately into each compartment, which initiates the 

concentration gradient across the membranes, and also generates the chemical potential 

through one direction. Cations go through the CEMs from concentrated side to the dilute 

side while anions go through the AEMs, which causes a potential gradient throughout the 

whole system. Two platinum electrodes are set up at two ends of the system, and 

electrode rinse solution is circulated through the two ends of the stack. Reduction-

oxidation reactions happen at the electrodes. As a result, ion migration is transferred into 

electrical current, which can be harvested as electricity. [16] The stack can be composed 

of many connected cell pairs to fulfill large scale application. 

 

 

Fig.1. Schematic representation of an RED stack. C is CEM, A is AEM and R is 

Resistance. 

 

Compared to conventional fossil fuel or other power productions, RED is not considered 

economically feasible or technically satisfied until now. As mentioned above, just like 
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PRO, RED’s development and large scale application is strongly limited by the cost of 

the membranes and the performance of the membrane-based system. Optimizing the 

IEMs, and enhancing their performance while lowering the cost of production are crucial 

in this technology. 

 

1.3 Recent and ongoing research 

IEMs are the key to an RED system. Enhancing the performance of RED largely depends 

on the improvement of membranes. Many researchers have studied the IEMs in different 

areas like water treatment[17, 18], separation processes [19, 20] and power generation 

[21-23]. Most of these studies apply IEMs in fuel cells and electrodialysis, not 

specifically in RED [5]. Therefore, those membranes are not tailored for RED application, 

which means their major properties such as mechanical strength, chemical properties or 

electrochemical properties may not be optimized for RED. Even though some of these 

properties overlap with RED’s requirement, the materials and synthesis methods still 

need to be tailored to maximize the performance of RED membranes. 

 

Recently, many researchers have done RED-specific IEMs studies. They have tested 

different combinations of membrane materials and preparation processes, aiming to 

obtain the best performances using their tailor-made membranes compared to commercial 

IEMs. The materials and preparation processes vary among cation exchange membranes 

(CEMs) and anion exchange membranes (AEMs). This study focuses on CEMs, 

particularly on their material and synthesis procedures. 
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Cation exchange membranes are membranes that carry negative charge groups and can 

permeate positive ions while blocking the negative ions. Reversely, anion exchange 

membranes carry positive charge groups and can permeate negative ions while blocking 

the positive ions [17, 18]. People always choose polymers that have enough thermal and 

chemical resistance, along with great mechanical strength for thin membrane formation. 

At the same time, ideal material should be able to lower the production cost while 

maintaining or increasing electrochemical properties. For CEMs, perfluorinated material 

is often used for commercial application [5]. However, due to high cost, low conductivity 

and safety issues, perfluorinated based membranes are not widely used [5, 24]. As a 

result, we still need to seek alternate materials for CEMs synthesis.  

 

Generally, all polymers with functional groups like sulfonated groups can be used as 

membrane materials as long as they have enough thermal and mechanical strength, or can 

be easily modified through low-cost processes. Hong et al. used poly (2,6-dimethyl-1,4-

phenylene oxide) (PPO) as base material to fabricate CEMs and achieved great power 

generation performance [25]. Jeong et al. also chose PPO as polymer matrix to synthesize 

CEMs. Guler et al. synthesized a tailor-maid CEM with polyetheretherketone (PEEK) 

[16]. Aesalan et al. picked polyvinyl chloride (PVC) and polystyrene as membrane 

base.[26] Zuo et al. selected poly(vinylidene fluoride) (PVDF) as their material for 

separation because of its extraordinary hydrolytic stability and film-forming properties 

[27]. They also introduced SiO2 nanoparticles and blended them with organic epoxy 

group to enhance membranes transport performance. Lee et al. incorporated silica 

nanocomposite into poly (arylene ether sulfone) (PAES) to synthesize the high 
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conductivity, long life, and high performance membranes [21]. Other researchers focused 

on materials like PES, PPK[28, 29], polysulfones (PSU), poly(ether sulfone) (PES), 

poly(ether ketone)s (PEK), poly(phenyl quinoxaline) (PPQ), and polybenzimidazole 

(PBI)[30]. 

 

In order to introduce functional groups into the polymer matrix, either physical or 

chemical modification ought to be conducted. Usually, sulfonation and carboxylation are 

the two most widely-used processes for introducing the sulfonic acid group (–SO3 −) and 

the carboxylic acid group (–COO−) into the matrix. 

 

In terms of synthesis methods for IEMs, researchers may choose different methods based 

on their final goal and the properties of the membrane materials. Sol-gel method is often 

used in organic-inorganic membranes synthesis[18]. Arsalan et al. successfully conducted 

membrane fabrication using sol-gel method, and synthesized PVC-based, polystyrene 

supported composite ion exchange membranes [26]. Mauritz et al.[31] and Khan et al. 

[32] also used sol-gel method to synthesize composite ion exchange membranes. Phase 

inversion is another common method for membrane synthesis. Jin et al. used the phase 

inversion method to synthesize cation exchange membranes, which has Fe2O3-SO4
-

2-/sPPO as the membrane base and functional groups [4]. Zuo et al.[27] used phase 

inversion method to form the membrane basis and then introduced the functional group to 

the matrix. Lee et al.[21], and Guler et al. [8] also chose phase inversion as their major 

synthesis method. Though sol-gel method and phase inversion method are two most 

important methods for IEMs synthesis, in order to satisfy the specific need for a 
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membrane, researchers still need to select a proper method and tailor it for specific 

requirements [18]. 

 

Other than the membrane synthesis research, more and more studies focus on the RED 

system and performance of various commercially available IEMs in an RED stack. [12, 

14, 15, 33-35]. Weinstein developed a mathematic method and provided an equation to 

prove the feasibility of RED system in large scale [9]. According to Lacey [36], in an 

RED system considered economically feasible, membranes need to have the properties of 

low electrical resistance, long life time, high selectivity, dimensional stability and 

reasonable low cost. Vermass et al. found out that by reducing the membrane resistance 

and the stack’s cell length, the gross power density of the RED system could be improved 

[14]. Turek et al. concluded similarly that lowering the inter-membrane distance could 

reduce the resistance of the system, so that the energy production of the system could be 

improved [37]. P. Długołęcki proved that flow rate has a significant effect on the 

resistance of the membranes because of  the influence of diffusion boundary layer.[38] 

Alexandros Daniilidis et al. generated a model to study the financial feasibility of the 

RED and pointed out two performance indicators, unit area power output (W/m2) and 

energy efficiency (%). According to their model, prices as well as membrane 

performance are the key factors for large scale application of RED. The price of the 

membrane should be much lower than the current number in order to be competitive [39].  

 

There are also some studies combing RED with other similar membrane technologies. 

Forgacs took ED as the reference, and built a model for RED’s power generation. Li 
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Weiyi et al. created a novel method to combine the processes of RED and reverse 

osmosis (RO) to an integrate system. This system improved both the performance of 

traditional RO system and the efficiency of RED [40]. 

 

Several researchers pointed out that low resistance, high fixed-charge density, high 

transport number and a considerable permselectivity are essential for ion exchanging 

process [33, 41-43]. Since studies on RED specific membranes are limited, it is really 

challenging to tailor the membranes for features significant to RED [44, 45]. Therefore, it 

is important to choose an appropriate membrane material that has the potential to meet 

RED’s requirements.  

 

PPO is a very common engineering thermoplastic that consists of an aromatic ring, a 

phenol group and two methyl side groups at position 2, 6 of the ring (Fig. 2(a)). PPO is 

considered an ideal polymer for membrane formation because of its great membrane-

forming ability, high physical strength, great chemical and thermal stability, low cost and 

high glass transition temperature [18, 46-49]. According to PPO’s chemical structure, its 

aromatic ring is susceptive to simple polymer modification [50, 51], and its methyl group 

can also be functionalized by capping, coupling, etc. However, PPO has its own 

limitations due to its hydrophobic property and lack of charged functional groups. This 

means it is hard to dissolve into dipolar solvents and it lacks ionized groups that are 

essential in IEMs. To fix these drawbacks, one alternative is to introduce functional 

groups into the polymer matrix. Through reactions of sulfonate agents like chlorosulfonic 

acid with PPO, sulfonate groups (–SO3
-) are introduced to the polymer chain, and 
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therefore forms sulfonated poly 2,6-dimethyl-1,4-phenylene oxide (sPPO). sPPO has both 

hydrophilic and charged functional groups and therefore shows great electrochemical 

potential. sPPO is widely used in industrial processes [46, 52] like gas separation and fuel 

cells, etc.[51]. 

 

 However, sPPO is still not an ideal material due to its limitation in aqueous separation as 

it is found highly erodible in the organic solvents [53]. One possible solution is to blend 

sPPO with other inorganic or organic materials[54]. Inorganic materials can be 

nanocomposites like SiO2 or Fe2O3 nanoparticles, and as previously mentioned, sol-gel 

processes are commonly used to form this kind of organic-inorganic membrane. Organic 

materials are polymers with great stability and electrochemical properties in organic 

solvents. Polyvinyl alcohol (PVA) is such a kind of material. 

 

a                 b 

  

Fig.2. Basic chemical structure of a) PPO and b) PVA 

 

PVA is a cheap, odorless and non-toxic, and biodegradable polyhydroxy polymer [55-57]. 

It is considered as a relatively clean polymer material because it is easy to prepare (both 

water-soluble and organic solvent-soluble). Another advantage of PVA is that the 
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hydroxyl groups in PVA (Fig.2 (b)) contribute to PVA’s highly hydrophilic property and 

may offer cross-linking with other polymers [58, 59]. Besides, PVA has great chemical-

resistance and ductility for membrane formation [56, 60-65]. 

 

However, similar to PPO, PVA is a neutral material that lacks charged groups for ion 

exchange. In order to improve its electrochemical conductivity, further modification is 

needed. For CEMs application, similar process of sPPO modification is used: Sulfonated 

groups are introduced into PVA. After sulfating with sulfuric acid or sulfosuccinic acid, 

the new formed sPVA will become negative charged and will exhibit significantly 

improved conductivity [66, 67].  

 

Since sPVA can provide both charged groups and extra hydrophilicity, it is reasonable to 

blend sPVA with sPPO to synthesize a new kind of IEMs. Therefore this study focuses 

on the hybrid membranes made of poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) and 

polyvinyl alcohol (PVA). As no specific research has been made on sPPO-sPVA 

membranes in an RED system, this research offers a design strategy for this new type of 

RED-specific membranes. This study also presents our investigation into sPVA loading’s 

effect on membrane performance. 
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CHAPTER 2 

EXPERIMENTAL 

2.1 Materials 

PPO (Sigma-Aldrich, analytical standard, Mw 30,000, Mn 20,000) was used as base 

polymer. Chloroform (anhydrous, 99%) purchased from Sigma-Aldrich was used as a 

solvent for sulfonating PPO. Dimethylsulfoxide (DMSO) (ACS grade, 99.9%) was 

obtained from VMR and used as another solvent for membrane synthesis. Chlorosulfonic 

acid (Sigma-Aldrich, 99%), methanol (Sigma-Aldrich, 99%) are used for PPO 

sulfonation. Sulfuric acid (Sigma-Aldrich, 98%) and Ethyl alcohol (Sigma-Aldrich, 99%) 

were used for PVA sulfating. Poly (vinyl alcohol) (Sigma-Aldrich, Mw 146,000-186,000, 

99+% hydrolyzed) was used as received. 

 

2.2 Preparation of hybrid membranes 

2.2.1 Sulfonation of PPO 

The process of sulfonating PPO is similar to existing paper[25]. 6 wt% PPO (4.9g in 50 

ml) powder was dissolved in chloroform by magnetic mixing under room temperature for 

20 min. 9 vol% (5ml in 50ml) chlorosulfonic acid-chloroform solution was slowly added 

to PPO solution at the speed of 1 plastic head dropper every 1-2 minutes under 

continuously stirring. Sulfonated PPO precipitation, the brown flocs, started to form. The 

precipitations were washed by DI water multiply times under stirring until neutral pH 

was achieved. The solids were then collected and dissolved into methanol. After 

complete mixing, the solution was poured to a flat bottom glass tray and was dried under 
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ambient condition for over 24 hours. The transparent brown particles, sPPO, were then 

collected after complete drying. 

 

2.2.2 Sulfation of PVA 

Required PVA was dissolved into DI water at the weight ratio of no more than 1:4. After 

PVA was completely dissolved, excessive concentrated sulfuric acid (H2SO4, 98%) was 

slowly added into the PVA-water solution. Then the PVA solution was stirring at 40℃ in 

water bath. After at least 4 hours, ethyl alcohol was added, and white precipitations, 

sPVA, were formed (Fig.3). The solids were washed by ethyl alcohol to neutral pH and 

dried in vacuum oven for at least 24 hours at 50℃. 

  

 

Fig. 3. Synthesis route of sPVA 

 

2.2.3 Membrane synthesis 

Hybrid RED membranes were prepared by solvent evaporation method. sPPO polymer 

was dissolved in DMSO at the weight ratio of 1:4 as solution 1. sPVA was dissolved in 

DMSO at 0%, 2%, 5%, 10%, 15% and 20% weight percentage (total weight related to 

sPPO weight) as solution 2. These two solutions were then mixed and stirred at 40℃ for 

over 48 hours (Fig 4). Afterwards, the mixed solution was vibrated in ultrasonic bath for 

at least 30 minutes in order to get sPVA uniformly dispersed. The resulting light yellow 
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solution was then cast onto a glass plate by a doctor blade. The blade was adjusted to 

achieve a 100 μm wet thickness of the membrane. Then the membrane was dried in a 

vacuum oven at near 50℃ for 24 hours and then 60℃ for 6 hours to remove the solvents 

entirely. After that process, the membrane was manually peeled off from the plate by 

rinsing it into warm water. Lastly, the membrane was soaked in 1M hydrochloride acid 

solution for one day and stored in 0.5M NaCl solution.  

 

 

Fig. 4. Preparation process of the hybrid membranes 

 

2.3 Membrane Characterization 

The IEMs have different kinds of physical properties and electrochemical properties.[16] 

Physical properties include morphology, thickness and swelling degree. Electrochemical 

properties include permselectivity, area resistance and ion exchange capacity. Lots of 

studies tried to explain how membranes properties influence the performance of RED 

system. However, the dominant property related to RED system’s performance remains 

unknown [16]. These properties can either be characterized by experimental methods or 

calculations. As previously mentioned, different applications may target at different 

membrane properties. For RED, since its target is to generate power rather than doing 

separation or filtration, electrochemical properties optimization of product membrane 
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should be this study’s first priority and the characterizations of electrochemical properties 

are therefore of great importance. 

 

2.3.1 Morphology 

The membrane morphology includes its thickness and surface characteristics. In this 

study, morphology was analyzed by scanning electron microscopy (SEM) (Zeiss Ultra60 

FE-SEM), including both cross-section observation and surface area observation. 

Samples were washed up by DI water and dried over night before doing tests. For cross-

section observation, the sample was pre-treated by nitrogen liquid and was manually cut 

to get an original cross-section area. 

 

2.3.2 Chemical Structure 

The chemical structure of the membrane means all chemical bindings. This was studied 

through Fourier transform infrared (FTIR) Spectrometer (Digilab FTS7000) along with a 

microscope (Digilab UMA 600). The spectrum was obtained with 32 scans per sample at 

a 4 cm-1 resolution. The range of the spectrum was 4000 – 700 cm-1. 

 

2.3.3 Swelling degree 

Swelling degree (SD), also called water uptake, is a property showing the water content 

of the membrane under given conditions. SD is dependent on the membrane material, 

structure and solution conditions [43, 68]. SD can be reduced through the increasing 

cross-linking degree [4, 69]. Besides, swelling degree is also related to other membrane 

properties like permselectivity and resistance [33] because the process of the swelling can 
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be regarded as the dilution of functional groups in membrane. Thus, SD is an important 

indicator of membrane performance. 

 

In this study, dry weight and wet weight of the membrane were measured to calculate the 

SD by the following equation[70]: 

100%
wet dry

dry

W W
SD

W


                                (1) 

where Wwet is the wet weight, Wdry is the dry weight of the membrane. 

 

2.3.4 Permselectivity 

Permselectivity defines selecting ability of IEMs. It is decided by the type and number of 

functional groups in the membrane. Theoretically, the permselectivity should be 1, which 

means the IEMs will completely reject the co-ions from passing through themselves. 

However, the value is always below 1 because some co-ions will permeate and contribute 

to the ion transport [71]. Permselectivity is vital because it decides the maximum 

chemical potential of the membrane. 

 

In this research, permselectivity was characterized by a static potential measurement test. 

The test equipment consists of two separated cells. Tested membrane was placed at the 

connection of two cells with effective area of 4.8 cm2. Sodium chloride solutions of 0.1M 

and 0.5M concentrations flew into the two separated cells respectively, and created 

potential through the membrane. The potential was measured by a multimeter (Tektronix, 

US) with Ag/AgCl reference electrodes (Hanna Instruments, US) [25]. The 

permselectivity is then calculated by following equation: 
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(%) 100measured

theoretical

V

V



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

                                  (2) 

where alpha is the membrane permselectivity (%), deltaVmeasured is the measured 

membrane potential value (V) and deltaVtheoretical is the theoretical membrane potential, 

0.0379 V, which can be calculated by Nernst Equation. [72]. 

 

2.3.5 Area resistance 

Area resistance is the internal resistance that inhibits the ions and electrons from 

migrating. The resistance of a membrane is affected by many factors in a membrane 

process, like the ion transport or the IEC of a membrane. Even the temperature may have 

a negative effect on the resistance: the resistance may decrease when temperature rises 

[72]. A whole RED system is very similar to a battery, thus the area resistance is just like 

resistance in a circuit. Since RED system targets to generate more power, it is necessary 

to keep the resistance as low as possible to gain enough potential and to reduce energy 

loss. 

 

Like permselectivity measurement, the area resistance was also measured by above two-

cell device. These two cells were both filled with 0.5 M NaCl solution and were 

separated by a 0.38 cm2 IEM. Since the resistance depends on the temperature, the 

measurement was conducted under the room temperature. We used two titanium 

electrodes coated with Ru-Ir oxides and a potentiostat (Vertex, Ivium Technology) to 

measure the resistance by impedance spectroscopy (IS) [25, 73]. The frequency range 

was from 10-105 Hz with an oscillating voltage of 0.1V amplitude 
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2.3.6 Ion exchange capacity  

The ion exchange capacity reflects the number of fixed charges in the membrane. Fixed 

charges number is related to functional groups, which is (–SO3
-) in this study. Higher IEC 

means more ion exchange groups in the membrane, and thus better performance.  

 

IEC was measured by the titration method [25]. Dry membranes were weighed and then 

immersed in 1.0 mol/L HCl solution for 15 hours for converting to H+ form. Excessive 

HCl was then rinsed off by DI water. After that the membranes were immersed into 1M 

NaCl solution for 6 hours. The solution was then titrated with 0.01 M NaOH solution 

using phenolphthalein as indicator. The IEC then was determined by the following 

equation: 

NaOH NaOH

dry

C V
IEC

W


                                 (3) 

where CNaOH is NaOH solution concentration (mol/L), VNaOH is the volume of NaOH 

solution (L) used for titration. Wdry is the dry weight of the membrane (g). 

 

As mentioned above, a high swelling degree means more dilute charged groups, so SD is 

a negative factor in membrane performance. Inversely, high IEC often means high 

density of charged groups, which is a positive factor. By using the equation of IEC over 

SD, the fixed charge density (also called fixed charge concentration) is defined to 

represent the comprehensive effects of IEC and SD on membrane electrochemical 

properties [74]: 

fix

IEC
C

SD
                                           (3) 
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2.3.7 RED membranes performance 

An RED stack was used to test the power density of the membranes. As shown in Fig.1, 

the whole stack consists of two electrodes, 5 CEMs (FKS (Fumasep®, Germany) or 

synthesized membranes) and 4 AEMs (FAS)(Fumasep®, Germany) with the effective 

area of 4 cm×9 cm. These CEMs and AEMs were arranged at intervals and separated by 

spacers between two endplates. Simulated salt water (0.5M NaCl) and river water (0.017 

M NaCl) were fed into the stack alternatively [25]. Rinse solution at the two sides 

consists of NaCl (0.25 M), K4Fe(CN)6 (0.05 M) and K3Fe(CN)6 (0.05 M). Woven fabric 

spacers at the thickness of 250 µm function as separating membranes and determining the 

distance of water flow for seawater and river water. Two silver wires placed half into the 

stack between electrodes and endplates were used as cathode and anode. Potentionstat in 

the galvanostatic mode was used to record the potential and current (E-I) data for 

calculating the gross power generation. Peristaltic pumps (Masterflex, Cole-Parmer) were 

used to control the flow rate through the RED system. 
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CHARPTER 3 

RESULTS AND DISCUSSION 

3.1 FTIR spectra study 

FTIR spectra tests were conducted on sPVA-sPPO membrane samples with different 

weight percentage. The results of FTIR spectra are shown in Fig. 5 and Fig. 6. The broad 

bands showing between 3200 and 3600 cm-1 indicate the stretching vibrations of –OH 

groups. The peaks at 942 cm-1, 1644 cm-1 and 2856 cm-1 represent the stretch of C-O-C 

groups, CH- groups and –CH2- groups [16], and the peak of 1465 and 1599 cm-1 

represents the aromatic groups. All of the above bands are from the original PPO polymer. 

The evidence of –SO3H substitution to PPO aromatic rings can be seen at the peak of 

1060 cm-1, which means the reaction of sulfonation. Vibration bands of C-S-O stretching 

were seen at 1186 cm-1. FTIR peak at 3389 cm-1 is formed from stretch vibration 

absorption shifted from hydroxyl of sPVA absorption (3434 cm-1), which is caused by –

OH and –SO3H’s hydrogen reactions. Overall, the FTIR results revealed the successful 

sulfonation of the PPO and sulfation of PVA polymer.  
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Fig. 5. FTIR spectra of hybrid membranes 

 

 

Fig. 6. FTIR spectra of sPPO membrane 

 

3.2 Morphology of the hybrid RED membranes 

In order to observe the structures and surface differences in sPVA-sPPO membranes with 

different sPVA ratios, SEM was used to study the membrane morphology (Fig.7, Fig.8 

and Fig.9). Both top surfaces and the cross-section areas were analyzed. 
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In Fig. 7, 8, and 9, SEM images of both (b) sPPO-2% sPVA and (c) sPPO-5% sPVA 

showed uniform distribution with comparatively smaller pores through the entire polymer 

matrix, both on their top surfaces and cross sections. However, when membrane samples’ 

sPVA weight ratio went above 5%, like (d) sPPO-10% sPVA, (e) sPPO-15% sPVA, and 

(f) sPPO-20% sPVA in Fig. 7, 8, and 9, their pore size distributions were less uniform 

and pore sizes became much larger.  According to the cross-section images, the thickness 

of the membranes remained same in the range of near 30-50 μm despite of the sPVA ratio 

change in these membranes. Meanwhile, the cross-section surfaces were dense in 

structure. When the content of sPVA increased, the membranes’ degree of compaction 

decreased sharply (Fig.9).  

 

Fig. 7. SEM surface morphology (30μm) of (a) sPPO, (b) sPPO-2% sPVA, (c) 

sPPO-5% sPVA, (d) sPPO-10% sPVA, (e) sPPO-15% sPVA, (f) sPPO-20% sPVA; 
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Fig. 8. SEM surface morphology (10μm) of (a) sPPO, (b) sPPO-2% sPVA, (c) sPPO-5% 

sPVA, (d) sPPO-10% sPVA, (e) sPPO-15% sPVA, (f) sPPO-20% sPVA 

 

 

Fig. 9. SEM cross-section surfaces morphology of (a) sPPO, (b) sPPO-2% sPVA, (c) 

sPPO-5% sPVA, (d) sPPO-10% sPVA, (e) sPPO-15% sPVA, (f) sPPO-20% sPVA 
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3.3 Electrochemical properties of the hybrid RED membranes 

In this study, several key electrochemical properties of the synthesized hybrid membranes 

including permselectivity, IEC, SD, area resistance and fixed charge concentration were 

measured for evaluating their power generation performance in a small scale RED system. 

Additionally, the value of the square of permselectivity (P) over area resistance (R) is 

also defined as the performance potential ratio [25] in order to explore the comprehensive 

influence of P and R to membrane performance. In this study, all values were measured 

three times to ensure the data reliability and the error bars are in all case no more than 5%. 

As reference, the corresponding data of commercial membranes, FKS (Fumasep®, 

Germany) were also listed in Table 2 of Appendix A. 

 

3.4 SD and Area Resistance 

As mentioned previously, SD represents the water uptake of the membrane. The value of 

SD depends on membrane material and structure. Therefore, in this study, the SD values 

differed when the content of sPVA changed. The SD increased from 45.63% to 93.91% 

when content of sPVA increased (Fig. 10), which means higher hydrophilicity. The 

increased hydrophilicity is mainly attributed to a reduced cross-linking degree. Increasing 

SD is usually helpful for reducing the area resistance of a membrane [16, 49, 72, 75]. 

Similar trend could be seen in Fig.10. 
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Fig. 10.  Area resistance and swelling degree (SD) of hybrid membranes 

 

As is showed in Fig.10, when the content of sPVA increased, the area resistance of the 

membranes decreased dramatically from 2.11 ohm∙cm2 (0 wt% sPVA) to 1.31 ohm∙cm2 

(10 wt% sPVA). However, when sPVA content kept increasing, the resistance revealed a 

slight increase, from 1.31 to 1.43 ohm∙cm2 (20 wt% sPVA). One possible explanation for 

this phenomenon is that factors controlling the resistance are complicated. SD, together 

with charge density, polymer matrix density and the surface morphology may all 

contribute to the increase/decrease of the resistance. Therefore, it is impossible to draw a 

single linear connection between one or more these factors and resistance. Another 

research pointed out that the pore formation and surface roughness of the composite will 

affect the transport of ions, permselectivity and also conductivity [19]. In this study, 

when SD rose, other factors might start taking dominant influence on the resistance, and 

formed the trend of resistance in Fig.10. Above all, the lowest area resistance was 

achieved at 1.31 ohm∙cm2 when the membrane contained 10 wt% of sPVA. 
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3.5 Effects of sPVA loading on permselectivity and Cfix 

The permselectivity of the hybrid membranes describes the ability of membranes’ cations 

selectivity from a solution containing both cations and anions, which is determined by the 

type of the fixed charges [76, 77]. In general, membranes with a lower fixed charge 

density have a lower selectivity as well [33]. Permselectivity of mobile cations through 

the membranes is also often affected by the electrolyte solutions’ concentration 

differences. 

 

As is shown in Fig.11, the membrane permselectivity and Cfix have relatively clear 

relationships with the loading of sPVA. When the loading of sPVA increased from 0% to 

20%, the clear drop of Cfix could be observed, from 4.54 (0 wt% sPVA) to 1.68 (20 wt% 

sPVA). This is  because with the increase of sPVA content, the swelling property of the 

membranes was greatly enhanced, which led to increase of distance between the ion 

exchange groups, then reduce of the fixed-charge density[33]. 
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Fig. 11.  Cfix and Permselectivity of hybrid membranes 

 

The permselectivity showed the similar trend as Cfix changed. However, when sPVA 

loading varied from 0% to 5%, the permselectivity increased while Cfix decreased. The 

reason is that even though charge density has great influence on permselectivity, there is 

no straightforward relationship between these two characters. Therefore, like the 

relationship between SD and resistance, other factors such as density of polymer matrix, 

and hydrophilicity, etc. need to be considered. A more comprehensive understanding of 

these properties is required since these factors are all inner-related. In this study, the 

highest membrane permselectivity was achieved when the loading of sPVA reached 5 

wt% (Fig. 11). 
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3.6 Effects of sPVA loading on IEC 

For the membranes prepared with hydrophobic materials like PPO in this study, when 

sPVA loading increased, the SD values increased, and IEC decreased (Fig. 12). As 

mentioned above, when SD increased, the membrane swelled, so the density of functional 

groups dropped and diluted the charged groups, which led to low IEC value. Low IEC 

caused low membrane ion conductivity, and therefore decrease the transport ability. As a 

result, excessive sPVA loadings will decrease the IEC and weaken ion exchange 

properties, which will directly lead to lower membrane performance. 

 

For FKS commercial membranes, having high IEC does not necessarily result in low area 

resistance. In our experiments, both the IEC and resistance had decreasing trends when 

sPVA loading increased (Fig.10 and Fig.12). However, there’s no pronounced conclusion 

that IEC and resistance are always correlated [33, 78].  

 

Fig. 12.  IEC of hybrid membranes 
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3.7 Effects of sPVA loading on performance potential ratio 

There are some existed studies on mathematical relationships between different 

membrane properties and membrane performance. According to Kirchhoff’s law, 

theoretical maximum membrane stack power output (Pmax) can be calculated through the 

following equation: 

 
2

/ ln( / )
max

c d

stack

RT F
P

AR

  
                          (5) 

 

where R is gas constant (8.314 Jmol-1K-1), T is absolute temperature (K), F is Faraday 

constant (96485 Cmol-1), alpha is average apparent permselectivity of the membrane (%), 

Alphac is activity (molL-1) of the sea water solution, alphad is the activity (molL-1) of 

river water solution, A is the membrane area (m2), and Rstack is stack resistance. The 

equation is based on the hypothesis that RED system can generate a maximum power 

under the state that Rstack is equal to the load resistance of the system [9, 79].  

 

Pmax equation also predicts the relationship among individual membrane properties, 

which can be used to compare the membrane performances in the RED system with 

different kinds of membranes [5, 9, 14, 72]. 

 

According to Pmax equation, it is clear that permselectivity and resistance are two key 

factors for power generation. Thus, P2/R can be used as an indicator of the power 

performance. In this study, loading from 5-15% sPVA achieved the highest P2/R value, 

then this value decreased when sPVA loading increased (Fig. 13). This result indicates 

that the maximum power density level will show in the range of 5% - 15% sPVA. 
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Fig. 13.  Performance potential ratio of hybrid membranes 

 

What still needs to be clarified is that, without considering other constants, which 

membrane property has the dominant influence on RED system performance is not yet 

fully known, and the relationships between these properties are not clearly understood. 

 

3.8 RED performance of hybrid IEMs 

Power density of the membranes were tested by the RED stack mentioned in Chapter 2. 

Five commercial CEMs, FKS (Fumasep®, Germany, thickness of 50μm) and AEM, FAS 

(Fumasep®, Germany, thickness of 50μm) were tested in the stack under the flow rate of 

0.8 cm/s as a reference. Under the same condition, FKSs were replaced by synthesized 

sPPO-sPVA membranes to exam RED performance. Then the gross power density was 

estimated by E-I curve obtained by the Potentionstat. 
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Fig.14. Power density of hybrid membranes 

 

As can be seen in Fig.14, when the loading of sPVA in membrane increased, the gross 

power density increased from 0.42 W/m2 (0 wt% sPVA) to 0.46 W/m2 (5 wt% sPVA). 

However, when sPVA loading continued to increase from 5% to 10%, power density of 

the membrane had a great decrease to 0.35 W/m2. Compared to commercial FKS 

membranes, membranes with sPVA loading between 0% and 5% achieved higher density, 

and 5% sPVA membranes reached the peak performance of 0.462 W/m2, 14% higher 

than commercial ones. The test result showed that these hybrid tailored membranes have 

greater potential in power generation than commercial IEMs. They not only achieved 

higher power density, but also superior in low cost of materials as well as extremely easy 

and nontoxic membrane forming processes. The relatively high permselectivity of 

87.17%, low area resistance of 1.54 ohm∙cm2 played an important role in determining the 

power output. The membrane with sPVA loading of 15% had the worst performance, 

which means moderate loading of hydrophilic sPVA will help improve membrane 

performance, but excessive loading may have a negative effect. As mentioned above, the 

loading of sPVA will inevitably affect the polymer matrix and its electrochemical 
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properties, so as to influence its power density. Although changes in these properties 

(morphology, IEC, area resistance, permselectivity and SD) agree well with change in 

power density, the relationships between these properties and power generation 

performance are still unclear. A more reliable interpretation or model on the hybrid 

membrane needs to be deduced based on more extensive research. This current design of 

organic-organic RED-tailored membranes, however, is still a great progress, pointing out 

a new direction to synthesize RED membranes. 

 

Table 1. Power performance of hybrid membranes and commercial CEM (FKS) 

Membranes 

(PVA 

wt%) 

Gross Power 

Density(W/m2) 

0 0.420 

2% 0.451 

5% 0.462 

10% 0.331 

15% 0.290 

20% 0.307 

FKS 0.396 
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CHARPTER 4 

CONCLUSION 

This research focused on the membrane synthesis and aimed to find a simple method to 

synthesize a new type of CEMs that has better or comparative performance as 

commercial membranes. Therefore its characteristics for power generation performance 

in the RED system were investigated. Based on the experiments, conclusions are as 

follows: 

 

1. A new type of hybrid organic-organic cation exchange membranes was successfully 

synthesized by solvent evaporation method. Its physical, electrochemical properties 

were investigated. This kind of membrane was also tested in an RED stack for its 

power generation performance study. 

  

2. By incorporating small amount of sulfated PVA (sPVA) into sPPO polymer, IEMs’ 

properties were considerably improved. Different loadings of sPVA were studied to 

optimize the membrane performance in the RED stack. For sPVA loading ranging 

from 0% to 20%, membrane properties IEC, SD, area resistance and permselectivity 

were tested. By controlling the sPVA loading, the hybrid membrane was found to be 

optimized at the concentration of 5 wt% sPVA for power generation. Compared to 

commercial CEMs, FKS membranes, the performance of 5 wt% sPVA membranes 

improved 14% in power output, proving their great potential for commercialized RED 

use.  
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3. Compared to FKS membranes, the newly synthesized membrane in this study also 

superior in much cheaper and nontoxic materials, which may significantly reduce the 

production cost. In terms of the synthesis processes, membranes in this study were 

synthesized by simple film-forming processes without complicated procedures or 

toxic chemicals, indicating great economical and scale-up potential. 

 

4. This study also suggested some possible correlations between all kinds of membrane 

physical, electrochemical properties and the power outputs. Performance potential 

ratio, fixed-charged density, etc. could all be used as indicators of membrane 

performance. However, the precise relationships between these key membrane 

properties with power density and the effect of hybrid organic membrane on RED are 

still unknown, which requires further study. Most importantly, the studies towards 

RED-tailored IEMs are extremely limited. Further studies are needed for more 

sophisticated theory of membrane synthesis. 
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APPENDIX A 

TABLE OF MEASURED CHARACTERISTICS 

 

Table 2. Characteristics of the prepared membranes compared with a commercial 

membrane, FKS for RED performance. 

Membrane 

(wt% of 

PVA) 

P [%] Area resistance 

[ohmcm2] 

Performance 

potential ratio 

P2/R 

IEC 

[meq.g-1] 

SD 

(%) 

Cfix 

[meq.L-1] 

0 82.87 2.11  3259.75  2.05 45.63 4.56 

2% 85.55 1.95  3744.90  2.01 46.85 4.32 

5% 87.17 1.54  4939.50  1.97 47.55 4.2 

10% 84.21 1.31  5393.72  1.79 66.53 2.76 

15% 83.33 1.40  4944.61  1.59 75.22 2.04 

20% 81.42 1.43  4625.67  1.58 93.91 1.68 

FKS 96.00 1.87  4928.34  1.40 22 6.36 
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