

Satellite Orbit Classification through Machine Learning

AE 8900 MS Special Problems Report

Space Systems Design Laboratory (SSDL)

Guggenheim School of Aerospace Engineering

Georgia Institute of Technology

Atlanta, GA

Author:

Lakshmi Kundana Kalidindi

Advisor:

Prof. Brian C. Gunter

August 4, 2023

Satellite Orbit Classification through Machine Learning

Lakshmi Kundana Kalidindi ∗ and Dr. Brian Gunter†

Georgia Institute of Technology, Atlanta, GA, 30313

This project focuses on orbit classification of resident space objects (RSOs) using novel

machine learning techniques. The goal is to classify satellite orbits into Low Earth Orbit (LEO),

Medium Earth Orbit (MEO), and Geostationary Orbit (GEO) based on images taken from

a sensor on the Earth. The implementation involves generating satellite images over various

orbits, extracting orbital parameters from Two-Line Element (TLE) data, and developing

various machine learning models to classify these orbits. Techniques such as Convolutional

Neural Networks (CNNs), transfer learning, and ensemble learning have been used for accurate

orbit classification. The project emphasizes preprocessing TLE data, image generation, model

training, and evaluation to achieve efficient classification accuracy, thereby contributing to

satellite tracking and space exploration methodologies.

Nomenclature

𝑎 = semi-major axis

CNN = convolutional neural network

Dec = declination

𝑒 = eccentricity

ECI = Earth Centered Inertial

FOV = Field of View

GCRF = Geocentric Celestial Reference System

GEO = Geosynchronous Earth Orbit (GEO)

𝑖 = inclination

ICRS = International Celestial Reference System

KRR = Kernel Ridge Regression

LEO = Low Earth Orbit

MAE = Median Absolute Error

MEO = Medium Earth Orbit

∗Graduate Student, Daniel Guggenheim School of Aerospace Engineering.
†Professor, Daniel Guggenheim School of Aerospace Engineering,.

ML = Machine Leaning

Ra = right ascension

ReLU = rectified linear unit

RMSE = root mean squared error

RSO = resident space object

sgp4 = Simplified General Perturbations Four

TLE = Two Line Element

𝑣 = true anomaly

Ω = right ascension of the ascending node

𝜔 = argument of periapsis

I. Introduction

Satellite orbit classification is a pivotal aspect of space research and satellite navigation systems. Understanding

the distinct characteristics and trajectories of satellites in various orbital paths—Low Earth Orbit (LEO), Medium

Earth Orbit (MEO), and Geosynchronous Earth Orbit (GEO)—is crucial for effective satellite deployment, tracking, and

data transmission. This technical paper presents an innovative approach to satellite orbit classification utilizing machine

learning (ML) techniques.

The project involves generating synthetic satellite images based on Two-Line Element (TLE) data, which encapsulates

key orbital parameters of satellites over time. These synthetic images simulate satellite observations and serve as

essential inputs for training ML models. The implementation focuses on preprocessing TLE data, image generation

based on orbital parameters, and employing Convolutional Neural Networks (CNNs), transfer learning, and ensemble

learning methods for accurate orbit classification.

This research emphasizes the fusion of orbital mechanics, data science, and image processing to create a robust

framework for classifying satellite orbits. The proposed methodology aims to contribute significantly to satellite

monitoring, space exploration, and the development of efficient satellite navigation systems.

II. Synthetic data for training
A good machine learning algorithm needs a large enough dataset to train on. Since we do not have that much of

ground imaging data readily available, we prepare the data synthetically. The code developed for this project is designed

to generate synthetic satellite images and corresponding labels for training the ML models. The process can be divided

into several steps, involving celestial data retrieval, synthetic image creation, and dataset preparation.

2

A. Celestial Data Retrieval

To generate synthetic images of satellites, we need their orbital elements at a certain point of time so that we can

propagate them to plot their orbit. Two Line Elements (TLEs)[1] are data formats encoding a list of orbital elements

of an Earth-orbiting object for a given point in time, the epoch. Each TLE consists of two text lines which include

information such as the satellite name, epoch date, orbital inclinations, right ascension of ascending node, eccentricity,

argument of perigee, mean motion, and several other parameters to define the satellite’s orbit uniquely. The data is

typically updated every few days due to natural perturbations affecting the satellite’s orbit. To propagate the orbit, we

chose the python skyfield[2] library that uses the sgp4 orbit propagator.

B. Synthetic Image Generation

In the preparation of the dataset, we propagated 200 LEO3, 80 MEO5 and 80 GEO7 satellites. We begin with the

assumption of an Earth based sensor with coordinates: ’33.75 N’, ’-84.39 E’ in Atlanta. We use an intertial frame

of reference to make sure that the synthetic images simulate the output of the earth based sensor. At each time step,

the angle of satellites relative to the sensor are calculated using the dot product of the vectors from the sensor to the

reference log and from the sensor to the object. We determine the distance from the sensor to the center of the FOV

plane contained the observed object. The RSOs are propagated and observed for 10 minutes and a total of 16,000

images are generated. The Python package matplotlib[3] was used to plot the Ra,Dec values plotted in equi-rectangular

projection. To make the training data more robust, OpenCV[4] was leveraged to add Gaussian noise to the images2468.

Since it is such a short period of time, the RSOs in the images are indiscernible by human eye. That is where ML

algorithms step in.

Fig. 1 Synthetic image of ISS ground track

3

Fig. 2 Synthetic image of ISS ground track with noise

Fig. 3 COSMOS 2024 (ETALON 2)(LEO)

Fig. 4 COSMOS 2024 (ETALON 2) with noise

4

Fig. 5 NAVSTAR 59 (USA 192)(MEO)

Fig. 6 NAVSTAR 59 (USA 192) with noise

5

Fig. 7 INTELSAT 5 (IS-5) (GEO)

Fig. 8 INTELSAT 5 (IS-5) with noise

6

III. ML methods to classify satellite orbits
Since we are trying to classify the images into 3 categories, namely LEO, MEO and GEO, we need Supervised Machine

Learning algorithms. From the various available ML algorithms Convolutional Neural Network (CNN)[5] has been

chosen for satellite classification because of its well proven ability in multi-label classification[6]. TensorFlow/Keras[7]

libraries are used to convert the images into tensors and apply machine learning models. The generated synthetic

grayscale images and labels are read using OpenCV.

Fig. 9 CNN Architecture

The CNN architecture is built within a Sequential model from Keras. It comprises layers like Conv2D (convolutional),

MaxPooling2D (pooling), Flatten (flattening data), and Dense (fully connected) layers. The last dense layer should be of

the size of the number of labels required, which is 3 in our case. The model is compiled using the Adam optimizer and

’sparse-categorical-crossentropy’ as the loss function for multiclass classification.

A. Model Training and Evaluation

It is important that we reshape the prepared data to fit the CNN input shape. Since the are over 16000 synthetic

images in the dataset, there can be out of memory errors that arise while training the model. The model is trained by

using a simple fit function and evaluated on the test set to assess its performance. The following metrics we generated

from the evaluation of this model:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.9922

𝐶𝑜𝑛 𝑓 𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 =

������������
247 0 0

1 628 0

2 1 286

������������

7

Fig. 10 Accuracy plot of CNN Fig. 11 Loss plot of CNN

IV. Transfer learning and ensemble methods
Training the model on a CNN for a huge dataset takes a substantial amount of time. In order to reduce the time

taken to train the model and make the model more robust, there are many techniques available. In this paper, we explore

the concepts of Transfer Learning[8] and Ensemble Learning[9] to classify our satellite image dataset.

A. Transfer Learning

The transfer learning technique involves leveraging pre-trained models on large image datasets (like ImageNet)

and reusing their learned features to solve similar problems with smaller datasets. Utilizing pre-trained networks like

VGG16[10] and ResNet50, which have been trained on vast datasets like ImageNet, provides a powerful feature-extracting

base due to their deep and complex architectures. The early layers of a pre-trained CNN, which capture basic and generic

features (like edges, textures, etc.), are reused. These features are often relevant across different image recognition tasks

and provide a strong and robust starting point for new tasks. For satellite image classification, these models can be

adapted by replacing and retraining the final layers to recognize specific patterns and fine-tuned to classify satellite

images. This approach significantly reduces the training time and computational resources required, as the intricate

features learned by the networks can effectively discriminate between the nuanced details present in our application.

We trained 3 models using two different base layers. Different dense layers are studied for performance of VGG16.

Table 1 Transfer Learning Models

Model Base Model Dense Layers Accuracy
Model 1 VGG16 128 with activation= relu, 3 with activation = softmax 0.9965
Model 2 ResNet50 128 with activation= relu, 3 with activation = softmax 0.9976
Model 3 VGG16 64 with activation= relu, 3 with activation = softmax 0.9918

ResNet50 and VGG16 need image inputs with three channels. The images we generated have only 1 channel. Hence

images were preprocessed to stack the same data into three channels before loading into the model. To handle out of

8

memory error due to the huge size of images, we used another technique called iterative learning which is done for

"Online Machine Learning Models"[11]. We used this property of training technique to our advantage to creatively

handle huge datasets. In this, the images were divided into batches of 1000 and then the model was trained upon the

saved model in the previous iteration.

Fig. 12 Accuracy plot of Transfer Learning models with VGG16(Dense128), ResNet50 and, VGG16(Dense64)

B. Ensemble Learning

Ensemble learning is a robust machine learning paradigm where multiple models, often called "weak learners,"

are trained to solve the same problem and then combined to improve the overall performance[12]. This combination

can be done in several ways, such as averaging, weighted voting, or stacking. The underlying principle is that a group

of diverse models can complement each other’s predictions, leading to better generalization and reduced likelihood

of overfitting. By pooling the strengths and mitigating the weaknesses of individual models, ensemble methods, like

Random Forests or Gradient Boosting, often achieve higher accuracy than any single model alone. In this project we

explore the usage of Voting classifier[13].

After preprocessing the data, the three transfer learning models are used as the weak learners for the ensemble

classifier. We use hard voting for this classifier1. In hard voting, the predicted class label is determined by the majority

vote across all models; that is, the class which gets the most votes from different models is chosen as the final prediction.

This method is simple yet effective, especially when combining models that have different strengths and weaknesses, as

it can lead to a more robust and generalized performance than any single model alone.

Implementing the Ensemble ML algorithm generated an accuracy of 0.9952. This is noted to be less than the

accuracies of CNN and Model 1, Model 2; but is greater than Model 3.

9

Fig. 13 Ensemble Voting classifier [14]

C. A comparision of performance of different ML methods

Comparing the accuracies of all the models tested side by side:

Fig. 14 Model performance comparison

V. Challenges and Improvements

A. Image Generation

While creating the images, we did not take into account the earth oblateness effect, radiation pressure, atmospheric

interferences and distortions. Although noise was added to the images, they were generated in ideal conditions. Since

10

images were taken over a 10 minute time period, the MEO and GEO satellites were barely visible, but the models still

managed to predict the class correctly. But for real images, noise might be much higher and irregular and the accuracy

might drop significantly due to it.

B. Machine Learning Models

While training the models, there were frequent "out of memory" issues due to the large size of the dataset contaning

16,000 images. To overcome this, we have used iterative machine learning. However, it is important to note that other

methods should be explored when the dataset becomes even larger. Another problem ML models frequently face are

overfitting and underfitting. When the available data is limited, overfitting can occur in CNNs. To mitigate this, we have

employed transfer learning which uses a pre-trained network as a feature extractor and then training a smaller model on

top of these features can act as a form of regularization. It prevents the model from learning overly complex patterns

that fit the training data too closely. However, it’s important to note that transfer learning is not a panacea for overfitting.

Overfitting can still occur if the fine-tuning phase is not managed properly, especially if the new dataset is too small

or too different from the data on which the model was originally trained. Proper techniques like data augmentation,

dropout, and early stopping should still be employed as necessary to further combat overfitting.

VI. Conclusion
These models should be able to predict the orbit classification of an RSO by providing a real image from a telescope

taken over a few minutes of time with fairly good accuracy.The project achieved an exceptional accuracy of 99.22%

utilizing Convolutional Neural Networks (CNNs) in accurately categorizing satellite orbits into Low Earth Orbit (LEO),

Medium Earth Orbit (MEO), and Geostationary Orbit (GEO) based on synthetic satellite images generated from

Two-Line Element (TLE). Transfer Learning methods using ResNet50 and VGG16 have shown very good accuracy with

quick training rate. Although, the ensemble machine learning approach showed good accuracy standalone, it did not

yield greater results than most of these models. This behaviour is expected since the data are very close to each other

and the predicted class in one model might not be the same in a different model. This could be solved by using Weighted

Voting Classifier where weights can be assigned to each model based on the confidence. Despite the CNN’s outstanding

performance, the ensemble method did not exhibit the expected classification precision. Furthermore, hyperparameter

tuning, including fine-tuning of the pre-trained models and optimizing ensemble methods, could improve classification

accuracy further.

More methods of Ensemble Machine Learning like Boosting, Bagging and using Random Forests need to be

explored for quicker and robust classification. Using multiple sensors like Laser data along with images and use sensor

fusion techniques to improve location and velocity estimation.

11

Acknowledgments
The research project is done as part of AE8900 course under the guidance of Dr. Brian Gunter. The code for

synthetic image generation for this project is derived from the previous work of Rohan Patel who wrote it for his

undergraduate research project at Georgia Institute of Technology.

References
[1] Celestrak, “Two-Line Element Set Format,” https://celestrak.org/NORAD/documentation/tle-fmt.php, 2023. Ac-

cessed: 2023-02-12.

[2] Rhodes, B., “Skyfield: High precision research-grade positions for planets and Earth satellites generator,” https://

rhodesmill.org/skyfield/, 2019. Ascl:1907.024.

[3] Hunter, J. D., “Matplotlib: A 2D Graphics Environment,” Computing in Science Engineering, Vol. 9, No. 3, 2007, pp. 90–95.

https://doi.org/10.1109/MCSE.2007.55.

[4] Bradski, G., “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2008.

[5] Yamashita, R., Nishio, M., Do, R., et al., “Convolutional neural networks: an overview and application in radiology,” Insights

Imaging, Vol. 9, 2018, pp. 611–629. https://doi.org/10.1007/s13244-018-0639-9, URL https://doi.org/10.1007/s13244-018-

0639-9.

[6] Lydia, A. A., and Francis, F. S., “Multi-Label Classification using Deep Convolutional Neural Network,” 2020 International

Conference on Innovative Trends in Information Technology (ICITIIT), 2020, pp. 1–6. https://doi.org/10.1109/ICITIIT49094.

2020.9071539.

[7] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat,

S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,

Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke,

V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X., “TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems,” , 2015. URL https://www.tensorflow.org, accessed: 2023-02-12.

[8] Hosna, A., Merry, E., Gyalmo, J., et al., “Transfer learning: a friendly introduction,” Journal of Big Data, Vol. 9, 2022, p. 102.

https://doi.org/10.1186/s40537-022-00652-w, URL https://doi.org/10.1186/s40537-022-00652-w.

[9] scikit-learn developers, “Ensemble methods - scikit-learn documentation,” https://scikit-learn.org/stable/modules/ensemble.html,

2023. Accessed: 2023-02-12.

[10] Simonyan, K., and Zisserman, A., “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv, 2014.

https://doi.org/10.48550/arXiv.1409.1556, URL https://doi.org/10.48550/arXiv.1409.1556.

12

https://celestrak.org/NORAD/documentation/tle-fmt.php
https://rhodesmill.org/skyfield/
https://rhodesmill.org/skyfield/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1109/ICITIIT49094.2020.9071539
https://doi.org/10.1109/ICITIIT49094.2020.9071539
https://www.tensorflow.org
https://doi.org/10.1186/s40537-022-00652-w
https://doi.org/10.1186/s40537-022-00652-w
https://scikit-learn.org/stable/modules/ensemble.html
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556

[11] Emily A. Kringle, C. E., Evan C. Knutson, and Terhorst, L., “Iterative processes: a review of semi-supervised machine

learning in rehabilitation science,” Disability and Rehabilitation: Assistive Technology, Vol. 15, No. 5, 2020, pp. 515–520.

https://doi.org/10.1080/17483107.2019.1604831, URL https://doi.org/10.1080/17483107.2019.1604831, pMID: 31282778.

[12] Dietterich, T. G., “Ensemble Methods in Machine Learning,” Multiple Classifier Systems, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2000, pp. 1–15.

[13] Shahane, S., “Voting Classifier,” https://www.kaggle.com/code/saurabhshahane/voting-classifier, 2021. Accessed: 2023-03-24.

[14] “Ensemble voting classifer,” , 2023. URL https://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/,

accessed: 2023-12-10.

13

https://doi.org/10.1080/17483107.2019.1604831
https://doi.org/10.1080/17483107.2019.1604831
https://www.kaggle.com/code/saurabhshahane/voting-classifier
https://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/

	Introduction
	Synthetic data for training
	Celestial Data Retrieval
	Synthetic Image Generation

	ML methods to classify satellite orbits
	Model Training and Evaluation

	Transfer learning and ensemble methods
	Transfer Learning
	Ensemble Learning
	A comparision of performance of different ML methods

	Challenges and Improvements
	Image Generation
	Machine Learning Models

	Conclusion

