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Abstract— We present a mobile manipulation system used
by the Georgia Tech team in the RoboCup@Home 2010
competition. An overview of the system is provided, including
the approach taken for manipulation, SLAM, object detection,
object recognition, and system integration. We focus on our
manipulation strategy, which utilizes a low-degree of freedom
manipulator and makes use of the robot’s differential drive
as part of the manipulation strategy. Empirical results demon-
strating our platform’s ability to detect and grasp a variety of
tabletop objects are presented.

I. INTRODUCTION

Mobile manipulation is a popular and growing area of
interest in robotics research. One of the great promises
of mobile manipulation is the ability to reliably function
in domestic environments along with humans, enabling an
increased quality of life for those who might not otherwise be
able to function by themselves in a home environment. This
quality of life improvement through mobile manipulation can
only be achieved through the development of robust methods
for dealing with the highly dynamic nature of domestic
environments, such as navigation and mapping, as well as
efficient and cost effective solutions for manipulating objects
in the home. This paper presents work by researchers in the
Cognitive Robotics Lab at Georgia Tech on a mobile manipu-
lation platform that is being developed to address these issues
of operating in a domestic environment. An approach is
presented that demonstrates manipulating household objects
using an inexpensive, low degree of freedom manipulator.
Through experimental results, it will be shown that this
approach is effective at manipulating objects for some subset
of scenarios that could be encountered in a typical home
environment. The scenario descriptions and solution metrics
are given in the context of the RoboCup@Home contest,
where this platform was demonstrated at the 2010 RoboCup
competition.

This paper will first address previous work done in the
area of mobile manipulation, especially mobile manipulation
in domestic environments, in section II. Section III will
then discuss the different hardware and software systems

utilized in the Jeeves mobile manipulation platform. This
will include a description of the issues involved in grasping
objects from planar surfaces such as tables and counters,
as well as the approach used by the Jeeves platform. The
experiments conducted to demonstrate and test this approach
will be presented in section V, and a brief discussion of the
results of the experiments and future work will follow in
sections VI and VII.

II. RELATED WORKS

One example of a successful implementation of a ma-
nipulation platform based upon limited degrees of freedom
and simple control is due to Brooks et. al. [4], [3]. Brooks
et. al. developed a robot called Herbert which searches
offices at MIT and steals empty soda cans that it finds.
Herbert has a limited DOF manipulator and a simplified
control system based upon the subsumption architecture [2].
The subsumption architecture is a layered, coupled set of
finite state machines which exhibits sophisticated high level
behavior. The performance of Herbert and other robots
using the subsumption architecture is robust to unexpected
changes in the environment since each component relies
on sensor information from the environment rather than an
environmental model.

III. SYSTEM DESIGN

This section will present a description of the system
that was designed to perform tasks in the RoboCup@Home
contest. First the physical description of the platform will
be given, including specific hardware selection and purpose.
An overview of hardware and software modules involved
in the manipulation of simple domestic objects will also be
presented.

A. Hardware

The Jeeves mobile manipulation platform, shown in figure
1, is based on a Segway RMP-200 dynamically balancing
mobile unit. The platform has been augmented with four



Fig. 1: Jeeves mobile manipulation platform.

caster wheels to make it statically stable, which simplifies
the manipulation problem considerably.

Grasping and manipulation is performed by a Schunk PG-
70 parallel gripper module. The custom steel fingers are
sized to interact with small household objects, and are coated
with rubber to reduce sliding. The gripper is mounted to our
manipulator, which consists of an Anaheim 18-inch linear
actuator mounted to the front of the Segway top plate. The
linear actuator is positioned to allow a range of motion that
would cover most usable surfaces in home settings, such as
low coffee tables or high counters.

The current setup includes the use of two Mac Minis as
the main computers. A Sony handheld PC, equipped with a
wireless headset, serves as the main computer for human-
robot interaction tasks, such as speech recognition.

The main sensor package on the Jeeves platform consists
of a Prosilica gigabit ethernet monocular camera and a
Hokuyo UTM-30 scanning laser range sensor attached to
a Directed Perception D46-70 pan-tilt unit. This is used for
both object detection and object recognition in manipulation
tasks.

The Segway is also equipped with a SICK LMS-291 laser
range finder which serves as the main navigation sensor, and
is used primarily for localization/mapping and object avoid-
ance. A Phidgets interface board is used to communicate
between the hardware e-stop on top of the platform and the
navigation computer controlling the platform motion.

B. Software Architecture

Jeeves utilizes the popular Robot Operating System (ROS)
[6] for inter-process communication and module support
where possible. There are five main software components

in our system. The navigation components will be used in
virtually all @Home tasks and they consist of Localization,
Motion Planning, and Obstacle Avoidance. These represent
the basic competencies for making a mobile robot operate
in a known static environment amongst dynamic obstacles,
such as people. For tasks where the environment is not
known prior to the robot run, we will use the custom SLAM
implementation in the Mapping module.

The Perception components consist of the Object Recog-
nition module. Since this module uses monocular vision, it is
coupled with an Object Pose Estimation module which uses
the laser scanner to get more information about the pose
of the manipulation target. Additionally, there are a People
Tracking and Face Recognition modules which enable person
following and tracking based on laser and visual data.

High level task coordination is handled by the Task Plan-
ner which is configured for task-specific events.

C. Manipulation and Grasping

This section will discuss the manipulation capabilities of
the Jeeves mobile manipulation platform. Jeeves is equipped
with a Schunk PG-70 parallel-plate gripper. The gripper is
mounted to an 18-inch linear actuator that has been mounted
vertically on the front of the mobile base. This allows Jeeves
to achieve a grasping range of motion that covers many
common human grasping surfaces. The gripper utilizes a
set of custom steel fingers that are long enough to allow
for manipulation up to 20 centimeters into a surface. This
provides us with a single degree of freedom for manipulation,
along with the three degrees of freedom provided by the
differential drive mobile base.

Fig. 2: Manipulator and gripper used on the Jeeves platform.

The design decision of using a low degree of freedom
manipulator over the more common 5- or 6-DOF manipula-
tors has a few hidden advantages. While the single degree
of freedom limits the orientation of certain types of objects



to be considered manipulable, at least within the context of
the RoboCup@Home event, this still leaves available a wide
range of objects commonly used by humans, such as cups
and containers. There are a number of advantages of this
simple manipulator over more complex manipulators. Cer-
tainly it is more simple. This implies that controller design
can be simplified, along with the computational overhead
for computing complicated inverse kinematics and scenarios
for dealing with singularity avoidance. A simplified system
can be made more robust than advanced manipulators that
require more engineering (and more points of failure.) The
low mechanical overhead also can mean a lower cost and
a lower footprint on the robot. Having only a single degree
of freedom also allows the system to use a simple grasping
strategy.

D. 3D Perception

Tabletop objects are detected using a 3d laser scanner
mounted on our robot, shown in Figure 1. The sensor
consists of a Hokuyo UTM-30-LX laser scanner mounted
on a Directed Perception PTU-D46-70 pan tilt unit. Panning
the laser scanner allows us to build up a 3D point cloud of the
scene in front of the scanner. The resulting point clouds are
then processed using the Point Cloud Library (PCL) to detect
planar surfaces such as tables, as well as objects resting on
these surfaces. Our technique is similar to that presented by
Rusu et. al. in [7], [8]. For the purposes of grasping, we
assume that the robot is positioned roughly in front of a table.
This is reasonable for applications where we are navigating
to a table location as taught by a human, as is the case in
Robocup tasks.

Segmenting objects in front of the robot begins by finding
the nearest table. Only points within a relatively small
bounding box in front of the sensor are considered. For this
work, we discarded points that were not within 1.5m x,y
bounding box in the front of the robot, and were more than
30cm above the ground plane, because we don’t wish to
consider the ground as a surface relevant to manipulation.
We then detect the dominant plane in this region using a
RANSAC technique. Point inliers are projected down to the
plane, and a convex hull is constructed. The hull is used
to extract points above the planar surface, which are then
clustered into discrete objects. The result is one or more sets
of clustered points, corresponding to objects resting on the
planar surface. The centroid of each resulting object point
cloud is then computed. These clouds can serve as input to
our visual object recognition, or be used directly for grasping
of the objects.

E. Object Recognition

To identify each object we make use of a Prosilica GigE
650C camera mounted on the PTU adjacent to the Hokuyo
laser scanner. The camera is servoed by the PTU to point the
centroid of the segmented object point cloud. By projecting
the 3D points into the image taken from the camera at this
viewpoint, a small region of interest is extracted correspond-
ing to the extent of the object in the image. We extract SURF

Fig. 3: 3D point cloud and object segmentation.

[1] features from this smaller image. The SURF features are
compared against the SURF features from a library of objects
at a variety of poses which has been trained a priori using
the ratio test. As a final step, a homography is computed
with RANSAC [5]. The test object’s identity is assigned to
be the identity of the library object which had the largest
number of inlier SURF features from this test.

IV. PROBLEM DESCRIPTION

As it has been stated previously, this paper is presented
in the context of the RoboCup@Home scenarios and task
specifications. The RoboCup@Home league is concerned
with challenging robots at tasks in various home settings
and situations that would need to be considered for do-
mestic service robots. A number of different tasks have
been required in the last few years since the league began,
including person following through crowded environments
with dynamic obstacles, locating and manipulating various
objects in a simulated home environment, and interacting
with and manipulating objects in the presence of humans.

As many of the challenges in the contest deal with
grasping objects from planar surfaces as part of the task
requirements, an algorithm was designed for completing
specifically this task. Namely, the robot begins with a
candidate surface being specified. The robot then navigates
to some predefined destination in the neighborhood of the
desired surface, oriented such that the surface is visible to
the camera and laser range scanner. This motion is controlled
by one of the ROS modules used by the system. A 3D point
cloud is obtained from the sensor package, and objects on the
surface are segmented from the point cloud. From the point
clouds of the individual objects the centroid is calculated.
This centroid is used as the control point for the grasping
controller.

At this point, control of the pose of the robot is switched
to a local controller to drive the robot to the grasp point,
or centroid of the object to be manipulated. The states
associated with this situation are {dX, dY, dZ, θ}, where dX
and dY are the distances between the current robot pose and



the object centroid along the coordinate axes in the local
coordinate frame of the robot, and θ is the bearing to the
object centroid from the current robot heading. dZ is used
to compute the vertical offset between the object centroid
and the grasping center of the gripper.

Fig. 4: Overhead view of the table approach, where (xr, yr)
is the position of the robot and (xo, yo) is the position of the
object centroid.

The control variables for the proposed control scheme are
θ and D, where D is the Euclidean distance between the
current robot pose and the object centroid and in general is
found by the relationship

D =
√
dX2 + dY 2.

The selection of these control variables was fairly straightfor-
ward, as the control input into the Segway mobile base used
by the Jeeves platform accepts linear velocity and angular
velocity as the control commands.This logically leads to the
consideration of D and θ as control variables as units that
deal with linear and angular disparities, respectively. Thus
the overall control strategy is to minimize the distance D
and the bearing θ, which drives the system to the desired
setpoint, a robot pose that is able to manipulate the object.
Theta is determined by the relationship

θ = arctan(
dY

dX
).

The controller utilized for driving the distance D to zero
obeys the control law,

vcommand = Kp−v ∗D,

where vcommand is the linear velocity applied to the mobile
base and Kp−v is the gain. While a more complex con-
troller was considered, initial testing showed that this simple
controller worked reliably within the expectations for object
grasping tasks.

The control input for the orientation of the robot is
determined using a similar control law,

ωcommand = Kp−ω ∗ θ,

with ωcommand being the commanded angular velocity and
Kp−ω the proportional gain applied for angular acceleration.
One problem with directly applying this simple control law
to the problem of angular correction is that the calcula-
tion for the bearing (and thus the angular error) depends
on a non-linear term, arctan( dYdX ). While using the direct
control will have reasonable results when far away from
the object centroid it tries to move to, those results will
increasingly degrade as the robot comes close to the object.
As the distances become smaller upon approach, so does
the effect that measurement and mechanical noise in the
system increasingly has a greater influence on the accuracy
of the results. This poor, noisy behavior becomes even more
pronounced within several centimeters of the robot, often
making actual grasping a challenge. That is the reason it
was decided to use a gain scheduling approach to solve this
nonlinear problem.

In essence, gain scheduling is the use of different gain
parameters that induce system properties (such as stability)
in only certain regions of the controllable subspace due to
the non-linear constraints of the system. In this way, the
entire state space of the system can be made controllable
by scheduling different gains to properly influence whatever
equilibrium the system happens to be in the neighborhood
of. The angular bearing controller utilized by the Jeeves
system uses three different gain schedules. For distances D of
greater than 20 centimeters, a larger gain is used. Between
20 centimeters and 7 centimeters, a much smaller gain is
used to further control to the centroid of the object, and at
distances less than 7 centimeters the gain is reduced to 0. The
gain scheduling technique for dealing with non-linearities in
systems controller design has been successful with the Jeeves
platform, and has demonstrated that it can deliver reliable
and repeatable performance in a number of lab tests. It is the
premise of this paper that this controller can robustly deal
with the problem of manipulation in domestic settings using
this unique combination of simple and non-linear controllers.

V. EXPERIMENTS

A single experiment was designed to test the efficacy of
the grasping controller used on the Jeeves platform. The
test was constructed in the context of the RoboCup@Home
scenarios. Specifically, many of the RoboCup@Home tasks
that require manipulation involve grasping an object from
a planar surface such as a table or a shelf and then taking
the object to a secondary location, such as delivering it to a
human.

In the spirit of these tasks, the experiment designed to
test the system requires the robot to grasp an object from
a specified location on a table and then deliver this to a
human test operator. A grasp is defined to be the robot
making contact with the object, and lifting and holding it for
at least ten seconds, following those rules set forth by the
RoboCup@Home organizers. A single test in the experiment
would begin by the robot initiating a scan of the environment
using the 3D scanning sensor package, assuming that it
has already achieved a position in front of some planar



surface. When the point cloud is processed and the object
is segmented from the table top, a centroid for the object is
returned to the controller, which it then uses as the setpoint
to servo to the object location. After the object has been
grasped, Jeeves returns to the starting location and orients
itself away from the table briefly, allowing time for the test
operator to retrieve the object from the gripper and return
it to the table for the next part of the experiment. After a
few seconds, Jeeves turns again to face the table, and the
sequence is repeated.

Fig. 5: Objects used in the manipulation experiment.

Ten objects were selected to serve as the representative cat-
egories of general objects found in domestic environments,
and can be seen in figure 5. As can been seen in the figure,
effort was made to select from a wide range of common
household products, including beverage and food containers,
cleaning supplies, pill bottles, and toys. Among these types
of products, the objects chosen share some basic geometric
shape properties, such as cylindrical or box shaped. These
suggest four categories from the ten selected objects. Wide
cylindrical objects are cylindrical objects whose diameter is
within a few centimeters of the maximum grasping width of
the gripper. Narrow cylindrical objects are cylindrical objects
whose width is much less than the maximum grasping width
of the gripper. Box shaped objects are simply that - boxes,
or in this case, tea boxes. Finally, odd-shaped objects do
not easily fall into any one category. The cleaner has an
oval-shaped container, while the pill bottle is a box with
rounded sides. The stuffed doll object was chosen to provide
a stark contrast to the other relatively simply described
objects selected. The doll is placed on table for grasping in
a sitting position, which is inherently a balancing position.
This adds yet another layer of difficulty onto the task of
grasping the doll.

Fig. 6: Marked locations on the table used during the
manipulation experiment.

Each object was attempted a total of 24 times, cycling

the objects through a set of six points on the table (see
figure 6.) The points on the table are measured at depths
of five and fifteen centimeters from the front edge of the
table, while the side points are also five centimeters from
their respective sides. Each table location is also fifteen
centimeters away from its neighbors. The decision to rotate
through these various depths and lengths across the table
was to provide a method to test the robustness of the control
algorithm to variations in the object pose with respect to
the robot’s starting pose. The initial robot pose also varies
slightly between tests as the robot moves, adding to the
presumed robustness of the controller.

VI. EXPERIMENTAL RESULTS

It took between ten and eleven hours to complete testing
for the experiment described in section V. The results of this
experiment can be seen in table I.

Object Success (%) Shape Overall (%)
Pringles 100

Fanta 100 narrow 100
Coke 100

Cable Ties 91.7 wide 93.75
Clorox 95.8 wide

Mango Tea 100 box 91.67
Earl Grey 83.3 box
Goo Gone 91.7 odd
Vitamins 100 odd 83.33

Buzz 58.3 odd

TABLE I: Results of grasping experiment using different
classes of objects.

The first evident observation from the data presented in
table I is that the controller works well across all categories
of objects. In fact, every object in the narrow cylindrical
shaped objects category was grasped with a one hundred
percent success rate.

Another interesting observation, as seen in figure II, is that
by far the most grasp failures happen on locations that are
toward the edges of the table.

Location Wide Narrow Box Odd Total
1 0 0 0 3 3
2 0 0 2 2 4
3 1 0 0 1 2
4 1 0 0 1 2
5 0 0 0 2 2
6 1 0 2 3 6

TABLE II: Failed grasp attempts based on the location on
the table and the object shape.

There are a number of possible causes for the failed grasps
in the experiment. These include variability in the perception
and segmentation of objects in the scene, the effect of the
caster wheel design, and the strong angles required to grasp
objects at the edges of the table. One possible source of error
is in the processing of the point clouds. From time to time
the segmentation will not group together all of the points
in the point cloud that actually belong to the object. This



skewed perspective can push the calculated object centroid
away from the actual centroid by a few centimeters. When
this occurs, it is possible that the disparity could be enough
to induce a failed grasp.

Another possible source of process noise in this experi-
ment is the caster wheel design. As seen in figure 1, Jeeves
has two casters attached to the front and back of the unit
for a total of four casters. Depending on the configuration
of the casters, especially the front casters, they can cause
the platform to have to exert more effort than usual to
move, which can cause significant overshoot, which in turn
induces unwanted oscillation in the platform as it is trying
to precisely servo to the grasp point.

One downside of the approach proposed in this paper is
that it doesn’t take it into account the existence of oriented
objects, or objects that have a particular orientation. For
example, when trying to grasp the box of tea, Jeeves does
not know whether the object it is grasping is facing directly
out from the table, or if it is rotated by some number of
degrees. During the experiment this led to a number of
”angled grasps”, or successful grasps where the object was
rotated in the gripper. It would seem that the combination
of these factors, which would all come into play during an
edge location grasp, could lead to grasp failure.

Nevertheless, the control scheme proposed and imple-
mented is shown in this experiment to be robust to variations
of an object pose in the robot’s workspace, along with
variations in the starting pose of the robot.

Fig. 7: Jeeves grasping an object.

VII. SUMMARY

In this paper we have presented the Jeeves mobile ma-
nipulation platform as it functioned at the 2010 RoboCup
competition in the RoboCup@Home league. Specifically,
we have shown that an approach to object manipulation in
domestic environments using a low degree of freedom ma-
nipulator can be both a viable and a cost-effective solution to
the mobile manipulation problem in home settings. Through
experimental results we have shown that with a single degree
of freedom manipulator and the control scheme proposed and
implemented on the Jeeves mobile manipulation platform, we

can achieve reliable and repeatable results for a number of
varied household object types. In the future we plan to further
improve the system by including a sense of the orientation
of an object, to better improve the robustness of the solution.
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