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SUMMARY

Early investigators attributed many of the observed large scale
irregularities in upper atmospheric winds to turbulence. Ilater, gravity
wave theory was successful in explaining many of the properties of these
large scale irregularities. This led some researchers to question
whether turbulence existed at all as an ambient phenomenon of the upper
atmosphere. One explanation of the observed small scale structure on
chemical release clcouds and meteor trails was that turbulence is produced
by the rocket, release mechanism or meteor during its passage through
the atmosphere. Comparison of the characteristics of turbulence observed
from both meteor trails and chemical releases indicates that the turbu-
lence must be a naturally occurring ambient phenomenon. This conclusion
is also supported by the discrepancies between observed and predicted
Jet and wake turbulent‘velocities.

On chemical release clouds, many spherical protuberances or
globules usually appear below a certain altitude. It is shown that the
ambient turbulence provides an unstable medium in which small fluctua-
tions in the release'of chemical or meteoric material lead to the forma-
tion of these globules. The upper atmospheric turbulence has a rather
sharp cutoff point, the turbopause, near 106 km, as determined by exami-
nation of the maximum altitude of glcbule formation on many chemical
releases. Immediately below the turbopause the globules appear to be
almost spherical, but they grow more fuziy and ill-defined in appearance

as the altitude decreases. This behavior is explained by the existence
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and properties of a subrange of motiﬁn affectéd by buoyancy forces and
acting only at small scales.

Turbulent winds determined by chemical release tracking are use-
ful in obtaining estimates of the turbulent energy source parameter €5
and the bucyancy and viscous dissipation terms eg and €, In a stably
stratified portion of the atmosphere, such as above the mesopause at about
85 km, all contribution to the energy source term es mist arise from wind
shears. The buoyancy dissipation parameter eg is important only in such
a stably stratified region. Turbulent diffusion of globules at times
after release t 2 200 sec follows a d2 ~ € t3 law. The height variation
of ¢ as determined from diffusive growth is in reasonable agreement with
the turbulent wind determinations of €. Both € and eg are found to bhe
slowly varying with altitude, having values of about 0.k and 0.35 watts/kg
respectively, in the height region from 90 km to the turbopause. However,
€ increases rapidly with altitude. This observed rapid increase and the
energy balance requirement ¢ < €, indicate that turbulence cannot exist
above 106 km, in agreement with observation. The observed height vari-
ation of ¢ is compatible with estimates of € obtained at lower altitudes
by other investigators.

During the time after release period t < 150 sec, the globules
show a d2 ~ eg t5 diffusion, indicating the presence of a buoyancy sub-
range affecting only the smaller scales. Duriﬁg the time after release
interval 150 <t <200 sec, the buoyancy subrange no longer affects glob-
ule growth, and molecular diffusion, d2 ~ t, aloﬁe accounts for the glob-
ule expansion during this periocd. The 150 second interval of buoyancy

subrange diffusion is an appreciable fraction of the period 2ﬂ/wg for




harmonic oscillation of a fluid element displaced from its equilibrium
altitude in a stably stratified atmosphere. The 50 second period of mo-
lecular diffusion corresponds closely to the theoretically predicted time
scale af?TVME of the largest buoyancy subrange eddies. The maximum buoy-
ancy subrange size scale Lb varies with altitude but is approximately 0.8
km between the altitudes of 98 km and the turbopause. This value is pre-
dicted by the requirement that the characteristic buoyancy kinetic energy
per unit mass %-v% mist be less than the observed turbulent kinetic
energy per wiit mass.

Suggested modifications are made for the form of the shear and
energy spectrums of the turbulence. The experimental evidence supports
the validity of these alterations and alsc allows evaluation of some of
the constants which appear in the spectral law formulas. Both the spec-
trum functions and correlation techniques are used to determine the max-
Imim scale LO of the turbulent winds and the vertical scale of the total
winds. The vertical scale of the total winds is found to vary approxi-
mately as the pressure scale height over a wide altitude region. The
maximum vertical scale of the turbulent winds also varies with altitude,
having a value of about 7 km at an altitude of 100 km. The maximim hor-
izontal scale of the turbulent winds at 1C0 km is found to be about 10
km. Thus the strong vertical wind shears present introduce only a slight
anisotropy into the turbulence.

The turbulent mixing length is found to be about O.TS km below the
turbopause and to be rapidly increasing above this altitude. Thus the

mixing length and maximum buoyancy scale are approximately equal in the

region immediately below the turbopause. The viscous cutoff size and
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time scales L* and T*, calculated theoretically, are not inconsistent with
observation. However, these small scales cannot be observed with the res-
olution attainable with present data gathering techniques. Theoretical
relations among the eddy scales Lo’ L* and the dissipation length Ld’ pre-
viously derived for isotropic non-buoyancy turbulence, mist be modified
because of the important bucyancy effects present.

The charactefistic time scale TO of the largést turbulent eddies is
found to be 300 to 330 sec. Thus chemical cloud lifetimes of about 10
minutes allow ample time for observation of most, if not all of the tur-
bulent spectrum. The cbserved value of T is approximately equal to the
period 2ﬂ/ws, where w_ is the observed magnitude of the total wind shear.

The usual Richardson, Townsend and Layzer criteria for the conset
of turbulence are examined and found to be unsuccessful in explaining the
observed turbulence cutoff near 106 km. However, a generalized Richardson
eriterion is derived which does successfully predict turbulence only below
106 kxm. This generalized Richardson criterion is based on the energy
requirement that the characteristic buoyancy kinetic energy per unit mass
%—v% mist be less than the turbulent kinetic energy per unit mass which
can be produced by wind shears.

The Reynolds criterion is also examined. It is found that this
criterion will allow turbulence up to at most only a few kilometers above
the observed 106 km turbopause. However, theoretical uncertainties as
to the proper application of the Reynolds criterion in a free atmosphere
may mean that the only restriction this criterion places on the turbu-

lence is an absolute upper limiting altitude of 120 to 140 km.
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CHAPTER I

ENERGY BALANCE

Introduction

In order to be characterized as turbulence, the motion field must
satisfy certain requirements. Tt must be three dimensional, nonlinear,
diffusive, rotational and dissipative, meéhanical energy being transformed
to internal energy through a cascade of eddies of diminishing size. The

cascade, ending in viscous dissipation of energy from the smallest eddies,

is connected with the nonlinearity, three dimensionality and rotationality

of the field. .The velocity components must be distributed irregularly
and apericdically in time and space.

The diffusive nature of turbulence is responsible for the transport
of properties such as mass, momentum and heat. The transfer rate of the
properties is, in general, greatly increased by the action of the turbu-
lence. Time and length scales of the property-transporting motions dre
usually large compared to intermolecular dimensions and are often as large
as the scales of the distribution of the transported properties. For this
reason, turbulence is a continuum phenomenon.

The fact that turbulence is rotational, in the hydrodynamic sense
of the word, does not mean that the motion of the eddies 1s actually one
of rotation. In fact, such two dimensional rotating motions as vortex
sheets and whirlpools are not to be considered turbulence, accordiﬂg to

the above definition. An eddy is, instead, merely a porticn of the fluid

which moves more or less coherently with respect to the mean motion.




Alternatively, as a more mathematical description, an eddy may be consid-
ered as a component of the Fourier integral expansion of the velocity
function. The expansion is usually made with respect to the wave number
k. The associated eddy size £ for wave number k is just € = k-l.
Photographic tracking of chemical release clouds [Justus et al.,
1964a, 1964b] provides information on the wind profile V(z) over a wide
altitude range. The total winds are méde up of prevailing, periodic tidal
wave, gravity wave and turbulent components. Mean winds obtained from
chemical release tracking provide averages over the cloud lifetime, which
is typically five to 10 minutes. Frequently many protuberances in the
form of nearly spherical globules appear on these clouds below about 106
km altitude. Individual tracking of these globules, or other identifiable
cloud features, yields time varying winds. The intermediate time scale
winds, v, are obtained by subtracting the average wind profile wvelocities

from these time varying winds. Because of the relatively short lifetime

of these clouds, large time scale gravity wave and/or turbulent components
would be considered as part of the mean winds. However, results indicate
that the "intermediate' scales of turbulence observable by chemical re-
lease tracking constitute most, if not all of the larger scales in the
turbulent spectrum.

Several investigators have observed that above some altitude near
105 km molecular diffusion accounts for all of the chemical cloud expan-

sion while below this altitude accelerated diffusion caused by turbulence

takes place. Usually the globular structure of chemical releases exists
only up to an altitude close to this transition point, the turbopause,

where conditions change from turbulent to laminar. However, Cote [1965]




has pecinted out that accelerated diffusion can be observed on sodium
trails which have no globular structure.

There are three possible mechanisms for the production of the
globular structure in chemical releases: (1) A reaction of the release
vehicle or ejection mechanism creates the turbulence and the globular
structure directly. (2) The turbulence is naturally occurring ambient
turbulence and provides an unstable medium in which small fluctuatiéns
in the releasing of the chemical lead to globular structure of the
cloud. {3) The turbulence is ambient in nature and provides the velocity
fluctuations which produce the globules directly.

Comparison of the intensity and duration of the observed turbu-
lence on chemical releases and meteor trails (see Appendix A} rules out
the first of these. Cote's observations rule out the third and support
the second mechanism. The cases in which:globules are not produced in
the turbulent zone are ones in which the cloud chemical was released at
a very uniform rate or in a small concentration. The altitude at which
globules cease to appear on a chemical release cloud is thus in most
cases a good estimate of the turbopause altitude. Observations of the
globu}e cutoff altitude on 21 chemical releases yielded an average value
of 106 km th rms.

The globules appear to have an especially sharp edge on cesium
clouds observed under twilight conditions by their infrared resonance
radiation. However, globular strueture has been observed on several
types of chemical clouds both at twilight and during the night. Chemi-
cal clouds with globular structure have an appearance similar to the

globular structure of cumulus clouds or the mammilated under surface of




cumlonimbus or stratocumulus clouds in the lower atmosphere.

Alfhough the chemical release globules depend on turbulent eddies
for their existence, the globules themselves are not to be identified as
eddies, since the globules are acted on by the eddies and expand by tur-
bulent diffusion.

Even on clouds where the globules appear sharpest, they become
generally smaller with decreasing altitude and in the vicinity of 90 km
cease to have their customary near spherical shape. Below this altitude

the clouds appear generally fuzzy but have no spherical globular structure.

Definitions of the Energy Balance Terms

Since turbulence is dissipative, statistically steady turbulent
motion requires the existence of a continuous external energy source.
IT the air is thermally unstable, the potential energy of the unstable
arrangement can supply the energy for turbulence. 1In a stably strati-
fied region of the atmosphere, such as above the mesopause at about 85
km, wind shears provide the only source of energy for maintaining turbu-
lence. BStable stratification also makes it possible for energy to be
dissipated from the air motions by the effects of bucyancy forces.

For statistically stable turbulence in a stably stratified medium,
the energy balance equation for the turbulent kinetic energy per unit

mass may be written
€ =€ +¢€ , (1)

where es is the rate per unit mass at which kinetic energy is being sup-
plied to the turbulence by wind shears, and eg and € are the rates per

unit mass at which kinetic energy is being dissipated by buoyancy and




viscous forces, respectively.

Tovnsend [1957] gives the relations

6:2 av_i b (2)

and

where g is the acceleration of gravity, T is the mean temperature and @

is the fluctuation in temperature. The temperature fluctuation is the

difference between the temperature of a fluid element and the mean tem-
perature at the altitude of the element. If a fluid element, initially
in temperature equilibrium at a height 2z, is displaced adiabatically to
the altitude z + { , and assumes the ambient pressure, the temperature

fluctuation is given by
aT
o=tz 0 - )= (Z v £, (%)

where C_ is the specific heat at constant pressure. ¥or an ideal gas
g/CP is equivalent to ( jLi}E;> (Mg/R), where Yy is the ratio of spe-
cific heats, M is the molecular weight and R is the universal gas con-
stant. For the altitudes of interest here either expression may be
used without appreciably altering the calculations. The parameter wg’

defined by

w = B ( 9T g
wg -7 ( 2 T ¢ |> 2 (5)




has units of inverse time and is the frequency of harmonic oscillation
[Nawrocki and Papa, 1963] which a fluid element would experience after a
small displacement from its equilibrium altitude.

When a fluid element leaves the level z and carries momentum to
the level z + £ , a fluctuation in velocity of magnitude v is produced.
This horizontal turbulent velocity would be given by

ov

v, = Vx(z + {) - Vx(z)- A §E§ . (6)

Therefore the use of (5) and (6) in equation (3) produces an approximate

relation for‘eg given by

e = u? vxvz . (7)

& & _ﬁ
_X
( Az
Lamb [1945] gives a relation for € in a viscous compressible fluid,

which can be put in the form

avae ov v N2 v, \2
- i 2, _¥yy _ 21 _1i
¢ =21 Z(ij_) + 0 z<ay * dz 3 Eaxi ’ (8)
i cyc

1

where T is the kinematic viscesity and 2 indicates a sum over the full
cyc

cyclic range of components. For an incgmpressible fluid the last term

in (8) would be identically zero. If the turbulence is also isotropic,

it can be shown [Taylor, 1935] that (8) reduces to

Bvx 2 Bvx 2 sz avx
€ = 61] (‘éx—> + (—a?') + 3% W J] (9)




which can be further reduced to

ov 2
. L0 (T x
¢ = 35 (ay> . (10)

Turbulent Diffusion

Cote [1962, 1965] has summarized several theories of turbulent
diffusion. Several relations he discusses can be put in the form
2 vo6-2n 72 41 , (11)
where d is the diameter of the diffusing cloud at time t after its
injection and vy is the rms turbulent velocity. The exponent n in (11)
can take on the values 2,3,4 or 6 depending on the form assumed for the
turbulent energy spectrum or on other assumptions about the nature of
the turbulence. Note that n = 3 in (11) eliminates the dependence on v,
There are at legst three theories which predict ‘l:3 dependence in (11).

One¢ due to Batchelor [1950] is based on Kolmogoroff's similarity prin-

ciple and predicts the specific form

& = 13—6&:*53 . (12)

Lin's theory [1960] of turbulent diffusion predicts

e (13)

where B is a parameter which Lin propcses to be proportional to € through

some universal function of the Reynolds number. Tchen's theory [1961] of

diffusion in turbulent shear flow predicts d2 ~ t2 for high shear fields




and d2 ~ t3 for low shear fields. Tchen's predictions for diffusion in
shear turbulence are based on his earlier derivatiomns [Tchen, 1954] for

the energy spectrum E(k), to be discussed in Chapter II. The predicted

. v,

form for E(k) depends on the magnitude of the shear V' = §§£ ; and the
J

expected diffusion law depends on the form of E(k). For large V', the

predicted forms are E(k) ~ vk and & ~ t°. For smill V', the spec-

tral and diffusion law forms become E(k) ~ k*5/3 and d° ~ t3.

The diffusion theories of Batthelor, Lin and Tchen do not take into

account the effects of buoyancy. Bolgiano [1959] has suggested that the
necessity for including eg in the energy balance equation for a stably
stratified portion of the atmosphere leads to alterations in the energy
spectrum E(k). The expression for eg, given by equation (3), contains
the covariance 5;; of the temperature fluctuation and the vertical tur-
bulent velcecity. A positive wvalue for this covariance indicates that

turbulent kinetic energy is being converted to potential energy‘by the

buoyancy effects associated with the turbulence working against gravity.

Bolgiano suggests that if the Reynolds number (see Chapter IV)is suffi-
ciently large there will be a subrange of wave numbers k over which this
covariance remains positive. This energy extraction in the buoyancy sub-
range meéns that the viscous dissipation € may be significantly less than
the rate of generaticn of turbulent kinetic energy es. The difference in
these terms is €g5 the work done against buoyancy.

Bolgiano suggests that the importance of this energy extraction by
the buoyancy effects means that eg and wg are the important parameters

which determine E(k) in the buoyancy subrange. He predicts the form E(k)
175

~

in this subrange. This alteration in E(k) in the buoyancy subrange




should lead to an associated alteration of the diffusion law. Assuming
that the parameters eg and wg also determine the diffusicn law in the

>

buoyancy subrange, Bolgiano derived a t~ law for this subrange which 1s

given by
2 2
d = ng et , (14)

where the dimensicnless constant P is of order unity.

Therefore if observations of actual turbulent diffusion yield a
time exponent compatible with (11), € can be calculated. However, if a
£

diffusion is observed, this would indicate the existence of a buoy-

ancy subrange with the diffusion law being independent of € .

Experimental Evaluation of the Energy Balance Terms

The turbulent winds v, determined as outlined in the introduction,

may be used in (2) and (7) to determine ¢, and ¢ . The strong vertical
v 3V g
shear components —— and

oz Az

determined from the wind profile. The horizental shear components are

for a given set of wind data are easily

taken to be about 0.05 m/sec/km as indicated by velocity differences
obtained from chemical trails separated by several tens of kilometers
[cf. Rosenberg and Justus, 1965]. Values of wg may be calculated from
1962 U, S. Standard Atmosphere data. By approximating derivatives with
ratios of finite differences, one may also use the turbulent winds in
(8), (9) and {10) to calculate €, again using 1962 U. S. Standard Atmos-
phere data to calculate T . The formmla used for this purpose is

-6 3/2
1 - 1.458 x 107 T (me/sec) , (15)

p (T + 110.4)
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whére T and p are thé atmospheric temperature and density in °k and kg/m3.
Relation {15) yields an unknown amount of uncertainty in 7, but it must
be used since tabulated values are not given above 90 km.

Turbulent wind data from several chemical releases have been ana-
lyzed and, although there is a fairly large scatter in the datfa points,
an exponential function represents the height variation of € very well %or
each of the three cases (8), (9) and (10). Roper [1963] has reported a
rather large seasonal variation in € as determined from meteor trail in-
vestigation. Undoubtedly there is some seasonal variation as well as
diurnal and even small scale spatial variation in € . This could be re-
sponsible for much of the scatter in the calculated ¢ values obtained from
the chemical release data. However, there is not a sufficient amount of
these data for analysis of the variations to have any statistical signif-
icance. An exponential function fit to all of the observed data would
thus represent an appropriate average over the different seasons, times
of day and spatial locations from which the data were obtainea. Figure 1
shows the exponential functions cobtained by a least squares fit of the ¢
data calculated from equations (8), (9) and (10). Each curve shows ¢ to
be increasing more rapidly than the kinematic viscosity T, which is also
shown in Figure 1 for reference.

Globule sizes versus time have been measured for several chemical
releases launched at both morning and evening twilight. Globules that
can be observed early in their lifetimes show an unusual growth behavior.
Figure 2 shows an example of the globule growth curves obtained. The
cagse illustrated is a cesium globule at 97.7 km. The general behaviqr of

globtules exhibiting the ancmalous early growth 1s a very rapid expansion
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during the first 150 * 40 seconds after release, followed by a period of

almost no growth which lasts for 50 * 10 seconds. After the period of

12

slow growth, called the level phase, the globule expansion rate Increases

but the growth does not proceed as rapidly as during times before the

level phase. Although apparent anomalies in globule growth could be pro-

duced by changing sky background or changing camera f/stoﬁs, the observed

level phase is apparently a real effect. This is borne cut by the con-

sistent height variation of the diameter at which the globule growth levels

off, as illustrated in Figure 3. This graph shows that the diameter at-

tained at the time of the level phase is nearly constant between 98 and

106 km but undergoes a fairly rapid variation below and above these

altitudes.

For comparison with turbulent diffusion formulas, the growth curves

are best plotted in the log-log form shown in Figure h, which shows the

same growth curve illustrated in Figure 2. Figure 4 shows an initial ex-

+
pansion according to d2 ~ tT 2

5t

. As determined from all globules observed,

the average initial growth follows a d2 ~ t expansion, indicating that

the initial growth is due to the effect of a buoyancy subrange. The aver-

5

age observed constant of proportionality for d2 ~ 1

diffusion is 0.6 x

ST
10 m?/sec5. However, measurement inaccuracies at small globule diameters

mean that this value is probably accurate only to within about a factor of

three. For the 90 to 105 km range, equation (7) yields approximately

0.35 watts/kg for eg and wz is about 6 x lO_lL sec_2 in this height inter-

val. Therefore the observed globule growth in the earl& phase is

(16)
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with a probable error of a factor of three in the numerical constant.

>

This is better than mere qualitative agreement with the t7 diffusion
equation (14) for a buoyancy subrange. The & growfh occurs only at
small globule sizes because energy balance considerations 1limit the buoy-
ancy subrange to smaell globule scales. This limitation of the buoyancy
subrange to small scales will be discussed more fully in Chapter IIT
which deals with scale sizes.

Figure 3 shows that the maximm size scale affected by the buoy-
ancy subrange is decreasing with decreasing altitude. This accounts for
the -spherical- ghape of the globules in the 90 to 106 km region and the
more fuzzy appearance of the clouds below 90 km. The motions in the buoy-
ancy subrange are somewhat more ordered than those in the larger scale
range. In the 90 to 106 km région the buoyancy subrange can affect the
cloud structure during a comparatively long period of its initial growth’
and can shape the cloud into regular spherical globules. At lower alti-
tudes the buoyancy subrange cannot act on the cloud elements for a suffi-
clent length of time to form spherical globules and the motions of scales
larger than the bucyancy subrange break up the cloud into a fuzzy ap-
pearance.

5

When the t7 growth becomes inoperative the small growth during the

level phase can be accounted for by molecular diffusion alone. For the
globule growth shown in Figure 4 the value of d2 at the cessation of the
t5 expansion is 2.2 x 105 2. At the end of the level phase the value of
d2 is 2.9 x lO5 m?. Since for thislglobule the level phase lasts about
55 seconds, the observed growth during this period would be accounted for

2
by a molecular diffusion coefficient of D = %%E =2 X 102 m?/sec, a




reasonable value for cesium at 98 km.

Since molecular diffusion is important during the level phase
growth, the sharpness of cesium globules compared to those on other chem-
ical clouds may be due to the fact that cesium, the heaviest cloud mate-
rial used, has the smallest molecular diffusion coefficient. However,
cesium must be observed at twilight by its resonance radiation, and the
sharpness of the globulés may e merely a fuunction of the optical density
of the released cloud material.

After the end of the level phase, globules again undergo an accel-
erated power law diffusion. For the globule growth shown in Figure 4 the

L] t L
expansicn follows d2 ~ t2 6*0.3

. Since the exponent is close to three,
the power law for globule growth in this phase was determined by least
squares analysis using the formula |
2 - 16 SN2 n
3
which allows determination of n and € . The numerical factor in tl?) is
taken from (12), since none of the other turbulent diffusion formulas pre-
dicts a specific value for this constant. This "constant" may even vary
with altitude if (13) is applicable, since the Reynolds number varies with
altitude. The average value of the exponent n obtained from many globule
observations is 3.0 * 0.4 rms. Figure 1 shows the best least squares
exponential curve which fits fthe height variation of ¢ determined from
the globule diffusion. Although this method of determining ¢ is independ-
ent of the calculated values of T , this graph also shows a rapid increase

of € with altitude.

17

£, (17)
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From measurements of diffusive growth of turbulent trails Cote
[1965] observes a d2 ~ t2 expansion, in disagreement with the globule

3

diffusion d2 ~ t7 reported here. However, Cote points out that 4iffi-

culties in accounting for changing sky background make it impossible for
his observations to completely rule out d2 ~ t3 diffusion. Cote's
observations are dependent on sky background because they rely on densi-
. tometric determination from the cloud image on film of the shape of the
profile of cloud light emission above that of background. The same sky
background difficulties would admittedly plague the globule measurements
reported here, but, since d2 ~ t3 globule diffusion has been observed
against bofh increasing.and decreasing sky background, the effects of sky
background change seem to be minor. Globule expansion can rarely be meas-
ured beyond diameters of about three km. Therefore an alternate method,
independent of sky background, for measuring large scale diffusion effects
would be most helpful in determining if Cote's d2 ~ t2 result indicates
a transition to a different diffusion law at large scales (as might be
expected from Tehen's theory) or is merely an effect of sky background.
Cne possible method for studying large scale turbulent diffusion would be
by observing the growth with time of the separation distance between pairs
of globules at approximately the same altitude. These measurements would
| be independent of sky background.

Although the agreement between the several estimates of € shown in
Figure 1 seems to be embarassingly poor, Figure 5 shows that it is actually
muich better than the agreement between estimates of € obtained by various

investigaters at lower altitudes. This figure shows a summary by Lettau

[1961] of values of € obtained from diffusion and wind profile observations
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in the altitude range from one cm to 40 km. The uncertainty in € is as
much as three orders of magnitude at some of these lower altitudes. This’
fact plus the uncertainties in 7 and the numerical constant in (17) makes
the agreement in the graphs of Figure 1 seem good indeed. Figure 5 also
shows the variation of the average ¢ determined from the chemical release
data. The observed height variation hetween 90 and 110 km fits well with
the lower altitude data, under the assumption that € continues to decrease
with decreasing altitude, diminishing by approximately an additional three
orders of magnitude from 90 tc 30 km. |

The average € obtained from the four curves in Figure 1 is plotted
in Figure 6. This figure also shéws the expconential curves fit by least
squares to the data points for €_ and € obtained from formulas (2) and
(7). Due to scatter in the es and eg data points, these curves are prob-
ably accurate only to within about a factor of two. To within this limif
of accuracy es = eg_+ € holds for the curves shown over the height range
from 92 to 106 km. The ¢ curve intersects the e_ curve at 106 km and

because ¢ continues to increase rapidly, the energy balance requirement

€< eS means that turbulence cannot be maintained above this altitude.

This 106 km intersection agrees well with the average observed cutoff

altitude for globule formation. The obgserved region below 98 km where
eg > eS is also physically impossible if turbulence 1s to exist there, but
this discrepancy can easily be accounted for within the possible errors in

the ¢ and € curves.
= g
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CHAPTER II

SHEAR AND ENERGY SPECTRUMS

Previous Energy Spectrum Theories

According to the theory of homogeneous turbulence developed by
Kolmogoroff [1941 B, 19ﬁ1 b] the turbulent field may be characterized by
three scale ranges. TFor eddy scale £ the three scale ranges, in terms of
k = §-l, are: (1) the large scale fluctuations 0 Sk = k , which carry
the turbulent energy extracted from the mean flow gt a rate per unit mass
€, (2) the isotropic inertial subrange which has random statistical prop-
erties and transfers energy from larger to smaller scales with negligible
energy loss and (3) the viscous dissipation region k* < k < » where the
kinetic energy of the smaller eddies is dissipated by viscous forces at
a rate per unit mass €. Since no buoyancy fecrces are present in this
theory, the energy balance equation is just es = ¢ . Figure 7(a) shows
schematically the energy spectrum E(k), the energy per unit mass for wave
nuwbers between k and k + dk. In the inertial subregion E is a function
of & and k according to the Keolmogoroff theory.

Bolgiano [1959] has proposed a theory which accounts for buoyancy

effects and divides the energy spectrum into four subranges as shown in

Figure 7(b). The large scale range 0 S k < k_ and the viscous dissipation
Tange k* S k < @ remain as before. The region between ko and k* is divided
into a buoyancy subrange k_ <k < ky in which E = E(eg,k) and the usual
inertial subrange only in the range kB Sk = k* in which E = E(e , k).

The energy balancy equation is eS = eg + € , vhere eg is the rate per unit
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mass at which kinetic energy is removed from the turbulence by the buoyancy
action.

The results of Chapter I, however, indicate that the buoyancy'sub-
range affects only the small scale (hence large k) sizeg, and that turbu-
lence is observed at larger scales (smaller k) than those affected by buoy-
ancy. Hence the actusl energy spectrum must be something like the one
shown schematically in Figure 7(c), with the inertial subrange in the re-
gion k <k < k_and the buoyancy subrange in the region k <k < k. Ex-
perimental determination of the smallest huoyancy scale kB shows 1t to be
approximately equal to k*. It is an energy balance requirement which de-
mands the upper scale cutoff of the buoyancy subrange, as will be discussed
in the following chapter. Data are presented in this chapter which support
the assumption that E = E(es, k) in the inertial subrange and E = E(eg, k)
in the buoyancy subrange with E(eg, k) being the form predicted by Bolgiano
and E(es, k) coming from existing non-buoyancy theories but obtained by

substitution of e for ¢ in the functions E(e, k) which they predict.

Definitions of the Spectrum Functions

The spectrum theories discussed in the previous section are actu-
ally applicable only for non-shear turbulence or for turbulence in which
wind shears do not impose a significant anisotropy on the motion field.

av av
As mentioned in Chapter I, there are strong vertical shears EEE and 3

oz
but the horizontal shears are small in magnitude." Thus the turbulence
in the upper atmosphere could be anisotropic in the vertical direction.
Evidence presented later in this chapter indicates, however, that these

shears do not introduce a drastic anisotropy. Therefore it seems reasona-

ble that the concepts of division of the energy spectrum into the subranges
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shown in Figure 7{c) is reasonable, but that the actual form of the energy
spectrum E(k) should come from shear turbulence theory. Tchen [1954, 1961]
has formulated such a theory.

Two important spectrums describing turbulent shear flow are the
energy spectrum E(k), previously defined, and the shear spectrum F(k),
which has a similar definition with respect to the shear across eddies of
wave number between X and k + dk. Both E(k) and F(k) have dimensions of
(length)3/(time)2.

If one uses Tchen's theory and substitutes € for ¢ , the spectrums
E(x) and F(k) for low shear fields in the inertial subrange of shear tur-

bulence are given by
B(k) = @ e§/3 k'5/3 (18)
and
P =8 3T (19)

where @ is a dimensionless constant of order unity and B is a parameter
which depends on the mean flow and has units of frequency (or shear).

Equation (18) is the same form predicted by Kolmogoroff's theory,
except for the fact that € = €, in that theory but € # es for shear tur-
bulence with buoyancy effects. Relation (18) is also justified by the
fact that Tchen's theory for low shear fields predicts the d2“~ t3 diffu-
sicn observed from globule expansion.

For upper atmospheric turbulence it is difficult to measure the
spectrums E{k) and F(k) directly. However, the methods developed by

Blamont and de Jager [1961] and extended by Zimmerman [1962] allow infor-
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mation about the spectrums to be obtained from the spectrum functions E(k)

and F(k), defined by

=}

[ Bx) ax (20)

k

B(k)

i}

and

o

j F(k) dk . (21)
K

F(k)

These are essentially the spectrums E and F averaged cver all eddy scales
up to & = khl. Neglecting the effects of the change in E(k) for k > L

one may substitute (18) and (19) into (20) and (21), obtaining

E{k) = a e§/3 kjm x5/3 dk = ga e§/3 x2/3 (22)
- and
F(k) = B ei'/‘:j kr 3w - 73;6 e'-SL/3 K3 (23)
In terms of the eddy scale € , these relations would be
Bg) - 2a /383 (24)
and
RE) - 233 . - (25)

Experimentally, the functions Eand F may be evaluated by averages
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over the velocity field. The observed spectrum functions EO and F0 are

I

2
lolz) - vz + §)] > (26)

F(8)

and

E(8) = #(2) - Pz + 8>, (27)

where the averages are taken over some range of altitude z.
Another spectrum function of importance is the motion spectrum
functicn, which comes from homogeneous non-shear turbulence theory and 1s

defined similarly to (26) by the relation

£5) - KIv(x) - vz + > (28)

where the average is taken over the vector position r, & is a vector dis-
placement from r, and & 1s the magnitude of the vector 8. Batchelor [1947]

has shown that this function is given by

2
8 .
(&) = ye§/3 52/3 l+35% A ye§/3 52/3 s (29)

where ¥ is a dimensionless ccnstant of order unity and 61 is the component
of 6 in the direction of the turbulent wind component v. Again €, has been
substituted for. ¢ in the original formulas, but for homegeneous non-shear
turbulence with no buoyancy, to which the original theory applies, € = ¢ .
Experimental evidence presented in the following sections justifies the

use of ¢_ in (29) and the other spectrum functioms.
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Experimental Evaluation of the Spectrum Functions

Photographic tracking of chemical trails provides information on
the wind profile over an extensive altitude range. The total wind profile
contains prevailing, periodic tidal wave and gravity wave winds, called
collectlvely the mean winds, plus the small and possibly large scale fTur-
bulent components. An attempt tc eliminate the mean winds can be made by
subtracting an erbitrary function of altitude, resulting in a profile of
residual winds.

Total wind profile data were available from approximately 30 chem-
ical releases covering sufficient altitude to employ this procedure. Data
from each of these were divided into two altitude regionms, 90 € z < 110 km
and 110 €z < 140 km. A least squares fit parabola in each altitude range
was subtracted from the north-south and east-west wind compenents to obtain
the residual winds. The shear and energy spectrum functions for both total
winds and residval winds were then obtained from (26) and (27). Data were
also available from twoe releases in the 70 to 90 km altitude region, but
these have not been included since the resulits were not statistically
significant.

Figures 8 and 9 show typical shear and energy spectrum functions
of the residual winds in the lower altitude range, plotted on log-log
scale for easy determination of the exponent of § . The quantity graphed
in Figure 9 is just the velocity difference part of equation (27), omitting
the factor %3 Both graphs show exponents in the small § region which are
in reasonable agreement with the ones expected from equations (24) and
(25).

The observed functions Eo and Fo of (26) and (27) are not, however,




Shear spectrum function Fbi@), m2/sec2

10,000
| ) | | I
5,000 L
Maximum
at 6 km
2,000 | ]
1 sOOO [ -
500 L -
200 L _
100 ~
Shear spectrum function
of residual winds
50 (N-S component) |
Release 12-3-62 22:45 CST
90.5 - 109.5 km
20 L —
10 ] | | I |
0.1 0.2 0.5 1 2 5 10
Vertical displacement &, km
Figure 8, Sample Shear Spectrum Function of the North-South

Component of the Residual Winds.

31




&y, mzlsec.2

n

2E

2 x Energy spectrum function

1000
| I I I 1
500 |
200 |-
100 j—
2 x Energy spectrum function
of residual winds
50 b= (E-W component) ]
Release 10-25-62 05:21 CST
97.5 - 108.0 km
20 }— —
o | | | | |
0.1 0.2 0.5 1 2 5 10

Yertical displacement £, km

Figure 9. Sample Energy Spectrum Function (Times 2) for the
Fast-West Component of the Residual Winds.

32




33

identical with the theoretical relations (2k} and (25)}. Since the method

of obtaining the residual winds leaves some contribution from the mean

wind profile, Eo and fo are related to E and F by

E (k) - @ B(K) (30) |

and

F (k) = o, F(x) (31)

where P and P, are dimensionless factors required to compensate for the
contributions from the mean winds, and which increase as this contribution |
becomes larger.

Tables 1 and 2 show the results of averaging all of the exponents

of the shear and energy spectrum functions of both total and residual winds
in the two altitude regions. Averages were taken of data from all releases
as well as separate averages for morning twilight and night releaszes.

The observed average globule cutoff altitude was 106 km for the
releases studied. Thus the 90 to 110 km region embraces the turbulent
zone while the 110 to 140 km range lies above the turbulent zone.

Tables 1 and 2 show that above the turbulent zone the average expo-
nents of both shear and energy spectrum functions are higher than those
expected from equaticns (24) and (25). In the turbulent region the expo-
nents of both shear and energy spectrum functions are in better agreement
with (24) and (25), but the values are still slightly high. The exponents
obtained from the residual winds come closer to the expected values than
do those of the total winds. For the total winds, the nightiime exponents

of both Eé and fa tend to be higher than the morning twilight values.

P — e i U A %
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Table 1. Average Shear Spectyum Function Exponents

Total Winds Residual Winds

Height

Range All . Twilight Night All Twilight Night

{km) Releases Releases Releases Releases Releases Releases
~ 90-110 1.49 1.25 1.51 1.h47 1.50 1.k3
~110-140 1.74 1.75 1.74 1.55 1.59 1.51

Table 2. Average Energy Spectrum Function Exponents

Height Total Winds Regidual Winds

Range A1l Twilight Night All Twilight HNight

(km) Releases Releases Releases Releases Releases Releases
~ 90-110 0.77 0.70 0.79 0.70 0.73 0.66

~110~1540 0.84 0.83 0.85 0.78 0.82 0.75
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For the residual winds, the twilight exponents are lower than the values
for nighttime, the twilight turbulent zone exponent being approximately
equal to the nighttime value above the turbulent zone.

For chemical releases with many identifiable features, separate
photographic tracking of these features provides several wind velocities
in each kilometer section of altitude. The motion spectrum function £(6§)
can be obtained by averaging velocity differences according to (28) with
& representing displacements which remain within a cne kilometer altitude
range of the position r, of equation (28). By thus confining the averages
to essentially a horizontal plane, the effects of the vertical shear can
be eliminated and the non-shear turbulent motion spectrum results. This
procedure has been applied tc 13 chemical releases in the approximate
height range 90 to 110 km. The resultant average motion spectrum function

for each wind compconent is plotted on log-log scale in Figure 10. A super-

~imposed line of slope 2/3 is seen to fit the data well for horizeontal dis-

placements of seven km or less. Thus equation (29) accurately describes

the horizontal non-shear turbulent motion sgpectrum function.

The Buoyancy Subrange

Acceording to the buoyancy theory of Bolgiano [1959], buoyancy forces
act to oppese vertical motions and remove kinetic energy from the turbu-
lence over the wave number range ko Sk < kB. The predicted energy spec-

trum in this region is

Ek)}) = @ ez/s wg/S k'11/5 s (32)

where @ is a dimensionless constant and wg was defined in Chapter I. The
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eddy scale LB = kél above which the buoyancy effects become Important in

the Bolgianc theory is given by the relation
e ;
Ly = 37375 - (33)

If values of € and eg are teken from Figure 6, and the value 2.4 x 10-2

sec ~ is used fbr-wg, the calculated values for LB at heights of 95, 100
and 105 km are abouﬁ 1, 10 and 100 m, respectively. Since the scale of
the smallest eddies L*'z k%-l is about 20 to 40 m in this height range,
there is little or no portion of the spectrum which could form an inertial
subrange in the region kB £k = k*. Therefore, the assumption that the
buoyancy subrange occupies the éntire wave number range kb =k = k* is
Justified.

Roper [1963] has proposed a buoyancy subrange which, unlike the
one predicted by Bolgiano, affects only the small scale eddies with wave
numbers in the range kb £k < k* as indicated in Figure 7(c). The largest
buoyancy scale Lb = k;l is determined by requiring that in the altitude
range over which buoyancy effects are important (possibly only the 90 to
110 km region), the buoyancy kinetic energy per unit mass,%i;g u@-must be
less than or approximately equal to the turbulent kinetic energy per unit
mass %ve. Roper's data, obtained from meteor trail wind analysis, indicate
that Lb m 0.7 kme Figure 3 shows that this value is in good ggreement‘with
the observed largest buoyancy scale in the height region 98 to 106 km, as
determined from glcobule growth studies. Since the t5 bucyancy subrange

diffusion discussed in Chapter I agrees with Bolgiano's theory, it appears

that this theory adequately describes the buoyancy effects if the energy
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balance large scale cutoff is included. Therefore the Bolgiano energy
spectrum (32) presumably applies to the observed buoyancy subrange.

Since the energy spectrum is modified for small scales by the ex-
istence of the buoyancy subrange, the observed energy spectrum function
E&(g) should also be modified for £ % 0.7 km. However, this effect was
undoubtedly masked by the method used for obtaining EQ(E) for £ < 1 km.
These values were determined from interpolation between wind profile data
points which were spaced not less than one km apart. Roper [1963] reports
that sfectrum analysis of turbulent winds obtained from meteor tracking
does show anomalies in the scale range € = 0.7 km. The bucyancy effects
may also be a contributing factor to the slightly high exponents observed
for-Eé and FE, since substitution of (32) into (20) would yield E(E) ~ 56/5

for € in the buoyancy subrange, a higher exponent power law than (24).

BEvaluation of Constants in the Spectrum Functicons

The values of the constants O and Yy in the energy spectrum E(k)
and the motion spectrum function f(&§) may be evaluated by a refined pro-
cedure similar to one developed by Roper [1963]. The turbulence power €

is given by

e = 27 Imke E(k) dk . (34)
0

Since the integral is dominated by the inertial and buoyancy subrange

contributions, this is approximately

*

_ 2/3 % 1/3 2/5 L/s ko
e =2N0Q €, jk k dk + 2N 8 eg wg f k dk. (35)
(o]

kb
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At k1Q the inertial subrange energy spectrum (18) must equal the buoyancy

subrange energy spectrum (32). This implies that

8
0 = a G:S k-b/lB ( 6)
) e > w > 3

and that the buocyancy subrénge energy spectrum {(32) may be written as
2 8/15 -11
B(k) = a /3 kb/ 515 (37)

The use of this result in (35), and the performance of the integration
produces an equation which has & as the only unknown. Neglecting terms

*
not containing k causes only five per cent error or less. The resultant

equation, solved for & , is

o M5 L2/15
- /5 2/3 7
5 1777 &

04

(38)

where the well known relation k = (e/ﬂ3)% has been used. If values of
L, € and e are obtained from Figures 3 and 6, and 1962 U. S. Standard
Atmosphere data are used to evaluate T, equation (38) yields values of 0.6
and 1.6 for @ at altitudes of 100 and 105 km, respectively.

Equation (38) can be used in {36) to produce the simpler relation

for 8 given by

5 = %-( ;rszzﬁrf>2/5 , (39)

g g

which yields values of 0.08, 0.3 and 0.8 at altitudes of 95, 100 and
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1k

Lo

105 km, respectively.

The constant y in equation (29} for the motion spectrum function
can be evaluated from Figure 10 by taking 100 km as the representative
altitude, hence es = 0.37 m?/sec3. The resultant value for v is 1.5.

The turbulent motion spectrum function f(§) may be interpreted as
the horizontal equivalent of the wvertical energy spectrum function EO(§).
Thus comparison of equations (24) and (29) shows that vy = g & . Since’

Y = 1.5, this implies & = 1.0, in good agreement with the aversge value
of ¢ determined from equation (38).
The maximum in f(4) in Figure 10 indicates a horizontal scale of

10 km for the turbulent winds. Previously [Greenhow and Neufeld, 1959a,

1959b, 1940] the horizontal scale of the turbulent winds has been estimated

- as 200 km. However, Hines [1960] later attributed this horizontal scale

to the gravity wave component of the total winds. The reason why this max-
imum in £(8) implies a 10 km scale for the turbulent winds is discussed in
the following section.

Equating the observed maximm in £{§) (= 330 - /sece) with %Ui, the
kinetic energy per unit mass of the_largest eddies, implies that Uo = 26
m/sec. The vertical scale at 100 km is approximately seven km, indicating
only slight anisotropy of the inertial subrange due to shear influence. If
the largest eddy scaie LO is taken as seven km instead of 10, evaluation
of £{8) at 6§ = 7 km implies Uo = 23‘m/sec. Presumably the most appropriate
values for Lo and UO are somevhere between the limits seven to 10 km and
23 to 26 m/sec.

If the value & = 1.0 is used in equation (24), the parameter o, of

equation {30) can be evaluated from the observed energy spectrum function
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values Eo at some displacement, say cne km. The relation for P is then

2 Eé(l km)

40
] 3(1000)2/3 e§/3 (1)

U, can also be estimated by taking L = 7 km and requiring EO(LO) = wl(%U§L

as implied by equation (59) of Chapter III. U, is thus given by

U = ( E.?éEZ.ETl:)é . (41)

o} (Pl

Table 3 shows the resultant values for Py and Ué at several alti-
tudes. The Py values are seen to decrease with increasing altitude. This
would be expected since the polynomial fitting procedure used to obtain
residual winds should be better for more nearly "monochromatic' upper alti-
tude winds. The values of Uo in Table 3, although agreeing fairly well
with the previocus estimates, are consistently low. The UO values in Table
3 could be reconciled with the estimate UO = 25 m/sec by either of the not
unreascnable cheoices ¢ = 1.5 or € increased by a factor of 1.8. Either
of these alterations would decrease wl to about two-thirds the values shown

in Table 3.

The Spectrum Functions Related to Scale Size

Tehen [1954] has shown theoretically that for high shear fields both
E(k) and F(k) are proportional to K™Y, Thus for high shear fields the re-

lations for E(E) and F(E) would become

E(§) -~ n(1/%) (42)

and




Teble 3. Values of ¢, and U_Determined from Eé(g)

Height 2 Eé(l km) 2 E§(7 km) Py U,
(km) (nf [sec®) (n /sec®) (m/sec)
90 749 1920 6.0 18
95 730 2100 5.2 20
100 698 1540 h.5 19
105 649 1hoo 3.8 19
110 558 1180 3.0 20
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F(g) ~ 1n(1/8) (43)

instead of the low shear relations (24) and (25).

The observed shear spectrum function i;(g) typically has a maximum
similar to the maximm at € = 6 km seen in Figure 8. In the 90 to 110 km
region the average £ at maximum is seven km. Zimmerman [1962] has sug-
gested that this maximum may represent the transition point from low shear
isoctropic turbulence to high shear field anisotropic shear turbulence, the
shear spectrum function changing from the form in equation (25) to that
given in (43). If this is the case, the d° ~ t3 observed on globules at
small scales should, according to Tchents diffusion theory [1961], undergo
g8 transition to d2 ~ te at this scale size, in agreement with Cote's [1965]
observations. However, Blamont and de Jager [1961] proposed that the max-
imum in fo corresponds to the vertical correlation distance of the motion
field.

It is instructive to consider a hypothetical velocity profile v({) =
C sin({), where C is a constant amplitude and { is an appropriate nondi-

mensional altitude. For this case, the shear spectrum function would be

2 21
= C
P80 = & J;

[sin(C) - sin(C + 8)1° ag

® [1 - cos(62)] . (k)

If this relation is plotted on log-log'scale,rthe resultant curve is qual-
itatively similar to the curve for Fg in Figure 8. A maximum occurs at
8 = m (that is, at one half the wave length), but the F; of (44) is pro-

portional to (GQ)E'O in the small 6{ region.
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The‘actual wind profiles (either total or residuzl) contain compo-
nents of more than one wave length, but 1t seems reasonable to assume that
the shear spectrum function maximum should still be associated with the
scale of the predominant wave length {or wave lengths) of the components.
Thig conclusion .is supported by the fact that a similar maximum at 6 =
10 km occurs in the hérizontal motion spectrum function £(8) in Figure 10.
This indiecates a horizontal scale for the turbuleénce of about 10 km al-
though there is no high shear field which can be associated with ;he hori-
zontal displaceﬁents. The shear and motion spectrum scales will be dis-
cussed more thoroughly.in the next chapter. The fact that the EO(E) curves
do not genmerally have a well defined maximum like that of the fo(g) curves,
and hence show no transition from relation (24) to (42), also supports the
conclusion that the Fo(g) and f{§) maximums are to be associated with a

length scale of the motion.
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CHAPTER IIT
CHARACTERISTIC SCALES OF THE MOTION

Definitlons of the Length Scales

The characteristic time and length scales of the turbulent eddies

are Important parameters of the turbulent velocity field. The chemical

" release method provides two means of determining these scales: (1) direct

observaticn of the globules or structure of the chemical clouds in the tur-
bulence and (2) determination of the scales by analysis of the wind veloc-
ities and fluctuaticms.

Two important chaeracteristic length scales are Lo’ the scale of the
largest, energy bearing eddies (wave number ko) and L*, the scale of the
smallest, energy dissipating eddies (wave number k*).

Vertical Autocorrelation Scale

The vertical autocorrelation coefficient G(éz) for the total wind

profile V(z) is defined as

<v(z) V(z + 82)>
6(82) = " 1 (45)
{( [v(2) P> [v(z + Bz)]2>}§

Wﬁere averages are taken over a range of altitudes z. Relation (45) is
appropriate for wind profiles V(z) for which the average over altitude V
is zero. If V is not zero than V(z) - V must be substituted for V(z)
throughout this formule. To see how G. is related to a length scale of

the motion, consider a hypothetical wind profile glven by V(Z) = C sin(L),
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where ¢ is a constant amplitude and { is an appropriate nondimensional

altitude. For this "monochromatic" profile G(%{) would be

a2
cej sin(¢) sin(C + 6¢) aC

G(sg) = 5 = cos(8L) . (46)
cej; sino(¢) ac

Thus G = 1,at 5 = 0 and G = O at 8{ = m/2, that is at one quarter wave
length. An actual wind profile is made up from components of many wave
lengths but a general cosine-like dependence is still observed for G(8z).
The value of 8z at which G(6z) first attains the value zerc is called the
vertical autocorrelatién scale, Lv'

Shear and Motion Spectrum Scales

The observed shear spectrum function Fo(g) and the motion spectrum
function £(8) were defined in Chapter II, where € is a vertical displace-
ment and 8 is a horizontal displacement. The shear and motion spectrum

scales, L and L, are defined as the values of § and 6§ at vhich F;(E) and

S5
f£(6) attain a maximm value. It was shown in Chapter II that for a "mono-
chromatic" velocity profile this maximum would occur at § or § equal to
one half the wave length. Thus, for a "monochromatic" wvelocity profile,
the vertical shear spectrum scale should be twice the vertical autocorre-

lation scale.

Mixing Length Scale

An analogy between random molecular and turbulent motions introduces
the concept of mixing length. According to the mixing length idea of tur-

bulent motion, eddies in fully developed turbulence transport momentum from
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one level cof the flow to another. The transport of momentum from the level
z to the level z + Lm produces a velocity fluctuation v in the mean veloc-

ity V according to the relaticn
v = V(z + Lm) - V(z) ~Lo— (47)

where Lm is the mixing length. Thus the magnitude of the mixing length

is given approximately by

Lo (18)

where v is the magnitude of the observed turbulent velocity.

Viscous Cutoff Scales

Standard theories of homogeneous turbulence provide a method of
evaluating the length and time scales of the smallest eddies, those which
dissipate their kinetic energy by viscous action. The length scale of

these eddies is given by
3 \&
*
L = ( %}-) 5 (49)
and the time scale by

'r* = (%)é s (50)

vhere T is the kinematic viscosity of the atmosphere and e i1s the rate

per unit mass at which energy is dissipated by viscous forces.
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Spatial Correlation Scales

The one dimensiconal correlation ceefficient of the turbulent winds

is defined by

S e s>
T R B « 9>

(51)

where the averagés are taken over positicns x, and § is a spatial displace-
ment. There are actually two pertinent one dimensional correlation coef-

ficients gi(g)‘and g (€);, the longitudinal and transverse corrslations,

2

where § is respectively parallel and perpendicular to the component v which

ig being correlated. The scale of the largest, energy bearing eddies is
given bty the integral scale of these correlation coefficients. The de-

fining equations are

L= 2 g (g) a8 (52)
o

[>+]

L, = f g,(8) dE . (53)

o]

Prom standard homogeneous turbulence theory [see Nawrocki and Papa, 1963]

it can be shown that, to second order, gl and g_ are given by

2
g

g, (8) = 1- i— (54)

ano

and
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no

(8 = 1.2, | (55)

L

JSTRNAY)

where Ld is the dissipation length parameter defined by

IR

*
is a scale larger than L and smaller than Lo' It corresponds

(56)

La

to eddies which contain a negligibkle portion of the total energy and are
regponsible for a negligible part of the total dissipation of energy.
v

X . . _ 2
55;) from equation 10 of Chapter I, and using Ui = 3<:vx;>

allows equation (56) to be written as

Solving for

Ld = = v ) (57)

Frequently the symbol UO is used for the rms velocity \ﬁivx > . In this
ﬁotétion equation (57) would have a numerical facteor of 15 instead of 5.
Here, however, Ub refers to the total turbulent velccity and not merely
the x component. For isotropic turbulence <vX2> = <vy2> = £ v22> .
Hence, the approximate relation er = 3<<vx2>. may be used to obtain (57)
in the present nctation.

Since the total turbulent kinetic energy per unit mass pE is pro-

ap

poertional to Uo’ and since the rate ?ﬁ% at which this kinetic energy is

convertéd to internal energy by viscous forces is proportional to € , then
equation (57) requires the fractional rate of energy dissipation j% dpE

E dat
to satisfy the relation
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1 %
dt

. (58)
Pr '

~

AN

2
Ly
Relation (58) justifies the name dissipation'lengthrparameter for Lj-

Relationships Among the Eddy Sealesg

*

The three eddy scales L , Ld and LO are not entirely independent
of one another, and relationships among these scales can be derived. 3By
integrating the energy spectrum E(k) one can obtain the kinetic energy

per unit mass of the energy hearing eddies, that is

By =] B0 @~ EE) (59)

Use of the form for E(k) given by (18) and (32) and evaluation of the
*
integral in (59) shows that to a good approximation the terms in k and

k_b can be neglected. This lezds to the approximate result

¥ - daf3e2A (60)

Substituting LO for k;l and solving for ss yields the relation

"o
‘&
)
Nt

e - (3a)73°

=]

O

One of the formulas of standard turbulence theory is
Uo
I.-_ j) (62)

where A is a dimensionless constant of order unity. If the value < =1
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is used as an average of those cbtained in Chapter II, relation (61) im="
plies that A = 0.2.
If the relation for Lg given by (57) is combined with (61), this

produces the equation relating Ld and Lo’ given by

2
d

TT:— = 5 (3 ozﬁ/E(%)(i_B) . (63)

o}

If ¢, obtained from equation (57), is also substituted into (49), this pro-

duces the relationship between L* and L

4 given by
e 1 : (65)
Ls S5 U

Equations (63) and (64) may be combined to produce a relationship among

all three length scales, as given by

L3
*2 ( ¢ > d
2 (= . (65)
s {15 c>c)3/2 L,
This corresponds to the relation
\ 3
L
2 . —94 (66)
10 4/ 15 LO

derived by Townsend [1956] for isotropic homogeneous turbulence with no

bucyancy subrange.
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The Buoyancy Subrange Scale

Roper [1963] has predicted a buoyancy subrange which becomes most
important when the buoyancy kinetic energy per unit mass is of the same
magnitude as the turbulent kinetic energy per unit mass. The buoyancy

kinetic energy per unit mass 1is, as derived in Appendix B,

o

2 2
L, wg P (67)

R
Dfl
I

£l

where Lb is the characteristic largest scale of the buoyancy subrange,
and wg, as defined in Chapter I, is the frequency at which a fluid element

would oscillate when displaced from its equilibrium altitude. Since % v

b
must be less than, or at most approximately equal to the observed turbu-

2
lent kinetic energy per unit mess 3 v, it follows that

. < _ME:;X_ (68)

where Vv 15 the average observed turbulent velocify. .The éddies of size
less than Lb are affected by the Roper buoyancy subrange. Over the height
range from 100 to 110 km w, is approximately 2.5 x 1072 gec™t. Thus, use
of the observed value v = 15 m/sec in relation (69) yielas a value of
about 0.8 km for Lb' This value 1s in good agreement with the observed
Lb values in Figure 3 for the altitude region from 98 km to the turbopause

at 106 km.

Time Scales
The time correlation coefficient of the turbulent wind component

v is defined as




53

G(6t) = () vt + 86)>
[ P> (s + 60) P}

; (69)

and the time.scale T of the turbulent winds is the first value 6t = T at
which g(T) = 0. If an eddy of size scale Le has a characteristic velocity

Voo then its time scale T is given approximately by

L = v_T . (70)

Experimental Observations

The total winds are composed of preveiling, 24 hour and shorter
period tidal components, gravity wave and turbulent components. Greenhow
and Neufeld [19593, 1959b, 1960] report large scale anisotropic turbulence
with vertical scalelks6 km, horizontal scale ~ 200 km and time scale =~ 100
min. There is some doubt (see Appendix A) as to whether the motions of
this scale contain true turbulent components. Gravity wave theory [Hines,
1960 ] apparently accounts for these observed scales satisfactorily. The
conclusion of Chapter II that near 100 km the vertical and horizontal
scales of the\turbulence are about 7 and 10 km supports the gravity wave
explanation for the 20C km horizontal scale observed by Greenhow and
Neufeld.

The vertical scale of the total winds and large scale non-tidal
components may be calculated by using the total and residval winds in the
vertical autocorrelation formula (45). The wind data were divided into
overlapping altitude segments of 20 km and the vertical scale was calcu-
lated at five km intervals. Figure 11 shows the average results obtained

from 18 chemical release profiles. The solid curve shows the vertical
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autocorrelation scale of the total winds in the altitude range from 80 to
160 km. Total wind scales above 140 km were estimated by extrapclation
of the vertical autccorrelation curves to their zerc point and may be
somewhat in error. Two values of vertical scales obtained by Webb [1964]
at lower altitudes indicate continuity of the vertical scale of the totfal
winds between lower and upper altitudes with an exponential increase in
the lower region. From 80 to 140 kxm the vertical autocorrelation scale

of the total winds is seen tc follow closely the variation of the pressure
scale height, as suggested by Zimmermaﬁ L1964]. fThe calculated vertiecal
autocorrelation seale of the residual winds is also shown in Figure 11.

Figure 12 shows the calculated shear spectrum scale for both total
and residual winds for altitudes up to 150 km. The shear spectrum seale
6f the total winds is also seen to follow the wvaristicn of the scale height
in the region 80 to 125 km. Table 4 shows the observed ratio between the
shear spectrum scale and the vertical autocorrelation scale. Bélow 100 km
this ratio is close to unity. Above 100 km this ratic is approximately
two, as expected for a "monochromatic” wind profile.

The facts that the winds below the turbopause are distinctly mul-
tiple wave length forms and that the observed spectrum functions EO(E) and
Fé(g) agree with turbulence theory predictions mean that in this height
region the vertical scale of the residual winds is virtually identical to
the vertical scale of the turbulence.

The turbulent winds may be obtained by individual tracking of glob-
ules or other identifiable features on the chemical release clouds. ﬁsing
these turbulent velocities and vertical shears obtained from total wind

profiles, one may use equation (L48) to calculate the mixing length.
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Table 4. Ratio of Shear Spectrum Scale. to Vertical
Autocorrelation Scale for Total and Residual Winds

Height Total Winds Residual Winds

(km)

80 1.0C -
85 1.07 1.23
90 ¢.98 1.35
95 1.02 1.27
100 1.68 2.15
105 1.36 1.77
110 1.4 1.96
115 1.49 2.02
120 - 1.84
125 - 1.77
130 - 1.64
135 - 1.56
140 - 1.60
145 - 1.71
150 - 1.86
155 - 1.75
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Figure 13 shows the calculated mixing length in the height region from 92
to 111 km. It is seen from Figure 13 that the mixing length oscillates
about a constant value of approximately 0.75 km uﬁ to the turbopause region
and then increases rapidly above that altitude. Thus the mixing length and
the largest buoyancy subrange scale Lb are about equal in the height region
immediately below the turbopausei

The viscous cutoff scales can be estimated from equations (49) and
(50) by using data for € obtained from Figure 6. Table 5 lists some values

* % *
for L and T calculated in this manner and v , the characteristic velocity

of the smallest eddies, as determined by equation (70). Size and time

scales, as wellras velocity fluctuations of this magnitude zre not observ-
able with present- technigues of chemical release observation. The smallest
globules observed on the chemical releases studied for this report were
about 200 m in diameter. Smaller glcbules could not bhe resolved with the
short (7 inch) focal length cameras used. However, Blamont and de Jager
[1961] have reported observations of globules as small as 90 m in diameter
using higher resclution photography.

Use of the time varying winds over the lifetime of the chemical re-
lease to obtain turbulent velocities limits the observations to the middle
portion of thelturbulent spectrum. The smallest scale wind motions are
excluded because of the finite time intervals (usually 15 or 30 seconds)
between successive cloud position determinatiens. Any very large scale
turbulent velocity fluctuations which may exist would bhe excluded because
of the short uszble lifetime of the chemical clouds (usually not more than
about 10 min). However, it appears that most, if not all, of the larger

scale turbulent fluctuations can be observed in this time period. For a
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largest turbulence scale LO = 7 to 10 km with characteristic wvelocity 23
to 26 m/sec, as indicated in Chapter II, the time scale of the largest
eddies would be 30C to 400 sec. In this case cloud observations over 10
minutes or longer would allow ample time for measurements of the largest
eddies.

Figures 14 and 15 show two presentations of the observed turbulent
velocity gpectrum. Figure 14 shows the fraction of the observed turbulent
velocities with magnitudes between one m/sec limits versus velccity from
0 to 50 m/sec. Figure 15 éhows the fraction of ¢bserved turbulent wveloc-
ities greater than a given vélocit& v, versus v from O to 50 m/sec. The
appearance of the graph in Figure 14 below the maximum at a velocity of
about eight m/sec is affected by the loss of small scale resolution and
by velocity errors in the technique used for measuring the turbulent winds.

The turbulent velocities can be used in (51) to calculate the spa-
tial correlation function. An approximation to the longitudinal correla-
tion coefficient g, can be made by considering north-south velocity cor-
relations between points separated by less than two km in both east-west
and vertical directions, and similarly for east-west wind components using
points separated by less than two km in both north-south and vertical di-
rections. -Figure 16 shows the average results for gl(ns) and gl(ew) versus
the horizontal separation distance r. The correlation curves of Figure 16
do not have the standard form for a longitudinal corfelation coefficient
in isotropic turbulence. There is a similarity, however, with the form
given by Townsend [1956] for isotropic turbulence consisting of eddies of
only two distinet sizes. The rapid decorrelation in the region r < 2 km

shown in Figure 16 may be a result of the buoyancy subrange influence at
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small scales or, more probably, the result of limited accuracy in deter-
mining the turbulent velocities. The rms cbserved turtulent velocity is
about 15Am/sec and the average error in turbulent wind determinations is
about Tive m/sec. Because of these uncertain anomalies, the correlation
curves of Figure 16 cannot be used to obtain reliable estimates of the
integral scale LO or the dissipation length parameter Ld° However, the
fact that the zero points on the curves of Figure 16 are‘at abvout six km
does verify that LO mist be of this order of magnitude for horizontal
displacements.

Since wind shears tend to stretch the chemical clouds into more or
less horizontal configurations, it is easier to find points for correlaticn
with horizontal rather than vertical separatiens. However, the vertical
spatial correlation has been calculated inra similar fashion to the hori-
zéntal correlation by considering vertical velocity component correlation
only between points separated by less than two km in both horizontal di-
rections. Because of the few correlation points obtainable, the vertical
spatial correlastion curve has a more ragged appearance than the graphs of
Figure 16 and hence is not shown here. However, it has gquite similar fea-
tures of rapid decorreletion at the small displacements and a zero point
at less than six km.

By using U = 25 m/sec and data from Chapter I for T and ¢ , one

can employ equation (57} to obtain the values of L_ shown in Table 5. If

d
& = 1 and €, = 0.37 mg/sec3 are chosen as appropriate values, equation

{61) yields the value 8.2 km for L, 1n good agreement with the estimates
made in Chapter II. Relating U_ and L by equation (70} implies that the

time scale To of the largest eddies is about 330 sec. Direct time corre-
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lation of the turbulent velocities by relation (69) shows a correlation
scale of about 300 sec, in good agreement with this value for T
As discussed in Chapter I, the time required for globules to diffuse

to their leveling off diameter, which corresponds to L is 150 * 4O sec.

b)
The globules remain in the level phase for about 50 sec, that is, until
200 * L0 sec after the release of the chemical cloud. The period of har-
monic oscillation for a fluid element displaced from its equilibrium alti-
tude is‘2n/wg, which ranges in value from 250 to 285 sec in the altitude
from 85 to 110 km. Thus the globules remein under the influence of the
buoyancy subrange for an appreciable fraction of an oscillation pericd.
Layzer [1961] has argued that if a fluid element retains its iden-
tity for a length of time equal to a major part of a complete oscillation
pericd, then the motion is not true turbulence. The harmonic oscillations
caused by the buoyancy subrange are certainly too ordered to be considered
random turbulent motions. However, Layzer's argument is based on the |
Bolgiano buoyancy theory which allows the buoyancy subrange to affect
large scales of the motion and possibly to produce motions which are larger
in magnitude than the random turbulent fluctuations. Since the observed
buoyancy subrange ig confined to the small scale range, its regular veloc-

ities are always smaller in magnitude than the random fluctuations and the

total irregular velocity fluctuations retain the randomness necessary for

turbulent metions.

Taking equation (67) as the definition of the characteristic veloc-

ity vy, of the largest buoyancy scale Lb’ and using (70) to calculate T

b’

one can obtain the result

oo A2 | (73)




In the region near 100 km (71) yields a value of about 57 sec, in good
agreement with the observed time which the globules spend in the level

phase .
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Ta’le 5. Summary of Altitude Dependent Viscous Cuteff Length
and Time Scales, and the Dissipation Length Ld

Height L* T v L,
(k) (m) (sec) (m/sec) (k)
92 17 51 0.3 2.9
9l 19 4l 0.5 2.k
96 2 37 0.6 2.1
98 2l 31 0.8 1.7
100 26 25 1.0 1.b4
102 30 23 1.4 1.3
104 33 18 1.8 1.0
106 35 14 2.1 0.8

o7
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CHAPTER IV
CRITERTA FOR THE ONSET OF TURBULENCE

In Chapter I the fturbulence cutoff altitude, the turbopause, near
106 km was justified by energy balance considerations. The turbopause can
also be justified, theough nct ag rigorously, by stability considerations.
In a region of the atmosphere where the temperature is stably stratified,
such as above the mesopause at about 85 km, the temperature structure can-
not provide the instability or energy necessary for maintaining turbulence.
This instability and energy can be provided only by wind shears. In such
cages the Richardson criterion and possibly the Reynolds criterion for the
onset of turbulence muét be satisfied in order for turbulence to be preé—

ent.

The Reynolds Criterion

In a fluid characterized by length scale L, density p , character-
istic velocity v-and kinematic viscosity T the inertia force per unit

volume is
F, = —1— (72)

and the frietion or viscous force per unit volume is

Cf NMev
Fo = T‘“ P (73)

where C:.L and Cf are dimensionless constants. Blamont and de Jager [1961]
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have proposed that a necessary but not sufficient condition for the exist-

ence of turbulence in a free atmosphere is that the Reynolds number defined

by

Re=_1=v—n-1—' (74)

=
H

be greater than some critical value Re Flow experiments in cylindri-

erit’
cal tubes show Recrit a2 2000 if L is taken to be the tube diameter and v
the average flow velocity. Howéver, Hines (19631 has raised some theoret-

lcal guestions as to the validity of the Reynolds criterion for free atmos-

phere flow. In addition to these problems, the relevant values of L and

v tc be used in the free atmosphere Reynolds number are not known. Also

the correct critical value for a free atmosphere is uncertain. Thus the

criterion Re > ReC even if appropriate, cannot be used as a rigorocus

rit’
necessary condition for the existence of turbulence. Nonetheless, if the
Reynolds criterion is accepled as necessary, it can be used to give at
least a plausibility argument for the validity of the 106 km observed
tufbopause.

One possible choice of veloeity and length scales is UO and Ld, the
characteristiec velocity of the largest eddies and the dissipation length,

discussed 1n Chapter IIT. This choice defines the turbulence Reynolds

number

Re, = 2% . (75)

Blamont and de Jager [1961] made the choice V, the average total

wind speed, and L the pressure scale height, shown in Chapter TIT to bhe

H,
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equivalent to the vertical autocorrelation scale. This choice yields the

total winds Reynoclds number

Re. = —TTE . (76)

Two possible "hybrid" Reynolds numbers which can be formed by alternate

combinations of these characteristic length and velocity values are

Re_ = —> (77

and

=<

L

d
Rey = —5— . (78)

UO was shown to be about 25 m/sec in Chapters II and III. Values
of LH and Ld were also given in Chapter III. V can be evaluated by aver-
aging cver the wind speeds cbtained at a given altitude from several chem-
ical releases. Figure 17 shows the calculated height variation of the four |
Reynolds numbers of equations (75) through (78). An assumed value of 2000
for Re,,it ic shown as a vertical dashed line in the figure. This wvalue
of Reepit would be consistent with a 106 km turbgopause if either RerII or
Reoris the relevant Reynolds number. Reerit would have to be less than

1000 for Red and less than 400 for Re, to be the relevant Reynolds number.

t
None of these possibilities is unreasonable. Therefore the observed tur-
bopause at 106 km is at least plausible by the Reynolds criterion. Nome
of the Reynolds numbers (75) through (78) could satisfy the Reynolds cri-

terion with any reasonable value of Recrit for more than a few kilometers
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above the 106 km turbopause.
Part of Hines' argument against the necessity of the Reynolds cri-
terion is that the Reynolds number is important only at the viscous cutoff

*_*
.*.
scales. Evaluation of Re , defined as Vﬂ%‘ » by the use of equations

(49), (50) and (70) shows that Re’ = 1. This fact implies that the only
applicable Reynolds criterion for a ffee atmcsphere is Re > 1, which is

the condition leading to the viscous cutoff scale. Extrapolation of the
graphs in Pigure 17 shows that the Re > 1 criterion would lead to an abso-
iute upper limit for the turbulence cutoff altitude between 120 and 140 km.

This is in agreement with a previocus prediction of 120 km made by Stewart

[1959], based on the same criterion.

Shear Dependent Criteria

In a free atmesphere it is stability that primarily determines
whether or not turbulence is present. If the temperature gradient %g
is negative and less than the adiabatic temperature gradient -g/CP, the
atmoephere is gravitationally unstable and the velocity gradient will
almost never be sco small that the turbulence will be inhibited by a laow
Reymolds number. When %g > Q0 the region is gravitationally stable and
the flow will be laminear in weak velocity gradients. But if the shear is
sufficiently large the region will be turbulent in spite of the gravita-

tional stability. Several criteria have been proposed for testing the

allowability of turbulence in a gravitationally stable medium.

Richardson's Criterion

Richerdson's criterion [1920] is based on the assumption that if e,

of the energy balance equation eS = eg + €, is greater than zerc, then




turbulence exists. The condition e > 0 is equivalent to €, - eg >0 or

eg/es < 1. Richardson uses the approximation to equation (2)

an 5 ;
s = YxV2 3 ° KE s (79)
BVX
where ws is 3z and KE is given by
Vx Yz
Ky = m . (80)
S
He uses for eg the form
2
g = K, w 81
g o ¥ (81)
with K, = v, L . This is the same as equation (7). Richardscn assumes

L}

N L) <v [
that K = K., so the condition eg/es 1 is equivalent to
u?
Ri = & < 1 . (82)
“s

The Richardson criterion for the onset of turbulence is thus

Ri < 1 turbulent
(83)

Ri > 1 laminar

Townsend's Criterion

Tovmsend [1957] developed a more elegant criterion for the onset of
turbulence based on an analogy between turbulence and Brownian motion. For

this theory the quantity w, defined by

t




T4

YA -
e = 3| vy f A + vzl> w, (84)

is important. Using the Brownian motion analogy, Townsend arrives at the

result

v’z
Yy Lm T 2w (85)
t
Using this result, one may rewrite (81) as
2
—E w
e = 2k v £ (86)
2 g % U.)_t
where k¥ = 1 for the Brownian motion analogy and is presumably close to
unity for turbulence.
Equations (84) and (79) may be rewritten as
3, 2
[ = - w
2 ke v, Y (87)
and
2. 2
SS = "5— ks VZ ws 3 (88)
where the coefficlents kt and ks are of order unity.
Defining the Richardson flux number as
€
Rt = B s (89)
5

Towngsend derives the result
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k_ k
i T
(1 - Rf) Rf = 17 ¥ Ri . (90)
s
The left side of (90) is a maximum at Rf = % and at this point Ri is the

critical value Ricrit given by

Ri kS 0.0 (91)
“erit T 75 k_k 0 9

R

The flow will be turbulent for =211 Ri < Ricrit'

Layzer's Criterion

Layzer [1961] extended the ideas of Townsend by imposing the addi-

tional restricticn wy > wg. Tayzer imposes this condition because he feels

the situation eg > €. 1s not likely to occur since turbulence tends to max-

imize:therturbulent dissipation rate ¢ . For w >'wg it is necessary that

t
Rf satisly the inequality

k

g
Rf < —mm . ) (92)
kg + 3kt

Combining (92) and (90), Layzer derives the condition

16 ks 2 :
Ri < Rig. = 5o E;'I'§E;f> ~ 0.0k (93)

for the onset of turbulence.

Generalized Richardson Criterion

Table 6 shows the cbserved values of several parameters which are
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important in the Richardson, Townsend and layzer criteria. From the tabu-
lated values of Ri it is seen that the Richardson criterion would predict

no turbulence in the region below 106 km. The values of €, and € - ¢ from

Figure 6 can be used to calculate Rf = (¢ - er)/es. Table 6 shows that the

Townsend relation Ri a:%g {1 - Rf) Rf does not agree with observation. The
observed values of wt-and wg in Table 6 fail to satisfy wt > wg in the

altitude region below 106 km,. in contradiction to the Layzer assumption.
Therefore neither the Richardson, Townsend nor Layzer criterion is com-
patible with observation.

Apparently these theories fail because they attempt to determine if
the wind shears provide sufficient energy for the existence of turbulence
but use the parameters € eg and € , which are actually power quantities
assoclated with the eddies whose existence or non-existence is suppcsed
to berexplained by the criteria. Also the Brownian motion analogy, on
which both Townsend's and Layzer's criteria depend, is probably nct a good
approximation for the turbulence of the upper atmospherg where the buoy-
ancy effects are so important. The reason for the failure of Layzer's
assumptions was also discussed in Chapter IIT.

A more appropriate energy criterion is the requirement that the

2

buoyancy kinetic energy pexr unit mass % vy = % Li wz be less than the

turbulent kinetic energy per unit mass % v2 which can be induced by wind

shears. Thus a generalized Richardscn number

*
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Table 6. Observed Valugs of Turbulénce‘Criterion Parameters

Height W wg W, Ri Rf %g(l-Rf)Rf

(km) (sec™) (sec-l) (sec_l)

92 0.0168 0.0235 1.7 x 1077 1.96 0.99 0.0015
gl 0.0162 0.0241 3.6 x 1077 2.22 0.99 0.0029
96 0.0193 0.0243 7.6 x 1077 1.59  0.97 0.0060
98 0.0194 0.0245 0.00016 1.60 0.9k 0.011
100 0.0184 0.0245 0.00034 1.77 0.88 0.022
102 0.0188 0.0245 0.00063 1.90  0.80 0.034
104 0.0210. : ©.0245 0.0015 1.36 0.55 0.053
106 0.0216 -~ 0.0245 0.0031 1.29  0.09 0.018
108 0.0255 0.0245 0.0067 0.92 . -- --

T
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* : .
Ri < 1. However, v2 may be written as Li wi by equation (48), where L,

*
is the mixing length. Therefore Ri may be put into the form

no

(95)

Ri =

8 Jﬁv
8[\) qu

Nk

=
0

This should be compared with a similar relation proposed by Blamont and
de Jager [1961].. Table 7 lists the observed values of vE and the calcu-
lated values of vi and Ri* for several altitudes. It is apparent that
the condition Ri* < 1 correctly predicts turbulenée for all altitudes
below 106 km.

In Chapter IIT it was pointed ouft that globules are influenced by
the bubyancy subrange for a length of time only slightly less than 2n/wg.
If a period Ty = 2W/ws is calculated using ws values from Table 6, it is
found that the average value of Ty between 92 and 108 ¥m is 340 sec. This
value is in good agreement with the 300 to 330 sec observed time scale To
of the largest eddies. Equation (58) implies that the time constant for
the conversion of turbulent kinetic energy to internal energy is propor-

tional to Li/ﬂ . The period T = 2n/wt evaluated from values in Table 6

is found to satisfy the approximate relation

1
v T 127 (96)
in the height region from 92 to 108 km.
Roper [1963] has proposed that the generalized Richardson number
be defined by |
2 2
x L, w
Riy = e . (97)
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Table 7. Parameters for Ri = v.b/v

Height L, vi v L
(xm) (xm) (n /sec”) (uf [sec®)
92 0.4 by 196 0.22
9L 0.4 Lo 185 0.25
96 0.4 o7 216 0.22
98 0.61 112 159 0.70
100 0.76 173 207 0.8k
102 0.76 173 303 0.57
104 0.78 182 252 0.72
106 , 0.88 232 222 1.05

108 1.32 525 . 20p 2.36
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Roper salso derived a relation which can be expressed as

¥ €
RY N —ey (98)
10 M ws

*
Table 8 shows the observed values of 10 T wi, e/(lO M wi) and Rid' Rela-

tion {98) is seen to produce values in reasonable agreement with the ob-

¥ ‘ *
gerved Rid values below the turbopause. The condition Rid <1 also cor-

rectly predicts turbulence for all altitudes below 106 km, although in the

¥ *
lower altitudes shown in Table 8, Rid is much less than Ri because Ld =

Lm in this height region.




*
Table 8. Parameters for Rid

Height 10 1 o i Observed Ri.
8 10 T wi d

(xm) (n” /sec?)
92 0.016 0.1k 0.036
o4 0.025 0.19 0.06C
96 0.0u7 0.21 0.060
98 0.067 0.30 0.20

100 0.080 0.54 0.48

102 0.090 0.90 0.60
104 0.26 0.72 0.8k
106 0.37 1.08 1.50

108 0.95 - 0.90 3.96

81
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CHAPTER V
CONCLUSIONS

Turbulence exists in the upper atmosphere only to an altitude of
about 106 km, as determined by examination of the globule cutoff on many
chemical release clouds. The‘globule cutoff altitude is a good estimate
of the true turbopause because the naturally occurring turbulence provides
an unstable medium in which small fluctuations in the releasing of the
chemical clouds lead to the globular structure. Only for releases at very
uniform rates or in small concentrations would the turbulence fail to pro-
duce this globular structure up to the actial turbopause altitude. And,
although globules already produced in the turbulent zcne might be carried
upward a short distance by such mechanisms as residual upward momentum
after release or temperature buoyancy, they should not he found more than
a kilometer or two above the true turbopause.

Turbulent winds determined by chemical release tracking are useful
in cobtaining estimates of the energy balance terms es, eg and € . Turbu-
lent diffusion of globules at times after release t = 200 sec follows a
d2 ~ € t3 law, with the height variation of € in reasonable agreement with
the turbulent wind determinations of € . Both es and eg are slowly varying
with éltitude, es being approximately 0.4 watts/kg in the 90 to 110 km
region and eg being about 0.35 watts/kg in this heigﬁt region. However,
€ increases rapidl& with altitude, varying by more than three orders of
mzgnitude between 90 and 110 km. Data at lower altitudes indicate that ¢

continues to decrease with decreasing height, changing by an additicnal
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three orders of magnitude or more between 90 and 30 km. Since energy bal-
ance requires that the source term € be greater than the dissipation term
e , the rapid increase in € is responsible for the turbopause. The turbo-
pause altitude predicted by the observed € variation is 106 km, in agree;
nment with the observed value.

During the earliest observed phases of globule growth (t € 150 sec),
diffusion is influenced by the buoyancy subrange, with a resulting d2 ~

5

eg t7 diffusion law as predicted by Bolglano. If more precise globule di-
ameter measurements could be made during this phase of the globule expan-
sion, this would provide an independent method for determining eg. How=~
ever, this cannot be done at present. Only the smaller scale sizes are
affected by this buoyancy subrange. During the time after release 150 <
t £ 200 sec, the buoyancy subrange no longer affects globule diffusion.
Expension during this interval occurs by mclecular diffusion zlone. The
150 sec initial period in which buoyancy effects are observed is an appre-
ciable fraction of the period 2ﬁ/wg for harmonic oscillation of a fluid’
element displaced from its equilibrium point in a stably stratified
atmosphere. The approximately 50 seconds of molecular diffusion corre-

sponds closely to the theoretically predicted time scale 2 /wg of the

largest buoyancy subrange eddies. The maximum buoyancy subrange scale Lb

varies with altitude but is approximetely 0.8 km in the height range 98

tc 106 km. 'This value can be predicted by the requirement that the char-

2
acteristic buoyancy kinetic energy é'v— must be less than the observed

b
turbulent kinetic energy.
The decrease of Lb with decreasing altitude is responsible for the.

slow transition of cloud appearance from spherical globular structure to -




Bk

a more general fuzzy shape. This 1s because the bucyancy subrénge motions
are more ordered than the larger scale inertial subrange motions. As Lb
decreages the buoyvancy subrange cannot act on the expanding cloud elements
for a sufficient length of time to produce the regular spherical glohules.

Diffusion at scales larger than those at which globules can usually
be observed has been found by other investigators to follow a d2 ~ t2
growth law. At present it cannot be determmined if this is a transition
from the d2 ~ t3 globule diffusion, as would be expécted from Tchen's shear
turbulence theory, or whether this is merely an erronecus observation
caused by difficulties in accounting for sky background on the chemical
cloud observations at large scales. An alternate method, independent of
sky background, for measuring large scale diffusion effects would be most
ugeful in reseclving this gquestion. Since globule center point positions
can be determined with no-dependence on sky background, observations of
the growth with time of the separation distance between center points of
pairs of globules at approximately the same altitude would provide such a
method .

All experimental evidence agrees with an energy spectrum E(k) as
shown in Figure 7(c). The inertial subrange, ko Sk <k, portion of E
is given by equation (18) with @ ~ 1. The buoyancy subrange, kb <k < k*
(k* m:kB, the smallest buocyancy scalg), portion of E is given by (32) with
8 varying with altitude and having values of C.08 and 0.8 at 95 and 105 km
respectively. Equation (18) was obtained by substituting ¢ for ¢ in the
original non-hucyancy formulation. This alteration of (18), as well as
other relations coming originally from non-~buoyency theories, is justifi-

able since for turbulence with no buoyancy effects es = € .
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The shear and energy spectrum functions E(é) and F(&) given by (24)
and (25) are approximately correct in the turbulent region when only ver-
tical, shear influenced displacements § are considered and the residual
wind profilec are used. The slightly higher than expected exponents actu-
ally observed for the E and F power laws (/= 0.7 and 1.5 respectively) might
be an effect of the slight anisotropy of the motion field or-a result of
buoyancy subfénge influence. Above the turbopause at 106 km, the exponents
of the E and F power laws are still higher ( =~ 0.8 and 1.65 respectively).
Thus the fvpoﬁer law exponent is approaching the expected value of 2.0 for
a "monochromatic" velocity profile. Hence this increase in the power law
exponents is explained by the turbulence transition. Maxima in the shear
spectrum function are assoclated with a length scale of the motion by anal-
Ogy wi£h the motion spectrum function for a "monochromatic" wind profile,
which has a motion spectrum function maximum at one half wave length. Be-
tween 80 and 120 km the shear spectrum scale of both the total and residual
winds follows closely the height variation of the pressure scale height.
Data on the vertical scale of the winds at lower altitudes indicate a\con—
tinuous exponential increase from sea level to 80 km.

The horizontal motion spectrum function f(6) given by (29) is found
to be valid in the turbulent region, with v &~ 1.5 near the 100 km level.
Considering £(§) as a horizontal equivalent of the vertical energy spectrum
function E(E) implies that the characteristic velocity u, of the largest
eddies is about 25 m/sec. This equivalence of f(6) and E(§) is justified
by the fact that £(8), given by (28), is the definition of the energy spec-
trum function for isctropic homogeneous turbulence, and the observed tur-

hulence is only slightly anisotropic. Estimates of U, made from E(E) are
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somevhat lower than 25 ﬁ/sec, but these determinations are complicated by a
residuzl contribution from the total winds to the observed energy spectrum
function Eo’ as glven by (30). The proper energy spectrum function E(E)
should involve only the turbulent windes and should have no such contribu-
tion from the larger scale prevailing, tidal or gravity wave components.

Between 80 and 140 km the observed vertical autocorrelation scale,
determined by equation {45), also follows closely the height variation of
the scale height. Below the turbopause the ratic of the shear spectrum
scale to the wvertical autocorrelation scale is approximately wnity. Above
the turbopause this ratio approaches 2.0, the expected value for a '"mono-
chromatic” velocity profile. The shear spectrum and vertical autocorrela~
tion scales of the residual winds should be the same as the vertical scales.
of the turbulent winds. They indicate a vertical scale of about seven km
for the turbulent winds near 100 km. Since the horizontel scale is about
10 km, the turbulence is made only slightly anisotropic by the strong ver-
tical shears. According to Bolgiano's original theory, bucyancy effects
could also cause anisotropy of the meotion field. However, since the ob-
served buoyancy subrange affects only the smaller scales, it apparently
does not contribute to the anisotropy. An estimate of the characteristic
scale L  of the largest eddies by equation (1) yields the value 8.2 km,
which is a reasocnable average value of the largest vertical and horizontal
scales observed.

The mixing length Lm is found to oscillate about a constant value
of 0.75 km below the turbopause and then increase rapidly above this alti-
tude. Thus Lm a5Lb in the region immediately below the turbopause.

* *
The viscous cubtoff size and time scales L and T calculated by
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equations (49) and (50) are not inconsistent with observation since scales
this small cannoft be observed with the resclution presently obtainable.

The spatial correlation functions g(£) given by (51), although indi-
cating that L0 mist be of the order of six km or larger, cannot be used
for accurate estimates of LO cr the dissipation length Ld' The observed
rapid decorrelation in the turbulent winds i1s probably due to the accuracy
limit to which these winds can be measured. However, this rapid decorre-
lation may also be an effect of the buoyancy subrange acting on the small
scales. L, can be estimated by relation {(57) and is found to vary with
altitude, having values of 2.9 and 0.8 km at altitudes 92 and 106 km re-
spectively. Relations among the eddy scales L*, Ld and LO previously
derived for isotropic nen-buoyancy turbulence must be modified because of
the important buoyancy effects present.

The characteristic time To of the largestléddies is found to be
about 300 to 330 sec by both relatlon (TO) and by direct time correlation.
Thus chemdical cloud lifetimes of approximately 10 minutes allow ample time
for observation of most, if not all of the turbulent spectrum. The ob-
served value LN is approximately equal to the pericd calculated by 2n/ws,
where ws is the observed magnitude of the total wind shear.

The usual Richardson, Townsend and Layzer criteria for the onset
of turbulence are not succesful in explaining the observed turbulence cut-
off at 106 km. These theories atteﬁpt to determine if wind shears provide
sufficient energy for the existence of turbulence, but use the power quah—
tities €, € and € in thelr formulation. The generalized Richardson cri-
terion, based on the energy requirement that %ve must be less than the tur-

b

bulent kinetic energy per unit mass which can be produced by wind shears,




leads to a generalized Richardson number Ri*, given by (94) or (95). The
criterion Ri* < 1 successfully predicts turbulence for all altitudes belaw
106 km. Equation (98) provides a good approximetion to‘Rig, given by (97),
in the region below the turbopause. The criterion Riz < 1 also success-
fully predicts turbulence only below 106 km.

In addition to the generalized Richardson criterion, it has been
proposed that the Reynolds criteribn Re > Recrit mist be satisfied if tur-
bulence is to exist. Uncertainties as to the proper characteristic length
and velocity as well as critical value for a free atmosphere meke applica-
tion of the Reynolds criterion only qualitative, but reasonable estimastes
of these parameters shﬁw that this criterion can be satisfied at most only
to a few kilometers above the 106 km turbopause. However, Hines' theoret-
ical arguments against the necessity of a Reynolds criterion in a free
atmosphere may -mean that this fact is only coincidental. Possibly the

only restriction on the turbulence by a Reynclds criterion is the absolute

upper limit of 120 to 140 km imposed by the condition Re > 1.




APPENDIX A
COMPARISON OF TURBULENCE ON CHEMICAL AND METEOR TRAILS

Some early investigators [e. g. Greenhow and Neufeld, 195%a, 1660 ]
attributed many large scale irregularities in upper atmospheric winds to
turbulence. However, Hines' [1960] gravity wave theory was successful in
explaining many of the properties of these large scale irregularities.
Greenhow and Neufeld cbtained the large scale ilrregular wind components by
subtracting 24, 12 and eight hour period Fourier components from meteor
wind data obtained over all times of day. Hines [1963] has pointed out
that subtraction of only these components ccould still leave substantial
contributions from irregular tidal components and gravity waves. Hines'
gravity wave exXplanation of the observed properties of the large scale
irregularities certainly indicates that these irregularities are not en-
tirely turbulent motions and may contain no turbulence contribution at
all. The chemical release studies reported here indicate that most, if
not all of the turbulent spectyum is confined to time scales less than
300 seconds. However, irregular motions with time scales much larger than
300 seconds can not be observed with existing chemical release wind anal-
ysis methods. Therefore, the question of what, if any portion of the large
scale wind irregularities is turbulence must remain unanswered at the pres-
ent tine.

The success of Hines' theory led others [e.g. Nawrocki and Papa,
1963 and Cote, 19627 to gquestion whether turbulence existed or not as a

natural phenomencn of the upper atmosphere. One proposal was that small
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scale irregularities observed on chemical and meteor trails were the result
of turbulence induced by the rocket, release mechanism or metecr in its
passage through the atmosphere. Turbulence could be produced in the wake
of a meteor or rocket, by a jet effect from pressurized or combustion re-
lease of chemicals in trail form or by explosive release of chemicals in
point release form. The key to showing that thé turbulence is not arti-
ficially produced is that each of these very different methods of producing
obgservable trails indicates the existence of turbulence, and the turbulence
s0 observed has almost identical characteristics in each casge.

A typical bright meteor [Liller ard Whipple, 1954] would have a ve-
locity of about 6 x 10)+ m/sec and would release approximately 10 grams of
material into the atmosphere by ablation. A tTypical chemical release would
put from cne tc U0 kg of material into the atmosphere from a rocket trav-
eling at about lO3 m/sec. If all of the kinetic energy of the released
material were available for the production of turbulence, this would amount
to something of the order of 106 or lO7 Jjoules in eilther case. For a chem-
ical or meteor trail released over a 20 km length and having an initial
cross section of 100 m2, this would represent on the order of 1 joule/m3.
If the wvalue th6 kg/m3 is taken as a typical ambient density at the alti-
tude of release, this would be about 106'joules/kg of atmosphere, corre-
ponding to a turbulent veloecity of about lO3 m/sec. Since the observed
turbulent velocities are of the order of 10 m/sec, only about one hundredth
of the totael enefgy is thus available for the producticn of turbulent
winds.

If turbulence is produced by the ejection mechanism, rocket or
meteor, the meteor would represent a small mass, high velocity source,

and the rocket or release mechanism would represent a large mass, low
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velocity source. Explosive release of chemicals would provide yet another
type of energy source for the production of turbulence. It would be ex-
pected that these drastically different characteristies in the source would
produce cbservable differences in the resultant turbulence. However, cal-
culations of the turbulence power € , discussed in Chapter I, from both
meteor and chemical trails as well as explosive releases all show reason-
able agreement with one another [Greenhow, 1959, Blamont and de Jager,
1961, Roper, 1963 and Noel, 1963]. The cbserved globule cutoff altitude
is also much the same for both the trail-and explosive chemical releases
analyzed during this work. The globule cutoff altitude reported here alsc
égrees well with that observed by other investigators [e.g. Blamont and
" de Jager, 1961], using very different release mechanisms and launch vehi-
cles. With these observed similarities, it seems doubtful that the obs
served turbulence is artificially produced.

.As further proof that the turbulence is a naturally cecurriag
ambient phenomenon, a calculation can be made of the time variation of
the turbulent velocity that céuld be induced in the wake of a passing
rocket or meteor or as a Jet effect from a passing pressurized or com-
bustion releasing mechanism. Schlichting [1960] has shown that the max-
imum turbulent velocity present at a time t after the passage of a wake

producing body is given by

v o= ;575 ’ (99)

v = — . (100)
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For'the choice of C, and C. values such that both (99) and (100) yield

2
v = 15 m/sec at t = 100 seconds after the,passage of the rocket or meteor,
Table 9 shows values of v at various times t. Table 9 also shows the aver-
age observed turbulent velocities for one rocket released cloud. Although
these observed turbulent. velocities remsin constant with time, they are
somewhat lower than the usual 15 m/sec observed. Even so, the predicted
jet and wake turbulent velocities are too small to agree well with the ob-
served values at the latest time. Usually turbulent velocities are not
calculated during the first 90 seconds after release of the cloud, because
of the veloclty deviations which might occur during this pericd. However,
any early anocmalous velocity deviations are certainly less than about 20
m/sec, as has been shown by determinations of winds during this period.from
a few chemlcal releases. Therefore Table 9 shows that the jet and wake
turbulent velocities required at t = 10 sec are entirely too large. Thus
the required variation of the turbulent velocity produced in the wake of
either a meteor or rocket or the jet of a release mechanism is entirely
incompatible with the observed turbulent velocities.

The observed energy dissipation rate in the turbulence aiso leads
to the conclusion that the turbulence is an ambient phenoménon. TIf the
rocket, release mechanism or meteor inducéd an initial turbulent velocity
Vs and there were no ambient source for the maintenance of the turbulence,

then at a time t after the release, the turbulent wvelocity v would be given

by

(v2 - VE) = €t s (101)

ol
Q
W

where ss = eg + € is the observed total energy dissipation raete per unit
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Table 9. Predicted Jet and Wake Turbulent Velocities and
Observed Turbulent Velocities

v {m/sec)
t (sec)
Jet waxe observed
10 150 70 7 (< 20)
100 =15 =15 9.7
250 6.0 8.1 10.7
Lo | 3.k 5.5 9.9

620 2.4 k.5 1.2
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mass of atmosphere. Figure 6 of Chapter I shows that €, = 0.h me/sec3.

Solving (101) for W yields

Vo= v -2e t . (102}

If it is required that v = 20 m/sec at t = 100 sec, then the observed value
of es implies that v would go to zero by the time t = 600 sec, in obvious

disagreement with the observed turbulent velocities in Table 9. Since the
early anomalous ﬁelocity deviations are damped out during approximately the
first 90 seconds after release, equation (102) implies that the actual tur-
bulent velocity induced by the rocket, release mechanism or meteor must be

less than 10 m/sec, in agegrement with observation.
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APPENDIX B

DERIVATION OF EQUATION (67)

The virial thecrem states that

JL..

T =

ro, (103)

where T is the kinetic energy of a single bedy system and F is the force
acting on the system located by the position vector r. Considering a fluid

element in the buoyancy subrange as a harmcnic oscillator acted on by a

force
2
F = -kr = =mw r s {104)
. . .2,
then the average kinetic energy per unit mass 3z Yy is
L2 T 1.2 2
3 = = = 35 W 10
2 Vb o 2 Yy r (105)

If the amplitude of cscillation is taken to be the largest buoyancy scale

Lb’ then
2n/w
ire_:i.eej“
AN L sin (wg t+ Q) @, dt
= é? wz L% j sin 9 as
2 2
s (106)




which is the result stated in equation (67).

Another result of the virial theorem is that for a single body

gystem acted on by a power law force F ~ r

=}
+
[

(107)

<3

Hl
]
o

where V is the potential energy of the system. Thus for an harmonic
oscillator T = V; anc the requirement that the buoyancy kinetic energy
per unit mass be less than % v2 is equivalent to ilmposing the same con-

dition on the buoyancy potential energy per unit mass.
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Ri

GLOSSARY OF FREQUENTLY USED SYMBOLS

Definition See Page

cloud or glcbule diameter

energy spectrum

theoretical and cobserved energy spectrum functions
shear spectrum |

theoretical and observed shear spectrum functions
moticn spectrum function

spatial correlation function

vertical autocorrelation function

wave number

wave number of lﬁrgest eddies

wave pumber of smallest buoyancy subrange eddies
wave number of largest buoyancy subrange eddies
wave number of viscous cutoff eddies

scale size of largest eddies

scale of largest buoyancy subrange eddies

mixing length

dissipation length

scale of viscous cutoff eddies

Reynolds number

Richardson flux number

Richardson number

7
22

28-29

27

28-29

29
L8
hs

22
22
23
22
48
52
46
48
b7
69
Th
73

27

[
|




Symbol

Ri

Glossary (Cont'd.)

Definition See Page

generalized Richardson number 76
atmospheric temperature 5
time after release of cloud 7
characteristic velecity of largest eddies Lo-41
turbulent wind 2
characteristic velocity of viscous cutoff eddies 58
characteristic velocity of eddies of scale ‘LLb 52
mean wind 2
spatial cocrdinates also denoted by x, y and z 5
constant in inertial subrange energy spectrum 27
constant in motion spectrum function 29
viscous and buoyancy dissipation rates per unit mass L
rate per unit mass for extraction of emergy from

mean winds Ly
kinemstic viscosity 9
temperature fluctuation 5
constant in buoyancy subrange energy spectrum 35
time scale 53
time scale of viscous cutoff eddies L7
time scale of largest eddies 6l
time scale of eddies of size L 65
frequency of oscillation of fluld element displaced

from its equilibrium altitude 5
magnitude of vertical shear of mean winds 73
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