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Summary

An understanding of intrinsic kinetics is necessary for the rational design of new materials for

catalytic processes. One way to obtain this information is by running and interpreting Temporal

Analysis of Products (TAP) reactor experiments. Though these experiments provide rich, tran-

sient kinetic information, converting the raw TAP data to knowledge of the material is a major

bottleneck. Steps have previously been taken to reduce this burden, but further developments, as

well as refinement of current methods, are needed. One change that could improve processing is

the application of automatic differentiation (AD), which offers a highly accurate calculation of the

derivative. For this reason, a workflow to simulate and process TAP reactor pulses built around

the FEniCS Python package has been developed. This package allows for the efficient evaluation

of the necessary PDEs for TAP, and allows for efficient AD by taking advantage of the adjoint

operators of the PDE.

A method to convert elementary reactions directly into the FEniCS PDE format was developed.

The first steps to generate reaction mechanisms, as well as sets of rate-limiting reaction expressions,

based on the gaseous reactants and products observed during TAP experiments were also taken.

The new, general method of simulating pulses around FEniCS was validated and benchmarked.

The time required for each simulation was not found to limit the workflows ability to quickly handle

TAP data, but improvements can be made.

The Degree of Flux Control was also introduced as an alternate form to the commonly used

Degree of Rate Control. This is the first example of a transient sensitivity analysis performed on

TAP pulses, and one of few implementations of the Degree of Rate Control analysis to transient

processes.

A method to fit parameters was also implemented, and objective functions were constructed

with a reduced number of points to improve efficiency.

The parameter fitting method was applied to several examples, including pure diffusion, a linear

reaction mechanism, and multiple carbon monoxide oxidation reaction mechanisms, and was found

to accurately determine diffusive and kinetic parameters.

The methods developed in this Thesis show the utility of AD and should lead to a more efficient

processing of TAP data. This workflow will act as a foundation on which more advanced methods

can be developed, including forward and reverse uncertainty quantification, the generation of initial

parameter estimates for fitting, and the application to increasingly complex reaction networks.

Ultimately, it is envisioned that these methods can work in concert with experiments, providing
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a route to adaptive TAP experiments that automatically interrogate the intrinsic kinetics of real

catalytic materials.
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1 Introduction

Catalyst selection and optimization is a necessary step in the design of many chemical production

facilities1. Determining an appropriate catalyst for a process, however, is often challenging due

to the vast number of variables affecting the catalyst and its environment2. Before determining

appropriate production-scale operating conditions, the choice of catalyst support3, composition4,

cluster size5;6, and solvent7 must be considered to optimize product selectivity and yield. Even

mild changes to catalyst performance can result in multi-million-dollar profit shifts or to necessary

reductions in pollutants8;9;10. Gaining a robust knowledge of intrinsic kinetic parameters can lead

to the rational design of both the catalyst and reactor. For these reasons, methods to efficiently

probe the kinetic properties of catalysts have been, and continue to be, developed.

Solving for kinetic parameters through reaction model fitting is a standard approach in the field

of catalysis1. Typically, data is collected at steady state and fit to equations through simplified

Langmuir-Hinshelwood or Eley-Rideal kinetic models. Plotting the extracted kinetic parameters

with an Arrhenius equation can provide insight into the apparent activation energy of the process.

Though valuable insights can come from this method, the rate limiting step will dominate the ex-

tracted kinetic information, resulting in little insight into other elementary reactions in the system.

Density functional theory (DFT)11 calculations, transition state theory (TST)12 and micro-kinetic

modeling (MKM)13 are frequently used to gain fundamental insights about the thermodynamics

and kinetics of reactions on catalysts that traditional experiments are unable to provide. Though

these methods can provide users with information pertaining to the mechanism14, turnover fre-

quency15, molecular orientation16 and stability17, running simulations with DFT requires signifi-

cant computational resources, even for relatively simple systems18;19. To overcome this challenge,

DFT calculations have been used to develop theoretical trends, like linear scaling relations20;21

and volcano plots22, to help investigators identify more active catalysts in an efficient manner23;24.

Even with these improvements, it is still challenging to extrapolate information to other surface

cleavages, materials, coverages and environments. This is a major obstacle, since materials of in-

terest can have many potential active sites, often with only one dominating the observed reaction

rate25. If time requirements and system complexity had little impact on theoretical investigations,

the inherent error in the electron exchange-correlation approximation is high26 and makes it chal-

lenging for users to draw strong conclusions about results27. The associated error in determining

transition states alone is between 0.2 and 0.3 eV, meaning that the identification of dominant reac-

tion paths might not be possible with the current state of DFT28. New data processing methods

merged with experiment could help patch some of these limitations.
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Transient experiments can give a broader understanding of the kinetics at play in a system

by providing information about each of the elementary reactions and the rate of consumption or

production of each species involved29, but effectively decoupling the transport and kinetics is often

cumbersome30. The temporal analysis of products (TAP) reactor system was developed to combat

this issue. Originally conceived in 197731;32, TAP is a surface science technique with approximately

twenty systems worldwide (five of which are in the United States). One reason it remains in limited

use is due to challenges with data processing. Through the years, steps have been taken to reduce

data complexity and make data analysis more efficient.

First, the reactor was modified to include a thin-zone of catalyst packed between two large

inert zones33;34, allowing for a new method called the Y-procedure to be implemented. The Y-

procedure35 was developed to help users determine gas phase concentrations and reaction rates in

the thin catalytic zone without making mechanistic assumptions. Since diffusion is only occurring

in the inert zone and the boundary conditions are well defined, it is possible to use a fast-Fourier

transform to trace the flux and concentration back to the catalytic zone. These implemented

boundary conditions and the transformation process are the two components that make up the

Y-procedure. The concentration gradient is negligible at low conversion because of the thin-zone

experimental setup, so the rate of reaction can be determined by comparing the flux at the entrance

and exit of the catalytic zone . This method of determining the rate is similar to that used by the

continuously stirred tank reactor (CSTR) model, where perfect mixing is assumed and a uniform

concentration exists in the reactor. Post-processing of data with the Y-procedure also allows the

surface uptake to be measured as the integral of the rate while accounting for the stoichiometry36.

Second, the Rate-Reactivity Model (RRM)30 was developed to provide the user with phe-

nomenological information that could be linked to the kinetics without requiring the user to define

some reaction mechanism. The RRM is a linear model and assumes reactions measured by the

TAP reactor are first order. The RRM is well suited to take information from the Y-procedure

and show how the reaction rate depends on the observed concentrations and surface uptakes in

the catalyst region over time. This can provide users with insights about the mechanism, as well

as impose constraints used to limit the number of possible mechanisms. Even though these ad-

vances have made TAP output data more useful, further steps must be taken to fully utilize the

information contained in TAP data.

An over arching workflow has been developed (Figure 1) and shows current data analysis

processes used in the TAP community alongside some proposed methods. The core of this workflow

is the TAP simulator (component B of Figure 1), which can provide synthetic data for the validation

of new methods (component E of Figure 1) and be used for parameter optimization purposes.
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Figure 1: Workflow showing common and new methods to process TAP reactor pulses. Component
A shows a method to generate sets of elementary reactions based on the gas species monitored
during the pulse. Component B shows the pulse simulator, which can take reaction mechanisms
from component A or directly from the user. Component C shows the parameter fitting method,
which works with the simulator to determine parameters for the reaction mechanism. Component
D is the sensitivity analysis, which can help identify rate limiting steps throughout the duration of
the pulse. Component E shows the Y-Procedure and Rate-Reactivity Model, which are common
experimental processing methods. Developing more efficient, open source forms of components A
- D is the main thrust of this Thesis.

Having to define the reaction and transport equations for any reactor system can be tedious, time

consuming and lead to simulation errors or inaccuracies. The simulators used in the field are often

geared toward very specific reaction mechanisms. Golman et al. developed a TAP simulator for

carbon monoxide reactions, but it was designed for educational purposes and is not meant for

processing TAP data37. The TAP simulation package TAPFIT can be used for general reactions,

but has limited use based on the flexibility of the code and can be cost prohibitive38. Further,

a generalized mechanism generator (component A of Figure 1) has not been implemented in the

field and could help establish multiple reaction networks with limited user input.

As mentioned, the pulse simulator is an intrinsic step in parameter fitting (Component C of

Figure 1). The ability to directly fit kinetic parameters to physically meaningful models (i.e.

microkinetic models) would be a useful addition to the TAP processing catalog. The primary

challenge in implementing a parameter fitting method is handling the intense volume of data

from each TAP experiment, which can consist of four-hundred separate pulses with millisecond

time resolution. Fitting kinetic parameters to multiple mechanisms for each and every pulse is
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infeasible with traditional optimization methods when no strong initial guess is made. One way

that efficiency can be improved is through the application of automatic differentiation (AD)39.

The evaluation of derivatives is necessary for modeling physical systems, as well as for solving

optimization problems. Symbolic differentiation is an ideal method for working with derivatives,

but is challenging to implement programatically40. Taking derivatives by hand may be more

efficient for certain problems, but the chance of human error is higher and equations can become

difficult or impossible to derive. Numerical differentiation is often used, but will result in a loss

of precision and increased computation time41. AD offers a middle ground between numeric and

symbolic differentiation through the application of the chain rule. By deconstructing equations into

less complicated functions, AD allows a computer to evaluate derivatives through simple operations.

The two common implementations of automatic differentiation are forward and reverse mode. The

former allows the user to evaluate the derivatives of an output function with respect to inputs

based on known parameters, while the latter allows the user to determine derivatives of input

parameters based on an output. AD has successfully been applied in a variety of fields, including

geophysics and finance, and could prove to be useful when applied to catalysis42;43;44.

The derivatives generated with AD can also be used to perform sensitivity analyses (component

D of Figure 1) on known or proposed reaction mechanisms, providing information about rate

limiting steps during the progression of a TAP pulse. The standard implementation of sensitivity

analysis in the catalysis community is through the Degree of Rate Control (DRC) developed by Dr.

Campbell. DRC analyses are typically performed on steady state microkinetic models and only

a few have been applied to transient kinetic processes. This is not surprissing, since evaluating

derivatives can be costly and at times inaccurate. No transient sensitivity analysis has been

performed on TAP pulse models and the use of accurate derivatives could make it possible.

One available tool that allows users to incorporate automatic differentiation into the analysis

of partial differential equations (PDEs) is the FEniCS45 python package. FEniCS acts as an ’um-

brella’ for other scientific computing packages, some of which include Dolfin-Adjoint46;47;48;49;50,

UFL51, and PETSc52. Beyond the availability of automatic differentiation in the program, FEn-

iCS makes it easier to convert a physical model into finite-element code, while still giving users the

flexibility to solve more complicated problems. FEniCS has been used by many groups in a broad

range of disciplines53;54;55;56;57, but, to our knowledge, has seen little to no application in chemical

engineering or catalyst design and optimization.

In this thesis, a FEniCS based TAP pulse simulator is developed and acts as the cornerstone

on which other methods will depend. A method to generate simple reaction mechanisms and rate
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expressions is included to simplify the specification of reaction expressions in FEniCS. Comparisons

to simulated data from other groups is made to validate the transport and reaction terms. The

efficiency of the simulator and sensitivity analysis will also be discussed. Synthetic data is generated

for several carbon monoxide oxidation reaction mechanisms to show the simulators versatility. A

sensitivity analysis is also be performed as the first steps taken to develop a method of DRC. A

method to fit kinetic parameters to micro-kinetic models will also be introduced and applied to

simple examples and carbon monoxide oxidation. The major benefit of this code are be that a

plethora of information can be gained with limited user input. Manually defining the PDEs will

no longer be necessary when analyzing TAP pulses. Developing an efficient, but thorough, method

to simulate and process data will allow the user to rapidly gain valuable insights from complicated

systems and could be integrated into a TAP data workflow58.
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2 Handling Elementary Reactions and Reaction Expressions

2.1 Method to Automatically Generate Relevant Partial Differential

Equations from Elementary Reactions

The generalization of the TAP pulse simulator is a necessary step toward the development of a more

versatile tool that can be integrated with the current data analysis workflow59. Simulations will

involve unknown mechanisms and an undetermined number of gas and surface species, meaning

that defining a library for all potential mechanisms would be impractical and of limited use. For

this reason, a method to convert a set of elementary reactions to the necessary PDEs has been

developed. These equations can be applied directly to the FEniCS pulse simulator.

2.1.1 Rules for Expressing Elementary Reactions in the Simulator

The elementary reactions being fed to the PDE equation generator must follow a specific structure.

The current format of the elementary reaction needed to generate the PDEs is rigid and a few

formatting issues, as well as the nomenclature, must be specified. The asterisk (*) indicates an

open surface site and (species)∗ indicates some adsorbed species. The order of the adsorption

processes is important; reactant gas species must be specified first. This requirement stems from

the way the script will later have pulse intensities specified. Only forward and reversible reactions

can be interpreted by the parser. Though the inclusion of an irreversible reaction may seem counter

intuitive to understanding the intrinsic kinetics, it is a common method of specifying an elementary

reaction and including it as an option further improves the simulators ability to handle a variety of

user-defined mechanisms. Some elementary reactions are also much faster in the forward direction,

meaning the reverse rate will play a negligible role in the mechanisms and observed rate, leading

to a more efficient simulation.

The elementary reactions defined by the user are fed to the script as a list of strings. Each

string is then parsed for gas and surface species, as well as the stoichiometry. Each species is

added to a list, which is then organized based on whether it is a gas (appearing in the front of the

reaction) or surface species (appearing at the end). A matrix specifying the reaction stoichiometry

for each elementary reaction is then generated, with rows representing each elementary reaction

and columns representing each species. This matrix is used to define the rate of reaction provided

in the list of elementary reactions. If the species does not include an asterisk, then the additional

diffusion transport term will be included alongside the elementary reaction terms of the PDE. The

rate constants for each elementary reaction follow zero-based indexing the traditional numbering
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Figure 2: A visual for the inputs and outputs from the mechanism generator and elementary reac-
tion processor. Users will be able to specify the observed gaseous species in future implementations
and generate a set of elementary reactions. Once the elementary reactions are specified (either di-
rectly from the user or through the mechanism generator), the species balances can be generated
and incorporated in the PDEs.

system in computer science.

2.2 Method to Automatically Generate Sets of Elementary Reactions

Automatically generating mechanisms is not a new topic60;61. The Rule Input Network Generator

(RING) describes all possible reaction paths and performs a subsequent analysis to determine dom-

inant reaction paths and thermochemical properties of the system, while the Reaction Mechanism

Generator for Heterogeneous Catalysis (RMG-Cat)62 determines potential reaction paths through

the application of binding energy and Brønstead-Evans-Polanyi relationships. These tools greatly

reduce the time required for building and evaluating large reaction networks. However, the asso-

ciated error and challenge of evaluating excessively large reaction networks, commonly found in

heavily oxygenated biomass molecules, limit their broader application. A refined, simpler version

of these tools that does not incorporate energy estimates or complex rule inputs will enable useful

in generating sets of elementary reactions and subsequently the PDEs necessary to perform TAP

pulse simulations.

Medford et al. have developed an in house mechanism generator that uses PyBel63, a package

used to generate molecular objects in python, and Networkx64, used to handle tasks related to

graph theory65;66. Unlike other generators, exhaustively probing a reaction network is not the

goal. Establishing more compact reaction networks toward desired products is the primary focus,

which reduces the chance of the reaction network reaching an uncontrolled expansion. Figure 2

shows the desired conversion between the reactants/products and elementary reaction equations,

which requires enumerating the mechanism and converting to equations.
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2.2.1 Rules and Challenges with Generating Mechanisms

To use the network and elementary reaction generator, a set of gaseous species must be provided

as reactants and products. The network generator also gives the option to specify some reactive

intermediate in which the network will flow through. This will be very useful for complicated

molecules (like longer chained carbon species) where a direct path might not be clear.

Alongside the standard surface reactions, direct gas interactions with open surface sites and

adsorbed species will be considered. It is desired to make a relatively simple mechanism involving

the adsorption and decomposition of these molecular species. Though a method to iteratively

cleave bonds was developed, it is necessary to convert the set of bond cleavages into a list of

elementary reactions that can be interpreted by the user and properly read by the TAP simulator.

Reactions that fall in the Eley-Rideal vein can be difficult to incorporate programmatically.

Not every combination of gas and surface species interaction will need to be considered. If they

were, there would be an unnecessary increase in the number of reactions that would severely

increase simulation time. It’s possible to assume that gas species could only interact with the

most abundant surface intermediate (MARI), but this would require a prior understanding of the

surface composition which is frequently unknown. For this reason, it will be necessary for the

user to include these reactions alongside the reactant inputs. Unfortunately, there is no rule the

program could currently follow to assume which reaction will interact most with adsorbed species,

but the user’s intuition and required input is limited.

This script can generate the necessary elementary reactions needed to define a reaction mecha-

nism, though it has not been applied to the simulator and currently acts as a stand alone process.

Additional steps must be taken to fully utilize the network generator. First, a method to split

the generated elementary reactions into separate mechanisms is needed. In addition to isolating

reaction paths, the option to include active sites needs to be provided as an option. Though re-

action networks can be generated, it is still necessary to convert them into elementary reactions

that can be used by the TAP simulator. This can be achieved by performing the experiments and

observing what products are formed, rather than relying on chemical intuition. With the study of

more complicated molecules21;67, an improved mechanism generator will likely be needed.
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2.3 Generating Steady-State Reaction Expressions from Elementary Re-

actions

A method to generate reaction equations based on the concept of rate-limiting steps has also been

developed. This script takes in a set of elementary reactions and iteratively assumes that each one

of the steps is rate-limiting and all others are in quasi-equilibrium, storing a reaction expression for

each one assumed. Sympy68 was used to manipulate each of these equations and isolate variables

while generating the rate expression. At times, the script is unable to isolate the expression due to

algebraic issues in Sympy. When this occurs, the user will be notified of the error and the script

will continue to generate rate expressions for the remaining rate-limiting steps.

The rate-limiting step generator has also not yet been incorporated into the TAP pulse simula-

tor. Symbolically manipulating these equations with Sympy is inefficient and new methods could

be used in future implementations of the program. Though including a rate-limiting step option

for users would be an interesting option for improving efficiency, it was not immediately necessary.

This feature will be offered in future versions of the package.
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3 TAP Pulse Simulator

3.1 The TAP Reactor Setup

Having a firm understanding of the reactor setup and what is being monitored is a crucial step to

fully appreciate TAP experiments. Figure 3 provides a simplified visual of a TAP reactor. The

thin-zone TAP reactor includes two equally sized inert zones on each side of a thin catalytic zone.

An inert zone is placed at the beginning of the reactor to allow the pulse to disperse uniformly

in the radial direction. It has been shown that a one-dimensional model is acceptable when the

length of the micro-reactor is at least three and a half times the radius of the reactor69. A length

below this has the chance of having radial and axial dispersion occurring simultaneously. Figure

4 shows how the TAP reactor is discretized for one dimensional simulations. This simplification

reduces the complexity of the equations and the computational burden on the associated solver.

The catalytic zone is made to be small (typically near one twenty-eighth the size) to reduce the

concentration gradient along the region. This "thin-zone" setup is preferred because it facilitates

the Y-Procedure analysis through better understanding of the transport.

The molecular pulse introduced to the reactor is commonly of nano-mole size for three reasons.

First, the transport of the molecules is well defined, remaining in the Knudsen regime, when the

pulse size is kept small. Even when the gas species interacts with the catalytic region, there will

be no change in the transport equations or variables. This is a crucial property of the TAP reactor

since it helps decouple the transport and kinetics of the system. Second, a limited pulse size

helps maintain an isothermal condition inside the reactor. There will be no detectable change in

temperature if the reaction is highly endothermic or exothermic when the pulse intensity is on this

order of magnitude. Third, introducing a narrow pulse to the TAP reactor will keep the catalyst

state, or surface coverage, well defined during each pulse. This is a major advantage and one of the

fundamental reasons TAP is desired, allowing users to gradually change the initial catalyst state

to a state more likely to be observed industrially. Rather than having an abrupt change in state,

a minor shift in the catalytic properties can be detected with each pulse, providing fundamental

insight into the role of surface chemistry on reaction kinetics.

3.2 Partial Differential Equations Describing TAP Reactors

The diffusion of a gas species through a TAP reactor, with a general reaction term, can be described

as follows:

ε
∂Ci(x, t)

∂t
− ∂

∂x
· (D ∇Ci(x, t)) = R(Ci, kj , ...) (1)
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Figure 3: Rudimentary representation of the thin-zone TAP Reactor70. A micro-reactor is packed
with two inert zones surrounding a thin catalyst region (much smaller than is presented). The
reactants are introduce with a pulse valve at the entrance of the reactor and diffuse through the
reactor toward outlet, where a vacuum is applied. A mass spectrometer is used to detect the gas
at the exit of the reactor.

Figure 4: Spatial discretization of a TAP Reactor. The length of the TAP reactor leads to 1-D
diffusion through the reactor. Gas concentrations are defined throughout the reactor, but surface
concentrations only appear in the second (catalyst) zone.

Where Ci represents the gas species concentration, ε is the void fraction of the inert or catalyst

(depending on the section of the reactor), D is the Knudsen diffusion coefficient and R is a combina-

tion of the reaction expressions used to describe the transformation of the specific gas species. The

reaction term, R, can be expressed as a system of ODEs, or an analytical function, and contains

all kinetic information70.

Many of the molecular species involved in the set of elementary reactions are reaction interme-

diates that will not leave the surface. Though some form of surface diffusion is likely occurring, it

is unlikely to be rate-limiting. For this reason, no diffusive terms are included for surface species

and the differential equations can be described as follows:

∂θi(t)

∂t
= R(θi, kj , ...) (2)
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Where θ is the surface coverage of species i. The boundary and initial conditions must also be

specified to run the simulation. At the entrance of the reactor, a Neumann boundary condition

can be imposed due to the use of a pulse valve, which is rapidly opened and closed:

∂Cg

∂x
= δt, x = 0 (3)

Cg = 0, x = L (4)

Where δt is a Dirac delta function and L is the length of the reactor. The flux at the inlet

boundary rapidly becomes zero as the simulation progresses. It is important to note that in the

finite difference implementations and analytical solution of the program, the exact size of the

molecular pulse can be included in the first cell of the mesh. It is also possible to substitute the

Dirac delta function approach to defining the pulse with a specific number of molecules in the

initial mesh point. Multiple species can be introduced into the reactor system simultaneously,

indicated by the index g. When a species is formed in the catalyst region but not pulsed into

the reactor, then the flux will be set to zero at the entrance for the duration of the pulse. When

more than one pulse is desired, time is reset to zero and another pulse is introduced to the system.

Typically, the gas flux for each species is undetectable before an additional pulse is supplied, but

there will be a difference in the surface composition from a previous pulse. All gas species will

have a concentration of zero at the exit of the reactor due to the applied vacuum conditions, and

rate is measured by the flux at the exit.

FEniCS requires users to convert PDEs into the variational, or weak, formulation. A thorough

understanding of how to convert equations from strong to weak form is beyond the scope of

this work. The variational form used in the simulator is presented below, as verified by FEniCS

tutorials71.

The transport of gaseous species through the TAP reactor in variational form is written as

∫ (
(Cn+1

i − Cn
i )vi

4t
+D∇cn+1

i · ∇vi
)
dx = 0 (5)

where ∆t is the size of the time step, vi is the test function for each of the gas species, and n

and n+ 1 are the current and next iteration of the solver, respectively. Reactive terms can easily

be added to the RHS of equation 5.
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Two subdomains are established in this program

Ω0 = [0, 1] (6)

Ω1 = [P1, P2] (7)

The second domain (Ω1), which represents the catalytic zone, divides the first domain (Ω0), which

represents the inert zones, into two separate regions. Parameters P1 and P2 represent the normal-

ized size of the catalyst zone, where the values can be changed based on the size of the catalyst

zone. The void fraction and diffusion coefficients, which will vary based on the material, can be

specified for each of the zones and applied to each subdomain.

3.3 User Input File

Some users could have little to no experience with Python. To help alleviate this problem, as well

as to assist in keeping track of the parameters used for a particular simulation, a csv (or xlsx)

file can be used as the simulator input. It will still be possible for more advanced users to work

directly with the Python interface and to develop their own processes in the package, but the csv

file will act as the primary user input. An example of the input file’s structure is broken up into

its components in Figure 1. The script reads the input file based on each of the four subsections

highlighted in the Figure. Though the order of each row in each of the four sections does not

matter, the order in which each section appears does. If a section is excluded or placed in the

wrong order, the script will terminate and return an error to the user. If no elementary reactions

are provided, the script will also stop executing and return an error upon which the user will be

asked to enter the required information.

The first section of the input script is committed to the ’Reactor Setup’. This section controls

the basic reactor conditions like length, fraction of the reactor length occupied by the catalyst,

temperature, number of time steps and reference diffusion information. The name of the output

folder is also specified in this section. It is important for the user to alter the output file name,

since keeping the name the same will cause the simulator to return an error and stop running.

In future versions of the package, automatically generating these file and directory names may

be implemented to avoid this issue. Names describing the temperature, reaction mechanism and

overall reaction are likely best for establishing a naming system. The csv file used for the simulation

will be copied into the generated folder to keep information organized.

The second section of the input script is the ’Pulse Composition’ section. This is primarily
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Input Name Value units

Reactor Setup



reactor type tap ’tap’ or ’t pfr’
time 1 seconds

time steps 1000 ————————
mesh size 280 ————————

length reactor 3.6 cm

factor 0.033 ————————

temperature 400 K

void inert 1 ————————

void cat 1 ————————

reactor radius 0.057 cm

solver method 1 ’0’, ’0.5’ or ’1’

time step option ’None’ ’None’ or ’S. Adapt’

ref rate inert 40 ————————

ref rate cat 40 ————————

ref mass 423 AMU

output file name ’example’ ————————

experimental data ’exp example’ ————————

Pulse Comp.



reactants number 1 –

inert pulse size 1e16 molecules

reactant ratio 1 ————————

number of pulses 1 ————————

mass list 32,44,40

initial surface coverage 0 atoms / cm2

Output Options



sensitivity analysis False ————————

display figure TRUE ————————

save figure TRUE ————————

store data TRUE ————————

MKM Analysis TRUE ————————

RRM Analysis TRUE ————————

fit parameters TRUE ————————

Elem. Reactions

 A -> A* 771.6 1

A* -> B 2 ————————

Table 1: The four separate components (reactor setup, pulse composition, output options and
elementary reactions) of the input csv/xls file used to simulate TAP reactor pulses. The input
variable names, example input values and the typical units (or lack there of) are shown. Offering
users the option to fill in the component in a file, rather than alter variables in a script, should
make it easier to setup and manage simulations in a directory. For more experienced users, the
original scripts are still available for direct editing.
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used to control parameters like the size of the inert pulse, the number of reactants being fed, and

the pulse intensity of each of these reaction species relative to the inert pulse. This section is also

used to specify the initial surface composition, as well as the number of pulses and the mass of the

gaseous reactants and products. The surface composition is presented in order of appearance in

the set of elementary reactions, with the exception of vacant sites, which will always conclude the

list. If multiple pulses are run, the surface composition at the end of a pulse simulation will be the

initial surface composition for the subsequent pulse. Similar to the surface composition, the user

must specify the pulse intensity of each gas, as well as the number of reactants. If the intensity of

each species changes from pulse to pulse, a set of intensities can be provided to the script, each of

which is separated by square brackets and commas. This section, as well as the two other sections,

are more likely to change between simulations, while the previous section is likely to stay the same

between simulations.

The third section of the input script is the ’Data Analysis Options’ section, where the user can

specify what processes they would like to complete during the simulation. Process options include

sensitivity analysis, MKM and RRM analysis. If any of these are defined as true, directories

will be generated inside of the folder generated when the simulation began. The names of these

directories include ’flux data’ for the simulated outlet flux data, ’thin data’ for the surface and gas

concentrations in the catalyst zone, ’plots’ for all the generated figures, ’RRM results’ for the results

of the Y-procedure and the reactivities found with the RRM, and ’sensitivity’ for the sensitivity

analysis for each of the gas species for each pulse. The file structure implemented should make it

easier for users to locate relevant information without sifting through many, similarly named files.

The fourth section of the input script is the ’Elementary Reactions’ section. The elementary

reactions defined must follow the same rules specified in section 2.1. The forward rate constant is

placed in the first column to the right of each elementary reaction. If the reaction is reversible, then

an additional rate constant is included to the right of the forward rate constant. If an elementary

reaction is specified and no rate constant is defined, or only a reverse rate constant is specified,

the script will return an error and specify that a parameter was not appropriately defined.
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3.4 Simulator Validation and Benchmarking

3.4.1 Confirming the Accuracy of the TAP Simulator

Since it is intended for public use, validation of the simulator is a crucial step in development.

Without ensuring the synthetic data is accurate, other research groups might avoid using it or,

even worse, use it and later find the generated data to be inaccurate. Analytical solutions to the

thin-zone TAP reactor have been used to solve for the outlet flux over time for a variety of reaction

conditions. An extensive derivation can be found in a publication by Gleaves et al.69, but the

principle behind the method is that a fast Fourier transform can be performed on the differential

equations describing each zone. The Fourier transform provides the user with a matrix that takes

in a concentration and flux at one end of a zone and returns the concentration and flux at the

opposite end of the same zone. This results in a "transfer matrix" formulation relating inlet and

outlet concentrations in each zone. A global matrix can then be constructed by combining each

of the separate matrices (zones). Upon construction, the user will have the ability to transform

the concentration and flux matrix at a particular boundary in one zone of the reactor and trace

the solution to another boundary in the system (inlet to outlet, outlet to catalytic zone, etc.).

Since outlet flux is what is commonly measured, only a subsection of the expression is necessary

with consideration to the boundary conditions: a defined inlet flux and a concentration of zero

at the outlet. The problem with these analytical solutions, and the reason simulators are needed,

is that they can only be applied to linear systems of equations. This is a major drawback since

real catalytic reactions frequently involve non-linear reaction equations. Even with this limitation,

using analytical solutions to confirm that transport and simple kinetic expressions are handled

correctly will help increase confidence in the simulator.

The data used for validation was provided by Evgeniy et al. The linear reaction considered for

validation is species A adsorbing on the catalyst irreversibly (A -> A*) and desorbing as species

B irreversibly (A* -> B). An inert is also passed through the system, which acts as an internal

reference for diffusion. The diffusion coefficient for each species is set to 20 cm2/s. The void

fraction of the inert and catalyst regions are both equal to 1. Though a void fraction of 1 indicates

an empty reactor, having this value will simplify the math, but not diminish the results of the

validation. The total length of the reactor is 3.6 cm. The simulation time for the validation data

is 4.1 seconds, but the time axis is set between 0 and 1 seconds to give a clearer indication of

potential differences between the two. There are no pre-adsorbed species present on the surface

either. The rate constants used for each elementary reaction, k1 and k2, were set to 1 and 2.

Figure 5 shows the convergence of the FEniCS solution to the analytical solution from the
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Fourier transform as the number of time steps increases. Six separate time step sizes were used,

including 10, 50, 100, 500, 1000 and 5000. As expected, 10 time steps gives an inaccurate, coarse

solution. Simulations with time steps of 50 and 100 have a higher accuracy, but noticeably deviate

from the analytical solution. Once 500 time steps are made, the solution curves appear to converge.

There is only a minor change in each curve observed between 500 and 5000 time steps. The curves

representing the inert and species B do not reach a dimensionless flux value of zero before the

1 second cutoff is made. To show that these curves also converge over the entire 4.1 second

simulation, figure 6 is presented. The number of time steps used for these simulations is 2050 and

4100, which coincides with the 500 and 1000 time steps used in figure 5. In general, the FEniCS

based simulation curves are indistinguishable from the analytical solution.

Figure 5: A simulated TAP pulse involving a linear reaction for 10, 50, 100, 500, 1000 and 5000
time steps. The FEniCS curves for A, B, and the inert converged to the analytical solution as the
number of time steps increased from 10 to 5000.

3.4.2 Simulation Efficiency

Since a primary aim in developing this package is the efficient simulation and processing of TAP

pulses, it is important to gauge simulation time and accuracy at different conditions/mechanisms.

This should highlight where improvements are needed in future versions and could help determine

optimal simulation parameters for future users. The mechanisms used in this section are defined in

table 2, and include the irreversible and reversible adsorption of a single gas species, the irreversible

and reversible adsorption of two gas species, the reversible adsorption of two gas species and a three

and four step reaction mechanism consisting of three and four gas species. The influence of the

number of elementary reactions and reversibility will also be gauged from these examples. Similar
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Figure 6: Similar results from figure 5 presented on a time scale of 0 to 4.1 seconds. Two time step
sizes, 2050 and 4100, are used to coincide with the 500 and 1000 time steps found in figure 5. No
significant deviation from the analytical solution is observed at either scale.

Mechanism Set of Elementary Reactions
I 1(I)
II 1(R)
III 1(I), 2(I)
IV 1(R), 2(R)
V 1(R), 2(R), 3(R), 4(R)
VI 1(R), 2(R), 3(R), 4(R), 5(I), 6(I)

Elementary Reactions
1 A + * ↔ A*
2 B + * ↔ B*
3 C + * ↔ C*

4 A* + B* ↔ C*
5 D + * ↔ D*

6 A∗ + C* ↔ D*

Table 2: A set of mechanisms used to investigate simulation efficiency alongside the set of elemen-
tary reactions used in each mechanism. ’I’ and ’R’ next to each elementary reaction represents
irreversible and reversible reactions, respectively.

to efficiency analysis for these simple reaction mechanisms, the efficiency will be observed for

carbon monoxide oxidation reactions presented in section 4.

The influence of the mesh size on the time per simulation is shown in figure 7. The first

four mechanisms show simple linear relations, each getting mildly steeper with the addition of

complexity. Adding reversibility to the adsorption of species A causes a minor but noticeable shift

in the time requirement. The simulation of two simultaneous, irreversible adsorption process does

increase the required time of simulation, but once again it is only a mild shift. When these two

adsorption processes are altered to involve reversibility, a minor, almost unnoticeable change in

the simulation time is observed. If a third and fourth reversible adsorption process are included,

a similar increase in the initial simulation time and change with respect to mesh size would likely

be observed. The two relatively complex mechanisms (V,VI) involving surface reactions show a

sharp increase in the required time per simulation. The pre-factor increases from the two to three

second time range to 11 and 12 seconds. Furthermore, the slope of each is significantly steeper.
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Increasing the mesh size for these later mechanisms will result in a longer simulation time than

an increase in mesh size for the simpler mechanisms. These two mechanisms are also notably

noisy compared to the other two. Where the first four mechanisms show a small increase in the

simulation time when going from a mesh size 100 to 500, the last two mechanisms nearly triple from

ten to thirty seconds. It seems that the addition of surface-surface reaction causes a significant rise

in the simulation time, but adding a second surface-surface reaction does not cause another major

shift in the time requirement. To further probe the influence of the mesh size on the simulation

time, the required simulation time was monitored for different carbon monoxide oxidation reaction

mechanisms in Figure 8. Similar to the general mechanisms, the first, less complicated mechanisms

show only mild increases in the simulation time with an increase in the mesh size. The Eley-Rideal

mechanism requires the least amount of time over the mesh range, while the Langmuir-Hinshelwood

and Langmuir-Hinshelwood/Eley-Rideal mechanisms take similar amounts of time. The more

complicated mechanism, which involves four separate reactions, involves more noise and a steeper

increase in simulation time with the mesh size.

Figure 7: Influence of the mesh size on efficiency for a set of simple reaction mechanisms described
in Table 2.

The influence of the number of time steps on the total simulation time for a set of reaction mech-

anisms are presented in Figure 9. For a small number of time steps, all the reaction mechanisms

have similar simulation times. However, as the complexity of the mechanisms increase, the rate at

which simulation time increases as the number of time steps increases. The Eley-Rideal (E-R) reac-

tion mechanism requires the least amount of time over the range of time steps, with approximately

five seconds being required for a simulation with 1000 time steps. The Langmuir-Hinshelwood

(L-H), as well as the Eley-Rideal/Langmuir-Hinshelwood (E-R/L-H), reaction mechanisms show
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Figure 8: The change in script runtime depending on the mesh size (2 - 1000) for a mesh time
step size of 500.

Figure 9: The change in script runtime depending on number of time steps (2 - 1000) for a mesh
size of 280.

a noticeable increase in the time requirements with an increasing number of time steps. Finally,

the Langmuir-Hinshelwood reaction with the availability of multiple active sites requires the most

time by a significant margin. For a simulation involving 1000 time steps, approximately eighteen

seconds is required.

It is important to note that the forward mode solver relies on a fixed time stepping method,

while other solving methods in the field are able to incorporate adaptive time stepping methods.

It is likely that incorporating a method to change the time step would result in significant speed
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ups in simulating TAP pulses with FEniCS. Some methods are currently being developed and do

show promise48, but current versions have not yet been implemented in FEniCS. For this reason,

the current code has been set up to make it easy to swap out the current time stepping method

with an alternative, currently unknown time stepping method. The general goal of the package is

to develop a versatile and efficient simulation package for TAP pulses.

Having tested the efficiency of the simulator in terms of the number of time steps and mesh size,

two major conclusions can be drawn. First, the time does increase sharply for some mechanisms

and more complex mechanisms will likely require finer mesh sizes to properly handle stiffness.

Though the choice of mesh and time step size will also depend on the convergence of the curves, a

mesh size between 300 and 400 should be acceptable, while a time step size between 600 and 1000

should also be acceptable. Second, the simulation time for fine mesh and step sizes is reasonable.

Thirty seconds is an acceptable simulation time, though improvements would be beneficial. One

simple fix would be to include a adaptive time stepping method, but, unfortunately, no form of

this is available in FEniCS.
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4 Application to Carbon Monoxide Oxidation

Due to it’s relatively simple reaction mechanism, the catalysis community has often used carbon

monoxide oxidation to assist in method development. For this reason, several mechanisms and

their kinetic parameters are available in the literature72. The types of mechanisms studied include

Eley-Rideal (E.R.), Langmuir-Hinshelwood (L.H.) and E.R./L.H. combinations. Each of these

mechanisms involve pre-adsorbed oxygen, meaning no oxygen is pulsed in with the carbon monoxide

and inert. This could be seen as an unnecessary simplification, but it actually offers two useful

illustrations. First, it shows the packages ability to predefine the concentration of surfaces species

beyond the standard active sites is available. Second, it gives a glimpse into how the state of the

catalyst can evolve with time, since oxygen will be consumed during each pulse. The occupation

and consumption of surface species and sites is a common occurrence in TAP experiments and is

one of the main reasons smaller pulses can be useful in defining the evolution of the surface.

Synthetic data for each carbon monoxide reaction mechanism was generated with the developed

python package. Previously, the user would have to derive and manually enter the equations

describing the kinetics and transport of the system. This is no longer true and the user will only

have to enter the necessary kinetic parameters alongside the desired elementary reactions.

4.1 Modeling Conditions

The length of the reactor was set to 2.8 cm, with a catalytic zone length of 0.1 cm located at the

exact center of the reactor. The radius of the reactor was set to 0.24 cm, which falls within the

criteria for 1D modeling69 and the temperature was set to 400 K. Explicit rate constants were

established for each of the following reaction mechanisms, and the diffusivity for each gaseous

species are calculated with Graham’s law and therefore depended on temperature in the simulator.

The masses for each species are provided as a list in atomic mass units. The inlet pulse size was set

to 3 ∗ 1016 molecules and the ratio of carbon monoxide to inert being pulsed in was set to one. All

simulations only involved a single pulse, with the exception of the mechanism developed by Reece

et. al. Ten separate pulses are included for this model to show that the evolution of the surface

can be visualized and to show a more complex case for the sensitivity analysis. The void fraction

was set to 0.53 for both the inert and catalyst zones. Each of the simulations involved 600 time

steps over a two second window. The mesh size was also set to 280, which was used in the original

application of these mechanisms in the TAP community.
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4.2 Simulation of CO Oxidation

The first mechanism simulated is Eley-Rideal carbon monoxide oxidation. Consisting of only a

single elementary reaction, it involves the direct reaction of gaseous carbon monoxide with pre-

adsorbed oxygen species (equation 17). Carbon monoxide does not adsorb on the surface in this

reaction mechanism. The dimensionless flux for each of the gas species (carbon monoxide, carbon

dioxide and an Inert) are shown in Figure 10.

CO +O∗ → CO2 + ∗ (8)

Figure 10: TAP Simulation of CO Oxidation through a Eley-Rideal Reaction Mechanism.

The second mechanism simulated is the Langmuir-Hinshelwood carbon monoxide oxidation.

This mechanism consists of two elementary reactions, including the reversible adsorption of carbon

monoxide (equation 9) and the subsequent reaction of adsorbed carbon monoxide with pre-adsorbed

oxygen species (equation 10). The dimensionless flux for each of the gas species (carbon monoxide,

carbon dioxide and an Inert) are shown in figure 11.

CO + ∗ ↔ CO∗ (9)

CO∗ +O∗ → CO∗2 + ∗ (10)

It is interesting to note the difference in location of the carbon dioxide peaks between figures 10
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Figure 11: TAP Simulation of CO Oxidation through a Langmuir-Hinshelwood Reaction Mecha-
nism.

and 11. In the Eley-Rideal reaction mechanism, the peak is closer to 0.03 seconds, whereas the peak

in the Langmuir-Hinshelwood reaction mechanism is closer to 0.05 seconds. This is a previously

identified feature in the carbon monoxide reactions, since the formation of carbon dioxide occurs

simultaneously with the consumption of carbon monoxide in the Eley-Rideal mechanism, whereas

the carbon monoxide is not instantly converted in the Langmuir-Hinshelwood mechanism (i.e.

carbon monoxide can linger on the surface before conversion). More carbon monoxide is also

consumed in the Langmuir-Hinshelwood reaction mechanism, with lower carbon monoxide and

higher carbon dioxide peaks. These qualitative signatures have been used previously for mechanism

identification72.

The third mechanism simulated is a combination of Eley-Rideal and Langmuir-Hinshelwood

carbon monoxide oxidation. This mechanism consists of the three previously mentioned elementary

reactions (equation 17 to 10) and the subsequent reaction of adsorbed carbon monoxide with pre-

adsorbed oxygen species. The dimensionless flux for each of the gas species (carbon monoxide,

carbon dioxide and an Inert) are shown in figure 11. With the combination of both reaction

mechanisms, both are found to contribute to the conversion of carbon monoxide. The carbon

dioxide peak in this figure is noticeably higher than in the previous two, since there are two routes

to formation.

The final carbon monoxide oxidation reaction probed involved a Langmuir-Hinshelwood mech-

anism involving two separate types of pre-adsorbed oxygen types, denoted OA* and OB*. This

particular mechanism has been proposed by Drs. Reece and Friend at Harvard based on surface
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Figure 12: TAP Simulation of CO Oxidation through a Simultaneous Eley-Rideal and Langmuir-
Hinshelwood Reaction Mechanism.

science experiments and encompasses elementary reactions 19 to 14. These elementary reactions in-

volve the reversible adsorption of carbon monoxide, the irreversible desorption of carbon monoxide,

and the irreversible reaction between adsorbed carbon dioxide and the two pre-adsorbed reactants.

There is one major difference between the previous carbon monoxide simulations: no open adsorp-

tion sites are defined or included in the elementary reactions. This simplifies the equations, but

offers an additional equation type to be considered.

CO ↔ CO∗ (11)

CO∗ +OA∗ → CO∗2 (12)

CO∗ +OB∗ → CO∗2 (13)

CO∗2 → CO2 (14)

Though these mechanisms are relatively simple, they do show the ability of the workflow to

simulate a variety of mechanisms involving different sets of elementary reactions. There are some

improvements that can be made (including multiple sites), but the current implementation is

flexible enough to handle many common reaction mechanisms.
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Figure 13: TAP Simulation of CO Oxidation through a Langmuir-Hinshelwood Reaction Mecha-
nism with Two Separate Types of Pre-adsorbed Oxygen.

5 Incorporation of Sensitivity Analyses

A sensitivity analysis is a way for a user to determine the influence of parameters on some desired

functions. In the case of TAP reactors, the parameters are the kinetic rate constants and the

desired functions are the outlet flux for the monitored gas species. Though a sensitivity analysis

is identical to evaluating the Jacobian, there is a use in analyzing sensitivity analyses outside

of optimization. Typically, a sensitivity analysis is applied when a user has some confidence in

the current values of the parameters. For example, the Degree of Rate Control, developed by

Campbell et al.73;74;75, is the standard in the field of computational catalysis for determining how

influential each kinetic parameter is in a set in a set of elementary reactions and acts as a chemically

meaningful application of sensitivity analyses. Typically, the DRC method is applied to steady

state experiments and relies on the user to manually change parameters and rerun the script. As

highlighted by Dr. Campbell himself, this method has had few applications to transient kinetics74.

A general expression for sensitivity is as follows:

DRC =
kj
Ri

∂Ri

∂kj
(15)

where kj is a particular rate constant and Ri is the rate of reaction or turnover frequency (TOF)

of a particular reaction. This form of the sensitivity analysis allows the values to be normalized

between -1 and 1, making it easier to draw conclusions about the reaction network. Though

possible to apply this directly to TAP with the application of the Y-Procedure, a modified version
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Figure 14: A common visual used to explain the fundamental concept behind automatic differ-
entiation. The above graph shows how a given equation (f) can be decomposed into separate
components using the chain rule. The equations in the bottom left show how the derivative ex-
pression is constructed. The process will scale with the number of input parameters for constructing
the gradient. The equations in the bottom right show how reverse mode AD works, which is a
more practical than forward mode when fewer outputs are present than inputs.

of the equation could be more appropriate, written as

DRCTAP =
kj
Fi

∂Fi

∂kj
(16)

where Fi is the outlet flux of the reactor. This new form of the Degree of Rate Control is called

the Degree of Flux Control, due to its relationship to the outlet flux of the reactor. This type of

sensitivity analysis will allow users to observe when rate constants are influential throughout the

progression of a TAP pulse over a series of reaction pulses.

5.1 Applying Automatic Differentiation

Automatic differentiation is a unique way to evaluate derivatives, but the underlying mechanics

and utility are unfamiliar to most engineers. Figure 14 provides an example of how automatic

differentiation works. Some function f(x, y) is specified and its symbolic derivative may not im-

mediately be apparent. It’s possible to apply the rules of differentiation learned in calculus by

hand or programatically, but this could be time consuming or computationally difficult. The chain
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rule, however, can be applied programatically and the function can be rewritten and deconstructed

until a series of simple expressions remain for the program. From here, the derivative of each ex-

pression (Wi) can easily be determined and multiplied to form a new expression representing the

exact derivative of the function in terms of each component (i.e. the gradient of f(x, y)). Two

separate methods of automatic differentiation, known as the forward and reverse mode, are avail-

able. Forward mode allows for the derivative to be evaluated based on values of the input. It is

named forward mode because it follows the natural progression in which expressions are typically

evaluated. Specific parameters (x,y,z,...) can then be fed to the new expression and a continuous

value of the derivative can be determined. If the goal is to determine the gradient of a parameter

in terms of a large number of output functions, forward mode automatic differentiation is desired.

If, however, there are a large number of input parameters and a few monitored output values (a

common circumstance in catalysis), then reverse mode AD is desired. Reverse mode takes some

output value and propagates information backwards to determine the gradient of the output value

in terms of all parameters.

A more detailed discussion is beyond the scope of this work, but AD is implemented in FEniCS

through the use of model adjoints that take advantage of the structure of the differential operators48

. It is important to note that the derivatives found through automatic differentiation are exact

and only limited by floating point errors. To achieve the accuracy of automatic differentiation,

numerical differentiation requires a very small step size, which can often be difficult to achieve due

to round-off error. On the other hand, using a step size that is too large results in inaccuracies in

the value of the derivative due to the approximation. Further, it is necessary to remember that

optimization requires the minimization of a function. The degree to which each of these parameters

influences the value of this function is determined by the Jacobian. Accurate derivatives in the

Jacobian are critical to the success of an optimization process.

5.2 Sensitivity Analysis Efficiency

To better understand the time requirement for performing a sensitivity analysis, as well as to gain

insight into the time requirements for the evaluation of the Jacobian, a simple efficiency analysis

was performed. Figure 15 shows how the time required to determine the sensitivity changes

with the time step for two separate mechanisms. The first reaction mechanism (E.R./L.H.) is

the combined Eley-Rideal/Langmuir-Hinshelwood model presented in section 4 and the second

mechanism (E.R./L.H. w/A) is the same reaction with the addition of a simple, non-reactive

adsorption process (A + * <-> A*). The plot shows an important efficiency challenge. Over the

first time steps, the time required to determine the sensitivity of each parameter is on the order
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of seconds. This rapidly increases to minutes and approaches hours per iteration over the course

of the sensitivity analysis. The observed linear trend indicates that the addition of a time step

results in a nearly fixed increase in the required time. This suggests that a sensitivity analysis

should only be performed once all other parameters are set. With the current implementation, it

seems the total amount of time required to perform a sensitivity can be determined as follows

NT∑
n=1

n · t (17)

where n is the iteration, NT is the total number of iterations and t is the time required for each

backward step in time. Though it is known t increases with the complexity of the equations, it is

currently not known how to predict exactly how this value will scale.

Although the accuracy of the sensitivity analysis remains unparalleled by alternative methods,

determining the sensitivity of each parameter is still costly. When the sensitivity is calculated at

each time step, it must trace back to the beginning of the first time step during each calculation.

It also takes approximately the same amount of time to calculate each sensitivity. This leads to

a relatively inefficient, though thorough, evaluation of the sensitivity over time. Nonetheless, the

time is still tractable in the context of computational catalysis, where DFT simulations can take

days or weeks.

Figure 15: The time required to determine the sensitivity at each iteration of the sensitivity anal-
ysis. The two mechanisms investigated were an Eley-Rideal/Langmuir-Hinshelwood combination
with and without the additional reversible adsorption of species A. Though E.R./L.H. process
already took a significant amount of time per iteration, the time required is more than doubled
when an additional adsorption process is included.
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5.2.1 Application of the Sensitivity Analysis

A sensitivity analysis was performed on the carbon monoxide oxidation reaction mechanism with

multiple reactive oxygen surface species, originally discussed and simulated in section 4. Figures

16 through 20 show the sensitivity of each gas (carbon monoxide and carbon dioxide) relative to

each kinetic parameter. The pulsed inert does not interact with the catalyst material, so the inert

was excluded from these figures. In each of these figures, ten separate curves are plotted for each

gas species, representing all ten pulses introduced to the reactor during the experiment. The color

of each curve indicates the pulse order of appearance, with purple and red showing the first and

tenth pulses, respectively. A vertical color bar is included with each figure and indicates the color

associated with each pulse. Each of the pulses in-between purple and red follows the associated

color trend found on the color bar. The reaction and rate constant being monitored, as well as the

line pattern used to represent each gas, are presented in the upper and lower right corners of each

figure. To make the sensitivity analysis correspond to the degree of rate control analysis, and to

normalize the curves, the sensitivity was multiplied by the rate constant and divided by the outlet

flux at each time step for each gas species.

These figures show how influential each parameter is on each of the gasses outlet flux for the

duration of the pulse. A positive value indicates an increase in the outlet flux from an increase

in the kinetic parameter, while a negative value indicates a decrease in the outlet flux from an

increase in the kinetic parameter. The extent to which these rate constants influence the outlet

flux are not constant during the pulse and typically follow the standard TAP pulse curve. This

should be expected, since the rate constant will be more influential in the presence of a higher gas

concentration, i.e. around the peak of the pulse. This also leads to little insight being gained from

the tail end of the pulse. Having an increase in kinetic parameters will result in a minimal shift in

the outlet flux in the absence of reactants. Though these figures do follow general trends, unique

features can be observed.

Figures 16 and 17 show the sensitivity of the gas species to the forward (Ke0) and reverse

(Kd0) rate constants of carbon monoxide oxidation. As expected, increasing the forward rate

constant will result in a reduced outlet flux of carbon monoxide, while an increase in the reverse

rate constant will result in an increased outlet flux of carbon monoxide. The outlet flux of carbon

dioxide is also impacted by shifting these parameters, but in an opposite manner.

The general shape of the sensitivity curves shown in Figure 20 are the most unique among the

the sensitivity analyses for each parameter. Instead of having the traditional TAP pulse shape, the

curve goes from a positive influence on the outlet flux at the start of the pulse and transitions to
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Figure 16: Sensitivity of carbon monoxide and carbon dioxide to the forward rate constant of the
first elementary reaction (Ke0) over ten pulses.

Figure 17: Sensitivity of carbon monoxide and carbon dioxide to the reverse rate constant of the
first elementary reaction (Kd0) over ten pulses.

a negative influence around 0.03 seconds. This can be explained by the meaning of a higher rate

constant for the duration of the pulse. If all the reactants are rapidly converted to the products

and diffuse to the exit of the reactor, you will have less available for reaction and diffusion later.

This results in a higher flux at the beginning of the pulse and a lower flux later.

Though computationally expensive, performing a Degree of Flux Control can provide unique

kinetic insights about a catalyst. For more complex reactions, this method could help identify the

rate limiting steps when they are less obvious during different stages of the pulse, similar to the
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Figure 18: Sensitivity of carbon monoxide and carbon dioxide to the forward rate constant of the
second elementary reaction (Ke1) over ten pulses.

traditional DRC. This application also highlights the accuracy of the derivatives generated from

AD. It is unlikely that numerical differentiation would lead to derivatives of a similar stability.

The computational burden could also be minimized by truncating the process and only calculating

derivatives at early times when it is less expensive. Though improvements can be made, this is a

useful addition to the TAP pulse processing workflow.

Figure 19: Sensitivity of carbon monoxide and carbon dioxide to the forward rate constant of the
third elementary reaction (Ke2) over ten pulses.
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Figure 20: Sensitivity of carbon monoxide and carbon dioxide to the forward rate constant of the
third elementary reaction (Ke3) over ten pulses.

6 Application of Parameter Fitting to TAP Models

A method to fit kinetic parameters to experimental data based on user defined reaction mecha-

nisms has been developed. Some successful optimization methods for fitting kinetic parameters

to TAP pulses have previously been developed and applied76;77;78. Of the applications, the most

notable was performed by Kondratenko et al., who studied how well several different nitrogen oxide

decomposition mechanisms fit to the experimental TAP data79, with a mechanism proposed by

Heyden et al. showing the strongest correlation80. The method implemented to fit parameters to

these mechanisms was developed Wolf et al.81;82;83. Though it was able to successfully differen-

tiate between mechanisms and fit parameters, it did struggle with efficiency and required strong

initial guesses for the parameters to converge. More recent successful parameter regression meth-

ods have been implemented, including an application to the oxidative coupling of methanol over a

nano-porous gold catalyst84. Though it did assist in understanding the mechanism, the regression

method also required strong initial guesses from separate single crystal surface science experiments

and fitting times ranged from hours to days. Requiring parameters from experimentation to fit

parameters is a major limitation, especially when these experimental methods are not optional or

the data is not available.

One underlying challenge in determining the kinetic parameters with these methods is the ac-

curacy of the derivatives used during optimization. Wolf et al. specifically highlighted this struggle

and noted that a "straightforward, although less efficient, gradientless method was used, since in

the present problem the concentration of non-measurable surface species had to be calculated nu-
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merically. This prevented any reliable use of gradient techniques which require precise values of

derivatives of the differential equations."81 This is where FEniCS and automatic differentiation is

particularly useful, since the gradients generated through automatic differentiation have a much

higher accuracy than traditional numerical differentiation methods85. In the following subsections,

the parameter fitting method will be applied to the diffusion coefficients of multiple gasses, the

kinetic parameters of a simple linear reaction, and several examples of carbon monoxide oxidation.

The last carbon monoxide oxidation example will include a separate oxygen pulse to provide a

more complex example. These examples will not only show the programs ability to fit parameters,

but will also outline potential challenges and areas where improvement will be needed.

6.1 Fitting Parameters with FEniCS

To fit parameters to experimental data, it is required to define an objective to be minimized.

Proper definition of the objective function can be crucial in optimization, as noted by Savara et

al86. In the case of TAP reactors, the objective function (NT ) is defined as follows

J =

∑
i

(
1

2

∫ L

L−4x

|ui(x, t)− ui,obs(x, t)|2dx) (18)

where i represents each of the points considered, L is the length of the reactor, ui is the concen-

tration profile of the forward solution, ui,obs is the experimental data, and 4x is the mesh step

size. The inner product is evaluated over the spatial step at the reactor outlet, i.e. L − 4x to

L. The objective function consists of a series of inner products between the data points and the

outlet concentration of the FEniCS simulation. During the forward simulation, when an exper-

imental data point is needed for a specific gas, an objective function will be defined, assembled

and added to the final objective function. Since calculating the gradient for all data points can be

time intensive, it is not recommended for the user to define their objective function over all the

data points generated. Instead, it is suggested that the number of points be reduced with a few

potential options.

First, an objective function can be defined at the peak of each of the gas species curves. The

program will automatically locate this peak in the data for each gaseous species and store its

associated time. Second, five points can be distributed over the curve to define the objective

function. One way to do this would be to again use the peak as a point, but also include two

points before and after the peak. The two points to the left of the peak would be at the first time

step and also at the halfway point between the initial point and the peak. The two points to the
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right of the peak would be located at 50% and 20% of the peak height. The choice of five points

can be thought of as a net draped over the data, where the fundamental shape of each outlet curve

can be captured without specifying all points. Last, the objective function could be modified to

involve all points in the experimental data before the pulse curve reaches a negligible size (i.e.

becomes flat). For more complex reaction networks, the use of all reaction points could be used.

For all of these methods, it is important to keep in mind the time required to calculate the

jacobian. Looking back at figure 15, it can be noted that the further along the simulation is, the

more time it takes to determine the derivatives. This means that there is a significant difference

between the cost of the derivative for the points occurring before the peak and those following it.

So having a larger number of points before the peak and including only a couple after could also

be the optimal circumstance for fitting these parameters.

Though the objective function and Jacobian are evaluated with FEniCS, the optimization is

performed through Scipy. Currently, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) optimization method, which is the default in FEniCS, is used. Other methods could be

tested for efficiency and accuracy improvements, but a proof of concept is the current motivation.

Parameter estimation is included in the functionality of the simulator. The location of the experi-

mental data can be specified with the user input file. Currently, the number of data points must

match the number of time steps exactly. This could be a challenge going forward, since the values

could vary significantly. In future implementations, if a desired point for fitting is not exactly

determined in the simulator, can be used for interpolation to obtain a value as close as possible

to the desired point. Further, this data does not include noise, which will always be present in

experimental data. Testing the programs ability to fit parameters to noisy experimental data, as

well as developing methods to reduce this noise, will be the subject of future studies. Currently,

simple boundaries are applied to the optimization method (i.e. rate constants or diffusion coef-

ficients cannot be negative). Stronger bounds will likely be necessary for fitting more complex

reaction equations in future implementations.

6.2 Diffusion Coefficients

Before applying the parameter fitting method to kinetic parameters, the diffusion coefficients for

multiple gases were simultaneously fit to test the implementation. Figure 21 shows the steps taken

through the minimization process to arrive at the correct diffusion coefficients. Since the diffusion

coefficients used in TAP reactors are often defined through Grahams law of diffusion, the values

presented in the figure are the masses of each species. The initial guess for the mass of each
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species was four-hundred (an intentionally poor guess for the visualization of the method), while

the actual masses were 10, 50 and 100 for gaseous species A, B and the inert, respectively. This

showed that multiple parameters could simultaneously be fit with the defined objective function

and optimization method. The parameter fitting method is able to accurately determine the masses

of each of the gaseous species with only a single point for each gas species being specified in the

objective function. Though it was successful with a single point, future methods will likely require

multiple points on the curve, even if it is desired to fit the diffusion coefficients alone due to noisy

data. At the moment, noise free data is used in place of true experimental data, but methods exist

for adding noise and this will be a challenge for future work.

Figure 21: The simultaneous fitting of diffusion coefficients for three separate gas species, with the
solid lines representing the experimental data provided by the user and the dashed lines representing
curves during each iteration. The same initial guess was made for all three gases (left panel). The
parameters are nearly converged by the sixth iteration (right panel). To reduce the computational
burden on minimizing the objective function, the curves were only fit to the red peaks.

6.3 Linear Reaction Model

Though useful for validation, the Knudsen diffusion coefficients will typically be known for the

gases studied through the application of Graham’s Law, and will not require parameter fitting. To

test the parameter fitting method on a more challenging system, while avoiding non-linear models,

the parameters of the linear reaction mechanism introduced in section 3.4 were fit. This mechanism

involves two reactions: the adsorption of species A and the desorption of adsorbed A as species B.

Figure 22 shows the steps the optimization method took to determine the parameters. Initially,

the program takes multiple steps in altering the second rate constant. Once the curve representing

B was close to the experimental result, the optimization method began making larger changes to

the first rate constant. This resulted in a decrease in the size of curve A, but also an increase in the

size of curve B. After a few iterations with decreases in A and increases in B, both curves began to

converge to the exact solution with accurate kinetic parameters. The fitting of parameters to this

linear model also took more iterations than the previous diffusion example. This is likely due to

the challenge of fitting two curves that are related to each other through the reaction expressions.

Initial changes to the second rate constant, responsible for producing B, will initially have little
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impact on the minimization of the objective function. This is due to the initial guesses (which were

zero) and the lack of A present on the surface, which will lead to a limited change (i.e. insensitive

to this parameter) in the curve for B.

Figure 22: The fitting of two forward rate constants for a simple linear reaction mechanism (pre-
sented in section 3.4). Though a straight forward implementation, it does show that it is possible
to determine the kinetic parameters of a reaction mechanism with the current implementation

6.4 Carbon Monoxide Oxidation

6.4.1 Eley-Rideal / Langmuir-Hinshelwood Parameter Fitting to Carbon Monoxide

Oxidation Synthetic Data

The parameters of Eley-Rideal and Langmuir-Hinshelwood reaction mechanisms were fit to two

sets of synthetic data, generated from the mechanisms being fit. These were both relatively simple

reaction mechanisms, involving only one or two elementary reactions. This offers an opportunity

not available in the previous two examples: testing the fit of two separate mechanisms on the same

set of experimental data to see if a conclusion can be drawn about the actual mechanism.

Figure 23: Fitting an Eley-Rideal carbon monoxide oxidation reaction mechanism to synthetic
data generated from the same Eley-Rideal mechanism. The actual rate constant (Ke0) was set to
1e-3. The bold and dashed lines represent the synthetic and experimental data, respectively, with
carbon monoxide, carbon dioxide and the inert appearing in cyan, blue and red.

First, the Eley-Rideal mechanism was fit to the synthetic Eley-Rideal and Langmuir-Hinshelwood

data. Figures 23 and 24 show the steps taken by each mechanism to arrive at their respective so-

lutions. Similar to the linear model fitting process, an initial guess of zero was used for each. The

initial step taken by the process over shoots the value of the forward rate constant, resulting in a
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Figure 24: Fitting an Eley-Rideal carbon monoxide oxidation reaction mechanism to synthetic data
generated from a Langmuir-Hinshelwood mechanism. The forward (Ke0) and reverse (Kd0) rate
constants were set to 1e-3 and 10, while the desorption rate constant (Ke2) of carbon dioxide was
set to 1e-3. The bold and dashed lines represent the synthetic and experimental data, respectively,
with carbon monoxide, carbon dioxide and the inert appearing in cyan, blue and red.

nearly zero value for the carbon monoxide curve and a carbon dioxide curve resembling the size

of the inert curve. After approximately seven iterations, the rate constant is able to converge to

a value close to the correct answer, 1e-3. Fitting the Eley-Rideal mechanism to the Langmuir-

Hinshelwood data was less successful. The mild elongation of the carbon monoxide curve is unable

to be matched when fitting the Eley-Rideal mechanism. This gives some indication that a mecha-

nism can be identified if an attempt to fit a simple mechanism to a complex mechanism is made.

This could also mean that trying to observe the correct mechanism could rely on trying to fit the

simplest mechanism first.

Second, synthetic data for the Langmuir-Hinshelwood reaction mechanism was generated and

the Eley-Rideal and Langmuir-Hinshelwood mechanisms were fit. Figures 25 and 26 show the steps

taken by each mechanism to arrive at their respective solutions. When fitting to the L.H. mech-

anism, the reverse rate constant was not determined and little change was observed between the

iterations. This could be an indication that the constant is not sensitive to the objective function

or it could be a sign that not all parameters can be determined using the current method. Five

points were also used to fit kinetic parameters to the Langmuir-Hinshelwood reaction mechanism

based on each set of synthetic data, too, and are presented in figures 27 and 28. Though the

number of iterations was lower compared to the single point fitting method, each iteration did

take longer. With this added information from multiple pulses, the parameters were found to fit

no better and no immediate conclusion about the validity of the mechanism could be made. One

notable change between the single point and five point objective function implementations was

observed when fitting to the E.R. mechanism. The values of the rate constants appear to converge

to a value that would indicate the E.R. mechanism. The forward rate constant for carbon dioxide

formation becomes relatively large, indicating an instantaneous desorption of the carbon dioxide

formed, while the forward rate constant for the adsorption of carbon monoxide converges to the

correct value. In a way, this shows that additional points are identifying the correct mechanism
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even though it is over fitting the parameters. But expanding the program to make these types of

conclusions automatically is not currently implemented.

Based on these example, the appropriate choice of mechanism was not able to be determined

strictly through parameter fitting, but certain ’fingerprints’ were observed. Since an Eley-Rideal

reaction mechanism results in the direct formation of carbon-dioxide from carbon monoxide, an

elongation of the carbon dioxide curve will not be observed from this mechanism. Previous applica-

tions of parameter fitting have fit mechanisms in order of complexity, beginning with the simplest

and concluding with the most complex. It was also shown that the use of a single point is not

always acceptable for fitting parameters.

It also shows that using a single point for optimization can lead to an inaccurate simulation

curve. The need for the transient data generated from TAP experiments is justified. A single point

for each curve in the objective function will not necessarily lead to the synthetic and TAP curves

matching exactly. This does not mean that all data points will be necessary though. As noted in

section 5, this would lead to a burdensome computational expense and time requirement. For this

reason, a set of points could balance the time intensity with the kinetic information.

Figure 25: Fitting a Langmuir-Hinshelwood carbon monoxide oxidation reaction mechanism to
synthetic data generated from an Eley-Rideal mechanism. The actual rate constant (Ke0) was set
to 1e-3. The bold and dashed lines represent the synthetic and experimental data, respectively,
with carbon monoxide, carbon dioxide and the inert appearing in cyan, blue and red.

Figure 26: Fitting a Langmuir-Hinshelwood carbon monoxide oxidation reaction mechanism to
synthetic data generated from the same Langmuir-Hinshelwood mechanism. The forward (Ke0)
and reverse (Kd0) rate constants were set to 1e-3 and 10, while the desorption rate constant
(Ke2) of carbon dioxide was set to 1e-3. The bold and dashed lines represent the synthetic and
experimental data, respectively, with carbon monoxide, carbon dioxide and the inert appearing in
cyan, blue and red.
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Figure 27: Fitting a Langmuir-Hinshelwood carbon monoxide oxidation reaction mechanism to
synthetic data generated from an Eley-Rideal mechanism with five Points. The actual rate constant
(Ke0) was set to 1e-3. The bold and dashed lines represent the synthetic and experimental data,
respectively, with carbon monoxide, carbon dioxide and the inert appearing in cyan, blue and red.

Figure 28: Fitting a Langmuir-Hinshelwood carbon monoxide oxidation reaction mechanism to
synthetic data generated from the same Langmuir-Hinshelwood mechanism with five Points. The
forward (Ke0) and reverse (Kd0) rate constants were set to 1e-3 and 10, while the desorption
rate constant (Ke2) of carbon dioxide was set to 1e-3. The bold and dashed lines represent the
synthetic and experimental data, respectively, with carbon monoxide, carbon dioxide and the inert
appearing in cyan, blue and red.

6.4.2 Fitting Parameters to Synthetic Data with Multiple Reactant Feeds

Applications of the parameter fitting in previous sections showed a steady increase in the complexity

of the reaction network, from no reactions (diffusion) to a couple elementary reactions (Langmuir-

Hinshelwood mechanism). The complexity of the equations can be further expanded through the

inclusion of an additional gas reactant in the Langmuir-Hinshelwood carbon monoxide oxidation

mechanism, O2. The equations used in this simulation are as follows:

CO + ∗ ↔ CO∗ (19)

O2 + 2∗ ↔ 2O∗ (20)

CO∗ +O∗ → CO2 + ∗ (21)

The results of fitting parameters using the five-point method from the previous sections are

presented in figure 29. Though the curve representing carbon monoxide adsorption shows a strong

overlap, a clear difference between the experimental and simulated oxygen curves is noticeable.
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Further, the simulated curve representing carbon dioxide does not appear at all.

Attempting to fit the parameters to this reaction network presented a major challenge and

showed that a direct method to fit all kinetic parameters will not always work. It appears that

the objective function reaches a local minima with each of the curves representing reactant gases

matching their respective experimental curves relatively well. Though the curve representing the

product gas in no way resembles the associated experimental curve, changing the parameters results

in a greater increase in the difference between the reactant gases than a greater reduction in the

difference between the product curves. This is a major flaw in the parameter fitting process and

would limit the parameter fitting method to simple sets of elementary reactions or to adsorption

processes. Two potential solutions exist to overcome this challenge. First, the products could

be pulsed independently of the reactants. This method could have trouble when the adsorption

and subsequent reaction of the product gasses are unfavorable. This leads to the second option,

where better initial guesses are provided. One pragmatic approach to accomplish this would be

defining the objective function to exclusively include the product pulse curves. The parameters

found from the initial, failed optimization can be used as an initial guess for the new objective

function. Once this second optimization process is complete, the new parameters can be fed to the

original optimization problem and run to completion.

The redefinition of the objective function to only include the product curve is presented in

figure 30. This second optimization process shows that there is now a change to the carbon dioxide

curve even though it results in a change to the other reactant curves. The objective function was

then again redefined to include all curves and is presented in figure 31. Though it is not able

to converge to the exact solutions, it is a dramatic improvement from the original optimization

method, where only the initial kinetic parameters are able to be determined.
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Figure 29: The initial attempt at fitting kinetic parameters to synthetic data carbon monoxide
oxidation involving gaseous oxygen, with carbon monoxide, carbon dioxide, oxygen and the inert
appearing in cyan, blue, green and red. The actual rate constant (Ke0) was set to 1e-3. The
bold and dashed lines represent the synthetic and experimental data, respectively, with carbon
monoxide, carbon dioxide and the inert appearing in cyan, blue and red.

Figure 30: The second attempt at fitting kinetic parameters to synthetic data carbon monoxide
oxidation involving gaseous oxygen, with carbon monoxide, carbon dioxide, oxygen and the inert
appearing in cyan, blue, green and red. For this attempt, the results of the previous attempt
at fitting the parameters were used as initial guesses and the objective function was redefined to
include only carbon dioxide.

Figure 31: The third attempt at fitting kinetic parameters to synthetic data carbon monoxide
oxidation involving gaseous oxygen, with carbon monoxide, carbon dioxide, oxygen and the inert
appearing in cyan, blue, green and red. For this attempt, the results of the second attempt at
fitting the parameters were used as initial guesses and the objective function was redefined to
include all species again.
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7 Future Work

7.1 Establishing Boundaries and Initial Guesses for Parameter Fitting

and Mechanism Identification

Though the use of AD does not require strong initial guesses like traditional parameter fitting

methods, having them could make the process more efficient. Similarly, having boundaries on

kinetic parameters could help lead the user to correct physical conclusions. There are many options

for making initial guesses and setting bounds, but two methods stand out in particular.

First, the results from DFT calculations and surface science experiments can be used. Intrinsic

kinetic parameters are often presented in the literature involving these two methods. Though there

is a chance that the experiments were performed previously, there are many existing materials

and catalyst states that have not been previously studied. If feasible, these experiments can be

performed by the investigators. This is a non-ideal circumstance and will lead to longer, costly

experiments and would require a broader skill set and equipment availability. A cheaper way to

arrive at initial guesses would be to apply the scaling relations developed using DFT, although

the accuracy of these tools can be limited and do not necessarily translate between active sites or

catalysts.

Second, the Y-Procedure and RRM could be used to establish new guesses. Before this can be

implemented in the workflow, a proper understanding of the results of the Rate-Reactivity Model

must be established. Limited implementations of these methods have been made and confirmation

of their accuracy must still be made. It was proposed that the coefficient fit in this linear model

represents the Jacobian of the reaction mechanism. If true, this could be implemented in an

automatic way to generate new, cheap initial guesses.

For this reason, the first steps in validating this process have been taken and a proposed

workflow has been developed (see Figure 32). Generating visual comparisons of the Jacobian could

help identify where each correlate or deviate. This is a convenient circumstance, since a method to

simulate a reaction based on a system of elementary reactions (an MKM) has been developed and

methods of post processing the data and generating symbolic derivatives of the MKM can easily be

incorporated into the workflow. There are many options available for establishing estimates and

boundaries that could be implemented automatically, but testing and validating these methods

must still be completed.
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Figure 32: Simultaneously performing an analysis of synthetic pulse data with the Rate-Reactivity
Model and Derivatives from Automatic Differentiation could help elucidate to meaning of the
Reactivates found from the RRM. Having this meaning could lead to cheap initial guesses for the
parameter fitting method.

7.2 Application of the Simulation Package to Complex Reactions and

Surfaces

It will also be important going forward to apply TAP and its associated analysis tools to more

complicated reactions and surfaces. Carbon monoxide oxidation is an appropriate probe reaction

for validation, but does not confirm the utility of the process for more complicated mechanisms.

Ammonia decomposition is an appropriate mechanism to investigate next because it offers a com-

plex, albeit bounded, reaction mechanism. If diazene and hydrazine are not present in the outlet

flux, then the reaction mechanism will only consist of the adsorption of ammonia and subsequent

cleavage of each of its hydrogen atoms, followed by the desorption of hydrogen and nitrogen gas.

NH3 + ∗ ↔ NH∗3 (22)

H2 + 2∗ ↔ 2H∗ (23)

N2 + ∗ ↔ N∗2 (24)

N2∗ ↔ 2N∗ (25)

NH∗3 ↔ NH∗2 +H∗ (26)

NH∗2 ↔ NH∗ +H∗ (27)

NH∗ ↔ N∗ +H∗ (28)

Further, investigating reaction mechanisms on complex surfaces is desired. Mixed metal oxides
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are of particular interest because their diverse mixture of atoms can lead to many potential active

sites87;88;89;90. TAP reactors could help elucidate some of the intrinsic kinetics and help reduce

the number of potential solutions to the mechanism.

7.3 Improving the Sensitivity Analysis and Parameter Fitting Efficiency

Being able to evaluate the derivatives over time is a necessary step for both the sensitivity analysis

and parameter fitting tools. At the moment, it takes a considerable amount of time to determine

these derivatives and will act as a bottleneck in analyzing TAP pulses. Reaction mechanisms can

easily involve a dozen elementary reactions, which is a challenging problem for parameter fitting.

Testing multiple reaction mechanisms over hundreds of pulses is an additional data intensity chal-

lenge. Since it is desired to apply the simulator and parameter fitting method to this scale, the

efficiency will have to be improved. The time required per simulation could be reduced with an

adaptive time stepping algorithm. Performing the Degree of Flux Control is also a time intensive

process and could be improved with algorithms designed for transient sensitivity analysis. Im-

provements and developments to FEniCS and Dolfin-Adjoint can easily be swapped for current

called functions in the script due to the way the scripts were written.

7.4 Application of FEniCS to Other Reactor Models and Inclusion in

CATMAP

The tools developed thus far could be applied to other, more common reactors used in academia

and industry, too91;92. The modeling, sensitivity analysis and parameter fitting possible in the

TAP reactor simulator could be useful to any catalysis based group if further generalized and

could act as a replacement or alternative to the methods commonly used93;94;95;96. By redefining

the boundary conditions and transport properties in the equation generator, it is possible to model

more traditional reactors and apply similar methods of analysis. For experimentalists, steps have

already been taken to model simple transient and steady-state Plug Flow Reactors (PFRs), but

confirming the accuracy of these models is still necessary. For computational groups, generalization

of the simulator could be applied to the analysis micro-kinetic models. Applications of these new

methods could reach even farther in the chemical engineering field and help generalize simulations

in the separations97;98;99;100 and electrochemistry101;102 communities. A generalized version of the

current FEniCS simulator would be a useful, natural progression from CatMAPs current form.

Developing an open source package where dimensional reduction of catalysts can easily be feed

to any desired reactor without user derivation is currently unavailable in the field. It is our goal
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to incorporate a further generalized form of the package with CatMap103, which could lead to

powerful, broadly applicable tool for catalyst development and optimization87;104.
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8 Conclusion

TAP, with its high data intensity and ability to provide insight into complex, transient processes,

has the potential to assist computational chemists, surface scientists and industrial catalyst ex-

perimentalists in gaining fundamental knowledge about materials of interest and testing their own

proposed hypotheses about mechanisms and kinetic parameters. Before this is possible, methods

to efficiently handle the data must be established. In this thesis, a foundation, consisting of four

major components, has been developed, on which more elaborate data analysis methods can be

built. Some of these methods have been implemented previously, but automatic differentiation has

never been incorporated and most of the components are not publicly available. The most direct

way to implement AD into TAP simulations is through the use of FEniCS.

A Python package for simulating TAP pulses and new methods to process these pulses have

been developed. Though simulators have previously been implemented, they have been limited

in their flexibility, as well as in their broader availability and utility. The application of FEniCS

to this field is a significant milestone for many reasons. First, it is open source, unlike Maple or

Matlab, meaning a software licence does not have to be purchased for use. Second, it allows users to

easily apply automatic differentiation, which allows for the accurate evaluation of derivatives. The

availability of accurate derivatives can help provide a meaningful sensitivity analysis and parameter

fitting. And last, it is a young, developing package with an expanding community of contributors

and developers, meaning improvements to the current, already useful programs will be made.

A simple csv input file was developed to make using the simulator less challenging for users

with limited python experience, as well as to help keep track of the conditions used during each

simulation. Validation of the simulator was performed by directly comparing the curves generated

with the FEniCS simulator to curves generated from the analytical solutions and Maple simulator

developed by other groups in the TAP community. The efficiency of the forward simulator was

also tested and analyzed. The influence of mesh size, number of time steps and complexity of the

reaction mechanisms were all probed. The package was applied to carbon monoxide oxidation,

which is a common probe reaction because of its diverse, albeit limited, set of potential reaction

mechanisms.

In addition, a method to generate previously unspecified reaction mechanisms was developed.

This script takes in a set of elementary reactions and converts them to the appropriate PDEs to be

used by FEniCS. Although not implemented in the workflow, methods to generate simple reaction

mechanisms based on user defined reactants and products was developed, as well as a method to

generate sets of rate expressions based on rate-limiting step approximations. These will provide
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users with useful methods to explore the reaction kinetics of TAP pulses in future implementations.

Alongside the forward simulation, the package is designed to solve the inverse problems needed

for sensitivity analysis and parameter fitting. The efficiency of performing a sensitivity analysis,

which can be described as a transient form of Dr. Campbell’s DRC, here called the Degree of

Flux Control, was tested for two reaction systems. This Degree of Flux Control was also applied

to a carbon monoxide oxidation reaction and helped identify interesting kinetic details. Each

sensitivity analysis was found to be time intensive, indicating that calculating the Jacobian for an

objective function involving all data points is currently computationally expensive. A method to

fit parameters was also established and applied to several reaction mechanisms, including purely

diffusive processes and simple linear reactions. The method was able to accurately determine

the parameters for each of these test cases. This parameter fitting method was also applied

to carbon monoxide oxidation simulations. Currently, the parameter fitting method is unable

to differentiate between synthetic data generated from an Eley-Rideal or Langmuir-Hinshelwood

reaction mechanism. When applied to a multi-reactant feed pulse, the fitting method struggled and

converged to local minima. A potential method to handle this problem was tested and discussed,

showing potential to reach the kinetic parameters through a series of optimization processes.
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