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SUMMARY

In this thesis, we present, analyze, and implement a quadratically convergent algorithm

to compute the invariant circle and the foliation by stable manifolds for 2-dimensional

maps. The 2-dimensional maps we are considering are motivated by oscillators subject to

periodic perturbation.

The algorithm is based on solving an invariance equation using a quasi-Newton method,

and the algorithm works irrespective of whether the dynamics on the invariant circle con-

jugates to a rotation or is phase-locked, and thus we expect only finite regularity on the

invariant circle but analytic on the stable manifolds.

The thesis is divided into the following two parts:

In Chapter 2, we derive our quasi-Newton algorithm and prove that starting from an ini-

tial guess that satisfies the invariance equation very approximately, the algorithm converges

quadratically to a true solution which is close to the initial guess. The proof of the conver-

gence is based on an abstract Nash-Moser Implicit Function Theorem specially tailored for

this problem.

In Chapter 3, we discuss some implementation details regarding our algorithm and

implemented it on the dissipative standard map. We follow different continuation paths

along the perturbation and drift parameter and explore the ”bundle merging” scenario when

the hyperbolicity of the map losses due to the increase of the perturbation. For non-resonant

eigenvalues, we also generalize the algorithm to 3-dimension and implemented it on the 3-

D Fattened Arnold Family.

xi



CHAPTER 1

INTRODUCTIONS

In the modern theory of dynamical systems, the study of the invariant manifolds and their

corresponding stable manifolds plays a key role. The dynamics on these objects organize

the dynamics in the whole phase space.

In this thesis, we study attractive (or repulsive) invariant circles in 2-dimensional maps

as well as the stable (unstable) manifolds of points.

We recall, that according to the theory of normally hyperbolic manifolds [1, 2] W s
x , the

stable manifolds of a point x in the invariant circle are the points whose orbits converge

with a fast enough exponential rate to the orbit of x.

Remark 1. In the case of 2-D flows, the quantitative rate is superflous and convergence

to an asymptotic phase implies fast convergence. So it is common to call these stable

manifolds isochrones. [3, 4].

In two-dimensional flows, the topological notion of convergence gives a characteriza-

tion of the stable manifolds. This is not true in the case we are considering in this paper and

the notion of stable manifolds involves quantitative estimates on the speed of convergence.

The 2-dimensional maps we consider appear in several applications. For example, as

reductions of higher dimensional systems to two-dimensional manifolds after a Neimark-

Sacker bifurcation [5, 6, 7]. Another case that motivated us is the periodic perturbation of

a 2-D ode with a limit cycle. Such examples are very common in practice. For example,

when oscillating circuits are subject to AC forcing [8, 9] or in Biology when the circadian

rhythms are subject to external forcing [10]. Also when neurons are subject to the periodic

forcing of others [11, 12].

The interpretation of periodic forcing of limit cycles is helpful, since the methods we

apply are inspired by those in [13]. As in [13], our goal will be to find a system of coor-
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dinates that turns the dynamics in a neighborhood of the limit cycle into a simple one. We

will take advantage of several identities to obtain a fast quasi-Newton method.

Remark 2. Passing from 2-D differential equations to 2-D maps (or 3-D differential equa-

tions) is non-trivial since new dynamical phenomena appear, including that the dynamics

in the invariant circle is phase-locked. (Similarly, getting to 3-D maps involves a new

phenomenon of normal resonances, which is briefly discussed in [14]).

From a more technical point of view, we do not expect that the invariant circle or the

foliation by stable manifolds of points are analytic as in [13] but only finitely differen-

tiable even if the map considered is analytic (in this paper, we will consider only analytic

mappings). Even arbitrarily small perturbations break down the analytic regularity of the

invariant circles and one can have open sets of analytic perturbations in which the circles

are only finitely differentiable (Section 8.2 of [15]). On the other hand, each of the stable

manifolds of a point will be analytic. This anisotropic regularity of the parameterizations

of the foliation by stable manifolds of points – our unknown – has to be taken into ac-

count when formulating the spaces in the implicit function theorem and in the choice of

discretizations [14].

1.1 The Goal of the Thesis

The goal of this thesis is to provide a framework to study these objects (invariant circles

and their stable foliations) in a non-perturbative way which also leads to reliable numerical

algorithms, which converge to the true solution faster than exponentially. The mathematical

results presented here also allow us to validate the results of the numerical algorithms.

The proof of the convergence of the algorithm is based on an abstract implicit function

theorem of Nash-Moser type with some differences from other similar theorems, but which

we hope could be useful for several problems in dynamics and related areas. See Section 1.3

for some comparison with other hard implicit function theorems in the literature.

The implementation of the algorithm on some concrete examples is also included in this
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thesis, of which we present the implementation details along with some numerical results

and investigation of phenomena that happen at the boundary of the validity of our result.

1.2 Description of the Method

Following the idea of the parameterization method [16], [17], [18], [19], we formulate an

invariance equation (see (2.2)). This equation has two unknowns:

• a) embedings of the torus and its stable manifolds,

• b) the dynamics of the map restricted to the invariant objects.

This invariance equation (2.2) expresses that the circle is invariant, that the stable folia-

tion is invariant (the leaves of the foliation are not invariant but they get sent to another by

the dynamics). As we will see, the equation (2.2) is undetermined. This undetermination

is quite useful since it allows to develop more efficient numerical methods.

We prove that, given an approximate solution of (2.2), we can evaluate some condi-

tion numbers on this approximate solution. If the error in (2.2) is smaller than an explicit

function of the condition numbers, then there is a true solution of the invariance equation.

Furthermore, the true solution is close to the approximate one. The condition numbers will

be obtained by computing the approximate solution. The condition numbers do not involve

any global assumptions on the map beyond some estimates on the derivatives in a neigh-

borhood of the approximate solution. Such results are called a-posteriori theorems in the

numerical literature [20].

A-posteriori results imply the usual persistence results under perturbations of dynam-

ical systems. If one can find indeed a system with these structures (invariant circle and

its stable manifolds), then, given a small perturbation of the system, the original invariant

objects provide an approximate invariant object for the perturbed system.

The a-posteriori results are also of great use in numerical analysis since they can pro-

vide criteria that ensure that the outputs of numerical computations – which are approxi-
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mate solutions of the invariance equation – can be trusted if we supplement them with a

calculation of the condition numbers. Having very explicit condition numbers and results

that allow trusting the calculation is invaluable when studying the phenomena that happen

near the breakdown of the invariant objects and elementary tests (reruns, changing dis-

cretizations and the like) may get confusing. Furthermore, if the evaluation of the errors

and the condition numbers are done taking care of all sources of error (truncation, round

off, etc), one obtains a computer-assisted proof. Besides their use in numerical analysis,

a-posteriori theorems can be used to validate the results of other non-rigorous techniques

such as asymptotic expansions (these sophisticated expansions are useful in the study of

degenerate Neimark-Sacker bifurcations).

The way that one often proves an a-posteriori theorem is describing an algorithm that

given an approximate solution produces an even more approximate one and then showing

that, if one starts from an approximate enough solution, the process converges.

In our case, we will develop a modification of the standard Newton’s method to solve

the invariance equation both for the parameterization of the invariant circle, the invariant

foliation and for their dynamics. We will show that, when started from an approximate

enough solution, this quasi-Newton method converges to a true solution.

To obtain the quasi-Newton method, we start with standard Newton method for the

functional equation, but take into account that due to the structure of the problems, there

are several useful identities. Using these identities coming from the geometry (related

to the “group structure” in [21]) we can obtain an algorithm that is much easier (and

much faster and reliable when implemented numerically) than the straightforward New-

ton Method without affecting the essential feature of the Newton method, namely, that the

error after one step is, roughly quadratic with respect to the original error. It is interest-

ing that the same identities that are used to obtain convergence of the rigorous proof lead

also to more efficient and reliable algorithm. We will refer to this iterative method as a

“quasi-Newton” method.
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To prove the convergence of the quasi-Newton method, we rely on a Nash-Moser tech-

nique, combining the Newton step with a smoothing step. In Section 2.6, we present an

abstract result: Theorem 12, which we hope could be applicable in similar problems.

The “a-posteriori” result also implies the persistence of the invariant objects under per-

turbation, as well as the smooth dependency of the solution on parameters. In fact, if an

additional small perturbation is applied to the system, the non-degeneracy conditions will

remain valid (unless when the parameter is close to the breakdown), and the original invari-

ant object can be viewed as an initial approximation for the algorithm to start with. This

provides a theoretical backup for the continuation method.

The low time and space requirement of our quasi-Newton Algorithm makes it suitable

for the computation of the continuation of parameters even with desktop computers. Based

on [22, 23], we propose a continuation scheme: Algorithm 3. Taking the dissipative stan-

dard map as a toy example, we follow different paths in the parameter space, we explored

the “bundle merging” scenario that causes the loss of the hyperbolicity, and the “Devil’s

staircase” phenomenon for the rotation number of the internal dynamics as the drift param-

eter varies.

The existence domain in the parameter space and the estimation of the breakdown is a

fascinating topic, of which many efforts have been made [22, 23]. The breakdown of the

invariant circles has many possible definitions. The most common one is theC1 breakdown,

which, according to [24], is caused by the loss of hyperbolicity. In the case when the

rotation number of the internal dynamics is rational but the internal dynamics is not a

rotation, phase-locked phenomenon appears, and the regularity of the invariant circle can

drop continuously, and every choice of α < 1 admits a value for the Cα breakdown. In

this thesis, we choose an arbitrary continuation path, where the rotation number changes

from rational to irrational, and both the scenarios appears alternatively. In this case, We

find empirically that the angle between the invariant circe and the isochrons drops to 0

following the same power-law with universal exponent as in [23] when it is close to the

5



breakdown.

Although the map we consider in this paper is in 2-dimensions, we remark that most

of the statements and methods remain valid when the dimensionality of the isochrons in-

creases. In fact, the only scenario that causes problems is when the eigen-directions of the

isochrons resonate, in which case our version of the Sternberg’s Lemma (see [25]) fails,

and the invariance equation is no longer as simple as Equation (2.4).

1.3 Some Remarks on Comparison with Other Theoretical Results

For the experts in Nash-Moser theory, we point out that Theorem 12 developed in Ap-

pendix 2.6 has several unusual properties. (Of course, this can be omitted in a first reading,

but could serve as motivation for some of the analysis). The guiding principle is that, moti-

vated by the numerics in the literature, we want to justify Newton methods for the problem

but they happen to have some unusual properties. We recall that we will be dealing only

with analytic mappings.

• The linearized equation can be solved without loss of regularity for a range of regu-

larities, but there is no theory of solutions for more regular data. This is very different

from the situation in small divisor problems or in PDE, in which one can solve the

linearized equation in spaces of functions with any regularity (including analytic) but

the solution incurs a loss of regularity.

As a consequence, in our problem, we cannot use usual smoothing techniques of

approximating by analytic or C∞ solutions. The only smoothing techniques we can

use are approximations by Cr functions (the so-called Cr smoothing).

We also cannot use the “double smoothing” technique of approximating the problem

by smoother ones and obtain smooth solutions. A hard implicit function theorem we

found inspiring is [26] and [27].

• A technical difference with the standard Nash-Moser theorem is that we will consider
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spaces with mixed regularity. We will consider functions of two variables, which are

Cr smooth in one of the variables (θ) , but analytic in the other variable (s).

The function spaces we use have two indices, one to measure the number of deriva-

tives in the first variable and another one to measure the size of analyticity domains

in the second variable. These spaces are indeed forced by the nature of the problem.

It is known that the invariant circles could be only finitely differentiable [15] – the

degree of differentiability is limited, not just by the regularity of the map. On the

other hand, the leaves of the stable foliation are always analytic.

Such mixed regularities are very common in the theory of Normally Hyperbolic

Invariant Manifolds(NHIM). We hope that many of the techniques developed here

could have wider applicability.

• The nonlinear operator involved in the functional equation is basically the composi-

tion operator – which has very unusual regularity properties in Cr spaces, see [28].

This operator maps Cr spaces into themselves, but it is not differentiable from Cr to

Cr but it is differentiable in other topologies [28]. Hence, computing the remainder

of the functional after a correction, involve losses of derivatives. On the other hand,

when considering Banach spaces of analytic functions, provided that the domains

and ranges allow the composition, the composition operator is differentiable (even

analytic). This is enough for us since we are only studying analytic dynamical sys-

tems in the plane. Considering finitely differentiable maps of the plane would require

some extra considerations.

Since the composition operator appears very commonly in the study of invariance

equations in dynamical systems, maybe some of the techniques developed in this

paper may have other applications.

• As we will see in the detailed calculations, we will only need to smooth in the finite

differentiable variable (θ), but we do not need to smooth in the analytic variable (s).
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Since the cohomology equations that drive the analysis of the Newton method, have

only solutions for a finite range of regularities, we cannot use C∞ or Cω smoothing

and we can only use the finite regularity smoothing [27].

• The iteration we use takes advantage of some identities obtained by taking derivatives

of the invariance equation. (From the practical point of view, the use of these identi-

ties is crucial to obtain quadratically convergent algorithms that require small storage

and small operation count per step of iteration). This entails that the remainder con-

tains a term that involves the remainder of the solution. This term is very common in

many problems of dynamical systems that are solved taking advantage of automatic

reducibility. Abstract implicit function theorems taking into account this extra term

– but not the problem of the range of regularities in the solution operator – has been

developed in [29, 30].

• As indicated above, the equation considered is undetermined so that the linearized

equation will have a kernel.

• The loss of regularity incurred in our result Theorem 12 is much smaller than on

other abstract hard implicit function theorems.

Remark 3. Newton or quasi-Newton methods to compute invariant objects with the pa-

rameterization method have been used for a long time in the numerical literature [31, 32,

33, 19, 34] since they were found empirically to be efficient, and the solutions obtained

could be validated using the more conventional methods (either contraction based methods

[35] or topological methods [36]).

Note also that the Newton or quasi-Newton methods are much more effective than con-

traction based graph transform methods when the contracting exponents are close to one.

In such a case, the contraction properties of graph transform methods are weak and one

needs to iterate many times than the very nonlinear graph transform.
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When hyperbolicity is weak, the iterations used to solve the cohomology equations in

the quasi-Newton method also become slow, but much less than the (very non-linear) graph

transform method.

In the case that the internal dynamics a is fixed to be a rotation, one can solve the

cohomology equations by Fourier methods so that there is no slow-down even for very

weak contraction properties. This case has been studied in the literature several times.

[30, 33].

It is interesting that, in this case, the method requires the use of small divisors. Even

if small divisors are not required in the linearized invariance equation, but to keep the

internal dynamics being a rotation.

Remark 4. Studying simultaneously the equation for the circle and the foliation is, para-

doxically, much more efficient than studying first the circle and then the foliation.

The reason for this speedup is that the approximate solutions for the foliation are very

powerful preconditioners for the invariance equation for the circle and the identities that

allow a speedup is true only when we involve the foliation.

Remark 5. Besides using the Nash-Moser method, there are other methods that also lead

to an a-posterior format by using a contraction in C0 and propagated bounds in higher

regularity. [35].

Such contraction methods give better regularity results than the Nash-Moser methods

presented in this paper. On the other hand, since the Newton methods have been success-

ful in applications (they are known to be fast and reliable), it seems desirable to have a

mathematical justification, which we present here. The justification developed here takes

advantage of identities that lead to even faster numerical algorithms. Identifying appro-

priate condition numbers allows one to get confident that the numerical solutions are not

spurious even when computing close to the breakdown.

In [16], it is also remarked that one could prove the stable foliations theorems by reduc-

ing them to the stable manifold theorem to an infinite dimensional lift of the problem (this
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argument only provides a prefoliation, but one can get a foliation observing that y ≈ ỹ

when d(fn(y), fn(ỹ)) ≤ Cy,ỹλ
n is an equivalence relation).

Remark 6. The models we consider – limit cycles subject to periodic perturbations are

known to present regimes of parameters where the phenomena studied here breaks down

a rather complex behaviors appear in [37, 38, 39]. The study of the boundary between

the regular behavior presented here and the chaotic behavior is a very interesting mathe-

matical problem [40]. Some elements of the boundary of validity of the results have been

explored in [41, 42, 43, 44, 45, 46, 47, 48, 49]. It is clear that there can be several interest-

ing phenomena at play and that a systematic exploration of the boundary will yield a very

rich variety of behaviors. Inspired by the theoretical result, the numerical algorithms can,

in principle, continue the results in the space of parameters to reach arbitrarily close to

parameters where the objects described here break down. One can hope that these numer-

ical explorations of the border – which will require substantial effort – could yield some

new ideas. Having mathematical tools that allow being confident of numerical results even

if they are unexpected, will be important to discover new phenomena.

Remark 7. In this paper, we will specialize in the case of maps in two dimensions, but many

of the techniques that we develop – including the abstract implicit function theorem apply

in any number of dimensions. The adaptation, however, is not completely straightforward

since new phenomena may appear, related to resonances among normal eigenvalues and

the dynamics in the stable foliation will have to be more complicated. We hope to come

back to this problem, but anticipate that the dynamics in the stable manifold has to involve

different parameters.

We also note that in the case of higher dimensional manifolds, there are more compli-

cated foliations defined in a neighborhood. These foliations are, in general not unique,

but they have been found useful to describe the behavior in a neighborhood of a normally

hyperbolic manifold [50]. We also call attention to the very interesting numerical paper

[51] and its associated numerical package FOLI8PAK which deals with similar problems.
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We hope that the present method can be adapted to the study of these manifolds or even to

some non-resonant foliations. The paper [52] points that these invariant objects may be

useful in data reduction (see also [53]). We hope to come back to these problems.

1.4 Some Remarks on the Numerical Implementations

One advantage of the parameterization method is that inverting large matrix is not required

in the algorithm. In fact, for each step of the iteration, the algorithm only requiresO(N×L)

storage and O(N × L) operations, where N is the size of the grid of choice, and L is the

maximum order of truncation in the parameterization of the isochrons. With the superlinear

convergence rate, the computation runs in seconds in standard laptops.

Recently, there have been many efforts towards the computation for the invariant circle

and the corresponding stable (unstable) manifolds. [13] studies planar vector fields when

the dynamics on the limit cycle conjugates to a rotation; [54, 31, 22] developed and imple-

mented algorithms for the computation of invariant tori and their whiskers in quasi-periodic

maps; [51] developed algorithms for computing the leaves in the foliation of an ODE near

hyperbolic fixed point using contraction methods.

1.5 Organization of the Thesis

In Chapter 2, we derive our quasi-Newton algorithm and prove that quadractic convergence

of the algorithm provided that there exists a approximate solution. The proof is based on a

modified Nash-Moser Theorem. This chapter is based on [25]. In Chapter 3, we implement

the algorithm on the dissipative standard map. We following different continuation paths

and explore the ”bundle merging” scenario. For non-resonant eigenvalues, we present a 3-

dimensional version of the algorithm and implemented on the 3-D Fattened Arnold Family.

This chapter is based on [14].
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CHAPTER 2

EFFECTIVE ALGORITHM AND RIGOROUS PROOF OF CONVERGENCE

We present and analyze rigorously a quadratically convergent algorithm to compute an in-

variant circle and the foliation by stable manifolds for 2-dimensional maps. The algorithm

is based on solving an invariance equation using a quasi-Newton method.

We prove that when the algorithm starts from an initial guess that satisfies the invari-

ance equation very approximately (depending on some condition numbers, evaluated on

the approximate solution), then the algorithm converges to a true solution which is close to

the initial guess. The convergence is faster than exponential in smooth norms.

We also conclude that (in a smooth norm), the distance from the exact solution and

the approximation is bounded by the initial error. This allows validating the numerical

approximations (a-posteriori results). It also implies the usual persistence formulations

since the exact solutions of the invariance equation for a model are approximate solutions

for a similar model.

The algorithm we present works irrespective of whether the dynamics on the invariant

circle is a rotation or it is phase-locked. The condition numbers required do not involve any

global qualitative properties of the map. They are obtained by evaluating derivatives of the

initial guess, derivatives of the map in a neighborhood of the guess, performing algebraic

operations and taking suprema.

The proof of the convergence is based on a general Nash-Moser implicit function theo-

rem specially tailored for this problem. The Nash-Moser procedure has unusual properties.

As it turns out, the regularity requirements are not very severe (only 2 derivatives suffice).

We hope that this implicit function theorem may be of independent interest and have set it

in a self-contained appendix.

The algorithm in this chapter are very practical since it converge quadratically, require
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moderate storage and operation count. Details of the implementation and results of the runs

are described in Chapter 3.

The chapter is organized as follows. In Section 2.1, we formulate an invariance equation

by the parameterization method, which is the essential object in this paper. The algorithm

for solving the invariance equation is discussed and motivated in Section 1. The rigorous

result in the convergence of the algorithm (Theorem 4) for the existence of the solution and

the convergence for the algorithm is presented in Section 2.4. The proof of Theorem 4 is

presented in Section 2.5, where we establish estimates on the ingredients of the algorithm.

The final step of the proof of Theorem 4 is a modified version of a Nash-Moser implicit

function theorem (Theorem 12) which we present in Section 2.6. We hope that Theorem

12 can be of independent interest since it could be applicable to similar problems.

2.1 Setup of the Problem

In this section, we first briefly introduce the general idea of the parameterization method

(Section 2.1.1). More detailed discussions about this method are in [19].

Then, in a manner inspired by [13], we formulate an invariance equation (2.2) for the

invariant circle and stable foliation near it. (Section 2.1.2)

It is important to notice that the invariance equation (2.2) is very underdetermined.

Taking advantage of this underdetermination, in Section 2.1.3, we find a version of the

invariance equation with extra properties. In Section 2.1.4, we discuss the stable manifolds.

2.1.1 The General Setting for the Parameterization Method for Invariant Objects

We start by describing the general idea of the parameterization method for finding invariant

manifolds. In the later discussion, we will use the generalized version which allows to find

also invariant foliations.

In a phase space A , given f : A → A is a diffeomorphism that generates a discrete

dynamical system, the goal is to find an f -invariant submanifold K ⊂ A , i.e. f(K ) ⊆
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K . Consider K : Θ→ A to be an injective immersion from some model manifold Θ that

parameterizes K , we have that K is f -invariant if and only if the following invariance

equation holds:

f ◦K(θ) = K ◦ a(θ), (2.1)

where the diffeomorphism a : Θ → Θ is the internal dynamics on Θ, and θ is the local

coordinate in Θ (See Figure 2.1). The goal now becomes solving Equation (2.1) with

K(θ), a(θ) as the unknowns.

There are several methods to solve equation (2.1) depending on the class of dynamical

systems used.

A widely applicable idea (and the one we will be concerned with here) is to apply the

Newton (or quasi-Newton) iterative method to find the correction ∆K(θ) and ∆a(θ) that

improves approximate K(θ) and a(θ). By constructing an adapted frame P (θ), and rep-

resenting ∆K(θ) = P (θ)φ(θ), solving the Newton method for the equation (2.1) amounts

solving cohomological equations of the form as in equation (2.23), which can then be

solved under hyperbolicity assumptions. We will present algorithms and establish their

convergence.

Remark 8. In the case when the rotation number for the internal dynamics is fixed to be a

given Diophantine number ω, a(θ) = θ+ω is no longer an unknown in (2.1). On the other

hand, one has to adjust parameters. See [32, 33] for the theory for invariant circles.

An alternative theoretical point of view for the adjustment of parameters, is that, if we

consider a family with parameters λ, our method will obtain a family of circle mappings

aλ. Adjusting parameters λ as in [21, 55], we obtain that the map aλ is smoothly conjugate

to a rotation.
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Figure 2.1: Parameterization of an invariant manifold (Figure taken from [19])

2.1.2 The Invariance Equation of the Invariant Circle and the Stable Foliation

Given a smooth diffeomorphism f : T × R → T × R that generates a discrete dynamical

system in T× R, we assume that f admits a stable invariant circle. Our goal is to find the

invariant circle and the corresponding stable manifolds of points.

More precisely, following a similar approach as in Section 2.1.1, we are looking for an

injective immersion W : T × R → T × R such that it parameterizes the neighborhood of

the invariant circle. Thus, we will consider the following invariance equation:

f ◦W (θ, s)−W (a(θ), λ(θ, s)) = 0, (2.2)

where a : T→ T describes the internal dynamics on the invariant circle, and λ : T×R→ R

describes the dynamics on the stable manifolds of points.

In the above equation (2.2), W (θ, s), a(θ), λ(θ, s) are the unknowns, and f(θ, s) is the

only known function.

It is important to emphasize that the unknowns for equation (2.2) are functions. Dealing

with it in this paper will require tools from functional analysis.

Note that when the phase space is T× R, there are two topologically different embed-

dings of circles. One is when the circle is non-contractible in the phase space and the other
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is when the circle is embedded in a contractible way. This can be seen as boundary condi-

tions on the embedding W . In the non-contractible case, the lift of the embedding satisfies

W (θ + 1, 0) = W (θ, 0) + (1, 0) and in the contractible case, the lift of the embedding

satisfies W (θ + 1, 0) = W (θ, 0).

It is reasonable to assume that W (θ, 0) is the parameterization of the invariant circle,

it follows that λ(θ, 0) = 0. If one denotes K(θ) as W (θ, 0), the invariance equation (2.2)

reduces to equation (2.1). Moreover, if supθ |∂sλ(θ, 0)| < 1, we have the invariant circle is

stable. Sharper sufficient conditions for stability will be derived later.

In this paper, we will allow that the internal dynamics a(θ) is phase-locked (i.e. it has

an attractive periodic orbit). In such a case, it can happen (indeed, one expects that this is

the most common case in applications) that the invariant circle is only finitely differentiable

even if the map f is analytic or even polynomial.

2.1.3 Underdetermination of the Invariance Equation

One nice property of the invariance equation (2.2) is that it is highly underdeterminate,

thus admits many solutions. Hence, depending on the problems, we can impose extra

properties that improve the computation. In this section, we will review some of the sources

of underdetermination that lead to improvements in the computation.

Clearly, the changes of coordinates in the reference manifold leads the same geometric

objects (same circle, same stable leaves) but given different parameterizations. It can be

shown that the only lack of local uniqueness of the reference manifold of (2.2) is these

changes of variables. Any two solutions of (2.2) close enough are related by a change of

variables and hence describe the same geometric object.

From the numerical point of view, depending on the properties of the system, we can

recalibrate the system of coordinates so that the computation is better. Clearly, if our goal

is to find a solution, having several solutions available is a very good feature.

In the following, we review the different sources of underdetermination in (2.2) so that
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we take advantage of them in numerical implementations.

Given (W (θ, s), a(θ), λ(θ, s)) satisfying (2.2), we have that

• Conjugacy on θ: For any diffeomorphism g : T→ T, we have

W̃ (θ, s) = W (g(θ), s),

ã(θ) = g−1 ◦ a ◦ g(θ),

λ̃(θ, s) = λ(g(θ), s),

is also a solution of (2.2).

• Conjugacy on s: For any λ̂ : T × R → R, if there exists a differentiable function

h : T× R→ R such that

h(a(θ), λ̂(θ, s)) = λ(θ, h(θ, s)), (2.3)

we have

Ŵ (θ, s) = W (θ, h(θ, s)),

â(θ) = a(θ),

λ̂(θ, s)

is also another solution of (2.2).

According to Lemma 5 and its remarks, we can see that such h(θ, s) as in (2.3) exists

in the case that λ̂(θ, s) equals to the linear term of λ(θ, s) with respect to s, provided

that the norm of λ is small enough. We postpone the detailed discussion and the proof to

Section 2.5.1. As remarked there, the existence of h satisfying (2.3) is a fibered version of

Poincaré-Sternberg theorem on the linearization of contractions.
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Benefiting from the second underdetermination property and Lemma 5, instead of con-

sidering (2.2) we can consider

f ◦W (θ, s)−W (a(θ), λ(θ)s) = 0. (2.4)

Our goal now becomes solving for W (θ, s), a(θ) and λ(θ) from equation (2.4).

Note that, ifW,a, λ is a solution of (2.4), clearlyW is an invariant foliation with internal

dynamics given by a, λ. One could, however, wonder if there are other invariant foliations.

The content of Lemma 5 is to show that, if there was an invariant foliation, then, one can

obtain a solution of (2.4) by reparameterizing it. Hence, finding a solution of (2.4) is not

only sufficient for finding invariant foliations but also equivalent.

Remark 9. If a(θ) conjugates to an irrational rotation θ+ω, λ(θ) is reduced to a constant.

In fact, with λ(θ, s) = λ(θ)s, h(θ, s) = r(θ)s equation (2.3) can be reduced to

r(θ + ω)λ(θ) = λ(θ)r(θ),

it follows that

log(λ)(θ) = log(r)(θ)− log(r)(θ + ω)

forms a cohomological equation. To assure the existence of this equation, we can set

log(λ)(θ) to the average
∫
θ∈T log(r)(θ)− log(r)(θ + ω)dθ, which is a constant.

2.1.4 Stable Manifolds of Points (Isochrons)

Notice that the invariance equation (2.2) contains not only the dynamics of the invariant

circle, but also the dynamics in a neighborhood of the invariant circle. In particular, if

equation (2.4) is satisfied, and if supθ∈T |λ(θ)| < 1, we have the set

Iθ = {W (θ, s) | s ∈ R}.
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consists of points whose orbits converge exponentially fast (with a high enough rate) to the

orbit of W (θ, 0) since

f ◦j(W (θ, s)) = W (a◦j(θ), λ[j](θ)s),

f ◦j(W (θ, 0)) = W (a◦j(θ), 0)

(2.5)

where

λ[j](θ) = λ(θ)λ(a(θ))λ(a◦2(θ)) · · ·λ(a◦(j−1)(θ)) (2.6)

and aj(θ) denotes a(θ) composing with itself j times. Note that

λ[j+k](θ) = λ[j](a◦k(θ))λ[k] (2.7)

Hence supθ |λ[j+k](θ)| ≤ supθ |λ[j](θ)| · supθ |λ[k](θ)|.

More specifically, when supθ |λ(θ)| < 1, for all θ, we have fk(Iθ) → ak(θ) exponen-

tially fast as n→∞.

Note that the isochrons are not invariant sets. Nevertheless, they behave well under the

map. We have

f(Iθ) ⊂ Ia(θ)

so that the foliation given by all the isochrons is invariant in the sense that if two points are

in the same leaf, applying the map to both of them, we obtain another pair of points in the

same leaf (different from the original one).

Remark 10. Given λ(θ), we will refer to the quantity

λ∗ := lim
n→∞

(
‖λ[n]‖C0

) 1
n

(2.8)

as the dynamical average.

Since ‖λ[n+m]‖C0 ≤ ‖λ[n]‖C0‖λ[n+m]‖C0 , the limit in (2.8) always exists.
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The implicit function theorem shows that the set of stable manifolds forms a foliation

in a neighborhood of the circle and we can use the equation (2.2) to show that the set of

isochrons is indeed a foliation globally. Note that applying the implicit function theorem

requires that the circle is C1. When the circle is less regular, the implicit function theorem

can only conclude that the leaves form a pre-foliation. The conclusion that the isochrons

form a foliation is also obtained using more dynamical arguments in [56, 57]. It suffices to

realize that the relation

y ≈ ỹ ⇔ d
(
fn(y), fn(ỹ)

)
≤ Cy,ỹλ

n n > 0

is an equivalence relation.

Remark 11. Note that all points in the isochron have the same asymptotic behavior and

that the convergence to this asymptotic behavior is reached exponentially with a rate λ∗.

In the theory of normal hyperbolicity, it is standard that the stable manifold of a point x

is the set of points whose asymptotic behavior gets closer to that of x faster than a certain

exponential rate. It is not enough to require that they just get close. For example, in our

case, if the dynamics in the invariant circle has an attractive periodic point, then, the points

whose orbits are asymptotic to the periodic orbit is an open set. On the other hand, those

that converge fast enough is the strong stable manifold of the periodic orbit. One very

interesting regime is when the two eigenvalues of a periodic point are the same. In such a

case, one expects that the circle stops existing as a C1 manifold [41, 58], but it may persist

as a topological circle or as a continuum [59, 60]. The phenomena that happen near the

breakdown of normal hyperbolicity is still a challenging area.

2.2 The Algorithm

In this section, we discuss our algorithm for solving the invariance equation (2.4). Unfor-

tunately, (2.4) is hard to solve using the Newton method. Instead of the standard Newton
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method, we use a modification obtained by omitting terms that are heuristically quadrat-

ically small. Omitting these terms makes the equation much easier to solve but, heuristi-

cally, does not change the quadratic convergence. These heuristic arguments are rigorously

justified later in Section 2.5.3.

In Section 2.2.1, we present the details of one step of the quasi-Newton approach. Given

an approximate solution, we look for the corrections such that it reduces the starting error

superlinearly. The main task is solving some cohomological equations. The cohomologi-

cal equations are solved in Section 2.2.2. we postpone the discussion of the step-by-step

algorithm to Chapter 3. Later, we will show that the steps can be repeated infinitely often

and indeed converges.

The algorithm formulated in this section has been implemented in Chapter 3 [14]. In

Section 2.4 we will state a result on the convergence of the algorithm. As often happens,

the algorithm is found to work with even in regions beyond the requirement of the rigorous

proof.

2.2.1 The quasi-Newton Method

In this subsection, we perform one step of the quasi-Newton method to solve equation (2.4).

Assume that we have an approximate parameterization of the neighborhood of the in-

variant circle W (θ, s), an approximate internal dynamics a(θ) and an approximate dynam-

ics on the isochrons λ(θ)s such that

e(θ, s) = f ◦W (θ, s)−W (a(θ), λ(θ)s). (2.9)

where e(θ, s) is the error. The goal of one step of the quasi-Newton method is to compute

the corrections ∆W (θ, s),∆a(θ) and ∆λ(θ) such that

f(W + ∆W )(θ, s)− (W + ∆W )((a+ ∆a)(θ), (λ+ ∆λ)(θ)s) = 0 (2.10)
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up to an error which is quadratically smaller than the initial error e.

For the moment, we work heuristically and ignore regularities. All these issues will be

settled later in Lemma 10.

Using Taylor expansion and omitting higher order terms, Equation (2.10) becomes

0 =f(W (θ, s)) +Df(W )(θ, s)∆W (θ, s)−W (a(θ), λ(θ)s)

−DW (a(θ), λ(θ)s)

 ∆a(θ)

∆λ(θ)s

−∆W (a(θ), λ(θ)s) + higher order terms, (2.11)

where the term D[∆W (a(θ), λ(θ)s)]

 ∆a(θ)

∆λ(θ)s

 is ignored for now because it is “heuristi-

cally” quadratically small. We will make a rigorous argument later in Lemma 10.

Now we have that Equation (2.11) has become

Df(W (θ, s))∆W (θ, s)−DW (a(θ), λ(θ)s)

 ∆a(θ)

∆λ(θ)s


−∆W (a(θ), λ(θ)s) = −e(θ, s). (2.12)

Remark 12. Notice that one should treat equation (2.12) as an equation of ∆W (θ, s),∆a(θ)

and ∆λ(θ), with f(θ, s) given by the problem, and W (θ, s), a(θ) and λ(θ) given by the ini-

tial approximation as well as the RHS e.

To simplify the above equation (2.12), we will express ∆W (θ, s) in the frameDW (θ, s)

as follows:

∆W (θ, s) = DW (θ, s)Γ(θ, s). (2.13)

Notice that if DW (θ, s) is invertible, solving for ∆W (θ, s) is equivalent to solving for

Γ(θ, s). One can see by Theorem 12 that if the initial guess of W (θ, s) is close enough to

the true solution and DW (θ, s) is invertible initially, DW (θ, s) remains to be invertible for
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each step of the iteration. By taking the derivative of equation (2.9), we have that

De(θ, s) = Df(W (θ, s))DW (θ, s)−DW (a(θ), λ(θ)s)

 Da(θ) 0

Dλ(θ)s λ(θ)

 . (2.14)

Then, by substituting (2.13) and (2.14) in the quasi-Newton equation (2.12), we obtain

 Da(θ) 0

Dλ(θ)s λ(θ)

Γ(θ, s)−

 ∆a(θ)

∆λ(θ)s

− Γ(a(θ), λ(θ)s)

= −(DW (a(θ), λ(θ)s))−1e(θ, s)

, ẽ(θ, s), (2.15)

where the term De(θ, s)Γ(θ, s) is also omitted for the same reason as in equation (2.11),

and the rigorous justification is again left to Lemma 10.

If we express equation (2.15) in components, we obtain the following two equations for

the unknowns Γ1(θ, s), Γ2(θ, s), ∆a(θ) and ∆λ(θ).

Da(θ)Γ1(θ, s)−∆a(θ)− Γ1(a(θ), λ(θ)s) = ẽ1(θ, s), (2.16)

λ(θ)Γ2(θ, s)−∆λ(θ)s− Γ2(a(θ), λ(θ)s) = ẽ2(θ, s)−Dλ(θ)sΓ1(θ, s) (2.17)

,M(θ, s).

where Γ1(θ, s) and Γ2(θ, s) are the components of Γ(θ, s).

2.2.2 Solving Γ1,2,∆λ,∆a from Equation (2.16), (2.17)

In this subsection, we present the details of solving equation (2.16) and (2.17). To study

those two equations, we will discretize any function from T × R : g(θ, s) as Taylor series
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with respect to s:

g(θ, s) =
∞∑
j=0

g(j)(θ)sj,

with the assumption that g(θ, s) is Cr in θ and real analytic in s, where g(j)(θ) ∈ Cr is

the coefficient for sj, j ≥ 0, j ∈ N. In the context of Section 2.4, g(θ, s) ∈ X r,δ for some

δ > 0.

By matching coefficients of sj on both sides, we can rewrite equation (2.16) and (2.17)

as a hierarchy of equations provided that Da(θ) and λ(θ) are not equal to 0 for any θ ∈ T.

• For equation (2.16):

◦ For the coefficients of s0:

Da(θ)Γ
(0)
1 (θ)− Γ

(0)
1 (a(θ))−∆a(θ) = ẽ

(0)
1 (θ), (2.18)

◦ For the coefficients of sj , j ≥ 1, j ∈ N:

Γ
(j)
1 (θ) =

λj(θ)

Da(θ)
Γ
(j)
1 (a(θ)) +

ẽ
(j)
1 (θ)

Da(θ)
. (2.19)

• For equation (2.17):

◦ For the coefficients of s0:

λ(θ)Γ
(0)
2 (θ)− Γ

(0)
2 (a(θ)) = M (0)(θ),

which, by composing a−1(θ), can be rewritten as

Γ
(0)
2 (θ) = λ(a−1(θ))Γ

(0)
2 (a−1(θ))−M (0)(a−1(θ)), (2.20)
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◦ For the coefficients of s1:

λ(θ)Γ
(1)
2 (θ)− Γ

(1)
2 (a(θ))λ(θ)−∆λ(θ) = M (1)(θ), (2.21)

◦ For the coefficients of sj , j ≥ 2, j ∈ N:

Γ
(j)
2 (θ) = λj−1(θ)Γ

(j)
2 (a(θ)) +

M (j)(θ)

λ(θ)
. (2.22)

The hierarchy of equations above is well known from perturbation expansions. Algo-

rithms for efficient computation of the coefficients can be found in [61].

Again, our goal is to solve the above equations for ∆a(θ),∆λ(θ), Γ
(j)
1 (θ),Γ

(j)
2 (θ) for

j ≥ 0.

First, notice that Equation (2.18) and (2.21) are underdetermined equations, hence the

solution is not unique. An interesting question we have not yet pursued is how to choose

the solution of (2.18) and (2.21) that improves the numerical stability of the algorithm.

Intuitively, it seems desirable to design the algorithms so that the a, λ are “simple”, but we

have not succeeded in making this precise when the inner dynamics is phase-locked.

In this chapter, we choose the most obvious solution: For equation (2.18), we let

Γ
(0)
1 (θ) = 0 and thus ∆a(θ) = −ẽ(0)1 (θ); for equation (2.21), we let Γ

(1)
2 (θ) = 0 and

thus ∆λ(θ) = −M (1)(θ). This choice of solution guarantees the norm is controled by the

error, it is referred as the graph style in [19].

Notice that Equation (2.19), (2.20) and (2.22) have been reorganized so that are written

as cohomological equation of the form:

φ(θ) = l(θ)φ(a(θ)) + η(θ). (2.23)

where φ(θ) is the unknown and a(θ), l(θ) and η(θ) are given.
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2.2.3 Solving φ from the Cohomological Equation (2.23)

In this subsection, we solve Equation (2.23) by contraction.

By inductively replacing φ(θ) on the right hand side of (2.23) by the equation itself, we

have

φ(θ) = η(θ) + l(θ)η(a(θ)) + l(θ)l(a(θ))η(a◦2(θ))

+ . . .+ l(θ)l(a(θ))l(a◦2(θ)) · · · l(a◦(n−1)(θ))η(a◦n(θ))

+ l(θ)l(a(θ))l(a◦2(θ)) · · · l(a◦n(θ))φ(a◦(n+1)(θ))

=
n∑
j=0

l[j](θ)η(a◦j(θ)) + l[n+1](θ)φ(a◦(n+1)(θ)), (2.24)

where as in equation (2.6), l[j](θ) = l(θ)l(a(θ))l(a◦2(θ)) · · · l(a◦(j−1)(θ)), and l[0](θ) = 1.

Note that, if ‖l[j]‖C0 < 1, and φ is bounded, the last term in (2.24) tends to zero

uniformly. Hence, the only possible C0 solution of (2.23), is

φ(θ) =
∞∑
j=0

l[j](θ)η(a◦j(θ)). (2.25)

As proved in Lemma 6 in Section 2.5.2, given r such that

‖l‖C0 ‖Da‖rC0 < 1, (2.26)

we will show ‖l[j](·)η(a◦j(·))‖Cr ≤ Cαj for someC > 0, α < 1 so that
∑n

j=0 l
[j](θ)η(a◦j(θ))

converges absolutely in Cr. Hence, (2.23) has a Cr solution.

The conditions (2.26) can be slightly improved to ‖l[k]‖C0‖D(a◦k)‖rC0 < 1 (or even to

‖l[k]D(a◦k)‖C0 < 1). Nevertheless, there are explicit examples discussed in the remark

after Lemma 6, cohomological equation (2.23) can only be solved for a finite range of

r. These examples are rather persistent and they happen in open C1 neighborhoods of a.

So the phenomenon of the quasi-Newton method being defined only on a finite range of
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regularities has to be considered by the Nash-Moser method we develop in Section 2.6.

In this chapter, we will just present the analysis of the algorithm above and show its

convergence under the hypothesis that the starting step is close to being a solution.

In [14] (Chapter 3) we will discuss implementation delays (discretization, programing

considerations, and, more importantly diagnostics of reliability.

2.3 Scale of Banach Spaces

In this section, we set up the scale of Banach spaces that is needed in Section 2.4 and

Section 2.5. Since for the problem we are dealing with, functions with domain T admits

only finite regularity (Lemma 6), we first recall the Cr space (r ∈ R+) [28] along with

some inequalities, and based on that, we proceed to the X r,δ space for functions in T× R,

and finally the X r,δ space that will be used in Section 2.4. The existence of the smooth-

ing operator in Cr guarantees the existence of such smoothing operator in X r,δ and X r,δ

spaces.

2.3.1 Setup of the Scale of Spaces

In this section, we describe the spaces that we will use. Roughly speaking, the spaces

are for functions with domain (θ, s) ∈ T × R. The functions we are interested in will

be finitely differentiable in the θ variable and analytic in the s variable. The spaces, will

therefore have two indices. One index measuring the – finite order – differentiability in θ

and another index measuring the size of the analyticity domain in s.

The most delicate analysis (smoothing, approximation) will happen in the finite differ-

entiable direction. In our case, this will be the circle. The analysis of finite differentiable

spaces we present is rather standard. As it is well known in approximation theory, defining

a family of regularities indexed by a real parameter becomes subtle for integer values of

the parameter. A good reference is [27, 62, 28]. The properties of spaces of functions with

mixed regularity used in this paper are built on those.
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Before build up the X r space, we first recall the Cr space.

Space for Functions in T

Following [28, 63], the Hölder spaces we will be concerned with for functions defined on

T are:

Definition. Let X be a Banach space.

For r ∈ N, we define:

Cr(T, X) = {f : T→ X, r times continuously differentiable.}

We endow Cr with the supremum norm of all the derivatives of order up to r, which makes

it into a Banach space.

For r = n+ α /∈ N with n = brc ∈ N, α ∈ (0, 1) we define Cr = Cn+α:

Cr(T, X) = {f : T→ X, r times continuously differentiable, Dαf is α-Hölder.}

We endow Cr(T, X) with the norm

‖f‖Cn+α = max(‖f‖Cn , Hα(Dnf)),

where for a function φ : T→ X , we set

Hα(φ) = sup
x 6=y

|φ(x)− φ(y)|
d(x, y)α

.

Remark 13. In this Chapter (excluding Section 2.6), we always denote r ≥ 0 for the

regularity, and we always have n = brc and α = r − n.

Remark 14. The case α = 1 agrees with the Lipschitz constant and is very natural. We

have excluded it to avoid complicating the notation since Cr+1 would be ambiguous when
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r is an integer.

Remark 15. Hα is a seminorm and Hα(φ) = 0 if and only if φ is a constant.

Remark 16. The Cr scale of spaces is very natural and easy to work with since the def-

initions of the norms are very explicit. As it is well known, the Cr scale of spaces has

anomalies when r is an integer (the properties of approximation and smoothing are not as

expected, etc). So, it is common in analysis to use the other scales of spaces. (called Λr in

[62] or Ĉr in [21, 27] ).

In this paper, we will not use the Λr spaces (the composition operator plays a role in our

study and there does not seem to be in the literature a systematic study of composition in the

Λα scales) but our results will include some caveats that the spaces in the hypothesis or in

the conclusions are not integers. Sometimes, this just amounts to making some inequalities

in the range strict.

Remark 17. When r ∈ N, the Cr spaces can be defined taking values in any manifold

Riemannian (or even Finsler) manifold. When r > 1 and r 6∈ N, the definition, in general,

is complicated since to define Hα, one needs to compare the values of derivatives at two

different points. This requires making explicit some cumbersome choices. In this paper,

however, we will only need to deal with Cr(T,T) or Cr(T,R). For T, there is a natural

identification of all the tangent spaces of different points, so that there is no problem in

defining Cr spaces taking values on the torus.

Space for Functions in T× R

Given δ < 1, we define the space X r,δ as follows:

Definition. For a function u(θ, s) with domain T × [−δ, δ], we say u ∈ X r,δ if u(θ, s) =∑∞
j=0 u

(j)(θ)sj with u(j)(θ) ∈ Cr and
∑∞

j=0

∥∥u(j)∥∥
Cr
δj <∞. In other words,

X r,δ =
{
u(θ, s) =

∞∑
j=0

u(j)(θ)sj | u(j)(θ) ∈ Cr, and
∞∑
j=0

∥∥u(j)∥∥
Cr
δj <∞

}
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with norm

‖u‖X r,δ =
∞∑
j=0

∥∥u(j)∥∥
Cr
δj.

Remark 18. It is useful to think of X r,δ as a space of Cr functions from the circle to a

space of analytic functions on the unit disk.

This corresponds well to the idea of local foliations. We can think of a function that to

each of the base points associates a segment of the analytic leaf.

Remark 19. Note that the space X r,δ consists of functions that in the variable s have a

domain of analyticity which is a disk.

This is, of course, enough when we are considering local foliations, but if we study

global foliations, it can well happen that the true domain of analyticity of the leaves is not

a disk.

From the numerical point of view, it is natural and efficient to represent functions in

a disk using power series and indeed the definition of the norm in X r,δ is done to reflect

that. On the other hand, one should keep in mind that in the global study of foliations,

finding solutions of (2.4) in X r,δ only gives us segments of the leaves. Roughly, we are

studying the solution in a circle, which extends to the singularity closest to the origin. If

this singularity happens away from the real line, the parameterization may be analytic for

real values outside the circle of convergence.

Numerically, this corresponds to the step of “globalization”. Once we have obtained a

good representation of the function in a neighborhood of the origin using power series, we

can use (2.4) to obtain the parameterization in a larger domain.

For notational simplicity, we denote X r,δ as X r when the δ is understood. We will also

not distinguish ‖·‖X r,δ and ‖·‖Cr if the space of the analytic function is understood. Since

for f : T→ T, f ∈ Cr implies f ∈ X r,δ and we have ‖f‖Cr = ‖f‖X r,δ .
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2.3.2 Basic Properties of Cr and X r,δ Spaces

Inequalities for Basic Operations

In this subsection, we present some basic properties and inequalities in the Cr space.

Lemma 1 (Inequalities in Cr Space). For φ, ψ, a ∈ Cr, where r ≥ 1, and a : T → T is a

differeomorphism, we have the following inequalities [28]:

1. Hα(φ ◦ a) ≤ Hα(φ)‖Da‖αC0 ,

2. Hα(φ · ψ) ≤ ‖φ‖C0Hα(ψ) +Hα(φ)‖ψ‖C0 ,

3. ‖φ · ψ‖Cr ≤ 22n+1 ‖φ‖Cr ‖ψ‖Cr ,

4. ‖φ ◦ ψ‖Cr ≤Mr ‖φ‖Cr (1 + ‖ψ‖rCr) ≤ 2Mr ‖φ‖Cr ‖ψ‖
r
Cr , where Mr ≥ 1.

Remark 20. If a : T → T is only of α-Hölder continuity for α < 1, the Hölder space is

not preserved and the best that we can have is Hαβ(φ ◦ a) ≤ Hα(φ)Hβ(a)α.

Based on Lemma 1, we can further derive the following inequalities. These inequalities

will be used in the estimation in Section 2.5. We extract them here as an extension to [28]

and we hope they can also be used in other applications.

Lemma 2 (More Inequalities in Cr Space). For φ, ψ, a ∈ Cr, where a : T → T is a

differeomorphism. We assume k, p, q ∈ N+. The inequalities are as follows:

1. Hα(Dpa ◦ a◦k) ≤ Hα(Dpa)‖Da‖kαC0 ,

2. Hα(D(a◦k)) ≤ kHα(Da)‖Da‖k(α+1)−1
C0 ,

3. ‖a◦k‖Cr ≤ knn!‖Da‖r(k−1)C0 ‖a‖r+1
Cr ,

4. ‖φ(a◦k)‖Cr ≤ n!kn−1(n+ nk + 1)‖φ‖Cr‖a‖r+1
Cr ‖Da‖krC0 ,

5. ‖ψ[k]‖Cr ≤ kn+1(n+1)!(‖ψ‖Cr+‖a‖Cr)r+1‖ψ‖max(0,k−n−1)
C0 ‖Da‖krC0 , where ‖ψ‖C0 <

1, and as in equation 2.6, ψ[k] = ψ(a◦(k−1)) · · ·ψ(a)ψ,
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6. If ‖ψ‖C0 < 1, ‖φ(a◦k)ψ[k]‖Cr ≤ Cr‖φ‖Cr(‖ψ‖Cr+‖a‖Cr)r+1‖ψ‖−nC0 k
r(‖ψ‖C0‖Da‖rC0)k,

7. ‖φk‖Cr ≤ k2(n−1)‖φ‖min(k,r)
Cr ‖φ‖max(k−n−1,0)

C0 .

Proof. By Lemma 1, we have

1. Hα(Dpa ◦ a◦k) ≤ Hα(Dpa)‖Da◦k‖αC0 ≤ Hα(Dpa)‖Da‖kαC0 ,

2. Hα(Da◦k) ≤ k‖Da‖k−1C0 max0≤j≤kHα(Da ◦ a◦j) ≤ kHα(Da)‖Da‖k(α+1)−1
C0 ,

3. Suppose Dp(a◦k) has Tp terms, each term has Fp factors, then by

Fp+1 ≤ Fp + k − 1, Tp+1 ≤ TpFp and F1 = k, T1 = 1,

we have Fn ≤ nk, Tn ≤ kn(n− 1)!, for the same n = brc.

In each term, at most n(k− 1) factors are Da◦a◦q, at most n factors are Dp(a)◦a◦q,

where 0 ≤ p ≤ n, 0 ≤ q ≤ k.

Thus we have

‖Dnak‖C0 ≤ kn(n− 1)!‖a‖nCn‖Da‖
n(k−1)
C0 .

We also have

Hα(Dna◦k) ≤ kn(n− 1)!Hα(each term in Dnak)

≤ kn(n− 1)!
(
n‖Da‖n(k−1)C0 ‖a‖n−1Cn max

0≤p≤n,0≤q≤k
Hα(Dpa ◦ a◦q)

+ n(k − 1)‖Da‖n(k−1)−1C0 max
0≤q≤k

Hα(Da ◦ a◦q)‖a‖nCn
)

≤ kn(n− 1)!
(
n‖Da‖n(k−1)C0 ‖a‖n−1Cn Hα(Dna)‖Da‖kαC0

+ n(k − 1)‖Da‖n(k−1)−1C0 Hα(Da)‖Da‖kαC0‖a‖nCn
)

≤ kn+1n!‖Da‖kr−nC0 ‖a‖r+1
Cr
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Above all, we have

‖a◦k‖Cr ≤ max
(
‖a◦k‖Cn , Hα(Dna◦k)

)
≤ knn!‖Da‖r(k−1)C0 ‖a‖r+1

Cr .

4. By the same notation and same method as (3), we have Fn ≤ (n+ 1)k, Tn ≤ n!kn−1.

In each term, at most n factors of Dpa ◦ a◦q, at most nk factors of Da ◦ a◦q and there

is a term of Dp(φ) ◦ ak, where 0 ≤ p ≤ n, 0 ≤ q ≤ k.

It follows that

‖Dn[φ(a◦k)]‖C0 ≤ n!kn−1‖φ‖Cn‖a‖nCn‖Da‖nkC0 ,

and

Hα(Dn[φ(a◦k)]) ≤ n!kn−1(n+ nk + 1)‖a‖r+1
Cr ‖Da‖

kr
C0‖φ‖Cr .

Thus, we have

‖φ(a◦k)‖Cr ≤ n!kn−1(n+ nk + 1)‖φ‖Cr‖a‖r+1
Cr ‖Da‖

kr
C0 .

5. By running the same analysis on ψ[k], we have Fn ≤ k(n + 1), Tn ≤ knn!, and for

each term, there are at least max(k − n, 0) factors of ψ, at most n factors of either

Dpa ◦a◦q or Dpψ ◦a◦q, at most nk factors of Da ◦a◦q, where 0 ≤ p ≤ n, 0 ≤ q ≤ k.

It follows that

‖Dnψ[k]‖C0 ≤ knn!‖ψ‖max(k−n,0)
C0 (‖ψ‖Cn + ‖a‖Cn)n‖Da‖nkC0 ,

and

Hα(Dnψ[k]) ≤ kn+1(n+ 1)!‖ψ‖max(0,k−n−1)
C0 (‖ψ‖Cr + ‖a‖Cr)r+1‖Da‖krC0 .
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Above all,

‖ψ[k]‖Cr ≤ kn+1(n+ 1)!(‖ψ‖Cr + ‖a‖Cr)r+1‖ψ‖max(0,k−n−1)
C0 ‖Da‖krC0 .

6. Since

Dn(φ(a◦k)ψ[k]) =
n∑
q=0

n
q

Dn−qφ(ak)Dqψ[k],

and with the previously derived results, we have (with the tedious computation omit-

ted), that

‖φ(a◦k)ψ[k]‖Cr ≤ Cr‖φ‖Cr(‖ψ‖Cr + ‖a‖Cr)r+1‖ψ‖−nC0 k
r(‖ψ‖C0‖Da‖rC0)k,

where Cr is formed by only the power series and factorials of r.

7. As for ‖φk‖Cr , we know Dn(φk) has kn−1 terms, each term has k factors, and each

term has at most min(k, n) factors of Dpφ with the rest of the terms are φ, we have

‖φk‖Cr ≤ k2(n−1)‖φ‖min(k,r)
Cr ‖φ‖max(k−n−1,0)

C0 .

Lemma 1 also implies the following inequality in X r,δ space.

Lemma 3 (Inequalities in X r,δ space). Given f, g ∈ X r,δ we have

• ‖f · g‖X r,δ ≤ 22n+1 ‖f‖X r,δ ‖g‖X r,δ ,

By [28], theCr(T, X) space, thus theX r,δ space we are considering in this paper admits

a scale of Banach Spaces with continuous inclusion. In other word, for 0 ≤ r ≤ s, we have

Cs(U,X) ⊂ Cr(U,X) and X s,δ ⊂ X r,δ.
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Remark 21. Generally speaking, the scale of spaces Cr(U,X) does not admits continuous

inclusion for general domain U (counterexample can be found in [28]). The continuous

inclusion is guaranteed when U is a compensated open set [28].

Smoothing Operators

To develop the Nash-Moser smoothing technique, for a scale of Banach spaces X r,δ, we

need the existence of a family of smoothing operators defined as follows:

Definition (Smoothing Operator). For a scale of Banach spaces Xr, a family of smoothing

operators {St}t∈R+ satisfies

‖Stu‖µ ≤ tµ−λCλ,µ ‖u‖λ for u ∈ Xλ (2.27)

and

‖(St − I)u‖λ ≤ t−(µ−λ)Cλ,µ ‖u‖µ for u ∈ Xµ (2.28)

for µ ≥ λ ≥ 0, where t is the strength of smoothing.

Remark 22. The existence of the Cr-smoothing operator in Cr(T, X) is guaranteed by

[28, 27].

With such smoothing operator in Cr space, we can define the smoothing operator for a

function u(θ, s) =
∑∞

j=0 u
(j)(θ)sj ∈ X r,δ by smoothing each of u(j)(θ) for j ≥ 0. More

precisely, we have

Definition (Smoothing Operator in X r,δ). For u(θ, s) =
∑∞

j=0 u
(j)(θ)sj ∈ X r, the smooth-

ing operator St is defined as follows:

Stu(θ, s) =
∞∑
j=0

Ŝtu
(j)(θ)sj. (2.29)

where Ŝt is the smoothing operator in Cr space defined in Remark 22.
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In our problem, since (2.4) has unknowns which are triples of functions, (W,a, λ), we

will see that the smoothing operators defined so far, lead straightforwardly to smoothing

operators in the space of triples. See Section 2.3.3.

Note that the definition of smoothing in X r,δ defined above is the standard Cr smooth-

ing applied spaces of Cr functions taking values in a space of analytic functions as dis-

cussed in Remark 18.

It is standard to see that this operator St defined in (2.29) satisfies condition (2.27) and

(2.28), thus it is indeed a smoothing operator in X r,δ.

Remark 23. As shown in [27, 64, 28], the existence of the smoothing operators implies the

interpolation inequality, which is for any 0 ≤ λ ≤ µ, 0 ≤ γ ≤ 1, and v = (1− γ)λ + γµ,

we have

‖u‖v ≤ Cγ,λ,µ ‖u‖1−γλ ‖u‖γµ . (2.30)

Obtaining (2.30) as a corollary of smoothing, leads to the conclusion only in the case

that v is not an integer. In [28], there is a direct proof (even in greater generality).

2.3.3 The X r,δ and Y r,δ Space

Our problem of solving (2.4) seeks triples of functions (the embedding W , the inner dy-

namics in the circle a and the dynamics on the stable manifolds λ). We will need spaces of

triple of functions. In this section, we specify the topologies we have found useful.

We now can define the scale of spaces X r,δ and Y r,δ by the product of Banach spaces

as follows:

Definition. Define the product space X r,δ = X r,δ ×X r,δ × Cr × Cr with norm

‖u‖X r,δ = ‖W1‖X r,δ + ‖W2‖X r,δ + ‖a‖Cr + ‖λ‖Cr ,

where u = (W1(θ, s),W2(θ, s), a(θ), λ(θ)) ∈X r,δ. Similarly, define space Y r,δ = X r,δ×
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X r,δ with norm

‖v‖Y r,δ = ‖W1‖X r,δ + ‖W2‖X r,δ ,

where v = (W1(θ, s),W2(θ, s)) ∈ Y r,δ.

Remark 24. X r,δ,Y r,δ are both scales of Banach spaces with smoothing operators. The

smoothing operators comes natually from the smoothing operators in Cr and X r spaces.

Remark 25. For the rest of the paper, we will always denote u(θ, s) ∈ X r,δ to be the

triplet (W (θ, s), a(θ), λ(θ)), and we will not distinguish among ‖·‖X r,δ , ‖·‖Y r,δ , ‖·‖Cr and

‖·‖r when δ and the dimension of the function are understood.

2.4 Statement of The Analytical Result

In this section, we present the statement of the main result: Theorem 4.

As anticipated, the proof is obtained through a Nash-Moser method, alternating the

quasi-Newton method with some smoothing steps. As discussed in Section 1.3, the problem

at hand is somewhat different from other previous applications of Nash-Moser technique.

The loss of differentiability in the estimates comes from the operator in the functional. The

solutions of the linearized equation do not lose regularity, but they only work for a range of

regularities.

Since the Nash-Moser method requires alternating the quasi-Newton method and smooth-

ings, we start formulating the standard setup. This is a scale of Banach spaces. The smooth-

ing operators map the spaces of less regular functions into the spaces of more regular func-

tions and they have quantitative properties.

By the scale of spaces and the smoothing operators in Section 2.3, we formulate our

main result Theorem 4 and proceed to the proof in Section 2.5.3. Theorem 4 implies

rather directly the result for foliations. We just need to verify that the operator entering in

equation (2.4) satisfies the hypotheses of Theorem 4.

As indicated in Section 1.3, the implicit function theorem we use will require some
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unusual properties in Nash-Moser theory: We need spaces with anisotropic regularity, the

linearized equation does not incur any loss of regularity, but can only be applied in a range

of regularities. This will require some severe adaptations from the standard expositions and

the methods based on analytic or C∞ smoothing cannot work here.

Recall that our goal is to find W (θ, s), a(θ) and λ(θ) satisfying the invariance equa-

tion (2.4). In other words, given r ≥ 0, δ > 0, we are looking for the zero of the funcional

F : X r → Y r where

F [u] = F [W,a, λ](θ, s) = f(W (θ, s))−W (a(θ), λ(θ)s), (2.31)

for u = (W,a, λ) ∈X r,δ.

Before presenting the main Theorem 4, we first define Condition-0 as follows:

Definition (Condition-0). For any sufficiently small δ, ρ > 0. Given m ∈ R, W : T×R→

T×R, a : T→ T and λ : T→ R, we say that the tuple (m,W, a, λ) satisfies Condition-0

if the following restrictions hold:

1. ‖λ‖C0 < 1,

2. (W,a, λ) , u ∈X m+2,δ,

3. For B̃m+2(ρ) ⊂X m+2 is the ball centered at u = (W,a, λ) with radius ρ,

min
u∈B̃m+2(ρ)

min
(
− ln ‖λ‖C0‖(Da)−1‖C0

ln ‖Da‖C0

,− ln ‖λ‖C0

ln ‖D(a−1)‖C0

,− ln ‖λ‖C0

ln ‖Da‖C0

)
−2 ≥ m ≥ 2.

Remark 26. Restriction (1) can be generalized to be λ∗ < 1, where λ∗ is the dynamical

average. If λ∗ is used, one also need to adapt condition (3) accordingly (see Remark 35).

Remark 27. Restriction (3) is to guarantee m is bounded above in such a way that the reg-

ularity requirement for solving cohomological equations (2.19), (2.20) and (2.22) covers

the scale of regularities in Theorem 4. (See Lemma 6 for more details).
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Following the scheme derived in Section 1, we present theorem for the existence of

solution for F [u] = 0 as follows:

Theorem 4. For sufficiently small δ > 0, ρ > 0, suppose there exists a tuple (m,W0, a0, λ0)

satisfying Condition-0.

Let X r,δ and Y r,δ be two scales of Banach spaces for m ≤ r ≤ m+ 2.

Consider the functional F : B̃r(ρ) → Y r defined in (2.31), where B̃r(ρ) is a ball

centered at u0 , (W0, a0, λ0) ∈X m+2,δ with radius ρ.

If ‖F [u0]‖X m−2,δ is sufficiently small, then there exists u∗ ∈ B̃m(ρ) such that F [u∗] =

0.

Moreover, such u∗ is the limit of the iteration combining with some smoothing opera-

tors. The smoothing parameters go to zero, and the specific rates will be given in the proof.

Furthermore, the convergence of the iterations to the limit is superexponential.

As a consequence, we have that

‖u∗ − u0‖X m,δ ≤ C‖F (u0)‖X m−2,δ ,

where C is a finite constant.

Remark 28. More specifically, the restriction for ‖F [u0]‖m−2 to be sufficiently small is:

‖F [u0]‖m−2 < e−2µβ,

where µ, β are numbers specified in the proof of Section 2.6. The converging rate for the

iteration scheme is bounded by ‖F [un]‖m−2 ≤ ve−2µβκ
n
, with the same µ and β, and κ

can be picked to be as close to 2 as possible.

Remark 29. It may seem somewhat surprising that the requirement on ‖F [u0]‖X m−2,δ

from lower regularity can result in the existence of solution u∗ in higher regularity X m,δ,

but it is actually reasonable because of the requirement from even higher regularity that
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u0 ∈X m+2,δ.

Remark 30. Since δ prescribes the range of s, picking a larger δ allows us to parameterize

a larger neighborhood of the invariant circle provided that the conditions in Theorem 4 are

maintained with the increased δ.

Remark 31. One of the consequences of (4) is that given a family of maps fε indexed by

a parameter ε so that f0 contains an invariant circle, we can design a continuation method

by taking the exact solution for some value of ε as an approximate solution for ε + η for

sufficiently small η [14].

This procedure is guaranteed to continue till some of the non-degeneracy assumptions

of Theorem 4 fail. These assumptions are just regularity of the circle and some version of

hyperbolicity. Hence, we know that these numerical methods will continue till the torus

becomes irregular, the manifolds have a domain of analyticity smaller than δ or the hyper-

bolicity is lost. This may entail that the dynamical average gets close to 1 (or undefined)

or that the angle between the stable and unstable manifolds becomes zero (the bundle col-

lapse). Of course, several of the possibilities may happen at the same time.

Remark 32. As seen in several examples (e.g. in [15]) one can see that the optimal reg-

ularity of the invariant circle may decrease continuously to 0 as the parameters changes.

For some parameter value, they will stop being C2, for another parameter they will stop

being C1, etc. (The isochrons remain analytic, even if the optimal domain may change).

This indicates that the breakdown of the tori may depend on what regularity one re-

quires to call something a torus. The fact that the destruction of the tori happens in a very

gradual way makes the exploration of the boundary be very subtle since the boundary de-

tected depends significantly on the stopping criterion. For example, the destruction of the

circles as C1 manifolds studied in [58] happens at different values of the places where they

disappear as C0 curves or as continua [59, 60].

Detailed numerical explorations of the behavior at breakdown of the hyperbolicity [41,
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42, 43, 45, 46, 48, 49] has uncovered many interesting phenomena (e.g. scaling relations)

that deserve detailed mathematical analysis.

Of course, detailed numerical explorations near the boundary is very delicate and it

requires having a very good theory (condition numbers and a-posteriori theorems) that

ensure that the calculations are correct even when something unexpected is happening.

The proof of Theorem 4 is done by verifying the conditions of Theorem 12. introduced

in Appendix 2.6. Details of the proof of Theorem 4 can be found in section 2.5.3.

2.5 Proof for the Analytical Result

This section can be mainly divided into 2 parts. In the first half, we include the proof for

the existence of h(θ, s) in equation (2.3) discussed in Section 2.1.3 (see Section 2.5.1), and

the discussion of the cohomological equation mentioned in (2.23) (see Section 2.5.2). In

the second half, we present the proof of the Theorem 4. The idea of the proof is presented

in Section 2.4. The proof is achieved by justifying all the non-degeneracy conditions that

are listed in a modified version of the Nash-Moser implicit function theorem (Theorem 12),

which can be found in Appendix 2.6.

2.5.1 The Existence of h(θ, s) in Equation (2.3)

In this subsection, we prove Lemma 5. As indicated in Section 2.1.2. Lemma 5 ensures that

the study of (2.4), which clearly is a sufficient condition for the existence of foliation, is also

necessary. This result will not be used in subsequent studies of the existence of solutions

of (2.4). Nevertheless, it introduces some techniques that will be used later. It also allows

us to make some remarks about the domains of solutions of functional equations.

Our goal is finding h(θ, s) such that equation (2.3) holds for given λ(θ, s) and λ̂(θ, s).

In the following Lemma 5, we show the existence of h(θ, s) when λ̂(θ, s) equals to the

linear term of λ(θ, s) by the contraction mapping theorem.
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Lemma 5 (Existence of h(θ, s)). There exists δ > 0 such that for λ̂ ∈ X r,δ, λ̂(θ, s) =

λ(θ)s + N(θ, s), where N(θ, s) = O(s2). If there exists k ∈ N+ such that ‖λ[k]‖C0 < 1

and ‖λ[k]‖Cr < γk for some k ∈ N+, where γk is specified in the proof, then we have the

existence of h(θ, s) ∈ X r,δ such that equation (2.3): h(a(θ), λ(θ)s) = λ̂(θ, h(θ, s)) holds.

Remark 33. The condition ‖λ[k]‖C0 < 1 for some k ∈ N+ can be assured when the

dynamical average λ∗ < 1, and the condition ‖λ[k]‖Cr can be maintained with a suitable

choice of initial condition u0 as in Theorem 4.

Remark 34. This Lemma can be viewed as a “fibered” version of the Poincaré- Sternberg

theorem on linearization of contractions. We can think of s as the dynamic variable but the

map sends a fiber indexed by θ into another fiber indexed by a(θ).

We have prepared a proof following the version of [65] based on formulating as con-

tractions since it leads to concrete estimates. Since the maps are analytic in the dynamical

variable, the original proof of Poincaré-Dulac [66, 67] based on majorants can also be

adapted.

Proof. By substituting the above λ̂(θ, s) and λ(θ) in equation (2.3), we have

h(a(θ), λ(θ)s) = λ(θ)h(θ, s) +N(θ, h(θ, s)). (2.32)

Since we only need the existence of h, we restrict ourselves for finding h(θ, s) with the

following form:

h(θ, s) = s+ ĥ(θ, s), (2.33)

where ĥ(θ, s) = O(s2). By substituting (2.33) back into equation (2.32) and after some

simplifications, we have

ĥ(θ, s) = λ−1(θ)[ĥ(a(θ), λ(θ)s)−N(θ, s+ ĥ(θ, s))]. (2.34)
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Define space

X̃ r,δ =
{
u(θ, s) =

∞∑
j=2

u(j)(θ)sj | u(j)(θ) ∈ Cr, and
∞∑
j=2

∥∥u(j)∥∥
Cr
δj <∞

}
.

We know X̃ r,δ is complete as it is a closed subspace of X r,δ, and N(θ, s), h̃(θ, s) ∈ X̃ r,δ.

Denote

G [ĥ] = λ−1(θ)[ĥ(a(θ), λ(θ)s)−N(θ, s+ ĥ(θ, s))],

then G : X̃ r,δ → X̃ r,δ. The task now is to show the existence of ĥ such that G (ĥ) = ĥ

through contraction.

Instead of directly showing that G is a contraction, we show G ◦k(G compose with itself

k times for some big enough integer k) is a contraction.

By simple calculations, one can see that

G ◦k[ĥ] = (λ−1)[k](θ)[ĥ(a◦k(θ), λ[k](θ)s)− kO(s2)], (2.35)

where the second term kO(s2) is formed by the summation of n terms of N(·, ·), each is of

O(s2), which can be controlled to be small by some upper bound δo since |s| < δ < δ0.

It remains to show that the first term of (2.35): (λ−1)[k](θ)ĥ(a(θ), λ[k](θ)s) , L [ĥ] is

a contraction. For every ĥ1, ĥ2 ∈ X̃ r, we have ĥ1(θ, s) =
∑∞

j=2 ĥ
(j)
1 (θ)sj and ĥ2(θ, s) =∑∞

j=2 ĥ
(j)
2 (θ)sj . We have

∥∥∥L [ĥ1]−L [ĥ2]
∥∥∥
X r,δ

=
∥∥∥(λ−1)[k](θ)(ĥ1(a

◦k(θ), λ[k](θ)s)− ĥ2(a◦k(θ), λ[k](θ)s)))
∥∥∥
X r,δ

≤

∥∥∥∥∥
∞∑
j=2

(ĥ
(j)
1 − ĥ

(j)
2 )(a◦k(θ))λ[k−1](j−1)(θ)sj

∥∥∥∥∥
X r,δ

≤ Cr,k,‖a‖Cr ,‖λ‖C0

∥∥λ[k]∥∥r
Cr

∞∑
j=2

∥∥∥ĥ(j)1 − ĥ
(j)
2

∥∥∥
X r,δ

δj

≤ ζ
∥∥∥ĥ1 − ĥ2∥∥∥

X r,δ
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provided that ‖λ[k]‖Cr < (ζC−1r,k,‖a‖Cr ,‖λ‖C0
)
1
r , γk for any 0 < ζ < 1, where the second

last inequality is achieved by utilizing Lemma 2 and C−1r,k,‖a‖Cr ,‖λ‖C0
> 0 is a constant

related to r, k, ‖a‖Cr and ‖λ‖C0 only.

By the above discussion, we have the existence of ĥ∗ ∈ X̃r such that G (ĥ∗) = ĥ∗,

which finishes the proof.

2.5.2 Estimates on Solutions of the Cohomological Equation (2.23)

We use this subsection to take a closer look at the cohomological equation mentioned in

(2.23) with solution (2.25). The following result in Lemma 6 is used in both Section 2.2.1

and Section 2.5.

Lemma 6. Given l(θ), a(θ) and η(θ) ∈ Cr with ‖l‖C0 < 1. If r < − ln ‖l‖C0/ ln ‖Da‖C0

(i.e. ‖Da‖rC0 ‖l‖C0 < 1), then the cohomological equation (2.23): φ(θ) = l(θ)φ(a(θ)) +

η(θ) admits a unique Cr solution:

φ(θ) =
∞∑
j=0

l[j](θ)η(aj(θ)) (2.36)

with

‖φ‖Cr ≤ Cl,a,r ‖η‖Cr ≤ ∞,

Proof. First, we prove that (2.36) is a solution to equation (2.23). Since ‖l‖C0 < 1 and

‖η‖C0 is bounded, by noticing that
∑∞

j=0 l
[j](θ)η(aj(θ)) converges uniformly in C0, one

can plug this infinite sum back in (2.23) and rearrange terms to show that (2.36) is indeed

a solution.

On top of this, we argue that (2.36) is the only C0 solution. More explictly, if there

were two solutions, then by the discussion in (2.24): φ(θ) =
∑n

j=0 l
[j](θ)η(aj(θ)) +

l[n+1](θ)φ(an+1(θ)), they would agree on the first n terms, and since the limit of the C0

norm for the last term goes to 0 as n goes to infinity, the two solutions are the same.
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To finish the proof, we now show that ‖φ‖Cr < ∞. By Lemma 1 and Lemma 2, we

have the following inequalities,

1. ‖a◦k‖Cr ≤ knn!‖Da‖r(k−1)C0 ‖a‖r+1
Cr ,

2. ‖η(a◦k)‖Cr ≤ n!kn−1(n+ nk + 1)‖η‖Cr‖a‖r+1
Cr ‖Da‖krC0 ,

3. ‖l[k]‖Cr ≤ kn+1(n+ 1)!(‖l‖Cr + ‖a‖Cr)r+1‖l‖max(0,k−n−1)C0 ‖Da‖krC0 ,

4. ‖η(a◦k)l[k]‖Cr ≤ Cr(‖l‖Cr + ‖a‖Cr)r+1‖l‖−nC0

[
kn(‖l‖C0‖Da‖rC0)k

]
‖η‖Cr

Thus from (2.25), we have

∞∑
j=0

∥∥l[j]η(a◦j)
∥∥
Cr
≤ Cr(‖l‖Cr + ‖a‖Cr)

r+1‖l‖−nCr (
∞∑
j=1

jn(‖Da‖rC0 ‖l‖C0)
j) ‖η‖Cr ,

and thus if r < − ln ‖l‖C0/ ln ‖Da‖C0 , we have ‖l‖C0 ‖Da‖rC0 < 1. It follows that

‖φ‖Cr ≤
∞∑
j=0

‖l[j]η(a◦j)‖Cr <∞,

which finishes the proof.

Remark 35. Give k ∈ N+, by rewriting equation (2.23) into the form as in (2.24), i.e.,

φ(θ) = l[k+1](θ)φ(a◦(k+1)(θ)) +
k∑
j=0

l[j](θ)η(a◦j(θ)),

The requirement for r can be generalized slightly to be r < − ln ‖l[k]‖C0/ ln ‖D(a◦(k+1))‖C0 ,

we have
∥∥l[k]∥∥

C0

∥∥D(a◦(k+1))
∥∥r
C0 < 1,

Remark 36. Lemma 6 shows that if

‖l‖C0 ‖Da‖rC0 < 1 (or
∥∥l[k]∥∥

C0

∥∥D(a◦(k+1))
∥∥r
C0 < 1, ) (2.37)
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then we have that φ(θ) =
∑∞

j=0 l
[j](θ)η(aj(θ)) converges absolutely in the Cr sense, thus

φ ∈ Cr.

Note that the condition (2.37) can only be satisfied for a finite range of regularity r. It

is not difficult to give examples to show that this condition is sharp.

If a(θ) has an attractive fixed point, which we place at θ = 0. If a(θ) = λθ in a

neigborhood and, moreover l(θ) is a constant, we see that (2.25) becomes

φ(θ) =
∞∑
j=0

ljη(λjθ)) (2.38)

which is a version of the classical Weierstrass function, which for even polynomial η

can be arranged to be finite differentiable, showing that the range claimed in Lemma 6

is optimal in the generality claimed. Indeed the map that in local coordinates has the

expression (x, y) = λx, ly+ η(x) has an invariant circle given by the graph of the function

φ in (2.38).

The fact that one can only solve the cohomology equations for a certain range of regu-

larities makes it impossible to use the Nash-Moser methods that are based on approximat-

ing equations by solutions of C∞ or Cω problems.

2.5.3 Proof for Theorem 4

Following the same notation as in Theorem 4, we now justify the non-degeneracy condi-

tions of the absolute Nash-Moser Theorem 12 one by one.

Lemma 7 (Condition 1). For δ, B̃r(ρ) defined in Theorem 4, we have F (B̃r(ρ)∩X r,δ) ⊂

Y r,δ.

Proof. For every u(θ, s) = (W (θ, s), a(θ), λ(θ)) ∈ B̃r(ρ) ∩X r,δ, recall B̃r(ρ) is a ball

with radius ρ, we have

F [u](θ, s) = f ◦W (θ, s)−W (a(θ), λ(θ)s).
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First, we show that f ◦W (θ, s) ∈ Y r. With no loss of generality, we will only consider

the first component of f = (f1, f2) and show that ‖f1(W1,W2)‖X r,δ <∞.

Write

f1(θ, s) =
∞∑
j=0

f
(j)
1 (θ)sj, W1(θ, s) =

∞∑
j=0

W
(j)
1 (θ)sj, W2(θ, s) =

∞∑
j=0

W
(j)
2 (θ)sj.

Notice that

f
(j)
1 (W1(θ, s)) = f

(j)
1 (W

(0)
1 (θ)) +

( d
dθ
f
(j)
1

)
(W

(0)
1 (θ))

( ∞∑
j=1

W
(j)
1 (θ)sj

)
+ . . .

+
1

k!

(dk
dθ
f
(j)
1

)
(W

(0)
1 (θ))

( ∞∑
j=1

W
(j)
1 (θ)sj

)k
+ . . .

since f (j)(θ) is analytic, we can treat it as a function in C, and then by Cauchy’s estimates

for derivatives, we have

∣∣∣∣dkdθ (f
(j)
1 )(W

(0)
1 (θ))

∣∣∣∣ ≤ k!

Rk
max
z∈γR

∣∣∣f (j)
1 (z)

∣∣∣ =
k!

Rk
CR,∀R > 0.

where γR = {z | |z −W (0)
1 (θ)| = R}. It follows that

∥∥f (j)(W1)
∥∥

X r,δ ≤ CR(1 +R−1 ‖W1‖X r,δ +R−2 ‖W1‖2X r,δ + . . .)

≤ CR

( 1

1− ‖W1‖X r,δ

R

)
≤ CR

1

1− ρ
R

(2.39)

47



Thus

‖f1(W1,W2)‖X r,δ =

∥∥∥∥∥
∞∑
j=0

f
(j)
1 (W1)(W2s)

j

∥∥∥∥∥
X r,δ

≤
∞∑
j=0

∥∥f (j)(W1)
∥∥

X r,δ ‖W2s‖jX r,δ (2r)j

≤ CR

( 1

1− ρ
R

) ∞∑
j=0

(2rρδ)j

<∞,

where the third line is because of (2.39) and

‖W2s‖X r,δ =

∥∥∥∥∥
∞∑
j=0

W
(j)
2 sj+1

∥∥∥∥∥
X r,δ

=
∞∑
j=0

∥∥∥W (j)
2

∥∥∥
X r,δ

δ(j+1) = ‖W2‖X r,δ δ,

and the last line is because of the assumption on ρ in Theorem 4.

It remains to show that ‖W (a, λs)‖r <∞, this is trivial since

‖W (a, λs)‖X r,δ =

∥∥∥∥∥
∞∑
j=0

W (j)(a)λjsj

∥∥∥∥∥
X r,δ

≤
∞∑
j=0

∥∥W (j)(a)λj
∥∥
Cr
δj ≤

∞∑
j=0

(2r)j
∥∥W (j)(a)

∥∥
Cr
‖λ‖jCr δ

j

≤ 2Mr‖a‖rCr22n+1 max
0≤k≤r

(‖λ‖kCr) max
0≤j<∞

(‖λ‖max(j−n−1,0)
C0 j2(n−1))‖W‖X r,δ

<∞.

for (W (θ, s), a(θ), λ(θ)) ∈ B̃r(ρ) and ‖λ‖C0 < 1.

Lemma 8 (Condition 2). F |B̃m∩X r : B̃r(ρ)∩X r →X r has continuous first and second

order Fréchet derivatives, and satisfy the following conditions:

∗ ‖DF [u](h)‖m−2 ≤ Cr,B̃r(ρ) ‖h‖m−2 for h ∈X m.

∗ ‖D2F [u](h)(k)‖m−2 ≤ Cr,B̃r(ρ) ‖h‖m−1 ‖k‖m−1 for k, h ∈X m.
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where Cr,B̃r(ρ) is a constant depends on the regularity and the ball B̃r(ρ) ∈X r,δ only.

Proof. By some routine calculation, for h = (h1, h2, h3), k = (k1, k2, k3) ∈ X r, where

h1, k1 ∈ X r × X r, h2, h3, k2, k3 ∈ Cr, we can calculate the first and second order Fréchet

derivatives as follows:

DF [u](h) = Df(W )h1 − ∂1W (a, λ)h2 − ∂2W (a, λ)h3 − h1(a, λ),

D2F [u](k, h) = D2f(W )(k1, h1)− ∂11W (a, λ)(k2, h2)− ∂12W (a, λ)(k3, h2)

− ∂1k1(a, λ)h2 − ∂21W (a, λ)(k2, h3)− ∂22W (a, λ)(k3, h3)

− ∂2k1(a, λ)h3 − ∂1h1(a, λ)k2 − ∂2h1(a, λ)k3

Thus we have

‖DF [u](h)‖m−2 ≤22n+1(‖Df(W )‖m−2 ‖h1‖m−2 + ‖∂1W (a, λ)‖m−2 ‖h2‖m−2)

+ ‖∂2W (a, λ)‖m−2 ‖h3‖m−2) + ‖h1(a, λ)‖m−2

≤Cr,B̃r(ρ) ‖h‖m−2 .

and

∥∥D2F [u](k, h)
∥∥
m−2 ≤

∥∥D2f(W )(k1, h1)
∥∥
m−2 − ‖∂11W (a, λ)(k2, h2)‖m−2

− ‖∂12W (a, λ)(k3, h2)‖m−2 − ‖∂1k1(a, λ)h2‖m−2

− ‖∂21W (a, λ)(k2, h3)‖m−2 − ‖∂22W (a, λ)(k3, h3)‖m−2

− ‖∂2k1(a, λ)h3‖m−2 − ‖∂1h1(a, λ)k2‖m−2 − ‖∂2h1(a, λ)k3‖m−2 .

≤ Cr,B̃r(ρ)
(
‖h‖m−2 ‖k‖m−2 + ‖h‖m−1 ‖k‖m−2 + ‖h‖m−2 ‖k‖m−1

+ ‖h‖m−1 ‖k‖m−1
)

≤Cr,B̃r(ρ) ‖h‖m−1 ‖k‖m−1
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Lemma 9 (Condition 3). For u ∈ B̃r(ρ) and r = m− 2, m+ 2, we have

‖η[u]F [u]‖r ≤ Cr,B̃r(ρ) ‖F [u]‖r .

where η[u] serves as the approximate inverse of the derivative of the functional F [u], which

is defined in our algorithm in Section 1.

Proof. Note that we only need to apply η[u] on the range of F [u] and we do not need

estimates on the whole space. In contrast with other Nash-Moser implicit function theo-

rems, the operator η[u] is bounded from spaces to themselves and does not entail any loss

of regularity.

From Lemma 6, by equation (2.19), (2.20) and (2.22), we have

‖Γ1‖r ≤ Cr,B̃r(ρ) ‖ẽ1‖r

and

‖Γ2‖r ≤ Cr,B̃r(ρ)(‖ẽ1‖r + ‖ẽ2‖r),

from equation (2.18) and (2.21), we also have

‖∆a‖r ≤ Cr,B̃r(ρ) ‖ẽ1‖r

and

‖∆λ‖r ≤ Cr,B̃r(ρ) ‖ẽ2‖r .

Together with ‖ẽ‖r ≤ Cr,B̃r(ρ) ‖e‖r, which can be shown trivialy, we have ‖∆W‖r ≤

Cr,B̃r(ρ) ‖e(θ, s)‖r, ‖∆a‖r ≤ Cr,B̃r(ρ) ‖e‖r, and ‖∆λ‖r ≤ Cr,B̃r(ρ) ‖e‖r, which finishes the

proof.
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Lemma 10 (Condition 4). For u ∈ B̃m, we have

‖(DF [u]η[u]− Id)F [u]‖m−2 ≤ Cr,B̃r(ρ) ‖F [u]‖m ‖F [u]‖m−1 .

Proof.

F [u]−DF [u]η[u]F [u]

= F [u] +DF [u]∆u

= F [u+ ∆u] + O(∆2)

= f(W + ∆W )− (W + ∆W )(a+ ∆a, (λ+ ∆λ)s) + O(∆2)

= f(W ) +Df(W )∆W −W (a, λs)−DW (a, λs)

 ∆a

∆λs

−∆W (a, λs)

+D∆W (a, λs)

 ∆a

∆λs

+ O(∆2)

= −DW (a, λs)
[ Da 0

Dλs λ

Γ−

 ∆a

∆λs

− Γ(a, λs)− ẽ
]

−DeΓ +D∆W (a, λs)

 ∆a

∆λs

+ O(∆2)

= −DeΓ +D∆W (a, λs)

 ∆a

∆λs

+ O(∆2).

By the proof in Lemma 9, and that ‖De‖m−2 ≤ Cr,B̃r(ρ) ‖e‖m−1, ‖D∆W‖m−1 ≤ Cr,B̃r(ρ) ‖e‖m−1,

we achieve

‖(DF [u]η[u]− Id)F [u]‖m−2 ≤ Cr,B̃r(ρ) ‖F (u)‖m−1 ‖F (u)‖m .
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Lemma 11 (Condition 5). For u ∈ B̃m ∩ X m+2, we have ‖F [u]‖m+2 ≤ Cr,B̃r(ρ)(1 +

‖u‖m+2).

Proof. From the proof of Lemma 7 above, we can see that there exists a constant C > 0

such that ‖F [u]‖r < Cr,B̃r(ρ) for u ∈ B̃m ∩X m+2, thus the Lemma follows naturally.

Since all the constant Cr,B̃r(ρ) we get from Lemma 7, 8, 9, 10 and 11 are universal for u

in the respective domain B̃r(ρ), we have finished proving all the non-degeneracy conditions

required by Theorem 12 in the Appendix 2.6. Thus we have proved Theorem 4.

2.6 An Abstract Implicit Function Theorem in Scales of Banach Spaces

In this section, we present and prove Theorem 4, which is a modified version of the Nash-

Moser implicit function theorem. We have made the assumptions in Theorem 4 to match

the inequalities that we can achieve from the algorithm in Section 1. We hope that this

theorem can also be applied in some other problems.

The main idea of the Nash-Moser smoothing technique is to add a smoothing operation

inside the Newton steps. That is, even though the Newton (or quasi-Newton) steps lose

regularities, the smoothing operator restores them.

As anticipated in Section 1.3, our problem has some unusual properties which make it

impossible to use other results. As peculiarities of the analysis our problem we recall:

1. The functional we are trying to solve is not differentiable from one space to itself (It

is basically, the composition operator).

2. The linearized equation can be solved without loss of regularity, but only for reg-

ularities on a range. This range does not change much by smoothing the problem.

Hence, the technique of approximating the problem by C∞ or analytic ones does not

produce any results. A result we found inspiring is [26].

3. The use of identities to simplify the equation leads to an extra term in the error esti-

mates after applying the iterative method. The new error contains a term estimated by
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a derivative of the original error multiplied by the correction (in appropriate norms).

Implicit function theorems with these terms were already considered in [68, 29, 30]

but they were treated by analytic or C∞ smoothing which is not possible for the

problem in this paper.

4. In the problem at hand it is natural to use functions with a mixed regularity: finitely

differentiable in one variable and analytic in another.

The statement of the abstract Nash-Moser implicit function theorem we will use is:

Theorem 12. Let m > 2 and X r, Y r for m ≤ r ≤ m + 2 be scales of Banach spaces

with smoothing operators. Let Br be the unit ball in X r, B̃r(ρ) = u0 + ρBr be the unit

ball translated by u0 ∈ X r with radius scaled by ρ > 0, and B(Y r,X r) is the space of

bounded linear operators from Y r to X r. Consider a map

F : B̃r(ρ)→ Y r

and

η : B̃r → B(Y r,X r)

satisfing:

• F (B̃r(ρ) ∩X r) ⊂ Y r for m ≤ r ≤ m+ 2.

• F |B̃m∩X r : B̃r(ρ) ∩X r →X r has two continuous Fréchet derivatives, and satisfy

the following bounded conditions:

∗ ‖DF [u](h)‖m−2 ≤ C ‖h‖m−2 for h ∈X m.

∗ ‖D2F [u](h)(k)‖m−2 ≤ C ‖h‖m−1 ‖k‖m−1 for k, h ∈X m.

• ‖η[u]F [u]‖r ≤ C ‖F [u]‖r, u ∈ B̃r(ρ) for r = m− 2,m+ 2.

• ‖(DF [u]η[u]− Id)F [u]‖m−2 ≤ ‖F [u]‖m ‖F [u]‖m−1, u ∈ B̃m.
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• ‖F [u]‖m+2 ≤ C(1 + ‖u‖m+2), u ∈ B̃m ∩X m+2.

Then if ‖F [u0]‖m−2 is sufficiently small, then there exists u∗ ∈X m such that F [u∗] = 0.

Moreover,

‖u0 − u∗‖m ≤ C ‖F [u0]‖m−2

Proof. Let κ > 1, β, µ, α > 0, 0 < v < 1 be real numbers to be specified later. Consider

the sequence un such that

un = un−1 − Stn−1η[un−1]F [un−1], (2.40)

where tn = eβκ
n−1 . We will prove that this sequence satisfies the following three conditions

inductively:

(P1n): un ∈ B̃m,

(P2n): ‖F [un]‖m−2 ≤ ve−2µβκ
n ,

(P3n): 1 + ‖un‖m+2 ≤ ve2αβκ
n .

First, for n = 0, we know P1(n = 0) is ture automatically. By setting v = ‖F [u0]‖m−2 e2µβ

with µ, β be specified later and ‖F [u0]‖m−2 < e−2µβ , P2(n = 0) is true. Given α, we can

let β be big enough such that condition P3(n = 0): 1 + ‖u0‖m+2 ≤ e2αβ holds. Now,

suppose P1, P2 and P3 are true for n − 1, we will now show that the three conditions are

true for n.

By assumption (3) and P2(n− 1), we have

‖η[un]F [un]‖X m−2 ≤ C ‖F [un]‖Y m−2 ≤ Cve−2µβκ
n

, (2.41)
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it follows from (2.40) and (2.41) that

‖un − un−1‖X m =
∥∥Stn−1η[un−1]F [un−1]

∥∥
X m

≤ Ct2n−1 ‖η[un−1]F [un−1]‖X m−2

≤ Cve2βκ
n−1(1−µ). (2.42)

where the second inequality above comes from (2.27).

Thus we have

‖un − u0‖X m ≤
∞∑
j=1

‖uj − uj−1‖X m

≤ Cv(e2β(1−µ) + e2β(1−µ)κ + e2β(1−µ)κ
2

+ e2β(1−µ)κ
3

+ e2β(1−µ)κ
4

+
∞∑
j=6

e2β(1−µ)κ
j

)

≤ Cv(e2β(1−µ) + e2β(1−µ)κ + e2β(1−µ)κ
2

+ e2β(1−µ)κ
3

+ e2β(1−µ)κ
4

+
e2β(1−µ)κ

6

1− e2β(1−µ)κ
)

≤ ρ. (2.43)

where the third inequality comes from the fact that κj−1 > jκ for j ≥ 5 and κ > 3
√

5, and

the last inequality can be achieved if µ > 1 and β is big enough. Thus we have proved

P1(n).

In order to prove P2(n), let us break F [un] as follows:

‖F [un]‖Y m−2 ≤
∥∥F [un]−F [un−1] +DF [un]Stn−1η[un−1]F [un−1]

∥∥
Y m−2

+ ‖(Id−DF [un−1]η[un−1])F [un−1]‖Y m−2

+
∥∥DF [un−1](Id− Stn−1)η[un−1]F [un−1]

∥∥
Y m−2 (2.44)

and estimates the three terms one by one:

For the first line, by taylor expansion, the boundary condition in the second part of
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assumption(2), (2.27) and (2.41), we have

l1 =
∥∥F [un]−F [un−1] +DF [un]Stn−1η[un−1]F [un−1]

∥∥
Y m−2

≤ C
∥∥D2F [un](Stn−1η[un−1]F [un−1])(Stn−1η[un−1]F [un−1])

∥∥
Y m−2

≤ C
∥∥(Stn−1η[un−1]F [un−1])

∥∥2
Y m−1

≤ Ct2n−1 ‖η[un−1F [un−1]]‖2Y m−2

≤ Cve(1−2µ)2βκ
n−1

(2.45)

For the second line, by assumption(4), (2.30), P2(n−1), assumption (5) and P3(n−1),

we have

l2 = ‖(Id−DF [un−1]η[un−1])F [un−1]‖Y m−2

≤ C ‖F [un−1]‖Y m−1 ‖F [un]‖Y m

≤ C ‖F [un−1]‖
5
4

Y m−2 ‖F [un−1]‖
3
4

Y m+2

≤ C ‖F [un−1]‖
5
4

Y m−2 (1 + ‖un−1‖Y m+2)
3
4

≤ Cv
3
2 e(−

5
2
µ+ 3

2
α)βκn−1

(2.46)

For the third line, by (2.28), (2.41) and assumption (5), we have

l3 =
∥∥DF [un−1](Id− Stn−1)η[un−1]F [un−1]

∥∥
Y m−2

≤ Ct4n−1 ‖η[un−1]F [un−1]‖Y m+2

≤ Ct4n−1(1 + ‖un−1‖Y m+2)

≤ Cve2βκ
n−1(α−2) (2.47)

thus, in order to show that (2.48) is true, we want l1 + l2 + l3 ≤ ve−2µβκ
n , i.e.

(Cve(1−2µ)2βκ
n−1

+ Cv
3
2 e(−

5
2
µ+ 3

2
α)βκn−1

+ ve2βκ
n−1(α−2)) < ve−2µβκ

n

,
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Thus we need

C(e(1−2µ+µκ)2βκ
n−1

+ v
1
2 e(−3µ+α+µκ)2βκ

n−1

+ ve(α−2+κ)2µβκ
n−1

) < 1, (2.48)

which can be satisfied if µ, κ and α satisfies


1− 2µ+ µκ < 0,

−3µ+ α + µκ < 0,

α− 2 + κ < 0.

(2.49)

and β is picked big enough.

As for P3(n), by (2.42), (2.40), (2.40), (2.41), assumption (5) and P3(j) for j < n− 1,

we have

1 + ‖un‖X m+2 ≤ 1 +
n∑
j=1

‖uj − uj−1‖m+2

≤ 1 +
n∑
j=1

∥∥Stj−1
η[uj−1]F [uj−1]

∥∥
m+2

≤ 1 + C
n∑
j=1

‖η[uj−1F [uj−1]]‖m+2

≤ 1 + C

n∑
j=1

(1 + ‖uj−1‖X m+2)

≤ 1 + C
n∑
j=1

e2αβκ
j−1

(2.50)

we need

(1 + ‖un‖m+2)e
−2αβκn < 1,

that is

e−2αβκ
n

+ C
n∑
j=1

e(1−κ)αβκ
j−1

< v. (2.51)
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which is

e−2αβκ
n

+ C

n∑
j=1

e(1−κ)αβκ
j−1

< ‖F [u0]‖m−2 .

By the same reason as in (2.43), we have

n∑
j=1

e(1−κ)αβκ
j−1 ≤ e(1−κ)αβ+e(1−κ)αβκ+e(1−κ)αβκ

2

+e(1−κ)αβκ
3

+e(1−κ)αβκ
4

+
e(1−κ)αβ6κ

1− e(1−κ)αβκ

can be achieved if κ > 3
√

5 and β is big enough.

Above all, in oder to make sure that (2.43), (2.48) and (2.51) are true, we nee the

following constrictions for κ, α and µ:



µ > 1,

κ > 3
√

5,

1− 2µ+ µκ < 0,

−3µ+ α + µκ < 0,

α− 2 + κ < 0.

(2.52)

and β is big enough.

One possible solution for (2.52) is κ = 1.75, µ = 5 and α = 0.05 and β is big enough.

Up to this point, we have finished the proof for induction. By letting n → ∞, the

second assumption ‖F [un]‖X m−2 ≤ ve−2µβκ
n leads to a solution u∗ ∈ X m−2 such that

F [u∗] = 0, and the convergence is superexponential. Moreover, by the discussion in

(2.43), we have

‖u∗ − u0‖m ≤ Cv = C ‖F [u0]‖m−2 ,

which completes the proof.

Remark 37. Although the result ‖u∗ − u0‖m ≤ Cv = C ‖F [u0]‖m−2 is a bit surprising

in the sense that the higher regularity norm is bounded by the lower one, but this inequality
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is actually justified by the bounds from even higher regularity required in the assumption.
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CHAPTER 3

IMPLEMENTATION DETAILS AND NUMERICAL EXPLORATIONS

In this Chapter, we present and implement the algorithm that is developed in [25] (As in

Chapter 2). Namely, we compute the invariant circle and the corresponding stable mani-

folds for 2-dimensional maps. The algorithm is based on the parameterization method, and

it is backed up by an a-posterior theorem established in [25](Chapter 2).

The algorithm we present works irrespective of whether the internal dynamics in the

invariant circle is a rotation or it is phase-locked. The algorithm converges quadratically

with linear operations and linear memory requirement.

We implement the algorithm on the dissipative standard map, follow different con-

tinuation paths along the perturbation and the drift parameter. We explore a breakdown

phenomenon when the hyperbolicity of the map losses due to the merging of the bundles

when the rotation number of the internal dynamics is not prescribed. We find empirically

that as the perturbation increases, the minimum angle between the invariant circle and the

corresponding stable manifolds decreases following a power law with universal exponent.

We also discussed the generalization of the algorithm to 3 dimensions, and implement

it on the 3-dimensional Fattened Arnold Family (3D-FAF) map with non-resonant eigen-

values.

This chapter is organized as follows: In Section 3.1, we summarize the main algorithm

developed in [25], and present the iterative steps in an algorithmic form (Algorithm 1). In

Section 3.2, we discuss some implementation details regarding the algorithm. Section 3.3

is about applying the algorithm on parameter-dependent problems, where we present Algo-

rithm 3 to identify the boundary (breakdown value) of the existing domain for parameters

based on the continuation method. We use Section 3.4 to discuss numerical results regard-

ing Algorithm 1 and Algorithm 3 for the dissipative standard map, along with some further
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discussions regarding the corresponding properties. In Section 3.5, we briefly discuss the

breakdown of the invariant circle when the perturbation is large. In Section 3.6, we gener-

alize Algorithm 1 to 3-dimensional maps and present some numerical results regarding the

3D-FAF map for non-resonant eigenvalues.

3.1 The Numerical Algorithm

Given the approximate W (θ, s), a(θ) and λ(θ), we now summarize the pseudo-code of

the algorithm in Chapter 2 to compute ∆W (θ, s),∆a(θ) and ∆λ(θ), see Algorithm 1. We

truncate functions in X r,δ up to the L-th order in the power series expansion w.r.t. s (from

the analysists’s point of view, L =∞).

Algorithm 1 One iteration of the algorithm

Input: Initial W (θ, s), a(θ) and λ(θ)
Output: Solution W (θ, s), a(θ) and λ(θ) to the invariance equation (2.4)

1:
∑L

j=0 e
(j)(θ)sj = e(θ, s)← f ◦W (θ, s)−W (a(θ), λ(θ)s),

2: Compute DW (θ, s) and DW ◦ (a(θ), λ(θ)s),
3:
∑L

j=0 ẽ
(j)(θ)sj = ẽ(θ, s)← (DW (a(θ), λ(θ)s))−1e(θ, s) (Section 3.2.2),

4: ∆a(θ)←−ẽ(0)1 (θ),
5: Γ

(0)
1 (θ)← 0,

6: Solve Γ
(j)
1 (θ) from equation (2.19) for 1 ≤ j ≤ L using Algorithm 2,

7:
∑L

j=0M
(j)(θ)sj = M(θ, s)← ẽ2(θ, s)−Dλ(θ)sΓ1(θ, s),

8: ∆λ(θ)←−M (1)(θ),
9: Γ

(1)
2 (θ)← 0,

10: Solve Γ
(0)
2 (θ) from equation (2.20) using Algorithm 2,

11: Solve Γ
(j)
2 (θ) from equation (2.22) for 2 ≤ j ≤ L using Algorithm 2,

12:
∑L

j=0 ∆
(j)
W (θ)sj = ∆W (θ, s)← DW (θ, s)Γ(θ, s),

13: W (θ, s)←W (θ, s) + ∆W (θ, s),
14: a(θ)← a(θ) + ∆a(θ),
15: λ(θ)← λ(θ) + ∆λ(θ),
16: Return updated W (θ, s), a(θ) and λ(θ).

To solve the invariance equation (2.4), one simply iterates the steps in Algorithm 1 until

either the error ‖e‖ is small enough (the algorithm converges) or max{‖W‖ , ‖a‖ , ‖λ‖}

exceed some certain value (the algorithm fails to converge).
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We point out that the algorithm is very efficient (it only manipulates functions). At

no time one needs to store (much less invert) a matrix with the discretization of the error.

Hence the storage requirements will be proportional to space taken by the discretization of

functions (not the square!) and that the operation count will be roughly proportional to the

number of variables used to discretize a function (there may be logarithmic corrections if

one uses Fourier methods.)

In fact, both the time and space requirement of Algorithm 1 are O(N × L) for a single

step of the iteration, where, again, N is the size of the grid for T1, and L is the order of

truncation of W (θ, s). This is because all the steps in the algorithm are about summation,

multiplication, division, and spline interpolation.

Remark 38. In Algorithm 1, cohomological equations are solved using Algorithm 2. We

remark that the while loop in Algorithm 2 will only repeat finite times (bounded above). In

our implementation (Section 3.4.1), such while loop only repeat at most 10 times, which is

equivalent to applying the contraction on the cohomological equation 210 times, which is

sufficient in most of the cases even when the tolerance is close to round-off error or when

the contraction is slow.

Remark 39. In the case when a(θ) admits diophantine rotation number, Fourier Transform

is commonly used [13, 61, 69, 19]. In these scenarios, despite the operations required

becomes O(N logN) for each iteration, the constant is smaller and the implementation is

indeed faster than the spline interpolation.

The algorithm is also easy to implement in a preliminary – but workable – form. Note

that the algorithm has only 16 steps, each of which can be efficiently implemented in a few

lines in a high-level language (or a good scientific library). The most complicated step is

solving the cohomology equation, but we have iterative formulas for the solution, along

with the quadratically convergence contraction algorithm (more in [14]).

Of course, developing a high-quality practical algorithm requires developing criteria
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that ensure correctness and monitor the accuracy. In that respect, having an a-posterior

theorem is an invaluable help.

The proof of the convergence in Chapter 2 involves alternating the algorithm with

smoothing steps. In numerical applications, we have found it convenient to include a low

pass filter that smooths the numerical calculations. This seems to provide enough smooth-

ing.

3.2 Some Implementation Details

The implementation of Algorithm 1 requires some practical considerations in terms of func-

tion representation and functional operations. In this section, we provide some implemen-

tation details for the algorithm. We start with the representation of the functions, followed

by the discussion of some basic functional operations: composition, inverse, etc. We then

discuss the algorithm for solving the cohomological equation. At the end of this section,

We also propose a draft method for parallel implementation.

3.2.1 Function Representation

The first thing we shall do is to determine a way of discretizing the functions. In order

to perform the algorithm, there are two types of functions we need to deal with: Type-1:

f : T→ R ∈ Cr; Type-2: g : T× [−δ, δ]→ R ∈ X r,δ.

Type-1 Functions

There are two major methods for discretizing functions of Type-1:

• Method 1: Discretizing T to a grid of points and storing f(θ) by the values on the

grid. In this case, one can obtain function evaluations and derivatives through inter-

polation techniques (more specifically, periodic splines);

• Method 2: Representing the function under an orthonormal basis and storing the co-
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efficients (for example, Fourier coefficients). To store functions under the spectral

representation, one only needs to truncate the series to a suitable order. The evalua-

tion and the derivatives of functions can then be computed accordingly.

In this paper, we will use method 1 to store f(θ) for the following reasons:

• Since the functions we are dealing with may have spikes or may lose regularities in

the neighborhood of certain points when the parameters of the map come close to

the breakdown value, using splines can allow us to partition T in a non-even man-

ner to cope with these kinds of situations, which is not easily achieved by Fourier

Transform.

• Solving (2.16) and (2.17) requires computing the composition of two functions, say

f ◦ a, where the internal dynamics, a(θ), in general does not conjugate to a rotation,

thus it is complicated to use Fourier Transform (it is still doable, one can refer to [69]

for further discussions). On the other hand, storing f and a via grid points produces

a simpler and more reliable way to perform the composition f ◦ a.

Remark 40. One delicate point of using grid points representation for functions is when

the regularity of the function drops below the order of splines used in interpolation. This

happens when the perturbation is close to the breakdown.

Remark 41. Classic results ([70]) for the error of cubic spline approximation shows that

∥∥(g − ĝ)(r)
∥∥
C∞
≤ Cr

∥∥g(4)∥∥
C∞

( 1

N

)4−r
,

where g ∈ C4, ĝ is the cubic spline approximation, C0 = 5
384

, C1 = 1
24

and C2 = 3
8
.

Thus the accuracy drops as the regularity increases. The norm in Definition 2.3.1 is hence

affected by this round-off error (as indicated in Subsection 3.4.1).
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Type-2 Functions

Following Definition 2.3.1, function g ∈ X r,δ of Type-2, g(θ, s) can be written as the

Taylor’s series w.r.t. s, i.e. g(θ, s) =
∑∞

j=0 g
(j)(θ)sj , we can truncate g(θ, s) up to the L-th

order in order to store it, provided that L is big enough so that
∑L

j=0 g
(j)(θ)sj is a good

approximation of g(θ, s). In this case, storing g(θ, s) is equivalent as storing L+1 functions

of Type-1 as g(j)(θ) ∈ Cr(T1,R1) for j = 0, 1, . . . , L, which is essentially storing a 2-d

array with size N × L.

3.2.2 Composition Between Functions

As indicated in the algorithm, we need to cope with the composition between functions

both in the Cr space and the Xr,δ space .

Coping with Function Composition in Cr

In Algorithm 1, the composition between two Cr functions is required when computing the

error of the invariance equation and when deriving and solving the cohomological equa-

tions. In these scenarios, such operation can be abstracted as computing f ◦ g, where

f : T1 → R can be functions either of index 0 or 1, and g : T → T is always of index 1.

Recall index 0 function f satisfies f(θ + 1) = f(θ), i.e. which is equivalent as periodic

function, and index 1 function f satisfies f(θ + 1) = f(θ) + 1.

If f(θ) has index 0, f◦g can be calculated by splines with periodic boundary conditions.

If f(θ) has index 1, f = id+ f̂ , where f̂(θ) is periodic, and thus f ◦ g = g + f̂ ◦ g.

Remark 42. In the unknowns of equation (2.4), only W (0)
1 (θ) and a(θ) has index 1, while

the other functions: W (j)
1 (θ) for j = 1, . . . L, W (j)

1 (θ) for j = 0, . . . , L and λ(θ) have

index 0.

Remark 43. One problem of using splines for the composition is the choice of order for the

spline. More specifically, as indicated in Section 3.4.2, the invariant circle losses regularity
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when the parameter value is close to the breakdown, in which case we have to switch from

cubic splines to Akima, quadratic or linear splines.

Remark 44. During the composition between functions, for example, W (0) ◦ a(θ), the

monotonicity of a(θ) is required. We remark that although the cubic spline does not guar-

antee such monotonicity, the results in [25] indicate that the a(θ) we are using in the

implementation is accurate enough to assure such monotonicity. Nonetheless, although not

used in this paper, one may use the Steffen’s interpolation method [71] if necessary.

Coping with Function Composition in X r,δ

Let the same f(θ, s),W (θ, s) as in (2.4) be our functions of our consideration, and fur-

thermore, assume that f(θ, s) is only formed by the basic operations (+,−, ∗, /) and com-

positions by exponential, logarithmic and trigonometric functions. The manipulation of

the Taylor series of f ◦W (θ, s) is achieved by an online algorithm with the aid of radial

derivative, also known as automatic differentiation.

We now take the example of computing sin(W1(θ, s)) whereW1(θ, s) =
∑L

j=0W
(j)
1 (θ)sj

as we will need this result in the example of Section 3.4. One can refer to section 2.3 in

[19] and [69] for more detailed discussions in more general cases.

Let L be the maximum order of s we want to calculate, i.e., we start with W1(θ, s) =∑L
j=0W

(j)
i (θ)sj , and the goal is to find sin(W1(θ, s)) up to theL-th order. Denote S(θ, s) ,

sin(w1(θ, s)) =
∑L

j=0 S
(j)(θ)sj and C(θ, s) , cos(w1(θ, s)) =

∑L
j=0C

(j)(θ)sj . By dif-

ferentiating S(θ, s) and C(θ, s) with respect to s, and by noticing that

∂sS(θ, s) = C(θ, s)∂sW1(θ, s),

∂sC(θ, s) = −S(θ, s)∂sW1(θ, s),
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we can have the following iterating formulae for S(j)(θ), C(j)(θ):

S(j)(θ) =
1

j

j−1∑
k=0

(j − k)W
(j−k)
1 (θ)C(k)(θ),

C(j)(θ) = −1

j

j−1∑
k=0

(j − k)W
(j−k)
1 (θ)S(k)(θ).

Starting with

S(0)(θ) = sin(W1(θ, 0)) = sin(W
(0)
1 (θ)),

C(0)(θ) = cos(W1(θ, 0)) = cos(W
(0)
1 (θ)).

we are now able to calculate the coefficient of sin(W1)(θ, s) up to the L-th order.

The Computation of ẽ(θ, s)

For step (4) in Algorithm 1, instead of calculating the inverse of

DW ◦ (a(θ), λ(θ)s) ,

β(0)
11 (θ) β0

12(θ)

β0
21(θ) β0

22(θ)

 ,

we will solve the following linear system:

(DW (a(θ), λ(θ)s))ẽ(θ, s) = e(θ, s),

which, after some routine calculation, is just to solve the following linear system induc-

tively from k = 0 to L to get ẽ(k)(θ).

β(0)
11 (θ) β0

12(θ)

β0
21(θ) β0

22(θ)


ẽ(k)1 (θ)

ẽ
(k)
2 (θ)

 =

ê(k)1 (θ)

ê
(k)
2 (θ)

 .
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where

ê
(k)
1 (θ) = e

(k)
1 (θ)−

k∑
j=0

(β
(k−j)
11 (θ)ẽ

(j)
1 (θ) + β

(k−j)
12 (θ)ẽ

(j)
2 (θ)),

ê
(k)
2 (θ) = e

(k)
2 (θ)−

k∑
j=0

(β
(k−j)
21 (θ)ẽ

(j)
1 (θ) + β

(k−j)
22 (θ)ẽ

(j)
2 (θ));

Thus, ẽ(k)1 (θ)

ẽ
(k)
2 (θ)

 =
1

δ(θ)

 β
(0)
22 (θ) −β(0)

12 (θ)

−β(0)
21 (θ) β

(0)
11 (θ)


ê(k)1 (θ)

ê
(k)
2 (θ)

 ,

where δ(θ) = β
(0)
11 (θ)β

(0)
22 (θ)− β(0)

21 (θ)β
(0)
12 (θ).

3.2.3 Computation of the Approximate Inverse of the Internal Dynamics

Deriving equation (2.20) involves the computation of the inverse of the internal dynamics

a(θ). In other words, given a, ∆a, a−1, the goal is to find the inverse of a+ ≡ a + ∆a, of

which we denote as a−. We remark that computing a− is a well-posed problem because of

the standard implicit function theorem.

In this subsection, we present four methods for computing a− as follows. Method 1

compute a− directly via flipping the graph and interpolation. Method 2, 3, and 4 focus on

computing the correction of a−1, denoted by ∆a−1 by solving some objective functions up

to quadratic error. In method 2, 3, and 4, a− = a−1 + ∆a−1 .

• Method 1: Reflecting the graph.

This method takes advantage of the fact that the homeomorphism a : T1 → T1 is

strictly increasing and of index 1, and thus a(θ) = Ta(0) ◦ â(θ), where Tα(x) = x+α

and â(θ) is a strictly increasing function with â(0) = 0 and â(1) = 1, thus â is

invertible. It follows that a−1(θ) = â−1 ◦T−1a(0)(θ), where Tα(x) = x−α. To compute

â−1(θ), where θ is a grid of points in T, we can reflect â(θ) over the line â(θ) = θ by

treating â(θ) as the new grid of T, treating the original grid of θ as the corresponding

values for â−1(θ), and then using splines to evaluate â−1(θ) at the original grid of θ.
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This method has great performance provided the original grid is sufficiently large

such that the values for â−1(θ) are spread over T1. If a(θ) has large slope in certain

parts of T, one can use adaptive grid and put more points on those parts to ensure the

performance.

• Method 2: Compute “Left” inverse of a.

This method, as discussed in [19], is trying to minimize the error when a− is applied

on the left of a+. From

(a−1 + ∆a−1) ◦ a+(θ)− θ = 0,

and by omitting the quadratically small terms, we have ∆a−1(θ) = −e ◦ a−1(θ),

where e(θ) = a−1(θ) ◦ a+(θ) − θ. It follows that the updated inverse of a(θ) is

a−1(θ) + ∆a−1(θ).

• Method 3: Compute “Right” inverse of a.

Similar to Method 2, we now optimize the right side inverse by solving the following

objective function:

a+ ◦ (a−1 + ∆a−1)(θ)− θ = 0,

which, after omitting quadratically small term, gives ∆a−1 = θ−a+◦(a−1)
Da+◦(a−1)

.

• Method 4:

By combining method 2 and 3, one may naturally aim to optimize

(a−1 + ∆a−1) ◦ a+(θ)− a+ ◦ (a−1 + ∆a−1)(θ) = 0. (3.1)

However, this leads to a cohomological equation

∆a−1 ◦ a+(θ)−
(
D(a+) ◦ a−1

)
∆a−1(θ) = a+ ◦ a−1(θ)− a−1 ◦ a+(θ),
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that is hard to solve through contraction.

To resolve this, we modify the objective function (3.1) as

(a−1 + ∆a−1) ◦ a+(θ)− βa+ ◦ (a−1 + ∆a−1)(θ) + (β − 1)θ = 0, (3.2)

where β = ceil(
∥∥∥ 1
Da+(a−1)

∥∥∥
C0

). Equation (3.2) can then be rewritten as a cohomo-

logical equation

∆a−1(θ) =
1

βDa+(a−1)
(θ)∆a−1 ◦ a(θ) +

e

βDa+(a−1)
(θ),

where

e(θ) = a−1 ◦ a+(θ)− βa+(a−1)(θ) + (β − 1)θ,

from which ∆a−1(θ) can then be solved via Algorithm 2.

Generally speaking, method 1 tends to have a better performance in the early iterations,

while method 2, 3, and 4 work better in the later iterations, as these methods requires ∆a

to be small, where ∆a is of the same order as the error for the cohomological equation. In

practice, we try all the methods and pick the one with the minimal error. One can refer to

Section 3.4.1 for some numerical examples for the performance.

3.2.4 The Algorithm for Solving Cohomological Equations

Calculating Γ
(j)
1,2(θ) from step (7) and (10) requires solving the cohomological equation of

the form in equation (2.23):

φ(θ) = l(θ)φ(a(θ)) + η(θ).

Remark 45. The cohomological equation (2.23) occurs very often in KAM theory, usu-

ally in the case when a(θ) conjugates to a Diophantine rotation, in which case a formal
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solution can be achieved through Fourier series. In our case, however, a(θ) may have non-

diophantine rotation number, or even may not conjugate to a rotation, thus we use grid

interpolation to avoid small divisor issues. Moreover, when a(θ) does not conjugate to a

rotation, equation (2.23) is hard to tackle using Fourier Transform.

Recall the discussion in (2.24),
∑M

j=0 l
[j](θ)η(a◦j(θ)) is a good approximation of the

unknown φ(θ) provided the series converges (i.e., when the dynamical average λ∗ < 1)

and M is big enough. We can use the following algorithm to get to
∑M

j=0 l
[j](θ)η(a◦j(θ))

with logM iterations:

Algorithm 2 Solving the cohomological equation (2.23)

Input: l(θ), a(θ), η(θ) and tolerance
Output: The solution of equation (2.23): φ(θ)

1: φ(θ)← η(θ),
2: L(θ)← l(θ),
3: A(θ)← a(θ),
4: while ‖φ(θ)− l(θ)φ(a(θ))− η(θ)‖ > tolerance do
5: φ(θ)← φ(θ) + L(θ)φ ◦ A(θ)
6: L(θ)← L(θ)L ◦ A(θ)
7: A(θ)← A ◦ A(θ)
8: end while
9: Return φ(θ)

Remark 46. We emphasis that Algorithm 2 allows us to make the summation of M terms

in logM steps. We hope such idea can be applied in more general applications.

Remark 47. We remark that the main idea of Algorithm 2 is similar to the binary expan-

sion. More spercifically, in the begining of the (k + 1)-th iteration, we have

φ(θ) =
2k∑
j=0

l[j](θ)η(a◦j), L(θ) = l[2
k](θ), and A(θ) = a◦2

k

(θ),
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then inside the while loop, φ(θ), L(θ) and A(θ) got updated to

φ(θ) =
2k+1∑
j=0

l[j](θ)η(a◦j), L(θ) = l[2
k+1](θ), and A(θ) = a◦2

k+1

(θ).

Remark 48. Because of the uniqueness of equation (2.23), solving equation (2.23) is the

same as solving

φ(θ) =
n∑
j=0

l[j](θ)η(a◦j(θ)) + l[n+1](θ)φ(a◦(n+1)(θ)), (3.3)

for any n > 0. Solving equation (3.3) for a suitable n gives better contraction and can make

Algorithm 2 converges faster. However, one have to be careful with the trade-off between

the speed up from the improved contraction and the extra compositions and summations

required.

Remark 49. Due to the accumulation of the truncation error and round-off errors, Algo-

rithm 2 may not be able to reach the required accuracy. To resolve this, one can repeatly

apply this algorithm for

∆φ(θ) = l(θ)∆φ(a(θ)) + ê(θ),

where ê(θ) = φ(θ) − l(θ)φ(a(θ)) − η(θ) is the error for the cohomological equation, and

the solution for such cohomological equation now becomes φ(θ) + ∆φ(θ).

Remark 50. From the discussion in [25], we have

∥∥∥∥∥φ−
M∑
j=0

l[j]η(aj)

∥∥∥∥∥
Cr

≤ (r+1)!

(
‖l‖Cr+‖a‖Cr)

r
( ∞∑
j=M+1

jr−1(‖Da‖rC0 ‖l‖C0

)n)
‖η‖Cr ,

where the regularity r is bounded above:

r < − ln ‖l‖C0

ln ‖Da‖C0

,
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indicating that such cohomological equation can only solved for a finite range of regulari-

ties.

3.2.5 Truncation Versus Smoothing Operator

In the proof of the hard implicit function theorem in [25], the corrections from the algorithm

of W (θ, s), a(θ) and λ(θ) are followed by a smoothing operator.

In our practical implementation, we did not use any smoothing operator. Instead, we

argue that when the solution is approximate enough, the smoothing required by our Inverse

Function Theorem is smaller than the numerical smoothing, which is caused both by the

truncation of the function in T × R up to some finite order L, and by the choice of the

representation of functions: grid of points with splines. One caveat is that we have to check

that the spline have enough grid points so that the discretization is not an issue.

3.2.6 Validation of the Correctness of the Solution

The most naive way of validating the correctness of the solution is to check the norm of the

error from the invariance equation and see if it is of the same order as the round-off error.

However, this is not a thorough approach.

As mentioned in Section 3.2.1, one of the drawbacks of using splines is that it can-

not capture all the information of the function, but only for a selected grid of points. It is

possible, especially when the perturbation is close to the breakdown, that localized singu-

larity appears in the solution with less regularity and with a higher frequency of oscillation.

Depending on the choice of the grid, the splines may be smooth (when the localized singu-

larity is in the gap of the grid) or not (when the singularity is close to one of the grid point),

and the latter scenario leads to a disaster, especially when the regularity drops below the

order of choice of our spline.

More specifically, in the case when the rotation number is rational, the localized sin-

gularity happens at two hyperbolic points when their corresponding stable and unstable
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manifolds meet. This admits a Cα manifold, where 0 < α < 1 is regulated by the eigen-

values at the attractive periodic orbit.

By the above discussions, even when the solution we computed induces small error, it

is still not guaranteed that the solution is the true solution. We considered several methods

of validating the correctness of the solution as follows:

• Method 1: Grid shifting: To guarantee that the grid of choice captures the informa-

tion of the invariant circle and isochrons, i.e., no singularity points in the gap of the

grid, we can either shift the grid, or increase/double the size of the grid (and maybe

repeatedly doing this) and check if the absolute error for the invariance equation re-

mains to be small. In our actural implementation, we choose the grid adaptively and

use the grid size doubling method.

• Method 2: Monitor the norm:

According to the discussion regarding the existence of the solution in [25], we know

that the solution we get through iterations lies inside a neighborhood of the initial

condition. Thus our theoretical result guarantees that the norm of W (θ, s), a(θ) and

λ(θ) can not explode.

• Method 3: Monitor the error of the invariance equation:

Another aspect comes from the proof of our theoritical result in [25] is that the er-

ror for the invariance equation: e(θ, s) has to satisfy ‖e(θ, s)‖m−2 ≤ ve−2µβκ
n for

some prescribed positive v, µ, β > 0, and κ > 1. Thus, if the solution is valid, the

convergence rate of our iteration process has to be superlinear.

We have included a brief example regarding the above discussion in Section 3.2.6

3.2.7 A Proposal to a Parallel Implementation

Although the parallelization is not implemented in this paper, we remark that Algorithm 1

can be parallelized using a 2-dimensional mesh as the communication network. In this
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subsection, we propose a draft framework when multiple processors are available.

Two-dimensional communication network (with not wraparound link) is an embedding

in the way that the processors are arranged to a matrix, where each processor can commu-

nicate with their nearest neighbors in the same row or column. This type of embedding is

commonly used in matrix manipulation.

Function Representation in 2-dim Network

In our algorithm, the functions we are dealing with are either of Type-1 (see Section 3.2.1):

i.e. a(θ), λ(θ), which are stored as a 1-D array, or of Type-2: i.e. W (θ, s), which is stored

as a matrix of size N × L. We can block distribute Type-1 functions onto the first row of

the grid, and block distribute Type-2 functions on the 2-D grid.

More precisely, suppose the 2-D network has size PN × PL, and N,L are integer mul-

tiples of PN , PL, respectively, then each processor on the first row stores N
PN

points for

functions of Type-1, and each processor stores N
PN
× L

PL
points for functions of Type-2.

Storing functions blockwise in this way allows the basic functional operations (for ex-

ample, summation, subtractions, Type-1 function multiplication) to be processed within

each processor in a pointwise manner without communication. The delicate part is the

operations when communications between processors are needed. In our algorithm, such

operations include function evaluation (for composition) and Taylor polynomial multipli-

cation.

Cubic Spline Interpolation in Parallel

Interpolations are required in our algorithm whenever composition between functions or

derivative of functions are needed. Because of the way functions are stored, cubic spline

interpolations need to be performed on each row of the communication network.

The computation for the coefficients of cubic splines is essentially achieved by solving

a linear system, where the matrix involved is only a tridiagonal matrix. Thus the goal is to
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solve this tridiagonal system on a 1-D network.

Following [72], such system can be reduced to a single variable equation recursively in

log3N steps, which, when implemented parallelly, has time complexityO((τ +µ) logPN)

(for communication) and O(log N
PN

) (for computation), where τ is the latency time, µ is

the inverse of the bandwidth and m is the size of the message communicating between

processors (in this case is just a constant). Pipelining techniques [73] can be used speedup

this computation.

To perform composition, we need to first use the hypercubic AllGather technique to

have all the processors in the same row gather all the pieces of the spline (with communica-

tion time complexity O(τ logPN + µN)). For example, when computing W (a(θ), λ(θ)s),

one need to first BroadCast every piece of a(θ) from the first row to the rest rows along

the corresponding columns (with communication time complexity O((τ + µ) logPN)),

compute λi(θ) for row i using parallel prefix sum technique (with communication time

O(τ logPL + µ N
PN

logPL) and computation time O( L×N
PL×PN

+ N
PN

logPL)), perform the in-

terpolation for each row for the corresponding W (i)(θ), i = 0, . . . , L, AllGather the spline

on each processor, and then evaluate on a(θ), and then multiply it by the corresponding

λi(θ) pointwisely.

Type-2 Function Multiplication in Parallel

In our algorithm, products between Type-2 functions are also required. Given g1(θ, s) =∑L
i=0 g

(i)
1 (θ)si, g2(θ, s) =

∑L
i=0 g

(i)
2 (θ)si, we need to compute g1 × g2 up to the L-th

order. To achieve this, one can AllGather g2 for each column, compute the corresponding

coefficients, and then AllReduce (with time complexity O(τ logPL) + µ N
PN

logPL) along

each column to update the coefficients for the product.
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3.3 Continuation Method

By the previous discussions, for a given map f : T × R → T × R, starting with some

initial approximation, we are now ready to apply the iterative Algorithm 1 several times

until the error is close to the round off error, with the solution for the invariance equation

(2.4): W (θ, s), a(θ) and λ(θ).

In this section, we do some further discussions of applying our algorithm to the parameter-

dependent problems. The idea is based on the standard continuation method.

3.3.1 The Continuation Method

In the parameter-dependent problems, it is a common approach to start with a simple (un-

perturbed) scenario and perform the continuation method to moving the parameters gradu-

ally towards the desired value.

Basic Idea

To have a nice initial approximation of the solution to apply our algorithm, it is common to

start from the integrable system with no perturbation, in which case the invariant circle is

easier to compute. In each step of the continuation, one can use the result from the previous

step to calculate the starting approximation.

Let fε be a parameter family of diffeomorphim, the goal is to find Wε, aε and λε such

that the invariance equation:

fε ◦Wε(θ, s)−Wε(aε(θ), λε(θ)s) = 0 (3.4)

holds, starting from ε = 0.

Given the solution for equation (3.4) for some ε: Wε(θ, s), aε(θ) and λε(θ), the goal is
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to find the starting approximation: Wε+h(θ, s), aε+h(θ) and λε+h(θ) for

fε+h ◦Wε+h(θ, s)−Wε+h(aε+h(θ), λε+h(θ)s) = 0. (3.5)

The naive choice would be the 0-th order approximation, i.e. Wε+h(θ, s) = Wε(θ, s),

aε+h(θ) = aε(θ) and λε+h(θ) = λε(θ). We remark that this choice is already good enough

if the increment of the perturbation h is small.

One can also try to look for 1-st order approximations, which is looking for ∂Wε

∂ε
(θ, s),

∂aε
∂ε

(θ) and ∂λε
∂ε

(θ) such that

Wε+h(θ, s) = Wε(θ, s) +
∂Wε

∂ε
(θ, s)h,

aε+h(θ) = aε(θ) +
∂aε
∂ε

(θ)h,

λε+h(θ) = λε(θ) +
∂λε
∂ε

(θ)h (3.6)

satisfies equation (3.5) up to quadratic error O(h2).

The procedure of this computation is similar to the derivation in Section 1: by (3.4) and

(3.5), and omitting quadratically small terms, we have

Dfε ◦Wε(θ, s)
∂Wε

∂ε
(θ, s)−DWε(aε(θ), λε(θ)s)

 ∂aε
∂ε

(θ)

∂λ
∂ε

(θ)s

− ∂Wε

∂ε
(aε(θ), λε(θ)s)

=− ∂fε
∂ε

(Wε)(θ, s) , Eε(θ, s) (3.7)

By ∂Wε

∂ε
(θ, s) = DWε(θ, s)ηε(θ, s) and by differentiating (3.4), we end up with

 Daε(θ) 0

Dλε(θ)s λε(θ)

 ηε(θ, s)−

 ∂aε
∂ε

(θ)

∂λε
∂ε

(θ)s

− ηε(a(θ), λ(θ)s) = Eε(θ, s), (3.8)

By solving equation (3.8) with the same technique used in Section 3.2.4, we can have valid
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∂Wε

∂ε
(θ, s), ∂aε

∂ε
(θ) such that (3.6) admits the first-order starting approximation for equation

(3.5).

Remark 51. Similar to what happened in [19], the first-order continuation does not pro-

duce a significant improvement on the initial approximation than the 0-th order contin-

uation, both when the perturbation is small, and when the perturbation is close to the

breakdown. In fact, when the perturbation is small, the gain from the first-order continua-

tion is not as much as the gain from one step of our quadratic convergence algorithm; when

the perturbation is close to the breakdown, the error from the first-order approximation is

actually very large because of the blow-up of the norm for W (θ, s). For these reasons, we

mainly used the 0-th order continuation in our implementation.

The Continuation Algorithm

In terms of implementation, the increment step size h in Section 3.3.1 is chosen dynami-

cally from coarse to fine. Inspired by [23], Algorithm 3 is the continuation algorithm we

used for the family of maps fε with increasing parameters.:

Algorithm 3 Continuation algorithm before the breakdown

Input: Wε0(θ, s), aε0(θ), λε0(θ) for the integrable case
Input: ∆ε: The initial increment of the parameter ε

1: while both ∆ε and ‖(W,a, λ)‖ are acceptable do
2: if the Algorithm 1 does not converge then
3: Move back to the solution (W,a, λ) before the increment of the parameters,
4: Decrease the increment: ∆ε,
5: else
6: Update the newly computed (W,a, λ),
7: if ‖fε ◦Wε −Wε(aε, λεs)‖ > tolerance then
8: Move back to the solution (W,a, λ) before the increment of the parameters,
9: Decrease the increment: ∆ε,

10: end if
11: if ‖(W,a, λ)‖ exceeds a certain value then
12: Double the size of the grid points,
13: end if
14: end if
15: end while
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Adaptative Grid for Continuation

It is essential that one check for the correctness of the solution before doing continuations.

As discussed in Section 3.2.6, we need to find the appropriate grid under which the function

has a better representation. This can be done by performing the line search for different grid

sizes and find the one with the minimum error while applying our quasi-Newton algorithm.

Remark 52. An aspect that requires extra caution is that the existence theorem in [25]

does not guarantee the local uniqueness of the solution. Indeed, the solution is only unique

under conjugacy (Remark 2.1.3). This results the drift of the solution as the parameter

changes.

3.4 Numerical Explorations

In this section, we take the dissipative standard map as an example to run the algorithm and

explore some of the properties.

The dissipative standard map is a family of maps fη,γ,k : T× R→ T× R such that

θn+1

pn+1

 , fη,γ,k(θn, pn) =

 θn + pn+1 + η,

γpn + γkV ′(θn)

 , (3.9)

with (θn, sn) ∈ T × R, γ ∈ (0, 1) is the dissipative parameter, k > 0 is the perturbation

parameter, η is the drift parameter, and V (θ) is an analytic, periodic function representing

the kick from the kicked rotator. In this example, we shall consider the case when V (θ) =

− 1
(2π)2

cos(2πθ), then V ′(θ) = 1
2π

sin(2πθ).

Remark 53. If γ = 1, it can be shown that η = 0, and the (3.9) is reduced to be the

Chirikov standard map.

Remark 54. One can easily verify that when k = 0, the solution to the invariance equation
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(2.4) for fη,γ,k is

Wη,γ,k(θ, s) =

 θ

γ
γ−1s

 , aη,γ,k(θ) = θ + η, λη,γ,k(θ) = γ.

For a given choice of the parameters, we follow our quasi-Newton Algorithm 1 to solve

the invariance equation (2.4) for Wη,γ,k, aη,γ,k and λη,γ,k. For the change of parameters,

we can start with the unperturbed case (k = 0) and follow the continuation algorithm

Algorithm 3.

In this example, we first discuss the behavior of the algorithm regarding the aspects

pointed out in Section 3.2 through an instance of choice of parameters, and then we follow

the following three continuation paths for further explorations:

1. Continuation with respect to the perturbation parameter k, with fixed γ and η;

2. Continuation with respect to the drift parameter η, with fixed k and γ;

3. Continuation with fixed rotation number for the internal dynamics aη,γ,k, with fixed

k, and γ, with η is tuned to ensure the preservance of the rotation.

Remark 55. In practice, we choose the step size and grid size for the continuation of the

parameters dynamically according to Algorithm 3.

3.4.1 Example Solution

In this subsection, we will show the numerical performance of Algorithm 1 regarding the

aspects discussed in Section 3.2. In the following examples, we set γ = 0.5, η = 0.3.

Convergence of the quasi-Newton Iteration

To demonstrate the convergence rate, we set k = 0.3 and use the solution when k = 0

(Remark 54) as the initial approximation, and iterate the algorithm several times until the
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error e(θ, s) for the invariance equation meets the tolerance (see Table 3.1). In this example,

N = 1024, L = 10 and δ = 0.001.

Table 3.1: Convergence of the quasi-Newton Iteration

Number of Iteration ‖e‖X 0,δ ‖e‖X 1,δ ‖e‖X 2,δ

1 9.710402e-03 6.101232e-02 3.833525e-01
2 2.860761e-04 3.274913e-03 5.806850e-02
3 5.587798e-06 9.021029e-05 2.031524e-03
4 4.152389e-10 7.825378e-09 2.376669e-07
5 2.645506e-14 9.540554e-13 2.810590e-09
6 3.889196e-16 3.030427e-13 2.737512e-09

Remark 56. We remark that the choice of k = 0.3 and the initial approximation (k = 0)

are only used to demonstrate the convergence of the algorithm. In practice, we usually

have a much smaller step size (less than 10−3) and the initial error usually is of order 10−6.

The step size gets even much smaller when the perturbation is big and when k is close to

the breakdown.

Remark 57. As discussed in Remark 43, we mainly used cubic splines in our implementa-

tion. Remark 41 illustrates the reason for the increase of the round-off error for ‖·‖1 and

‖·‖2 in Table 3.1.

Validation of Correctness of the Solution

In this part, we continue with the solution achieved in Section 3.4.1 (when k = 0.3).

Following the discussions in Section 3.2.6, we validate the solution through monitoring

both the error when the grid size is doubled, and the norm of the solution. For the grid size

equals to 1024, the corresponding data are recorded in Table 3.2. Since the error remains

to be relatively small, we are more confident to say that the solution we achieved is indeed

the true solution.

Remark 58. As indicated in Table 3.2, the norm for the solution is relatively small. This
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Table 3.2: The performance when the grid size doubled.

‖·‖X 0,δ ‖·‖X 1,δ ‖·‖X 2,δ

Error for the invariance equation 1.622146e-13 1.494237e-10 3.059292e-06
Norm for the solution 1.07970 1.225545 1.768379

happens because the choice of our perturbation is small. In fact, as discussed in Sec-

tion 3.4.2, such norm will blow up when k is close to the breakdown value.

Methods for Computing the Inverse of a(θ)

In this paragraph, we present some numerical results regarding the methods proposed in

inverting the internal dynamics a(θ) (see Section 3.2.3). Again, the data we achieved is

from the same experiment as the previous sections, with exactly the same convergence as

Table 3.1. The detailed data is presented in Figure 3.1.
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Figure 3.1: Comparison of the methods in Section 3.2.3
Method 1: Graph Reflection; Method 2: “Left” Inverse; Method 3: “Right” Inverse; Method 4: Inverse
through Solving Cohomological Equation
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Remark 59. As indicated in Figure 3.1, Method 1 always has a great performance as it

is independent to the error of the cohomological equation, while Method 2, 3, 4 slowly

get better as the convergence of the algorithm. Despite that Method 4 is designed for

optimizing both a◦a−1 and a−1◦a, it turns out this method, in general, does not outperform

the other methods. This is also true when k is bigger or even near the breakdown.

As stated in Section 3.2.3, in practice, we try all of the methods and use the one with the

best performance. More specifically, through out the iterations of the algorithm, we always

start by method 1, and then replace it with method 2 or 3.

Run Time Analysis

As discussed in Section 3.1, both the time and space complexity for Algorithm 1 areO
(
N×

L
)
.

For the same choice of parameters as in Section 3.4.1, the average time for running one

iteration of Algorithm 1 can be found in Table 3.3. The code is written in C using the GNU

Scientific Library(GSL), and this set of data in Table 3.3 is generated by a Mid 2014 13-

inch Macbook Pro with 2.6 GHz Dual-Core Intel Core i5 Processor and 8 GB 1600 MHz

DDR3 Memory.

Table 3.3: Average run time (in seconds) for one iteration of Algorithm 1

L N Avg Time L N Avg Time

2

1024 0.062405

5

1024 0.132773
4096 0.284577 4096 0.641300

16384 1.682731 16384 3.674957
65536 9.136261 65536 18.175884

262144 55.717758 262144 122.279080

10

1024 0.392576

20

1024 0.779805
4096 1.862491 4096 4.708662

16384 9.303865 16384 21.924758
65536 44.038226 65536 99.157648

262144 226.787753 262144 635.228799

84



Plot of the Invariant Circle and Isochrons

From Remark 54, the isochrons are approximately linear in the neighborhood of the invari-

ant circle when the perturbation is small. To achieve a relatively nontrivial solution, we

consider k = 1.1037 and η = 0.30532 where η is tuned manually in order to guarantee

a rational rotation number for a(θ) using the brent algorithm (see Section 3.4.4). As one

will see in Section 3.4.1, such cases requires more consideration in terms of globalizing the

isochrons. The solution here is computed through continuation method with step size 10−3

and error tolerance 10−14 in C0.
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(b) θ0 = 0.78
where Iθ0 corresponds to the blue isochron.
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Figure 3.2: Invariant Manifold and Isochrons for the dissipative standard map (3.9)
The last figure is only here to indicate that the rotation number for a(θ) is indeed rational. Please refer to

Section 3.4.3 for further reasons.

In Figure 3.2a, we present the invariant circle (in red) and some of the isochrons (in
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the order: blue, green, magenta, cyan, black along the internal dynamics). Notice how the

isochrons contracts when the dissipative standard map applies. More specifically, the blue

isochron (Iθ=0.797) got mapped to the interior of the green isochron, and then the green-

blue isochron got mapped to the interior of the magenta one, and then the cyan isochron

followed by the black one.

With a different starting point on the grid, Figure 3.2b describes a case when the

isochrons does not contract for every single step (indeed, one may find that the cyan

isochron is actually expanded rather than contracted). This is perfectly normal: As dis-

cussed in Lemma 6, our algorithm allows ‖λ‖0 to be bigger than one, as long as the dy-

namical average (discussed in Remark 10) λ∗ < 1 (as shown Figure 3.2c).

Remark 60. In the case when η = 0.3, while the other parameters remains unchanged, one

can observe that the dynamical average is actually not a constant function, on the contrary

to the irrational rotation case (for the same reason as in Remark 9).

Globalization

(a) Globalization through Backward Propagation (b) Globalization through Increasing Approxima-
tion Order

Figure 3.3: Globalization of the Isochrons

Due to the numerical truncation we made when storing and processing the parameteri-

zation W (θ, s) =
∑L

i=0W
(i)(θ)si, we can only approximate the isochron for a small range
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Figure 3.4: Invariant Circles and the Corresponding Isochrons in 3D

of s. In order to increase the region regarding s, we need to perform some globalization

techniques.

Since we are dealing with dissipative maps (or any maps with eigenvalues away from

1), the most straightforward way for globalization is to propagate the map backward (or

forward).

Remark 61. When the internal dynamics a(θ) has rational rotation number (thus so does

a−1(θ)), the phase-locking phenomenon occurs. In this case, the globalized isochrons will

accumulate near the periodic orbit instead of distributed in the whole T1.

To resolve this, one can start an even grid on T1, first apply a(θ) n times, compute the

stable manifolds, then do the backward propagation of the map n times on the computed

stable manifolds to finish the globalization.
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Figure 3.3a indicates the globalization of two isochrons (in blue and green) using the

above method.

Another way to enlarge the validating region of s is via increasing the truncation order

L. To do so, we use the same idea as in the continuation method, while instead of chang-

ing a certain parameter, we gradually increase L. More specifically, in order to calculate

W (θ, s) up to the (l+ 1)-th order, we use the previously computed W (θ, s) with order l as

the initial approximation, and perform the same quasi-Newton steps as in Algorithm 1, we

also need to extend the range of s accordingly while maintaining the error (see Algorithm 4.

Figure 3.3b presents the isochrons up to order 80.

Algorithm 4 Increasing the Order of Parameterization

Input: Solution for Equation (2.4) W (θ, s), a(θ) and λ(θ) with truncation order Lstart
Input: Tolerance for the error of Equation (2.4) in X δstart,r norm, with some precribed

δstart
Output: Solution W (θ, s), a(θ) and λ(θ) to the invariance equation (2.4) with truncation

order Lend
1: λ(θ)← λ(θ) + ∆λ(θ),
2: for l← Lstart, Lend do
3: Find the biggest δ (using any root finding method: Brent, Bisect, etc.) that essures

the X δ,r norm of the error for Equation (2.4) is within the tolerance.
4: end for
5: Return updated W (θ, s), a(θ) and λ(θ).

Above all, we present Figure 3.3b with the invariant circle (in red) and 10 isochrons (in

blue), and as indicated in Figure 3.2d, the internal dynamics have rational rotation number.

3.4.2 Continuation w.r.t. k

In this subsection, we aim to perform the continuation scheme as in Algorithm 3 for differ-

ent k, with fixed γ and η. We start at k = 0, with Remark 54 as the initial approximation,

and keep computing until the quasi-Newton Algorithm 1 stops. The invariant circle and the

corresponding stable manifolds are demonstrated in Figure 3.5.

As the perturbation strength k gets larger, the invariant objects become more irregu-

lar, thus smaller continuation steps and larger grid size is chosen adaptively according to
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(a) k = 0.0000 (b) k = 0.2000

(c) k = 0.4000 (d) k = 0.6000

(e) k = 0.8000 (f) k = 1.0000
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(g) k = 1.2000 (h) k = 1.4000

(i) k = 1.4927

Figure 3.5: Invariant Manifold and Isochrons for the dissipative standard map (3.9) where
γ = 0.6, η = 0.4 and k varies from 0 to 1.4927
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Algorithm 3.

As one can observe, while the invariant circle is getting fluctuated as the perturbation

increases, the isochrons becomes more irregular, and the minimum angle between the in-

variant circle and the isochrons is getting closer to 1. We postpone the detailed discussions

regarding this “bundle collapsing” scenario to Section 3.5.

3.4.3 Continuation w.r.t. η

An interesting aspect one can observe from fixing k and γ while changing η is to explore

how the change of such drift parameter affects the rotation number of the internal dynamics

aη,γ,k(θ). Figure 3.6 presents such τa, the rotation number of a(θ) as a function of η.
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Figure 3.6: Rotation number of a(θ) w.r.t. η
In this example, k = 5 and γ = 0.1.

The familar Devil’s staircase in Figure 3.6 is from the classic results in rotation num-

bers [74], where τa(η) is an monotone function (since our map fη,γ,k forms a family of

orientation-preserving homeomorphisms), and the stairs (where τa(η) have constant val-
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ues) are corresponding to the rational rotation numbers, in which case a(θ) have periodic

orbits.

Computation of the Rotation Number

The most naive way of computing the rotation number is by the definition:

τa = lim
M→∞

a◦M(x)− x
M

mod 1 (3.10)

where x ∈ T. By computing such rotation number with the help of the Birkhoff average,

one can show that such sequence admits O( 1
M

) convergence rate [75].

In this paper, we follow the approach in [76] and [77]. The main idea is to use the

weighted Birkhoff average, which gives the super-polynomial convergence when the ro-

tation number is Diophantine. For every positive integer m, there exists Cm > 0 such

that ∣∣∣∣∣ 1

AM

M−1∑
n=0

w(
n

M
)(a◦(n+1) − a◦n) mod 1 − τa

∣∣∣∣∣ ≤ CmM
−m,

where w(t) is the exponential weighting function

w(t) =


exp( 1

(t(t−1))p ) t ∈ (0, 1),

0 elsewhere.
,

AN =
∑M−1

n=0 w( n
M

) and our choice of p is 2.

Distinguishing Irrational Rotations from Rational Rotations

By classical results [74], there are three types of orbits for the internal dynamics with

rational rotation number τa:

1. Periodic orbits with the same period and same order as the rotation θ + τa;

2. Homoclinic orbit;
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3. Heteroclinic orbit.

Thus by applying the internal dynamics a(θ) M times on T (where M is picked to be

a large enough number in case the period has large denominator), a◦M(θ), θ ∈ T is either

a piecewise constant function (as shown in Figure 3.7) or conjugate to a rational rotation

(where the latter case rarely happens).

On the other hand, if τa is irrational, by the Poincaré Classification theorem, a◦M(θ)

remains to be a homeomorphisms (as shown in Figure 3.8).

(a) Internal Dynamics (b) Invariant Circle and Isochrons

Figure 3.7: a◦1e+7 when a has rational rotation number but doesn’t conjugate to a rotation

(a) Internal Dynamics (b) Invariant Circle and Isochrons

Figure 3.8: a◦1e+7 when a conjugates an irrational rotation
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3.4.4 Continuation with Prescribed Rotation Number

Many applications (quasiperiodic attractors, oscillators [13, 61]), require the rotation fre-

quency to be a fixed diophantine number, for example, the golden mean. In such cases, as

stated in Remark 9, a(θ) = θ + ω, λ(θ) = λ, and the phace locked phenomenon does not

appear. Extensive studies have been made regarding this in [13], [61].

In order to cope with the fixed rotation number, we can vary η using any root finding

algorithms (for example, the Brent Method). The plot for η as k varies is in Figure 3.9.
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Figure 3.9: η vs k when the rotation number is prescribed by the golden mean, with fixed γ

In principle, with prescribed rotation number, one can follow Algorithm 3, increase the

range for k in Figure 3.9 and make explorations when k is close to the breakdown.
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3.5 Some Explorations on the Breakdown

Given an algorithm it is quite natural to study its limits of applicability. Of course, the

mathematical phenomenon of interest may itself breakdown. The two breakdowns can, of

course, happen at different places.

In this section, we will present some remarks about the mathematical formulation of

breakdown of invariant circles. We will also present some numerical results exploring

the phenomena. We will present two mathematical scenarios of breakdown which cer-

tainly happen in the two parameter family (3.9) (Think of the two parameter family as a

1-parameter family of 1-parameter families). We will also present numerical results for a

family inside (3.9) which does not satisfy either of the mathematical scenarios presented.

We have tried to separate the results that are rigorously established from the ones that

are results of numerical experiments or theoretical studies (renormalization group predic-

tions). Nevertheless, in this area, the boundary between rigorous and numerical is moving.

3.5.1 Some Remarks on the Mathematical Definition of Breakdown

The breakdown of invariant circles is mathematically a very subtle phenomenon. Indeed,

there are several possible definitions.

The most widespread theory of persistence of invariant circles is the theory of Normally

Hyperbolic Manifolds [1]. This theory ensures that, a C1 invariant manifold satisfying the

assumptions of normal hyperbolicity, persists a C1 manifold. Conversely, [24] showed that

if a map has invariant C1 manifold that does not satisfy the normally hyperbolic assump-

tions, one can make C1 arbitrarily small perturbations that do not possess a C1 invariant

manifold near the original one.

Note that the beautiful result of [24] leaves open several questions that are worth ad-

dressing. Note that some of them are related.
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Persistence in a Different Sense than C1 Manifolds, Persistence as Lower Regularity Sets.

As we will see, planar invariant circles that fail to satisfy the NHIM conditions may persist

as C0.99999 circles. Indeed, C0.999999 circles are analytic except at a finite number of points.

There are scenarios, discussed in detail in Section 3.5.1, in which a family of maps

(chosen in an open sets of families) has the following properties: fλ possess invariant cir-

cles of regularity Cα(λ). where α is a continuous decreasing function α(λ∗) = 0. Indeed,

for λ ∈ (λ∗, λ∗ + ε), there is an invariant set that, even if not the graph of a continuous

function is an indecomposable continuum. There are even more general invariant sets.

Therefore, the regularity of the invariant set decreases in a regular way and indeed,

the set persists naturally from a curve to a continuum. Each choice of a regularity leads

to a breakdown value for this regularity. Mathematically, C1 is a natural breakdown for

differentiable manifold theory (natural regularity for tangent spaces, and differentiable,

C0 is a natural breakdown for topological methods (natural regularity to define rotation

number). From the numerical point of view Ck are natural for the use of splines of order k.

Weaker Notions of Normal Hyperbolicity. Some Recent Mathematical Results

The standard notion of normal hyperbolicity includes several ingredients. See [1, 56, 57,

78, 2]

1. Existence of bundles spanning the normal bundle in which there is contraction/expansion

2. The exponential rates of contraction expansion in the bundles dominate the rates of

contraction and expansion in the tangent space.

3. There are constants affecting the exponential rates.

4. The contractive and expansive directions are at a fixed angle.

In many theoretical treatments, items 3) 4) above are ignored since the “adapted norm”

is used. In this adapted norm. the bundles are orthogonal and the constants are 1. As
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we will see, there are cases when the breakdown happens when 3) or 4) fail. Note that

when 3), 4) fail, the adapted norm becomes singular with respect to the usual norm, so

that the stability domains established using the adapted norm become very small in the

standard metric. Eventually, the stability results may stop applying for finite values of the

parameters. In Section 3.5.1, we will present results in a scenario of collapse of tori in

which hyperbolicity is lost, even if the rates remain separated, but the angle between the

tangent and the stable bundles goes to zero. See [48] for examples in the family of maps

(3.9).

The loss of hyperbolicity because the rates of contraction/expansion in the normal di-

rections get close to 1 but the bundles remain well separated, has been studied in [79, 80,

81].

The remarkable recent paper [82] uses topological methods to show persistence of sets

using topological methods. This notion does not require rates conditions. On the other

hand, the objects that persist could be much more complicated than a continuous image

of a manifold. They are just ensured to be continua. The papers [83, 84] establish lower

bounds on the Czeck cohomology of these sets.

The papers [85, 86] establish a statistical theory of persistence of attractors. Even

if the attractors no not need to persist under small perturbations, any smooth family of

maps containing them has to admit attractors for a large set of parameter values. This

mathematical theory has been written in a very constructive form

The earlier paper [87] contains a more topological version of the persistecne of compli-

cated behaviour.

Breakdown of Phase-locked invariant Circles

We consider a family fλ of analytic maps of the plane or of T× R.

We assume that for all the values of the parameter, the family has an invariant circle

which contains two periodic orbits. One orbit A will be hyperbolic, the other orbit B will
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start being attractive but, at some value λ∗ acquires an eigenvalue 1, We will assume that

for all parameter values, the unstable manifold of the hyperbolic fixed point A intersects

transversely the strong stable manifold of the point B.

Note that the above situation is stable under small C1 perturbations.

One concrete example of this situation is:

fλ(θ, r) =

 θ + 0.01 sin(2πθ)( mod 1)

1
2
r + exp(−100 sin(πθ − π

2
)2)(λr)

 ,

Note that away from θ = 1
2
, the exponential factor is very small.

In this simple example, the point A = (0, 0) is hyperbolic with eigenvalues ≈ (1 +

0.02 · π, 1
2
) and the point B = (1

2
, 0) is attractive with eigenvalues (1− 0.02 · π, 1

2
+ λ).

We make the following observations:

Any invariant continuous curve that goes through the hyperbolic fixed point has to be

either the stable or the unstable manifold and, therefore be analytic.

If we iterate a segment of the unstable manifold of A we will eventually obtain a seg-

ment in the small neighborhood of B, The further iterations of the segment will converge

towards the stable point.

Therefore, the unstable manifold of the orbit A, together with with the orbit B give an

invariant circle.

This invariant circle will be analytic in any segment that does not contain a point in the

orbit B. If the eigenvalues of the derivative at the orbit B are 0 < α < β, the invariant

circle will be Cr for any r < log(α)/log(β) ≡ r∗.

It is also shown in [15] that the strong stable manifold of the point B is analytic and

that any Cr curve with r > r∗) has to be the strong stable manifold.

It then follows that, if the unstable manifold of A, does not agree with the strong stable

manifold of B, then the invariant circle will be Cr∗−ε but not Cr∗+ε.
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Remark 62. A motivating model to keep in mind is the case when B is a fixed point and

the map is linear in a neighborhood of B.

In such a case, the strong stable manifold is x axis. If we have that W u
A is given in

a segment (βx0, x0) as the graph of a function φ, we obtain that the unstable manifold is

given in βn+1x0, β
nx0 as the graph of φn ≡ αnφ ◦ β−n.

We see that if φ is not identically zero,

Djφn ≈ αnβ−jn (3.11)

and similar assymptotics happen for the Hölder seminorms in place of derivatives.

The assumption that the map is linear, can be arranged by the Sternberg linearization

theorem whenever αn 6= β. We also point out that the conclusions (3.11) happen also for

nonlinear mappings.

Note that the disagreement ofW u
A,W

ss
B is an open phenomenon in a smooth topology in

the space of mappings1. Therefore, the regularity property of the invariant circles indicated

above holds in open sets of maps.

Furthermore, we argue that the disagreement indeed is the generic property. (We leave

the exact formulation of this property to the reader interested in generic properties). We

just note that local segments of the unstable manifold of A and the strong stable manifold

of B can be obtained by analyzing the map in very small neighborhoods of A,B. Then, we

consider N large enough so that fN(W u
A,loc) lies in the neighborhood V of B where W ss

B is

defined.

We assume without loss of generality that fN−1(U) ∩ B = ∅. We note that if we do

a perturbation of f supported in fN−1(U), it affects W u
A|V , but not W ssB. Hence, if for

some map the two invariant manifolds agree, one can break the agreement by an arbitrarily

1Consider the mapping that to the mapping f associates the unstable manifold of A and the strong stable
manifold ofB. This mapping is continuous – or even differentiable – if we give the spaces of manifolds some
C` topologies and the space of mappings a Cs topology. See [17].
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small perturbation.

Lemma 13. For λ, µ < 1. Let f(x, y) = (λx, µy) in a neighborhood of (0, 0). Consider γ a

curve (p, f(p)). Assume that γ∪f(γ) isC∞, consider γ∗ = ∪n≥0fnγ, then γ∗ ⊂ C lnλ/ lnµ.

Furthermore, consider the set of C∞ curves, satisfying, there is a residual set S such that if

γ ∈ S, γ∗ is not C lnλ/ lnµ+δ at the origin.

The bundle merging scenario

We consider families of mappings for which the rotation number on the invariant circle is

constant and a Diophantine number (as shown in [30]. this can be arranged by adjusting

the drift parameter η in (3.9).

The papers [54, 31] discovered that the breakdown of circles can happen when the rates

remain safely away but the angles become arbitrarily small. This scenario has been studied

numerically in the dissipative standard map in [48].

In [54] there is one specific example where this is shown rigorously to happen. (One

uses Herman’s subharminicity trick to bound the Lyapunov exponents in the whole family

and shows that they are safely in the hyperbolicity region. On the other hand, by studying

the maps in different ends of the family, we find that the stable and unstable manifolds

change topology. Therefore, hyperbolicity has to be lost, but it cannot be because of de-

generation of the rates.

Similar phenomena, have been discovered in other mappings [88, 89]. Some rigorous

results establishing the scenario in simpler mappings are in [47, 90].

In the dissipative standard map, since the determinant is constant γ, if we have an

invariant circle, C1 conjugated to a rotation, the stable exponent has to be γ. Using Fenichel

theory, the circle has to be very smooth and by a bootstrap argument in [30], it has to be

analytic.

The only way that the torus can loose normal hyperbolicity is if the stable bundle be-

comes tangent to the tangent mapping. The paper [48] presents an empirical study for
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the dissipative standard map and discovers numerically several intriguing scaling relations,

which require more mathematical study.

3.5.2 Some Numerical Explorations

In the previous sections, we have presented some different scenarios leading to breakdown.

Note that both of them assume that the rotation number of the invariant circle is maintained

constant till the breakdown (for the phase locked maps, this can happen on open sets in fam-

ilies, but for Diophantine irrational rotation numbers, it is a codimension 1 phenomenon.

In this section, we study numerically the breakdown of a family inside (3.9), chosen

arbitrarily. In this family, the rotation number changes and goes from rational to irrational.

So, the scenarios Sections 3.5.1 and 3.5.1 will alternate and the phenomena observed will

be a combination of the two scenarios.

This section can be considered as testing ground for the numerical algorithms and to

raise the need of a more detailed mathematical theory.

For invariant attractors, the Lyapunov multiplier is always smaller than 1, thus in the

dissipative standard map (3.9), we are expecting either the “bundle merging” scenario or

the “rate meeting” scenario (when λs = µs as in Section 3.5.1).

Following a random continuation path as computed in Section 3.4.2, where the rotation

number is not prescribed, we have Figure 3.10.

To quantify the separation between bundles, we measure the minimum angle between

the invariant circle and the corresponding stable manifolds. Figure 3.10a indicates the

angles for the k values as in Figure 3.5. Figure 3.10b plots the minimum angle with respect

to k, and Figure 3.10c plots the corresponding θ ∈ T such that the minimum angle is

reached.

As indicated in Figure 3.10b, the slope of the blue curve (minimum angle) is approach-

ing negative infinity (it is not obvious in the plot due to the different scales in the horizontal

and vertical axis). As a matter of fact, the later portion of the minimum angle curve can be
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(a) Angles between the tangent and normal
bundles for Figure 3.5
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(b) The minimum angle between the tangent
and normal bundles
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(c) The position such that the minimum angle
in Figure 3.10b is achieved
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(e) Eigenvalues for f◦5 of the attractive and
hyperbolic periodic orbit when k > 1.3712

(f) Stability of the attractive and hyperbolic
periodic orbit when k = 1.49271

Figure 3.10: “Bundle merging” Explorations

fitted by the following asymptotic expression using nonlinear regression:

α(k − kcrit)β, (3.12)
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where α is the scaling constant, β is the scaling exponent, and kcrit is the breakdown

threshold. In fact, α = 45.8879, β = 0.9085 and kcrit = 1.5247 gives us an estimation for

the critical value such that the tangent and normal bundle collapse.

Remark 63. The asymptotic expression (3.12) appears in [23] when it comes to estimating

the blow-up of the Sobolev norm of the parameterization of the invariant circle. Empiri-

cally, Figure 3.10b shows that the minimum angle also approaches 0 following such power

laws with universal exponents.

Since the rotation number in this example is not prescribed, it may change along the

continuation. In our example, the change of the rotation number as k increases is presented

in Figure 3.10d.

Remark 64. Note that the continuous family of orientation-preserving circle homeomor-

phism fη,γ,k is not monotone, in the sense that the lift of fη,γ,k can not be compared univer-

sally on T [74], thus the rotation number in Figure 3.10d is not expected to be monotone.

Remark 65. We are still expecting “stairs” (intervals for k in which case the rotation

number is rational). In Figure 3.10d, the only obvious one is when the rotation number is

2
5
, while the rest of the “stairs” (for example, corresponding to rotation number 0.3999) is

too small to be plotted.

As indicated in Figure 3.10d, the rotation number is 0.4 when k > 1.3712. In this

region, as discussed in Section 3.5.1, there are two periodic orbit, the attractive one with

eigenvalues λs, µs, and the hyperbolic one with eigenvalues λu, µu. In Figure 3.10e, one

can see how the eigenvalue changes as k increases. The seperation between λs and µs

indicates that the contraction rate in the tangential and normal direction will never meet in

this example. Figure 3.10f present the eigenvectors on each periodic point.
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3.6 NUMEIRICAL ALGORITHM IN 3-D CASES

In this section, we further generalize our algorithm to three dimensional maps which pos-

sesses one-dimensional invariant circles.

Following the same idea introduced previously, we first briefly discuss the derivation

of the algorithm, and then implement such algorithm to the 3-dimensional Fattened Arnold

Family (3D-FAF) maps.

3.6.1 Basic Derivation of the Algorithm

Given a map f : T1 ×R2 → T1 ×R2 that induces an one-dimensional invariant circle, the

goal in this subsection is to derive an algorithm computing both the invariant circle and the

corresponding isochrons.

Because of the increase of dimension on the isochrons, the invariance equation (2.4)

now becomes

f ◦W (θ, s1, s2) = W (a(θ), λ1(θ)s, λ2(θ)s), (3.13)

where W : T1 × R2 → T1 × R2, a : T1 → T1, λ1 : T1 → T1 and λ2 : T1 → T1 are

the unknowns. Again, a is the internal dynamics on the invariant circle, and for any given

θ0 ∈ T, W (θ0, s1, s2) parameterizes the isochron, λ1(θ0)s1, λ2(θ0)s2 are the dynamics on

the isochron along the eigen-directions.

Following the same procedure as in Section 3.1, we are looking for ∆a(θ), ∆λ1(θ),

∆λ2(θ) and ∆W (θ, s1, s2) = DW (θ, s1, s2)Γ(θ, s1, s2) satisfing the following three equa-

tions:

Da(θ)Γ1(θ, s1, s2)−∆a(θ)− Γ1(a(θ), λ1(θ)s1, λ2(θ)s2) = M1(θ, s1, s2), (3.14)
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λ1(θ)Γ2(θ, s1, s2)−∆λ1(θ)s1 − Γ2(a(θ), λ1(θ)s1, λ2(θ)s2) = M2(θ, s1, s2), (3.15)

λ2(θ)Γ3(θ, s1, s2)−∆λ2(θ)s2 − Γ3(a(θ), λ1(θ)s1, λ2(θ)s2) = M3(θ, s1, s2), (3.16)

where

M(θ, s1, s2) = ẽ(θ, s1, s2)−


0

Dλ1(θ)s1Γ1(θ, s1, s2)

Dλ2(θ)s1Γ1(θ, s1, s2)

 ,

and

ẽ(θ, s1, s2) = −[DW (a(θ), λ1(θ)s1, λ2(θ)s2)]
−1e(θ, s1, s2).

By discretizing function g with three variables (θ, s1, s2) as

g(θ, s1, s2) =
∞∑
x=0

∞∑
y=0

g(x,y)(θ)sx1s
y
2, (3.17)

we again can further discritize Equation (3.14), (3.15) and (3.16) order by order as follows:

• Equation (3.14):

– Order (0, 0):

Da(θ)Γ
(0,0)
1 (θ)−∆a(θ)− Γ

(0,0)
1 (a(θ)) = M

(0,0)
1 (θ), (3.18)

– Order (x, y):

Γ
(x,y)
1 (θ) =

λx1(θ)λy2(θ)

Da(θ)
Γ
(x,y)
1 (a(θ)) +

1

Da(θ)
M

(x,y)
1 (θ) (3.19)

105



• Equation (3.15):

– Order (0, 0):

λ1(θ)Γ
(0,0)
2 (θ)− Γ

(0,0)
2 (a(θ)) = M

(0,0)
2 (θ), (3.20)

– Order (1, 0):

λ1(θ)Γ
(1,0)
2 (θ)−∆λ1(θ)− Γ

(1,0)
2 (a(θ))λ1(θ) = M

(1,0)
2 (θ), (3.21)

– Order (x, y):

Γ
(x,y)
2 (θ) = λx−11 (θ)λy2(θ)Γ

(x,y)
2 (a(θ)) +

M
(x,y)
2 (θ)

λ1(θ)
, (3.22)

• Equation (3.16):

– Order (0, 0):

λ2(θ)Γ
(0,0)
3 (θ)− Γ

(0,0)
3 (a(θ)) = M

(0,0)
3 (θ), (3.23)

– Order (0, 1):

λ2(θ)Γ
(1,0)
3 (θ)−∆λ2(θ)− Γ

(1,0)
3 (a(θ))λ2(θ) = M

(1,0)
3 (θ), (3.24)

– Order (x, y):

Γ
(x,y)
3 (θ) = λx1(θ)λy−12 (θ)Γ

(x,y)
3 (a(θ)) +

M
(x,y)
3 (θ)

λ2(θ)
. (3.25)

Equations (3.18), (3.21) and (3.24) are underdetermined equations that can be solved

by letting

Γ
(0,0)
1 (θ) = Γ

(1,0)
2 (θ) = Γ

(0,1)
3 (θ) = 0,

and thus ∆a(θ) = −M (0,0)(θ), ∆λ1(θ) = −M (1,0)(θ) and ∆λ2(θ) = −M (0,1)(θ).
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Equations (3.19), (3.20), (3.22), (3.23), (3.25) can be written in the format

φ(θ) = l(θ)φ(a(θ)) + η(θ),

if the dynamical average l∗ < 1 (Remark 10), or be rewritten in the format

φ(θ) =
1

l(a−1)(θ)
φ(a−1(θ))− η(a−1(θ))

l(a−1(θ))
,

if ( 1
l(a−1)

)∗ < 1, and such equations can then be solved through contraction as in (2.24).

Remark 66. In the 3-dim case, our quasi-Newton method does not work if λ1(θ) and λ2(θ)

are resonant, in the sense ln(λ1(θ))
ln(λ2(θ))

∈ N. More spercifically, in this case, the fibered version

of the Sternberg theorem fails. According to Chen’s Theorem, for |λ2|q < |λ1|, we are

expecting a polynomial p(θ, s) with degree ≤ q such that the invariance equation becomes

f(W (θ, s))−W (a(θ), p(θ, s)) = 0.

The same discussions remain valid for higher dimensional cases. We hope to come back to

this problem.

3.6.2 Numerical Exploration: 3D-Fattened Arnold Family

Inspired by [19], in this subsection, we implement the algorithm discussed in Section 3.6.1

on a 3-dimensional Fattened Arnold Family (3D-FAF) fα,ε : T1 × R2 → T1 × R2:

fα,ε(x, y, z) =


x+ α + ε

2π
(sin(2πx) + y + z

2
)

β(sin(2πx) + y)

γ(sin(2πx) + y + z)

 , (3.26)

where ε is the perturbation parameter, α is the drift parameter and β, γ are the eigenvalues.

We have implemented the algorithm for the stable (i.e. β < 1, γ < 1) case, unstable
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(β > 1, γ > 1) case and the saddle (i.e. β < 1 < γ) case.

The Unperturbed Case

In order to apply the continuation method, we start with the unperturbed case where ε = 0.

As discussed in [19], in such case, the solution to the invariance equation (3.13) is:

W1(θ, s1, s2) = θ,

W2(θ, s1, s2) = −S(α, β) cos(2πθ) + (C(α, β)− 1) sin(2πθ) + s1,

W3(θ, s1, s2) =
γ

β

(
S(α, β)(C(−α, γ−1)− 1) + (C(α, β)− 1)S(−α, γ−1)

)
cos(2πθ)

γ

β

(
(C(α, β)− 1)(C(−α, γ−1)− 1)− S(α, β)S(−α, γ−1)

)
sin(2πθ)

+
γ

β − γ
s1 + s2,

a(θ) = θ + α, λ1(θ) = β, λ2(θ) = γ,

where

S(x, y) =
y sin(2πx)

1− 2y cos(2πx) + y2
, C(x, y) =

1− y cos(2πx)

1− 2y cos(2πx) + y2
.

The Perturbed Case

Following the same continuation method as in Section 3.3, the invariant circle and the

corresponding isochrons are computed for all the stable, unstable and saddle choice of

the parameters. For the same color choice as in Figure 3.2a, we still start with the blue

isochron, which is mapped to the green isochron, followed by magenta, cyan and black,

correspondingly (see Figure 3.11, 3.12 and 3.13).
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Figure 3.11: 3D-FAF map: Invariant Circle and Stable Manifolds
The isochrons contract along both the eigen-directions.

Figure 3.12: 3D-FAF map: Invariant Circle and Unstable Manifolds
The isochrons expand along both the eigen-directions.
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Figure 3.13: 3D-FAF map: Invariant Circle and Stable/Unstable Manifolds for Saddles
The isochrons contract along the stable direction and expand along the unstable direction.
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2004, pp. vi+122, ISBN: 3-03719-003-5.

[3] A. Winfree, “Patterns of phase compromise in biological cycles,” Journal of Mathe-
matical Biology, vol. 1, pp. 73–93, May 1974.

[4] J. Guckenheimer, “Isochrons and phaseless sets,” J. Math. Biol., vol. 1, no. 3, pp. 259–
273, 1974/75.

[5] R. J. Sacker, ON INVARIANT SURFACES AND BIFURCATION OF PERIODIC SO-
LUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS. ProQuest LLC, Ann Ar-
bor, MI, 1964, p. 98, Thesis (Ph.D.)–New York University.

[6] D. Ruelle and F. Takens, “On the nature of turbulence,” Comm. Math. Phys., vol. 20,
pp. 167–192, 1971.

[7] J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications. Springer-
Verlag, New York, 1976, pp. xiii+408, With contributions by P. Chernoff, G. Childs,
S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J.
Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale, Applied
Mathematical Sciences, Vol. 19.
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[49] J.-L. Figueras and À. Haro, “Reliable computation of robust response tori on the
verge of breakdown,” SIAM J. Appl. Dyn. Syst., vol. 11, no. 2, pp. 597–628, 2012.

114



[50] P. W. Bates, K. Lu, and C. Zeng, “Invariant foliations near normally hyperbolic in-
variant manifolds for semiflows,” Trans. Amer. Math. Soc., vol. 352, no. 10, pp. 4641–
4676, 2000.

[51] Y.-M. Chung and M. S. Jolly, “A unified approach to compute foliations, inertial
manifolds, and tracking solutions,” Math. Comp., vol. 84, no. 294, pp. 1729–1751,
2015.

[52] R. Szalai, “Invariant spectral foliations with applications to model order reduction
and synthesis,” ArXiv, no. arXiv:1912.03655v2, 2019.

[53] R. de la Llave and F. Kogelbauer, “Global persistence of lyapunov subcenter mani-
folds as spectral submanifolds under dissipative perturbations,” SIAM J. Appl. Dyn.
Syst., vol. 18, no. 4, pp. 2099–2142, 2019.

[54] A. Haro and R. de la Llave, “A parameterization method for the computation of
invariant tori and their whiskers in quasi-periodic maps: Rigorous results,” Journal
of Differential Equations, vol. 228, no. 2, pp. 530–579, 2006.

[55] J. Moser, “A rapidly convergent iteration method and non-linear differential equa-
tions. II,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), vol. 20, pp. 499–535, 1966.

[56] N. Fenichel, “Asymptotic stability with rate conditions,” Indiana Univ. Math. J.,
vol. 23, pp. 1109–1137, 1973/74.

[57] ——, “Asymptotic stability with rate conditions. II,” Indiana Univ. Math. J., vol. 26,
no. 1, pp. 81–93, 1977.
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