

THE DESIGN AND SIMULATION OF A BIO-INSPIRED MULTI-
AGENT PARKING SYSTEM

A Dissertation
Presented to

The Academic Faculty

by

Amelia Tee Qiao Ying

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanical Engineering

Georgia Institute of Technology

May 2018

COPYRIGHT © 2018 BY AMELIA TEE QIAO YING

THE DESIGN AND SIMULATION OF A BIO-INSPIRED PARKING
ALGORITHM

Approved by:

Dr. Bert Bras, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Cassandra Telenko
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Marc Weissburg
School of Biology
Georgia Institute of Technology

Date Approved: April 10, 2018

iii

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor, Dr. Bert Bras, for his guidance over the

duration of this research project. His advice has helped me navigate my academic life at

Georgia Tech and will continue to be very valuable as I go on to start my professional

career.

I would also like to thank Dr. Marc Weissburg regarding his help with the biological

aspects of this thesis. He has directed me to some very useful resources that has helped

formed the foundation of the work I have done. In addition, I want to thank Dr. Cassandra

Telenko for agreeing to be part of my thesis committee and taking her time to review my

work.

I would also like to thank my colleagues at the Sustainable Design and

Manufacturing Laboratory. I would like to especially thank Stephen Malone and Adam

Cantor for laying part of the project’s foundation and providing some of the code that has

been essential in this project. I would like to thank the other members for their help and

advice with not only my thesis, but also with other aspects of graduate life.

Last but not least, I would like to thank my family and fiancé. Their continuous

love and support has sustained me through this journey at Georgia Tech. I could not have

done it without them.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii	

LIST OF TABLES vi	

LIST OF FIGURES viii	

LIST OF SYMBOLS AND ABBREVIATIONS xi	

SUMMARY xii	

CHAPTER 1.	 INTRODUCTION 1	
1.1	 The Necessity and Development of Smart Parking 1	
1.2	 Disadvantages of Current Smart Parking Technology and the Rise of
Connected Vehicles 2	
1.3	 The Effectiveness of Bio-inspired Optimization Algorithms 3	
1.4	 Thesis Organization 4	

CHAPTER 2.	 LITERATURE REVIEW 5	
2.1	 Swarm Intelligence 5	

2.1.1	 Ant Colony Optimization (ACO) 7	
2.1.2	 Bee Colony Optimization (BCO) 8	
2.1.3	 Particle Swarm Optimization (PSO) 8	

2.2	 Bee Colony Optimization 9	
2.2.1	 Food Foraging Behaviour of Honeybees 10	
2.2.2	 Artificial Algorithms inspired by Honeybee Foraging Behavior 12	

2.3	 Vehicle-to-Vehicle (V2V) Communication 13	
2.4	 Summary of Literature Review 14	

CHAPTER 3.	 BEE PARKING ALGORITHM DESIGN 16	
3.1	 Analogy Between Honeybee Food Foraging and Searching for Parking 16	

3.1.1	 Macro-level Analogy: Objectives and Environments 16	
3.1.2	 Micro-level Analogy 17	

3.2	 Further Adaptation and Development of the Bee Parking Algorithm 21	
3.2.1	 Scouting Algorithms 21	
3.2.2	 Bystander Driver Decision-Making 22	
3.2.3	 Advertisement Management and Processing System 25	

3.3	 Variations of Bee Parking Algorithms 28	
3.3.1	 Parked-Advert Algorithms 29	
3.3.2	 Parked-Leave-Advert Algorithms 39	

3.4	 Algorithms Used to Evaluate the HoneyPark Algorithms 49	
3.4.1	 Random Algorithm 49	
3.4.2	 Greedy Algorithm 50	

3.5	 Summary of Bee Parking Algorithm Design 51	

CHAPTER 4.	 EXPERIMENTAL STRUCTURE 58	

 v

4.1	 Simulation Environment and Setting 58	
4.2	 Parking System 60	
4.3	 Parking Methodology 61	
4.4	 Evaluating and Ensuring Accuracy of Results 63	
4.5	 Summary of Experimental Structure 66	

CHAPTER 5.	 EXPERIMENTAL RESULTS 67	
5.1	 Algorithmic Performance in Varying Levels of Parking Demand 67	

5.1.1	 One Destination 67	
5.1.2	 One Mesh Destination 86	

5.2	 Algorithmic Performance with Varying Errand Times 93	
5.3	 Algorithmic Performance with Varying Levels of Parking Congestion 105	
5.4	 Algorithmic Performance with a Mix of Honey and Non-Honey Cars 112	

5.4.1	 Mix of Honey and Random Cars 112	
5.4.2	 Mix of Honey and Greedy Cars 124	

5.5	 Algorithmic Performance with a Mix of V2V and Non-V2V Cars 133	
5.6	 Algorithmic Performance in Real-Time Traffic Environment 141	
5.7	 Summary of Experimental Results 145	

CHAPTER 6.	 CONCLUSION AND DISCUSSION 155	
6.1	 Overview 155	

6.1.1	 Algorithm Design 155	
6.1.2	 Parking Environment 157	

6.2	 Potential Future Work 159	

REFERENCES 162	

 vi

LIST OF TABLES

Table 1 – Micro-level Analogy between Honeybee food foraging and the Search for
Vacant Parking Spaces. 18	
Table 2 – Parking Algorithm based on Honeybee Food Foraging Processes 19	
Table 3 – Summary Table of HoneyPark Variations Grouped by Adverts and Negative
Feedback 28	
Table 4 – Average Parking Times and Variances produced in One Destination Scenario
(Lot-to-Bee Ratio = 1) 70	
Table 5 – Results of Wilcoxon Rank-Sum Test to Compare the Performance of
HoneyPark Algorithms against the Random Algorithm (Lot-to-Bee Ratio = 1) 72	
Table 6 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
Random-Scouting and Greedy-Scouting Algorithms (Lot-to-Bee Ratio = 1) 73	
Table 7 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
HoneyPark Algorithms that Use no Negative Feedback, Regular Negative Feedback and
Instantaneous Negative Feedback (Lot-to-Bee Ratio = 1) 74	
Table 8 – Average Parking Times and Variances produced in One Destination Scenario
(Lot-to-Bee Ratio = 0.75) 77	
Table 9 – Average Parking Times and Variances produced in One Destination Scenario
(Lot-to-Bee Ratio = 0.5) 77	
Table 10 – Results of Wilcoxon Rank-Sum Test to Compare the Performance of
HoneyPark Algorithms against the Random Algorithm (Lot-to-Bee Ratio = 0.75) 78	
Table 11 – Results of Wilcoxon Rank-Sum Test to Compare the Performance of
HoneyPark Algorithms against the Random Algorithm (Lot-to-Bee Ratio = 0.5) 79	
Table 12 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
HoneyPark Algorithms that Use No Negative Feedback, Regular Negative Feedback and
Instantaneous Negative Feedback (Lot-to-Bee Ratio = 0.75) 80	
Table 13 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
HoneyPark Algorithms that Use No Negative Feedback, Regular Negative Feedback and
Instantaneous Negative Feedback (Lot-to-Bee Ratio = 0.5) 80	
Table 14 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
Random-Scouting and Greedy-Scouting Algorithms (Lot-to-Bee Ratio = 0.75) 81	
Table 15 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
Random-Scouting and Greedy-Scouting Algorithms (Lot-to-Bee Ratio = 0.5) 81	
Table 16 – Average Parking Times and Variances produced in One Destination Scenario
(Lot-to-Bee Ratio = 2) 84	
Table 17 – Average Parking Times and Variances produced in One Destination Scenario
(Lot-to-Bee Ratio = 4) 84	
Table 18 – Results of Wilcoxon Rank-Sum Test to Compare the Performance of
HoneyPark Algorithms against the Random Algorithm (Lot-to-Bee Ratio = 2) 85	
Table 19 – Results of Wilcoxon Rank-Sum Test to Compare the Performance of
HoneyPark Algorithms against the Random Algorithm (Lot-to-Bee Ratio = 4) 86	
Table 20 – Average Parking Times and Variances produced in One Destination Scenario
when a Small Number of Drivers were Initialized in the Simulation 88	

 vii

Table 21 – Average Parking Times and Variances produced in One Destination Scenario
when a Moderate Number of Drivers were Initialized in the Simulation 89	
Table 22 – Average Parking Times and Variances produced in One Destination Scenario
when a Large Number of Drivers were Initialized in the Simulation 90	
Table 23 – Average Parking Times and Variances produced in One Destination Scenario
when a very Large Number of Drivers were Initialized in the Simulation 91	
Table 24 – Average Parking Times and Variances produced at a Variety of Errand Times
when Lot-to-Bee Ratio = 2 97	
Table 25 – Average Parking Times and Variances produced at a Variety of Errand Times
when Lot-to-Bee Ratio = 1 97	
Table 26 – Average Parking Times and Variances produced at a Variety of Errand Times
when Lot-to-Bee Ratio = 0.75 98	
Table 27 – Ratio between the Average Parking Times of the HoneyPark Algorithm to the
Random Algorithm 100	
Table 28 – Average Parking Times and Variances at Varying Congestion Levels when
Bee-to-lot Ratio = 2 109	
Table 29 – Average Parking Times and Variances at Varying Congestion Levels when
Bee-to-lot Ratio = 1 110	
Table 30 – Average Parking Times and Variances at Varying Congestion Levels when
Bee-to-lot Ratio = 0.75 111	
Table 31 – Average Parking Times and Variances at Varying V2V Car Percentages when
Bee-to-lot Ratio = 2 138	
Table 32 – Average Parking Times and Variances at Varying V2V Car Percentages when
Bee-to-lot Ratio = 1 138	
Table 33 – Average Parking Times and Variances at Varying V2V Car Percentages when
Bee-to-lot Ratio = 0.75 139	
Table 34 – Average Parking Times and Variances in Varying Traffic Conditions at Ratios
of 0.75, 1 and 2 144	
Table 35 – Relative Performance of all HoneyPark Variations in All Tested Scenarios 146	
Table 36 – Overall Ranking of HoneyPark Algorithms 153	

 viii

LIST OF FIGURES

Figure 1 – Flowchart of the Basic HoneyPark Algorithm 20	
Figure 2 – Flowchart of the Parked-Advert, Random-Scouting Algorithm 30	
Figure 3 – Flowchart of the Parked-Advert, Greedy-Scouting Algorithm 32	
Figure 4 – Flowchart of the Parked-Advert, Random-Scouting Algorithm with Regular
Negative Feedback 34	
Figure 5 – Flowchart of the Parked-Advert, Greedy-Scouting Algorithm with Regular
Negative Feedback 36	
Figure 6 – Flowchart of the Parked-Advert, Random-Scouting Algorithm with
Instantaneous Negative Feedback 38	
Figure 7 – Flowchart of the Parked-Leave-Advert, Random-Scouting Algorithm 40	
Figure 8 – Flowchart of the Parked-Leave-Advert, Greedy-Scouting Algorithm 42	
Figure 9 – Flowchart of the Parked-Leave-Advert, Random-Scouting Algorithm with
Regular Negative Feedback 44	
Figure 10 – Flowchart of the Parked-Leave-Advert, Random-Scouting Algorithm with
Regular Negative Feedback 46	
Figure 11 – Flowchart of the Parked-Leave-Advert, Random-Scouting Algorithm with
Instantaneous Negative Feedback 48	
Figure 12 – Flowchart of the Random Algorithm 49	
Figure 13 – Flowchart of the Greedy Algorithm 50	
Figure 14 – Flowchart of HoneyPark Algorithms with No Explicit Negative Feedback
Mechanism 52	
Figure 15 – Flowchart of HoneyPark Algorithms with Regular Negative Feedback
Mechanism 54	
Figure 16 – Flowchart of HoneyPark Algorithms with Instantaneous Negative Feedback
Mechanism 56	
Figure 17 – Layout of Simulation Environment Marked with Parking Lots used in
Simulation 59	
Figure 18 – Destinations Used in Simulation 60	
Figure 19 – Destination and Parking Lot Used in One Destination Scenario 68	
Figure 20 – Average Parking Times Based on the Algorithm Used and Lot-to-Bee Ratio
 69	
Figure 21 – Average Parking Times Produced by Each Algorithm in One Destination
Scenario when Lot-to-Bee Ratio = 1 70	
Figure 22 – Average Parking Times Produced by Each Algorithm in One Destination
Scenario when Lot-to-Bee Ratio = 0.75 76	
Figure 23 – Average Parking Times Produced by Each Algorithm in One Destination
Scenario when Lot-to-Bee Ratio = 0.5 76	
Figure 24 – Average Parking Times Produced by Each Algorithm in One Destination
Scenario when Lot-to-Bee Ratio = 2 83	
Figure 25 – Average Parking Times Produced by Each Algorithm in One Destination
Scenario when Lot-to-Bee Ratio = 4 83	
Figure 26 – Destination and Parking Lots Used in One Mesh Destination Scenario 87	

 ix

Figure 27 – Average Parking Times when a Small Number of Drivers were Initialized in
the Simulation 88	
Figure 28 – Average Parking Times when a Moderate Number of Drivers were Initialized
in the Simulation 89	
Figure 29 – Average Parking Times when a Large Number of Drivers were Initialized in
the Simulation 90	
Figure 30 – Average Parking Times when a very Large Number of Drivers were
Initialized in the Simulation 91	
Figure 31 – Average Parking Times when the Errand Time Length was Varied (Lot-to-
Bee Ratio = 2) 94	
Figure 32 – Average Parking Times when the Errand Time Length was Varied (Lot-to-
Bee Ratio = 1) 95	
Figure 33 – Average Parking Times when the Errand Time Length was Varied (Lot-to-
Bee Ratio = 0.75) 96	
Figure 34 – Number of Parking Lots Searched by Each Driver in the Simulation when the
Random Algorithm was used 102	
Figure 35 – Number of Parking Lots Searched by Each Driver in the Simulation when the
Parked-Advert Random-Scouting Algorithm was used 103	
Figure 36 – Number of Parking Lots Searched by Each Driver in the Simulation when the
Parked-Advert Greedy-Scouting Algorithm was used 103	
Figure 37 – Average Parking Times when All Drivers Enter the Simulation in 200
Seconds, 400 Seconds, 600 seconds and 800 Seconds when the Lot-to-Bee Ratio = 2 107	
Figure 38 – Average Parking Times when All Drivers Enter the Simulation in 200
Seconds, 400 Seconds, 600 seconds and 800 Seconds when the Lot-to-Bee Ratio = 1 107	
Figure 39 – Average Parking Times when All Drivers Enter the Simulation in 200
Seconds, 400 Seconds, 600 seconds and 800 Seconds when the Lot-to-Bee Ratio = 0.75
 108	
Figure 40 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b)
40% (c) 60% (d) 80% when the Lot-to-Bee Ratio = 2 113	
Figure 41 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b)
40% (c) 60% (d) 80% when the Lot-to-Bee Ratio = 1 115	
Figure 42 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b)
40% (c) 60% (d) 80% when the Lot-to-Bee Ratio = 0.75 117	
Figure 43 – Average Parking Times of HoneyPark Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 2 119	
Figure 44 – Average Parking Times of HoneyPark Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 1 120	
Figure 45 – Average Parking Times of HoneyPark Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 0.75 120	
Figure 46 – Percentage of Scouting Drivers that are Able to Find a Vacant Parking Spot
at different HoneyPark Car Proportions 123	
Figure 47 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b)
40% (c) 60% (d) 80% when the Lot-to-Bee Ratio = 2 125	
Figure 48 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b)
40% (c) 60% (d) 80% when the Lot-to-Bee Ratio = 1 127	

 x

Figure 49 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b)
40% (c) 60% (d) 80% when the Lot-to-Bee Ratio = 0.75 129	
Figure 50 – Average Parking Times of Greedy Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 2 132	
Figure 51 – Average Parking Times of Greedy Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 1 132	
Figure 52 – Average Parking Times of Greedy Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 0.75 133	
Figure 53 – Average Parking Times when V2V Car Percentage is varied (Lot-to-Bee
Ratio = 2) 135	
Figure 54 – Average Parking Times when V2V Car Percentage is varied (Lot-to-Bee
Ratio = 1) 136	
Figure 55 – Average Parking Times when V2V Car Percentage is varied (Lot-to-Bee
Ratio = 0.75) 137	
Figure 56 – Average Parking Times in Varying Traffic Conditions at Various Ratios and
Traffic Conditions 143	

 xi

LIST OF SYMBOLS AND ABBREVIATIONS

P-R Parked-Advert, Random-Scouting Algorithm

P-G Parked-Advert, Greedy-Scouting Algorithm

P-R (REG-
NEG)

Parked-Advert, Random-Scouting Algorithm with Regular Negative
Feedback

P-G (REG-
NEG)

Parked-Advert, Greedy-Scouting Algorithm with Regular Negative
Feedback

P-R (INS-
NEG)

Parked-Advert, Random-Scouting Algorithm with Instantaneous Negative
Feedback

PL-R Parked-Leave-Advert, Random-Scouting Algorithm

PL-G Parked-Leave-Advert, Greedy-Scouting Algorithm

PL-R (REG-
NEG)

Parked-Leave-Advert, Random-Scouting Algorithm with Regular Negative
Feedback

PL-G (REG-
NEG)

Parked-Leave-Advert, Greedy-Scouting Algorithm with Regular Negative
Feedback

PL-R (INS-
NEG)

Parked-Leave-Advert, Random-Scouting Algorithm with Instantaneous
Negative Feedback

 xii

SUMMARY

Finding parking is one of the common hassles of modern life. Drivers can

considerable amounts of time and fuel looking for parking in congested urban centers.

Therefore, it is would be very valuable to find a method that can alleviate this parking

problem. However, not all solutions are cost-feasible or in some cases, even feasible. The

expansion of parking infrastructure is costly and it may be more feasible to implement

efficient parking practices instead.

This thesis proposes a bio-inspired smart parking solution which aims to reduce the

amount of time drivers take to find parking using vehicle-to-vehicle communication and

the principles of swarm intelligence. It is based on how individual honeybees communicate

with each other while foraging for food. In doing so, they are able to optimize the amount

of nectar collected for the colony. In the same way, vehicles can communicate with each

other to identify the locations in which they are more likely to find an empty parking space.

Results shows that the proposed algorithm is usually more efficient than existing

parking algorithms with the exception of a small group of particular circumstances.

 1

CHAPTER 1. INTRODUCTION

1.1 The Necessity and Development of Smart Parking

Finding a parking space is one of the common hassles of modern life, particularly in

congested metropolitan areas. It can take a long time to find an available parking lot within

walkable distance of one’s desired destination. This results in increased traffic on the roads caused

by cars searching for parking. The average parking search time is 8.1 minutes and the search for

parking can make up anywhere from 8% to a significant 74% of traffic in urban areas (Shoup,

2006). The search for parking also leads to wasted petrol and unnecessary carbon emission. It has

been measured that 47,000 gallons of gasoline have been consumed and 730 tons of carbon dioxide

have been produced in over one year by cars searching for parking in a small Los Angeles business

district (Shoup, 2005).

Therefore, it is important to reduce the amount of time and resources wasted in the process

of finding parking. But not all methods to solve this parking problem are practicable. The

expansion of parking infrastructure is often costly and, in some cases, infeasible. It is more sensible

to implement efficient parking management practices. One of the solutions proposed to alleviate

this parking problem is the concept of ‘smart parking’, in which researchers apply technologies to

optimize the use of parking structures. The first smart parking systems were implemented in

Europe and Japan during the early 1970s. The early systems were used to display the status of a

parking space or garage, such as availability of a parking spot or the number of free spaces

(Chinrungrueng et al., 2007). The detection of the availability of parking space is commonly

executed using sensors. Tang et al. suggested a Smart Parking Management System in which one

sensor is placed in each parking spot to monitor its occupation status. The driver can then access

 2

this information via a wireless network and use it to locate vacant parking spaces. As time went

on, other smart parking methods were proposed as other areas of technology such as mobile

phones, matured and became widespread. Wang and He proposed a system where drivers can

locate and reserve parking spaces ahead of time. Drivers can use their personal communication

devices to access the parking system via Internet and reserve a spot prior to arriving at the lot. The

availability of parking spaces will again be determined by sensors placed around the lot. Khang et

al. designed a parking system that will assign the car the most optimal parking spot based on the

short path algorithm via SMS. Recent years have seen an increased interest in the concept of the

‘Internet of Things’ (IoT). Tomar et al. designed an IoT-based street parking system. Drones are

used to scout and determine the parking architecture in the desired area. The vacancy of parking

sports is determined using IR sensors in the parking places. The information is stored and

processed in a cloud centric server, a new technology that has gained a lot of popularity over the

past few years.

1.2 Disadvantages of Current Smart Parking Technology and the Rise of Connected

Vehicles

The discussed parking smart parking methods in the previous section do have their

limitations. Many of them require the implementation of a larger infrastructure and may be

hindered by certain restrictions. Idris et al. states that implementing sensors in parking lots have

cost, environmental and scale factors to consider, which may affect the feasibility of implementing

such a system in rougher areas. The system may also cause some damage to the existing parking

infrastructure. For example, Mimbela and Klein state that one type of sensors used in parking

applications are intrusive sensors, which require invasive methods of installation. One of the

sensors discussed must be installed in holes drilled into the pavement, which consequently

 3

decreases pavement life. In addition, lane closure would be needed to install and maintain the

system, which would disrupt traffic. Reinstallation would be required if the pavement needs to be

repaired or renovated, creating more inconveniences.

It would be useful to invent a smart parking system whose feasibility is not limited by

external factors. This is possible with the recent rise of wireless networks. This has facilitated to

the creation of the concept of ‘connected vehicles’, which refer to vehicles who are able to

communicate and interact with their internal and external environments. This encompasses

vehicle-to-sensor on-board (V2S), vehicle-to-vehicle (V2V), vehicle-to-road (V2R) and vehicle-

to-internet (V2I) communication. Connected vehicles will form the foundation of an ‘Internet of

Vehicles’ (IoV) in which information is gathered, processed and shared to enable the development

and implementation of intelligent transportation systems (Lu et al., 2014). Such networking

reduces the need to implement physical infrastructure. The variety of applications for such

networks is extensive, ranging from collecting traffic light data from vehicles as environmental

sensors (Liu et al., 2013) to using parked cars to enable vehicular internet access (Crepaldi et al.,

2008). As such, it is possible to use this technology in smart parking applications.

1.3 The Effectiveness of Bio-inspired Optimization Algorithms

‘Big data’ is on the rise as recent years have seen an explosion in data. However, it is a

challenge to find the optimal solution when one is bombarded with large amounts of data. As such,

scientists have been drawing inspiration from efficient biological systems and implementing their

mechanisms to find the most optimal in artificial systems (Kar, 2016). For example, the concept

of neural networks is based on how the human brain operates (Grossberg, 1988) and has been used

to solve complex, non-linear systems (Sadegh, 1993). Genetic algorithms are based on the process

 4

of natural selection (Darwin, 1859) and have been used to solve combinatorial and non-

deterministic multi-objective problems, like the problems of scheduling and production planning

in the field of operation management (Aytug et al., 2003).

Bio-inspired algorithms have also been used to optimize urban infrastructure. Zari 2015

implements natural ecosystem services (i.e. provision of energy and fuel) in context of an urban

environment. Lee et al. 2008 aimed to optimize the monitoring of urban environments (i.e. traffic

reporting, surveillance) via Vehicular Sensor Networks (VSN) using the foraging behaviors of the

organism Escherichia coli chemotaxis. However, the application of bio-inspired algorithms in

parking optimization has not yet been investigated. As such, it is plausible that bio-inspiration can

help alleviate parking problems, especially in congested areas.

1.4 Thesis Organization

This thesis will propose a novel smart parking system based on Ford’s smart car-to-car

communication technology and existing bio-inspired algorithms. The design and mechanisms of

the smart parking algorithm will be covered. The algorithm was also evaluated via computer

simulation and we will discuss its effectiveness compared to existing common parking algorithms.

The structure of the thesis is as follows. Chapter 2 contains a literature review of the bio-

inspired algorithms on which the new parking system is based upon. Chapter 3 will cover the

design and mechanism of the novel algorithm. The algorithm’s results and performance are stated

and discussed in Chapter 4. The implications of the results are discussed in Chapter 5 and how this

would impact parking in a real-life parking situation.

 5

CHAPTER 2. LITERATURE REVIEW

 This chapter will serve as a literature review of swarm intelligence and the bio-inspired

algorithms within that field. Further details will be covered concerning the Bee’s Algorithm as

one will see, it is the main bio-inspiration for the novel algorithm proposed in this thesis. It will

also cover the concepts of vehicular networks and vehicular cloud computing, the technology that

the algorithm will depend on to function.

2.1 Swarm Intelligence

 The objective of this thesis is to create a novel algorithm that will help the car find a parking

spot in the shortest amount of time possible based only on information given by other cars on

where they successfully or unsuccessfully found a vacant parking space. A possible source of

inspiration for such an algorithm is swarm intelligence, which refers to the collective intelligent

behavior of a system resulting from the simple, individual actions of independent agents

(Bonabeau et al., 1999). The field is heavily inspired by the collective behavior of social creatures

such as insects, birds and fish. The marvel of these particular natural system is that the members

of such systems are quite simple in intelligence (i.e. ants, bees). The colonies are often

characterized by decentralized control (i.e. lack of central control) and the activities of its members

are self-organized. However, the collective behavior of these uncomplicated agents is complex and

quite successful in ensuring the survival of the species (Blum and Li, 2008).

 Bonabeau et al. define self-organization as when behavior structures appear at the global

level as a result of interactions between individual parts of the system and consider it to be a key

characteristic in swarm intelligence. It can be characterized by the following four attributes.

 6

1. Positive Feedback: There exists a mechanism that enforces encourages individuals to

pursue the optimal solution

2. Negative Feedback: When a solution is not or no longer favorable, there is a mechanism

that discourages swarm members from following it

3. Presence of Fluctuations: The global structural behavior is present despite random

alterations in the environment. In addition, fluctuations could also result in the creation

of a new solution, which can impact the collective behavior of the swarm.

4. Multiple Interactions: There must be interactions between the swarm members so that

an individual can benefit not only from the results of its own activity, but of others as

well.

However, not all swarms can be considered to exhibit complex and intelligent behavior.

Millonas lists the following set of conditions that a swarm must fulfill in order to be considered

‘intelligent’.

1. Proximity Principle: The swarm must be able to perform simple space and time

calculations.

2. Quality Principle: In addition to space and time, the swarm must be able to react to the

quality of the object concerned (i.e. food).

3. Principle of Diverse Response: The group must not narrowly commit all its resources.

Instead, it is able to distribute its sources among many options in the case that one of

them may fail.

4. Principle of Stability: The group is not reactive to every fluctuation in the environment.

In other words, it understands that every reaction to the surroundings is not always

profitable.

 7

5. Principle of Adaptability: If needed, the group is able to change its behavior, especially

if adaptability is profitable.

Swarm intelligence encompasses a number of bio-inspired optimization algorithms which

are based on these natural group behaviors. Some examples include Ant Colony Optimization

(ACO), Bee Colony Optimization (BCO), Particle Swarm Optimization (PSO) and Stochastic

Diffusion (SDS).

2.1.1 Ant Colony Optimization (ACO)

 The Ant Colony Optimization (ACO) algorithm is based on the foraging behavior of ants.

While scavenging food, Grassé discovered that an ant naturally deposit pheromone on the ground

to mark an advantageous path, usually leading to a food source. Other ants can detect and follow

the scent to the same food source. The most convenient (i.e. shortest) path will be used by more

ants, consequently acquiring a larger amount of pheromones. Following ants will be able to

identify the most optimal solution by choosing the path with stronger pheromones. In addition,

ants will be able to complete the path in shorter amount of time and reach the nest first. As a result,

the shortest path will receive more pheromones earlier, directing more ants down this path (Dorigo,

Birattari & Stutzle, 2006).

 ACO has been applied to solve a variety of problems. Dorigo and Gambardella used it to

solve the traveling salesman problem, whose setting is set of cities and the distance between the

locations are known. The optimal solution is the shortest path that visits each city once and only

once. The algorithm creates multiple ants, which generates solution by randomly creating a path

between the cities, marking it with pheromones and increasing its desirability measure. The

optimal solution would the path with the highest desirability measure. The algorithm also has been

used to optimize vehicle routing. Liu and Cai used ACO to solve the capacitated vehicle routing

problem, in which the desired route is the most efficient path that visits a number of customers

 8

from a central depot. Rizzoli, Montemanni, Lucibello and Gambardella applied ACO to solve a

number of real-life vehicle route problems ranging from vehicle routing with time windows with

time windows for a major supermarket chain to a time-dependent routing problem for a distribution

company.

2.1.2 Bee Colony Optimization (BCO)

 The Bee Colony Optimization algorithm is inspired by the food foraging behaviors of a

honeybee colony. The process starts when bee foragers leave the hive to search for nectar sources.

If a forager is successful in locating a food source, the forager takes some of the nectar with it.

When it returns to the hive, it not only unloads the nectar, but also recruit other honeybees to search

at its food source. It will tell other bees where it got the nectar, how far the food source is from the

hive, the quality of the nectar and other important information. Using this information, other bees

in the colony may go to the advertised food source to collect more nectar for the hive (Karaboga

and Akay, 2009).

 The Bee Colony Optimization is generally used when the optimal solution is obtained via

task or effort allocation. Tedorovic and Dell’Orco applied the algorithm to optimize ‘ridesharing’,

in which multiple people share the same vehicle to travel from a few origins to a few destinations.

The BCO algorithm was used to arrange vehicle routing and scheduling of passenger pick-up/drop-

offs in the most efficient manner. The algorithm has also been used to enhance task allocation,

especially in the field of information technology. Nakrani and Tovey used BCO to optimize the

assignment of customer requests to a finite group of internet servers, aiming to maximize profit

and reduce server allocation costs.

2.1.3 Particle Swarm Optimization (PSO)

 Particle Swarm Optimization is based on the social behavior of groups of animals namely

flocks of birds and schools of fish. Simulations of the collective behavior of bird flocks have been

 9

created and studied (Reynolds, 1984; Heppner and Grenander, 1990). Both models operated on

the principle that the flocking behavior may be influenced by an individual bird’s desire to

maintain an optimal distance between itself and other members of the group. E.O. Wilson has

speculated that this phenomenon originates from un understanding that an individual can greatly

benefit from being in a group, acquiring the experiences and resources of other animals. One

example is food foraging, where a bird does not know the food is but can find it by following other

birds in group especially the one closest to the food source (Kennedy and Eberhart, 1995). In other

words, group behavior is designed to optimize the benefits of an individual and perhaps even an

entire group.

 PSO algorithms have also been implemented in artificial systems. Kennedy, Eberhart and

Shi have used the algorithm to evolve artificial neural networks. Srinivasan et al. applied their

work, using PSO to train an artificial neural network used to facilitate early detection of road

incidents. Zhao et al. also used the PSO algorithm to optimize the weights in the hidden and outer

layers of a RBF artificial neural network which was trained to forecast the traffic flow in two

adjacent intersections.

2.2 Bee Colony Optimization

 In the parking problem, a driver aims to find a parking space within a certain location in

the shortest amount of time possible. Once it does successfully parks, it can tell other cars where

it was successful. As such, this scenario can be best related to the Bee Colony Optimization

algorithm, which models how honeybees find the best nectar source within a radius of their hive

and how they disseminate that information to their fellow bees. The allegory will be made clearer

in Chapter 3, where the algorithm will be directly applied and specifically implemented to solve

the parking problem. In this section however, the original concept of Bee Colony Algorithm will

be further elaborated upon.

 10

2.2.1 Food Foraging Behaviour of Honeybees

 The processes used by honeybees to optimize the search and collection for food will be

first described. Firstly, a few bees will be assigned to scout. These scouts will leave the hive and

search for flower patches, which serve as food sources for the honeybee colony. Once they find

one or multiple food source, they will collect its nectar and rate its quality. Once they are finished,

they will return to the hive and unload the nectar they have collected. Additionally, the forager

will perform the ‘waggle dance’ on the dance floor in an attempt to recruit other honeybees to

collect more nectar from its found food sources. The dance will contain information about the

location of the food source and the quality of its nectar. There may be multiple foragers performing

the waggle dance concurrently. The other honeybees will randomly select one or multiple dances

to watch. It is not able to watch all the dances and thus, does not acquire a global knowledge of all

the flower patches. Based on the information it has collected, it will pick a flower patch to collect

nectar from (Seely, 1995).

 While performing the waggle dance, the forager may experience a delay while recruiting

other bees. This information can be used to optimize task partitioning, that is, the number of bees

scouting and the number of bees receiving and acting on the advertisements. If the proportion of

foragers and receivers is suboptimal, the collection of nectar will also be subpar. For example, if

there are more receivers than foragers advertising nectar sources, there will be some receivers that

will be idle. The opposite is true when there are more foragers than receivers. To avoid this

problem, foragers use the length of the delay to ensure that there are an optimal amount of waggle

dancers and receivers. If the delay is short, there are likely more receivers than dancers. Therefore,

the forager will perform a waggle dance to recruit more foragers. If the delay is long, there are

probably more dancers than receivers and more honeybees will need to take on a receiving role to

 11

optimize nectar collection. In this case, the forager will perform a ‘tremble dance’ to recruit more

receivers. (Ratnieks and Anderson, 1999)

 But from all the flower patches visited, how does a forager pick which food source to

advertise? From all the waggle dances, how does a bystander honeybee decide which flower patch

to pursue? It was concluded that one of the factors that the honeybees heavily use is the nectar

source’s quality (Seeley, Camazine & Sneyd, 1991). When they presented a bee colony with one

high-quality and low-quality nectar source, the honeybees mostly visited and advertised the source

with a higher nectar concentration. This is because the foragers perform the waggle dance for a

more profitable lot more frequently and for a longer period of time. Therefore, the bystander

honeybee is more likely to see an advert for that high-quality parking lot and pursue it. Eventually,

the colony as a whole was exploiting the high-quality source. The low-quality source was often

abandoned. The bees that still visited that source harvested it at a slower rate and did not perform

any waggle dances. Subsequently, no bees were recruited, resulting in the whole colony eventually

abandoning the low-quality source.

 As the hive gravitates towards high-quality nectar sources, it is important to note how bee

foragers evaluate which nectar source available is the most quality and profitable. It is first

postulated that the nectar sources are compared by various means, whether it is direct comparison

by the honeybees or indirect comparison by the colony’s food storer. However, Seeley, Camazine

and Sneyd concluded that no comparisons are made at all. Each forager only knows about its own

nectar source and only calculates the source’s absolute quality. When a lower-quality nectar source

was placed closer to the hive than a higher-quality nectar source, there were more ‘waggle dances’

for the nectar source for the lower-quality source as more bees have visited the source in a shorter

amount of time. In addition, when the food sources were placed at equal distances form the hive,

 12

there were more dances and harvesting at the higher-quality source. However, it is observed that

the majority of the foragers have not been to both sources and as such, could not make a

comparison. It seems that the higher-quality source was chosen by the probability that the

honeybee saw an advert for it on the dance floor. As mentioned before, a profitable source is

advertised more heavily and it is more likely that a bystander honeybee will choose to harvest it.

2.2.2 Artificial Algorithms inspired by Honeybee Foraging Behavior

 There have been successful attempts to translate the food foraging behavior of bees

described in Section 2.2.1 has been translated for use in artificial systems. Sato and Hagirawa

designed the Bee System algorithm, which is improved version of another existing bio-inspired

algorithm, the Genetic Algorithm (GA). GA is generally good at searching for solutions on a global

scale but is poor at local search. This can be solved by integrating the collaborative nature of food

foraging bees. Multiple bee populations can search a solution space and communicate with each

other to find the local solution.

 Teodorovic and Dell’Orco proposed the Bee Colony Optimization (BCO) algorithm, which

is designed to solve combinatorial optimization problems. A number of bees are first initialized

and are located in the hive. Then, they move locally and create partial solutions on the basis of

exploration and past experience. This is called a forward pass. They may also opt to perform a

backward pass, in which they return to the hive. There, they exchange information about the quality

of the solutions they have created with other bees. Based on the comparisons made, a bee may

choose to continue pursuing its partial solution on its own, recruit others to pursue its solution

together with it or abandon its solution and create a new solution from scratch. This process is

performed until the termination condition is reached.

 13

 Karabonga and Basturk wrote the Artificial Bee Colony (ABC) algorithm which focuses

on optimizing multivariable functions. There are three types of bees in this algorithm: employed

bees who travel to the food source, onlookers who are on the dance floor looking at waggle dances

and scouts who randomly search the solution space. At the beginning, a random set of food sources

are selected by employed bees. Each employed bee is assigned to investigate the nectar quality of

one food source. They return to the hive and share information with the onlookers, who chooses

which food source to visit. In the next stage, the employed bees not only go back to the food source

visited in the last stage but also visits another food source in the neighborhood of that food source.

They will return to the hive to recruit onlookers, who will again choose and possibly develop a

preference for a food source based on the information provided. When a food source is exhausted

and abandoned by the employed and onlooker bees, the employed bee of that food source because

a scout and randomly searches the solution space for a new food source to harvest.

 Pham et al. created the basic pseudo-code for the Bee’s Algorithm, which basically

searches a solution space for an optimal result in the same manner that a bee forager looks for food

sources within a specified area. A number of scout bees are initialized to search randomly selected

sites in the solution space, whose quality levels are evaluated. The sites are then ranked by their

fitness and the fittest few sites are chosen. A number of forager bees are initialized to conduct a

local search of the best sites while the rest of the bees are assigned to search the non-best, random

locations. The bees continue searching in this manner until a global optimum is found.

2.3 Vehicle-to-Vehicle (V2V) Communication

 Vehicle-to Vehicle (V2V) communication is a concept that gained popularity recently due

to the emerging development of wireless technology (Yang, Liu, Vaidya & Zhao, 2004). The

 14

technology has been explored in a variety of contexts according to Sichitiu and Kihl. One of the

main areas that is studied is the use of V2V in improving traffic safety. Biswas, Tatchikou and

Dion developed the Cooperative Collision Avoidance (CCA), which uses V2V technology to

prevent car accidents. Another potential application is traffic management. Nadeem,

Dashtinezhad, Liao and Iftode created TrafficView, which aims to disseminate and gather traffic

information on the road using V2V technology. There even has been research in using V2V

communication for leisure. Bucciol, Masala and Martin proposed a solution that will ameliorate

inter-vehicular video communication using V2V wireless networks.

 However, the use of V2V communication in searching for parking is an area that is very

lightly explored. Tasseron, Martens and van der Heijden looked at using V2V communication in

helping cars find on-street parking. The car will send messages in two situations: when it occupies

or leaves a parking space, which will change the status of the parking space to unavailable or

vacant respectively. However, the results presented in the paper shows that there is little difference

in search times between V2V and regular cars except for extreme conditions in which the

occupancy rate of the street network exceeds 90%.

2.4 Summary of Literature Review

 In this chapter, the fundamental concepts behind the HoneyPark algorithm was covered.

Firstly, the basic definition of swarm intelligence was presented, which refers to the group of

algorithms that the HoneyPark algorithms belongs to. Natural examples of swarm intelligence

were reviewed along with how these biological systems have inspired the design of various

existing artificial systems. This was done to examine which bio-inspired algorithm was the most

relevant to the contect of searching for parking.

 15

After the review, it is found that the parking problem is more analogous to the problem

honeybees face when searching for nectar as compared to other natural swarm intelligence

problems. As such, the chapter goes into further detail regarding honeybee food foraging behavior.

It covered the biological behavior of honey bees and how they search for nectar as both an

individual and as a colony. The methods that honey bees use to determine the most profitable

flower patch and consequently maximize nectar collection is also discussed. In addition, the

review looks at algorithms that have already been created based on this biological system and

details how they work.

 After discussing the biological aspects of the algorithm, the chapter moved on to discuss

the technology that will be used to implement the system: vehicle-to-vehicle (V2V)

communication. Although it has been explored in a variety of contexts, it is barely investigated in

the context of optimizing parking times. The one example presented here did not have any bio-

inspired elements which could potentially improve parking search times. Therefore, it would be

useful to see if the combination of bio-inspired concepts and V2V technology results in a heuristic

that is able to significantly reduce the amount of time drivers spend in their search for parking.

 16

CHAPTER 3. BEE PARKING ALGORITHM DESIGN

 This chapter covers the design and development of the novel bee-inspired parking

algorithm. First, an analogy between honeybee food foraging processes and the search for parking

will be created and elaborated. This is will be followed by a discussion of the possible ways the

algorithm could be implemented and a detailed description of the different variations of the bee

parking algorithms investigated in this thesis. After that, two existing parking algorithms will be

introduced as they will be used to evaluate whether the HoneyPark algorithm is more effective

against current methods of parking.

3.1 Analogy Between Honeybee Food Foraging and Searching for Parking

3.1.1 Macro-level Analogy: Objectives and Environments

 Bee-inspired algorithms were chosen as the main source of inspiration for a connected,

bio-inspired algorithm because of the similarities in the objectives and environments of a honeybee

searching for food and a car looking for parking in a congested, metropolitan area. The foraging

behaviors of honeybees was designed to optimize the search for nectar in an extremely variable

environment. According to Seeley, the nectar supply in the natural fluctuations on an hourly and

daily basis as the quality of nectar varies with micro-climatic conditions, the blooming/withering

cycle of flowers and exploitation. As such, the nectar intake of a colony can change by a factor of

more than 100 in a single day. This is analogous to a driver looking for a parking spot in a

congested city. The amount of parking spaces that are vacant/full vary greatly throughout the day

depending on the time of day, rush hour, occurrence of special events and so forth. Like the

 17

honeybee looking for nectar, the driver must find a vacant parking spot in an extremely volatile

environment.

 Another important characteristic that honeybee food foraging and the search for parking

have in common is that both are optimization problems in which the value function is influenced

by multiple factors. As mentioned in Section 2.2.1, even though the honeybee colony prefers high-

quality nectar and optimizes the quality and amount of nectar collected by exploiting profitable

sources, their choice of nectar source is also influenced by other variable factors such as distance

and exploitation. In the same way, drivers aim to find a parking space in the shortest amount of

time possible. This is too dependent on a variety of factors: the distance between the driver’s

location and the parking spot, the amount of traffic on the roads, the number of cars that are also

looking for parking, the quantity of vacant parking spaces at a parking lot, etc.

 Another commonality between honeybees looking for and drivers looking for parking is

that the optimal solution depends on the optimal collection of individuals to specific regions. In

the honeybee scenario, the honeybees are allocated to flower patches in such a way that the nectar

collection of the hive is optimized. In the parking scenario, it is possible to send drivers to parking

lot so that they all can find parking in a reasonable amount of time.

3.1.2 Micro-level Analogy

 The similarities between honeybee food collection and looking for vacant parking spaces

do not only exist from a ‘macro perspective’. The set-up at a micro level for both these processes

are also parallel. Using a similar table found in Nakrani and Tovey, we find the parking equivalent

of the constituents and processes in the bee food foraging process.

 18

Table 1 – Micro-level Analogy between Honeybee food foraging and the Search for Vacant
Parking Spaces.

Honeybee Food Foraging Search for Parking

Individual agent is a honeybee searching for
nectar

Individual agent is driver searching for a
vacant parking spot

There are limited number of flower patches to
forage around the hive

There are limited number of parking lots
to search around the driver’s desired

destination

Convenience of flower patch is dependent on
its distance from the hive

Convenience of the parking lot is
dependent on its distance from the

driver’s desired destination

The agents advertise where nectar was found
by waggle dancing

The agents advertise where vacant
parking spot was found by sending an

advert to other drivers

The idle agents are more likely to collect
nectar at more heavily advertised nectar

sources

The idle agents are more likely to search
for vacant parking spaces at more heavily

advertised parking lots

Supply of Nectar is extremely variable in
matter of hours and days

Availability of vacant parking spots is
extremely variable in matter of hours and

days

Flower patch quality is determined by the
amount and quality of nectar found in it

Parking lot quality is determined by the
amount and ‘quality’ (i.e. usability) of

vacant parking spots found in it

Downtime exists when a honeybee is
travelling from one nectar source to another

Downtime exists when a driver is
travelling from one parking lot to another

 19

 Based on Table 1, we can describe a method to search for parking based on the processes

honeybees use to find nectar. Table 2 shows the basic process of the parking algorithm based on

the stages of honeybee food foraging.

Table 2 – Parking Algorithm based on Honeybee Food Foraging Processes

Step # Honeybee Food Foraging Search for Parking

1

A scout honeybee leaves the hive to search
for nectar source by looking at any flower

patches it can find

A driver arrives at desired destination and
begins to search for a vacant parking spot by
looking at any parking lots he/she can find

2
Honeybee collects and evaluate amount of

quality of nectar at flower patch
Driver searches for vacant parking spot in

parking lot

3

If the honeybee finds a suitable nectar
source, it returns to the hive and advertises

it other honeybees.

If not, it continues scouting other flower
patches for a suitable nectar source

If the driver finds a vacant parking spot,
he/she parks the car and lets other drivers

know that he/she found a parking spot at the
parking lot by sending an

If not, the driver continues scouting other

parking lots for a vacancy

4

The other honeybees see the waggle
dances on the dance floor and uses them to
determine which flower patch they should

collect nectar from

The other drivers look at the parking adverts
in the server and uses them to determine
which parking lot they should search for

vacant parking spots

 As one can see, the search for nectar can be easily adapted to the search for vacant parking

spots as the processes are very similar. The process outlined in Table 2 is visualized in flowchart

form in Figure 1. Note that the steps in Table 2 are pointed out in Figure 1 as well.

 20

Figure 1 – Flowchart of the Basic HoneyPark Algorithm

 21

3.2 Further Adaptation and Development of the Bee Parking Algorithm

 The main structure of algorithm will take the form of the processes outlined in Figure 2.

However, it is still in need of further development as the Bee’s Algorithm is not always perfectly

compatible will all aspects of the parking search process. The main parts of the analogy that needs

to be further adapted is the scouting algorithm, how would a car or honeybee choose which parking

lot or flower patch to explore respectively and the generation and processing of ‘adverts’.

3.2.1 Scouting Algorithms

 One detail in Table 2 that could be elaborated on is the method for scouting. In the

biological environment, the hive may not know where the profitable nectar sources are located.

Therefore, honeybees must scout in order to find them. This is often done by picking a random

flower patch and evaluating the nectar there. In the same way, there may be times when none of

the drivers know or have sufficient information to know where the profitable lots are (i.e. when

the HoneyPark algorithm is first implemented and no adverts were created yet). Therefore,

scouting is needed to find these profitable lots. This scouting behavior cannot be directly translated

to the search of parking. In the case of the honeybee, all the honeybees are working in such a way

that the colony receives the maximum amount of nectar as a whole. In the search of parking, drivers

are more self-interested. They are not affected by, and therefore do not care, whether other drivers

have a shorter parking time. What matters to the driver is that he/she is able to find parking in the

shortest amount of time possible. Therefore, it is unreasonable to expect some drivers to scout

random locations and potentially increase their parking time so that other drivers can optimize

their parking search. As such, the algorithm only gets the driver to scout whenever the driver

cannot find a vacant spot at the parking lot recommended by the algorithm. The driver must resort

 22

to another method that chooses a different parking lot that is potentially more profitable. The

failure of the algorithm also indicates that information in the advertisement system must be

updated. Therefore, it is in the best interest of the individual driver and the drivers using the

algorithm for the driver scout and find potential profitable lots.

 While scouting, the locations honeybees choose to forage are also chosen randomly. One

can artificially implement this behavior as well by setting the Random algorithm as the scouting

algorithm. But unlike the honeybee who may not necessarily know the location of all the flower

patches in an area, the parking system in this simulation knows the location of all the parking lots.

Therefore, it is possible to implement other scouting algorithm such as Greedy, in which the driver

will scout the parking closest to him/her.

3.2.2 Bystander Driver Decision-Making

3.2.2.1 Without Real-Time Traffic Conditions

 As mentioned in Chapter 2, the honeybees do not have a global knowledge of all the flower

patches explored by the scouts. This is because the waggle dance is only performed for a period of

time and therefore, cannot be viewed for an infinite amount of time. In addition, bystander bees

can only see part of the dance floor and therefore cannot see all the dances performed. However,

this is not a significant impediment. A profitable nectar source will be advertised by a larger

number of waggle dances. Therefore, it is more likely that a bystander honeybee will see an advert

for a profitable source and harvest it. It is the probability that honeybee sees an advert for a

particular lot that is a major factor in whether the honey visits the lot. In the parking analogy, the

central cloud server will receive all advertisements. Therefore, the drivers can have a global

knowledge of all the adverts sent to the system. As such, it is missing the probabilistic quality of

 23

how honeybees choose which areas to explore. To mimic the bystander bee’s judgment, a ‘russian

roulette’ system is employed. The probability that a driver finds a vacant parking spot in a specific

lot, Psuccess(lot) can be calculated using the number of adverts generated for that lot, Nads(lot), and

the total amount of adverts generated for all the possible lots that the car could park at, Ntotal ads, as

seen in Equation 1.

!"#$$%"" &'(= *+," &'(
*-.-+/	+,"

(1)

 This equation fits that bee food-foraging model that a driver is more likely to successfully

find a vacant parking spot at a parking lot that is more advertised. The probability is calculated for

all the possible lots that the driver could visit and a cumulative probability will be made. A random

number between zero and one will be generated. It will fall within the cumulative probability range

for a particular parking lot, which the car will travel to and search for a vacancy.

3.2.2.2 With Real-Time Traffic Conditions

 Preliminary simulations show that Equation 1 above in Section 3.2.2.1 does not work in

simulations that have real-time traffic conditions. This is because it only considers the profitability

of the parking lot and not the time it takes to get to the lot. In traffic conditions, one must also

identify which lot is the most easily accessible (i.e. the route to the parking lot does not have a

large amount of traffic). When Equation 1 was implemented in a traffic simulation, there were

situations in which the HoneyPark car had a long parking time not because the lot chosen was

unprofitable but because the amount of time it took to arrive at the lot was unacceptably long due

to traffic. This is a notable difference from the honeybee food foraging process, where the amount

 24

of time to get to the flower patch is considered in adverts. When a profitable flower patch is located

closer to the hive, the adverts for it are more frequent than a profitable flower patch that is further

away because it takes a shorter time for the bee to travel to and from the patch. Therefore, more

waggle dances can be initiated for that flower patch because the honeybees can make more trips

to and advertise that patch in a shorter amount of time (Seeley 1991). This is not the case in the

HoneyPark algorithm. Due to the nature of wireless technology, the HoneyPark system can receive

adverts almost instantly regardless of how long it takes for the driver to travel to the lot.

 Therefore, one will need to explicitly program the HoneyPark algorithm to consider the

amount of time it takes to travel to the parking lot. Verroios, Efstathiou and Delis formulated an

equation to evaluate the profitability of parking lot by using the concept of ‘lot cost’, which their

formulation defines as the most probable amount of time that a driver takes to travel from his/her

current position to his/her final destination in person if he/she chooses a parking lot to park at. It

is the sum of the time taken to travel from the driver’s current position to the parking lot, the

amount of time needed to find a parking space within that parking lot and the time it takes for the

driver to walk from the parking lot to his/her final destination.

 The above method was adapted to identify the lot that was both the most profitable and the

most the easily accessible. Based on this, another formulation was created to calculate the lot cost

in Equation 2. It is essentially the sum of the time it takes to travel to the parking lot from the

driver’s current location and the probabilistic amount of time needed to find a vacant parking space

within the lot.

&'(1'2(= 3/.-	-4+5%/ + 1 − !"#$$%"" &'(∗ 3+5:	"%+4$; (2)

 25

 where

 3/.-	-4+5%/ = amount of time it takes to travel to the parking lot

!"#$$%"" &'(= the success rate of finding an available parking space in the lot based on

adverts sent by other HoneyPark drivers (defined in Equation 1)

3+5:	"%+4$; = the average time it took for the last few cars (five last cars in the case of the

simulation) to find an available parking space in the lot.

 Like Psuccess(lot) in the previous section, the lot cost is then arranged in a ‘russian roulette

system’ such that parking lots with the higher cost are less likely to be chosen and parking lots

with lower cost are more likely to be picked by the algorithm.

3.2.3 Advertisement Management and Processing System

 When a honeybee finds a profitable source, it creates a positive feedback to harvest that

source by advertising it to other honeybees in the colony. If the bystander bees find that nectar

source is worth harvest, they themselves will return to the hive and advertise it, creating a chain

reaction of waggle dances telling the colony to harvest this one source. This is easily implemented

in the parking analogy. When a car successfully finds a parking space, it sends an advert to the

central cloud network advertising the parking lot. This creates positive feedback for the profitable

parking lot. Unlike honeybee food foraging where the nectar profitability is not regained by

honeybee activity, a parking lot can acquire vacant parking spots and gain profitability if drivers

start leaving it. As such, drivers leaving a parking lot can also send a ‘leave’ advert, indicating that

spots are now available at a previously full lot. This can also create positive feedback and

encourage other drivers to explore parking lots that are regaining their vacancy.

 26

 When a source is no longer profitable, honeybees stop advertising it. This creates a negative

feedback for the nectar-poor source and bees will eventually stop expending unnecessary energy

harvesting it. However, it is impractical to directly apply this analogy to the parking problem.

Unlike waggle dances which ‘disappear’ once the dancing bee chooses to stop advertising a flower

patch, the adverts in the parking system can be stored for an infinite amount of time for future

drivers to look at as it is a computer system with memory. In addition, it takes time for the bees to

discover that the flower patch is not profitable and slowly reduce the number of adverts for that

patch. However, it is quite slow and there may be a chance that bystander honeybees will still see

an advert for the unprofitable flower patch and visit it only to find that it is no longer profitable.

In the same way, drivers may still an advert for a parking lot whose profitability is declining and

explore it, only to find that there are no parking spaces. Therefore, one must find an artificial way

to mimic this behavior in a quicker manner. In the HoneyPark algorithm, when a driver finds that

a parking lot is full, it resets the number of adverts listed for that particular parking lot immediately.

As such, advistement for that lot is stopped almost instantaneously and drivers are less likely to

search that lot.

 The HoneyPark advertisement system also differs from ‘waggle dances’ in the sense that

it is able to give the driver a perfect knowledge of adverts available. Honeybees are limited by the

fact that they can only see a portion of the dance floor so they can’t see all the adverts. In addition,

they can only watch the waggle dances as long as the dancer is performing it. Once the dancer

stops, the dance cannot be viewed anymore. This is not the case for the HoneyPark advertisement

system, which is able to display all incoming adverts to any one driver and store them for any

given amount of time. As such, one can use the fact that drivers have a perfect knowledge of

incoming adverts to improve the negative feedback mechanism in the HoneyPark algorithm. In

 27

animal communication, some species of animals may send an alarm signal that warns other

individuals in their communities of impending danger. In response, the receivers of the alarm call

will flee and avoid the location of danger. Likewise, a driver can send out an ‘alarm signal’ (i.e. a

Negative Advert) when he or she finds that the parking lot he or she is searching is full, telling

other drivers that the lot is full and unprofitable. This is perfect for a system in which drivers can

see every advert as they can all see the Negative Advert and react accordingly. In this paper, this

negative feedback mechanism is implemented in two different ways:

1. Regular Negative Feedback Mechanism: When a driver sends a Negative advert for a

particular parking lot, that particular lot will not be considered by other drivers that are

going to look for parking in that area. It will be considered as unprofitable for as long as

the Negative advert is active. The advert is deactivated when the parking receives a Leave

Ads, in which a driver is leaving a parking lot and indicating that the parking lot is no

longer full.

2. Instantaneous Negative Feedback Mechanism: When a driver sends a Negative advert for

a parking lot, the advert will not only be considered by drivers that are going to look for

parking but also by drivers that on their way to their recommended lot. If a driver is on

his/her way to a lot that has received a Negative advert, the algorithm will let him/her know

immediately that the chosen lot is full and will redirect him/her to another parking lot. The

algorithm is designed such that the driver will only be redirected to a lot nearby to his/her

current location (i.e. within a certain radius of his/her present position).

 28

3.3 Variations of Bee Parking Algorithms

 Based on the principles outlined in the past two sections, eight variations of the Bee Parking

Algorithm were developed. They were developed by mixing and observing how the following

three different qualities affected parking search times:

1. The use of Parked Ads and Leave Ads

2. The inclusion of an explicit negative feedback mechanism

3. The algorithm used to scout for other parking lots in the case the HoneyPark algorithm is

unable to direct the driver to a parking in which the driver can find a vacant parking space.

 Table 3 is a summary table of all the HoneyPark variations presented in this paper.

Table 3 – Summary Table of HoneyPark Variations Grouped by Adverts and Negative
Feedback

	
Parked-Advert	
Algorithms	

Parked-Leave-Advert	
Algorithms	

No
	

Ne
ga
tiv

e	
Fe
ed

ba
ck
	 Parked-Advert,	Random-Scouting	

Algorithm	
Parked-Leave-Advert,	

Random-Scouting	Algorithm	

Parked-Advert,	
Greedy-Scouting	Algorithm	

Parked-Leave-Advert,	
Greedy-Scouting	Algorithm	

Re
gu
la
r	

Ne
ga
tiv

e	
Fe
ed

ba
ck
	

Parked-Advert,	
Random-Scouting	Algorithm	with	

Regular	Negative	Feedback	

Parked-Leave-Advert,	
Random-Scouting	Algorithm	with	

Regular	Negative	Feedback	

Parked-Advert,	
Greedy-Scouting	Algorithm	with	

Regular	Negative	Feedback	

Parked-Leave-Advert,	
Greedy-Scouting	Algorithm	with	

Regular	Negative	Feedback	

In
st
an

ta
ne

ou
s	

Ne
ga
tiv

e	
Fe
ed

ba
ck
	 Parked-Advert,	

Random-Scouting		
Algorithm	with	

Instantaneous	Negative	Feedback	
	

Parked-Leave-Advert,	
Random-Scouting		
Algorithm	with	

Instantaneous	Negative	Feedback	
	

 29

3.3.1 Parked-Advert Algorithms

3.3.1.1 Parked-Advert, Random-Scouting Algorithm (P-R)

 The drivers using this algorithm only consider Parked Ads when choosing a parking lot to

search. If it fails to find parking in the recommended parking lot and the algorithm still insists that

it should try the same lot, it will resort to the Random Algorithm to search for another lot. The

whole process is visualized in a flowchart as seen in Figure 2.

 30

Figure 2 – Flowchart of the Parked-Advert, Random-Scouting Algorithm

 31

3.3.1.2 Parked-Advert, Greedy-Scouting Algorithm (P-G)

 This algorithm functions similarly to the Parked-Advert, Random-Scouting Algorithm.

The only difference between the two algorithms is the scouting algorithm. This algorithm uses the

Greedy algorithm instead of the Random Algorithm if the Bee Parking Algorithm fails to direct it

to a successful parking lot. In other words, the driver will scout the parking lot closest to its location

rather than choose a random lot to visit. The algorithm process is visualized in Figure 3.

 32

Figure 3 – Flowchart of the Parked-Advert, Greedy-Scouting Algorithm

 33

3.3.1.3 Parked-Advert, Random-Scouting Algorithm with Regular Negative Feedback (P-R

(REG-NEG))

 This algorithm only looks at Parked Ads when determining the profitability of a parking

lot. When the parking algorithm is unable to direct the driver to a profitable lot, the Random

algorithm is used as the scouting algorithm.

 An extra feature of this algorithm is that it uses regular negative feedback. With this

algorithm, the driver not only sends out a Parked Ads when he or she find parking but also sends

out a Negative Ad when he/she discovers a parking lot that is full, telling other drivers that the lot

is unprofitable. Any lot with at one Negative Ad will be not be considered by the algorithm when

subsequent drivers initiate their search for parking. The Negative Ad remains in effect until a Leave

Ad is sent out by a car leaving the fully occupied lot, creating a vacancy and inferring that the lot

is no longer full. The integration of Negative Ads into the Bee’s algorithm can be seen in Figure

4.

 34

Figure 4 – Flowchart of the Parked-Advert, Random-Scouting Algorithm with Regular
Negative Feedback

 35

3.3.1.4 Parked-Advert, Greedy-Scouting Algorithm with Regular Negative Feedback (P-G

(REG-NEG))

 This algorithm is identical to the one described above in Section 3.3.5.1. The only

difference is that the Greedy Algorithm is used as a scouting algorithm instead of the Random

Algorithm. This modification is shown in Figure 5.

 36

Figure 5 – Flowchart of the Parked-Advert, Greedy-Scouting Algorithm with Regular
Negative Feedback

 37

3.3.1.5 Parked-Advert, Random-Scouting Algorithm with Instantaneous Negative Feedback (P-

R (INS-NEG))

 This algorithm is identical to the Parked-Advertising, Random-Scouting Algorithm with

Regular Negative Feedback. The only difference is that the driver is instantaneously redirected to

another parking lot if his/her target parking lot is found to be full (i.e. Negative Ad was initialized

for the target parking lot) while he/she is on the way to the target lot. The algorithm will then use

the Bee Parking algorithm redirect the driver to another parking lot. It will be nearby to the driver’s

current location as explained in Section 3.2.2.2, redirecting the driver to another lot results in a

longer parking time as time is wasted travelling to the parking lot. A flowchart for this algorithm

is shown in Figure 6.

 38

Figure 6 – Flowchart of the Parked-Advert, Random-Scouting Algorithm with
Instantaneous Negative Feedback

 39

3.3.2 Parked-Leave-Advert Algorithms

3.3.2.1 Parked-Leave-Advert, Random-Scouting Algorithm (PL-R)

The drivers using this algorithm considers both Parked Ads and Leave Ads when choosing

a parking lot to search. As the Parked Ads and Leave Ads are both indicators that a lot is profitable,

they are simply added together. Thus, the ‘Russian roulette’ system will not only consider Parked

Ads, but the sum of Parked Ads and Leave Ads in a lot. Its scouting algorithm is the Random

Algorithm. The whole process is visualized in a flowchart as seen in Figure 7.

 40

Figure 7 – Flowchart of the Parked-Leave-Advert, Random-Scouting Algorithm

 41

3.3.2.2 Parked-Leave-Advert, Greedy-Scouting Algorithm (PL-G)

 Figure 8 shows the flowchart of this algorithm, which is the same as the Parked-Leave-

Advert, Random-Scouting Algorithm with the exception that the scouting algorithm is the Greedy

Algorithm.

 42

Figure 8 – Flowchart of the Parked-Leave-Advert, Greedy-Scouting Algorithm

 43

3.3.2.3 Parked-Leave-Advertising, Random-Scouting Algorithm with Regular Negative

Feedback (PL-R (REG-NEG))

 This algorithm observes Parked, Leave and Negative Ads when calculating the profitability

of parking lots. It utilizes the Random Algorithm as the scouting algorithm. The algorithm process

is visualized in Figure 9.

 44

Figure 9 – Flowchart of the Parked-Leave-Advert, Random-Scouting Algorithm with
Regular Negative Feedback

 45

3.3.2.4 Parked-Leave-Advertising, Greedy-Scouting Algorithm with Regular Negative

Feedback (PL-G (REG-NEG))

 The algorithm is extremely identical to the Parked-Leave-Advertising, Random-Scouting

Algorithm with Explicit Negative Feedback with the exception that it uses the Greedy Algorithm

as its scouting method. This change is reflected in Figure 10.

 46

Figure 10 – Flowchart of the Parked-Leave-Advert, Random-Scouting Algorithm with
Regular Negative Feedback

 47

3.3.2.5 Parked-Leave-Advertising, Greedy-Scouting Algorithm with Instantaneous Negative

Feedback (PL-R (INS-NEG))

 With this algorithm, the driver is instantaneously informed and recommended a different,

nearby parking lot to search the moment the system is informed that his/her target parking lot is

full. Figure 11 shows a flowchart for this variation.

 48

Figure 11 – Flowchart of the Parked-Leave-Advert, Random-Scouting Algorithm with
Instantaneous Negative Feedback

 49

3.4 Algorithms Used to Evaluate the HoneyPark Algorithms

 It is necessary to benchmark the HoneyPark algorithm against existing parking algorithms

to evaluate whether the HoneyPark algorithm more efficient than current methods used to find

parking. The two algorithms that the HoneyPark algorithm is evaluated against will be the Ranodm

algorithm and the Greedy algorithm.

3.4.1 Random Algorithm

 The Random algorithm causes the car to pick a random lot and search for an available

parking lot there. The process is visualized in Figure 12.

Figure 12 – Flowchart of the Random Algorithm

 50

3.4.2 Greedy Algorithm

Drivers using the Greedy algorithm will attempt to search the parking lot closest to his or

her destination causes the car to pick a random lot and search for an available parking lot there. If

the lot he or she is searching is full, he or she will then proceed to search the next closest lot. The

flowchart for this algorithm in Figure 13.

Figure 13 – Flowchart of the Greedy Algorithm

 51

3.5 Summary of Bee Parking Algorithm Design

 This chapter covers the design and structure of the HoneyPark algorithm. Firstly, an

comparision between honeybee food foraging and the search for parking was created on a macro

and micro level. This analogy is important as it will serve as the foundation of the HoneyPark

algorithm. However, certain key aspects of honeybee behavior cannot be directly translated to a

parking application such as the advertising system and the scouting algorithms. Therefore, they

were modified to ensure that the Bee’s algorithm can be implemented in the context of the search

for parking.

All this information was then consolidated to create eight variations of the HoneyPark

algorithms, which will be tested and examined over the course of this thesis. First, algorithms with

no explicit negative feedback were created. Four variations could be created by changing the

scouting algorithm and whether the algorithm just looked at Parked Adverts or both Parked and

Leave Adverts. This is demonstrated in Figure 14.

 52

Figure 14 – Flowchart of HoneyPark Algorithms with No Explicit Negative Feedback
Mechanism

 53

Another four HoneyPark variations were created by implementing the regular negative

feedback mechanism, along with changing the scouting algorithm and which adverts the algorithm

considered. This is demonstrated in Figure 15.

 54

Figure 15 – Flowchart of HoneyPark Algorithms with Regular Negative Feedback
Mechanism

 55

The final two algorithms were created by implementing the instantaneous negative

feedback mechanism and changing whether the algorithm looked at Parked adverts or Parked and

Leave adverts, as shown in Figure 16.

 56

Figure 16 – Flowchart of HoneyPark Algorithms with Instantaneous Negative Feedback
Mechanism

 57

The chapter also introduced two existing algorithms, Random and Greedy, that will be used

to evaluate the HoneyPark algorithm against other parking algorithms.

 58

CHAPTER 4. EXPERIMENTAL STRUCTURE

 The HoneyPark algorithms were evaluated using computational modeling and simulation

techniques. This chapter will cover the setup of the parking simulation, how the parking system

operates within the simulation and the routine all drivers will follow once they are initialized. It

will also cover the techniques used to ensure that the results collected from the simulation are

accurate and correctly interpreted.

4.1 Simulation Environment and Setting

 It is important to ensure that the algorithms are tested and evaluated in a realistic

environment to ensure that the simulation will give an accurate measurement of algorithm

performance under real time road infrastructure. As such, the simulation was carried out using the

map and parking layout of an existing city, namely San Francisco, California. This city was chosen

due to its variety of road structures and has a mix of grid and non-grid road layouts as seen in

Figure 17. In addition, there is relatively more parking data available for the city which can be

downloaded online. The road map of San Francisco was provided by OpenStreetMaps while the

location of the parking lots was acquired using both OpenStreetMaps and Overpass API. It should

be noted that there may be more parking lots than those implemented in the simulation due to the

limited quantity of parking data. A total of 221 parking lots was placed on the simulation map,

which are marked with red circles in Figure 17.

 59

Figure 17 – Layout of Simulation Environment Marked with Parking Lots used in
Simulation

 The drivers in the simulation could travel to, and consequently finding parking, at 60

destinations within the city which are randomly picked by the author. Each destination is

represented by the red dots in Figure 18.

 60

Figure 18 – Destinations Used in Simulation

Note that the author has also picked the destinations in such a way they are clustered in three

geographical groups called ‘Mesh Destinations’, which are marked by black circular boundaries.

In each group, the destinations are close enough in proximity in such a way the drivers may have

different destinations but will still search the same parking lots. These Mesh Destinations were

created to see if drivers targeting slightly different destinations but searching the same set of

parking lots will have any impact on algorithmic performance.

4.2 Parking System

 The simulation is executed by incrementing timesteps of one second. At each timestep, the

simulation will update the status of the following components:

• Drivers: Every timestep, the simulation will loop through all the drivers and update their

status. Drivers in transit to their destination or parking lots are moved forward towards

 61

their target location by one second. For drivers that are determining which lot to search, it

is assumed that the parking algorithms take one second to determine the most suitable lot

to explore.

• Lots: As drivers park at and leave parking lots, the simulation will keep track of how many

lots have been occupied or freed at each timestep as it loops through and updates the

statuses of all the drivers. After it has done so at the end of each timestep, it will update the

actual lot data using the data collected so that it seems that the parking spaces were

concurrently occupied/freed.

• Advert System: The advert system will only be updated at each timestep to simulate the

fact the drivers are searching for parking simultaneously. As such, the drivers will first

send their adverts to a temporary array, which will be used to update the advert system at

the next timestep.

The parking system is also designed to handle special situations that may occur. One

example is that a situation may occur in which there may be more drivers that arrive and search at

a parking lot in a timestep than there are available parking lots at the time. In this case, each

available parking lot will be assigned randomly to one of the bees searching. The remaining bees

will finish searching the lot before it uses the parking algorithm to find another potential lot to

search if they are still unsuccessful.

4.3 Parking Methodology

 In the simulation, all the drivers follow the same routine. First, a driver is initialized at

random places within or just outside San Francisco city and will start travelling to its desired

destination at a time provided by a random number generator. Once it is within 0.05km of their

 62

destination, it will start looking for a parking lot to explore. It will only consider parking at lots

that is within a specified distance of its destination as it doesn’t want to park its car at a location

that is unreasonably far away from its destination. In this simulation, this distance is set to 0.4 km.

It will use one of the parking algorithms to determine which lot to explore. When it arrives at a

parking lot, it will take some time to look for a parking space. In this simulation, it is assumed that

the driver will take one second to observe a parking space and determine if it is occupied or empty

and will look through all the occupied parking spots before finding an empty space. As such, the

amount of time it takes for a driver to find a parking space in a lot or determine that a parking lot

is full can be calculated using Equation 3.

 ("%+4$; = *-.-+/ − *%<=-> (3)

 where tsearch = amount of time driver spends searching one parking lot

 Ntotal = total number of parking spaces in the parking lot

 Nempty = number of empty parking spaces in the parking lot

 For example, a driver explores a parking lot has 60 spaces in total, 20 of which are empty.

It will take him/her 40 seconds (60 seconds – 20 seconds) to find a parking space. Likewise, if the

parking lot is completely occupied, it will take the driver 60 seconds (60 seconds – 0 seconds) to

determine that the entire lot is full and it will consult the parking algorithms again to suggest

another parking lot to search. This system mimics the fact that it will take a driver a longer time to

take a vacant parking space in a more occupied parking lot than an emptier one.

 63

 Once the driver has found a parking spot, the simulation calculates the time it took for the

driver to find parking, which is calculated using Equation 4.

 (=+4? = 3,%"- − 3=+4?%, (4)

 where tsearch = amount of time driver spent to find an empty parking space

 Tdest = the time at which the driver arrived within 0.05km of destination

 Tparked = the time at which the driver found an empty parking space

 The driver’s car will stay there and the parking space will be considered to be occupied for

a period of time, which will be referred to as the ‘errand time’ in this paper. Unless specified, each

driver will have a randomized errand time ranging from five minutes to three hours in most

simulations. After the errand time has elapsed, the driver will leave the parking lot and the parking

space will be marked as unoccupied.

4.4 Evaluating and Ensuring Accuracy of Results

 A couple of mechanisms were implemented to ensure that the results collected was accurate

and correctly interpreted. The first measure was to set up an automated system that is able to run

the simulation several times for a particular scenario. This is because the parking environment is

volatile and each simulation run produces different results. As such, the number of simulations

performed was manually increased until a consistent result was obtained.

 Another measure taken to ensure that the results produced were accurate was to give each

driver the same starting position, starting time and errand time for a single scenario. This is to

 64

ensure that the algorithms were tested fairly. That way, one would not mistakenly think that one

algorithm was more efficient than another algorithm when in reality, the more ‘efficient’ algorithm

was tested using more favorable simulation settings. Thus, it is best to test the algorithms using

the same parameters in a single scenario. However, we must also make sure that the algorithms

are able to perform in a variety of simulation settings. Therefore, the driver’s starting position,

starting time and errand times are changed when one of the simulation variables are changed (i.e.

change in the number of drivers, change in parking congestion). As such, one is able to ensure that

the algorithms are tested fairly and at the same time, measure their performance in a variety of

situations.

It is also important to ensure that our data is not only consistent, but also correctly

interpreted. As the parking environment is constantly changing, parking times can vary greatly and

it can be difficult to tell if the results produced by one algorithm is significantly different from

another. A solution to this problem is to use the Wilcoxon Rank-Sum Test, which compares the

median between two populations, or in this case the results produced by two different parking

algorithms. The null hypothesis is that the two populations are equal. This holds true if the p-value

is larger than the 0.05 significance level. If this hypothesis is rejected, that is if the p-value is less

than 0.05, the two populations are significantly different from each other (Yau). In addition to the

p-value, a test statistic W is also produced by the Wilcoxon Rank-Sum Test. It is derived by first

calculating and ranking the difference between individual values in the two populations. Then the

rankings of the positive and negative differences are summed separately and substituted into

Equation 5 and Equation 6.

 65

 @A = BABC +
BA BA + 1

2 − EA
(5)

 @C = BABC +
BC BC + 1

2 − EC
(6)

 where n1 = number of samples in the first population

 n2 = number of samples in the second population

 R1 = the sum of the ranks of the first population (that is, the ranks of the differences

.. . in which individual value of the first population exceeds that of the second

. population

 R2 = the sum of the ranks of the second population (that is, the ranks of the .

. differences in which individual value of the second population exceeds that of

. the first population

 The final test statistic W is the lowest value between W1 and W2. It is meant to reflect the

extent that the populations are similar or different from each other (LaMorte, 2017).

The Wilcoxon Rank-Sum Test was chosen to evaluate the simulation results for two main

reasons. The first reason is that it is a non-parametric test (LaMorte, 2017). One cannot assume

that the parking times produced by the HoneyPark algorithms fits any distribution. Therefore, it is

 66

best to use a distribution-free test to evaluate the simulation results. The second reason is that the

test is designed to compare two distinct, unrelated populations (Yau). As the performance of one

algorithm does not necessarily affect that of another algorithm, one can say that the results

produced by the two algorithms are independent of each other.

4.5 Summary of Experimental Structure

 The importance of this chapter is to describe the environment in which the algorithms were

tested and evaluated. This included the physical arrangement and setting of the simulation. It also

comprised of the ‘software’ of the simulation, namely how the drivers were managed and

proceeded through the simulation from the moment he or she enters to the time he or she exits the

simulation. This chapter also covers how the efficiency of the parking algorithms will be measured,

which will be done through the use of ‘parking times’, which is the time it takes for the driver to

find a parking space.

 67

CHAPTER 5. EXPERIMENTAL RESULTS

 In this chapter, the performance of the HoneyPark algorithms was measured and evaluated

using computer simulation. The results will be discussed and used to evaluate the effectiveness of

the algorithms in a range of situations. The application of the algorithm in varying levels of parking

demand, diverse lengths of errand times, parking congestion, variable amounts of road traffic and

environments with a mix of Honey and Non-Honey cars as well as a combination of V2V and

Non-V2V vehicles will be examined and used to determine the factors and environs in which the

algorithms thrive or disappoint.

5.1 Algorithmic Performance in Varying Levels of Parking Demand

 This section will examine how algorithmic performance varies with parking demand

relative to parking supply. In practical terms, we want to see how the HoneyPark algorithms fare

in crowded areas where parking demand is much higher than the parking spaces available or in

spare areas where parking supply often exceeds parking demand. The relative amount of parking

demand in controlled by varying the ‘lot-to-bee ratio’, which is defined as the ratio of the number

of bees looking for parking in a simulation run to the number of parking spaces available that is

located within a certain distance of the bee’s location. The lot-to-bee ratios examined in this thesis

is 0.50, 0.75, 1.00, 2.00 and 4.00.

5.1.1 One Destination

 This section will address the scenario in which all the drivers wish to travel to one

destination. The destination, shown as a solid red dot, used in this section is displayed in Figure

19 along with its surrounding parking lots which are marked are red circles.

 68

Figure 19 – Destination and Parking Lot Used in One Destination Scenario

All the results collected in this scenario is displayed in Figure 20. The average parking

times are displayed by algorithm and lot-to-bee ratio. This section will break the data down further

and expound upon it.

 69

Figure 20 – Average Parking Times Based on the Algorithm Used and Lot-to-Bee Ratio

5.1.1.1 Parking Supply is Equivalent to Parking Demand

 Figure 21 shows the average time it took a driver to find parking when using each of the

algorithms. Table 4 expresses the average parking times in numerical form along with how many

simulations were executed for each algorithm in this scenario. We will first discuss the case in the

which the parking supply equals to parking demand. In other words, the lot-to-bee ratio is 1.00 and

there are roughly as many parking space available as there are drivers who wish to park.

Random
Greedy

P-R
P-R (REG-NEG)

P-G
P-G (REG-NEG)

PL-R

Algorithm

PL-R (REG-NEG)
PL-G

PL-G (REG-NEG)
P-R (INS-NEG)0

PL-R (INS-NEG)

500

0.5
0.75

Bee-to-Lot Ratio

1000

1.00

1500

2.00

Av
er

ag
e

Pa
rk

in
g

Ti
m

e
(s

ec
)

4.00

2000

2500

3000

3500

 70

Figure 21 – Average Parking Times Produced by Each Algorithm in One Destination
Scenario when Lot-to-Bee Ratio = 1

Table 4 – Average Parking Times and Variances produced in One Destination Scenario
(Lot-to-Bee Ratio = 1)

Algorithm

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 70 148.872 17.997 1.000
Greedy 70 529.165 0.000 3.554

P-R 70 133.755 10.123 0.898
P-R (REG-NEG) 70 135.679 9.490 0.911

P-G 70 133.721 8.766 0.898
P-G (REG-NEG) 70 133.577 9.255 0.897
P-R (INS-NEG) 70 108.413 6.734 0.728

PL-R 70 105.181 5.764 0.707
PL-R (REG-NEG) 70 104.938 4.173 0.705

PL-G 70 104.663 5.369 0.703
PL-G (REG-NEG) 70 105.290 5.527 0.707
PL-R (INS-NEG) 70 102.901 5.198 0.691

0.000

100.000

200.000

300.000

400.000

500.000

600.000
Av

er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

 71

 Table 3 shows that the standard deviation is relatively small compared to the average

parking times. This means that the deviation in average parking times is small. This is due to the

fact that a sufficient number of simulations were performed. The number of simulations executed

was increased until a consistent average parking time was produced for all algorithms. As Table 3

shows, 70 simulations were needed to ensure that the average parking time was consistent and its

variance was reasonably low. It is also important to note that the standard deviation for Greedy

algorithm is consistently zero. This is because drivers using the Greedy algorithm follow the same

route in which they start their search at the nearest parking lot. If they are unsuccessful, they will

progress to the next nearest parking lot and so forth. As the position of the lots does not change,

all the drivers follow the same route. Given that the drivers have the same starting times, positions

and errand times for a single case as mentioned in Section 4.4, it is easy to see why Greedy will

produce the same parking times in every simulation. The Random and HoneyPark algorithms, on

the other hand, do not send drivers to the exact same lots in each simulation run. The Random

algorithm sends drivers to random lots while the HoneyPark algorithm sends drivers to parking

lots that considered profitable at the time, which can be extremely variable. Therefore, the results

are different for each simulation run and the standard deviation is greater than zero.

 As one can see, all variations of the HoneyPark algorithms performed better than either the

Random or Greedy algorithm. The ratios in Table 4 indicate that the HoneyPark algorithms

consistently produces lower parking times than either Random or Greedy. The Wilcoxon Rank-

Sum Test confirms that the difference between the Random/Greedy and the HoneyPark algorithms

are statistically significant. As one can see in Table 5, when all the HoneyPark variations were

compared with the Random algorithm, the Wilcoxon Rank-Sum Test produced p-values that are

less than 0.05, indicating that the average parking times produced by the HoneyPark algorithms

 72

statistically significantly lower than the Random algorithm. Likewise, the Wilcoxon Rank-Sum

Test proves that the HoneyPark algorithm performs significantly better than the Greedy algorithm

the W-value is calculated to be 0 and the p-value < 2.2 × 10-16 for all HoneyPark algorithms when

they are compared with the Greedy algorithm.

Table 5 – Results of Wilcoxon Rank-Sum Test to Compare the Performance of HoneyPark
Algorithms against the Random Algorithm (Lot-to-Bee Ratio = 1)

Algorithm W p-value
P-R - Random 1115 2.67E-08

P-R (REG-NEG) - Random 1289 1.32E-06
P-G - Random 1110 2.37E-08

P-G (REG-NEG) - Random 1148.5 5.89E-08
P-R (INS-NEG) - Random 18 < 2.2E-16

PL-R - Random 4 < 2.2E-16
PL-R (REG-NEG) - Random 0 < 2.2E-16

PL-G - Random 1 < 2.2E-16
PL-G (REG-NEG) - Random 2 < 2.2E-16
PL-R (INS-NEG) - Random 1 < 2.2E-16

The reason for this is trivial. Drivers using the HoneyPark algorithms have an indication

of which parking lots are profitable before picking a lot to search, increasing their chances of

finding a vacant parking spot on their first attempt. Drivers using the Random and Greedy

algorithms do not factor any indication which lots are profitable, making it less likely that they

will find a parking spot at the chosen search lot and consequently prolonging their parking search

time. This is disadvantageous especially in the case of the Greedy algorithm. Figure 21 shows that

the Greedy algorithm performs markedly worse than either the Random or HoneyPark algorithms.

This is because it always sends the drivers to the nearest parking lot regardless of its profitability,

overloading the lot. However, even though the nearest lot is overfilled and extremely unprofitable,

 73

the Greedy algorithm still insists on sending drivers there. This results in drivers exploring all the

nearest lots first (which are also packed with other drivers using the Greedy algorithm) before

considering searching lots further away, leading to abnormally long parking times.

 Figure 21 also shows that HoneyPark algorithms that used both Parked and Leave adverts

to determine which parking lots they should search performed much better than algorithms that

only utilized Parked adverts. This is because the use of Leave adverts opens up the definition of a

profitable lot – it not only encompasses lots where drivers have success in finding parking but also

lots in which drivers are leaving and repopulating vacant parking spots. Consequently, the drivers

are given more potential parking lots to consider which increases the chances of finding a parking

spot and shortens parking times.

Table 6 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
Random-Scouting and Greedy-Scouting Algorithms (Lot-to-Bee Ratio = 1)

Algorithm W p-value
P-R - P-G 2340 0.6481

P-R (REG-NEG) - P-G (REG-NEG) 2688.5 0.3213
PL-R - PL-G 2436.5 0.9568

PL-R (REG-NEG) - PL-G (REG-NEG) 2336.5 0.6377

 The results of the Wilcoxon Signed-Ranked test displayed in Table 6 shows that there is

generally little difference in the performance of HoneyPark algorithms that utilized the Random

algorithm as their scouting algorithm against their counterparts that used the Greedy algorithm.

The simulation shows that only a couple of drivers utilized the scouting algorithm in the duration

of one simulation run and nearly, if not all, the bees successfully found a parking spot without

using the scouting algorithms. As the drivers did not need to resort to using a scouting algorithm,

 74

there should be no difference between HoneyPark algorithms that utilized the Random scouting

algorithm and their Greedy scouting counterparts as they follow the same heuristic with the

exception of the type of scouting method, which they did not need to use at this lot-to-bee ratio.

Table 7 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
HoneyPark Algorithms that Use no Negative Feedback, Regular Negative Feedback and

Instantaneous Negative Feedback (Lot-to-Bee Ratio = 1)

Algorithm W p-value
P-R - P-R (REG-NEG) 2173 0.2492
P-G - P-G (REG-NEG) 2421 0.9055

PL-R - PL-R (REG-NEG) 2576.5 0.5995
PL-G - PL-G (REG-NEG) 2288 0.5009

P-R - P-R (INS-NEG) 4841 < 2.2E-16
P-R (REG-NEG) - P-R (INS-NEG) 4871 < 2.2E-16

PL-R - PL-R (INS-NEG) 3034 0.01502
PL-R (REG-NEG) - PL-R (INS-NEG) 3037 0.01451

 Results were also compared between algorithms that utilized negative feedback and their

counterparts than did not. Table 7 indicates that the difference in performance between algorithms

that did not use negative feedback and those that used regular negative feedback is quite negligible.

This is because simulation data shows that regular negative feedback is quite redundant. As

mentioned in Chapter 3, the number of Parked/Leave adverts for a lot resets to a low number when

it is full. For non-negative feedback adverts, the chances of sending a driver to that lot is already

low due to its low number of advertisements. All the regular negative feedback mechanism does

is put an additional barrier to the lot by sending out a Negative advert prevent any drivers from

exploring it. The simulation results show that this extra block is redundant as the drivers are already

avoiding the parking lot due to the fact it is lowly advertised. As such, it makes sense why the

 75

average parking times produced by algorithms that use a regular negative feedback algorithm and

those who use no negative feedback algorithm are similar.

However, Table 7 shows that algorithms that used instantaneous negative feedback

performed significantly better than algorithms that either did not used negative feedback or used

regular negative feedback. It is intuitive to see why instantaneous negative feedback would result

in better performance than no negative feedback at all. Instantaneous negative feedback

immediately lets a driver know when his or her target search lot becomes full and redirects him or

her to another potentially profitable lot. This saves the driver time as he or she does not need to

waste time travelling and searching a parking lot that is already full, consequently reducing his or

her parking time.

In addition, it is important to note that the instantaneous negative feedback redirects the

driver to another lot that is close to the driver’s current location. Past simulations have shown that

algorithms that use instantaneous negative feedback but do not redirect the drivers to nearby

parking may even result in worse performance than algorithms that utilized regular negative

feedback. This is because when the driver is informed that his or her target search lot is no longer

profitable, he or she has already spent time travelling to it. Simulation data shows that the driver

will actually take longer to find parking if the alternative lot is too far away as it takes a longer

time for the car to reroute than if it went to its target lot and waited for a parking space to become

available. Therefore, a reduction in parking time is only seen with the instantaneous negative

feedback mechanism on the condition that the alterative lot is not too far away from the car’s

current position.

 76

5.1.1.2 Parking Supply is less than Parking Demand

 Figure 22 and Figure 23 show the parking average times produced by each algorithm when

the lot-to-bee ratio is 0.75 and 0.5 respectively. Table 8 and Table 9 gives this information in

numeric form along with the number of simulations executed for each algorithm.

Figure 22 – Average Parking Times Produced by Each Algorithm in One Destination
Scenario when Lot-to-Bee Ratio = 0.75

Figure 23 – Average Parking Times Produced by Each Algorithm in One Destination
Scenario when Lot-to-Bee Ratio = 0.5

0
200
400
600
800

1000
1200
1400

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

0.000
500.000

1000.000
1500.000
2000.000
2500.000
3000.000
3500.000

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

 77

Table 8 – Average Parking Times and Variances produced in One Destination Scenario
(Lot-to-Bee Ratio = 0.75)

Algorithm

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 70 626.256 30.430 1.000
Greedy 70 1253.382 0.000 2.001

P-R 70 626.604 25.355 1.001
P-R (REG-NEG) 70 628.178 25.565 1.003

P-G 70 628.380 23.320 1.003
P-G (REG-NEG) 70 628.685 21.886 1.004
P-R (INS-NEG) 70 616.020 24.209 0.984

PL-R 70 603.593 24.978 0.964
PL-R (REG-NEG) 70 608.310 25.800 0.971

PL-G 70 607.530 22.572 0.970
PL-G (REG-NEG) 70 603.961 25.718 0.964
PL-R (INS-NEG) 70 609.673 25.678 0.974

Table 9 – Average Parking Times and Variances produced in One Destination Scenario
(Lot-to-Bee Ratio = 0.5)

Algorithm

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 70 2317.987 69.611 1.000
Greedy 70 3153.414 0.000 1.360

P-R 70 2330.839 68.854 1.006
P-R (REG-NEG) 70 2331.481 72.624 1.006

P-G 70 2334.978 67.703 1.007
P-G (REG-NEG) 70 2336.742 72.673 1.008
P-R (INS-NEG) 70 2355.719 73.961 1.016

PL-R 70 2325.484 62.123 1.003
PL-R (REG-NEG) 70 2314.032 62.032 0.998

PL-G 70 2332.812 58.732 1.006
PL-G (REG-NEG) 70 2330.883 59.136 1.006
PL-R (INS-NEG) 70 2345.941 62.216 1.012

 78

 The HoneyPark algorithms still perform significantly better than the Greedy algorithm. All

the HoneyPark-Greedy pairs for both lot-to-bee ratios of 0.75 and 0.5 produce a W value of zero

and a p-value of < 2.2E-16, indicating that the overlap in the average parking times produced by

the Greedy and HoneyPark algorithms is small. However, the efficiency of the Random algorithm

is comparable to the Parked-Advert HoneyPark algorithms at a lot-to-bee ratio of 0.75. This is

shown in Table 8 where the ratios between the parking times of Parked-Advert algorithms to

Random algorithm is close to the value of one. This fact is further supported by the data in Table

10, where the p-values produced by Random-Parked-Advert HoneyPark pairs exceed 0.05 and

thus, indicating that there is no significant difference in performance between the two algorithms.

As the lot-to-bee ratio decreases even further to 0.5, the efficiency of the Random algorithm and

all of the HoneyPark algorithms are no longer significantly different. As one can see in Table 9,

the ratios are close to one, indicating that the HoneyPark and Random algorithm produce similar

parking times. This is further supported by Table 11, which shows that there is no significant

dissimilarity in any of the HoneyPark-Random pairs.

Table 10 – Results of Wilcoxon Rank-Sum Test to Compare the Performance of
HoneyPark Algorithms against the Random Algorithm (Lot-to-Bee Ratio = 0.75)

Algorithm W p-value
P-R - Random 2501.5 0.8317

P-R (REG-NEG) - Random 2586 0.5723
P-G - Random 2583 0.5808

P-G (REG-NEG) - Random 2640 0.4297
P-R (INS-NEG) - Random 1934 0.03168

PL-R - Random 1337 3.55E-06
PL-R (REG-NEG) - Random 1570 2.47E-04

PL-G - Random 1532 0.0001314
PL-G (REG-NEG) - Random 1392 1.05E-05
PL-R (INS-NEG) - Random 1648 0.0008396

 79

Table 11 – Results of Wilcoxon Rank-Sum Test to Compare the Performance of
HoneyPark Algorithms against the Random Algorithm (Lot-to-Bee Ratio = 0.5)

Algorithm W p-value
P-R - Random 2731 0.2424

P-R (REG-NEG) - Random 2684 0.3305
P-G - Random 2850 0.09592

P-G (REG-NEG) - Random 2815 0.1287
P-R (INS-NEG) - Random 3176 0.002498

PL-R - Random 2601 0.5305
PL-R (REG-NEG) - Random 2384 0.7849

PL-G - Random 2776 0.1749
PL-G (REG-NEG) - Random 2725 0.2526
PL-R (INS-NEG) - Random 3033 0.0152

 In short, the data shows that generally, the efficiency of the Random and HoneyPark

algorithm become more comparable as the lot-to-bee ratio decreases. As such, one can conclude

that the performance of the parking algorithms is to an extent limited by the ability of existing

parking infrastructure to handle parking demand. The simulation shows that average parking times

become similar among the Random and HoneyPark algorithms as there are not enough parking

spaces to accommodate the number of drivers looking for parking. Therefore, a driver will

experience long parking times regardless of how efficiently a parking algorithm may direct him or

her to a profitable lot.

 As the lot-to-bee decreases to 0.5, Figure 23 and Table 11 show that the instantaneous

negative feedback algorithm’s performance is significantly worse than that of the Random

algorithm. Due to the large demand for parking spaces, the number of parking spaces are quickly

filled and the lots are occupied for a longer period of time. Simulation data shows that drivers

using instantaneous negative feedback tend to experience either very short parking times as they

 80

are able to find a parking space after considering a small number of lots or extremely long times

being stuck in limbo as the algorithm is constantly trying to redirect the driver as all the parking

lots are marked as full for longer periods of time. As a result, the driver spends more time deciding

which parking lot to go to than going to a parking lot and finding a parking space. Therefore, using

instantaneous negative feedback in an extremely crowded parking environment where the lots are

marked as unprofitable for an exceptionally long amount of time results in ineffectiveness.

Table 12 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
HoneyPark Algorithms that Use No Negative Feedback, Regular Negative Feedback and

Instantaneous Negative Feedback (Lot-to-Bee Ratio = 0.75)

Algorithm W p-value
P-R - P-R (REG-NEG) 2338 0.6422
P-G - P-G (REG-NEG) 2370 0.7404

PL-R - PL-R (REG-NEG) 2110.5 0.1577
PL-G - PL-G (REG-NEG) 2677.5 0.3441

P-R - P-R (INS-NEG) 3039 0.01418
P-R (REG-NEG) - P-R (INS-NEG) 3158 0.003193

PL-R - PL-R (INS-NEG) 2115 0.1633
PL-R (REG-NEG) - PL-R (INS-NEG) 2384 0.7849

Table 13 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
HoneyPark Algorithms that Use No Negative Feedback, Regular Negative Feedback and

Instantaneous Negative Feedback (Lot-to-Bee Ratio = 0.5)

Algorithm W p-value
P-R - P-R (REG-NEG) 2445 0.985
P-G - P-G (REG-NEG) 2440.5 0.9701

PL-R - PL-R (REG-NEG) 2669 0.3625
PL-G - PL-G (REG-NEG) 2483.5 0.8906

P-R - P-R (INS-NEG) 1978 0.04941
P-R (REG-NEG) - P-R (INS-NEG) 1992 0.05656

PL-R - PL-R (INS-NEG) 1996 0.05876
PL-R (REG-NEG) - PL-R (INS-NEG) 1768 0.004509

 81

 Now, let’s investigate the performance of the regular negative feedback mechanism. Table

12 and Table 13 infers that there is no difference in performance between HoneyPark algorithms

that use regular negative feedback and those who use no negative feedback at all. This is probably

because the low lot-to-bee ratio results in full parking lots for the majority of the time. In this case,

drivers that do not use negative feedback will search a potentially full lot. Driver that use negative

feedback will likely see that a Negative advert has been initiated for all the parking lots and default

to a scouting algorithm, which we have established in the previous paragraph is used more as a

stalling technique to wait for parking spaces to open up rather than to find a profitable parking lot.

Therefore, the speed at which a driver is able to find parking is dependent on the rate at which the

parking lots open up rather than the ability of drivers to avoid unprofitable lots by means of

negative feedback as all the lots are full.

Table 14 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
Random-Scouting and Greedy-Scouting Algorithms (Lot-to-Bee Ratio = 0.75)

Algorithm W p-value
P-R - P-G 2366 0.7278

P-R (REG-NEG) - P-G (REG-NEG) 2408 0.8627
PL-R - PL-G 2191 0.2813

PL-R (REG-NEG) - PL-G (REG-NEG) 2727 0.2492

Table 15 – Results of Wilcoxon Rank-Sum Test to Compare the Performance between
Random-Scouting and Greedy-Scouting Algorithms (Lot-to-Bee Ratio = 0.5)

Algorithm W p-value
P-R - P-G 2366 0.7278

P-R (REG-NEG) - P-G (REG-NEG) 2345 0.6632
PL-R - PL-G 2277 0.4722

PL-R (REG-NEG) - PL-G (REG-NEG) 2060.5 0.105

 82

It is important to note that there is still no difference between the performance of algorithms

that use a Random scouting algorithm and a Greedy scouting algorithm even though simulation

data shows that drivers scouted more often due to the lack of vacant parking spots. The explanation

could be found in the fact that scouting algorithm were not necessarily used to locate a profitable

parking lot. This is supported by the data displayed in Table 14 and Table 15, whose p-values

indicate there is no significant difference in performance between algorithm that use different

scouting algorithms. On average, only 1.62% of drivers in a single simulation found a parking

space while scouting when the lot-to-bee ratio is 0.75 and 0.9% when the lot-to-bee ratio is 0.5.

This is obvious when one tracks an individual driver in the simulation. It is found that drivers

resorted to scouting as a way of waiting for an advert to indicate that a parking space has opened

up rather as an efficient means to look for parking. This makes sense as one of the features of the

HoneyPark algorithm is that it defaults to the scouting algorithm when there were no adverts

registered in the system or the Negative adverts indicate that all the lots are full. The algorithm

stops using the scouting algorithm once a Parked or Leave advert comes in and indicates there is

a parking space has opened up in the area of interest.

5.1.1.3 Parking Supply is more than Parking Demand

 Figure 24 and Figure 25 show the parking average times produced by each algorithm when

the lot-to-bee ratio is 2.0 and 4.0 respectively. Table 16 and Table 17 shows the same data in

numeric form along with the number of simulation runs executed for each algorithm.

 83

Figure 24 – Average Parking Times Produced by Each Algorithm in One Destination
Scenario when Lot-to-Bee Ratio = 2

Figure 25 – Average Parking Times Produced by Each Algorithm in One Destination
Scenario when Lot-to-Bee Ratio = 4

0

50

100

150

200

250

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

0

20

40

60

80

100

120

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

 84

Table 16 – Average Parking Times and Variances produced in One Destination Scenario
(Lot-to-Bee Ratio = 2)

Algorithm

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 70 75.873 5.684 1.000
Greedy 70 217.269 0.000 2.864

P-R 70 70.976 5.381 0.935
P-R (REG-NEG) 70 71.044 4.824 0.936

P-G 70 70.098 5.346 0.924
P-G (REG-NEG) 70 71.724 6.231 0.945
P-R (INS-NEG) 70 69.054 4.894 0.910

PL-R 70 68.047 4.585 0.897
PL-R (REG-NEG) 70 68.424 4.034 0.902

PL-G 70 68.350 3.890 0.901
PL-G (REG-NEG) 70 68.840 4.357 0.907
PL-R (INS-NEG) 70 69.539 4.644 0.917

Table 17 – Average Parking Times and Variances produced in One Destination Scenario
(Lot-to-Bee Ratio = 4)

Algorithm

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 70 69.277 4.648 1.000
Greedy 70 107.242 0.000 1.548

P-R 70 64.930 5.035 0.937
P-R (REG-NEG) 70 65.446 5.613 0.945

P-G 70 65.709 4.263 0.948
P-G (REG-NEG) 70 65.415 4.310 0.944
P-R (INS-NEG) 70 65.203 4.638 0.941

PL-R 70 63.829 4.404 0.921
PL-R (REG-NEG) 70 65.084 4.284 0.939

PL-G 70 65.709 4.699 0.948
PL-G (REG-NEG) 70 63.992 4.557 0.924
PL-R (INS-NEG) 70 64.661 4.237 0.933

 The important thing to note is that the Greedy algorithm significantly improves as the lot-

to-bee ratio increases. Looking at Table 16 and Table 17, the ratio of the average parking time

 85

produced by the Greedy algorithm to that of the Random algorithm drops drastically from 2.864

to 1.548. This is due to an excess of lots and low number of competing drivers. One is mostly

guaranteed to find a parking space regardless of the parking lot visited. The only factor dictating

the length of the parking time is the distance and amount of time it takes for the bee to travel to

the parking lot. Consequently, it is faster for the driver to park at the closest lot. Additional

simulations show that the performance of the Greedy algorithm begins to overtake that of the

HoneyPark algorithm at a lot-to-bee ratio between four and six. However, it seems that the parking

supply has to exceptionally exceed parking demand for the Greedy algorithm to be effective.

Table 18 shows that the HoneyPark algorithms still perform significantly better than the

Random algorithm at lot-to-bee ratios of two and four. However, the difference in performance

between the Random and HoneyPark algorithms is smaller as the demand for parking is extremely

low to the extent that one can find a parking space regardless of which lot one chooses to search.

Therefore, the average parking times produced by the Random algorithm is further reduced.

Table 18 – Results of Wilcoxon Rank-Sum Test to Compare the Performance of
HoneyPark Algorithms against the Random Algorithm (Lot-to-Bee Ratio = 2)

Algorithm W p-value
P-R - Random 1319.5 2.49E-06

P-R (REG-NEG) - Random 1276.5 1.02E-06
P-G - Random 1099.5 1.84E-08

P-G (REG-NEG) - Random 1433.5 2.29E-05
P-R (INS-NEG) - Random 846.5 2.38E-11

PL-R - Random 707 3.81E-13
PL-R (REG-NEG) - Random 721.5 5.95E-13

PL-G - Random 949.5 4.07E-10
PL-G (REG-NEG) - Random 821.5 1.16E-11
PL-R (INS-NEG) - Random 949.5 4.07E-10

 86

Table 19 – Results of Wilcoxon Rank-Sum Test to Compare the Performance of
HoneyPark Algorithms against the Random Algorithm (Lot-to-Bee Ratio = 4)

Algorithm W p-value
P-R - Random 1271.5 9.13E-07

P-R (REG-NEG) - Random 1445.5 2.86E-05
P-G - Random 1420 1.78E-05

P-G (REG-NEG) - Random 1383 8.80E-06
P-R (INS-NEG) - Random 1361 5.72E-06

PL-R - Random 989 1.15E-09
PL-R (REG-NEG) - Random 1277 1.03E-06

PL-G - Random 1133 4.10E-08
PL-G (REG-NEG) - Random 992 1.25E-09
PL-R (INS-NEG) - Random 1165 8.63E-08

It is also important to note that as the lot-to-bee ratio increases, the difference in

performance between HoneyPark algorithms that use Parked adverts and their counterparts that

use both Parked and Leave adverts becomes less distinct. In fact, Table 19 shows that at a lot-to-

bee ratio of four, there is no significant difference in average parking times between algorithms

that use only Parked adverts and those who use both Parked and Leave adverts. This is because

the demand is relatively so low compared to supply and a driver can find parking at any parking

lot.

5.1.2 One Mesh Destination

 Mesh Destination 1 from Figure 18 was used to evaluate algorithmic performance in one

mesh destination. The mesh destination is pictured again below in Figure 26, along with its

accompanying parking lots. The destinations are marked with solid red dots while the parking lots

are marked with red circles.

 87

Figure 26 – Destination and Parking Lots Used in One Mesh Destination Scenario

 In a mesh destination, the bees are assigned to a random destination within a particular

area. As such, it is difficult to conduct an analysis based on the relative amount of supply and

demand as more drivers may be directed to one destination than another. As such, the demand for

certain parking lots will be higher than others and it is hard to say that the lot-to-bee ratio is equal

throughout the simulation environment. Therefore, instead of adjusting the lot-to-bee ratio as in

the One Destination scenario, the absolute number of drivers will be varied instead.

 Figure 27, Figure 28, Figure 29 and Figure 30 show how the performance of the HoneyPark

algorithms vary as the number of drivers in the simulation is increased. Table 20, Table 21, Table

22 and Table 23 shows the same data in numeric data along with the number of simulation executed

for each algorithm. Note that the number of simulations performed for each algorithm is greater

than that of the One Destination scenario. This is because there are more destinations that drivers

 88

can go to, which creates more variation in the average parking times. Therefore, it takes a larger

number of simulations to produce a consistent average parking time.

Figure 27 – Average Parking Times when a Small Number of Drivers were Initialized in
the Simulation

Table 20 – Average Parking Times and Variances produced in One Destination Scenario
when a Small Number of Drivers were Initialized in the Simulation

Algorithm

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 200 101.7868 5.244784 1.000
Greedy 200 112.11 0 1.101

P-R 200 98.9991 5.561735 0.973
P-R (REG-NEG) 200 98.69895 5.32152 0.970

P-G 200 99.0759 5.092296 0.973
P-G (REG-NEG) 200 99.4668 5.828625 0.977
P-R (INS-NEG) 200 96.90745 4.365831 0.952

PL-R 200 97.6692 4.476285 0.960
PL-R (REG-NEG) 200 98.01815 4.447413 0.963

PL-G 200 97.54995 4.283353 0.958
PL-G (REG-NEG) 200 97.33605 4.41295 0.956
PL-R (INS-NEG) 200 98.44245 4.178693 0.967

0

20

40

60

80

100

120

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

 89

Figure 28 – Average Parking Times when a Moderate Number of Drivers were Initialized
in the Simulation

Table 21 – Average Parking Times and Variances produced in One Destination Scenario
when a Moderate Number of Drivers were Initialized in the Simulation

Algorithm

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 200 119.585 7.698 1.000
Greedy 200 165.073 0.000 1.380

P-R 200 118.689 6.798 0.993
P-R (REG-NEG) 200 118.706 6.591 0.993

P-G 200 118.036 6.268 0.987
P-G (REG-NEG) 200 118.417 6.748 0.990
P-R (INS-NEG) 200 108.834 3.892 0.910

PL-R 200 112.511 4.956 0.941
PL-R (REG-NEG) 200 112.995 5.472 0.945

PL-G 200 112.895 4.771 0.944
PL-G (REG-NEG) 200 113.068 5.657 0.946
PL-R (INS-NEG) 200 108.098 4.300 0.904

0
20
40
60
80

100
120
140
160
180

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

 90

Figure 29 – Average Parking Times when a Large Number of Drivers were Initialized in
the Simulation

Table 22 – Average Parking Times and Variances produced in One Destination Scenario
when a Large Number of Drivers were Initialized in the Simulation

Algorithm

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 200 394.525 35.355 1.000
Greedy 200 763.103 0.000 1.934

P-R 200 333.902 33.859 0.846
P-R (REG-NEG) 200 334.848 32.361 0.849

P-G 200 333.068 34.423 0.844
P-G (REG-NEG) 200 335.965 34.338 0.852
P-R (INS-NEG) 200 319.463 35.172 0.810

PL-R 200 284.978 27.280 0.722
PL-R (REG-NEG) 200 282.700 26.978 0.717

PL-G 200 284.855 27.726 0.722
PL-G (REG-NEG) 200 284.220 27.954 0.720
PL-R (INS-NEG) 200 284.300 28.203 0.721

0.000
100.000
200.000
300.000
400.000
500.000
600.000
700.000
800.000
900.000

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

 91

Figure 30 – Average Parking Times when a very Large Number of Drivers were Initialized
in the Simulation

Table 23 – Average Parking Times and Variances produced in One Destination Scenario
when a very Large Number of Drivers were Initialized in the Simulation

Algorithm

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 200 629.317 40.834 1.000
Greedy 200 1106.983 0.000 1.759

P-R 200 537.855 40.045 0.855
P-R (REG-NEG) 200 532.702 42.207 0.846

P-G 200 535.546 40.443 0.851
P-G (REG-NEG) 200 534.277 44.263 0.849
P-R (INS-NEG) 200 521.978 40.722 0.829

PL-R 200 461.686 40.921 0.734
PL-R (REG-NEG) 200 459.022 41.223 0.729

PL-G 200 467.526 42.173 0.743
PL-G (REG-NEG) 200 469.478 37.051 0.746
PL-R (INS-NEG) 200 487.432 41.487 0.775

0.000

200.000

400.000

600.000

800.000

1000.000

1200.000

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

 92

The algorithms, for the most part, follow the same trends derived in the scenario in which

all the drivers drove to one destination when parking demand is varied. When parking demand is

low, the average parking time of the Greedy algorithm is relatively lower and closer to that

produced by the other algorithms. The average parking times produced by the HoneyPark

variations are comparable to each other. When the number of drivers increases in Figure 28 and

Figure 29, differences in performance are observed within the HoneyPark variations. Like the One

Destination Scenario, Parked-Leave Advert HoneyPark algorithms perform significantly better

than Parked Adverts HoneyPark algorithms for the same reason explained in Section 5.1.1.

Likewise, algorithms that use instantaneous negative feedback stood out as the most efficient

algorithms. When parking demand increased further in Figure 30, the Parked-Advert HoneyPark

with instantaneous negative feedback performed better than other Parked-Advert HoneyPark

algorithm while Parked-Leave Algorithm that used instantaneous negative feedback produced

similar times as other Parked-Leave Algorithms. This same trend is observed in the One

Destination Scenario case in which the lot-to-bee ratio is 0.75.

The algorithms, for the most part, follow the same trends derived from the One Destination

Scenario in Section 5.1.1. Therefore, it seems that sending drivers to a mesh destination does not

significantly change algorithmic behavior and performance and the same principles derived in

Section 5.1.1 still apply. The only difference noticed between the two scenario is that one needs to

vary the number of drivers more significantly in a One Mesh Destination Scenario than in a One

Destination Scenario to observe the changes that occur when the amount of parking demand is

varied. This is understandable as a mesh destination is larger and typically encompasses more

parking supply than a single destination. Therefore, one must change the absolute number of

drivers by a larger amount to see any impact on algorithmic performance caused by the relative

 93

change between parking demand and supply. As such, it seems the relative amount of parking

demand and supply is one of the main factors affecting algorithmic performance rather than

whether the drivers are looking for parking in a single or mesh destination.

5.2 Algorithmic Performance with Varying Errand Times

 In this section, the performance of each algorithm was evaluated when the drivers in the

simulation were given errand times within a certain range. As Section 5.1 shows that the results

are dependent on the amount of relative demand for parking, the experiment was conducted using

three lot-to-bee ratios: when the lot-to-bee ratio was equal to two as seen in Figure 31, lot-to-bee

was one in Figure 32 and when the lot-to-bee ratio was 0.75 in Figure 33. Table 24, Table 25 and

Table 26 expresses the same data in numeric form along with the number of simulations performed

for each algorithm. Note that this section was conducted using the same set-up as the One

Destination scenario. Therefore, only 70 simulation runs are needed to obtain a consistent average

parking time value.

 94

Figure 31 – Average Parking Times when the Errand Time Length was Varied (Lot-to-Bee
Ratio = 2)

0

50

100

150

200

250

0-600 1800-2400 3000-3600 6600-7200 10200-10800

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Errand	Time	Range	(sec)	

Random Greedy P-R P-R	(REG-NEG) P-G P-G	(REG-NEG)

P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

 95

Figure 32 – Average Parking Times when the Errand Time Length was Varied (Lot-to-Bee
Ratio = 1)

0

100

200

300

400

500

600

0-600 1800-2400 3000-3600 6600-7200 10200-10800

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Errand	Time	Range	(sec)	

Random Greedy P-R P-R	(REG-NEG) P-G P-G	(REG-NEG)

P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

 96

Figure 33 – Average Parking Times when the Errand Time Length was Varied (Lot-to-Bee
Ratio = 0.75)

0

500

1000

1500

2000

2500

3000

3500

0-600 1800-2400 3000-3600 6600-7200 10200-10800

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Errand	Time	Range	(sec)	

Random Greedy P-R P-R	(REG-NEG) P-G P-G	(REG-NEG)

P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

 97

Table 24 – Average Parking Times and Variances produced at a Variety of Errand Times when Lot-to-Bee Ratio = 2

Table 25 – Average Parking Times and Variances produced at a Variety of Errand Times when Lot-to-Bee Ratio = 1

No. of
Simulations
Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)

No. of
Simulations
Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)

No. of
Simulations
Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)

No. of
Simulations
Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)

No. of
Simulations
Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)
Random 70 74.643 5.424 70 76.262 6.432 70 77.663 6.091 70 76.101 5.201 70 76.554 7.513
Greedy 70 192.791 0.000 70 217.269 0.000 70 217.269 0.000 70 217.269 0.000 70 217.269 0.000

P-R 70 68.660 4.021 70 69.683 4.830 70 71.622 5.899 70 70.183 5.678 70 71.691 5.353
P-R (REG-NEG) 70 68.304 4.366 70 69.194 3.787 70 70.647 6.417 70 69.961 5.372 70 70.702 5.957

P-G 70 68.373 5.095 70 70.633 5.496 70 71.351 5.467 70 70.171 5.864 70 69.148 4.626
P-G (REG-NEG) 70 68.002 4.354 70 68.861 5.515 70 69.844 4.853 70 69.567 5.856 70 69.492 4.551
P-R (INS-NEG) 70 67.843 3.796 70 68.936 4.280 70 69.085 4.413 70 68.652 4.087 70 68.840 4.637

PL-R 70 68.080 3.789 70 68.101 3.785 70 68.279 4.015 70 69.271 4.013 70 68.533 3.764
PL-R (REG-NEG) 70 67.719 4.046 70 68.636 4.379 70 67.738 4.336 70 68.325 4.188 70 68.503 3.698

PL-G 70 66.875 3.556 70 68.551 4.685 70 68.614 5.026 70 68.332 4.044 70 68.933 4.503
PL-G (REG-NEG) 70 68.268 3.754 70 68.337 4.394 70 68.387 4.825 70 69.235 4.351 70 67.772 4.355
PL-R (INS-NEG) 70 69.284 3.988 70 69.461 3.617 70 68.946 4.240 70 69.925 4.720 70 69.108 4.360

Errand Time Range of 6600-7200 sec Errand Time Range of 10200-10800 sec

Algorithm

Errand Time Range of 0-600 sec Errand Time Range of 1800-2400 sec Errand Time Range of 3000-3600 sec

No. of
Simulations
Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)

No. of
Simulations
Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)

No. of
Simulations
Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)

No. of
Simulations
Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)

No. of
Simulations
Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)

Random 70 96.968 6.692 70 174.204 21.646 70 184.209 30.022 70 198.105 35.928 70 201.825 43.141
Greedy 70 393.414 0.000 70 529.165 0.000 70 529.165 0.000 70 529.165 0.000 70 529.165 0.000

P-R 70 97.939 6.415 70 133.997 11.266 70 133.349 10.536 70 132.723 9.869 70 134.782 10.092
P-R (REG-NEG) 70 96.183 6.720 70 133.457 10.544 70 133.424 10.496 70 134.054 9.404 70 133.767 9.023

P-G 70 95.794 6.782 70 132.060 9.890 70 134.362 8.718 70 132.426 9.927 70 133.940 10.437
P-G (REG-NEG) 70 97.250 6.798 70 132.927 9.757 70 134.353 9.411 70 133.379 10.827 70 132.456 10.049
P-R (INS-NEG) 70 94.660 6.334 70 109.287 7.500 70 109.098 6.752 70 110.253 7.031 70 108.498 6.515

PL-R 70 83.770 3.528 70 104.339 5.542 70 104.948 5.462 70 104.798 5.019 70 105.256 5.727
PL-R (REG-NEG) 70 84.097 4.665 70 103.797 4.930 70 105.652 4.970 70 104.408 5.397 70 103.966 5.920

PL-G 70 84.360 4.577 70 103.935 4.980 70 106.003 5.422 70 104.177 4.604 70 104.679 5.997
PL-G (REG-NEG) 70 83.367 4.289 70 105.392 5.479 70 104.837 5.364 70 104.187 5.323 70 104.258 5.148
PL-R (INS-NEG) 70 88.596 4.773 70 102.552 4.754 70 103.493 6.987 70 102.193 6.062 70 101.434 5.089

Errand Time Range of 10200-10800 secErrand Time Range of 0-600 sec Errand Time Range of 1800-2400 sec Errand Time Range of 3000-3600 sec Errand Time Range of 6600-7200 sec

Algorithm

 98

Table 26 – Average Parking Times and Variances produced at a Variety of Errand Times when Lot-to-Bee Ratio = 0.75

No. of
Simulations

Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking Time

(sec)

No. of
Simulations

Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking

Time (sec)

No. of
Simulations

Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking

Time (sec)

No. of
Simulations

Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking

Time (sec)

No. of
Simulations

Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking

Time (sec)

Random 70 123.428 7.532 70 579.820 6.285 70 881.703 6.226 70 1790.950 6.157 70 2702.054 7.186
Greedy 70 625.916 0.000 70 1063.438 0.000 70 1440.635 0.000 70 2219.270 0.000 70 3198.753 0.000

P-R 70 135.896 6.663 70 587.441 5.438 70 891.515 7.148 70 1801.933 6.728 70 2710.633 5.635
P-R (REG-NEG) 70 136.232 6.228 70 587.934 6.585 70 892.559 5.963 70 1802.518 7.606 70 2711.351 6.640

P-G 70 133.445 7.753 70 589.891 7.043 70 895.549 7.142 70 1805.898 6.542 70 2717.015 6.542
P-G (REG-NEG) 70 135.291 6.876 70 589.125 6.203 70 893.793 7.327 70 1805.992 6.737 70 2716.055 6.625

PL-R 70 117.159 4.565 70 570.188 3.434 70 872.837 3.905 70 1784.514 4.569 70 2692.826 4.033
PL-R (REG-NEG) 70 116.692 4.600 70 569.413 3.877 70 873.409 4.606 70 1783.467 3.600 70 2693.051 3.972

PL-G 70 116.312 4.980 70 570.993 3.978 70 874.627 3.682 70 1784.598 4.110 70 2693.896 3.575
PL-G (REG-NEG) 70 116.228 4.585 70 570.308 4.104 70 873.399 4.069 70 1784.580 3.386 70 2694.406 4.135
P-R (INS-NEG) 70 133.098 8.152 70 588.290 9.734 70 889.679 8.538 70 1800.307 7.567 70 2711.934 8.618
PL-R (INS-NEG) 70 122.982 5.169 70 582.606 7.399 70 887.327 7.926 70 1795.911 8.614 70 2706.373 9.844

Errand Time Range of 6600-7200 sec Errand Time Range of 10200-10800 sec

Algorithm

Errand Time Range of 0-600 sec Errand Time Range of 1800-2400 sec Errand Time Range of 3000-3600 sec

 99

For lot-to-bee ratios that are equal or less than one, parking times are quicker at shorter

errand times. Simulation results show that when errand times are shorter, there are more vacant

parking spots available throughout the simulation as drivers are only occupying their parking spot

for a smaller period of time which makes it easier for drivers to find parking. Likewise, at larger

errand times, parked drivers are occupying parking spaces for a longer period of time and

consequently, there are less vacant parking spaces available which leads to an increase in parking

times. When parking demand is relatively low, that is when the lot-to-bee ratio is more than one,

there is barely any difference in average parking time as the errand time length is varied. This is

because there are enough parking spaces for all the drivers, even if each driver were to stay in their

parking space for the entire simulation. Therefore, drivers can still find parking independent of

errand time length.

 When one compares the individual performance of each HoneyPark variation to other

algorithms, Figure 31, Figure 32 and Figure 33 show that the trends produced at all lot-to-bee

ratios at nearly all errand time lengths follow the basic patterns covered in Section 5.1. When the

lot-to-bee ratio is greater than one, there is no significant difference in performance between the

different HoneyPark variations. When the lot-to-bee ratio is equal to one, Parked-Leave Advert

algorithms perform better than their Parked Advert counterparts. Algorithms that used

instantaneous negative feedback consistently performed better than those that did not. When the

lot-to-bee ratio is less than one, Parked Adverts performed worse than the Random algorithms and

the use of instantaneous feedback did not necessarily result in an improvement in algorithm

performance. As such, it seems that a change in errand time length did not have much impact on

the performance rankings of the HoneyPark variations.

 100

Table 27 – Ratio between the Average Parking Times of the HoneyPark Algorithm to the
Random Algorithm

Lot-to-
Bee	
Ratio	 Algorithm	

Errand	Time	Range	

0-600	 1800-2400	 3000-3600	 6600-7200	 10200-10800	

0.75	

P-R	 1.101	 1.013	 1.011	 1.006	 1.003	
P-R	(REG-NEG)	 1.104	 1.014	 1.012	 1.006	 1.003	

P-G	 1.081	 1.017	 1.016	 1.008	 1.006	
P-G	(REG-NEG)	 1.096	 1.016	 1.014	 1.008	 1.005	

PL-R	 0.949	 0.983	 0.990	 0.996	 0.997	
PL-R	(REG-NEG)	 0.945	 0.982	 0.991	 0.996	 0.997	

PL-G	 0.942	 0.985	 0.992	 0.996	 0.997	
PL-G	(REG-NEG)	 0.942	 0.984	 0.991	 0.996	 0.997	
P-R	(INS-NEG)	 1.078	 1.015	 1.009	 1.005	 1.004	
PL-R	(INS-NEG)	 0.996	 1.005	 1.006	 1.003	 1.002	

1	

P-R 1.010	 0.769	 0.724	 0.670	 0.668	
P-R (REG-NEG) 0.992	 0.766	 0.724	 0.677	 0.663	

P-G 0.988	 0.758	 0.729	 0.668	 0.664	
P-G (REG-NEG) 1.003	 0.763	 0.729	 0.673	 0.656	

PL-R 0.864	 0.599	 0.570	 0.529	 0.522	
PL-R (REG-NEG) 0.867	 0.596	 0.574	 0.527	 0.515	

PL-G 0.870	 0.597	 0.575	 0.526	 0.519	
PL-G (REG-NEG) 0.860	 0.605	 0.569	 0.526	 0.517	

P-R (INS-NEG) 0.976	 0.627	 0.592	 0.557	 0.538	
PL-R (INS-NEG) 0.914	 0.589	 0.562	 0.516	 0.503	

2	

P-R	 0.920	 0.914	 0.922	 0.922	 0.936	
P-R	(REG-NEG)	 0.915	 0.907	 0.910	 0.919	 0.924	

P-G	 0.916	 0.926	 0.919	 0.922	 0.903	
P-G	(REG-NEG)	 0.911	 0.903	 0.899	 0.914	 0.908	

PL-R	 0.912	 0.893	 0.879	 0.910	 0.895	
PL-R	(REG-NEG)	 0.907	 0.900	 0.872	 0.898	 0.895	

PL-G	 0.896	 0.899	 0.883	 0.898	 0.900	
PL-G	(REG-NEG)	 0.915	 0.896	 0.881	 0.910	 0.885	
P-R	(INS-NEG)	 0.909	 0.904	 0.890	 0.902	 0.899	
PL-R	(INS-NEG)	 0.928	 0.911	 0.888	 0.919	 0.903	

 101

 However, one can see a difference in how well the HoneyPark algorithms perform

compared to the Random algorithm as the errand time is varied. At a lot-to-bee ratio of one, Table

27 shows that the ratio between the average parking time of HoneyPark and Random algorithms

as errand time is varied, which decreases as errand time increases. This indicates that the

HoneyPark algorithm performance improves relative to that of the Random algorithm as the errand

time is lengthened. This is because as errand time increases, drivers are occupying parking lots for

a longer period of time and there are less parking spaces available. In this case, the Random

algorithm will perform worse as it is sending drivers to random lots, making it very likely that it

will send a driver to a less profitable lot. On the other hand, the HoneyPark algorithm considers

the profitability of the lot, making it more likely that the driver will find a parking space.

But at a lot-to-bee ratio of 0.75, Table 27 shows that the ratio between the average parking

times produced by the Parked-Leave-Advert algorithms and Random algorithm doesn’t vary too

much as errand time length is varied because demand exceeds supply. It is difficult to find parking

regardless of whether the driver uses the Random or the Parked-Leave algorithm. However, one

can see that the ratios converges to one as errand time is increased. This is because the parking lots

are more occupied at longer errand times, making it even more difficult for any driver to find

parking regardless of the parking algorithm he or she uses. Therefore, the parking times produced

by the Random and HoneyPark algorithms become more similar.

At a lot-to-bee ratio of two, Table 27 shows that the ratio doesn’t vary much either as the

number of parking spaces exceeds the number of drivers looking for parking. Therefore, a driver

is likely to find a parking space at any lot it explores regardless of whether he or she uses the

Random or HoneyPark algorithm.

 102

 The only scenario that deviates from the trends described in Section 5.1 is the case in which

errand times are exceptionally short (0-600 seconds) at a lot-to-bee ratio of one. Figure 32 shows

that the average parking times produced by Parked Advert algorithms are comparable to that

produced by the Random algorithm. This trend can be analyzed by comparing Figure 34 with

Figure 35 and Figure 36, which show the number of lots each driver searched before successfully

finding a parking space for the Random and Parked-Advert algorithms. This deviates from the

trend that Parked Advert algorithms usually perform better than the Random algorithm as observed

in Section 5.1 and at other errand times. Note that graphs are arranged that it shows the data for

each driver in the order of the time at which they initiated the search for parking.

Figure 34 – Number of Parking Lots Searched by Each Driver in the Simulation when the
Random Algorithm was used

0

0.5

1

1.5

2

2.5

3

3.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

No
.	o
f	P

ar
ki
ng
	Lo

ts
	S
ea
rc
he

d

nth	Driver	to	Start	Search	for	Parking	

 103

Figure 35 – Number of Parking Lots Searched by Each Driver in the Simulation when the
Parked-Advert Random-Scouting Algorithm was used

Figure 36 – Number of Parking Lots Searched by Each Driver in the Simulation when the
Parked-Advert Greedy-Scouting Algorithm was used

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

No
.	o
f	P

ar
ki
ng
	Lo

ts
	S
ea
rc
he

d

nth	Driver	to	Start	Search	for	Parking	

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

No
.	o
f	P

ar
ki
ng
	Lo

ts
	S
ea
rc
he

d

nth	Driver	to	Start	Search	for	Parking	

 104

 As one can see, the number of lots for the Random algorithm fluctuates throughout the

entire simulation and does not follow a certain trend, which is understandable as the Random

algorithm sends the drivers to random parking lots. For the Parked-Advert Algorithm, the number

of lots searched increases greatly for drivers who initiate their parking search later in the

simulation. As the lots are generally more profitable due to the short errand times, it is very likely

that the drivers can find a parking space regardless of which parking lot was visited on the

condition that they are not especially overcrowded. Therefore, it is possible for drivers using the

Random algorithm to find parking in a shorter amount of time in this situation. Figure 34 shows

that the majority, around 70% to be exact, of drivers find a parking space on their first try when

they use the Random algorithm. On the other hand, algorithms that used only Parked adverts tend

to send drivers to what is a small group of profitable lots. This method is initially effective as

Figure 35 and Figure 36 show that earlier drivers are able to find parking on their first try. As time

elapses, Parked Advert algorithms continue to bombard the small group of lots with more drivers,

saturating them and making it harder for subsequent drivers to find parking on their first try. This

is reflected in the graphs, where drivers that come later in the simulations have to search more lots

before they are able to successfully park. Unlike the Random algorithm, the Parked Advert

algorithms aren’t flexible enough to take advantage of the fact that most of the parking lots are

profitable when errand times are short and continue to send most, if not all, of the drivers to a

limited selection of ‘profitable’ lots.

 When errand times are short, the performance of instantaneous negative feedback adverts

also deviates from the usual trend described in Section 5.1. Figure 32 shows that for lot-to-bee

ratio of 1, using instantaneous negative feedback did not have any impact on performance when

drivers only looked at Parked adverts, but was less efficient when driver considered both Parked

 105

and Leave adverts. As mentioned previously, the performance of Parked advert algorithms tends

to be poor when errand times are very short because they consider a small select group of lots as

profitable. Therefore, the inclusion of an instantaneous negative feedback mechanism will result

in a substantial improvement in algorithmic performance. However, this is not the case for Parked-

Leave adverts, who consider a bigger group of profitable and are thus more accurate in determining

which lots are profitable. A real-time observation of the simulation shows that instantaneous

negative feedback results in longer times in this case because it immediately redirects drivers away

from parking lots that become full. As errand times are short, parked drivers will not occupy their

parking space for a long time and the probability is high that a parking space will become vacant

while the driver is on his or her way to the parking lot. Even though a lot may have filled up, it

will on average take a shorter time to find parking if the driver continued to pursue the lot than it

is to redirect the driver to another parking lot.

5.3 Algorithmic Performance with Varying Levels of Parking Congestion

Figure 37, Figure 38 and Figure 39 show how algorithm performance is affected by the

amount of parking congestion at the lot-to-bee ratios of 0.75, one and two respectively. Likewise,

Table 28, Table 29 and Table 30 show the same data in numeric form along with the number of

simulations performed for each algorithm. The amount of parking congestion was controlled by

changing the time it takes to initiate all the drivers in the simulation. For example, if all the drivers

enter the simulation in a shorter amount of time, there would be more congestion as there will be

more drivers searching for parking at the same time. Likewise, if all the drivers entered the

simulation within a longer period of time, there will be less drivers present in the simulation

simultaneously, reducing the amount of congestion. Similar to the Errand Time simulations in

 106

Section 5.2, this experiment was also conducted at lot-to-bee ratios of 0.75, 1 and 2 to observe

how the algorithm fares in varying levels of parking demand.

 107

Figure 37 – Average Parking Times when All Drivers Enter the Simulation in 200 Seconds,
400 Seconds, 600 seconds and 800 Seconds when the Lot-to-Bee Ratio = 2

Figure 38 – Average Parking Times when All Drivers Enter the Simulation in 200 Seconds,
400 Seconds, 600 seconds and 800 Seconds when the Lot-to-Bee Ratio = 1

0

50

100

150

200

250

Av
er
ag
e	
Pa
rk
in
g	T

im
e	
(s
ec
)

Algorithm

200	Seconds 400	Seconds 600	Seconds 800	Seconds

0

100

200

300

400

500

600

Av
er
ag
e	
Pa
rk
in
g	T

im
e	
(s
ec
)

Algorithm

200	Seconds 400	Seconds 600	Seconds 800	Seconds

 108

Figure 39 – Average Parking Times when All Drivers Enter the Simulation in 200 Seconds,
400 Seconds, 600 seconds and 800 Seconds when the Lot-to-Bee Ratio = 0.75

0

200

400

600

800

1000

1200

1400
Av

er
ag
e	
Pa
rk
in
g	T

im
e	
(s
ec
)

Algorithm

200	Seconds 400	Seconds 600	Seconds 800	Seconds

 109

Table 28 – Average Parking Times and Variances at Varying Congestion Levels when Bee-
to-lot Ratio = 2

Algorithm

No. of
Simulations

Executed

Average
Parking

Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 70 77.168 5.735 1.000
Greedy 70 223.448 0.000 2.896

P-R 70 70.591 6.384 0.915
P-R (REG-NEG) 70 70.846 5.245 0.918

P-G 70 71.553 5.420 0.927
P-G (REG-NEG) 70 70.451 5.257 0.913
P-R (INS-NEG) 70 69.641 4.674 0.902

PL-R 70 69.092 4.003 0.895
PL-R (REG-NEG) 70 68.468 4.727 0.887

PL-G 70 67.730 3.637 0.878
PL-G (REG-NEG) 70 68.644 4.076 0.890
PL-R (INS-NEG) 70 69.887 3.814 0.906

Random 70 76.505 6.638 1.000
Greedy 70 226.254 0.000 2.957

P-R 70 72.382 5.146 0.946
P-R (REG-NEG) 70 73.071 4.901 0.955

P-G 70 71.896 5.837 0.940
P-G (REG-NEG) 70 71.776 6.096 0.938
P-R (INS-NEG) 70 71.456 4.856 0.934

PL-R 70 68.542 3.958 0.896
PL-R (REG-NEG) 70 68.496 3.760 0.895

PL-G 70 69.021 3.941 0.902
PL-G (REG-NEG) 70 68.403 4.030 0.894
PL-R (INS-NEG) 70 70.138 4.153 0.917

Random 70 76.231 5.907 1.000
Greedy 70 228.045 0.000 2.991

P-R 70 73.154 5.671 0.960
P-R (REG-NEG) 70 73.257 5.857 0.961

P-G 70 71.797 5.819 0.942
P-G (REG-NEG) 70 72.594 5.588 0.952
P-R (INS-NEG) 70 70.823 4.455 0.929

PL-R 70 68.115 3.818 0.894
PL-R (REG-NEG) 70 68.766 3.768 0.902

PL-G 70 67.285 3.748 0.883
PL-G (REG-NEG) 70 69.048 3.867 0.906
PL-R (INS-NEG) 70 70.184 4.030 0.921

Random 70 77.288 6.242 1.000
Greedy 70 229.463 0.000 2.969

P-R 70 71.465 5.008 0.925
P-R (REG-NEG) 70 72.713 4.941 0.941

P-G 70 72.798 5.531 0.942
P-G (REG-NEG) 70 72.406 5.290 0.937
P-R (INS-NEG) 70 72.462 4.742 0.938

PL-R 70 68.809 3.250 0.890
PL-R (REG-NEG) 70 68.542 3.853 0.887

PL-G 70 69.158 4.218 0.895
PL-G (REG-NEG) 70 68.630 3.959 0.888
PL-R (INS-NEG) 70 69.615 4.310 0.901

20
0

Se
co

nd
s

fo
r A

ll
D

riv
er

s
to

 E
nt

er
 S

im
ul

at
io

n
40

0
Se

co
nd

s
fo

r A
ll

D
riv

er
s

to
 E

nt
er

 S
im

ul
at

io
n

60
0

Se
co

nd
s

fo
r A

ll
D

riv
er

s
to

 E
nt

er
 S

im
ul

at
io

n
80

0
Se

co
nd

s
fo

r A
ll

D
riv

er
s

to
 E

nt
er

 S
im

ul
at

io
n

200 Seconds for All Drivers to Enter Simulation

 110

Table 29 – Average Parking Times and Variances at Varying Congestion Levels when
Bee-to-lot Ratio = 1

Algorithm

No. of
Simulations

Executed
Average Parking

Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 70 149.001 17.029 1.000
Greedy 70 538.015 0.000 3.611

P-R 70 131.901 9.287 0.885
P-R (REG-NEG) 70 131.625 11.136 0.883

P-G 70 129.514 9.365 0.869
P-G (REG-NEG) 70 128.814 8.174 0.865
P-R (INS-NEG) 70 108.039 6.230 0.725

PL-R 70 104.038 5.269 0.698
PL-R (REG-NEG) 70 103.943 5.598 0.698

PL-G 70 104.869 5.332 0.704
PL-G (REG-NEG) 70 103.612 4.837 0.695
PL-R (INS-NEG) 70 100.518 5.738 0.675

Random 70 148.343 18.565 1.000
Greedy 70 542.865 0.000 3.660

P-R 70 127.925 9.474 0.862
P-R (REG-NEG) 70 129.016 10.986 0.870

P-G 70 128.628 8.787 0.867
P-G (REG-NEG) 70 127.388 10.887 0.859
P-R (INS-NEG) 70 103.887 6.474 0.700

PL-R 70 99.768 5.495 0.673
PL-R (REG-NEG) 70 99.314 5.590 0.669

PL-G 70 100.083 5.225 0.675
PL-G (REG-NEG) 70 100.547 4.615 0.678
PL-R (INS-NEG) 70 96.950 4.643 0.654

Random 70 145.382 16.095 1.000
Greedy 70 535.308 0.000 3.682

P-R 70 123.959 9.731 0.853
P-R (REG-NEG) 70 123.102 9.890 0.847

P-G 70 121.926 9.123 0.839
P-G (REG-NEG) 70 123.238 8.677 0.848
P-R (INS-NEG) 70 100.609 5.267 0.692

PL-R 70 96.929 5.448 0.667
PL-R (REG-NEG) 70 96.699 4.188 0.665

PL-G 70 96.153 5.494 0.661
PL-G (REG-NEG) 70 97.797 4.801 0.673
PL-R (INS-NEG) 70 94.669 3.551 0.651

Random 70 140.196 14.651 1.000
Greedy 70 537.571 0.000 3.834

P-R 70 119.537 8.561 0.853
P-R (REG-NEG) 70 117.285 10.050 0.837

P-G 70 119.155 9.122 0.850
P-G (REG-NEG) 70 116.981 9.087 0.834
P-R (INS-NEG) 70 99.085 5.682 0.707

PL-R 70 94.123 3.665 0.671
PL-R (REG-NEG) 70 94.279 4.650 0.672

PL-G 70 94.431 4.574 0.674
PL-G (REG-NEG) 70 95.308 4.331 0.680
PL-R (INS-NEG) 70 92.926 4.220 0.663

20
0

Se
co

nd
s

fo
r A

ll
D

riv
er

s
to

 E
nt

er
 S

im
ul

at
io

n
40

0
Se

co
nd

s
fo

r A
ll

D
riv

er
s

to
 E

nt
er

 S
im

ul
at

io
n

60
0

Se
co

nd
s

fo
r A

ll
D

riv
er

s
to

 E
nt

er
 S

im
ul

at
io

n
80

0
Se

co
nd

s
fo

r A
ll

D
riv

er
s

to
 E

nt
er

 S
im

ul
at

io
n

200 Seconds for All Drivers to Enter Simulation

 111

Table 30 – Average Parking Times and Variances at Varying Congestion Levels when
Bee-to-lot Ratio = 0.75

Algorithm
No. of Simulations

Executed
Average Parking

Time (sec)

Standard Deviation
of Average Parking

Time (sec)

Ratio of Parking
Time to Random

Parking Time
Random 70 610.428 24.689 1.000
Greedy 70 1222.719 0.000 2.003

P-R 70 600.801 21.067 0.984
P-R (REG-NEG) 70 600.458 22.468 0.984

P-G 70 602.496 23.627 0.987
P-G (REG-NEG) 70 606.586 23.311 0.994
P-R (INS-NEG) 70 593.286 27.322 0.972

PL-R 70 583.112 21.540 0.955
PL-R (REG-NEG) 70 584.466 23.177 0.957

PL-G 70 585.333 20.797 0.959
PL-G (REG-NEG) 70 583.597 19.539 0.956
PL-R (INS-NEG) 70 588.188 23.024 0.964

Random 70 584.582 24.080 1.000
Greedy 70 1207.730 0.000 2.066

P-R 70 582.087 21.527 0.996
P-R (REG-NEG) 70 581.721 19.356 0.995

P-G 70 586.407 24.954 1.003
P-G (REG-NEG) 70 580.115 23.420 0.992
P-R (INS-NEG) 70 572.820 19.530 0.980

PL-R 70 569.326 19.621 0.974
PL-R (REG-NEG) 70 567.705 20.435 0.971

PL-G 70 569.696 18.174 0.975
PL-G (REG-NEG) 70 567.989 20.145 0.972
PL-R (INS-NEG) 70 572.587 18.475 0.979

Random 70 585.433 21.996 1.000
Greedy 70 1157.011 0.000 1.976

P-R 70 584.567 25.904 0.999
P-R (REG-NEG) 70 584.321 21.723 0.998

P-G 70 579.317 29.232 0.990
P-G (REG-NEG) 70 584.117 23.502 0.998
P-R (INS-NEG) 70 565.028 19.825 0.965

PL-R 70 558.585 18.486 0.954
PL-R (REG-NEG) 70 562.044 22.795 0.960

PL-G 70 560.761 22.943 0.958
PL-G (REG-NEG) 70 560.010 21.116 0.957
PL-R (INS-NEG) 70 562.056 19.666 0.960

Random 70 548.798 17.463 1.000
Greedy 70 1122.691 0.000 2.046

P-R 70 542.939 21.357 0.989
P-R (REG-NEG) 70 538.064 21.988 0.980

P-G 70 542.995 20.994 0.989
P-G (REG-NEG) 70 540.853 19.404 0.986
P-R (INS-NEG) 70 526.983 18.779 0.960

PL-R 70 515.050 16.192 0.939
PL-R (REG-NEG) 70 517.292 15.827 0.943

PL-G 70 517.686 16.193 0.943
PL-G (REG-NEG) 70 516.914 18.425 0.942
PL-R (INS-NEG) 70 522.061 16.491 0.951

20
0

Se
co

nd
s

fo
r A

ll
D

riv
er

s
to

 E
nt

er
 S

im
ul

at
io

n
40

0
Se

co
nd

s
fo

r A
ll

D
riv

er
s

to
 E

nt
er

 S
im

ul
at

io
n

60
0

Se
co

nd
s

fo
r A

ll
D

riv
er

s
to

 E
nt

er
 S

im
ul

at
io

n
80

0
Se

co
nd

s
fo

r A
ll

D
riv

er
s

to
 E

nt
er

 S
im

ul
at

io
n

200 Seconds for All Drivers to Enter Simulation

 112

 As expected, Figure 37, Figure 38 and Figure 39 show that the average parking times

shorten as parking congestion decreases for lot-to-bee ratios equal or less than one. The reason is

intuitive. When there is less parking congestion, there is less competition for vacant spots at any

one time and it is easier for a driver to find parking. However, the results produced by simulations

set a lot-to-bee ratio of two do not follow this rule. This is because parking demand and congestion

is already low at that lot-to-bee ratio and as such, increasing the amount of time is takes for drivers

to enter the simulation would not have a large effect. When it comes to comparing the relative

performance of each algorithm, the results in Figure 37, Figure 38 and Figure 39 follow the trends

outlined in Section 5.1.

5.4 Algorithmic Performance with a Mix of Honey and Non-Honey Cars

 This section discusses the performance of the HoneyPark algorithm when it used alongside

the other two parking algorithms, namely the Random and Greedy algorithms.

5.4.1 Mix of Honey and Random Cars

Figure 40, Figure 41 and Figure 42 show the performance of the HoneyPark algorithms

when HoneyPark drivers and Random drivers are looking for parking simultaneously.

 113

(a)

(b)

Figure 40 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80% when the Lot-
to-Bee Ratio = 2

60

65

70

75

80

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

60

65

70

75

80

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

 114

(c)

(d)

Figure 40 (continued)– Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80%
when the Lot-to-Bee Ratio = 2

55

60

65

70

75

80

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

 115

(a)

(b)

Figure 41 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80% when the Lot-
to-Bee Ratio = 1

0

50

100

150

200

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

0

50

100

150

200

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

 116

(c)

(d)

Figure 41 (continued) – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80%
when the Lot-to-Bee Ratio = 1

0

50

100

150

200

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

Av
er
ag
e	P

ar
kin

g	
Ti
m
e

Algorithm

All Honey Non-Honey

0

50

100

150

200

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e

Algorithm

All Honey Non-Honey

 117

(a)

(b)

Figure 42 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80% when the Lot-
to-Bee Ratio = 0.75

0

200

400

600

800

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

0

200

400

600

800

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

 118

(c)

(d)

Figure 42 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80% when the Lot-
to-Bee Ratio = 0.75

0

200

400

600

800

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

0

200

400

600

800

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

 119

 Figure 40 and Figure 41 show that for the lot-to-bee ratios of one and 2.0, the average

parking times of all HoneyPark variations is lower than that of the Random algorithm at all

HoneyPark car percentages. This is because the HoneyPark system is decentralized and based on

real-time data. As long as there are HoneyPark cars sending adverts, the system can detect the

changes in the success rate of each lot and thus correctly direct the driver to the most profitable

lot. As such, the general trend is that the overall average parking time decreases as the proportion

of HoneyPark drivers to Random drivers increases. As the HoneyPark algorithm is generally more

efficient than the Random algorithm, it makes sense that when more drivers use the HoneyPark

algorithm, it results in a lower overall average parking time.

 Now, let’s rearrange the data such that the only average parking times of HoneyCars are

considered and are arranged by algorithm and HoneyPark Car Percentage. The results are

displayed in Figure 43, Figure 44 and Figure 45.

Figure 43 – Average Parking Times of HoneyPark Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 2

0

P-R

20

P-R (REG-NEG)
P-G

40

Av
er

ag
e

Pa
rk

in
g

Ti
m

e
(s

ec
)

P-G (REG-NEG)
PL-R

60

Algorithm

PL-R (REG-NEG)
PL-G

80

PL-G (REG-NEG)
P-R (INS-NEG) 80

PL-R (INS-NEG)

HoneyPark Car Percentage (%)

60
40

20

 120

Figure 44 – Average Parking Times of HoneyPark Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 1

Figure 45 – Average Parking Times of HoneyPark Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 0.75

0

20

P-R

40

P-R (REG-NEG)

60

P-G

Av
er

ag
e

Pa
rk

in
g

Ti
m

e
(s

ec
)

80

P-G (REG-NEG)

100

PL-R

120

Algorithm

PL-R (REG-NEG)

140

PL-G
PL-G (REG-NEG) 80P-R (INS-NEG) 60

HoneyPark Car Percentage (%)

PL-R (INS-NEG) 40
20

0

100

200

P-R

300

P-R (REG-NEG)

400

Av
er

ag
e

Pa
rk

in
g

Ti
m

e
(s

ec
)

P-G

500

P-G (REG-NEG)

600

700

PL-R

Algorithm

PL-R (REG-NEG)
PL-G

PL-G (REG-NEG)
P-R (INS-NEG)

PL-R (INS-NEG) 80

HoneyPark Car Percentage (%)

60
40

20

 121

 It is interesting to note that for a lot-to-bee ratio of one and 0.75, the average parking time

of HoneyPark drivers is lengthened as the percentage of HoneyPark drivers increases. This is

because an increase in the number of drivers using the HoneyPark algorithms results in a greater

number of drivers are directed to the most profitable lots. This results in more competition within

these lots and some cars may have to take additional time once the profitable lot is fully occupied.

Therefore, it seems that the HoneyPark algorithm performs best when there are enough drivers to

collect information regarding the profitability of the parking lots, but not too many that the

profitable lots become competitive. At a lot-to-bee ratio of two, the average parking time doesn’t

seem to change significantly as the HoneyPark car percentage is varied. This is because there is

more parking supply than demand and it is likely that a driver can find parking easily regardless

of the HoneyPark car percentage.

 When the lot-to-bee ratio is equal to one, the Parked-Leave algorithm with instantaneous

negative feedback is less efficient than other Parked-Leave algorithms at lower HoneyPark car

percentages. In fact, it is also less efficient than its Parked-Advert equivalent at HoneyPark car

percentages below 60%. A real-time analysis shows that the inclusion of Leave adverts in

instantaneous negative feedback can be detrimental to algorithm performance in an environment

that is not mostly controlled by the HoneyPark system. When a car leaves a full parking lot, it

sends out a Leave advert and drivers can consider searching the parking lot. However, there is only

one free parking space in that lot which can be easily be occupied by another driver using the

Random algorithm especially when the HoneyPark car percentage is low. The simulations show

that a driver using instantaneous negative feedback will consider such a lot and drive there only to

find that the vacant spot has already been occupied. Contrary, the Parked-Advert algorithm has a

shorter average parking time because there are no Leave adverts and as a result, does not tend to

 122

consider parking lots that have only a few vacant spots. Therefore, the driver can choose a lot that

is more profitable and will still be vacant when he or she arrives there.

 At a lot-to-bee ratio of 0.75, the relative performance of the HoneyPark and the Random

algorithm is more variable. With the exception of the Parked-Leave Advert algorithm (Random

Scouting algorithm), the other variations of the HoneyPark algorithm are proven to be less

effective than the Random algorithm at higher HoneyPark car percentages. As mentioned in

previous sections, the HoneyPark algorithm tends to send more drivers to small selective group of

parking lots, which is disadvantageous when the demand for parking is higher than supply. This is

further supported by the fact that the Parked-Leave, Random-Scouting Algorithm is the only

variation that consistently performs better than the Random algorithm at all tested HoneyPark car

percentages. Its use of both Parked and Leave adverts as well as the Random scouting algorithm

allows drivers to explore more parking lots, especially relative to the other variants of the

HoneyPark algorithm.

There is also a deviation from the usual trends observed in Section 5.1 when looks at the

relative performance of the HoneyPark algorithms. When the lot-to-bee ratio is less than one in a

mixed environment of HoneyPark and Random drivers, the scouting algorithm does have an

impact on algorithmic performance when only a portion of the drivers use the HoneyPark

algorithm. Simulation data shows that drivers are more likely to find a parking space using their

scouting algorithms when only a portion of active drivers are using the HoneyPark algorithm as

compared to when all drivers in the simulation are HoneyPark algorithm. This can be seen in

Figure 46, which shows what percentage of scouting attempts made by drivers in the simulation

resulted in the driver successfully finding a vacant parking space at varying HoneyPark car

percentages. As one can see, a driver is more likely to find parking using a scouting algorithm

 123

when only a portion of the simulation population use the HoneyPark algorithm. This quantity

decreases as the HoneyPark Car Proportion increases. This is likely caused by the fact that at lower

HoneyPark car percentages, the HoneyPark system predicts the profitability of the parking lots

with less accuracy as it is not receiving adverts from a larger number of the drivers in the

simulation. Therefore, it is necessary to include a scouting algorithm that is able to redirect the

driver to a more profitable lot and correct the HoneyPark system in the event that the information

collected by adverts is insufficient or incorrect.

Figure 46 – Percentage of Scouting Drivers that are Able to Find a Vacant Parking Spot at
different HoneyPark Car Proportions

As the HoneyPark algorithm increases from 60% to 80%, one can see that the HoneyPark

algorithms that use the Greedy scouting algorithm become less efficient sooner than their

counterparts that use the Random scouting algorithm. Simulation data shows that drivers that use

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

Pe
rc
en

ta
ge
	o
f	S
uc
ce
ss
fu
l	S
co
ut
in
g	
At
te
m
pt
s	(
%
)

HoneyPark	Car	Proportion	(%)

 124

the Greedy scouting algorithm will often search a lot assigned to them by the HoneyPark algorithm,

fail to find parking there and proceed to search the nearest parking lot. As the HoneyPark algorithm

tends to direct the drivers to a smaller subset of parking lots, simulation data shows that the drivers

using the Greedy scouting algorithm tend to scout the same parking lots when they fail to find

parking at their assigned lots. This increases competition for those locations, consequently

lengthening parking time. In contrast, drivers that use the random scouting algorithm explore a

wider variety of parking lots increasing their chances of success finding a profitable parking lot.

5.4.2 Mix of Honey and Greedy Cars

 125

(a)

(b)

Figure 47 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80% when the Lot-
to-Bee Ratio = 2

0

50

100

150

200

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

0

50

100

150

200

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

Av
er
ag
e	P

ar
kin

g	
Ti
m
e	(
se
c)

Algorithm

All Honey Non-Honey

 126

(c)

(d)

Figure 47 (continued) – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80%
when the Lot-to-Bee Ratio = 2

0
20
40
60
80
100
120

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

0
10
20
30
40
50
60
70
80

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

Av
er
ag
e	P

ar
kin

g	
Ti
m
e	(
se
c)

Algorithm

All Honey Non-Honey

 127

(a)

(b)

Figure 48 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80% when the Lot-
to-Bee Ratio = 1

0
100
200
300
400
500
600

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

0
100
200
300
400
500
600

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

 128

(c)

(d)

Figure 48 (continued) – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80%
when the Lot-to-Bee Ratio = 1

0

100

200

300

400

500

600

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

0

100

200

300

400

500

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

 129

(a)

(b)

Figure 49 – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80% when the Lot-
to-Bee Ratio = 0.75

0

500

1000

1500

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

0

500

1000

1500

2000

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

 130

(c)

(d)

Figure 49 (continued) – Average Parking Times when the HoneyPark Car Proportion is (a) 20% (b) 40% (c) 60% (d) 80%
when the Lot-to-Bee Ratio = 0.75

0

500

1000

1500

2000

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

0

500

1000

1500

2000

2500

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)Av
er
ag
e	
Pa
rk
in
g	
Ti
m
e	
(s
ec
)

Algorithm

All Honey Non-Honey

 131

The average HoneyPark parking times in (a)

(b)

Figure 47, Figure 48 and Figure 49 also increase as the proportion of drivers using the

HoneyPark algorithm increases. The only interesting difference is that unlike the Random

algorithm, the average parking time of the Greedy algorithm sharply decreases as the number of

drivers using the HoneyPark algorithm increases, especially above 90%. This is because there are

less drivers using the Greedy algorithm and therefore, there is less competition for the parking

spots closest to the desired destination. In addition, the proximity of the parking spot to the

destination shortens the amount of time it takes the driver to travel to the lot, which consequently

reduces the parking time further. Therefore, the Greedy algorithm will be more efficient than the

HoneyPark algorithm if the absolute number of drivers using the Greedy algorithm is small

enough. This is reflected in Figure 50 and Figure 51, which arranges the Greedy average parking

time by HoneyPark car percentages.

0

50

100

150

200

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG) PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

Av
er
ag
e	P

ar
kin

g	
Ti
m
e	(
se
c)

Algorithm

All Honey Non-Honey

 132

Figure 50 – Average Parking Times of Greedy Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 2

Figure 51 – Average Parking Times of Greedy Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 1

P-R
P-R (REG-NEG)

P-G
P-G (REG-NEG)

PL-R

Algorithm

PL-R (REG-NEG)
PL-G

PL-G (REG-NEG)0
P-R (INS-NEG)20

50

PL-R (INS-NEG)

HoneyPark Car Percentage (%)

40

100
Av

er
ag

e
Pa

rk
in

g
Ti

m
e

(s
ec

)

60

150

80

200

P-R
P-R (REG-NEG)

P-G
P-G (REG-NEG)

PL-R

Algorithm

PL-R (REG-NEG)
PL-G

PL-G (REG-NEG)
P-R (INS-NEG)0

PL-R (INS-NEG)

100

20

HoneyPark Car Percentage (%)

40

200

60

300

80

Av
er

ag
e

Pa
rk

in
g

Ti
m

e
(s

ec
)

400

500

600

 133

Figure 52 – Average Parking Times of Greedy Drivers arranged by HoneyPark Car
Percentage when Lot-to-Bee Ratio is 0.75

However, it is important to note that the Greedy average parking times in Figure 52 does not

decrease as HoneyPark car percentage increases. This is because the lot-to-bee ratio is too low and

there are too many cars in simulation. Therefore, there is competition for the closest due to the

simple fact that there is more competition at this lot-to-bee ratio in general.

5.5 Algorithmic Performance with a Mix of V2V and Non-V2V Cars

 There is a possibility that certain cars may not have vehicle-to-vehicle communication

capability and cannot send adverts to the HoneyPark system. However, it may be possible for them

to use the HoneyPark algorithm to shorten their parking time. Figure 53, Figure 54 and Figure 55

shows the performance of each algorithm when all drivers are using the HoneyPark algorithm but

some of them are not capable of sending adverts. Table 31, Table 32 and Table 33 provides the

P-R
P-R (REG-NEG)

P-G
P-G (REG-NEG)

PL-R

Algorithm

PL-R (REG-NEG)
PL-G

PL-G (REG-NEG)
P-R (INS-NEG)0

PL-R (INS-NEG)
20

500

HoneyPark Car Percentage (%)

40

1000

60 80

Av
er

ag
e

Pa
rk

in
g

Ti
m

e
(s

ec
)

1500

2000

2500

 134

same data as the figures in numeric form with the addition of how many simulation runs were

performed for each algorithm

 135

Figure 53 – Average Parking Times when V2V Car Percentage is varied (Lot-to-Bee Ratio
= 2)

60

62

64

66

68

70

72

74

76

78

80

20 40 60 80

Av
er
ag
e	
Pa
rk
in
g	T

im
e	
(s
ec
)

V2V	Car	Percentage	(%)

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG)

PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

 136

Figure 54 – Average Parking Times when V2V Car Percentage is varied (Lot-to-Bee Ratio
= 1)

100

110

120

130

140

150

160

170

180

20 40 60 80

Ax
is	
Ti
tle

Axis	Title

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG)

PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

 137

Figure 55 – Average Parking Times when V2V Car Percentage is varied (Lot-to-Bee Ratio
= 0.75)

600

700

800

900

1000

1100

1200

1300

1400

20 40 60 80

Av
er
ag
e	
Pa
rk
in
g	T

im
e	
(s
ec
)

V2V	Car	Percentage	(%)

P-R P-R	(REG-NEG) P-G P-G	(REG-NEG) P-R	(INS-NEG)

PL-R PL-R	(REG-NEG) PL-G PL-G	(REG-NEG) PL-R	(INS-NEG)

 138

Table 31 – Average Parking Times and Variances at Varying V2V Car Percentages when Bee-to-lot Ratio = 2

Table 32 – Average Parking Times and Variances at Varying V2V Car Percentages when Bee-to-lot Ratio = 1

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

P-R 70 70.937 5.826 70 70.191 5.137 70 71.018 5.523 70 70.589 5.115
P-R (REG-NEG) 70 70.906 5.294 70 71.659 5.972 70 70.573 5.520 70 72.128 6.123

P-G 70 70.905 5.363 70 69.905 4.982 70 69.732 5.355 70 70.054 5.484
P-G (REG-NEG) 70 70.890 5.365 70 70.452 5.086 70 70.184 5.086 70 70.501 5.711

PL-R 70 69.191 4.185 70 68.889 4.325 70 68.582 4.053 70 68.051 4.478
PL-R (REG-NEG) 70 69.104 4.038 70 69.372 4.386 70 69.403 4.453 70 68.094 4.093

PL-G 70 69.318 4.333 70 69.470 4.020 70 68.929 4.125 70 68.526 4.435
PL-G (REG-NEG) 70 68.901 4.499 70 68.470 4.423 70 68.551 4.266 70 68.052 4.514
P-R (INS-NEG) 70 70.975 5.653 70 70.342 5.330 70 69.450 4.734 70 69.587 3.966
PL-R (INS-NEG) 70 71.302 5.587 70 71.779 5.628 70 70.400 4.897 70 69.125 4.190

20 40 60 80

Algorithm

V2V Car Percentage (%)

20

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

P-R 70 172.674 20.121 70 144.104 11.276 70 138.654 10.229 70 135.867 10.613
P-R (REG-NEG) 70 173.340 19.008 70 148.879 11.446 70 138.539 10.552 70 134.606 10.044

P-G 70 165.610 18.660 70 143.403 12.062 70 137.879 10.037 70 135.031 10.381
P-G (REG-NEG) 70 168.013 17.822 70 142.818 10.020 70 138.951 9.633 70 134.545 10.372

PL-R 70 124.695 11.085 70 113.952 8.577 70 108.599 5.542 70 106.306 5.724
PL-R (REG-NEG) 70 123.837 10.052 70 112.645 6.535 70 108.177 6.116 70 106.301 6.003

PL-G 70 127.797 11.396 70 113.716 7.452 70 108.523 6.530 70 106.549 5.573
PL-G (REG-NEG) 70 126.739 11.963 70 112.096 6.932 70 107.846 5.925 70 105.621 5.543
P-R (INS-NEG) 70 159.553 23.670 70 124.212 10.936 70 115.417 6.691 70 113.199 7.298
PL-R (INS-NEG) 70 137.079 12.993 70 115.874 8.164 70 108.839 6.939 70 105.122 6.073

V2V Car Percentage (%)
20 40 60 80

Algorithm

 139

Table 33 – Average Parking Times and Variances at Varying V2V Car Percentages when Bee-to-lot Ratio = 0.75

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

No. of
Simulations
Executed

Average Parking
Time (sec)

Standard
Deviation
of Average

Parking Time
(sec)

P-R 70 644.190 27.428 70 640.257 26.248 70 636.738 25.699 70 632.127 21.367
P-R (REG-NEG) 70 648.411 30.675 70 638.884 28.309 70 637.942 24.376 70 631.462 29.528

P-G 70 710.182 27.778 70 678.303 36.383 70 666.306 31.594 70 642.903 31.431
P-G (REG-NEG) 70 714.530 32.527 70 679.896 30.582 70 662.054 32.372 70 647.557 32.586

PL-R 70 619.420 24.363 70 610.270 26.475 70 612.211 23.025 70 610.946 23.763
PL-R (REG-NEG) 70 614.933 25.009 70 606.659 24.410 70 610.261 23.564 70 604.506 24.435

PL-G 70 700.394 25.585 70 662.515 25.060 70 648.566 27.169 70 623.360 23.113
PL-G (REG-NEG) 70 706.848 29.305 70 668.928 30.931 70 644.812 29.528 70 627.694 27.321
P-R (INS-NEG) 70 1314.585 86.191 70 900.070 55.226 70 770.522 39.476 70 682.233 30.428
PL-R (INS-NEG) 70 1313.988 89.504 70 890.017 56.536 70 770.071 38.854 70 683.974 32.703

Algorithm

V2V Car Percentage (%)
20 40 60 80

 140

 Simulation results show that using the HoneyPark algorithm without sufficient V2V cars

generally results in longer average parking times for both V2V and non-V2V cars for ratios that

are equal to one. Figure 54 shows that the average parking time for all drivers decreases as the

proportion of V2V driver increases for all variations of the HoneyPark algorithm. This is because

as non-V2V drivers are occupying and leaving parking spaces without updating the system, the

system is consequently measuring the profitability of the parking lot based on incorrect, outdated

data. Therefore, there must be enough V2V drivers in the simulation to keep the system updated

so that the algorithm can accurately calculate the profitability of each lot.

 The same general trend can also be observed when the ratio is 0.75 as shown in Figure 55.

The only major deviation is the fact that algorithms that use the Greedy scouting algorithm perform

significantly worse than their counterparts that use the Random algorithm. Similar to Section 5.5,

drivers in a mixed environment of V2V and non-V2V cars rely more on scouting algorithms as the

HoneyPark system does not receive adverts from all drivers and therefore does not always have an

accurate measure of the profitability of parking lots in the simulation. The underperformance of

the Greedy scouting algorithm is likely due to the fact that it only scouts the nearest lots to a small

group of profitable lots. As a result, it greatly increases competition for a small subset of lots and

prevents drivers from exploring more profitable options.

 Another significant thing to note in Figure 55 is that the instantaneous negative feedback

algorithms performs significantly worse at lower V2V car percentages when the ratio is 0.75.

Their performance also improves drastically as the V2V car percentage increases. This is because

the instantaneous negative feedback feature keeps drivers from going to parking lots that are

marked as full at a point in time. As the HoneyPark system is not consistently accurate as it is not

receiving adverts from all drivers in the simulation, it is possible that ‘false negatives’ may occur.

 141

In this sense, a ‘false negative’ arises when parking lots are still marked as full even though they

may no longer be fully occupied. Instantaneous negative feedback algorithms may keep drivers

from visiting such lots, preventing drivers from finding spaces within them. This will obviously

result in a longer parking time. Increasing the V2V car percentage will drastically improve the

performance of such algorithms because there are more drivers sending adverts. As such, the

HoneyPark system is able to mark which lots are filled with greater accuracy and consequently

reduce the occurrence of a ‘false negative’.

 For ratios exceeding one, Figure 53 shows that a change in proportion of V2V drivers does

not significantly affect the overall average parking time. This is mainly due to the fact that there

is more parking supply than demand and it is likely that drivers can find a parking space regardless

of which lot they choose to search. In such a case, the average parking time is less affected by the

accuracy of the HoneyPark system simply because it is likely that drivers can find a vacant parking

spot as all the parking lots are profitable. Therefore, as shown in Figure 53, changing the proportion

of V2V drivers in the simulation will not have a substantial effect on the average parking time.

5.6 Algorithmic Performance in Real-Time Traffic Environment

 This section discusses the performance of the Random, Greedy and HoneyPark algorithms

in a real-time traffic environment. Traffic is added to the simulation environment using the travel

times provided by the Google Distance Matrix API. The travel times provided by the Google API

is much longer than that provided by OpenStreetMaps API used in previous simulations,

simulating the fact that the driver experience traffic on the roads and will take a longer time to

reach their destination. The Google API provides three traffic models that we will use to adjust the

level of traffic in the simulation:

 142

1. Optimistic Model: Provides data when traffic has been good (i.e. less traffic) based on

historical traffic data.

2. Best-Guess Model: Estimates what traffic would be like based on historical traffic data.

3. Pessimistic Model: Provides data when traffic has been bad (i.e. more traffic) based on

historical traffic data.

As the API has a daily limit, the author only had time to test one variation of the HoneyPark

algorithm. The Parked-Leave, Random-Scouting Algorithm was chosen as it was the only

algorithm that was consistently the most efficient in all scenarios.

 Figure 56 shows the performance of the algorithms under varying real-life traffic

conditions when the ratio is 0.75, 1 and 2 respectively. Table 34 displays the data in its numeric

form along with the number of simulations executed for each algorithm. With real-life traffic

conditions, more simulations were needed to obtain a stable answer. Therefore, 100 simulations

were performed for the Random and HoneyPark algorithms. As previous sections have discussed,

the Greedy algorithm is extremely slow and there was not enough time and computational

resources to execute multiple simulations for it. As the algorithm is proven to consistently

underperform, there is no need to rigorously test it. Thus, only one simulation was done for the

Greedy algorithm so that one has an idea of its performance in a real-life traffic situation.

 143

Figure 56 – Average Parking Times in Varying Traffic Conditions at Various Ratios and
Traffic Conditions

0

1000

2000

0.75, Pessimistic

3000

Av
er

ag
e

Pa
rk

in
g

Ti
m

e
(s

ec
)

4000

0.75, Best-Guess

0.75, Optimistic

1, Pessimistic

Bee-to-Lot Ratio, Traffic Condition

1, Best-Guess

1, Optimistic

2, Pessimistic

2, Best-Guess
Random

Algorithm
2, Optimistic Greedy

PL-R

 144

Table 34 – Average Parking Times and Variances in Varying Traffic Conditions at Ratios of 0.75, 1 and 2

No. of
Simulations

Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking

Time (sec)

Ratio of
Parking
Time to
Random
Parking

No. of
Simulations

Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking

Time (sec)

Ratio of
Parking
Time to
Random
Parking

No. of
Simulations

Executed

Average
Parking

Time (sec)

Standard
Deviation

of Average
Parking

Time (sec)

Ratio of
Parking
Time to
Random
Parking

Random 100 798.961 62.052 1.000 100 726.384 33.802 1.000 100 692.930 32.422 1.000
Greedy 1 3100.579 - 3.881 1 2524.438 NA 3.475 1 2175.376 - 3.139

PL-R 100 717.677 80.691 0.898 100 669.296 30.078 0.921 100 644.184 25.531 0.930
Random 100 354.214 68.643 1.000 100 270.963 39.474 1.000 100 231.505 33.387 1.000
Greedy 1 1975.263 - 5.576 1 1540.158 NA 5.684 1 1304.737 - 5.636

PL-R 100 217.175 35.563 0.613 100 169.425 16.585 0.625 100 142.425 9.733 0.615
Random 100 196.714 41.960 1.000 100 148.467 23.174 1.000 100 118.530 12.872 1.000
Greedy 1 962.567 - 4.893 1 781.328 NA 5.263 1 685.284 - 5.782

PL-R 100 131.340 22.684 0.668 100 103.761 12.304 0.699 100 88.320 7.050 0.745

0.75

Be
e-

to
-L

ot
 R

at
io

Algorithm

2

1

Google Traffic Condition
Pessimistic Best Guess Optimistic

Lot-to-
Bee

Ratio

 145

 As one can see, pessimistic traffic conditions consistently results in longer parking times,

followed by best-guess and optimistic traffic conditions. The reason for this occurrence is simply

the fact that it takes a longer time to travel to a parking lot when traffic is bad. This consequently

lengthens average parking time.

Figure 56 also shows that the HoneyPark algorithm consistently performs better than either

the Random or Greedy parking algorithms. This is because the HoneyPark algorithms first uses

data collected from adverts and Google Traffic to determine if a parking is profitable and if it is

too much trouble to travel to the lot respectively. As such, it is more likely to send drivers to

parking lots where they can find parking and/or where there is less traffic. Random does not

consider any of these factors and sends drivers to random parking lots, which can result in long

parking times in bad conditions. Greedy insists on sending drivers to the nearest parking lots,

which can quickly increase competition for those lots and result in long parking times. Coupled

with bad traffic conditions, this can result in abnormal parking times. As the data shows, the

average parking time produced by the Greedy algorithm can exceed 10 times that of the HoneyPark

algorithm.

5.7 Summary of Experimental Results

 This chapter essentially discusses if and why the HoneyPark algorithms are effective or

ineffective in a variety of situations. Table 35 shows the relative performance of each HoneyPark

variation in each scenario as compared to the Random algorithm. The numbers are calculated by

dividing the HoneyPark average parking time by the Random average parking time. Therefore,

values less than one indicate that the HoneyPark algorithm performs better than Random algorithm

and vice versa.

 146

Table 35 – Relative Performance of all HoneyPark Variations in All Tested Scenarios
V
ar
yi
ng

	L
ot
-t
o-
Be

e	
	

Ra
ti
o	

(O
ne

	D
es
t)
		 Lot-to-Bee	Ratio	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

0.5	 1.006	 1.006	 1.007	 1.008	 1.016	 1.003	 0.998	 1.006	 1.006	 1.012	

0.75	 1.001	 1.003	 1.003	 1.004	 0.984	 0.964	 0.971	 0.970	 0.964	 0.974	

1	 0.898	 0.911	 0.898	 0.897	 0.728	 0.707	 0.705	 0.703	 0.707	 0.691	

2	 0.935	 0.936	 0.924	 0.945	 0.910	 0.897	 0.902	 0.901	 0.907	 0.917	

4	 0.937	 0.945	 0.948	 0.944	 0.941	 0.921	 0.939	 0.948	 0.924	 0.933	

V
ar
yi
ng

	L
ot
-t
o-
Be

e	
	

Ra
ti
o	

(O
ne

	M
es
h	
D
es
t)
		

Number	of	Drivers	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

Small	 0.973	 0.970	 0.973	 0.977	 0.952	 0.960	 0.963	 0.958	 0.956	 0.967	

Moderate	 0.993	 0.993	 0.987	 0.990	 0.910	 0.941	 0.945	 0.944	 0.946	 0.904	

Large	 0.846	 0.849	 0.844	 0.852	 0.810	 0.722	 0.717	 0.722	 0.720	 0.721	

Very	Large	 0.855	 0.846	 0.851	 0.849	 0.829	 0.734	 0.729	 0.743	 0.746	 0.775	

 147

Table 35 (continued) – Relative Performance of all HoneyPark Variations in All Tested Scenarios
V
ar
yi
ng

	E
rr
an

d	
Ti
m
e	
Le
ng

th
	

Errand	Time	Length	
(Lot-to-Bee	Ratio	=	

0.75)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

0-600 1.101	 1.104	 1.081	 1.096	 0.949	 0.945	 0.942	 0.942	 1.078	 0.996	

1800-2400 1.013	 1.014	 1.017	 1.016	 0.983	 0.982	 0.985	 0.984	 1.015	 1.005	

3000-3600 1.011	 1.012	 1.016	 1.014	 0.990	 0.991	 0.992	 0.991	 1.009	 1.006	

6600-7200 1.006	 1.006	 1.008	 1.008	 0.996	 0.996	 0.996	 0.996	 1.005	 1.003	

10200-10800 1.003	 1.003	 1.006	 1.005	 0.997	 0.997	 0.997	 0.997	 1.004	 1.002	

Errand	Time	Length	
(Lot-to-Bee	Ratio	=	1)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

0-600 1.010	 0.992	 0.988	 1.003	 0.864	 0.867	 0.870	 0.860	 0.976	 0.914	

1800-2400 0.769	 0.766	 0.758	 0.763	 0.599	 0.596	 0.597	 0.605	 0.627	 0.589	

3000-3600 0.724	 0.724	 0.729	 0.729	 0.570	 0.574	 0.575	 0.569	 0.592	 0.562	

6600-7200 0.670	 0.677	 0.668	 0.673	 0.529	 0.527	 0.526	 0.526	 0.557	 0.516	

10200-10800 0.668	 0.663	 0.664	 0.656	 0.522	 0.515	 0.519	 0.517	 0.538	 0.503	

Errand	Time	Length	
(Lot-to-Bee	Ratio	=	2)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

0-600 0.920	 0.915	 0.916	 0.911	 0.912	 0.907	 0.896	 0.915	 0.909	 0.928	

1800-2400 0.914	 0.907	 0.926	 0.903	 0.893	 0.900	 0.899	 0.896	 0.904	 0.911	

3000-3600 0.922	 0.910	 0.919	 0.899	 0.879	 0.872	 0.883	 0.881	 0.890	 0.888	

6600-7200 0.922	 0.919	 0.922	 0.914	 0.910	 0.898	 0.898	 0.910	 0.902	 0.919	

10200-10800 0.936	 0.924	 0.903	 0.908	 0.895	 0.895	 0.900	 0.885	 0.899	 0.903	

 148

Table 35 (continued) – Relative Performance of all HoneyPark Variations in All Tested Scenarios
V
ar
yi
ng

	C
on

ge
st
io
n	
Le
ve
ls
	

Time	for	all	Drivers		
to	Enter	Simulation	
(Lot-to-Bee	Ratio	=	

0.75)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

200	 0.984	 0.984	 0.987	 0.994	 0.972	 0.955	 0.957	 0.959	 0.956	 0.964	

400	 0.996	 0.995	 1.003	 0.992	 0.980	 0.974	 0.971	 0.975	 0.972	 0.979	

600	 0.999	 0.998	 0.990	 0.998	 0.965	 0.954	 0.960	 0.958	 0.957	 0.960	

800	 0.989	 0.980	 0.989	 0.986	 0.960	 0.939	 0.943	 0.943	 0.942	 0.951	

Time	for	all	Drivers		
to	Enter	Simulation	
(Lot-to-Bee	Ratio	=	1)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

200	 0.885	 0.883	 0.869	 0.865	 0.725	 0.698	 0.698	 0.704	 0.695	 0.675	

400	 0.862	 0.870	 0.867	 0.859	 0.700	 0.673	 0.669	 0.675	 0.678	 0.654	

600	 0.853	 0.847	 0.839	 0.848	 0.692	 0.667	 0.665	 0.661	 0.673	 0.651	

800	 0.853	 0.837	 0.850	 0.834	 0.707	 0.671	 0.672	 0.674	 0.680	 0.663	

Time	for	all	Drivers		
to	Enter	Simulation	
(Lot-to-Bee	Ratio	=	2)	 P-R

P-R
(REG-
NEG) P-G

P-G
(REG-
NEG)

P-R
(INS-
NEG) PL-R

PL-R
(REG-
NEG) PL-G

PL-G
(REG-
NEG)

PL-R
(INS-
NEG)

200	 0.915	 0.918	 0.927	 0.913	 0.902	 0.895	 0.887	 0.878	 0.890	 0.906	

400	 0.946	 0.955	 0.940	 0.938	 0.934	 0.896	 0.895	 0.902	 0.894	 0.917	

600	 0.960	 0.961	 0.942	 0.952	 0.929	 0.894	 0.902	 0.883	 0.906	 0.921	

800	 0.925	 0.941	 0.942	 0.937	 0.938	 0.890	 0.887	 0.895	 0.888	 0.901	

 149

Table 35 (continued) – Relative Performance of all HoneyPark Variations in All Tested Scenarios
M
ix
	o
f	H

on
ey
Pa
rk
	a
nd

	R
an

do
m
	C
ar
s	

HoneyPark	Car	
Perecentage	

(Lot-to-Bee	Ratio	=	
0.75)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

20	 0.683	 0.698	 0.707	 0.694	 0.899	 0.525	 0.455	 0.474	 0.581	 0.799	

40	 0.939	 0.896	 0.998	 0.962	 0.950	 0.579	 0.629	 0.727	 0.736	 0.918	

60	 0.997	 0.984	 1.141	 1.150	 1.105	 0.671	 0.688	 0.873	 0.882	 1.117	

80	 1.188	 1.244	 1.316	 1.304	 1.365	 0.810	 0.896	 1.144	 1.050	 1.251	

HoneyPark	Car	
Perecentage	

(Lot-to-Bee	Ratio	=	1)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

20	 0.659	 0.663	 0.662	 0.654	 0.613	 0.535	 0.559	 0.552	 0.534	 0.627	

40	 0.759	 0.748	 0.771	 0.737	 0.669	 0.587	 0.590	 0.599	 0.592	 0.651	

60	 0.883	 0.848	 0.884	 0.826	 0.665	 0.609	 0.635	 0.610	 0.604	 0.642	

80	 0.873	 0.816	 0.886	 0.796	 0.607	 0.582	 0.637	 0.613	 0.626	 0.603	

HoneyPark	Car	
Perecentage	

(Lot-to-Bee	Ratio	=	2)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

20	 0.936	 0.906	 0.905	 0.952	 0.915	 0.855	 0.871	 0.862	 0.878	 0.884	

40	 0.906	 0.892	 0.871	 0.885	 0.884	 0.855	 0.881	 0.863	 0.861	 0.876	

60	 0.881	 0.905	 0.902	 0.901	 0.897	 0.906	 0.859	 0.856	 0.876	 0.902	

80	 0.912	 0.917	 0.908	 0.899	 0.937	 0.886	 0.872	 0.873	 0.857	 0.879	

 150

Table 35 (continued) – Relative Performance of all HoneyPark Variations in All Tested Scenarios
M
ix
	o
f	V

2V
	a
nd

	n
on

-V
2V

	C
ar
s	

V2V	Car	Perecentage	
(Lot-to-Bee	Ratio	=	

0.75)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

20	 1.029	 1.035	 1.134	 1.141	 0.989	 0.982	 1.118	 1.129	 2.099	 2.098	

40	 1.022	 1.020	 1.083	 1.086	 0.974	 0.969	 1.058	 1.068	 1.437	 1.421	

60	 1.017	 1.019	 1.064	 1.057	 0.978	 0.974	 1.036	 1.030	 1.230	 1.230	

80	 1.009	 1.008	 1.027	 1.034	 0.976	 0.965	 0.995	 1.002	 1.089	 1.092	

V2V	Car	Perecentage	
(Lot-to-Bee	Ratio	=	1)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

20	 1.160	 1.164	 1.112	 1.129	 1.072	 0.838	 0.832	 0.858	 0.851	 0.921	

40	 0.968	 1.000	 0.963	 0.959	 0.834	 0.765	 0.757	 0.764	 0.753	 0.778	

60	 0.931	 0.931	 0.926	 0.933	 0.775	 0.729	 0.727	 0.729	 0.724	 0.731	

80	 0.912	 0.896	 0.901	 0.889	 0.739	 0.707	 0.711	 0.709	 0.705	 0.689	

V2V	Car	Perecentage	
(Lot-to-Bee	Ratio	=	2)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

20	 0.935	 0.935	 0.935	 0.934	 0.935	 0.912	 0.911	 0.914	 0.908	 0.940	

40	 0.925	 0.944	 0.921	 0.929	 0.927	 0.908	 0.914	 0.916	 0.902	 0.946	

60	 0.936	 0.930	 0.919	 0.925	 0.915	 0.904	 0.915	 0.908	 0.903	 0.928	

80	 0.930	 0.951	 0.923	 0.929	 0.917	 0.897	 0.897	 0.903	 0.897	 0.911	

 151

Table 35 (continued) – Relative Performance of all HoneyPark Variations in All Tested Scenarios
Re

al
-T
im

e	
Tr
af
fic
	E
nv
ir
on

m
en

t	

Google	Traffic	Model	
(Lot-to-Bee	Ratio	=	

0.75)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

Pessimistic	 -	 -	 -	 -	 -	 0.898	 -	 -	 -	 -	

Best	Guess	 -	 -	 -	 -	 -	 0.921	 -	 -	 -	 -	

Optimistic	 -	 -	 -	 -	 -	 0.930	 -	 -	 -	 -	

Google	Traffic	Model	
(Lot-to-Bee	Ratio	=	1)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

Pessimistic	 -	 -	 -	 -	 -	 0.613	 -	 -	 -	 -	

Best	Guess	 -	 -	 -	 -	 -	 0.625	 -	 -	 -	 -	

Optimistic	 -	 -	 -	 -	 -	 0.615	 -	 -	 -	 -	

Google	Traffic	Model	
(Lot-to-Bee	Ratio	=	2)	 P-R	

P-R	
(REG-
NEG)	 P-G	

P-G	
(REG-
NEG)	

P-R	
(INS-
NEG)	 PL-R	

PL-R	
(REG-
NEG)	 PL-G	

PL-G	
(REG-
NEG)	

PL-R	
(INS-
NEG)	

Pessimistic	 -	 -	 -	 -	 -	 0.668	 -	 -	 -	 -	

Best	Guess	 -	 -	 -	 -	 -	 0.699	 -	 -	 -	 -	

Optimistic	 -	 -	 -	 -	 -	 0.745	 -	 -	 -	 -	

 152

Table 36 is an overall ranking of all the HoneyPark variations based on how they performed

in the six scenarios presented in this chapter. Remember that the regular negative feedback is a

redundant feature and therefore produces similar parking times to algorithms that have no negative

feedback. This is why algorithms with no and regular negative feedback are grouped together in

the rankings.

 153

Table 36 – Overall Ranking of HoneyPark Algorithms

Rank Algorithm Explanation for Rank

1 Parked-Leave-Advert, Random-
Scouting Algorithm with No or
Regular Negative Feedback

The only set of algorithms that consistently performs
better than the other algorithms given that the scenarios are
not too extreme (i.e. too high/low lot-to-bee ratio). This is
because the Parked-Leave-Advert feature allows the
drivers to explore a larger group of profitable lots. The
Random scouting algorithm works best as it explores a
more diverse group of parking lots in the case where the
simulation is not completely populated by HoneyPark cars

2 Parked-Leave-Advert, Greedy-
Scouting Algorithm with No or
Regular Negative Feedback

Perform as well as the algorithms ranked number one with
the exception that the Greedy scouting algorithm doesn’t
perform as well in an environment that is not purely
occupied with HoneyPark cars.

3 Parked-Leave-Advert, Random-
Scouting Algorithm with
Instantaneous Negative Feedback

For Parked-Leave-Advert algorithms, the instantaneous
Negative feedback results in a slight improvement in some
cases (i.e. lot-to-bee ratio = 1) and worse performance in
others (i.e. lot-to-bee ratio = 0.75). This is because the
Parked-Leave-Advert feature is already efficient in
allocating lots, so adding instantaneous negative feedback
doesn’t lead to much improvement.

4 Parked-Advert, Random-
Scouting Algorithm with
Instantaneous Negative Feedback

The Parked-Advert feature only considers a smaller pool
of profitable lots, which leads to much worse performance.
Thus, it always helps to implement instantaneous negative
feedback in Parked-Advert algorithms as significant time
can be saved by redirecting drivers heading toward full
lots to other lots that have not been considered by the
algorithm.

5 Parked-Advert, Random-
Scouting Algorithm with No or
Regular Negative Feedback

The Parked-Advert feature leads to significantly worse
parking times as it only considers a small group of
profitable lots. When these profitable lots become full, it
takes time for the algorithm to react to the change, leading
to longer parking times.

6 Parked-Advert, Greedy-Scouting
Algorithm with No or Regular
Negative Feedback

Perform as well as the algorithms ranked number five with
the exception that the Greedy scouting algorithm doesn’t
perform as well in an environment that is not purely
occupied with HoneyPark cars.

 154

 In addition, the algorithm was tested in a setting where not all the drivers have V2V

capabilities but can access the HoneyPark system and therefore, obtain lot recommendations using

the HoneyPark algorithm. However, it seems that all the HoneyPark algorithms are ineffective in

this scenario as the non-V2V drivers heavily disrupts the accuracy of the HoneyPark system by

targeting lots deemed profitably by the HoneyPark algorithm without sending the system any

adverts.

 155

CHAPTER 6. CONCLUSION AND DISCUSSION

 This chapter will give an overview of the findings presented in this thesis. It will start with

a discussion of the two main factors proven to affect the average time taken to find parking:

algorithm design and the parking environment. This will be followed by a section suggesting

further work that can be done to further develop and improve the HoneyPark algorithm.

6.1 Overview

6.1.1 Algorithm Design

 Obviously, algorithm design is an important factor in algorithmic performance. The

findings in Chapter 5 have highlighted two important aspects that drastically affect the

performance of the HoneyPark algorithm: range of lots explored and construction of negative

feedback mechanism.

6.1.1.1 Range of Lots Explored

Chapter 5 shows that one of the keys to creating an effective parking algorithm is finding

the balance between only considering sending the driver to a smaller group of profitable lots, but

not making that group so small to the extent that the algorithm is trying to meet parking demand

with a limited number of parking spaces. The narrowing of possible parking to a smaller group of

more profitable parking lots is indeed beneficial. Simulation results shows that the HoneyPark

algorithm consistently performs better than existing algorithms, namely Random and Greedy as it

considers and are more likely to direct drivers to profitable lots where he or she are more likely to

find a profitable lot. However, if the algorithm only identifies and send drivers to a small group of

 156

profitable lots, such as in the case of Parked-Advert algorithms, it can also increase the amount of

time it takes for the driver to find parking. Simulation results show that the volatility of the parking

environment and the impact of the algorithm on parking profitability is responsible for this

occurrence.

The parking environment is volatile as the profitability of a parking lot is constantly

fluctuating due to movement of drivers and how they choose to park. As discussed in Chapter 5, a

parking algorithm may identify a small, group of very profitable lots. The first few drivers they

send to these lots spend minimal time looking for parking. However, the profitability of parking

lot can change drastically. It is possible that the lots can be quickly occupied by other non-

HoneyPark and non-V2V drivers. But the decline in profitability is often caused by the fact that

the algorithm is parking more cars at that lot and as such, the lot is occupied at a faster rate. As

the algorithm did not consider a larger number of options, simulation data shows that the moment

that identified ‘profitable’ parking lots are full, such algorithms results in long parking times as it

has sent a large number of drivers to look for parking in an unprofitable parking lot. It will take

some time for the algorithm to readjust and find another group of profitable lot. In other words,

the decay of positive feedback is unable to keep up with the decaying profitability of the parking

lot. On the other hand, algorithms that look at a larger group of profitable parking lots will send

fewer drivers to one particular lot. Therefore, the profitability of the parking lot decays at a lower

rate that positive feedback is able to keep up with. In addition, as the algorithm is considering a

larger number of parking lots, there are plenty of other backup options in the case that the most

profitable lots are no longer available.

 Therefore, it is important to strike a balance between identifying a select group of profitable

parking lot and selecting a group of profitable lots that is large enough to keep up with the changing

 157

profitability of parking lots. This is the reason why, according to simulation results, Park-Leave

Adverts algorithms have been the most successful algorithms. They do have a process that uses

advertisements to identify the most profitable lots. However, as they consider both Parked and

Leave Adverts, the group of identified profitable lots is bigger and consequently, they are able to

meet parking demand more efficiently.

6.1.1.2 Design of Negative Feedback Mechanism

 The results in Chapter 5 shows that the design of negative feedback mechanism can have

an impact on algorithmic performance. Throughout the entire chapter, the performance of regular

negative feedback algorithms does not differ much from their non-negative feedback counterparts.

As mentioned in Section 5.1, the design of regular negative feedback creates redundancy as it

prevents cars from exploring lots that they are less likely to explore anyways. The impact of the

instantaneous negative feedback mechanism is greater. In some cases, it shortens the average

parking time as it prevents drivers from wasting time searching lots that are unprofitable. However

in other cases, such as that drivers need to present at a full lot to successfully find an empty parking

space (i.e. when parking demand exceeds parking supply), the mechanism can greatly hurt the

driver’s chances of success.

6.1.2 Parking Environment

The results in Chapter 5 shows that the relative performance of the HoneyPark algorithm is

not only dependent not only on the algorithm design but also on the parking environment.

Fundamentally, the results show that the main factors affecting algorithm performance is the

relative amount of parking demand as compared to parking demand and the type of algorithms that

other drivers are using.

 158

6.1.2.1 Parking Demand vs. Parking Supply

 Section 5.1 has explicitly shown that the relative difference between parking supply and

demand has a large impact on algorithm performance. When parking demand is much lower than

parking supply, there is not much variation in performance among the HoneyPark algorithms as it

is very likely that a driver will find parking regardless of which lot he or she goes to. If the parking

demand is exceptionally lower than parking supply, the Greedy algorithm, which underperforms

in most situations, becomes the most effective algorithm as it simply directs the driver to the closest

lot, which will very likely to have empty spaces.

 When parking demand rivals parking supply, there is a difference in algorithmic

performance among the HoneyPark variations as it is no longer certain that a driver will be able to

get a parking spot at any parking lot. Therefore, the parking algorithm will have to be effective to

identifying which lots are profitable and which lots are not. When parking demand exceeds

parking supply, it is crucial that the algorithm explores all the lots possible due to the limited

amount of parking spaces. Therefore, algorithms that only consider sending drivers to a small

group of lots, such as Parked-Advert algorithms, do not perform as effectively in such situations.

There is also an element of luck involved. There are so many drivers searching for parking at

oversaturated lots that one has be present at a lot when a parking space opens up. If not, the parking

space will quickly be taken by competing drivers. Therefore, the algorithms will need to take this

‘luck’ into consideration. Those who don’t, such as in the case of instantaneous negative feedback

algorithms, will see their performance drop.

 159

6.1.2.2 Other Drivers

 Section 5.5 and 5.6 also shows that algorithmic performance is also influenced by the

parking algorithms that other drivers are using as well. One of the main factors that affects

algorithmic performance in this regard is the competition for parking lots. For example, Section

5.5 shows that more drivers using the HoneyPark algorithms results in more drivers being sent to

the identified profitable lots, increasing competition for those specific lots and resulting in longer

parking times. Another factor to consider is whether the parking methods used by other drivers

affect the accuracy of the data gathered by the HoneyPark system. Section 5.6 shows that the

presence of non-V2V drivers using the HoneyPark system without updating it greatly lengthens

parking for all the drivers. This is because it renders the data collected by the HoneyPark system

inaccurate, especially on the lots that it considers profitable.

6.2 Potential Future Work

 Based on the findings of this thesis, one avenue for further algorithm development is the

creation of a HoneyPark variation that will perform in a mixture of V2V and non-V2V vehicles.

This can be done by introducing an ‘error’ element in the advertisement system which

acknowledges that the raw advertisement data may need correction. With this component, the

HoneyPark algorithm may be able to still identify correctly which lots are more profitable and

perform efficiently as result.

 This thesis was only responsible for identifying the general trends that affected algorithm

performance. As such, further investigations can be done to further detail the performance of the

HoneyPark algorithm. One example is finding the true limits of the HoneyPark variations at which

it starts or stops becoming effective. The thesis identified that negative feedback algorithms

 160

performed worse when parking demand was higher than parking supply. But it did not identify

exactly at what point (i.e. the exact lot-to-bee ratio) certain algorithms become more or less

efficient. Therefore, more simulations can be conducted to find the numerical limit at which certain

algorithms become more or less effective.

 One could also look into further optimizing the HoneyPark algorithm by getting rid of some

of the constraints imposed in the simulations analyzed in this thesis. For example, the simulations

were programmed in such a way that only parking lots within a certain distance of the driver’s

destination is considered. The algorithm could be modified so that this distance is increased when

all the parking lots within the current range is full, allowing the driver to explore other feasible

drivers when all current options are exhausted.

 Further investigation can be conducted regarding the feasibility of the HoneyPark

algorithm in a real-world setting. Most of the environments created in this thesis was done on a

theoretical basis and may not necessarily reflect realistic parking situations. For example, this

thesis did investigate when parking demand was varied in relation to parking demand but did not

look at what the lot-to-bee ratio is for the majority of parking situations that occur in daily life.

Therefore, one could try to find real-world parking data and investigate whether the HoneyPark

algorithm will fare under such circumstances.

 All algorithms were tested in the same simulation setting. Only the road and parking

infrastructure of San Francisco was used to evaluate algorithm performance and was modified in

any way. Therefore, one could look at how the HoneyPark algorithm performs in a variety of

parking infrastructures. This could include testing the algorithm in variety of cities or adding and

taking away parking lots at strategic geographical points of the environment with this intention of

 161

seeing the geographical effect on algorithmic performance. In addition, all algorithms were only

tested using parking lots. The simulation environment did not include other types of parking such

as street parking. Therefore, future tests can include a variety of parking spaces and examine if the

HoneyPark algorithm is also effective in measuring the profitability of different kinds of parking

spaces.

 162

REFERENCES

Aytug, H., Khouja, M., & Vergara, F. E. (2003). Use of Genetic Algorithms to Solve Production
and Operations Management Problems: A Review. International Journal of Production
Research, 41(17), 3955-4009.

Biswas, S., Tatchikou, R., & Dion, F. (2006). Vehicle-to-vehicle wireless communication

protocols for enhancing highway traffic safety. IEEE Communications Magazine, 44, 74-
82.

Blum, C., & Li, X. (2008). Swarm Intelligence in Optimization Swarm Intelligence (pp. 43-85):

Springer Berlin Heidelberg.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From Natural to

Artificial Systems. New York, NY: Oxford University Press.

Bucciol, P., Masala, E., & Martin, J. C. D. (2005). Dynamic Packet Size Selection for 802.11

Inter-Vehicular Video Communications. Paper presented at the 1st International Workshop
on Vehicle-to-Vehicle Communication.

Chinrungrueng, J., Sunantachaikul, U., & Triamlumlerd, S. (2007). Smart Parking: an

Application of optical Wireless Sensor Network. Paper presented at the Proceedings of the
2007 International Symposium on Applications and the Internet Workshops.

Crepaldi, R., Beavers, R., Ehrat, B., Sze, J., Jaeger, M., Biersteker, S., & Kravets, R. (2012).

LoadingZones: Leveraging Street Parking to Enable Vehicular Internet Access. Paper
presented at the CHANTS'12 - 7th ACM International Workshop on Challenged Networks,
Istanbul, Turkey.

Darwin, C. (1859). On the Origin of Species: John Murray.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational

Intelligence Magazine, 1, 28-39.

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach

to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1),
53-66.

Grassé, P. P. (1946). Les insects dans leur univers. Paris: Ed. du Palais de la d ́ecouverte.

Grossberg, S. (1988). Nonlinear Neural Networks: Principles, Mechanisms, and Architectures.

Neural Networks, 1, 17-61.

 163

Heppner, F. H., & Grenander, U. (1990). A Stochastic Nonlinear Model for Coordinate Bird
Flocks. In S. Krasner (Ed.), The Ubiquity of Chaos (pp. 233-238): American Association
for the Advancement of Science.

Idris, M. Y. I., Leng, Y. Y., Tamil, E. M., Noor, N. M., & Razak, Z. (2009). Car Park System: A

Review of Smart Parking System and its Technology. Information Technology Journal,
8(2), 101-113.

Kar, A. K. (2016). Bio inspired computing – A review of algorithms and scope of applications.

Expert Systems With Applications, 59, 20-32.

Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm.

Applied Mathematics and Computation, 214(1), 108-132.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3),
459-471.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Paper presented at the IEEE

International Conference on Neural Networks, Perth, WA, Australia.

Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm Intelligence. San Mateo, CA: Morgan

Kaufmann.

Khang, S. C., Hong, T. J., Chin, T. S., & Wang, S. (2010). Wireless Mobile-based Shopping Mall

Car Parking System (WMCPS). Paper presented at the IEEE Asia-Pacific Services
Computing Conference, Hangzhou, China.

LaMorte, W. W. (2017). Mann Whitney U Test (Wilcoxon Rank Sum Test). Retrieved from

http://sphweb.bumc.bu.edu/otlt/mph-
modules/bs/bs704_nonparametric/BS704_Nonparametric4.html

Liu, Z., & Cai, Y. (2005). Sweep based multiple ant colonies algorithm for capacitated vehicle

routing problem. Paper presented at the IEEE International Conference on e-Business
Engineering, Beijing, China.

Lu, N., Cheng, N., Zhang, N., Shen, X., & Mark, J. W. (2014). Connected Vehicles: Solutions

and Challenges. IEEE Internet of Things Journal, 1(4), 289-299.

Millonas, M. M. (1994). Swarms, phase transitions, and collective intelligence. In M.

Palaniswami, Y. Attikiouzel, R. Marks, D. Fogel, & T. Fukuda (Eds.), Computational
Intelligence: A Dynamic System Perspective (pp. 137-151): IEEE.

Mimbela, L. E. Y., & Klein, L. A. (2000). A Summary of Vehicle Detection and Surveillance

Technologies used in Intelligent Transportation Systems. Retrieved from
https://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007/vdstits2007.pdf

 164

Nadeem, T., Dashtinezhad, S., Liao, C., & Iftode, L. (2004). TrafficView: Traffic Data

Dissemination using Car-to-Car Communication. Mobile Computing and Communications
Review, 8, 6-19.

Nakrani, S., & Tovey, C. (2007). From honeybees to Internet servers: biomimicry for distributed

management of Internet hosting centers. Bioinspiration & Biomimetics, 2(4), 182-197.

Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The Bees

Algorithm — A Novel Tool for Complex Optimisation Problems. Paper presented at the 2nd
I*PROMS Virtual International Conference.

Reynolds, C. W. (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer

Graphics, 21(4), 25-34.

Rizzoli, A. E., Oliverio, F., Montemanni, R., & Gambardella, L. M. (2007). Ant colony

optimization for real-world vehicle routing problems. Swarm Intelligence, 1, 135-151.

Sadegh, N. (1993). A perceptron network for functional identification and control of nonlinear

systems. IEEE Transactions on Neural Networks, 4(6), 982-988.

Sato, T., & Hagiwara, M. (1997). Bee System: Finding Solution by a Concentrated Search. Paper

presented at the IEEE International Conference On Systems, Man, And Cybernetics,
Orlando, FL.

Seeley, T. D., Camazine, S., & Sneyd, J. (1991). Collective Decision-Making in Honey Bees:

How Colonies Choose among Nectar Sources. Behavioral Ecology and Sociobiology,
28(4), 277-290.

Seely, T. D. (1995). The wisdom of the hive: the social physiology of honey bee colonies.

Cambridge, Massachusetts: Harvard University Press.

Shoup, D. C. (2005). The High Cost of Parking. Chicago: American Planners Association.

Shoup, D. C. (2006). Cruising for parking. Transport Policy, 13(6), 479-486.

Sichitiu, M. L., & Kihl, M. (2008). Inter-vehicle communication systems: a survey. IEEE

Communications Surveys & Tutorials, 10(2).

Srinivasan, D., Loo, W. H., & Cheu, R. L. (2003). Traffic incident detection using particle

swarm optimization. Paper presented at the Swarm Intelligence Symposium, Indianapolis,
IN.

Tang, V. W. S., Zheng, Y., & Cao, J. (2006). An Intelligent Car Park Management System based

on Wireless Sensor Networks. Paper presented at the First International Symposium on
Pervasive Computing and Applications, Urumqi, China.

 165

Tasseron, G., Martens, K., & Heijden, R. v. d. (2015). The Potential Impact of Vehicle-to-

Vehicle and Sensor-to-Vehicle Communication in Urban Parking. IEEE Intelligent
Transportation Systems Magazine, 7, 22-33.

Teodorović, D., & Dell'Orco, M. (2005). Bee colony optimization - A cooperative learning

approach to complex transportation problems. 16th Mini-EURO Conference on Advanced
OR and AI Methods in Transportation, 51-60.

Tomar, P., Kaur, G., & Singh, P. (2017). A Prototype of IoT-Based Real Time Smart Street

Parking System for Smart Cities Internet of Things and Big Data Analytics Toward Next-
Generation Intelligence (pp. 243-263): Springer.

Verroios, V., Efstathiou, V., & Delis, A. (2011). Reaching Available Public Parking Spaces in

Urban Environments using Ad-hoc Networking. Paper presented at the 12th IEEE
International Conference on Mobile Data Management, Lulea, Sweden.

Wang, H., & He, W. (2011). A Reservation-based Smart Parking System. Paper presented at the

IEEE Conference on Computer Communications Workshops, Shanghai, China.

Wilson, E. O. (1975). Sociobiology: The New Synthesis. Cambridge, MA: Harvard University

Press.

Yang, X., Liu, L., Vaidya, N. H., & Zhao, F. (2004). A vehicle-to-vehicle communication

protocol for cooperative collision warning. Paper presented at the The First Annual
International Conference on Mobile and Ubiquitous Systems: Networking and Services,
Boston, MA.

Yau, C. Mann-Whitney-Wilcoxon Test. Retrieved from http://www.r-tutor.com/elementary-

statistics/non-parametric-methods/mann-whitney-wilcoxon-test

Zhao, J., Jia, L., Chen, Z., & Wang, X. (2006). Urban traffic flow forecasting model of double

RBF neural network based on PSO. Paper presented at the Sixth International Conference
on Intelligent Systems Design and Applications, Jinan, China.

Zhu, Y., Liu, X., Li, M., & Zhang, Q. (2013). POVA: Traffic Light Sensing with Probe Vehicles.

IEEE Transactions on Parallel and Distributed Systems, 24(7), 1390-1400.

