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Abstract

In this paper we propose a method for wavelet-�ltering of noisy signals when prior infor-

mation about the energy of the signal of interest is available. Assuming the independence

model, according to which the wavelet coeÆcients are treated individually, we propose a

level dependent shrinkage rule that turns out to be the �-minimax rule for a suitable class

� of realistic priors on the wavelet coeÆcients.

The proposed methodology, particularly applicable to noisy signals with a low signal-

to-noise ratio, is illustrated on a battery of standard test functions. A real-life example in

atomic force microscopy (AFM) is also discussed.

KEY WORDS: Wavelet Regression; Shrinkage; Bounded Normal Mean, �-minimaxity,

Atomic Force Microscopy.
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1 Introduction

Gamma-minimax theory, originally proposed in Robbins (1951), deals with the problem of

selecting decision rules. Philosophically, the �-minimax criterion is situated in between the

Bayes paradigm, which selects procedures that work well \on average," and the minimax

paradigm, which guards against catastrophic outcomes, however unlikely. It has evolved

from seminal papers in the �fties (Robbins, 1951; Good, 1952) and early sixties, through an

extensive research on foundations and parametric families in the seventies, to a branch of

Bayesian robustness theory, in the eighties and nineties. In this latter setup a comprehensive

discussion of the �-minimax can be found in Berger (1984, 1985).

The �-minimax paradigm involves incorporating the prior information about the statis-

tical model, not via a single prior distribution, but rather by a family of plausible priors,

�: Such \family of priors" elicitations are often encountered in practice. Given this family

of priors, the decision maker is selecting an action that is optimal with respect to the least

favorable prior in the family.

Inference of this kind is often interpreted in terms of a game. Suppose that the decision

maker is Player II. Player I, an intelligent opponent to Player II, chooses the \least favorable"

prior from the family �: Player II chooses an action that will minimize his loss, irrespective

of what prior Player I has selected. The action of Player II is referred to as the �-minimax

action.

A decision maker's actions are functions of observed data, and such functions are often

called decision rules. In many models of interest, the exact �-minimax rules are intractable

or, at best, computationally involved.

Formally, let D be the set of all decision rules and � be a family of prior distributions on

the parameter space �. A rule Æ� is �-minimax if

inf
Æ2D

sup
�2�

r(�; Æ) = sup
�2�

r(�; Æ�)

where r(�; Æ) = E�
h
E

Xj�
� L(�; Æ)

i
= E�R(�; Æ) is the Bayes risk under the loss L(�; Æ). Note

that when � is the set of all priors �-minimax rule coincides with minimax rule; when �
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is a singleton then �-minimax rule coincides with Bayes rule. When the decision problem,

viewed as a statistical game, has a value, then the �-minimax solution coincides with the

Bayes rule with respect to the least favorable prior.

In the present paper we consider a �-minimax approach to the classical non parametric

regression problem

Yi = f(ti) + "i; i = 1; : : : ; n; (1)

where ti, i = 1; : : : ; n, is a deterministic equispaced design in [0; 1], the random errors "i

are i.i.d. centered normal random variables with common variance �2 and the interest is to

recover the function f using the observations Yi. Additionally, we assume that the unknown

signal f has a bounded energy, hence it assumes values from a bounded interval. After

applying a linear and orthogonal wavelet transformation, model (1) becomes

dj;k = �j;k + �j;k

where dj;k, �j;k and �j;k are the wavelet coeÆcients (at resolution j and position k) of Y , f

and " respectively. However, the orthogonality of the wavelet transformation preserves the

independence of the wavelet coeÆcients, the stochastic structure of the noise and the bound

on the energy. Due to the independence of the coeÆcients, in the sequel we will omit the

double indices j; k and will work with a generic wavelet coeÆcient d. Therefore the model is

d = � + � (2)

where [dj�] � N (�; �2) (�2 is assumed known).

Shrinkage rule in the wavelet domain have been often proposed in the literature to esti-

mate the location parameter � in model (2), for example in Donoho et al. (1995) and related

papers in the minimax setup; Abramovich et al. (1998), Chipman et al (1997), Vidakovic

(1998) and Vidakovic and Ruggeri (2001) in the Bayesian setup. Informally speaking, a

shrinkage rule in the wavelet domain replaces the observed empirical wavelet coeÆcients d

with their shrunk version �̂ = Æ(d). The form of the particular rule Æ(�) characterizes the

performance of the estimate.
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Bayesian models in the wavelet domain have showed to be capable of incorporating

prior information about the unknown signal such as smoothness, periodicity, sparseness,

self-similarity and for some particular basis (Haar) also the monotonicity. This is usually

achieved by eliciting a single prior distribution � on the space of parameters � and then

choosing the estimator �̂ = Æ(d) that minimizes the Bayes risk with respect to the given

prior.

It is well known that most of the signals encountered in practical applications have (for

each resolution level) empirical distributions of detail wavelet coeÆcients centered around

zero and peaked at zero. A realistic Bayesian model that takes into account this prior

knowledge should consider prior distribution, �, that produces a reasonable agreement with

observations. Hence a realistic prior distribution on the wavelet coeÆcient � is if type

�(�) = �0Æ0 + (1� �0)�(�) (3)

where Æ0 is a point mass at zero, � is a symmetric and unimodal distribution on the parameter

space � and �0 is a �xed parameter in [0; 1], usually level dependent, that regulates amount

of shrinkage for values of d close to 0.

Prior models of this type have been indicated in the early 1990's by Berger and M�uller

(personal communication), considered in Abramovich et al (1998), Vidakovic (1998) and

Vidakovic and Ruggeri (2001), among others.

It is however clear that specifying a single prior distribution � on the parameter space �

can never be done exactly. Indeed the prior knowledge of real phenomena always contains

some kind of approximation such that several types of distributions can match the prior

belief, meaning that on the basis of the partial knowledge about the signal, it is possible to

elicit only a family, �, of plausible priors. In a robust Bayesian point of view the choice of a

particular rule Æ should not be inuenced by the choice of a particular prior, as long as it is

in agreement with our prior belief. Several approaches have been considered for measuring

the robustness of a speci�c rule, �-minimax being one of the compromising possibilities.

In this paper we would like to incorporate prior belief on the boundedness of energy of
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the signal. A priori information on the energy bound often exists in real life problems and

it can be modelled by the assumption that the parameter space � is bounded. Estimation

of a bounded normal mean has been considered in Bickel (1981), Casella and Strawderman

(1981), Miyasawa (1953), Donoho et al (1990) in the minimax context and in Vidakovic

and DasGupta (1996) in the �-minimax setup. It is however well know than estimating a

bounded normal mean represents a diÆcult task. Thus, if the structure of the prior (3) can

be supported by the analysis of the empirical distribution of the wavelet coeÆcients, the

precise elicitation of the distribution � cannot be done without some kind of approximation.

Of course when prior knowledge on the energy bound is available, then any symmetric and

unimodal distribution supported on a bounded set can be a possible candidate for �.

Let � denote the family of priors of interest

� = f�(�) = �0Æ0 + (1� �0)q(�); q(�) 2 �SU [�m;m]g; (4)

where �SU [�m;m] is the class of all unimodal and symmetric distributions supported on

[�m;m] and Æ0 is point mass at zero. One way to handle the incomplete speci�cation

of the prior is thought the following model

8>>>>><
>>>>>:

dj� � N (�; 1)

� � �(�) 2 �

L(�; Æ) = (� � Æ)2 Squared Error Loss

(5)

We stress that no generality is lost by assuming that � = [�m;m] (m depends on the

resolution level of the wavelet coeÆcients) and that �2 = 1.

The paper is organized as follows. Section 2 contains mathematical aspects and results

concerning the �-minimax rule. An exact risk analysis of the rule is discussed in Section 3.

Section 4 proposes a sensible elicitation of hyperparameters de�ning the model. Performance

of the shrinkage rule in the wavelet domain and application to a real-life data set are given

in Section 5. In Section 6 we summarize the results and provide discussion on possible

extensions.
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2 Model

In this section we extend the result of Vidakovic and DasGupta (1996) to the class of priors

de�ned in (4). We show that for m small the least favorable distribution is the uniform

on [�m;m] contaminated by a prior mass at zero. The corresponding �-minimax rule is a

shrinkage rule that is applied in the context of wavelet regression.

We �rst give the theoretical results.

Theorem 2.1 Under the statistical model (5) where � is de�ned in (4), we have

inf
Æ2D

sup
�2�

r(�; Æ) = sup
�2�

inf
Æ2D

r(�; Æ):

The associated �-minimax rule is the Bayes rule with respect to the least favorable distribution

� in �.

The least favorable distribution � in � is of the form

�(�) = (�0 + (1� �0)�0)Æ0 + (1� �0)
pX

k=1

�kU [�mk; mk] (6)

where �k = �k(�0) � 0;
pX

k=0

�k = 1;

mk = mk(�0) s.t. 0 < m1 < m2 < : : : < mp = m;

and the corresponding Bayes rule is given by

Æ�(d) = d�

(�0 + (1� �0)�0)d�(d)� (1� �0)
pX

k=1

�k

2mk

(�(d+mk)� �(d�mk))

(�0 + (1� �0)�0)�(d) + (1� �0)
pX

k=1

�k

2mk

(�(d+mk)� �(d�mk))

; (7)

where � and � denote the density and the cumulative distribution function of the standard

normal random variable and U denotes the uniform distribution.

Moreover, for any �0 there exists m� = m�(�0) such that, for any m � m�, the least

favorable prior is

�(�) = �0Æ0 + (1� �0)U [�m;m] (8)
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and the �-minimax rule has the form

Æ�(d) = d�
�0d�(d)�

1� �0
2m

(�(d+m)� �(d�m))

�0�(d) +
1� �0
2m

(�(d+m)� �(d�m))
: (9)

Remark 2.1 The value of m�(�0) such that (8) holds is the largest value of m for which the

maximum of 1
z

R z
0 R(v; Æ�)dv is achieved at z = m. R(�; Æ�) represents the frequentist risk of

the rule Æ�:

Proof of Theorem 2.1. It is well known that any symmetric and unimodal random variable

� in [�m;m] (with distribution Q(�), and density q(�)) admits the representation � = UZ

where U = U [�m;m] and Z is a non negative random variable supported on [0; m]:Moreover,

U and Z are independent. Indeed there is a \unique" correspondence between Q and the

distribution function of Z, F , up to a set of measure zero. Thus, the statistical game has a

value, since from

r(q; Æ) =
Z m

0

Z 1

�1

1

2
R(uz; Æ)dudF (z)

=
Z m

0

1

2z

Z z

�z
R(v; Æ)dvdF (z)

=
Z m

0

1

z

Z z

0
R(v; Æ)dvdF (z)

def:
= r0(F; Æ);

it follows

inf
Æ2D

sup
�2�

r(�; Æ) = inf
Æ2D

sup
q2�SU[�m;m]

r(�0Æ0 + (1� �0)q; Æ)

= inf
Æ2D

sup
q2�SU[�m;m]

f�0R(0; Æ) + (1� �0)r(q; Æ)g

= inf
Æ2D

sup
F

f�0R(0; Æ) + (1� �0)r
0(F; Æ)g

= sup
F

inf
Æ2D

f�0R(0; Æ) + (1� �0)r
0(F; Æ)g

= sup
�2�

inf
Æ2D

r(�; Æ):

In the above we have used the fact that, for any �xed value of m, the term of the risk coming

from the point mass at zero, i.e., r(Æ0; Æ) = R(0; Æ) =
R1
�1(Æ(d))

2 d�(d), does not depend on

Q (hence on F ), and that F is an arbitrary distribution in [0; m].
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Then, for any z 2 [0; m] we can de�ne a new risk function

�R(z; Æ) = �0R(0; Æ) + (1� �0)
1

z

Z z

0
R(v; Æ)dv (10)

(and by continuity �R(0; Æ) = R(0; Æ)) and prove that it satis�es the �ve conditions on the

risk given in Theorem 2.4 of Kempthorne (1987). Indeed,

(i) For any given distribution F on [0; m] the Bayes rule with respect to
Rm
0

�R(z; Æ)dF (z) is unique, almost everywhere.

This condition follows from the completeness of the normal model.

(ii) If Fn is any sequence of distributions which converges weakly to a distribution F; then

the risk function (10) of the corresponding Bayes procedure converges uniformly on

compacts to the risk function of the Bayes procedure corresponding to F .

j �R(z; ÆFn)� �R(z; ÆF )j � �0jR(0; ÆFn)�R(0; ÆF )j

+(1� �0)
1

z

Z z

0
jR(v; ÆFn)�R(v; ÆF )jdv:

Using the following chain of implications

Fn
weak
�! F ) �n

weak
�! � ) ÆFn(:)

Uin(:)
�! ÆF (:)) R(�; ÆFn)

U:in�
�! R(�; ÆF );

where
Uin(:)
�! denotes uniform convergence, we get the result.

(iii) The parameter space is a compact and separable metric space since the support of F

is [0; m]:

(iv)-(v) The risk function (10) is, for any decision rule, upper semi-continuous and analytic

in the parameter space.

This condition is satis�ed since it is true for the class of symmetric and unimodal

distributions [the second term in (10)]; the �rst term in (10) is a continuous, analytic

function.
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It follows that the least favorable distribution with respect to the risk �R(z; Æ) is discrete

(i.e., it is a linear combination of point masses at knots mi 2 [0; 1] with probability �i)

F �(z) = �01(z = 0) +
pX

k=1

�k1(z = mk):

Hence, the corresponding q� 2 �SU [�m;m] is

q�(d) = �0Æ0 +
pX

k=1

�kU [mk; mk];

and the least favorable prior in � is the linear combination of uniforms and point mass at

zero given in (6).

Finally, given the prior (6) it is easy to check that (7) is the Bayes rule. Indeed, since

dj� � N(�; 1) then the Bayes rule will have the form

Æ�(d) = d+
f 0�(d)

f�(d)
;

where f�(:) denotes the marginal distribution of d when the prior on � is given by (6). By

standard calculation we have

f�(:) =
Z
�
�(d� �)�(�) d� = c0�(d) +

pX
k=0

ck

Z mk

�mk

1

2mk

�(d� �) d�

= c0�(d) +
pX

k=0

ck
2mk

[�(d +mk)� �(d�mk)]

where c0 = �0 + (1� �0)�0 and ck = (1� �0)�k, k = 1; : : : ; p. After taking the derivative of

f� with respect to d, we obtain the rule (7).

To conclude, the case of small m (i.e., m � m�(�0)) has been considered in DasGupta

and Delampady (1994) in a more general setup. Limiting the attention to model (5) we have

that a distribution � 2 � is least favorable if

sup
��2�

r(��; Æ�) = r(�; Æ�) = r(�) = inf
Æ2D

(�; Æ);

where �� is any prior in �, Æ is any rule in D, and � and Æ� are de�ned in (8) and (9),

respectively. For a �xed �0;

sup
q2�SU[�m;m]

r(q; Æ�) = r(U [�m;m]; Æ�); 8m � m�; (11)
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where m� is de�ned in Remark 2.1.

In fact, using the standard representation of a symmetric and unimodal random variable,

we have

sup
q2�SU[�m;m]

r(q; Æ) = sup
q2�SU[�m;m]

EqR(�; Æ)

= sup
F

Z 1

�1

Z m

0
R(uz; Æ)dudF (z)

= sup
0�z�m

1

z

Z z

0
R(v; Æ)dv = r(U [�m;m]; Æ):

Finally, we have

sup
��2�

r(��; Æ�) = sup
q2�SU[�m;m]

f�0R(0; Æ�) + (1� �0)r(q; Æ�)g

= �0R(0; Æ�) + (1� �0) sup
q2�SU[�m;m]

r(q; Æ�)

= �0R(0; Æ�) + (1� �0)r(U [�m;m]; Æ�)

= r(�0Æ0 + (1� �0)(U [�m;m]) = r(�; Æ�);

where Æ� is de�ned in (9) and � in (8). 2

Remark 2.2 We observe that the term R(0; Æ�) in (10) is a constant with respect to z.

Hence �R(z; Æ�) reaches its maximum value at z = m if only if 1
z

R z
0 R(v; Æ�)dv reaches the

maximum at z = m. Since Æ� depends on �0, the value of m� depends on �0, as well.

Moreover, the parameters �k and mk, in the least favorable distribution (6), depend on �0.

�0 0: 0.05 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

m�(�0) 2:5323 2:862 3:606 4:171 4:346 4:416 4:442 4:446 4:446 4:447 4:448

m1(�0) 0: 0: 1:595 2:784 3:166 3:395 3:573 3:733 3:888 4:053 4:284

Table 1: Values of m�(�0) for which the least favorable distribution in � is given by (8)

and the corresponding values m1(�0) of the support of the second uniform distribution when

m = m�.

For m exceeding m�, (8) is no longer the least favorable prior; the least favorable prior

will contain other uniform distributions supported on [�mk; mk] as in (6). Numerical work,

10



analogous to the one developed in Vidakovic and DasGupta (1996), can give an accurate

approximation of the parameters �k andmk in (6), for any given �0 andm, however the exact

values of the parameters are still unknown. Table 1 shows values of m�(�0) for several choices

of �0, and the corresponding values of m1(�0) at which the additional uniform component of

the prior is supported. mathematica package was used in computing the values in Table 1,

and in �nding, for each �0, the largest m for which �R is maximized at z = m. Computations

show that m� increases with �0 according to the analogous result obtained in DasGupta and

Delampady (1994). However, when �0 is larger than about 0:7, the computed value of m�(�0)

tends to be less accurate since the risk function �R becomes very at in the neighborhood of

m. Comparing the results obtained here for the family � in (4) with related results obtained

in Vidakovic and DasGupta (1996), where the case �0 = 0 has been considered, we see that

for �0 exceeding 0:1 no additional point mass at zero is added with increasing m: (i.e., �0 in

(7) is zero). However, for small values of �0 (for example �0 = 0:05) �0 is not zero. Indeed

in Vidakovic and DasGupta (1996) has been proved that for the class of symmetric and

unimodal distributions, the point mass at zero appears in the least favorable distribution

when m increases, but with the weight of about 0:07.

When m is large the number of uniform distributions in the least favorable prior (6)

increases, and the rule (7) can be only numerically evaluated. In Bickel (1981) it has been

proved that when m increases, the weak limit of the least favorable priors (when taking the

supremum of the risk with respect to the class of all priors), rescaled to the interval [�1; 1];

is g1(�) = cos2(��
2
)1(j�j � 1). This fact implies that when m is large the least favorable prior

in �SU [�m;m] is close to gm(�) =
1
m
cos2( ��

2m
)1(j�j � m). Hence, the least favorable prior in �

is close to

�(�) = �0Æ0 + (1� �0)
1

m
cos2(

��

2m
)1(j�j � m):

However, �nding the corresponding Bayes rule cannot be done analytically and is beyond

the scope of this paper. In the rest of the paper we limit our attention to the case of small

m, where the shrinkage rule is (9).
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3 Risk Analysis of the Rule

As we argued in Introduction, shrinkage rules of form (9) had been discussed in the literature

on Bayesian wavelet shrinkage. In this section we explore their exact risk, bias-squared, and

variance properties, when applied in the wavelet domain.

Exact risk analysis of any proposed rule has received considerable attention since it

allows for comparison of di�erent wavelet-shrinkage methods. When the rule is given in a

simple form, then the exact risk analysis can be carried out explicitly. For instance, Donoho

and Johnstone (1994) and Bruce and Gao (1996) provide exact risk analyses for hard and

soft thresholding under the squared error loss. Bruce and Gao (1997) give the rationale

for introducing the \�rm" or \semi-soft" thresholding utilizing exact risk analysis. In our

context the form of shrinkage rule (9) is more complex and the exact risk analysis had to

be carried numerically. The goal of our analysis is to explore robustness in risk, bias, and

variance when the prior hyperparameters change.

The computations performed in the software package mathematica produced Figures

1 and 2. Next, we briey describe the numerical �ndings expressed in the �gures.

As depicted in Fig.1(a), form = 3, the shrinkage rules follow a desirable shrinkage pattern

{ for small values of d the rules behave di�erently. For large values of �0 rules heavily shrink

small values of d. The rules generally remain close to d for intermediate values of d. When

jdj exceeds m, rules remain bounded by �m, reecting the prior knowledge that the signal

energy is bounded. The parameter m controls the largest amplitude allowed in the wavelet

coeÆcient corresponding to the signal and is directly proportional to the energy bound. We

observe that, given m, the amount of shrinkage essentially depends on the choice of �0

In Fig. 1(b) the risks of rules in Fig. 1(a) are presented. One can notice an obvious

trade-o� in the risk performance for small and large values of �, respectively. When �0 is

large the risk remains close to 0, for � small; the risk is almost constant (the attest risk

curve in Fig. 1(b) corresponds to �0 = 0:1).

The bias-squared, depicted in Fig. 1(c) is uniformly (in �) increasing when �0 increases.
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Figure 1: (a) �-minimax rules (9) for m = 3 and �0 ranging from 0:1 (upper envelope

function) to 0:9 (lower envelope function); (b) Exact risks for rules in (a); (c) Bias2 for rules

in (a); (d) Variances for rules in (a).
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Figure 2: (a) �-minimax rules (9) for �0 = 0:8 and m ranging from 0:5 to 4; (b) Exact risks

for rules in (a); (c) Bias2 for rules in (a); (d) Variances for rules in (a).
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The lowest bias-squared curve correspond to �0 = 0:1:

The variance functions, like the risks, exhibit an trade-o� behavior for di�erent values of

�0: More precisely, large values of �0 produce variance values close to 0. On the other hand,

the variances increase, for the same value of �0, when � increases. This behavior is illustrated

in Fig. 1(d).

Figure 2 describes the shape and the risk behavior of �-minimax rules for �0 �xed (�0 =

0:8) and m ranging from 0.5 to 4 with the step 0.5. The panel (a) depicts forms of shrinkage

rules. Note an overall heavy shrinkage for small values of m, and a \two-fold" shrinkage

for m large (the curve closest to d). Inspection of this �gure implies that the elicitation of

m should be carefully considered since it can substantially inuence the performance of the

estimator. The exact risk behavior is similar for all rules at small values of �, but the risk

rapidly increases if m is small.

The bias-squared exhibits uniformmonotonicity with respect tom. Whenm is increasing,

the biases-squared decrease in �.

Finally, the variances depicted in Fig. 2(d) indicate that values of � close to m produce

most variability. The shape of variance functions is similar; the largest function corresponds

to m = 4.

4 Elicitation of Parameters

The statistical model (5) depends on the choice of the hyperparameters �0 and m that should

be carefully elicited in order to have an e�ective shrinkage rule. Usually, the elicitation of

hyperparameters is a major issue in the Bayesian analysis and is carried out by taking into

account available prior information. In our case such information concerns the smoothness,

the sparseness, periodicity, selfsimilarity, as well as the energy, of the unknown signal. We

propose a level dependent choice of hyperparameters that is guided by considerations on the

exact risk properties and on the shape of the shrinkage rule.

It has been demonstrated that �0, the weight of the point mass at zero in the class
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�, regulates the amount of shrinkage at zero. This weight should depend on the prior

information about the smoothness. It should be close to 1 at the �nest level of detail and

close to zero at coarse levels. However, the analysis of the exact risk shows that the shrinkage

rule (9) is robust with respect to the choice of �0, at least for the values of �0 between 0:6

and 0:95. For practical purpose we propose an automatic choice of �0, one that is considered

in Vidakovic and Ruggeri (2001). Level-dependent values of �0 are de�ned as

�0(j) =
1

(j � J + 1)
; J � j � log2 n� 1;

where J represents the coarsest level in the wavelet transformation and  = 1:5 is empirically

chosen. The choice of the coarsest level is done according to J = oor(log2(log(n))) + 1.

The elicitation of the hyperparameter m requires more detailed discussion since it has

been noticed that the choice of m can substantially inuence performance of the estimator.

First, the �-minimax rule Æ� in Theorem 2.1 is sensitive with respect to m considerably more

than with respect to �0 (since the number of uniforms in the least favorable priors depends on

m, while �0 inuences the values of the parameters �k and mk). For the sake of simplicity, we

limit our attention to the case m < m�(�0) where the shrinkage rule is explicitly given by (9).

For such values of m, the resulting Bayes rules are particularly suited to noisy signals with

low signal-to-noise ratio (SNR), i.e., to those situations for which most of other methods

fail. When the SNR increases (or, equivalently, when m increases), for large value of �0;

the �-minimax rule (7) becomes close to a thresholding rule curtailed at �m and m. On

the other hand, by increasing m, the �-minimax model (5) becomes close to the classical

minimax problem, for which the thresholding rules have been found to be e�ective. Second,

the elicitation of m bears more inuence in the performance of the estimator. This can be

seen by inspecting the exact risk as a function of m.

In this paper we propose a level dependent choice of m that takes into account prior

belief about the smoothness of the function:

m(j) = min
�
p
r�

�2
dj
� �2

�

�
+
;max

k
(jdj;kj)

�
; (12)
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where �2
dj
is the variance of the empirical wavelet coeÆcients at scale j, and �2

� is the variance

of the noise. The variance of the noise can be estimated using a robust estimator at the �nest

level of detail. The standard rationale for (12) is that, since the transformation is orthogonal,

the level of the noise is constant at each level, while the magnitude of the wavelet coeÆcients

� increases from the �nest level to the coarsest level. When the resolution level j approaches

the coarsest level, the estimate of �2
dj

becomes inaccurate, since the number of coeÆcients

within the level is small. Thus, the factor maxk(jdj;kj) is taken into account. The parameter

p is a real number ranging from 1 to 4, with values chosen such that 1=p is related to the

smoothness of the function. In other words, the inuence of p is signi�cant at �nest level

details. High value of p, for example p = 4, allows the parameter space � wider at the

�nest level. This fact lead to preserving singularities, at the expense of still leaving some

noise. Small values of p, for example p = 1, imply a narrow parameter space � at the �nest

level, which leads us to a smooth, almost noisy-free, reconstruction at the price of potentially

distorting some of the singularities.

5 Applications

In order to analyze the performance of the �-minimax procedure we considered the standard

test functions (blocks, bumps, doppler, and heavisine) and compared the average mean

square error (AMSE), squared bias and variance with those of VisuShrink and SureShrink

methods. If N denotes the number of simulational runs, the AMSE of the estimator f̂ =

(f̂1; : : : ; f̂n) is de�ned as

1

Nn

NX
j=1

nX
i=0

(f̂i;j � fi)
2;

where fi are the components to be estimated and f̂i;j are corresponding estimates in the j-th

simulation run. In the �rst simulation the four test functions were rescaled so that an added

standard normal i.i.d. noise produced a signal-to-noise-ratio (SNR) of 1. The sample size

was n = 1024 and the wavelets used were: Symmlet 8-tap �lter for doppler and heavisine,

Haar for blocks and Daubechies 6-tap �lter for bumps. The hyperparameters �-minimax
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Figure 3: Left: noisy bumps [SNR=1, n = 1024, �2 = 1]; Right: The reconstructed signal

using the �-minimax rule.

rule are chosen according to the criteria discussed in Section 4, in particular, the choice of

p in (12) was 4 for blocks and bumps, 3 for doppler and 1 for heavisine. The coarsest

level in wavelet decomposition used for computing VisuShrink and SureShrink estimators

was J = 3, the same as for the �-rule. Moreover, we added results for VisuShrink and

SureShrink rules with coarse level J = 5, as done in Chipman, Kolaczyk and McCulloch

(1997). All computations have been carried out using MATLAB and WaveLab. The results

for N = 1000 simulations are summarized in Table 2. An analysis of Table 2 yields that at

low SNR the �-minimax rule outperforms both VisuShrink and SureShrink methods, since

the restriction on size of � allows for reduction of the components of the noise that produce

most energetic wavelet coeÆcients. In the second simulation we computed the AMSE of

the �-minimax rule (with its bias squared and variance components) on N = 1000 runs,

for a variety of SNR's (0:5,1,1:5,2) and selection of sample sizes n (512,1024,2048,4096).

The results are summarized in Table 3. As an illustration on application of the method on

the test signals, Fig. 3 depicts a noisy and the reconstructed bumps signal from n = 1024

observations with SNR=1.
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blocks bumps

�-rule 0.1094 (0.0573+0.0521) 0.1919 (0.1002+0.0917)

VisuShrink 0.2772 (0.2605+0.0167) 0.5326 (0.5075+0.0251)

SureShrink 0.2337 (0.0270+0.0207) 0.2390 (0.0771+0.1619)

VisuShrink (5) 0.1870 (0.1531+0.0339) 0.4041 (0.3626+0.0415)

SureShrink (5) 0.1738 (0.0832+0.0906) 0.2381 (0.0726+0.1655)

heavisine doppler

�-rule 0.0168 (0.0081+0.0087) 0.0670 (0.0330+0.0340)

VisuShrink 0.0178 (0.0097+0.0081) 0.1890 (0.1735+0.0155)

SureShrink 0.0355 (0.0088+0.0267) 0.1427 (0.0221+0.1216)

VisuShrink (5) 0.0348 (0.0031+0.0317) 0.1244 (0.0898+0.0346)

SureShrink (5) 0.0383 (0.0030+0.0353) 0.1420 (0.0193+0.1227)

Table 2: AMSE, the Bias2 and the variance components, obtained with 1000 simulational

runs for the �-minimax rule (9), VisuShrink, and SureSrink. The sample size was n = 1024

and SNR=1.

5.1 An Example in Atomic Force Microscopy

To illustrate features of the �-minimax shrinkage approach proposed here we used the mea-

surements in atomic force microscopy (AFM).

The AFM is a type of scanned proximity probe microscopy (SPM) that can measure

the adhesion strength between two materials at the nanonewton scale (Binnig, Quate and

Gerber, 1986). In AFM, a cantalevar beam is adjusted until it bonds with the surface of a

sample, and then the force required to separate the beam and sample is measured from the

beam deection. Beam vibration can be caused by factors such as thermal energy of the

surrounding air or the footsteps of someone outside the laboratory. The vibration of a beam

acts as noise on the deection signal; in order for the data to be useful this noise must be

removed.
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Figure 4: Top: Original AFM measurements; Middle: �-minimax estimator; Bottom: Uni-

versal thresholding estimator.

The AFM data from the adhesion measurements between carbohydrate and the cell adhe-

sion molecule (CAM) E-Selectin is collected by Bryan Marshal from the BME Department at

Georgia Institute of Technology. The technical description is provided in Marshall, McEver,

and Zhu (2001).

In Fig. 4 the top panel shows the original noisy data. The middle panel shows the

�-minimax estimator, while the bottom panel shows universal hard thresholding estimator.

The sample size was n = 211:
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6 Conclusions

In this paper we developed a method for wavelet-�ltering of noisy signals when prior informa-

tion about the energy of the signal is available. Assuming a �-minimax model, according to

which the wavelet coeÆcients are treated individually, we propose a level dependent shrink-

age rule. The proposed methodology is well suited to noisy signals with a low signal-to-noise

ratio. Applications include denoising of standard test functions and a real-life example in

atomic force microscopy.

Possible extensions of the method can be in utilizing the restricted (linear, polynomial,

etc) �-minimax rules instead of the unrestricted. Such rules would provide additional sim-

plicity with a minor expense in risk eÆciency.
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snr function n amse bias
2

var snr function n amse bias
2

var

blocks 512 0.0934 0.0389 0.0545 blocks 512 0.1980 0.0925 0.1085

1024 0.0641 0.0200 0.0341 1024 0.1430 0.0856 0.0574

2048 0.0433 0.0219 0.0214 2048 0.0901 0.0556 0.0345

4096 0.0300 0.0128 0.0172 4096 0.0615 0.0372 0.0243

bumps 512 0.1542 0.0844 0.0698 bumps 512 0.4081 0.2313 0.1768

1024 0.1102 0.0590 0.0512 1024 0.2437 0.1295 0.1442

2048 0.0756 0.0397 0.0359 2048 0.1488 0.0796 0.0691

0.5 4096 0.0484 0.0215 0.0269 1.5 4096 0.0891 0.0471 0.0420

heavisine 512 0.0185 0.0022 0.0163 heavisine 512 0.0354 0.0184 0.0170

1024 0.0105 0.0021 0.0084 1024 0.0262 0.0169 0.0093

2048 0.0063 0.0021 0.0042 2048 0.0201 0.0150 0.0051

4096 0.0052 0.0012 0.0040 4096 0.0138 0.0092 0.0045

doppler 512 0.0737 0.0266 0.0471 doppler 512 0.1573 0.0839 0.0734

1024 0.0465 0.0184 0.0281 1024 0.0905 0.0531 0.0374

2048 0.0298 0.0137 0.0161 2048 0.0612 0.0367 0.0245

4096 0.0211 0.0086 0.0125 4096 0.0471 0.0315 0.0156

blocks 512 0.1600 0.0759 0.0841 blocks 512 0.2230 0.1141 0.1089

1024 0.1094 0.0573 0.0521 1024 0.1793 0.1196 0.0597

2048 0.0698 0.0387 0.0311 2048 0.1189 0.0731 0.0388

4096 0.0460 0.0250 0.0210 4096 0.0790 0.0533 0.0257

bumps 512 0.2964 0.1636 0.1328 bumps 512 0.4964 0.3001 0.1963

1024 0.1919 0.1002 0.0917 1024 0.2864 0.1573 0.1290

2048 0.1198 0.0614 0.0584 2048 0.1800 0.1024 0.0776

1 4096 0.0687 0.0324 0.0363 2 4096 0.1105 0.0635 0.0470

heavisine 512 0.0250 0.0085 0.0165 heavisine 512 0.0490 0.0312 0.0178

1024 0.0168 0.0081 0.0087 1024 0.0378 0.0277 0.0101

2048 0.0120 0.0075 0.0045 2048 0.0298 0.0241 0.0057

4096 0.0086 0.0044 0.0042 4096 0.0203 0.0153 0.0050

doppler 512 0.1212 0.0609 0.0603 doppler 512 0.1854 0.1040 0.0814

1024 0.0670 0.0330 0.0340 1024 0.1172 0.0745 0.0427

2048 0.0490 0.0287 0.0203 2048 0.0726 0.0467 0.0259

4096 0.0327 0.0184 0.0143 4096 0.0641 0.0466 0.0175

Table 3: AMSE, Bias squared and Variance components, obtained in 1000 simulational runs

for a selection of sample sizes and SNR's. The test signals are rescaled such that the noise

variance �2 remains 1.
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