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Section 1 

INTRODUCTION 

1.1 Problems with Monitoring Distributed Programs 

In a conventional programming environment, there are two principal purposes for 

monitoring the run-time behavior of a program: performance measurement and debugging. 

(By ''monitoring" we refer to some mechanism for obtaining information about the 

performance of a program, external to the program itself.) Performance measurement is a 

relatively mundane application of monitoring in such an environment, being principally 

concerned with the processor time requirements of various parts of a program and requiring 

little or no interactive intervention by a programmer. Debugging is considerably more 

interesting, requiring extensive programmer interaction by its very nature. 

When we generalize our thinking to a distributed system from a traditional single-processor 

environment, the uses of monitoring become somewhat different and we must develop a new 

conceptual view of a major part of the monitoring task. We are, of course, still interested in 

performance measurement and debugging, but these tasks become quite different in this new 

environment. The reason for this difference is that we are now concerned with distributed 

programs - programs which cannot be monitored by considering a single address space on a 

single machine. Rather, we must now be concerned with the communication between the 

various parts of a program, for these interactions will play a crucial part in the monitoring task. 

Performance measurement in a distributed system is made more complex by a number of 

new considerations. Communication costs and the overall time it takes to execute a program, 

which is affected by the potential for parallel execution of subtasks and by time spent waiting 

for messages, are equally important considerations in many situations. Further, it is much more 

difficult for a measurement program to monitor an entire program, since the monitored 

program may be distributed arbitrarily across a network of machines. It will be necessary for 
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any monitoring program to obtain information about the distribution of a program and about its 

communication linkage and behavior. 

This need to obtain information from distributed execution sites naturally applies to 

debuggers as well as to performance monitors. In fact, it is a more complex problem in the case 

of a debugger since the debugger must somehow assist a programmer in comprehending the 

"state" of a program which consists of a nmnber of processes running asynchronously on several 

machines. Conventional debugging tools are certainly of little use in this situation, since they 

are typically oriented toward monitoring the operation of what would only be a single process of 

a distributed program. Once again, tools which provide information about the status of process 

interactions will be required. (Such tools should also have the capability to interface with more 

traditional monitoring tools which can be used on the individual processes.) 

Just as communication should play an important part in distributed performance 

measurement, it should also have a crucial role in debugging distributed programs. The 

correctness of such programs will undoubtedly depend on the correctness of the contents and 

sequencing of messages transmitted between their constituent processes. Thus a distributed 

debugging tool must deal with communication as a major part of its job. In fact, it is 

conceivable that a communication monitor may be the debugger at the interprocess level, 

complementing traditional debuggers which operate on individual processes. 

As a !mal difficulty, any kind of monitoring of a distributed program will potentially 

generate a great deal of information, which must be conveyed to a programmer in a 

comprehensible manner. It will presumably not Be satisfactory to produce all of this 

information independently for each of the processes. Rather, the information must be 

aggregated in some manner consistent with the nature of the monitoring task being performed. 

1.2 Proposed Solutions Using PRONE!' 

The solution we have explored is based on our programming language PRONET [Macc82]. 
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The network descriptors of PRONET provide an excellent basis for the operation of distributed 

monitoring tools. The interconnection information these descriptors provide is exactly what is 

required by a monitor so that it can easily recOgnize the structure of an entire program. 

As was suggested in the previous section, a communication monitor is a crucial part of our 

tools. The interconnection specifications in PRONET networks provide the mirtimum amount 

of information needed by a communication monitor. That is, they provide a listing of the 

message paths between processes and the types of the messages which may be transmitted. The 

task of a monitor will be to provide a programmer with information about message transmission 

between processes, including information about the sequencing of messages and about their 

contents. The capability to examine the operation of individual processes (accomplished by 

interfacing with a traditional single process debugger) is an important part of our tool set. 

1.3 Overview of Project Organization 

The project was originally planned to include the following tasks as described in the original 

statement of work: 

Task 1 - PRONET Interface 

PRONET, a language that provides a high level description of interprocess 

communication, is currently being implemented on a distributed system of Prime 

computers at Georgia Institute of Technology. The task is to develop an interface 

between PRO NET and a distributed monitor. 

Task 2 - Communication Monitor 

The contractor shall determine what data should be collected by the monitor to 

facilitate development, debugging and maintenance of programs. This task is to 

develop a monitoring program that interfaces with the communication features of the 

operating system and collects the necessary data. 

Task 3 - Interface to the Communication Monitor 

The contractor shall develop a convenient user interface to the communications 
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monitor. The user interface will provide a graphical display of information collected 

by the monitor. Also, it will do additional automated processing of the data to 

consolidate into meaningful form the information generated by the monitor. 

Task 4 - Interface with a Process-level Debugger 

The contractor shall develop an interface with the communications monitor and an 

existing symbolic debugger. If this approach is infeasible, then symbolic debugger 

for individual processes must be implemented and interfaced. with the single process 

debugger. 

During the course of the project, some changes from the initial plans were found to be 

necessary. The most prominent change involved the use of different hardware than originally 

planned. The main reason for this change was that we found the implementation of PRONET 

on our Primes too inefficient to be practical. The operating system on these machines does not 

effectively support dynamic process creation. The Accent operating system available on our 

Perq computers, on the other hand, supports dynamic process creation as well as message 

passing between processes on different machines. Thus we chose to do the work using our Perq 

workstations, which meant that more work on the implementation of Pronet than originally had 

been planned turned out to be necessary. However, this work was minimized by implementing 

Pronet through use of a pre-processor which generates Perq pascal code. 

The Perqs also have high-resolution, bit-mapped displays. This feature gave considerable 

support to the development of a very effective graphical user interface to our monitoring 

system. We consider this interface one of the most successful aspects of the project. 

The other major change in our approach involved the development of a passive event 

recording system rather than a monitor which supports interaction with distributed programs 

during execution. This passive approach was initially seen as a prototype. However, we found 

that a simulated replay of program execution using the information we record during execution 

provides an effective visualization of a distributed programs, so it remained the focus of our 
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work throughout the project. 

Only task 4 went just as it was originally planned. Our program replay system interfaces 

with the Kraut debugger, which is a standard high-level debugger under Accent. 

1.4 Summary of Pro jed Results 

As discussed in the previous section, we made use of the bit-mapped displays on our Perq 

computers to develop a graphical user interface to our monitoring systems. In effect, it 

produces a high-level, animated view of program execution. We say this view is "high-level" 

because it includes only events visible at the process interconnection level (e.g., process creation 

and interprocess communication). This graphical display approach has proved to be an excellent 

technique for managing the large quantity of information collected in monitoring a distributed 

program. 

One of the hardest issues to be dealt with in the design of a distributed program monitor or 

debugger is how to minimize the impact it has on the execution of a program under 

examination. Our ultimate decision to concentrate on passive monitoring followed by a replay 

was heavily influenced by this consideration. We believe we have developed tools which can be 

effectively used to debug applications level distributed programs, based on this minimally 

obtrusive passive monitoring approach. 

Part of our methodology for making use of passive monitoring involves what we call multi

level debugging. In addition to looking at the high-level animation of execution described 

above, the user also has the ability to focus on the execution of a single process, once the source 

of a failure has been isolated. Our technique integrating of our monitoring system with an 

existing single-process debugger is the key to making multi-level debugging available. 

The results of this project were reported at the 5th International Conference on Distributed 

Computing Systems in a paper by R. J. LeBlanc and A. D. Robbins, entitled "Event-Driven 

Monitoring of Distributed Programs''. 
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1.5 Report Overview 

The following three sections describe various aspects of the design of the prototype monitor, 

called RADAR. They are extracted from Arnold Robbins' M.S. thesis. They are followed by 

sections on the PRONET implementation, the monitor implementation and the conclusions we 

have drawn from our research. 
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Section 2 

RADAR DESIGN 

2.1 Distributed Programr 

The RADAR monitor is intended to support Pronet [Macc82], a message based language 

designed as a part of previous research on distnbuted computing at Georgia Tech. However, it 

could be easily adapted to support other message-based programming systems. The relevant 

features of Pronet will be discussed in section 3.1. 

2.2 The RADAR System 

The RADAR system takes a passive approach to monitoring distributed programs. Because 

it is interactive the term "monitor" is used to describe it, and not the term "debugger." 

RADAR is designed to support Pronet on PERQ computers [3RCC82]. The PERQ is a 

single user machine with a high resolution bit-mapped display and a mouse. 

Pronet consists of two sublanguages: NETSLA for describing communication networks, and 

AI.SfEN for describing processes. The Pronet compiler provides the monitor with information 

concerning the connectivity of the processes. This information is collected from the NETSLA 

runtime system. AI.SfEN programs are loaded with a special communications library which 

records every standard or user-defined event during execution, and makes a copy of every 

message sent. The exact nature of the information supplied by the NETSLA runtime system 

and the structure of AI.SfEN event records will be described in section 3.2. This component of 

RADAR is· known as the RADARLOG. 

After the program has completed executing, the REPLAY component of RADAR is 

invoked to provide a graphical "replay" of the execution. Each message or event is stamped 

with a global event nmnber. This imposes a partial ordering on events. The monitor then 

displays events one at a time. The programmer is able to watch the communications traffic 
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amongst the processes. Processes have names in Pronet, so it is easy for the programmer to see 

which process is communicating with which other processes. 

REPLAY provides the user with the ability to view the contents of any message currently 

represented on the screen. Messages are represented on the screen as small boxes. The user 

places the PERQ's mouse over the message which he wishes to examine. REPLAY then opens 

a new window in which the contents of the chosen message will be displayed in a formatted 

fashion. For instance, if the message contained an integer and two floating point numbers, the 

message would be displayed as an integer and two floating point numbers, not as 10 octal bytes. 

When the user is through with the message the new window disappears. 

REPLAY also provides the ability to replay a certain number of events which have already 

happened. This can be done at any point during the display. The user can "rewind the video 

tape," so to speak. This replay is limited to a reasonable maximum number of previous events. 

This feature is known as an ''Instant Replay." 

Finally, as a separate utility, the user can name a given process and have all of the messages 

which were sent to that process selected from the recorded message traffic. This single process 

may then be run by itself with its messages derived from the stored messages. This feature is 

designed to facilitate single process debugging using real input data (messages). This way, it is 

possible to observe a process' behavior under realistic conditions, without having to worry about 

controlling the rest of the processes of the distributed program. 
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Section 3 

COLLECTING INFORMATION 

RADAR is intended to support Pronet, a language designed for writing programs which can 

execute in a distributed processing environment. Pronet stands for Processes and Networks. 

The introduction to Chapter 2 of [Macc82] smnmarizes the description and design goals of 

Pronet: 

PRONET is composed of two complementary sublanguages: a network 
specifiCation language, NETSLA, and a process description language, AI.SrEN. 
Programs written in PRONET are composed of network specifications and process 
descriptions. Network specifications initiate process executions and oversee the 
operations of the processes they have initiated. The overseeing capacity of network 
specifteations is limited to the maintenance of a communication environment for a 
collection of related processes. The processes initiated by a network specification 
can be simple processes, in which case the activities of the processes are described by 
AI..SrEN programs, or they can be "composite processes", in which case their 
activities are described by a "lower-level" network specification. 

AI..SrEN is an extension of Pascal which enables programmers to describe the 
activities of sequential processes. During their execution, processes may perform 
operations that cause events to be announced in their overseeing network 
specification. Network specifications, written in NETSLA, describe the activities to 
be performed when an executing process 'announces' an event.. . Two principles 
have influenced the design of these features: independence of process descriptions 
and distnbuted execution of network specifications. 

This section frrst describes the features of Pronet relevant to interprocess communication. 

Then it describes the information provided to the monitor by the NETSLA and ALSTEN 

compilers. Finally, it presents the format of the information collected at run-time by the special 

communications library. 

3.1 The F eatw"es cf Pronet 

This presentation is derived from Chapter 2 of [Macc82]. 

3.1.1 AISI'EN 

AI..SrEN is essentially an extension of Pascal [Jens74] . The file concept has been removed 
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entirely from the language. Processes communicate only through locally declared ports, using 

send and receive statements which are analogous to Pascal's read and write. Ports have a 

direction, either in or out. Ports may be combined into port groups. One could define a duplex 

channel as: 

port channel (incoming in bit; outgoing out bit); 

To accomodate the notion of a server process, which serves many other processes, ALSTEN 

provides ports sets and port tag variables. A port set is a collection of port groups or simple 

ports identified by one name. For instance, if a port set is a set of port groups, a receive on a 

port set would set a port tag variable to indicate which element of the set was actually used for 

communication. This tag may then be used in a send operation for sending replies to the 

process which originated the message. 

The syntax of the send and receive statements is shown in Figure 1. 

<send stmt> :: = 
send [<expr>] to <bound port denoter> 

<receive stmt> :: = <simple receive> 
I <conditional receive> 

<simple receive> ::= 
receive [<variable>] from <free port denoter> 

<conditional receive> :: = when 
{<receive part>} 
[<otherwise part>] 

end 

<receive part>::= <simple receive> [do stmt>] 

<otherwise part> :: = otherwise <stmt> 

Figure 1 - Send and Receive Statements in ALSTEN 

A type is associated with every port. Only expressions of the type associated with a given 

port may be sent to or received from that port. 
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The <expr> is optional. In these forms of the send and receive statements, the port is of 

type signal. A signal is a message with no contents. Signals are often useful for sending control 

information, such as telling a process to start a particular task. 

The syntax for port declarations is shown in Figure 2. 

<~rt decl> :: = <simple port decl> 
I <port group decl> 

<simple port decl> :: = 
port <port id> <direction> <msg type> 

<port id> ::= <id> 

<direction> :: = In I out 

<msg type> ::= <type id> 

<port group decl> ::= 
port [set] <port id> '(' <subport list> ')' 

<subport list>::= 
<subport decl> {';' <subport decl>} 

<subport decl> ::= 
<subport id> <direction> <msg type> 

<subport id> :: = <id> 

<port tag type> :: = tag m <port id> 

Figure 2 - Port and Port Tag Declarations in ALSIEN 

3 .1.2 NEI'SLA 

As stated earlier, the purpose of NETSLA specifications is to initiate and control the 

communications environment of ALSIEN processes: 

The features of NETSLA are aimed at specifying the initial configuration and 
subsequent modifications of a communication environment for processes. The 
overriding principle followed in the design of these features is that of "centralized 
expression-decentralized execution" [Live80]. Centralized expression is important 
in presenting the abstraction to be supported by network specifications. All of the 
inter-process relationships that describe a communication environment appear in a 
single network specification. However, this communication environment is not 
maintained in a centralized fashion. Processes maintain their communication 
environment indirectly. When they execute send or announce operations, processes 
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perform the activities specified by their overseeing network specifications; however, 
the nature of these activities is unknown to the process (since network specifications 
are not visible to processes). [Macc82] 

The syntax of network specifications is shown in Figure 3. 

<network specification>::= <network header> 
{<process class specification>} 
{<event handling clause>} 
[<initialization clause>] 

end <identifier> 

<network header>::= network <net id> ';' 
{<port decl>} 
{<event decl>} 

<process class specification>::= 
process class <process id> 

[<process attributes>] 
{<port decl>} 
{<event decl>} 

end <process id> 

<process attributes>::= attributes 
<field list> 

end attributes 

Figure 3 -- Network Specifications in NETSLA 

When a network starts to run, its initialization clause is executed. The initialization clause is 

used to create instances of processes and connect the output ports of one process to the input 

ports of another. A simple network specification is presented in Figure 4; a graphical 

representation of the network is shown in Figure 5. 
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network staticJlet 
process class proc_class 

port input In integer; 
port output out integer; 

end proc_class 

initial 
create procl: proc_class; 
create proc2 : proc_class; 
create proc3 : proc_class; 
connect procl.output to proc3.input; 
connect proc2.output to proc3.input; 
connect proc3.output to procl.input; 
connect proc3.output to proc2.input; 

end staticJlet 

Figure 4 - A Simple Network Specification 

R 
input 

1 1 

~~-o_u_t_p_u_t--------~ 

output 

proc3 

proc2 

output 

Figure 5 ---A Graphical Representation of a Simple Network 

If one output port is connected to more than one input port, the messages sent out on it are 

replicated. This occurs in a manner invisible to the process sending the message. This allows 

one-to-one, one-to-many, and many-to-one connections between ports. 

Processes may define events. These events. can then be announced by the processes in their 

overseeing network specifications. NETSLA provides features for handling these events when 

they are announced. The programmer specifies what actions to take, such as aborting processes 
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or creating new ones. Other actions are also possible. 

Pronet predefines several standard events. For instance, when a process terminates 

nonnally, the standard event 'done' is announced in its network. 

Message transmission and reception are considered to be events. They simply have a 

separate syntax. The other standard events and the syntax of event declarations and handlers 

are discussed fully in [Macc82]. 

Since Pronet is oriented around events, so is RADAR. The special runtime routines record 

all the events and messages. The REPLAY program presents the user with a visual replay of 

the events that ocauTed during the execution of the program. The majority of events will be 

message transmission and reception. When a different type of event occurs, that event will be 

portrayed. 

3.2 Information Supplied By T~ Pronet Compilers 

The Pronet compilers and runtime system provide RADAR with the framework upon which 

to build the later description of event. 

3.2 .1 AI.SI'EN 

Ports in Pronet are always associated with a type. Only messages of the type associated with 

a port may be sent to or received from that port. 

In any given ALSrEN program, there will be a fixed number of different message types, 

i.e. the types associated with ports. 

The AI..SrEN compiler will generate a file with a list of lTU!ssage templates. A template 

looks like 

Identifier total no elements list of elements 

Figure 6 ---Message Templates 
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The list of elements is simply an order listing of the fields in a message. For instance, 

I real !array character 19 lnt llong I 
Figure 7 ---Fields In A Message 

If a field of a message is itself a record with further subfields, the compiler will expand it in 

line down to its basic elements. Elements can be bytes, integers, long integers, reals, or one 

dimensional arrays of these types. Bytes are treated as unsigned integers, even though they 

may have actually been signed quantities. If necessary, RADAR may be modified to allow 

specifying whether or not such m.nnbers were signed or unsigned. Elements smaller than one 

byte occupy a byte to themselves. This implies that the Pascal keyword packed has no effect. 

Admittedly, this is a constraint on the compiler; see Section 5 of the thesis for further discussion 

of this constraint. 

The purpose of the list of message templates is to allow the decoding of individual messages. 

A user can select any message on the screen with the PERQ's mouse. When he does so, 

RADAR will open a separate window and format the contents of the message in it. Each 

message carries its type with it. The message is decoded according to the corresponding 

template and printed accordingly. One dimensional arrays are allowed, principally for use in 

displaying character strings. REPLAY will treat arrays as if they are indexed from 1. 

3.2.2 NETSLA 

NETSLA controls process and port creation and the interconnecting of output ports to input 

ports. 

The information generated by the NETSLA system is a file describing each process. A 

process is described as follows: 
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machine procJlum proc_Jlame number_port_groups 
number of simple ports in each group 

direction number name type { DESTINATIONS } 
direction number name type { DESTINATIONS } 

number of simple ports in each group 
direction number name type {DESTINATIONS } 
direction number name type { DESTINATIONS } 

Figure 8 - Description Of A Process 

The { } pairs enclose optional information. Only if a port is an output port does it have one 

or more destinations associated with it. The DESTINATIONS field in Figure 8 above 

represents the number of destinations to which an output port sends its messages, and the 

destinations themselves. A destination is uniquely identified by the destination machine, the 

process number on that machine, and the port number of the process to which the message is 

directed. 

Machine and process id's are hidden from the programmer, but the NETSLA runtime 

system and the underlying global operating system must know about them, since they actually 

arrange for execution of the processes. 

When REPLAY frrst starts up, it builds a table of records describing processes with all these 

structures attached to each element in the table. Later, when a send event occurs, REPLAY 

determines which process is the destination and depicts a message moving from the source 

process to the destination process. 

3.3 Information Collected At Run-Time 

Most of the information that RADAR needs is collected at run-time. Special runtime 

routines log every event that occurs. These routines are kept in a separate module called 

RADARLOG. 
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Events may be one of the following: 

type 
eventtype = ( createprocess, destroyprocess, 

message_transmission, messageJeception, 
~eation,failed,done 
aborted, userevent); 

Figure 9 - Types of Events 

The 'message_transmission' and 'messageJeception' events are logged by the send and 

receive routines respectively. The other events are logged by the QIU'IL)unce routine. 

The ALSfEN compiler inserts a procedure call to the routine makelog as the very first 

executable statement in a program. This routine creates the log itle and announces the process 

creation event. Before the imal end of the AI.SrEN main program, the compiler inserts a call 

to the routine closelog, which closes the logftle and announces the standard event 'done'. 

message-reception 

I failed I machine-id I process-id fount I 
I done I machine-id I process-id I count I 
I aborted lmachine-id j process-id lcount I 

Figure 10--- Event Records 
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Each process keeps a count of the events it has announced, including message transmission 

and reception. The event count starts at one and is incremented with each event. 

When a process sends a message, it includes the value of its local event counter. If the 

receiving process' event count is lower than that of the sender's, the receiver sets its count equal 

to that of the sender. After receiving the message, the process logs the messageJeception 

event. If the message reception succeeded, the process logs the UniqueMesg Id of the message 

it r~ived. Since messageJeception is an event like any other, the local event count is 

incremented before the event is logged. Thus, the messageJeception event's sequence nwnber 

will be one greater than the event count of the sender. This insures that there will be at least a 

partially correct ordering on events. In particular, interrelated events will always be correctly 

ordered. 

Placing an ordering on events in a distributed system is a difficult task. One solution is to 

use the times on local clocks to time-stamp each event. This method is not acceptable since it is 

impossible to synchronize all the clocks on all the machines. This introduces the possibility of 

recording events out of order. For example it would be possible, due to synchronization errors 

among clocks, to record the reply to a message as having occured ''before" the sending of the 

initial message. 

By having the receiver of a message set its event count equal to that of the sender, and then 

incrementing the count before logging the message reception, the synchronization problem is 

avoided. The reply to a message will always be sent "after" the sending of the initial message. 

Using this method, it is possible to have several events occurring at the same "time," i.e. 

several events might all have the same event nwnber. In this case, it is impossible to determine 

the ordering of these events, but in fact, the ordering is unimportant. The fact that these events 

all have the same nwnber indicates that they are not interrelated, since if one event depended on 

another to precede it, its event sequence number would have been greater than the sequence 

nwnber of its predecessor. 
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Furthermore, this method makes no extra demands on the underlying global operating 

system to keep clocks synchronized across machines. It also fits in well with Pronet, which has 

no concept of global time. 

3.3.0.1 Summary 

Keeping a record of every event, along with a description of message contents and the 

interconnectivity of every port, provides a complete record of what went on. 

Copying all the message allows the user to view what was actually sent; the message 

description makes the message contents understandable, and the connectivity data allows 

graphically depicting the movement of a message from its source to its destination. 
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Section 4 

REPLAYING PROGRAM EXECUTION 

The major component of the RADAR system is the REPLAY program. After a Pronet 

program has exeruted and all the information described above has been collected, REPLAY is 

invoked to graphically display event occurrences. More importantly, it also displays the 

message traffic amongst processes. 

The PERQ's screen is a high resolution, bit-mapped black and white display. The PERQ 

has hardware and fmnware instructions, called Raster Ops, for manipulating the screen. 

REPLAY uses the Sapphire graphics package which provides a higher-level, more usable 

interface to control the screen. 

This section discusses the algorithms REPLAY uses, describes the view of the program 

REPLAY presents to the user, and presents the user interface. 

4.1 Outline if the Algorithm 

The overall algorithm is fairly simple. It is based on the notion of events as defined 

previously. Since each event is nmnbered when recorded, an ordering of events is automatically 

made possible. 

The general algorithm for event replaying is given in pseudo-code in Figure 11. 

get frrst event 

while more events 
if event in { send_a_Jllessage, receive_a_Jllessage} 

do something visible with the message 
else 

announce the event conventionally 
end if 
get next event 
end while 

Figure 11 - Top Level REPLAY Algorithm 



-21-

Most of the work is involved with displaying events. REPLAY basically has to keep track 

of four things. 

1) Which processes are represented on the screen and where they are. 

2) Which messages are represented on the screen and where they are. 

3) Rate of event display (see below). 

4) How full the screen is; i.e., is there room for more processes? 

Processes and the messages waiting in input queues take up the majority of the room on the 

screen. Most of the other events can be displayed simply by printing out a line on the screen of · 

the form "Process P announces Event E as event Nmnber N," in a prominent place. During the 

interval that the process is announcing an event, it changes color (actually a different shade of 

gray) so that it is clear which process is involved. 

In fact, REPLAY provides a running narrative of this form. However, when a process is 

created or destroyed, or a message is sent or received, REPLAY will depict this graphically. 

Newly created processes will be drawn into a free spot on the screen. Messages are depicted as 

small boxes moving from the sender's output port to the receiver's input port. When each 

message is received, its box disappears. 

Much of the work involves doing all the bookkeeping necessary in as efficient a manner as 

possible. (It should be "efficient" in terms of both space and time). 

4.2 The User Interface 

This section discusses various aspects of the operation of REPLAY's user interface. 

4.2.1 What the User Sees 

The user sees processes and messages queued on input ports. A process with one input port, 
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one output port and a message just leaving the output port, is shown in Figure 12. 

<Process Name> 

1 in 1 out 

input '---l output 
port port 

[ +] 
message 

Figure 12- Picture of a Process and a message 

The drawing of a process indicates the number of input and output ports associated with that 

process. It is not possible to draw each port, since the notion of port sets allows a process to 

have a very large number of ports. When an output port sends a message, the port appears on 

the process' border. It closes up after the message arrives at its destination. Similarly, when a 

message arrives for an input port, the port opens up, and messages queue up in front of it. 

When all the queued messages have been received, the input port closes back up. The process 

name and identification appear inside the box, so that it is clear at a glance which process it is. 

Figure 13 depicts an event replay on the PERQ's screen. The process Proc....:S is shown 

sending a message to Proc_,A, while process Proc_C is shown with one message waiting at its 

input port. The event narration at the top of the screen indicates what is happening. Appendix 
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J contains a sequence of figures portraying a more extended example. 

I Process Proc_ B sends a message to Proc_A. Event 9. I 

Proc - A Proc c -
3in 4out 1 in 1 out 

L/ \. 

[ +] [+] 

. . . . . 
~-_I: I 

Proc B -
2in 5 out 

Figure 13 --- A Process Sending A Message 

An interesting problem concerns the speed at which the replaying occurs. If events are 

described and messages move across the screen without any delays, events will happen too fast 

for the user to follow. 

To solve this problem, REPLAY asks the user how many seconds to take to display each 

event. The default is three seconds per event. Even in single step mode (see below), each 

event takes the full n seconds (whatever the user entered) to transpire. This is to allow the 

process to change color, and to remain on the screen in a different color for enough time to 

make an impression on the user before it changes back to normal. 
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4.2.2 Single Stepping 

REPLAY gives the user the choice of either single stepped or continuous operation. In the 

second mode, events (message transmission, process creation, etc.) occur continuously, without 

stopping. Continuous operation allows the user to watch the general pattern of message traffic 

and event occurences. This is useful for getting an overall idea of what the program did. 

Single-stepping allows the user to watch what happened at a more detailed level and at a 

slower pace .. In this mode, after each event occurs, REPLAY waits on the user to hit a key on 

the keyboard before continuing with the next event. This mode gives the programmer more 

time to consider his program's actions, without the continuing need to keep up with his 

program. 

Furthermore, the user can toggle back and forth between the single stepped and continuous 

modes; he is not forced to single step through hundreds of messages. The number of seconds 

per event is also changeable at any time, to allow the user to speed up or slow down the rate of 

event display. 

4.2.3 Displaying Messages 

Messages on the screen are simply small boxes, queued on the input ports of their 

destination processes. In this form, the only information that they convey is the fact of their 

existence. This is only minimally useful. 

REPLAY allows the user to actually see what his processes are sending to each other. 

Using the mouse, the user places the cursor over the particular message he wants to see and 

interrupts the event display. REPLAY will prompt with a menu of actions available. The user 

will select the option for viewing a message. 

REPLAY frrst finds the message indicated by the mouse. The message's type is an element 

in the Pascal record describing messages. This type indicates which of the message templates is 

to be used in decoding the contents of the message. 
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REPLAY then opens a new window on the screen. It steps through the message buffer and 

formats the raw bytes into characters, integers, or reals, as dictated by the message template. 

Enumerated types are treated as integers. Although this is not perfect, it is no more 

unreasonable than the restriction in standard Pascal against reading and writing enumerated 

types to and from text ftles. Message templates were described in Section 2.2.1. 

When the user is through looking at the message, he issues the command to close the 

window. REPLAY then goes back to displaying events. 

The value of this "Freeze Frame" facility should be clear. The user can verify not only that 

processes are sending messages to the right places, but that those messages have the right 

contents. Formatting message contents is absolutely necessary. Simply displaying the values of 

integers, characters and reals in octal gives the user no immediately understandable information 

(except in the rare case of the true hacker who can decode octal into its equivalent floating point 

or ASCII values). Furthermore, messages are displayed as a unit, unlike Schiffenbauer's 

system which displays small data packets in octal. 

4.2.4 Selective Replaying if Events 

It is possible while watching a program's actions that a particularly interesting sequence of 

events will occur which warrants further review. To accomodate this, REPLAY keeps a history 

of a fixed number of events which have occurred. At any time, the user can stop the normal 

replay and ask to see an ''Instant Replay" of n previous events. The maximum number of 

events that can be replayed is a compile-time constant in one of the Pascal source code modules. 

When this facility is invoked, REPLAY saves the screen state and marks those processes 

that were on the screen at the time. It clears the screen and starts as if the first event requested 

were the very frrst event to occur. Processes and messages are drawn as needed. 

Some information which was on the screen but which may not relate to the n events being 

replayed will be lost during the instant replay. This loss is not permanent, since REPLAY 
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restores the screen at the end of the instant replay. The user can run the instant replay as many 

times as desired before returning to the regular display. This facility is analogous to the 

rewinding of video tape and replaying an interesting series of events during a sports broadcast, 

hence the name ''Instant Replay." 

When the instant replay is through, the screen is restored and the processes which were 

marked as being saved are unmarked. Display then continues as before. 

As a !mal possibility, the user may choose to restart the entire program replay from scratch. 

This provides the convenience of not having to quit the program and then start it again from the 

command level. Such small conveniences are often the most useful. 

4.2.5 REPLAY Menu Options 

At any time during the event replay the user can stop execution by causing a keyboard 

interrupt. 

This invokes an interrupt handler which presents the menu shown in Figure 14. 

1. Change To/From Single-Step/Continuous Operation 

2. Change The Nmnber of Seconds Per Event 

3. Skip Ahead To A Specific Event Number 

4. Display contents of the Message Under the Mouse 

5. Instant Replay 

6. Start Displaying From Scratch 

7. Exit REPLAY 

8. Help 

9. Never Mind 

Figure 14- REPLAY Menu Options 

The user may skip ahead to a given event, specified by the event sequence nmnber. 
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REPLAY will then skip to the f'rrst event which has the sequence nmnber entered by the user. 

This is useful if the user knows that his program stopped working after a given event. He can 

make his changes, rerun the program, and then skip directly to where the change should have an 

effect. 

The help subsystem provides general information on how to use the RADAR monitor. 

The 'Never Mind' option allows the user to recover in case he accidentally caused a keyboard 

interrupt. It does nothing. 

In all cases, after the interrupt handler does what the user wishes, the program returns to 

where it was executing before the interrupt occurred. 
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Section 5 

PRONET IMPLEl\fENTATION 

An implementation of PRONET has been developed for PERQ computers running under 

revision 2.0 of ACCENT, which is a communication oriented network operating system. The 

run-time libraries developed for this implementation make use of ACCENT message and 

process primitives through a procedure-like interface to the kernel. 

Two language preprocessors, one for ALSTEN and another for NETSLA, have been 

developed. These two preprocessors both translate a PRONET source program into a Pascal 

program. Then, the Pascal program generated can be compiled using the PERQ Pascal 

compiler. 

5.1 The Preprocessors 

The preprocessor actually consists of two parts: a scanner and a parser; both are table

driven. The table-driven approach makes the preprocessor very language independent; i.e., it 

can translate either ALSfEN or NETSLA so long as appropriate tables are provided. 

The scanner tables are generated by the LEXGEN scanner generator from a description of 

each token that may occur as input to the scanner. LEXGEN is similar to the standard Unix 

LEX program except that it produced no program, only tables. These tables may then be used 

in a scanner written in any language (PERQ Pascal, in this case). Tokens are described by 

using a standard regular expression syntax. The parser tables are generated by ZUSE from 

LL(l) grammers (see Appendix A and Appendix B) which have action codes embedded into 

them. ZUSE is similar to the Unix YACC program except that it generates a parsing program 

in Pascal rather than C. The action codes provide program fragments steps to be executed ·as 

the parser recognizes syntactic structures in the input. In the case of this preprocessor, 

appropriate Pascal codes is generated by these fragments. 
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The preprocessor accepts a scanner table, a parser table and source program as input and 

generates a sequence of Pascal codes as a result of parser actions. The Pascal code generated 

can then be compiled by using the PERQ Pascal compiler. 

Figure 15 below illustrates the overall structure of the preprocessors. 

token 
description --

scanner table 
generator 

action codes I translation 

.. J grammer 
LL (1) grammer 

scanner 
1--- table --

PRO NET 
source code 

PREPROCESSOR 

parser parser _ 
table table "-----T----' 

generator 1 

Pascal code 

I 

.SEG file 

Figure 15 --Preprocessor Structure 

The approach of preprocessing has two important advantages, although it is less efficient 

than direct compilation. The first is that it was far easier to implement than a compiler would 

have been. The second is that it makes the full power of PERQ Pascal, particularly access to 

ACCENT kemal primitives, available to Pronet programmers, since kernel primitives are 

accessable through calls to kernel interface procedures and functions in the Pascal library. The 

preprocessors do no type checking, leaving that task to the Pascal compiler. 

5.2 Module Structw"es 

The NETSLA preprocessor generates two code modules for each network specification: an 

"event handler module" and a ''network specification module" (see Appendices C, D and E). 
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The event handler specifies the action that must be performed when a particular event 

(either predefmed or process-defmed) occurs. The code in this module is structured as a nested 

"case" statement. The highest level case statement performs a selection based on the event type 

argwnent (message transmission, process-defmed event, etc.). Lower level case statements are 

used to distinguish between process classes, port sets and process-defmed events. 

The network specification module consists of the initialization clause which specifies the 

static network. After the execution of the initialization clause, every process instance created in 

the network will be activated by the root process. 

In addition to these two preprocessor-generated modules, there are two more modules in 

each NETSLA runnable file: a "DB manipulation module" and a ''NETSLA run-time support 

module." The DB manipulation module contains all the routines that are needed to create and 

maintain the network representation. The NETSLA run-time support module consists of 

routines that implement those NETSLA activities (process creation, port creation, connection, 

etc ... ) based on ACCENT kernel primitives. 

Figure 16 below illustrates the structure of the object module generated for each NETSLA 

program. It is important to realize that both the event handler module and the network 

specification module are network specific while the other two modules are common to all 

network instances. The DB manipulation module and the NETSLA run-time support module 

are separately precompiled and imported by the main body of the NETSLA program. 

DB Manipulation MOdule 

NETSLA Run-time Support Module 

Event Handler Module 

Network Specification Module 

common code 

(libraries) 

network 

specific 

Figure 16--- NETSLA Object Module Structure 

The ALSTEN preprocessor generates a single code module for each process script (see 
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Appendices F, G, H and I). This module is a simple translation of the process script which 

makes use of ALSfEN run-time support facilities for performing ALSfEN operations (send, 

receive, announce, etc ... ) . 

5.3 Processes and Ports 

Both ACCENT and PRONET use the notions of "processes" and "ports", but they are at 

different levels of abstraction. We implement PRONET processes and ports by using 

ACCENT processes and ports; the details of this mapping are hidden from PRONET 

programmers. 

A PRONET network specification is implemented as an ACCENT process from which any 

nwnber of ACCENT child processes can be created to represent the PRONET process 

instances. Since we do not consider the case of "composite processes" in this implementation, 

the network can be thought of as a tree of two levels with the network specification process as 

the root. Composite processes can be implemented without much effort later. 

An ACCENT port is a protected kernel object and is used for sending and receiving 

messages. With each port the kernel associates send and receive (and ownership) rights. The 

process that creates the port possesses all three rights. In this implementation, we use 

ACCENT ports for two different purposes. 

During the execution of the program, an ACCENT port will be allocated when a 

CONNECf activity is performed. This ACCENT port is used for transmitting the PRONET 

messages and will be deallocated when the corresponding DISCONNECf activity is performed. 

Initially, the receiving process possesses the receive and send rights. Then the send right will be 

passed to the sending process so that PRO NET messages can be transmitted through this port. 

There are three ACCENT ports allocated to each child process at the process creation time 

for the purpose of communicating with the root process. One is for the root process to send the 

child its process ID, the second is for implementing dynamic port connections and the third is 
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needed to implement port groups. 

5.4 TN! Network Representation 

A representation of the logical network described by a PRONET program is maintained in 

the address space of the root process. This representation reflects the hierarchical structure 

expressed in the program by maintaining a tree of network class and network instance 

representations. The logical network representation also contains information about the 

connectivity among the ports of network instances. The root of this tree is a network class 

representation, the leaves are network instance representations which contain information about 

the currently active processes in the logical network. 

The codes for manipulating the logical network representation also reside in the address 

space of the root process. All creations, updates and reads of the entities in the network 

representation must be performed by calling from the root process an appropriate procedure in 

the DB manipulation module. 

This centralized approach of maintaining the logical network representation lowers the 

degree of parallelism but reduces the cost of message transmission. 

5.5 Event Generation and Handling 

Event generation can be either upward or downward. The term ''upward event generation" 

is used to denote the generation of an event in the overseeing network while "downward event 

generation" is used to denote the generation of an event in a process instance. 

Upward event generation occurs when a process instance announces an event using the 

"announce" statement of PRONET or transmits a message using the "send" statement. 

Downward event generation occurs when a network specification creates or removes a port 

instance on a process instance or sends a message to a process instance. 

Event handling codes are generated by the NETSLA preprocessor and reside in the address 
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space of the root process during run-time. Upward event generation is implemented by sending 

a message to the root process. This message includes all the information relevant to the event 

generated. This kind of message arrives at a port which belongs to the root process and holds at 

most four messages at a time due to the limitation of the size of the backlog for an ACCENf 

port. 

Upon receiving a message from a child process, the root process will call an appropriate 

event handling routine based on the event type and other information included in the message. 

Event handler executions are performed in a serial fashion. This centralized approach of event 

handling has the disadvantage of a low degree of parallelism. 

5.6 Implementation limitations 

All of the features of ALSTEN and NETSLA have been implemented and tested on a single 

machine. However, because of continuing problems with Aa:ent, we have never been able to 

successfully run a program with processes located at more than one site. Thus all of our testing 

of PRONET and RADAR has involved programs consisting of multiple processes running on a 

single machine. 
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Section 6 

RESULTS AND CONCLUSIONS 

The principal results of our efforts, task by task, were: 

Task 1 - implementation of Pronet on our Perq workstations, through use of pre-processors 

which generate Perq Pascal code. 

Task 2 - the development of a passive event recording system for multi-process Pronet 

programs. 

Task 3 - the development of a replay system which produces a high-level graphical simulation of 

distributed program execution. 

Task 4 - integration of the replay system with a single-process debugger. 

6.1 Passive Event Recording 

The decision to go with a passive monitor rather than an interactive debugger was one major 

change in our philosophy during the course of this work. This change in approach resulted from 

consideration of the basic conceptual problem presented by active interaction with a distributed 

program: the intrusiveness of interaction might substantially change the behavior of the program 

being debugged. Thus we chose to minimize the intrusiveness of Radar, but there still remains 

the question of just how non-intrusive our monitor is. 

Radar relies on the collection of information during the normal execution of a program. The 

program runs to completion without any external interference or control. In particular, the data 

collection is invisible, since it is done inside the AI.STEN message and event primitives. 

How much does the extra disk I/0 affect the computation in program? This is the 

Heisenberg Uncertainty Principle as applied to Debugging, sometimes called the 'Heisenbug" 

Principle [ACM83]. We can present no definite answer here. It is expected that the disk 
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operations actually buffer to memory until the buffer fills up. If this is the case, there should be 

little extra overhead since the system will suspend a process only when its I/0 buffers must be 

flushed. The main problem is that while one process is suspended, others can continue to run 

on other machines. 

It can be argued that the fact that one process on one machine has been stopped should not 

affect the other processes on other machines, since the AI..SfEN receive is defined to be a 

blocking operation. The other processes may wait longer to complete the receive than they 

otherwise would have to, but ultimately, the same actions should be accomplished. 

Suspending one process for disk 110 can affect other processes which continue to run, in a 

different manner. The ALSTEN receive can specify several alternatives; in effect it can be 

non-deterministic; receiving from port sets is actually non-deterministic, since the programmer 

can not know which element of the set will be used. For instance, if there are three processes 

A,B, and C, and process B was supposed to receive a message from process A, but A was 

suspended, B could end up receiving a message from process C instead. This should not affect 

the ultimate semantics of the program, since the receive could happen on any specified port. it 

merely changes the path by which the program arrives at its goal. 

One practical problem we encountered in initially using our recording and replay system 

concerned programs which had to be aborted due to a loop in one or more processes. Simply 

having Accent abort the processes caused the event files they produced to be discarded. It was 

necessary to build a special capability into the root process representing the Pronet runtime 

system to have it terminate the processes in an orderly manner. The basic lesson here is that 

any passive monitor must make sure that it saves information in a way that will keep that 

information available under adverse circumstances, because that is just when the information 

will be needed. 
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6.2 Graphical Replay of Program Execution 

The Perqs have high-resolution, bit-mapped black-and-white displays. This feature gave 

considerable support to the development of a very effective graphical user interface to our 

monitoring system. We consider this interface one of the most successful aspects of the project. 

In the introduction, we noted that one of the most difficult aspects of designing a tool to 

support distributed programming debugging was fmding a comprehensible way to display 

information about the program to a user. The graphical replay provided by Radar attacks this 

problem by providing an abstract view of the behavior of the individual processes. The 

information provided by the replay involves only activities at the "network" level: process 

creation and deletion, establishment of connections between ports, message sending and 

retrieving, etc. None of these activities is exclusively concerned with the internal state of a 

single process. Thus the replay provides a user with a view of program execution at the "process 

interaction" level. Only after an erroneous pattern of interaction is identified at that level is it 

necessary to consider the internal details of any of the processes. 

The alternative approach, only possible for a more intrusive debugger active during actual 

program execution, would be to provide a multi-window display, with each window displaying 

state information about and allowing interaction with a single process. For programs with more 

than a few processes, all of the windows wouldn't fit on the screen at the same time. Further, 

so much detail about individual process activity would be available that it would be virtually 

impossible to perceive the higher level structure that our replay system makes so apparent. 

Thus, given our linkage to a single-process debugger, we believe that our more abstract 

representation of program execution is a superior design choice. 

After the program has completed executing, Radar is invoked to provide a graphical 

"replay" of the execution. Each message or event is stamped with an event number, imposing 

a partial ordering on events. The monitor then displays events one at a time. The programmer 

is able to watch the communications traffic amongst the processes. Processes have names in 
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Pronet, so it is easy for the programmer to see which process is communicating with which other 

processes. 

Radar provides the user with the ability to view the contents of any message currently 

represented on the screen. Messages are represented on the screen as small boxes. The user 

places the PERQ's mouse over the message which he wishes to examine. Radar then displays 

the contents of the chosen message in a formatted fashion. For instance, if the message 

contained an integer and two floating point nmnbers, the message would be displayed as an 

integer and two floating point nmnbers, not as 10 octal bytes. 

Radar also provides the ability to replay a certain nmnber of events which have already 

happened. This can be done at any point during the display. The user can "rewind the video 

tape," so to speak. This replay is limited to a fiXed maximmn nmnber of previous events. The 

user also has the choice of watching a continuous stream of events ( occuring at an interactively 

settable rate), or single-stepping through events. This prevents information from flowing too 

fast to be comprehended. 

Finally, as a separate utility, the user can name a given process and have all of the messages 

which were sent to that process selected from the recorded message traffic. This single process 

may then be run by itself with its messages derived from the stored messages. This feature is 

designed to facilitate single process debugging under realistic conditions, without having to 

worry about controlling the rest of the processes of the distributed program. 

6.3 Integration with a Single-Process Debugger 

Only task 4 went just as it was originally planned. Our program replay system interfaces 

with the Kraut debugger, which is a standard high-level debugger under Accent. All of the 

messages to a single process can be collected from the event files. Then that process may be 

executed again, along with a special driver that simulates the rest of the program. Note that the 

selected process is actually executed, not simulated; however, the rest of the program is 
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simulated. The driver simulates the rest of the program by providing messages received by the 

selected process as they are needed. Thus the process under examination should execute just as 

it did when the event files were originally collected. 

The debugging methodology these mechanisms support works as follows. A program is 

executed with event ftles being collected. Its execution is replayed by Radar until the user 

identifies some particular process as exihibiting inappropriate behavior. Such behavior might be 

such things as inappropriate or missing message transmission, incorrect contents in a message or 

any other event visible at the network level. The user than asks for a re-execution of that 

process and examines its internal state during this replay using Kraut. Whenever the process 

executes a message receive statement, the Radar driver supplies the appropriate message. 

Whenever the process sends a message, the driver discards it. This process continues until the 

cause of the inappropriate behavior can be determined and (hopefully) corrected. 

There is only one problem with the above scenario. ALSfEN includes a conditional receive 

statement which allows the program to go on executing rather than blocking if it tries to receive 

a message and none is available in its incoming message buffer. Such an unsuccessful attempt 

to receive is not an externally visible event and thus was not originally recorded in the event 

flies. During re-execution with the special Radar driver and Kraut, messages are always 

available upon request. Thus a process whose execution originally included unsuccessful 

conditional receives would not execute in exactly the same way during re-execution. We found 

it necessary to begin recording unsuccessful conditional receives so that it would be possible to 

faithfully re-execute processes in this situation. 

The ability to examine program execution at the two different levels of abstraction provided 

by Radar and Kraut provide a very effective technique for tackling the information overload 

problem of monitoring distributed programs. This idea of replaying a process using stored 

messages has also appeared recently in a slightly different context: crash recovery in a message 

based distributed system ([Borg83] and [Powe83]). 
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6.4 Approaches Taken by Other Researchers 

Bates and Wileden [Bate83] take the approach of viewing the 'Behavioral Abstraction' of a 

program's execution. Basically, the system is viewed 'in terms of its activity rather than its 

state.' They provide for primitive events such as process creation, page faulty, message 

transmission, and message reception. Higher level events or 'event abstractions' are built up by 

designating sequences of primitive events. The debugger then recognizes higher level events 

an~ displays these for the programmer, while filtering out other unimportant events. 

Gross and Zwaenepoel [Gros83] discuss those aspects of a distributed system both necessary 

and desirable for easy debugging. They do not present an actual debugging system. The 

system they propose would support the debugger as a separate process, with kernel facilities 

which would allow the debugger control over the program's execution, memory and kernel 

calls. They also make a distinction between the micro level of execution, which is the 

computations made by each process, and the macro level, where the overall computation 

proceeds via messages passed amongst the processes. 

Schiffenbauer [Schi81] presents an ambitious project implemented on a network of Xerox 

Alto minicomputers. He gives an introduction to the problems of distributed debugging and 

then a discussion of the major issues in designing a debugging facility. The two major issues are 

transparency of the debugger (a practical consideration), and the theoretical consideration of 

causality and logical clocks. He then described the implementation of his debugging facility. 

One of the more important parts of his work is his implementation of 'logical clocks' and his 

proof that through the use of logical (rather than actual) clocks, his debugger simulates a valid 

execution of the distributed program. He further proves that the debugger simulates a probable 

execution of the program, i.e. that the program behaves the same while being debugged as it 

probably would have behaved had it been allowed to execute unmonitored. 

Curti~ and Wittie [Curt82] present their design of a debugging system for parallel 

programming environments. A parallel programming environment is either a conventional 
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multiprogramming single processor system, or a 'network computer,' an ensemble of 

semiautonomous nodes, each with its own memory, peripherals, and communication links. The 

nodes communicate by passing messages over their links. 

The debugging system consists of local event monitors on each node, a central database 

system, and a user interface. The user interface is based on production rules, which the user 

expands into sequences of symbols describing what events he wants recorded, what variables 

saved, and what actions are to be taken upon the occurrence of any given event. This debugger, 

like that of Bates and Wileden, must be programmed. 

Harter [Hart85] proposes a debugging system which includes a standard sequential debugger 

plus an assertion language, based on temporal logic, to control the automatic monitoring of 

distributed programs. The system allows a programmer to expand the assertion set 

interactively. It also includes a graphics interface to display and filter information about 

program execution. 

Our work described below attempts to present a higher level view of message traffic that 

Schiffenbauer's minimally intrusive view of program execution. We agree with and support the 

distinction between micro and macro levels of execution suggested by Gross & Zwaenepoel. 

The interface to our system is simpler than those provided by Harter, Curtis & Wittie and Bates 

& Wileden, since it need not be programmed~ 

6.5 Possibilities for Further Research 

When a user watches the replay of a program using Radar, he quickly begins to recognize 

"patterns" consisting of sequences of several events. It would be desirable if Radar had some 

capability to display execution in terms os such higher-level events. An important question is 

how such structuring might be made to take place. 
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6.5.1 A Common Structuring Methalology 

One very prevalent and well understood method of imposing structure on incoming 

information is via lexical analysis and/or parsing techniques. These techniques are well 

understood, and often easy to use. 

Breugege [Breu84] uses Path Expressions, an extension of Regular Expressions. A path 

expression describes a sequence of events to be looked for, and actions to be executed when that 

sequence is matched, or not matched. The notation provides good flexibility of description, and 

would seem to supply a good method for RADAR to use for dealing with its stream of Pronet 

events. 

6.5 .2 The Probletm with Path Expressions 

Path expressions, or more generally, regular expressions and LALR( 1) parsing techniques, 

are a natural flrst choice for the computer scientist wishing to impose structure on a data stream. 

Here however, it may be a case of using a useful, but inappropriate, tool for the job. 

Why? In this case, the major flaw with these techniques, particularly path expressions, is 

that they are predictive. The debugging programmer must describe what he expects the 

debugger to see, and then what to do. But is a program is bug-ridden, it may never do what the 

programmer expects it to, even if he is looking for aberrant behavior! So, an interesting and 

possibly important stream of events could conceivably end up being missed by the debugger, 

and therefore by the programmer. In sum, a debugger should present a distillation of what 

happened, not what the programmer expected to happened. 

A secondary, although in our view still major, flaw is that this kind of debugger has to be 

programmed. The user must learn (and remember!) yet another kind of notation, and yet 

another set of commands. If a debugger is hard to use, it may not get used at all. One of the 

major RADAR design goals was that it should not have to be programmed. 
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6.5.3 Using a Data Compression Approach 

If regular expressions, LALR( 1) grammers, and path expressions are not the answer, what 

is? For the reasons we are about to present, we feel that an approach based on data 

compression would be an interesting area for future research. 

6.5.4 Why a Data Compression Approach? 

When one stops to think about it, it becomes clear that the problem is really one of data 

compression. We want to replace Sequences of low level events with a shorter symbol that 

represents that sequence. This is exactly what data compression techniques do, although usually 

they are just acting upon simple byte streams. 

The shorter symbol can be given a name that describes the sequence in a "higher level" 

fashion. For example, replace the sequence ''f'md Fred's number in the phone book", "lift the 

phone handset", "listen for dial tone", and "dial the number", with, "call Fred". 

This approach has several advantages. First, it is not predictive, looking for one thing and 

missing another. Instead, it is empirical, condensing what is there. It represents all the event 

sequences as they happened. Second, it fits in very well with RADAR's current passive, post

mortem approach to program monitoring. Third, the machine does the work of detecting event 

sequences and condensing them, not the programmer. There are no new notations or 

commands to learn. 

6.5.5 Possible Implementation Plan 

There are numerous data compression techniques. A recently developed, and very powerful 

technique is the Adaptive Lempel-Ziv Compression described in [Welc84]. On "normal" files 

of English text it often achieves compression of 50% or greater. One of its strongest points is 

that it tends to compress the longest possible sequence into a single code. 

RADAR gives unique identifies (numbers) to each kind of Pronet message. A single 

RADAR event would consist of the sending process id, the receiving process id, and the 
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message type. These events should be representable as unique integers of at most two bytes. A 

frrst (conceptual) pass over the recorded data would build a table of event triples (sender, 

destination, message type) and their corresponding integers. 

Next, the second pass performs Adaptive Lempel-Ziv compression on the integer stream, 

saving the compressed output. As part of the compression algorithm, the Lempel-Ziv method 

builds a table of codes and what each code represents. 

After compression, this table is presented to the user. RADAR presents each sequence and 

asks for a high level name for that sequence ("call Fred''). 

Once that is done, the compressed data is then "decompressed"; but not back into an integer 

stream. Instead, as each higher level code is recognized, the corresponding high level event is 

displayed graphically on the screen. 

6.5 .6 Problems with This Approach 

The method outlined above is not without its problems. In particular, the ordering of events 

that RADAR imposes is only a partial ordering. Events are sometimes depicted on the screen 

in an order different from that in which they actually occurred. Only related events are 

guaranteed to be ordered. This is because RADAR currently works by merging multiple event 

streams into a single event stream for display. The problem with this approach is that 

nonrelated events end up being interleaved with each other. This could conceivably affect the 

data compression algorithm. Non-related events could be compressed together, i.e. treated as 

related! (instead of being compressed with their related events). 

A major thrust of any future research would be to see if a data compression approach is 

feasible, and to learn whether or not non related interleaved events would detrimentally affect 

the data compression, or if the nature of the algorithm is such that it would not matter. Another 

goal would be to see if some approach could be found to work directly from the original 

multiple data streams, instead of from the merged single data stream. 
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As an alternative, some sort of knowledge-based pattern recognition approach might be 

tried. The data compression approach is essentially syntactic; a pattern recognition mechanism 

could conceivably work better by making use of information in messages or about network 

interconnections. Relative computational demands of these two approaches are an obvious 

tradeoff. 

6.6 Conclusions 

Finally, we restate our principal conclusions: 

Graphical display of information is an excellent technique for providing information about 

the execution of a distributed program. 

Passive monitoring and simulated replaying is a successful approach for minimizing the 

impact of the monitor on the execution of the program under examination. 

Multi-level tools are required to deal effectively with all aspects of distributed program 

debugging. 

We must state that these conclusions are based on relatively little experience with Radar. 

Because Accent has not been as stable as we had anticipated, there is really no user community 

on the Perqs other than the people who have worked on the Radar project. A much more 

extensive evaluation of our tools would be highly desirable. 
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APPENDIX A 

'lhe LL(l) Grrumnar of NETSIA 

ararrmar prodoctions with selection sets added: 

Prod I Produ:tion 

1 network spec = net head 
evnt-decl pt proc decl 10 
init-clseO end identifier 
%net~rk ; 

const pt type pt ll' rt decl pt 
evnt clse-10 - -

2 net head = network identifier ; 
%net'-'Ork ; 

3 proc decl 10 = 
%arrive-end enter initial leave when ; 

4 proc decl 10 = process_decl proc_decl_ll 
%process ; 

5 proc decl 11 = 
%arrive-end enter initial leave When ; 

6 proc decl 11 = process_decl proc_decl_ll 
%process ; 

7 evnt else 10 = 
%end initial 

8 evnt else 10 = event clause evnt else 11 
%arrive-enter leave-when 

9 evnt else 11 = 
%errl initial ; 

10 evnt else 11 = event clause evnt else 11 
%arrive-enter leave-when ; 

11 init clseO = 
%end ; 

12 init clseO = initial activity_lst 
%initial 

13 const pt = 
%arrive end enter event initial leave 

port process type when 

14 const_pt = const con def list 
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%const ; 

15 con def list = const def next con def 
%identifier 

16 next con def = 
%arrive end enter event initial leave 

port process type when ; 

17 next con def = const def next con def 

18 

%identifier ; 

const def = new const id = 
%identifier ; 

19 new const id = identifier 
%Tdenti!ier ; 

20 constant = signed_const 
%+ -

21 constant = unsigned con 

constant ; 

... 
\ 

%char const identifier int const real const string_const 

22 signed const = sign after_sign 
%+ _-

23 after sign = real const 
%real const 

24 after sign = int const 
%int const ; 

25 after sign = const id 
%identifier 

26 unsigned con = identifier 
%identifier ; 

27 unsigned con = int const 
%int canst 

28 unsigned con = char const 
%char const 

29 unsigned con = string_const 
%string_const 

30 unsigned con = real const 

31 

%real const 

scalar canst = 
%identifier 

identifier 

. 
I 
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32 scalar canst = non id s con 
%+ _-char_const int_const ; 

33 non id s con = sign id or int 
%+ _--: 

' I 

34 non id s con = int canst 
- --%int canst 

35 ron id s con = char canst 
%Char canst 

36 id or int = canst id 
iidenti fier 

37 id or int = int canst 
iint canst ; 

38 oonst id = identifier 
%identifier ; 

39 type pt = 

40 

%arrive errl enter event initial leave 
port process when 

type pt = type 
%t~ ; 

typ_def_list 

41 typ def list = type def next_typ_def 
%identifier ; 

42 next typ def = 
%arrive errl enter event initial leave 

port process when ; 

43 next typ def = type_def next_typ_def 
%identifier 

44 

45 

type def = new type id = 
%identifier - -

new type id = 
%Identifier ; 

identifier 

types ; 

46 types = type case 1 
%identifier- ; 

4 7 types = type case 2 

48 

%( +-array char canst int canst 
packed record set ; 

type _easel = identifier type_tail 
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%identifier ; 

49 type tail = 

50 

%) -; case end ; 

type tail - •• 
%.7 

scalar const 

51 type case2 = non id s con scalar const 
%+-- char const-int const ; 

52 type case 2 = struct type 
%array packed record set ; 

53 

54 

type case 2 = ( 
%(-

enu id list 

non id type = non id simp 
%( +-- char_const identifier int const 

55 oon id type = struct type 
%array packed record set ; 

56 simple type = type_id simp_ty_tail 
%identifier ; 

57 · simple type = ( 
%( ; 

enu id list 

. 
I 

58 simple type = non id s con scalar const 
%+ --char const Tnt-const ; 

59 simp ty tail = 

60 

61 

%) -, ; ] case end ; 

simp ty tail = 
%.7 ; 

non id simp = ( 
%( ; 

scalar const 

enu id list 

62 non id simp = subrange con scalar const 
%+ --char const identifier int const ; 

63 pt class nam = identifier 
%identifier ; 

64 enu id list = identifier enuner tail. 
%Identifier ; 

65 enuner tail = 
%) ; 
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66 enuner tail = 
%, i 

identifier enumer tail 

67 subrange con = identifier 
%identifier ; 

68 stbrange con = non id s con 
%+ - cnar_const int_const ; 

69 tY£=e id = identifier 
%identifier ; 

70 struct tY£=e = p3ck prefix tnp:3cked 
%array packed record set ; 

71 ~ck prefix = Facked 
%packed ; 

72 p:1ck prefix = 
%array record set 

73 LD1packed = array 
types 

indx_ty_list ] of 

%array ; 

7 4 tnp:lcked = record head field 1 ist end 
%record 

75 LD1Facked = set of simple_ type 
%set 

76 record head = record 
%record 

77 indx ty list = simple tY£=e index tail 
%(-+ = char_const identifier int const 

78 index tail = 

79 

%] ; 

index tail = 
%, ; 

simple_ type index tail 

80 field list = rec sec list with variant 
%) ; case end identifier ; 

81 rec sec list = rec section rec sec tail 
%) ; case end identifier . 

I 

82 rec sec tail = 
%) case end 

83 rec sec tail = rec section rec sec tail 
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84 

%; ; 

rec section = fieldid list 
%ldenti fier ; 

85 rec section = 
%) ; case end 

types 

86 fieldid list = identifier field id end 
%identifier 

87 with variant = 
%) -end ; 

88 with variant = variant_pref variant_ list 
%case ; 

89 field id end = 

90 

91 

%: ; 

field id end = 
%, 

variant pref = case 
%case- ; 

identifier field id end 

tag_type_ids of 

92 tag type ids = tagfield_id tag_typ_tail 
%ldenti fier 

93 tag typ tail = 

94 

%of ; 

tag_typ_tail = 
%: 

scalar_ty_id 

95 tag field id = identifier 
%identifier ; 

96 scalar ty id = identifier 
%identifier ; 

97 variant list = variant variant tail 
%) + = ; char const end 

identifier Tnt const 

98 variant = case 1 list : field head field list 
) 

%+ - char const identifier int const ; 

99 variant = 
%) ; end ; 

100 field head = 
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%) ; case identifier ; 

101 variant tail = 
%) end ; 

102 variant tail = ; variant variant tail 
%; 

103 case 1 list = scalar const caselabelend 
%+---char_conjt identifier int const ; 

104 caselabelend = 

105 

%: 

caselabelend = 
%, i 

scalar const caselabelend 

106 rnrt decl pt = 
%arrive-end enter event initial leave 

process when ; 

107 rnrt decl pt = pt_decl_list 
%~rt ; 

108 pt decl list = rnrt_decl pt_decl_tail 
ip::>rt- ; 

109 tnrt_decl = rnrt_head pt_dir_mt~ 
%p::>rt 

110 pt dir mt~ = in t~_id ; 
%in-

111 pt dir mt~ = out t~_id ; 
%out- ; 

112 pt dir mt~ = port_group ; 
i( -

113 pt decl tail = 
iarr ive errl enter event initial leave 

process when 

114 pt_decl_tail = tnrt_decl pt_decl_tail 
%p:>rt 

115 p:>rt head = p:>rt rnrt_ tail 
%~rt 

116 p:>rt tail = identifier 
%identifier 

117 p:>rt_tail =set identifier 
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%set 

118 p:>rt group = sbptdecllist 
% (- ; 

119 sbptdecllist = subp:>rt_decl next_ subp:>rt 
%identifier 

120 sub};l)rt decl = sub};l)rt_ name direct_ type 
%identifier ; 

121 direct_type = in type_id 
%in ; 

122 direct type = out type_id 
%out- ; 

123 sUbport name = identifier 
%identifier 

124 next stb};l)rt = 
%)- ; 

125 next stbp:>rt = ; sub};l)rt_ decl next_ subp:>rt 
%;-

126 process decl = process head attri_declsO port_decl_pt evnt_decl_pt 
end Tdentifier -

%process ; 

127 process head = process class identifier 
%process 

128 attri declsO = 
%end event p:>rt 

129 attri declsO = attri head attri sec ls attri tail 
%attributes 

130 attri head = attributes 
%attributes 

131 attri tail = end attributes 
%end 

132 attri sec ls = attri sec attri secl 
%; end identifier 

133 attri sec1 = 
%end ; 

134 attri secl = ; attri sec 
%; 
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135 

136 

attri sec = attri id ls types 
%identifier ; - -

attri sec = 
%; end ; 

137 attri id ls = identifier attri id lsl 
%identifier 

138 attri id ls1 = 
%: 

139 attri id lsl = , identifier ,, ; 

140 evnt decl pt = 
\arrive-end enter initial leave process 

when ; 

141 evnt decl_pt = event decl next event 
%event ; 

142 next event = 

143 

144 

%arrive end enter initial leave process 
when ; 

next event 
%eVent ; 

event decl 
%event ; 

= event decl next event 

= event identifier about_ptnmO ; 

145 about ptnmO = 
%; -

146 about ptnmO = about identifier 
%abOut ; 

147 event clause = arriv clause 
%arrive ; 

148 event clause = enter clause 
%enter ; 

149 event clause = leave clause 
%leave ; 

150 event clause = when clause 
%when 

151 arriv clause = arrive head activity_lst close end arrive 
%arrive 

~ge 55 



Apperxiix A 

152 

153 

arrive head = arrive open arrive bind do 
%arrive 

arrive bind = message idO on arrive_port from_procesO 
%identifier on ; -

154 roossage idO = 
%on ; 

155 message idO = identifier 
%identifier ; 

156 arrive port = identifier arrive_portl 
%identifier ; 

157 arrive port! = 
%do !rom 

158 arrive_portl = identifier 
%: ; 

159 arrive port1 = of port_bind 
%of-

160 port bind = identifier port_bindl 
%identifier ; 

161 port bind1 = 
%do from 

162 port bind1 = identifier 
%:-

163 from procesO = 
%do 

164 from procesO = from process_bind 
%from ; 

165 process bind = identifier proces_bind1 
%identifier ; 

166 proces bind1 = 
%about do ; 

167 proces bind1 = identifier 

168 

16~ 

%: -

enter clause 
%enter ; 

enter head 

= enter_head activity_lst close end enter 

= enter open port_ bind do 
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%enter ; 

170 leave clause = leave head activity_lst close end leave 
%leave ; 

171 leave head = leave o~n p:>rt_bind do 
%leave ; 

172 When clause =when head activity_lst close end when 
%wfi'en 

173 when head =when open identifier announced by process_bind 
abOut partO do 

%when-; 

174 about partO = 
%do-

175 about partO =about port_bind 
%abOut ; 

176 activity 1st =activity activities 
%) ; announce case connect constroct 

create disconnect else end find identifier 
ra03e remove serrl tennina te ; 

177 activities = 
%) else end ; 

178 activities = ; activity activities 
%; ; 

179 activity = 
%) ; else end 

180 activity = simple act 
%announce connect constroct create disconnect identifier 

remove serrl terminate ; 

181 activity = control act 
%case firrl raf¥3e -

182 simple act = creation 
%create ; 

183 simple act = termination 
%teriilina te ; 

184 simple act = removal 
%remove ; 

185 simple act = connection 
%connect 
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186 

187 

188 

189 

190 

simple act = disconnecton 
%disconnect ; 

simple act = msg_transfer 
%seoo ; 

simple act = construction 
%construct ; 

simple act = attri_assign 
%identifier ; 

simple act = event trans 
%annomce 

191 simple bind = object id 
%identifier ; -

identifier simple_bindl 

192 object id = identifier 
%identifier ; 

193 simple bind1 = 
%do Where 

194 simple_bindl = on proc _denoter 
%on ; 

195 obj denoter = lhs 
%Tdenti fier 

196 port denoter = obj_denoter 
%identifier 

197 proc denoter = identifier 
%identifier 

198 creation = create create tail 

199 

%create 

create tail = 
%identifier 

200 create taill = 

identifier . 
I 

%) ;-else end ; 

identifier create taill 

201 create tail1 =on proc_denoter 
%on 

tennination = tenninate proc_denoter 
%terminate ; 

renoval = remove obj_denoter 
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%remove ; 

204 connection = connect port_denoter to p:>rt_ denoter 

%connect ; 

205 disconnecton = disconnect port_denoter fram_p:>rtO 
%disconnect ; 

206 from portO = 
%)-; else end ; 

207 from portO = from port_denoter 
%from ; 

208 msg transfer = send exprO to port_denoter 
%send 

209 exprO = 
%to ; 

210 exprO = expr 
%( + - [ char const identifier 

int const not real const string_const 

211 constru:tion = construct h::1 [ field _as_lst ] 

212 

%constroct ; 

construct l'rl 
%constroct 

= construct object_id : identifier 

213 field as 1st = fie1d_assign fd_assignl 
%identifier 

214 fd assign! = 
%] ; 

215 fd assign! = ; field_assign 
i; ; 

216 field assign = lhs := expr 
%identifier ; 

217 attri assign = lhs := expr 
%identifier 

218 event trans = announce event id about_portO 
%announce 

219 about portO = 
%) ; else end 

220 about_p:>rtO = about port_denoter 
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221 

222 

223 

%about ; 

control act = alternation 
%case- ; 

control act = selection 
%find- ; 

control act = iteration 
%ra~e 

224 alternation =alternate hd case_list else_partO end case 
%case ; 

225 alternate hd = case expr of 
%case ; 

226 case list = case element case listl 
%+-- char const-identifier int const ; 

227 case listl = 
%else end ; 

228 case listl = case element case listl 
%+-- char const Identifier int const ; 

229 case element = const list : ( open activity_lst close 
) 

%+ - char const identifier int const 

230 const list = scalar const const listl 
%+ = char const identifier int-const ; 

231 const listl = 
%: ; 

232 const listl = , scalar const 
%, ; 

233 select crite = simple_bind Where clausO 
%identifier 

234 selection = find head do activity_lst close else_partO end 
find 

235 

%find 

find head = find open object_ id 
%find 

236 find headl = string 
%string 

find headl 

237 find head! = identifier simple_bindl where_clausO 
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%identifier ; 

238 iteration = range open select_crite do activity_lst close 
else partO end range 

%range ; 

239 else partO = 
%eoo 

240 else partO =else open activity_lst close 
%else ; 

241 \\here clauso = 
%do- ; 

242 \\here clausO = where expr 
%where 

243 open = 
%) ; announce case connect construct 

create disconnect end find identifier on 
range ranove send terminate ; 

244 close = 
%) else end ; 

245 id list = identifier id list tail 
lidenti fier ·; 

246 id list tail = 

247 

248 

% ; 

id list tail = 
i, 

actual };arms = 
%( ; 

identifier id list tail 

actual_p:irm next_a _};arm 

249 acttal parm = p:irm expr field width 
%( +-- [char const identifier 

int const not real canst string_const ; 

250 next a parm = 
%)-; 

251 next a parm = , actual_J;arm next_a _parm ,,--
252 lhs = identifier rec_ary_ptr 

%identifier ; 

253 vars = identifier rec_ary_ptr 
%identifier 
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254 rec ary ptr = 
%T * + , - •• 

I . ·- . = ] • •- I 

and div do else end from 
in mod noneqrelop of or to ; 

255 identifier rec_ary_ptr 

256 rec ary ptr = 
%[ ;-

index_list ] 

257 index list = index next index 
%( +- [ char const identifier 

rec_ary_ptr 

int const not real const string_const 

258 next irrlex = , ,,- ; 
irrlex 

259 next index = 
%]-

260 index = expr 
%( + - [ char const identifier 

int const not real_const string_const 

261 expr = IBrm expr 
%( +- [ cnar const identifier 

int_const not real_const string_const ; 

262 parm expr = simple expr parm exp end 
% (-+ - [ char const identi ffer -

int const not real const string_const ; 

263 pa rrn exp end = 
%)-, .-: : i ] 

do else end of to ; 

264 parm exp end = rel op simple expr 
%=-in noneqrelop-; -

265 rel expr = simple expr rel op simple_expr 
. %1 + - [ char const identifier 

int const not real const string_const ; 

266 rel op --
%~ ; 

267 rel op = in 
%Tn ; 

268 r~l_op = noneqrelop 
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%noneqrelop ; 

269 simple expr = char const add teon 
%Char const ; 

270 simple expr = string_const add term 
%string_const ; 

271 simple expr = sign term add term 
%+ _-

272 simple expr = term add term 
%( [-identifier int const not real const ; 

273 add term = 
%) ' • • : i = 

] do else end in noneqrelop 
of to ; 

274 add teon = add_op term add_ term 
%+- or ; 

275 term = factor mul t factor 
%( [ identifier int const not real const 

276 mul t factor = 
%) -+ ' - . . : 

; = ] do else end 
in noneqrelop of or to 

277 mul t factor = mul t op factor mul t factor 
%*-/ and div mod -; 

278 factor = identifier var funccall 
%identifier ; 

279 factor = real const 
%real const ; 

280 factor = int const 
%int const 

281 factor = ( expr 
%( 

282 factor = elem list 
%[ ; 

283 factor = not factor 
%not ; 

284 var funccall = rec_ary_ptr 
%) * + ' - • 
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.. I : ; = [ 
] and div do else end 
in mod noneqrelop of or to ; 

285 var funccall = actt.al_{:arrns 
%( ; 

286 add op = sign 
%+ - ; 

287 add op = or 
%or ; 

288 mult op = * 
%*- ; 

289 mul t op = I 
'r; 

290 mul t op = div 
%dTv 

291 mul t op = and 
%and ; 

292 mul t op = mod 
%mod 

293 variable = identifier rec_ary_ptr 
%identifier ; 

294 field width = 

295 

%) ; ; 

field width = 
%: 

expr more field 

296 more field = 
%) -, ; 

297 more field = expr 

298 elem list = 
%] ; 

299 elan list = elan next elem 
%(-+- [ char const Tdentifier 

int_const not real_const string_const ; 

300 elem = expr elem tail 
%( + - [ char const identifier 

int const not real canst string_const ; 
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301 next elem = 
%] ; 

302 next elan = , elem next elem -%, ; 

303 elem tail = ,,-] ; 

304 elem tail = expr 
%.7 ; 

305 proc id = identifier 
%identifier 

306 rec var list = variable next rec var 
%Identifier 

307 next rec var = 

308 

,; 
next rec var = ,,- ; 

variable next rec var 

309 subport = 
% ; 

310 subp:>rt = stbp:>rt_ id 
%. ; 

311 pt class id = identifier 
\identifier 

312 subport id = identifier 
%identifier ; 

313 expressionO = 
% ; 

314 expressionO = expr 
%( +- [char const identifier 

int const not real const string_const ; 

315 event id = identifier 
%identifier 

316 sign = + 
%+ ; 

317 sign = 
%- ; 
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APPENDIX B 

'lhe LL ( 1) Granmar of ALSTEN 

Granmar produ:tions with selection sets added: 

Prod I Produ:tion 

1 camp unit = prog_head prog 
%@-process ; 

2 prog_head = process script prog_id ; 
%process ; 

3 prog id = identifier 
%identifier ; 

4 prog = IX>rt decl pt label pt const pt type pt evnt decl pt var pt 
proc fct pt - stmt pt- • - - - - -

%beg in const event function label IX>rt 
procedure type var ; 

5 block = label pt const pt type pt var pt proc_fct_pt stmt_pt 
%begin const-function-label procedure type 

var ; 

6 label pt = label label list ; 
%label ; 

7 label pt = 
%begin const event function procedure type 

var 

8 label list = labels next label 
%identifier int const ; 

9 next label = 

10 

%; 

next label = 
,, i 

labels next label 

11 labels = int const -%int const ; 

12 labels = identifier 
%identifier ; 

13 oonst pt = 
%begin event function procedure type var 
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14 oonst pt = const con def list 
%const ; 

15 con def list = const def next con def 
%identifier ; 

16 next con def = 
%begin-event function procedure type var ; 

17 next con def = const def next con def 
%iaentTfier 

18 const def = new const id = constant ; 
%identifier ; 

19 new const id = identifier 
%identitier ; 

20 constant = signed_const 
%+ -

21 constant = unsigned con 
%char const identifier int const real const string_const 

22 signed const ~ sign after_sign 
%+ _- ; 

23 after sign = real const 

24 

%real const ; 

after sign = 
%int const 

int const 

25 after sign = const id 
%identifier ; 

26 unsigned con = identifier 
%ident1fier 

27 unsigned con = int const 
%int const 

28 unsigned con = char const 
%char const 

29 

30 

31 

lD'lsigned con = 
%string_const 

lD'lsigned con = 
%real const 

scalar const = 
%identifier 

i 

. 
I 

i 

string_ const 

real const 

identifier 
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32 scalar const = non id s con 
%+ --char const i'nt const ; 

33 non id s con = sign id_or_int 
%+ --; 

34 non id s con = int const 
%Tnt-const ; 

35 oon id s con = char const 
%Char const 

36 id or int = const id 
iidenti fier 

37 id or int = int const 
i'int const ; 

38 const id = identifier 
%identifier ; 

39 type pt = 
%begin event fll'lction procedure var ; 

40 type pt = typ! typ_def_list 
%type ; 

41 typ def list = type_def next_typ_def 
%Tdenti fier ; 

42 next typ def = 
%begin-event fll'lction procedure var ; 

43 next typ def = type def next typ def 
%iaentTfier ; - - -

44 type def = new type id = types ; 
%iaentifier ; 

45 new type id = identifier 
%TdentTfier 

46 types = type case 1 
%identifier- ; 

47 types = type case2 
%( + -array char const int const 

packed ptr record set tag- ; 

48 type easel = identifier type_tail 
%identifier 
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49 type tail = 

50 

%)-; case errl ; 

type tail - •• 
%.7 ; 

scalar const 

51 type case 2 = non id s con scalar const 
%+-- char_const-int_const ; 

52 type case 2 = struct type 
%array packed record set ; 

53 type_case2 = ptr identifier 
%ptr 

54 type case2 = enu id list 
% (- ; 

55 type_case2 = tag of pt_class_nam 
%tag ; 

56 non id type = non id simp 
%( +-- char const identifier int const 

tag ; -

57 non id type = struct type 
%array p3cked record set ; 

58 non id type = ptr 
%ptr-

identifier 

59 simple type = type_id simp_ty_tail 
%identifier 

60 simple type = enu id list 
%( -

61 simple type = non id s con scalar const 
%+ --char const Tnt-canst ; 

62 simple_type = tag of pt_class_nam 
%tag ; 

63 simp ty tail = 
%) -, ; ] case end ; 

64 simp ty tail = • • scalar const 
%.7 ; 

65 non id simp = ( enu id list 
%( ; 

66 non_id_simp = st.Drange_con scalar const 
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%+ - char_const identifier int_const ; 

67 non id simp = tag of pt_class_nam 
%tag- i 

68 pt class nam = identifier 
iidentTfier ; 

69 enu id list = identifier enumer tail 
%Identifier 

70 enumer tail = 

71 

%) i 

enumer tail = , 
%, i 

identifier enumer tail 

72 subrange con = identifier 
%identTfier ; 

73 subrange con = non id s con 
%+ - ch'ar_const int_const i 

74 type id = identifier 
%identifier 

75 struct type = p3ck prefix Lnp:lcked 
%array packed record set 

76 pack prefix = p3cked 
%packed 

77 pack prefix = 
%array record set ; 

78 unp:1cked = array indx_ ty_list ] of 
types 

%array ; 

79 unp3cked = record head field list end 
%record 

80 unp3cked 
%set . 

I 

= set of simple_ type 

81 record head = record 
%record 

82 indx ty list = simple type index tail 
%(-+=char const identifier int const 

tag ; -

83 irrlex tail = 
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%] ; 

84 index tail = simple_type index_tail 
%, . 

' 
85 field list = rec sec list with variant 

%) ; case errl identTfier ; 

86 rec sec list = rec section rec sec tail 
%) ; case en:l identifier ; 

87 rec sec tail = 
%) case end ; 

88 rec sec tail = ; rec section rec sec tail 

89 

%; 

rec section = fieldid list 
%Tdenti fier ; 

90 rec section = 
%) ; case end ; 

types 

91 fieldid list = identifier field id end 
%identifier ; 

92 with variant = 
%)end ; 

93 with variant = variant_pref variant_ list 
%case ; 

94 field id end = 

95 

%: ; 

field id end = 
%, ; 

identifier field id end 

96 variant_pref = case tag_type_ids of 
%case 

97 tag type ids = tagfield_id tag_typ_tail 
%identifier ; 

98 tag typ tail = 

99 

%of ; 

tag typ tail = ,: - scalar_ ty_id 

100 tag field id = identifier 
%identifier ; 
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101 scalar ty id = identifier 
%identffier ; 

102 variant list = variant variant tail 
%) + :: ; char canst end -

identifier Tnt canst 

103 variant = case 1 list : ( field head field list 
) --

%+ - char canst identifier int canst 

104 variant = 
%) ; end ; 

105 field head = 
%) ; case identifier 

106 variant tail = 
%) eoo ; 

. 
I 

107 variant tail = ; variant variant tail 
%; 

108 case 1 list = scalar canst caselabelend 
%+---char canst identifier int canst ; 

109 caselabelend = 
%: i 

110 caselabelend = 
%, 

scalar canst caselabelend 

111 "fX)rt decl pt = 
%~in canst event function label procedure 

type var 

112 port decl pt = pt_decl_list 
%pOrt -

113 pt decl list = port_decl pt_decl_tail 
%port- ; 

114 port decl = port_head pt_dir_mtype 
%port ; 

115 pt dir mtype = in type_id 
iin -; 

116 pt dir mtype = out type_id 
iout- ; 

117 pt dir mtype = port_group ; 
i( -

; 
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118 pt decl tail = 
%beg in const event function label . procedure 

type var ; 

119 pt decl tail = I=Ort_ decl pt_ decl_ tail 
i{X>rt- ; 

120 port head = I=Ort tnrt_ tail 
%port ; 

121 port tail = identifier 
%identifier ; 

122 port tail = set identifier 
%set ; 

123 port group = ( sbptdecll ist ) 
%(-

124 sbptdecllist = subport_decl next_subport 
%identifier 

125 st.bport decl = subport_ name direct_ type 
%identifier ; 

126 direct_type = in type_id 
%in ; 

127 direct type = out type_id 
%out-

128 st.btnrt name = identifier 
%identifier ; 

129 next_ subport = 
%) ; 

130 next_ subport = ; subport_ decl next_ subpart 
%; 

131 evnt decl pt = 
%beg in function procedure var ; 

132 evnt decl pt = event decl next event 
%event -; 

133 next event = 
%oegin function procedure var 

134 next event = event decl next event 
%eV"ent 
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135 event decl = event event id about_partO 
%event ; 

136 about partO = 
%; -; 

137 about partO =about pt_class_id 
%abOut 

138 var pt = 
%0egin function {X'ocedure 

139 var pt = var var decl 1st 
%var ; 

140 var decl 1st = var decl var decl end 
%ldentffier ; 

141 var decl end = 
%0egin-function procedure ; 

142 var decl end = var decl var decl end 

143 

%identifier ; 

var decl = id list 
%identifier -; 

144 proc fct pt = 
%begin- ; 

types ; 

145 proc fct pt = pf decl list 
%fiilction {X'oceaure -; 

146 pf decl list = pf decl pf decl tail 
%function procedure ; - -

147 pf decl tail = 
%begin ; 

148 pf decl tail = pf decl pf decl tail 
%function procedure ; 

149 pf decl = pf head ; blkorf\trl 
%function procedure ; 

150 blkorfw:l = for¥Brd ; 
%forward ; 

151 blkorfwd = block ; 
%beJ in const fll"lction label procedure type 

var ; 

152 proc_start - . 
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% ( : ; ; 

153 pf head = procedure proc_id_dec {X'oc_start p_head_tail 
%procedure 

154 pf head = ftmction ft.nc_id_dec proc_start f head tail 
ifLD1ction ; 

155 p head tail = 

156 

-,; ; 

p head tail = 
-,( ; 

157 f head tail = 

158 

159 

-%; ; 

f head tail = -%: ; 

f head tail = ( 
parm type id 

%( ;- -

fpsl ) 

parm _type_ id 

fpsl ) 

160 proc id dec = identifier 
%identifier ; 

161 func id dec = identifier 
%identifier 

162 fpsl = f ~rm sect fpsl_tail 
%identifier var 

163 fpsl tail = 

164 

%)-

fpsl tail = 
%;-

f_~rm_sect fpsl_tail 

165 f ~rm sect = ~rm group 
-%identifier ; 

166 f ~rm sect = var ~rm _group 
-%var- ; 

167 parm type id = type_id FSrm_ty_tail 
%identifier 

168 parm type id = stru:t type 
%array packed record-set ; 

169 pa rm type id = 
%(-; -

enu id list 
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170 parm type id = tag of pt_class_nam 
%tag ;-

171 pa rm type id = non id s con 
%+-- chir_const int_const ; 

scalar const 

172 parm_type_ id = ptr identifier 
%ptr ; 

173 parm _ ty_ tail = 
%) ; ; 

174 parm _ ty_ tail = scalar const 
% •• ; 

175 parm group = id list : parm_type_id 
%identifier ; 

176 id list = identifier id list tail 
iidenti fier ; 

177 id list tail · = 
%: 

178 id list tail = 
%, ; 

179 body start = 

identifier id list tail 

%announce begin case for goto identifier 
if int const receive repeat send when 
W"lile Wi. th 

180 stmt_pt = begin 

%begin 

body_ start stmt_list end 

181 stmt = label prefix 1..11labeled st 
%announce b~in case for gotO if 

int const receive re~a t send \\hen v.hile 
with 

182 stmt = stmt with id 
%identifier ; -

183 stmt with id = identifier asgn_cal_lab 
%identifier 

184 unlabeled st = begin stmt list end 
%begin -; 

185 unlabeled_st = goto labels 
%goto ; 
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186 unlabeled st = case head · case_list otherwise_pt end 
%case 

187 t.nlabel ed st = rep!at strnt list mtil 
\repeat-

188 mlabel ed st = if stmt 
%if ; 

189 mlabeled st = for strnt 
%for 

190 LD'llabeled st = while strnt 
%while -; 

191 mlabeled st = with stmt 
%with ; 

192 unlabeled st = receive strnt 
%receive when 

193 unlabeled st = send strnt 
%send ; 

194 llllabeled st = announcestrnt 
%anno Lmce ; 

195 asgn cal lab = rec_ary_ptr := eKpr 
\.-:= 1 ptr ; 

196 aS]n cal lab = acttal_p:irms 
%(- ; -

197 

198 

asgn cal lab = 
%:- ; -

asgn cal lab = 

unlabeled st 

%;-else errl otherwise ootil . 
' 

199 actual parms = ( actual_parm next_a _parm 
%( -

200 actt.al I=Brm = {arm expr field width 
% ( +-- [ char const identifier . 

expr 

int const nil not real const string_const ; 

.201 next a parm = 
%)-; 

202 next a p3rm = , actual_p:lrm next_a_p3rm ,,--
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203 if stJnt = if head stJnt if tail 
%if ; 

204 if tail = else stJnt 
l'else ; 

205 if tail = 
i; end otherwise mtil ; 

206 for stJnt = for head do stmt 
%tor 

207 v.bile stJnt = while head stmt 
%while ; 

208 with stmt = with head stmt 
%with 

209 if head = if expr then 
iif ; 

210 while head = while expr do 
%while ; 

211 label prefix = 
%annomce begin case for goto if 

receive repeat serrl when while with ; 

212 label_prefix = int_const 
%int const ; 

213 lhs = identifier rec ary ptr 
%identifier ; - -

214 vars = identifier rec_ary_ptr 
%identifier 

215 rec ary ptr = 
%) * + ' - .. 

I . ·- . - ] • .- I -

and d i v do down to else end 
fran in mod noneqrelop of or 
otherwise then to m til ; 

216 rec ary ptr = • 
%7 ;-

identifier rec_ary_ptr 

217 rec ary ptr = ( index list 
%T ;- rec _ary_ptr 

218 rec ary ptr = ptr rec_ary_ptr 
%ptr -; 
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219 irx:lex list = index next index 

220 

% ( + - ( char const identifier 
int const nil not real const string_const ; 

next index = , ,,- ; 
iooex 

221 next index = 
%]- ; 

222 index = expr 
%( +- ( char const identifier 

int const nTl not real const string_const ; 

223 expr = parm expr 
%( +- ( cnar const identifier 

int const nil not real const string_const 

224 parm_expr = simple expr parm exp end 
%( + - [ char const identifier -

int const nil not real const string_const 

225 parm exp end = 
%)-, .: : ; 

do downto else erx:l of otherwise 
then to until ; 

226 parm exp end = rel op simple expr 
%=-in noneqrelop -; -

227 rel_expr = simple expr rel op simple_expr 
%( +- [ char const identTfier 

int const nil not real const string_const ; 

228 rel op - -
%= ; 

229 rel op = in 
%Tn ; 

230 rel op = noneqrelop 
%noneqrelop ; 

231 simple expr = char const add term 
%char const ; 

232 simple expr = string_const add term 
%string_ const 

233 simple expr = sign term add term 
%+ -- ; 

234 simple_expr = term add term 
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%( [ identifier int const nil not 
real const ; 

235 add term = 
%T , • • : ; = 

] do downto else end in 
noneqrelop of otherwise then to LD'ltil ; 

236 add term = add op term add term 
%+- or ; - -

237 term = factor mul t factor 
%( [ identifier int const nil not 

real const ; 

238 mul t factor = 
%)-+ , - •• : 

; = ] do downto else 
end in noneqrelop of or otherwise 
then to until ; 

239 mul t factor = mul t op factor mul t factor 
%*-/ arrl div mod ; 

240 factor = identifier var funccall 
%identifier 

241 factor = nil 
%nil 

242 factor = real const 
%real const ; 

243 factor = int const 
%int ·const ; 

244 factor = ( expr 
%( ; 

245 factor = elan list 
%[ 

246 factor = not factor 
%not ; 

247 var funccall = rec_ary_ptr 
%) * + , -

.. I : ; = [ 
] arrl div do downto else 
end in mod noneqrelop of or 
otherwise ptr then to until ; 

248 var funccall = ac~Lal_t:arms 
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%( 

249 add op = sign 
%+ - ; 

250 add op = or 
%or ; 

251 mul. t op = * ,.- ; 

252 mul. t op =I 
%/- ; 

253 mul. t op = div 
%dTv ; 

254 mul. t op =and 
tand ; 

255 mul. t op =mod 
%mod ; 

256 variable = identifier rec_ary_ptr 
%identifier 

257 field width = 
%) -; ; 

258 field width = expr more field 
%: 

259 more field = 
%)-, ; 

260 more field = expr 

261 elem list = 

262 

263 

%] ; 

elem list = elem next elem 
%(-+- [ char const Identifier 

int const nil not real const string_const 

elem = expr elem tail 
%( + - [ char canst identifier 

int const nil not real_const string_const 

264 next elem = 
%]- ; 

265 next elem = elem next elem 

. 
I 

; 
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%, ; 

266 elem tail = ,,-] ; 

267 elem tail = expr 
%.7 ; 

268 proc id = identifier 
%identifier 

269 stmt list = stmt more stmt 

270 

271 

272 

%ailnounce beg in case -for go to identifier 
if int const receive rep:!at send \\hen 
while With ; 

more st:mt = 
%eoo Llltil .. 

I 

more stmt = ; stmt more stmt -%; ; 

case head = case expr of 
%case 

273 case list = case elem case elems 
%+-- char canst-identifier int const ; 

274 case elems = 
%eoo otherwise ; 

275 case elems = case elem case elems 
%;- ; 

276 case elem = case labels strnt 
%+-- char canst-identifier int const ; 

277 otherwise trl = otherwise 
%otherwise ; 

278 case labels = scalar const next scalar 
%+-- char const identifier int-const ; 

279 next scalar = 
%:- ; 

280 next scalar = ,,- ; 

281 otherwise _pt = 
%end ; 

scalar const next scalar 

282 otherwise _pt = otherwise trl strnt 1 ist 
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%otherwise ; 

283 for head = for identifier := expr 
to part expr 

%for ; 

284 to part = to 
ito ; 

285 to part = downto 
%doW'lto ; 

286 rec var list = variable next rec var 
%identifier 

287 next rec var = 

288 

tdo ; 

next rec var = , ,,- ; 
variable next rec var 

289 with head = with rec var list do 
%wlth i 

290 receive st:mt = simple_rcv 
%receTve ; 

291 receive st:mt = when st:mt 
%when- ; 

292 simple rev = receive variableO from 
port denoter freebindingO 

%receTve ; 

293 variableO = 
%fran 

294 variableO = variable 
%identifier ; 

295 port denoter = pt_class_id subport 
%iaenti fier 

296 subport = 

297 

%; do else eoo otherwise set 
until use ; 

subp:>rt = • 
%. ; 

stbp:>rt_ id 

298 pt class id = identifier 
iidentTfier ; 
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299 subport id = identifier 
%identifier ; 

300 freebindingO = 
%; do else eoo otherwise tntil 

301 freebindingO = use variable 
%use ; 

302 freebindingO = set variable 
%set ; 

303 when stmt = when head receives else _r:artO end 
%when ; 

304 when head = when 
%When ; 

305 receives = receive pt next receive 
%; end otherwise receive ;-

306 next receive = 
%efij otherwise ; 

307 next receive = ; 
%; 

receive_pt next receive 

308 receive pt = 
%; end otherwise 

309 receive pt = simple_rcv do stmt 
%receive ; 

310 else partO = 
%end ; 

311 else partO = otherwise stmt 

312 

%otherwise ; 

send stmt = 
use partO 

%send ; 

313 expressionO = 
%to i 

send expressionO to 

314 expressionO = expr 
%( + - [ char const identifier 

{l)rt_denoter 

int const nil not real const string_const 

315 use partO = 
%7 else end otherwise L1'ltil i 
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316 use partO = use variable 
%Use ; 

317 announcestmt = announce event id about bindO 
%announce ; 

318 event id = identifier 
%identifier ; 

319 about bindO = 
%; else eoo otherwise until ; 

320 about bindO = about pt_ class_ id use_partO 

321 

322 

%about ; 

sign = + 
%+ . 

' 
sign = 

%- ; 
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APPENDIX C 

An EXample NETSIA program - BroadcastiD; 

network broadcast; 
process class seooer 
port inport in integer; 
p;:>rt outiX>rt out integer; 
end seooer 

process class receiver 
port inp in integer; 
port outp out integer; 
eoo receiver 

initial 
create sender : sender ; 
create receiver! : receiver; 
create receiver2 : receiver; 
connect sender.outport to receiverl.inp; 
connect sender .outport to receiver2.inp 

end broadcast 
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APPENDIX D 

A Network Specification MOdule 

This code was generated by the Netsla preprocessor." 

procedure ini t; 
begin (*ini t*) 
p id := 0; 
afive := 0; 
total procs := 0; 
initialized := false; 
Gr := AllocateR>rt(KernelR>rt, OlildtoFarR>rt, MAXBACKLOG); 
Gr := AllocateR>rt(KernelR>rt, EWentR>rt, MAXBACKr.cx:;); 
build net('broadcast'); 
build-proc('sender'); 
build-port('inport'); 
build-port('outport'); 
build-proc('receiver'); 
build-port('inp'); 
build-port('outp'); 
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Gr :=-a creation pr (theroot,'sender' ,'sender' ,•sender.RUN',p list head); 
Gr := a-creation-pr (theroot,'receiver' ,•receiver!' ,•receiver7RUN'~p list head); 
Gr := a-creation-pr (theroot,'receiver' ,•receiver2','receiver.RUN' ,p-list-head); 
Gr := connection(theroot,•sender' ,•outport' ,•• ,•receiver!' ,'inp' , 11 ); . -

Gr := connection(theroot,'sender' ,•outport' ,•• ,'receiver2','inp' ,''); 
wakeup; 
end; (*ini t*) 
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APPENDIX E 

'lhe ENent Rlndling Mxlule 

Blnt~. ~ad. local FOrt : = BlentFOrt; 
quit := False; 
while (quit=FALSE) do 
ba;Jin 
writeln('Events before receive req'); 
Gr := leceive (BintMsg. ~ad, 0, LOCALPT, R~EIVEIT); 
i f Gr=SOCCESS then 
case shrink ( BlntMsg. ~ad. ID) of 
1: ba;Jin (* message transmission. *) 

wri teln ('Send Msg Iequest FEceived.'); 
Gr := send ms9<theroot, Blntrvt;g); 
if Gr=SOCCESS then 

wr i teln ('Send Msg Iequest Completed.') 
else -

writeln( 1 ***Send_Msg Request Nar Completed.'); 
arrive evnt; 

end; -
2: ba;Jin (* message transmission. w/ tag *) 

wri teln ( 1 Send Msg (w/ 'lag) Iequest ~Eceived. 1 ); 

Gr := send ms9 tag (theroot, B!ntrvt;g); 
if Gr=SOCCESS then 

wri te1n( 1 Send Msg (w/ Tc:lg) Request Completed • 1
) 

else -
wri teln( 1 ***Send rvt;g (w/ 'lag) Request Nar Completed. 1 ); 

arrive evnt; -
end; -

3: begin (* enter event *) 
enter evnt; 

end; -
4: begin (* leave event *) 

leave evnt; 
end; -

5: begin (* v.hen evnt *) 
when evnt; 

end; -
6: begin (* W'len evnt. w/ about p3rt *) 

when evnt; 
end; -

19: begin (* connectivity inquiry *) 
wri teln ( 1 Conn Inq Iequest ~Eceived 1 ); 

Gr := inquiry(theroot, EVntMsg); 
if Gr=SUCCESS then 

wr i teln ( 1 Conn Inquiry Cbmpl eted 1 ) 

else 
wr i tel n ( 'Conn Inquiry Nar Completed') ; 

end; 
99: begin (* termination of a process instance *) 

with vparray[vpnap[EVntMsg .I:Bta2]] do 
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begin 
I:eletecanvas ( canvs) ; 
PaintRectangle(Usercanvas,White,xO+l,xO+xlen-3,y0+2,yO+ylen-2); 
Used : = False; 

end; 
alive := alive-1; 
if ali ve=O then 
begin 

quit:=TRUE; 
Erasecanvas (Usercanvas ,W'li te) ; 
{~letecanvas (User canvas);} 

end; 
end; 

(* more come here *) 
otherwise: 

begin 
end 

end; (* case *) 
end; (* while *) 
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APPENDIX F 

A Script for Sender Processes 

process script sender; 
p:>rt inp:>rt in integer; 
port outport out integer; 
var 

i :integer; 
begin 

\\bile i<>999 do 
begin 

write ( 1 Integer: 1 ); 

readln(i); 
send i to outp:>rt 

.end 
end. 
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APPENDIX G 

The Preprocessor-generated Cbde for Sender Processes 

program sender; 
imports Child_lib from Child_lib; 

var 
i :integer; 
var 
pinport : port; 
poutport : port; 

type 
signal = boolean; 

accenbnsg = record 
head : msg; 
ipcname2 : ~~; 
arg2 : integer; 
ipcname3 : ~~; 
arg3 : string [ 10]; 
ipcname4 : ~~; 
arg4 : string [ 10]; 
i pcname 5 : Type Type ; 
arg5 : integer; 
ipcname6 : ~Tfpe; 
arg6 : string[20]; 
i pcname 1 : Tfpe Tfpe ; 
case integer of 

1 (msignal : signal) ; 
2 ( msginport: integer); 
3: ( msgoutport :integer); 

end; 

var 
xxmsg accentmsg; 
gr : generalreturn; 
whenfl ag : boolean ; 
xxsignal : signal; 
canmiX>rt : port; 
p array : FbrtBitArray; 
pstr : string[12]; 

{$INCLUDE Alsten supt.pas} 
begin -
{$INCLUDE Alstenini t.pas} 
Ini tM93n (Null Fbrt) ; 
Gr := Child ack; 
while i<>999 do 
begin 
write ( 'Integer : ') ; 
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readln(i); 
beg in ( * send *) 
xxmsg.head.id := 1; 
xxmsg .head .remotep:>rt := Infbrts ... ( 1]; 
xxmsg .head .local port := I:Btafbrt; 
xxmsg .msgoutp:>rt :=i; 
xxmsg.arg2 := p id; 
xxmsg.arg3 := 'outp:>rt'; 
xxmsg .arg4 := ' •; 
gr := send(xxmsg.head,O,wait) 
end (* send *) 

end 
;goa\tay;end. 

• 
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APPENDIX H 

A Script for the Iecei ver Proce~s 

process script receiver; 
port inp in integer; 
port outp out integer; 
var 

j :integer; 
begin 

W'lile j<>999 do 
begin 

end 
eoo. 

receive j from inp; 
wri teln{j) 
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APPENDIX t 

T.he Preprocessor-generated Cbde for Receiver Processes 

program receiver; 
imports Child_lib from Child_lib; 

var 
j :integer; 
var 
pinp : port; 
poutp : port; 

type 
signal = boolean; 

accenbnsg = record 
head : ms;J; 
ip::name2 : ~~; 
arg2 : integer; 
i p::name 3 : ~Type ; 
arg3 : string [ 10]; 
i p::name4 : Type~; 
arg4 : string[lO]; 
ip::nameS : ~~; 
argS : integer; 
i pcname6 : Type Type ; 
arg6 : string[20]; 
i pcname 1 : ~Type ; 
case integer of 

1 (msignal :signal); 
2 ( ms;)inp : integer); 
3: ( msgoutp: integer); 

end; 

var 
xxms;) : accentms;J; 
gr : generalreturn; 
\\hen flag : boolean; 
xxsignal : signal; 
commp:>rt : port; 
p array : PortBitArray; 
pstr : string [.12]; 

{$INCLUDE Alsten supt.pas} 
begin -
{$INCLUDE Alsteninit.pas} 
Ini tMs;Jn (Null Port) ; 
Gr := Child ack; 
while j<>999 do 
begin 
begin (* receive *) 
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rcv('inp' ,'',999,l,rcv resUlt); 
if rev result then -
j:=xxmsg.msginp; 
erd (* receive *) 
i 
writeln(j) erd 
;goa w:t y ;errl • 
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APPENDIXJ 

Event Replay Example 

The following figures show a sequence of 6 events taken from a multiprocess arithmetic 

expression interpreter program developed during this project for testing and demonstrations. 

The SCANNER process reads an expression from the keyboard and then produces two 

messages: one containing token classifications for the PARSER and one containing token 

values (of constants and identifiers) for the INTERPRETER. The PARSER sends a message 

to the INTERPRETER describing the syntactic structure of the expression. This structure 

drives the interpratation. 

Dotted lines are included in the figures to indicate port connections. These are not present in 

the actual presentation done by our replay system. 

Sending a message is represented by two pictures. The ftrst shows a message box leaving an 

output port, while the second shows it arriving at an input port. The second picture represents 

the static state of the display after completion of the event. These two pictures show the 

beginning and end of the presentation of the event. In the actual presentation, the message box 

moves smoothly across the screen from the output port to the input port. 

Receiving a message is represented by a single picture that shows the state of the display 

after the message box is removed from the input queue of the appropriate port. 
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SCANNER sends message to PARSER 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

i Q ________ j l ________ j : 
I I 
~-------------------------------~ 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

i l ________ 9 l ________ J 1 
I I 
~-------------------------------~ 

Figure J-2 

SCANNER send message to INTERPRETER 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

A I 9 I 1 
U I ,I _________ J I 

I ~-------- I 
I I 
L-------------------------------1 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

: ; _________ Q ; _________ j 9 
I I 
L-------------------------------1 
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PARSER rereives message from SCANNER 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

I I I I 1 : L ________ j L ________ j I 

I I 
L------~------------------------1 

Figure J- 4 

PARSER recaves message from SCANNER 

SCANNER PARSER INTERPRETER l 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

! L ________ J Q ________ J 9 
I I 
L------------~------------------1 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

I 
I 

I 
I I L ________ j I 

! _________ p 
I --------------------------------· 

I 
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INTERPRETER receives message from PARSER 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

: L ________ J l _________ J 9 
I I 
L-------------------------------1 

Figure J -6 

iNTERPRETER receives message from SCANNER 

SCANNER PARSER INTERPRETER 
OUT1 OUT2 IN1 OUT1 IN1 IN2 

I 1 I I I I : L ________ j L ________ j : 

I I 
L-------------------------------1 




