
ACTIVE MANAGEMENT OF CACHE RESOURCES

A Dissertation
Presented to

The Academic Faculty

By

Subramanian Ramaswamy

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

Aug 2008

ACTIVE MANAGEMENT OF CACHE RESOURCES

Approved by:

Prof. Sudhakar Yalamanchili, Advisor
School of ECE
Georgia Institute of Technology

Prof. Jeffrey Davis
School of ECE
Georgia Institute of Technology

Prof. David Schimmel
School of ECE
Georgia Institute of Technology

Prof. Yorai Wardi
School of ECE
Georgia Institute of Technology

Prof. Umakishore Ramachandran
College of Computing
Georgia Institute of Technology

Date Approved: June 30 2008

Dedicated to Appa, Amma and Divya

ACKNOWLEDGMENT

As a doctoral student, the one decision that matters most is choosing an advisor. I chose

the best. Prof. Sudhakar Yalamanchili is not only a great researcher and teacher, but

also a wonderful friend. The motivation, support and guidance he provided were the core

elements in my graduate student career. His encouragement kept me going in stressful

times. I owe a debt of gratitude to him that will never be fulfilled.

My proposal and defense committee members including Professors Jeffrey Davis, Yorai

Wardi, David Schimmel, Sean Lee and Umakishore Ramachandran provided me with valu-

able suggestions and feedback which helped make my contributions stronger.

If I completed my thesis, I owe it to my loving wife Divya. She was always there for

me. She put up with my insane working hours and my inability to spend any measurable

time with her over the last couple of years as I entered the business end of my doctoral

studies. She was an unending source of happiness and joy for me. The few hours I spent in

her company were always priceless.

Anything I ever accomplished or will accomplish owes a lot to my dearest parents. They

instilled the value of education in me and taught me many life lessons that I value in my

personal and professional endeavours. My late father always provided me with the support

and encouragement to pursue whatever interests me and my mother taught me never to be

satisfied with second prize.

My sister Geetha was another person who was there for me with her support and love

during my graduate studies. Visiting her in Chicago during December always filled me

with warmth in spite of the winter temperatures.

Last, but definitely not the least, I owe a lot to all my friends and colleagues who

helped me at various stages of my career by acting as a sounding board, providing me with

unlimited support and helping me with the logistics and paperwork—Jeff Young, Tushar

Kumar, Jaswanth Sreeram and Nawaf Al-moosa deserve special mention.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENT . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . xi

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 RELATED WORK . 5
2.1 Execution Time Optimizations . 5
2.2 Energy Optimizations . 10
2.3 Defect Tolerance . 11

CHAPTER 3 AN EFFICIENCY MODEL FOR CACHES 13
3.1 Analytical Model . 13
3.2 Empirical Analysis of Single-threaded Applications 15
3.3 Efficiency Analysis of Multi-threaded Applications 20
3.4 Improving Efficiency . 23

CHAPTER 4 SYSTEM MODEL . 26
4.1 Programmable Placement . 26
4.2 Scope of Optimizations . 28
4.3 A Representative Traditional Cache Implementation 29
4.4 Operational Model . 30
4.5 Architecture Model . 31
4.6 Compilation Model . 32
4.7 Applying Placement Directives . 32

CHAPTER 5 OFF-LINE STRATEGIES . 34
5.1 Data Trace Cache . 34

5.1.1 Caching for Network Processors 35
5.1.2 Characterizing Memory Reference Behavior 36
5.1.3 Architecture and Design . 38
5.1.4 Performance Evaluation . 46

5.2 Customized Placement Cache . 52
5.2.1 Partitions and Conflict Sets . 52
5.2.2 Greedy Algorithm Based Placement 53
5.2.3 Performance Evaluation . 56

5.3 Fault Tolerant Cache (FTC) Architecture 62
5.3.1 Placement Model . 62
5.3.2 Capturing Reference Locality . 63

v

5.3.3 Fault Tolerant Placement Policies 64
5.3.4 Results and Analysis . 67

5.4 Concluding Remarks . 73

CHAPTER 6 STATIC STRATEGIES FOR IMPROVING EFFICIENCY . . . 74
6.1 Strided Placement Cache . 74

6.1.1 Strided Placement for One-dimensional Arrays 75
6.1.2 Miss Folding . 79
6.1.3 Performance Evaluation . 84

6.2 Extensions to Multi-threaded Applications 89
6.2.1 Hardware Extensions for Multi-threading 90
6.2.2 Impact of the Operating System 90
6.2.3 Performance Evaluation . 91

6.3 Concluding Remarks . 94

CHAPTER 7 RUNTIME STRATEGIES FOR IMPROVING EFFICIENCY . 96
7.1 Improving Efficiency via Resizing+Remapping 96

7.1.1 Cache Downsizing . 96
7.1.2 Runtime Heuristics . 97
7.1.3 Performance Evaluation . 99

7.2 An Utilization Driven Framework for Improving Efficiency 102
7.2.1 Empirical Analysis . 104
7.2.2 Operational Model . 106
7.2.3 On-Line Cache Management . 106
7.2.4 Cache Sizing . 109
7.2.5 Shaping the Cache . 109
7.2.6 Performance Evaluation . 111

7.3 Concluding Remarks . 116

CHAPTER 8 CONCLUSION . 118
8.1 Future Extensions . 118
8.2 Summary . 119

REFERENCES . 122

vi

LIST OF TABLES

Table 1 Description of Benchmarks . 46

Table 2 Performance comparison of Data Trace Cache Vs. a Traditional Cache . 48

Table 3 Performance Yield Comparison . 72

vii

LIST OF FIGURES

Figure 1 Cache utilizations for traditional cache designs. 16

Figure 2 Cache efficiencies for traditional cache designs. 17

Figure 3 Sensitivity of efficiencies to cache size. 18

Figure 4 Sensitivity of efficiencies to cache associativity. 19

Figure 5 Utilization with modern caches . 21

Figure 6 Performance efficiency with modern caches 21

Figure 7 Energy efficiency with modern caches 22

Figure 8 Conflict set construction . 24

Figure 9 Cache sizing and shaping. 27

Figure 10 Range of optimization possibilities. 28

Figure 11 Base Cache . 29

Figure 12 Operational Model . 30

Figure 13 Architecture Model . 31

Figure 14 A Binary Search Tree . 37

Figure 15 A n-ary Tree Data Structure . 38

Figure 16 Data Trace Cache Principle . 39

Figure 17 Data Trace Cache: System Architecture 40

Figure 18 Methodology . 41

Figure 19 Algorithm for Allocating Cache Sets to Conflict Sets 43

Figure 20 Flowchart for Indexing the DTC . 44

Figure 21 Implementation of Runtime decoding for the DTC 45

Figure 22 Evaluation Infrastructure . 47

Figure 23 Single threaded DTC Results . 48

Figure 24 Multi-threaded DTC Results . 49

Figure 25 DTC performance for avl . 50

viii

Figure 26 Partitions and conflict sets in a traditional cache. 53

Figure 27 Algorithm for determining set-associative cache placement. 55

Figure 28 Direct-mapped cache placement . 56

Figure 29 Address decoding for set-associative caches. 57

Figure 30 Address translation of direct-mapped caches - concept 58

Figure 31 Address decoding for direct-mapped caches (bypass path not shown) . . 58

Figure 32 AMAT comparison for various cache configurations. 59

Figure 33 Area costs of various cache configurations 60

Figure 34 Energy costs of various cache configurations 60

Figure 35 Energy-AMAT curves compared for traditional and customized place-
ment caches. 61

Figure 36 Cache with Customized Placement . 63

Figure 37 FTC Placement Implementation . 66

Figure 38 Placement Algorithm for FTC . 67

Figure 39 Modulo Vs Custom Placement . 69

Figure 40 AMAT Variation with Faults . 69

Figure 41 AMAT Variation with Faults for Various Cache Configurations 70

Figure 42 Performance Yield . 72

Figure 43 Strided placement: Basic concepts. 77

Figure 44 Strided placement for matrices. 78

Figure 45 Strided placement for 3D arrays. 78

Figure 46 Algorithm computing the cache placement function. 81

Figure 47 Algorithm computing the number of active cache sets. 81

Figure 48 Run-time address translation for strided placement. 82

Figure 49 Cache utilization comparison for scientific computation. 85

Figure 50 Performance efficiency comparison for scientific computation. 86

Figure 51 Energy efficiency comparison for scientific computation. 86

ix

Figure 52 Efficiency variation with cache size. 87

Figure 53 EDP variation with cache size. 88

Figure 54 IPC variation with cache size. 88

Figure 55 Effectiveness comparison . 92

Figure 56 Performance efficiency comparison . 92

Figure 57 Energy efficiency comparison . 93

Figure 58 EDP comparison . 93

Figure 59 Cache decay resizing. 98

Figure 60 Power of two resizing. 98

Figure 61 Cache segment resizing. 99

Figure 62 Energy efficiency comparison of folding heuristics. 100

Figure 63 Performance efficiency of folding heuristics. 101

Figure 64 EDP of folding heuristics. 102

Figure 65 Utilization and Performance Efficiencies for a traditional 256KB L2 Cache105

Figure 66 Energy efficiencies for a 256KB L2 cache 105

Figure 67 Conflict set construction . 106

Figure 68 Utilization Measured vs. Actual . 108

Figure 69 Hardware Implementation . 111

Figure 70 Shaping Algorithm using Utilization . 112

Figure 71 Effectiveness comparison . 113

Figure 72 Performance Efficiency comparison . 114

Figure 73 Energy Efficiency comparison . 114

Figure 74 Energy Delay Product comparison . 115

x

SUMMARY

Thesis Statement: Active cache management customized to application memory

behavior improves cache efficiency.

The shift from scaling frequency to scaling the number of cores, continues the trend

of stressing off-chip memory bandwidth and reliance on larger on-chip caches. Caches

typically occupy 40–60% of the chip area and account for 15–30% of energy consumption

on chip. For a fixed die size, execution performance will drive the need for more cores

while the increased memory bandwidth required to sustain these cores will drive the need

for larger caches while keeping energy costs at a minimum. This dissertation is focused

on the development of techniques to reconcile these conflicting area and energy demands.

The solutions provided in this dissertation are driven in part by the observation of very low

performance efficiencies and energy efficiencies for modern data caches. For a range of

application domains, data cache utilizations are below 20%, performance efficiencies be-

low 15% and energy efficiencies below 1%! These low efficiencies are not sustainable for

a critical architectural resource that is also a dominant resource consumer on-chip. Con-

sequently, the ability to scale the number of cores while concurrently pushing back the

memory and power walls will require significant improvements in cache efficiency. Con-

cepts and implementations to achieve such improvements are addressed in this dissertation.

Two significant causes of low cache efficiencies are: (i) transistor leakage, and, (ii) the

fixed manner in which main memory lines share the cache. At technologies below 70 nm,

a L2 cache with size greater than 256 KB has 95% of its energy consumption attributed to

leakage. Further, typical L2 cache line is accessed only once every hundreds of thousands

of cycles, whereas, the transistors comprising the cache line leak every cycle leading to

poor energy efficiencies. The low utilization and performance efficiencies can be attributed

to the fixed mapping of main memory lines to the cache. This fixed mapping typically

xi

results in the majority of the cache storing data that will not be accessed in future. Indeed,

a utilization number of 25% indicates that, on average only 25% of the cache stores data

that will be accessed in the future!

The approaches proposed for efficiency improvement is predicated on addressing the

preceding two sources of inefficiency. The approach to improving energy efficiency pri-

marily relies on sizing the cache to match application memory footprint or working set

during a program phase and powering down all remaining cache lines. The approach to

improving cache utilization and performance efficiency primarily relies on changing the

placement function—the manner in which main memory lines share cache resources mo-

tivated in part by compiler-driven approaches where application-data shares registers via

compiler based register allocation techniques. This is referred to as shaping the cache.

The approach to sizing differs from past approaches in that these techniques produce fully

functional smaller caches. There can be no references to inactive cache lines. This is fea-

sible since sizing is used in conjunction with shaping. These techniques are predicated on

partitioning main memory into conflict sets—each set of memory lines is mapped to the

same cache set. The optimization problem is the application-driven construction of conflict

sets to maximize energy and performance efficiencies. The engineering challenge is the

development of hardware-software techniques for static and dynamic sizing and shaping.

Collectively, the application of these techniques is referred to as active management. This

dissertation makes the following specific contributions.

First, a model is developed for quantifying cache utilization, energy efficiency and per-

formance efficiency. Efficiency metrics are introduced followed by an analysis of common

single-threaded and multi-threaded benchmarks. The resulting efficiencies are found to be

very low (< 25% for utilization, 15% for performance efficiency, < 1% for energy effi-

ciency). The analysis exposes some of the key sources of cache inefficiency (e.g.,leakage

and how memory lines share the cache) and provides the insights for the development of

energy improvement through active management techniques.

xii

Second, profile-driven algorithms for computing placement functions for caches are

provided. This was first applied to the design of application specific caches for network

processors. In such architectures memory accesses are dominated by accesses to a few ma-

jor data structures: in the case of network processors, it is the route lookup data structures.

This dissertation demonstrates the design of an application specific cache, named the data

trace cache for application in networking applications. The customized cache exploited the

predictability of accesses to the routing table data structure. The proposed solution has the

flavor of stream buffers in general-purpose caches.

This notion of profile driven placement is developed further by adapting it to a more

general solution for embedded processors. Greedy algorithms are used on profile data to

develop application specific customized cache placement to manage the cache for embed-

ded processors. This resulted in a sharp decrease in conflict misses in embedded proces-

sor caches. Another application of these profile-driven solutions was aimed at masking

out faulty cache lines with minimal performance degradation which was found to be very

effective. The low performance degradation seen using customized placement strategies

exposed the existing redundancy in traditional cache storage, which could be intelligently

adapted for energy and performance benefits.

Third, the preceding two techniques are consolidated in a solution for application spe-

cific cache configurations. The key insight is to recognize the relationship between voltage

level and fault free memory cells in the cache. A configuration profile is generated for the

cache where each voltage level is mapped to a size and shape (placement function). This

shape in turn can be profile driven particularly useful for embedded processors. During

program execution voltage levels and consequently cache size and shape can be selected

for each program region to concurrently improve both energy and performance efficiencies.

Fourth, active management techniques are developed for static sizing and shaping caches

for scientific computing applications which have predictable memory reference behavior

xiii

with well defined memory footprints. This domain knowledge was used to derive cus-

tomized cache placement solutions, which in conjunction with sizing improved perfor-

mance and energy efficiencies significantly over traditional caches (Section 6.1). The so-

lutions exploited the property of strided accesses to multi-dimensional array data structures

being a common feature in scientific applications. The improved sharing achieved using

active management, i.e., cache shaping, led to significant drops in miss rates and execution

time in addition to improved energy efficiency by sizing the cache to the program phase

memory footprint. This work on static sizing and shaping strategies is further extended to

include the current environment of multi-threaded applications. In Section 6.2. The ap-

plication of static sizing and shaping strategies is extended to multi-threaded domains to

optimize the efficiencies of caches shared among multiple application threads.

Fifth, active management techniques are developed for runtime sizing and shaping for

applications lacking statically characterizable profiles. The concept of miss folding is in-

troduced as a technique for dynamically sizing and shaping the cache. Simple folding

schemes relying on various heuristics were found to be effective in decreasing the energy-

delay product (EDP) significantly and increasing energy and performance efficiency.

To summarize, state of the practice is focused on applying power down events such as

gated-Vdd or drowsy state to selected components of the cache. Consequently references

can be made to inactive cache components with accompanying performance penalties, for

example the need to power and reload a line or way. In contrast this dissertation sizes

a cache in conjunction with customized placement to produce fully functional caches of

varying sizes with references accessing only active (i.e., powered) cache components.

Sizing and shaping can be applied at different phase of the design cycle. For example,

after burn in test, sizing and shaping can be used to mask faulty cache elements and perform

a per application configuration of the on-chip cache hierarchy (Techniques 2 and 3). During

compile time, cache configurations (a size and shape) can be computed for various program

phases and effected via a software interface (Technique 4). Such an approach is particularly

xiv

effective for applications where memory access patterns can be determined via program

analysis such as in the scientific computing domain. A more flexible variant is the runtime

inference of memory access patterns (Technique 5) and the dynamic determination of a

new cache size and shape configuration. This dissertation contributes techniques at all of

the preceding points in the life cycle of a program.

Finally, this dissertation opens up a new degree of freedom for compiler optimizations.

Compilers have been restricted to a cache with fixed mapping from main memory. Opening

up the cache placement function provides another avenue for optimization. The relaxation

of the placement coupled with the conflict set construction and notion of liveness provides

the means for formulating a range of tractable memory system optimizations.

xv

CHAPTER 1

INTRODUCTION

This dissertation addresses two major sets of challenges facing processor design as the

industry enters the deep sub-micron region of semiconductor design. The first set of chal-

lenges relates to the well understood memory bottleneck [1] that shows no signs of easing

even as the focus shifts from scaling processor frequency to scaling the number of cores.

This trend has led to the increasing reliance on larger on-chip caches which occupies 40–

60% of area on chip and consuming 15–30% of energy expended on chip.The second set of

challenges is posed by transistor leakage and process variation (both inter-die and intra-die)

at future technology nodes with leakage power anticipated to increase exponentially and

sharply lower defect-free yield with successive technology generations. This dissertation

focuses on resolving these two challenges by abstracting them as one problem—developing

efficient caches.

The first set of challenges results in efforts to decrease the average memory access

latency through the addition of larger and deeper cache hierarchies. However, this has led

to an over reliance of caches, with caches typically occupying 40–60% [2] of the chip area

and are estimated to account for 15–30% [3, 4] of the overall chip energy consumption.

For example, the Intel Itanium 2 processor 9010 has a 6 MB L3 cache [5], with the cache

hierarchy occupying almost 60% of the die area. Apart from the increasing cache costs,

adding more cache resources results in lower resources for the processing cores limiting

Moore’s law expansion in raw processing power.

Transistor leakage at sub-micron technologies is at the forefront of the second set of

challenges facing the semiconductor industry. Borkar estimates leakage energy to be 60%

of the overall processor energy consumption at 65 nm and anticipates the leakage current

to increase by a factor of 7.5 with successive technology generations [6]. This increase

in leakage current is expected to scale total leakage power on the chip by a factor of 5.

1

Leakage is a function of area on the chip, and caches, because of their significant area

budgets are major contributors to leakage [3, 4]. Additionally, since the majority of the

cache is idle most of the time (especially L2 and L3 caches), the SRAM cells in caches

contribute signficantly more to leakage energy than to switching energy.

The efficiencies of the cache hierarchy is quantified and it was determined that across

a range of application domains, data cache utilizations have been found to be below 25%,

performance efficiencies below 15% and energy efficiencies below 1%! These low efficien-

cies are not sustainable. Consequently, the ability to scale the number of cores concurrently

while pushing back the memory and power walls will require significant improvements in

cache efficiency, which is the focus of this dissertation.

Two significant causes of low cache efficiencies are identified: (i) transistor leakage,

and, (ii) the fixed manner in which main memory lines share the cache. At technologies

below 70 nm, a L2 cache with size greater than 256 KB has 95% of its energy consumption

attributed to leakage. A typical L2 cache line is accessed only once every hundreds of

thousands of cycles, whereas, the transistors comprising the cache line leak every cycle

leading to poor energy efficiencies. The low utilization and performance efficiencies can be

attributed to the fixed mapping of main memory lines to the cache. In traditional caches the

set of memory lines mapping to a cache set (a conflict set, Section 3.4), is fixed at design

time and this structure is one of the major sources of cache inefficiency. This fixed mapping

typically results in the majority of the cache storing data that will not be accessed in future.

Indeed, a utilization number of 25% indicates that, on average only 25% of the cache stores

data that will be accessed in the future! Thus, the dominance of leakage energy coupled

with the static cache architecture leads to inefficiency.

This thesis focuses on actively managing the cache structure, leading to increased uti-

lization and performance efficiency while at the same time limiting any adverse impact

on energy consumption. Managing the cache resources in an active manner improves the

sharing of cache resources among main memory lines by making this mapping malleable.

2

This increases cache efficiency—this is the focal point of this dissertation. As technology

scales and designs incorporate larger caches for greater performance, cache efficiency is of

paramount importance, and this dissertation takes a first step towards that direction.

The key to improving cache energy and performance efficiencies is to construct conflict

sets customized to the application memory access pattern (i.e., shaping) and minimizing

the footprint of the application in the cache (i.e., sizing). Collectively, sizing and shaping

are referred to as active management, as they match the cache size and placement structure

to the application memory access behavior. The vehicle that is adopted to achieve active

management in this thesis is customizing the cache placement. The result is lower conflict

misses (better performance efficiency) and smaller footprints with the ability to turn off

unused lines (better energy efficiency). This dissertation focuses on hardware-software

approaches embodying this philosophy to improve cache efficiencies.

Sizing and shaping can be applied at different phase of the design cycle. For example,

after burn in test, sizing and shaping can be used to mask faulty cache elements and per-

form a per-application configuration of the on-chip cache hierarchy. During compile time,

cache configurations (a size and shape) can be computed for various program phases and

effected via a software interface. Such an approach is particularly effective for applica-

tions where memory access patterns can be determined via program analysis such as in the

scientific computing domain. A more flexible variant is the runtime inference of memory

access patterns and the dynamic invocation of a new cache configuration. This dissertation

contributes techniques at all three of the preceding points in the life cycle of a program.

The optimization problem is one of forming conflict sets customized to the memory

reference pattern of a program phase. The engineering problem is to architect low cost

software and hardware solutions to effect sizing and shaping. The design problem is to

decide where such techniques should be applied: one-time (per-application) configuration,

statically at compile time, or dynamically at run time.

The state of the practice in making caches more energy efficient has been to power

3

down cache components such as cache lines, sets or ways—turn them off or maintain them

in a low voltage state. Strategies focus on when to turn off which components. Studies im-

proving cache performance include pseudo-associative designs and compiler optimizations

along with fixed hardware modifications. Strategies to improve performance efficiency rely

on hardware strategies that implement new fixed management structures or through com-

piler optimizations, noticeable for scheduling and data layout. Existing strategies to im-

prove efficiencies are constrained by one of the primary causes of inefficiency—the fixed

manner in which main memory shares the cache. Additionally, improving cache efficiency

leads to solutions that might seem counter-intuitive; for example, accesses concentrated on

a few cache sets can lead to better efficiency than distributing those accesses across the en-

tire cache but may degrade performance substantially if applied in an agnostic manner. By

making the cache size and shape fluid, efficiencies can be improved by exploiting memory

access behavior. Thus, active management can be viewed as an evolution of present day

energy saving and performance improvement strategies.

This thesis is organized as follows. The following chapter describes several related

techniques used in the literature for improving cache performance and contrasts the strate-

gies proposed in this thesis with them. Chapter 3 describes a model for quantifying cache

utilization and efficiency and applies this model to empirically analyse the performance of

single threaded and multi-threaded applications in traditional caches. This analysis pro-

vides the necessary insights for developing customized active management techniques.

Chapter 4 describes the programmable placement system model including the program-

ming model, the operational model and the architecture model employed along with the

range of options customization. Chapters 5, 6 and 7 describe various techniques for im-

proving cache performance and efficiencies subdivided into offline profile driven strate-

gies, compile-time strategies driven by program analysis, and dynamic strategies driven by

runtime measurements. The dissertation concludes with a brief discussion of the potential

extensions to this body of work and a brief summary of this dissertation.

4

CHAPTER 2

RELATED WORK

A vast body of work applies hardware and software strategies to enhance cache perfor-

mance and power profiles. However, techniques in the literature are constrained by the

passive cache management structure which limits optimization opportunities. Additionally,

the optimizations outlined tend to either improve performance or save energy; whereas ac-

tive management focuses on performance and energy; i.e., cache management to minimize

energy and delay simultaneously. The proposed work couples programmable cache place-

ment functions to a domain of applications that can be programmed using analysis (either

statically via compilers or at run-time via dynamic optimizers). Active cache management

subsumes many of the optimizations outlined in this chapter and, additionally, is comple-

mentary to many techniques that can lead to further optimizations. The existing work in

literature can be broadly classified into three categories—those which seek to improve ex-

ecution time, those which seek to improve energy savings and those which provide defect

tolerance to caches. A brief discussion of the literature in the three categories follows.

2.1 Execution Time Optimizations

This class of optimizations focus on decreasing cache miss rates and program execution

time by means of hardware adaptations or through compiler optimizations. While overall

energy consumption may be reduced using these optimizations because of the decrease in

execution time, none of these optimizations focus on efficiency, i.e., the maximum perfor-

mance that can be obtained per transistor. Finally, when performance is being chased,

energy becomes second priority. In this dissertation, the focus is on improving cache

efficiency—both energy efficiency and performance efficiency. Additionally, many of these

performance optimizations are complementary to the approach described in this disserta-

tion and can be applied together. Finally, some of these optimizations may be realized as

5

instances of the active management approach prescribed in this thesis.

Pseudo Associativity Mechanisms

Multiple optimizations focus on providing the performance of higher associativity caches

with access latencies similar to those of lower associativity caches to decrease conflict

misses and miss rates. For example, Jouppi [7], proposed small fully-associative buffers

called victim caches for reducing misses to heavily accessed entries in a traditional cache,

Qureshi et al.[8] designed a V-way associativity cache by doubling the number of ways of

associativity and using global replacement strategies, Peir et al.[9] proposed the adaptive

group-associative cache (AGAC), which improves the performance of first level direct-

mapped caches by using multiple banks for swapping data with variable access latency.

Various other forms of pseudo-associative caches, which trade variable hit latency for

increasing associativity, include the hash-rehash cache proposed by Agarwal et al.[10],

the column associative cache proposed by Agarwal and Pudar [11], and the predictive

sequential-associative cache proposed by Calder et al.[12]. Hallnor and Reinhardt [13]

proposed the Indirect Index Cache (IIC) to achieve full-associativity through software man-

agement relying on chain traversal. In the NuRAPID cache proposed by Chishti et al.[14],

the access latency of different cache lines varies depending on the physical placement of

data within the data-store and lowers the cache access latency for increased associativity

caches. The proposed active management techniques are complementary to many of these

schemes since the mapping of a memory line to a cache set is adapted (as opposed to being

mapped to a fixed cache set).

Indexing Schemes

Innovative approaches in cache indexing seek to find better fixed design time placement

functions than modulo placement functions, and active cache management subsumes many

of these schemes. For example, the two-way skewed associative cache proposed by Seznec [15]

6

attempts to distribute memory accesses uniformly to minimize conflicts by having two in-

dexing functions per cache set. Other techniques aimed at distributing memory accesses

across cache sets uniformly by modifying the indexing function include the prime modulo

scheme proposed by Kharbutli et al.[16], the randomized cache placement scheme pro-

posed by Topham and Gonzalez [17], and the balanced cache proposed by Zhang [18] that

uniformly distributes accesses to a direct-mapped cache for reducing misses using pro-

grammable content addressable memory decoders for embedded systems. Uniform distri-

bution does not necessarily result in better efficiency, as all cache sets have to be maintained

as active or powered on, thereby expending leakage energy.

Cache Replacement Optimizations

An orthogonal body of work for improving cache performance focuses on the replacement

policies, i.e., the placement of a memory line within a set. This includes many innovations,

including frequency-based replacement proposed by Robinson and Devarakonda [19], recency-

based replacement proposed by Jiang and Zhang [20], and adaptive replacement schemes

proposed by Subramanian et al.[21] and Smaragdakis et al.[22]. Puzak [23] proposed the

inclusion of extra tags in a shadow directory to provide feedback to a local replacement

engine in a set-associative cache.

Compression Optimizations

Cache compression can store larger chunks of data in the cache as shown by Lee et al.[24],

Zhang et al.[25], Alameldeen and Wood [26], Wilson et al.[27]. Cache compression is

complementary and can be applied concurrently to active management strategies. How-

ever, compressing and decompressing data upon entry and exit from the cache involve a

substantial overhead.

7

Partitioned Caches

Many techniques such as sub-banking achieve power reduction by partitioning the data

cache into smaller, low-power components. This includes work done by Ghose and Kam-

ble [28] and Su and Despain [29]. Other approaches to partitioned caches categorize lo-

cality and reference behavior and cache the different categories separately for energy and

performance benefits. Several strategies partition the cache to exploit reference locality

across scalar and vector data. Examples include split caches proposed by Dahlgren and

Stenstrom [30] and techniques proposed by Petrov and Orailoglu [31]. Lee and Tyson[32]

partitioned the cache for memory regions such as heap and stack for lowering energy dis-

sipation.

Stone et al.[33] studied optimal static partitioning of the cache ways between two or

more applications. Suh et al.[34] described a scheme using hit recency of the lines in the

cache to estimate the utility of the cache for each application and share the cache ways

accordingly. Partitioning mechanisms for shared caches were described by Iyer [35]. Hsu

et al.[36] studied different policies for partitioning a shared cache among competing appli-

cations. Qureshi and Patt [37] proposed a utility-based cache partitioning for sharing the

cache across two applications while lowering miss rates. Chang and Sohi [38] proposed

dynamic mechanisms for providing latency comparable to that of a private cache while

obtaining the benefits of a shared cache. Liu et al.[39] proposed a split L2 cache for chip

multiprocessors with non-uniform access latencies. Many of these strategies seek to parti-

tion ways in a shared cache, whereas the strategy proposed in the research herein partitions

a uniform latency shared cache by sets. Additionally, the cache can be made private or

shared by customizing the cache placement using active management strategies.

NUCA caches

Non-uniform cache architectures (NUCA) are offered as an alternative to monolithic fixed

latency set-associative caches and were proposed by Kim et al.[40], Chishti et al.[41], Huh

et al.[42]. NUCA caches are specifically targeted to multiprocessor memory hierarchies.

8

Dynamic NUCA caches migrate sets of memory lines closer to the processor that might

use the data to optimize latency. On the other hand, active management schemes determine

the construction of the sets of memory lines and are, therefore, complementary to such

optimizations.

Stride Prediction and Pre-fetching

Memory latency can be decreased by employing data pre-fetching. These techniques in-

volve capturing memory access patterns (MAP) and using them to pre-fetch data into the

cache. Examples include Luk and Mowry [43], Mowry et al.[44], Kim et al.[45, 46].

Stride predictors, as proposed by Sazeides and Smith [47], Fu et al.[48], Sair et al.[49],

etc., can be used to predict access strides, which can lead to better pre-fetching decisions.

The proposed active management cache design can decrease conflicts among pre-fetched

data, leading to better cache efficiencies and bandwidth preservation. Furthermore, memory

behavior can be analyzed for better pre-fetching and caching strategies, as shown by Ghosh

et al.[50], and these techniques can be used to optimize cache management decisions.

Data Layout and Scheduling Optimizations

Data re-layout techniques optimize cache performance for specific access patterns. This in-

cludes works proposed by Chilimbi et al.[51], Panda et al.[52], and, Rabbah and Palem[53].

Carter et al.[54] propose using a memory controller to modify the virtual layout to make

better use of pre-fetching. Other works proposing active memory controllers include Kim

et al.[55], and, Heinrich et al.[56]. Another theme is reordering memory reference streams

via loop transformations such as those proposed by Panda et al.[57], and, McKinley et al.[57].

The research proposed herein does not alter the memory layout (virtual or physical), or,

the instruction schedule in any manner, and is therefore complementary to all such com-

piler optimizations. However, in certain scenarios, active management can provide similar

performance benefits obtained using these compiler optimizations at lower costs. For ex-

ample, re-mapping data is expensive, and at run-time, data re-mapping becomes infeasible

9

for large data structures. In such cases, the active management schemes proposed herein

provide similar benefits without any of the added disadvantages. The compiler optimiza-

tions found in the literature are targeted to fixed cache designs with modulo placement.

These optimizations can benefit from actively managed caches since they provide greater

opportunity for optimizations. For example, a specific layout may no longer preclude cer-

tain instruction schedules for good performance.

Scratch-pad Memories

Several efforts propose compiler controlled on-chip scratch-pad memories as an alterna-

tive to hardware caches. Examples include Banakar et al.[58], Steinke et al.[59], Miller

and Agarwal [60], Udayakumaran et al. [61], and Panda et al. [62]. Scratch-pad memo-

ries require explicit control of all data movement between the scratch-pad and the off-chip

memory, which leads to an increase in code size and software complexity. In this con-

text, Chiou et al.[63] proposed column caching to map specific application data within a

specified region in the cache, thereby approximating scratch-pad memory behavior.

2.2 Energy Optimizations

The optimizations in this category are focused on energy savings and simultaneously min-

imizing performance degradation. While this approach can increase energy efficiency, the

degradation in performance can compensate for energy savings thereby causing the adopted

strategies to be very conservative. This thesis approaches energy savings by increasing ef-

ficiency, i.e., energy savings with performance improvements or adaptations that limit per-

formance degradation even with significant energy savings through aggressive cache line

turn off strategies.

Scheduling Cache Turn-offs and Drowsy States

The state of the practice in reducing leakage energy has been to power down cache compo-

nents such as cache lines, sets or ways. Examples include Albonesi [64], Abella et al.[65],

10

Kaxiras et al.[66], Powell et al.[67], C. Zhang et al.[68], M. Zhang and Asanovic [4], and

Zhou et al.[69]. Another approach is to keep the cache in a low voltage drowsy state as

proposed by Flautner et al. [70]. W. Zhang et al.[71, 72] use special instructions to sched-

ule instruction cache turn offs using loop and branch information or maintain the cache

in a drowsy state, activating cache lines prior to access, while Geiger et al. [73] combine

region-based caching with drowsy caching to reduce cache power dissipation. These strate-

gies focus on when to turn off which components. Poor decisions lead to expensive misses

and power-up events and therefore strategies tend to be conservative. These approaches

tune the cache on system level metrics, such as the number of accesses and misses, and do

not exploit the concept of conflict set live ranges in data caches to increase leakage savings

with minimal performance degradation. Furthermore, many of these approaches can be

combined with customized placement to increase energy savings.

Filter Caches

In a two-level inclusive cache, an access to the L2 cache esults in the data being brought

into the L1 cache. Therefore, the L1 cache acts as a filter to the L2 cache. For example,

there will not be any stride zero access to the L2 cache. Kin et al.[74] propose using a

small-sized L1 cache to save energy while having an L2 cache sized similar to a typical L1

cache to improve performance. Memik et al.[75] use the notion of filtering and prediction

to prevent accesses to L2 caches if the access potentially results in a miss, thus saving

energy. Bloom filters were used to reduce the energy of virtual cache synonym look-ups by

Wyoo et al.[76].

2.3 Defect Tolerance

Defect tolerance optimizations have traditionally focussed on next neighbor re-mapping or

redirecting faulty cache cell accesses to memory; these approaches are not scalable and

result in rapid performance degradatation with increases in the number of faulty cells, as

expected with DSM technologies. This dissertation, by focussing on efficiency provides

11

approaches that can result in caches with a high degree of defect tolerance, as performance

loss due to faulty cells can be compensated by applying active management schemes.

Redundancy and ECC Schemes

Adding redundant blocks, as proposed by Turgeon et al.[77], Lucente et al. [78], Nokolos

et al. [79], etc., is one approach to designing fault tolerant caches. Using error correcting

codes (ECC) as proposed by Kalter et al. [80] also provides fault tolerance for on-chip

caches. However, these techniques are limited in the number and distribution of faulty

cells that can be tolerated, and are improved upon by active cache management approaches

that use re-mapping.

Re-mapping or Eliminating Faulty Cache Blocks

The re-mapping approach modifies the cache placement policy to map main memory lines

to non-faulty cache lines and is proposed by Shirvani et al. [81] and Agarwal et al.[82].

Other approaches for fault tolerant caches include avoiding faulty ways in a set-associative

cache as proposed by Ooi et al. [83], or placing code intelligently in faulty set-associative

caches to minimize misses, as proposed by Zarandi et al.[84]. The goal of those efforts

was fault tolerance, while performance optimization was not addressed. These techniques

are additionally limited by their selection of block size (not the same as cache line size).

The proposed active management techniques optimize for performance when faults are

present and achieve a greater degree of fault tolerance as measured by lower performance

degradation for the same distribution of faults.

12

CHAPTER 3

AN EFFICIENCY MODEL FOR CACHES

This chapter describes a model for quantifying and analysing the efficiency of caches. Sev-

eral metrics are introduced for the purpose, followed by an analysis of common single-

threaded and multi-threaded benchmarks from the efficiency viewpoint. The analysis ex-

poses several sources of inefficiency that can be ameliorated through active management

techniques for improving both the cache performance and energy efficiencies.

3.1 Analytical Model

At a clock cycle, a cache line may be active (powered) or inactive (turned off). Thus,

without any energy management, all cache lines are active. A cache line is live at a clock

cycle if it contains data that will be used prior to eviction, and it is dead otherwise [85, 66].

Thus, on any clock cycle, a cache line is live, dead, or inactive. For a cache with L lines

over T cycles, the total cache cycles expended is the sum of the live cycles, the dead cycles,

and the inactive cycles.

Cache utilization, ηu, is the average percentage of cache lines containing live data at a

clock cycle [85, 66]. Utilization is computed as shown in Equation 1.

ηu =

∑i=L−1
i=0 live cycleslinei∑i=L−1

i=0 active cycleslinei

(1)

The effectiveness of the cache, E, is the percentage of cache cycles devoted to live lines

and is shown in Equation 2. Effectiveness serves as a metric for comparing programmed

cache line shutdown strategies; the higher the effectiveness, the higher the percentage of

the active cache that retains live data.

E =

∑i=L−1
i=0 (live cycleslinei + inactive cycleslinei)∑i=L−1

i=0 (active cycleslinei + inactive cycleslinei)
(2)

Effectiveness can also be represented as shown in Equation 3, where total cycles refers

13

to the program execution time. Here, the number of active cycles for a cache line, i.e., the

number of cycles the cache line is powered on, is equal to the sum of the number of dead

and live cycles for that cache line. The most effective scheme is one where all cache cycles

are either live or inactive. Effectiveness is equivalent to utilization without any energy

management.

E = 1.0 −
∑i=L−1

i=0 dead cycleslinei

total cycles ∗ L
(3)

Effectiveness can be increased at the expense of a high miss rate. For example, shutting

down all but one line in a direct-mapped cache can produce high effectiveness for structured

accesses. An efficient cache must be effective with high performance. Cache performance

efficiency, ηp, is defined in Equation 4 as the product of effectiveness and a scaling factor,

where tc is the cache access time, tp is the miss penalty, and m is the miss rate. A cache has

100% performance efficiency if it does not contribute any dead cycles and has a 100% hit

rate.

ηp = E ∗
tc

tc + m ∗ tp
(4)

Energy efficiency, ηe, is the ratio of useful work to total work. Useful work is the

switching energy (i.e., energy consumed during access to the cache) expended in a cache

hit. The total work is the sum of the switching energy consumed during all cache accesses

(hits and misses) and the leakage energy. A cache has an energy efficiency of unity if all

the energy consumed by the cache is equal to the switching energy consumed during cache

hits. Energy efficiency is defined in Equation 5, where swenergy represents the switching

energy and leakenergy represents the leakage energy. The switching energy consumed during

a cache hit is assumed to equal the switching energy consumed during a cache miss; this

approximation affects the results marginally as explained in the next section.

14

ηe =
swenergy ∗ numhits

swenergy ∗ (numhits + nummisses) + leakenergy
(5)

Although cache sets or lines may be turned off to reduce leakage energy, additional

misses that may result from the powering down of parts of the cache can increase program

execution times. These increases in execution cycles can lead to higher energy consump-

tion by all active lines, and therefore, the choice of lines or sets to turn off is critical. These

additional cache misses and the resultant increase in execution times will in turn drop effec-

tiveness and utilization since the number of dead cycles will also increase. Understanding

this relationship between energy efficiency and cache line shutdowns helps identify good

strategies for increasing cache efficiency.

3.2 Empirical Analysis of Single-threaded Applications

This section analyses the efficiency of several single-threaded applications. The execution

of benchmarks from the SPEC2000 [86], Olden [87] and DIS [88] suites was simulated

using the Simplescalar [89] simulator, which was modified to obtain cache efficiency.

The initialization phases for the SPEC2000 programs were fast-forwarded during sim-

ulation. Energy estimates were derived using Cacti 4.2 [90] for 70 nm technology. The

L2 cache access latency was assumed to be fixed at 15 cycles independent of the size and

associativity of the cache. Varying the L2 cache latency affected execution times by less

than 2%. The definition of energy efficiency assumed that the switching energy for a read

was equal to the switching energy for a write. This assumption artificially increased energy

efficiency because the real switching energy for a write is lower than that for a read (only

one bank is accessed for a write compared to all banks for a read).

Leakage power constituted 95% of the total cache power at 70 nm for cache sizes of

256 KB or greater [90], and cache writes constituted a small fraction of the total number of

accesses. Therefore, these assumptions affected efficiencies by less than 1%. Finally, the

energy was calculated assuming that the cache operated at the highest frequency as given

15

by Cacti.

Cache utilization for a 256 KB 8-way L2 cache with 128-byte lines averaged 24% and

utilization for the L1 cache averaged 12%. Cache utilizations for the various benchmarks

are shown in Figure 1. Since the L2 cache accommodated some data structures entirely

for certain applications (164.gzip, field), conflict misses were restricted, which resulted in

higher utilization values for the L2 cache compared to the L1 cache. The low utilization

numbers suggest that both levels of the cache maintain more dead lines than live lines.

Thus, the majority of cache costs are spent in maintaining data that will not be re-used.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

ammp
art bzip2

equake

field
gzip

health
mcf

mesa
perimeter

pointer

transitive

twolf
update

U
til

iz
at

io
n,

 η
u

%

Benchmarks

L1 32KB, 64B, 2-way
L2 256KB, 256B, 8-way

Figure 1. Cache utilizations for traditional cache designs.

Performance efficiency is shown in Figure 2 and averaged 4.7% for the L2 cache. Cache

energy efficiency for current designs averaged 0.17% as observed from Figure 2. The major

contributor to this low efficiency value was transistor leakage.

Utilization captures the temporal residency of live data in the cache. Performance ef-

ficiency captures how well this residency of live data in the cache is exploited. Thus, a

live line that is accessed 10 times during its period of residence is more efficient than if

it was only accessed twice during its period of residence. Energy efficiency captures the

percentage of overall energy that is useful (energy expended servicing cache hits).

16

 0.1

 1

 10

ammp
art bzip2

equake

field
gzip

health
mcf

mesa
perimeter

pointer

transitive

twolf
update

E
ffi

ci
en

cy
 fo

r
a

25
6K

B
 L

2
C

ac
he

 %
 (

Lo
g

sc
al

e)

Benchmarks

ηp Performance Efficiency
ηe Energy Efficiency

Figure 2. Cache efficiencies for traditional cache designs.

Some benchmarks had good utilization; for example, 164.gzip had 60% L2 cache uti-

lization. For this benchmark, two supporting data structures had a 64 KB footprint each.

While miss rates for both caches were low for 164.gzip, conflicts arose in the L1 cache

because of its smaller size. Since the L1 cache size was only 32 KB, it was unable to fit the

supporting data structures; this resulted in low utilization. However, the two data structures

fit in the larger 256 KB L2 cache, which resolved most conflicts. Therefore, the larger L2

cache had better utilization than the smaller L1 cache for some benchmarks. The high uti-

lization for 164.gzip was attributable to the linear manner in which the compression object

was accessed. L2 cache misses were primarily accesses to this data structure; misses only

occurred once per cache line, which resulted in high utilization.

The sensitivity of energy and performance efficiencies to cache size and associativity is

shown in Figures 3 and 4. Efficiencies dropped with increasing cache size and rose slightly

with increasing associativity. Larger cache sizes can increase utilization if application foot-

prints fit in the cache. However, as cache sizes were increased further, the percentage of

dead cycles also increased, which lowered efficiency. When associativity was increased,

miss rates were lowered with a resultant drop in execution time that should have resulted in

17

improved efficiency. However, each dead cache line stayed longer in the cache as a conse-

quence of the deeper LRU stack; deeper LRU stack means that the stack distance is larger,

therefore dead memory lines stay longer in the cache. This compensated for any utiliza-

tion gains. Therefore, performance efficiency remained flat with changes in associativity.

Energy efficiency improved slightly with associativity and is explained by the switching

energy increases and reductions in execution times. Cache line sizes also had a limited

impact on efficiencies; efficiencies varied within 5% for a range of 128-byte to 512-byte

line sizes.

 0

 1

 2

 3

 4

 5

 6

256K 512K 1024K

A
ve

ra
ge

 E
ffi

ci
en

cy
 (

12
8B

,8
-w

ay
 L

2)

Cache Size

Performance Efficiency ηp
Energy Efficiency ηe

Figure 3. Sensitivity of efficiencies to cache size.

A major cause of cache inefficiency is the fixed manner in which main memory lines

share the cache. This observation naturally leads to an approach where memory lines share

cache resources in an application-aware manner, much in the same way that application

data shares registers via compiler based register allocation techniques. The result of such

an active approach to managing caches can be lower conflict misses (better performance

efficiency) and smaller footprints with the ability to turn off unused lines (better energy

efficiency). The primary source of inefficiency from an energy perspective is the low access

frequency for the L2 cache. A detailed analysis of the reference behavior of benchmark

18

 0

 1

 2

 3

 4

 5

 6

4 8 16

A
ve

ra
ge

 E
ffi

ci
en

cy
 (

25
6K

B
,1

28
B

 L
2)

Associativity

Performance Efficiency ηp
Energy Efficiency ηe

Figure 4. Sensitivity of efficiencies to cache associativity.

kernels [65] identifies inter-reference intervals to be tens of thousands of clock cycles.

Millions of cache transistors remain powered up during these long intervals, which adds

to leakage energy. The goal now is to dramatically scale back the cache size and re-map

memory to the smaller cache. This scaling (up or down) should occur periodically to match

the program reference behavior.

For other application domains, such as scientific computing and embedded processing,

the utilization and efficiency values for traditional caches remained low. The Lawrence

Livermore loops, the LINPACK100 benchmark, and several linear algebra kernels repre-

sentative of computations used in scientific applications were studied; the utilization values

for these benchmarks for a 256KB L2 cache were below 10%, with performance efficien-

cies below 5%, and energy efficiencies below 0.5%.

Finally, embedded processing benchmark kernels from the Mibench suite were also

studied and their utilization values were low (< 20% with an 8 KB L1 cache with perfor-

mance and energy efficiencies in the same low range as those of other application domains).

Customizing the cache design through sizing and shaping are required to maintain cache

19

efficiencies that are sustainable. Unlike registers or main memory that are software con-

trolled, caches are typically not controlled substantively through software. Traditionally,

compilers have been constrained to optimize for the fixed cache design. Active cache

management offers compilers opportunities to both control the cache and optimize for the

customized cache.

3.3 Efficiency Analysis of Multi-threaded Applications

The preceding discussion of the model and analysis has focused on single-threaded appli-

cations. One might expect an increase in cache utilization for multi-threaded applications

with traditional caches as multiple threads share the cache. However, a detailed analy-

sis showed that any increases were at best, marginal. The two overwhelming sources of

inefficiency—leakage energy and the fixed manner of cache placement more than compen-

sated for any improvements which was further exacerbated by interference among threads.

While this dissertation only focusses on uniprocessor single-threaded and multi-threaded

applications, the analysis techniques can be extended and applied to multi-core and multi-

processor domains as well.

The execution of various multi-threaded applications from the SPLASH suite [91] was

simulated along with other parallel linear algebra routines to quantify cache efficiencies.

The applications were simulated in single and multi-threaded modes. The SIMICS [89]

full-system simulator configured for x86 processors running the Linux OS was used for the

simulations.

Figure 5 shows that the cache utilization for a 512KB L2 cache averages 25% and that

for a 32KB L1 cache averages 32%. Utilizations are not seen to vary significantly between

single threaded and multi threaded executions. The low utilizations mean that the majority

of the cache energy and area costs are spent in maintaining dead lines. Only very few

benchmarks have good utilization, e.g., mm (matrix multiply) has 60% L1 utilization, and

watersp has 50% L2 utilization. One reason that the L1 cache has a higher utilization

20

than the L2 cache is because the L2 is rarely probed for the unit-stride accesses. These

numbers were not found to be substantially better than those studied in Section 3.2 in

the single threaded domain using simplescalar with no operating system running. Thus,

any advantages of multi-threading was compensated by the sources of inefficiency (poor

sharing of cache lines and high leakage). The effect of the operating system on cache

efficiencies is considered in Chapter 6 .

 0

 10

 20

 30

 40

 50

 60

 70

cholesky:1T
cholesky:4T
fm

m
:1T

fm
m

:4T
ge:1T
ge:4T
lu:1T
lu:4T
m

m
:1T

m
m

:4T
ocean:1T
ocean:4T
raytrace:1T
raytrace:4T
volrend:1T
volrend:4T
w

atersp:1T
w

atersp:4T

U
til

iz
at

io
n

η u
 %

Benchmarks (1T:Single-threaded;4T: 4-way multi-threaded)

32KB L1
512KB L2

Figure 5. Utilization with modern caches

 0

 10

 20

 30

 40

 50

 60

cholesky:1T
cholesky:4T
fm

m
:1T

fm
m

:4T
ge:1T
ge:4T
lu:1T
lu:4T
m

m
:1T

m
m

:4T
ocean:1T
ocean:4T
raytrace:1T
raytrace:4T
volrend:1T
volrend:4T
w

atersp:1T
w

atersp:4T

P
er

fo
rm

an
ce

 E
ffi

ci
en

ci
es

 η
p

%

Benchmarks (1T:Single-threaded;4T: 4-way multi-threaded)

32KB L1
512KB L2

Figure 6. Performance efficiency with modern caches

Performance efficiency, for which the upper bound is utilization is shown in Figure 6

21

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

cholesky:1T
cholesky:4T
fm

m
:1T

fm
m

:4T
ge:1T
ge:4T
lu:1T
lu:4T
m

m
:1T

m
m

:4T
ocean:1T
ocean:4T
raytrace:1T
raytrace:4T
volrend:1T
volrend:4T
w

atersp:1T
w

atersp:4T

L2
 E

ne
rg

y
E

ffi
ci

en
ci

es
 η

p
%

Benchmarks (1T:Single-threaded;4T: 4-way multi-threaded)

512KB L2 Cache Energy Efficiencies

Figure 7. Energy efficiency with modern caches

and averages less than 15% for the L2 cache. Although, most of the applications had a low

miss rate, performance efficiencies were still considerably lower than utilizations reflecting

that the residency of live lines was not well exploited for performance. Cache energy

efficiency with current designs averages under 1% (Figure 7) with leakage being the prime

source of inefficiency.

When associativity is increased, miss rates are lowered, but dead cycle counts increase

because of the deeper LRU stack. When the cache size is increased, it may decrease miss

rates, but a larger number of lines are dead. Thus, utilizations remain flat with increasing

cache size and associativity. Energy efficiency improves slightly with associativity due to

switching energy increases and reductions in execution time.

Multi-threading can help improve utilization and efficiencies because of more accesses

to live data (i.e, thread locality). However, efficiencies and utilization are not affected sig-

nificantly; interference among threads, the dominance of leakage energy and poor sharing

of cache lines across memory is found to override any threading related improvements in

traditional caches.

To summarize, efficiencies and utilizations are low for multi-threaded applications with

traditional caches as leakage energy and poor sharing of cache resources among memory

22

lines overwhelm any effects of thread locality. Active management schemes however, due

to their application memory behavior centric approach are able to decrease these inefficien-

cies leading to better cache efficiencies as demonstrated in this dissertation.

3.4 Improving Efficiency

The sharing of cache resources by main memory lines is represented by the construction

of conflict sets. A conflict set is the set of main memory lines that is mapped to a cache

set. Conflict sets in modern caches are constructed using modulo placement. Using modulo

placement, a memory line at line address L is placed in the cache set L mod S , assuming

that the cache has S sets. For an eight line memory shown in Figure 8(a), the placement

policy used in traditional caches is illustrated in Figure 8(b).

Traditional cache designs assume that a uniform distribution of references across cache

sets increases hit rates. Therefore, the modulo placement strategy tries to create a uniform

distribution of references and misses across conflict sets. This assumption is not true for

many classes of applications. Furthermore, improved hit rates do not necessarily translate

to efficient caches. For example, larger cache sizes can lead to higher hit rates but lower

efficiency.

For example, assume accesses to a matrix where the data is accessed with a constant

stride. Many conflict sets will be sparsely accessed leading to low energy efficiency, and

some conflict sets will be densely accessed leading to low performance efficiency (as a

result of the increased conflict misses). Additionally, if the application memory footprint

is smaller than the cache size, many cache sets will remain unused. Unused cache sets

contribute to low energy efficiency.

The key to improving cache efficiencies is constructing conflict sets customized to the

application memory access pattern (shaping) while minimizing the footprint of the applica-

tion in the cache (sizing). For improving efficiency, the notion of liveness of program vari-

ables can be extended to main memory lines. If any of the variables resident in the memory

23

line are live, a memory line is live. For example, memory lines with non-overlapping live

ranges can be mapped to the same cache set without increasing conflict misses: this results

in a merging of cconflict sets, a technique called folding. Some examples of using cache

placement to improve performance and energy efficiencies are shown in Figures 8(c) and

8(d).

L5

L6

L7

L0

L1

L2

L3

L4

8−line Main Memory

(a) Eight line
main memory

L2,L5

L3,L6

L3,L7

L0,L4 CS0

CS1

CS3

CS2

(b) Modulo
placement

CS0

CS1

CS3

CS2

L2,L3

L4,L5

L6,L7

L0,L1

(c) Customized
placement

�����
�����
�����
�����
�����

�����
�����
�����
�����
����������
�����
�����
�����
�����

�����
�����
�����
�����
�����

L1,L3,L5,L7

L0,L2,L4,L6 CS0

CS1

CS3 (Set is off)

CS2 (Set is off)

(d) Miss Folding

Figure 8. Conflict set construction

Informally, one can associate a set of live memory lines with a loop nest. If the entire set

of live memory lines is resident in a portion of the cache during the execution of a procedure

or a function, all the remaining cache lines can be powered off. Ideally, the cache sizing

implementation should track the size of the set of live memory lines at any point during

program execution. The cache can be appropriately sized to host this set of live memory

lines, and the placement function can be defined to distribute the memory lines across the

sized cache (to minimize conflict misses). The remaining cache lines or sets (beyond the

sized active-portion) can be turned off to save energy.

On exiting the loop nest, the cache may be reset to its original configuration; it may

also be resized for the next loop nest. The success of this approach is dependent on the

application domain. For example, the memory behavior of scientific applications operating

on multidimensional arrays has been well studied and characterized; this knowledge can

be used to develop cache sizing schemes and implementations to improve cache efficiency.

24

For applications which lack realistic profile data, heuristics can be used to resize the cache.

These heuristics seek to track the live ranges of memory lines as by the generational model

of caches [92].

Alternatively, conflict sets can be combined to form larger conflict sets—a technique

referred to as miss folding. This reduces the total number of conflict sets, allowing cache

sets to be powered down. An increase in the number of misses may be balanced against

improved energy savings. An example of miss folding, wherein four conflicts sets that

originally existed are folded to two (accompanied by two cache sets that are turned off) for

energy savings is illustrated in Figure 8(d). For an array access with unit stride or a matrix

accessed in row-major order exactly once, all misses are compulsory with a traditional

cache. If all live memory lines are mapped to form a single conflict set, it results in the

same number of misses; conflict misses are converted to compulsory misses.

For many applications, domain specific knowledge or profile data may be absent. Anal-

ysis of these applications also proved that efficiencies and utilizations are exteremely low

across the board. For such applications, to increase the efficiencies, runtime heuristics are

used in this research which help characterize memory reference behavior across conflict

sets and program phases. This information is collected at runtime while the application is

executing and drives sizing and shaping algorithms which adaptively customize the cache

placement based on memory access behavior. Miss folding and powering cache sets off can

also be applied in these domains to increase energy efficiency, while improving the sharing

of cache lines among main memory lines to improve performance efficiency. This thesis

exploits domain specific knowledge and runtime characterization to improve efficiencies

through customized placement for single-threaded and multi-threaded applications across

multiple domains at multiple data points using available program characterization inputs.

25

CHAPTER 4

SYSTEM MODEL

Managing the cache resources in an active manner improves the sharing of cache resources

among main memory lines using various strategies relying on concepts including conflict

sets, liveness, and footprints to essentially size and shape the cache. Additionally, these

concepts can be applied at different points in program execution with the placement being

tuned with memory behavior collected using varying methods such as profiles, runtime

measurements, static analysis etc. Finally, the complexity of hardware implementation for

customized placement varies with the flexibility desired; more flexible the placement, more

complex the hardware required.

This chapter first outlines the concepts of sizing and shaping and draws on the notion

of program memory footprint to explain the concepts of customized placement. This is

followed by presenting the scope of optimizations that are possible using the vehicle of

customized placement, followed by describing a traditional cache implementation as the

baseline. Then the operational model of customized placement is described with a general

architecture model.

4.1 Programmable Placement

Traditional caches can be viewed as being passively managed, i.e., the set of memory lines

mapping to a cache set (a conflict set, Section 3.4), is fixed at design time as is the replace-

ment policy. This structure is one of the sources of inefficiency as it must accommodate

large variations in program memory reference behavior. This research employs active man-

agement strategies to improve the sharing of cache resources among main memory lines,

thereby leading to improved efficiencies.

The active management vehicles employed are by sizing and shaping the cache. Sizing

the cache matches the size of the cache that is active, i.e., powered ON, to the program

26

memory footprint. Shaping the cache refers to the policy by which the program memory

footprint shares a region in the cache, thereby permitting the remainder of the cache to be

powered down for energy savings. Cache shaping can also increase cache performance by

mapping the program memory footprint onto the cache in an optimized manner. Cache

sizing and shaping provides fault tolerance naturally—the faulty cache sets correspond to

cache sets that are turned off. Figure 9 illustrates the principles of cache sizing and cache

shaping over a program region. The idea is sizing the cache such that it meets the memory

reference requirements of the program during each phase of execution. Following the sizing

step, the cache is shaped to minimize performance degradation due to conflict misses by

constructing conflict sets in an intelligent program and memory behavior aware manner.

Figure 9. Cache sizing and shaping.

Customized cache placement shapes the cache by reconstructing conflict sets (Sec-

tion 3.4). Customizing the cache placement reconfigures the mapping of main memory

lines to cache sets; i.e., a memory line that was originally mapped to cache set X using

modulo placement, can now be mapped to any of the cache sets, only limited by the num-

ber of cache sets that are available. Programmable placement refers to keeping the cache

27

placement policy software controlled. Programmable placement places control of the cache

placement structure in the hands of the compiler, the programmer, or the runtime. Such

flexibility also permits dynamic trade-offs between performance and energy. For example,

if it is deemed that the compiler sacrifice performance for energy, the placement can be

programmed such that more cache sets are maintained in an off state improving energy

performance while potentially sacrificing execution time performance.

4.2 Scope of Optimizations

The optimization problem that this research targets can be formulated as follows: For a

cache with S sets (s0, s1, . . . sS−1) and M main memory lines (L0, L1 . . . LM−1), compute a

placement function, placement(Li) = S j such that cache utilization/efficiency is maximized

for a reference stream (r0, r1, . . .).

In the most general case, a memory line can be mapped to any set in the cache. The

difficulty with this approach lies in the problem size (mapping 106–109 lines) and the com-

plexity of the resulting address decoding circuitry. A range of approaches to placement

policies from fully customized placement to fixed placement strategies are shown in Fig-

ure 10

Fixed

placement

Merge/split

conflict sets

Merge/split

partitions

Structured

accesses

Live−range

analysis custom

Full

placement

Figure 10. Range of optimization possibilities.

On one end is full customization, i.e., each memory line is mapped individually to

a cache set, while at the other end of the spectrum is the fixed cache placement currently

used in traditional cache hierarchies. Techniques proposed here fall in various points within

the two extremes. The more customizable and flexible a solution is (i.e., moving towards

the left end of the spectrum), the greater the cost is in terms of hardware support. Using a

28

particular solution depends on the application domain.

4.3 A Representative Traditional Cache Implementation

.....

..........

.....

Tag Array Data Array

=?=?

Select

D
e
co

d
e
r

OffsetIndex

Mux

DataHit/Miss

 Tag

Figure 11. Base Cache

The traditional cache architecture shown in Figure 11 is used as the baseline in this

thesis. Any configuration changes to this implementation of a traditional cache will be out-

lined in the performance analysis sections of various chapters. The memory address is split,

as usual, into a tag field, an index field and a line-offset field. The exact configuration of the

base cache in terms of size, associativity and block size varies with the particular domain

under discussion (for example, smaller cache sizes are selected for embedded systems and

larger caches for scientific computing) and are provided in the performance evaluation sec-

tions of the varies studies included in this dissertation. During a cache access, the address

is decoded into the three fields as shown. The index field is decoded to access the data from

the multiple data arrays (the number of data arrays equal the associativity). The tags are

compared to the tag from the address field. If a tag matches, the cache access results in a

hit and the corresponding data array is read out. It is also assumed that the tags and data

arrays are accessed in parallel.

29

Program

Profile analysis Static analysis Runtime analysis

Placement
functionAddress in Address out

Lookup table Shift reg. based
 logic

Figure 12. Operational Model

4.4 Operational Model

The operation model for active management is shown in Figure 12.

Several inputs can be used to synthesize optimized placement functions to improve ef-

ficiencies. Examples include program profiles, static program analysis, program liveness

characteristics, strided memory access patterns, conflict set reference behavior, etc. Sim-

ilarly, the placement strategy can be applied at multiple program life-cycle points; it can

be applied as: i) a one-time (per application) reconfiguration technique which is useful for

tolerating manufacturing defects, ii) a compile-time technique applied at specific stages

during program execution, or, iii) a dynamic run-time mechanism.

The placement function decodes an incoming cache set address to a new cache set

address using the customization function selected. This effectively changes the mapping

from main memory to the cache by allowing for more optimal placement functions than

the modulo placement function employed in traditional caches.

30

Hardware implementations for applying customized placement may vary, with the hard-

ware complexity being proportional to the degree of customization desired. General, less

flexible implementations of customization can use simpler hardware like logic based on

shift-registers, whereas more flexible manifestations of customization would require rela-

tively complex hardware such as lookup tables.

This thesis focuses on solutions in profile-driven, static-analysis based and runtime

measurement driven categories and identifies feasible hardware solutions with varying

complexity targeted to the domain under consideration.

4.5 Architecture Model

The architecture model shown in Figure 13 is a general model and is limited to unipro-

cessors, and is modified according to the specific domain or implementation pursued. For

example, the customized placement in embedded processors is assumed to be implemented

for the L1 cache which frequently have only a single level cache, whereas it is implemented

for the L2 cache in architecture with L1 and L2 caches (this is shown in Figure 13).

P L1

HWThread 3

L2 Memory

HWThread 2

Placement Fn

Figure 13. Architecture Model

For extension to the multi-threaded domain, with multiple software threads, the place-

ment function state will have to be saved along with the thread state on context switches.

For hardware threads (simultaneous multi-threading), it is assumed that there are sepa-

rate placement function hardware (for example, multiple lookup tables) for each hardware

thread which maintains the cache placement information on a per-thread basis.

31

4.6 Compilation Model

Program execution evolves through phases [93] wherein each phase is characterized by a

working set of memory references. Within a program phase, memory reference behavior

exhibits spatial and temporal locality around a set of memory locations.

The general compilation model adopted in this dissertation has program regions pre-

ceded by operations that modify the cache placement function with the custom placement

invoked in hardware only during the execution of these regions. Thus, after the comple-

tion of the execution of one such phase where customized placement was invoked, one can

modify the placement to a new customized placement for the upcoming phase or revert to

traditional modulo placement. For certain applications, such as embedded processing appli-

cations, the compilation model is modified to be applied on a per kernel or per application

basis. For example, using off-line profile analysis an optimized customized placement so-

lution is identified and invoked through the duration of the kernel or application. For larger

applications, customized placement is applied selectively at certain program points, either

statically through program analysis or dynamically based on runtime measurements.

4.7 Applying Placement Directives

For applying the placement funtion offline for embedded processors, the off-line profile

data is collected and used as input to generate a customized placement function. Thus,

post-manufacturing or prior to program execution, the new placement function is enabled

for improved performance.

If compile-time data is used to customized the placement function, it is applied by the

compiler as a placement directive. The compiler uses static analysis of the program or

dynamic optimization data to drive the placement function.

For run-time adaptation, specialized hardware is used to capture metrics used to drive

the computing of placement. A separate thread of execution is invoked every few million

cycles to probe the hardware and recompute the placement function.

32

In each of the above cases, the provision is also maintained for the programmer to

manually insert the placement function. This is particularly useful if the programmer needs

to customize the placement for particular power or performance demands.

The actual address translation (that is, the placement function) is performed by ded-

icated hardware mechanisms irrespective of how the placement function is computed or

invoked. Separate hardware decoding schemes customized to specific domains are pre-

sented in this thesis.

The remainder of this thesis describes the various solutions that were proposed for

different domains to improve the efficiency of caches. The chapters are subdivided into so-

lutions that deal with off-line profile driven strategies followed by those applying compile-

time strategies and strategies that are applied at runtime using runtime measurements.

33

CHAPTER 5

OFF-LINE STRATEGIES

This chapter identifies several active management solutions in the context of improving

cache performance using off-line profile driven strategies, that are applied once per appli-

cation or kernel. These strategies which reconfigure the cache on a per application basis are

well suited for domains such as embedded processing, since embedded processors typically

execute a fixed set of applications, that are well understood through program profiles. Sec-

tion 5.1 adapts the concepts of cache shaping for network processors, arguing for including

a small single level cache hierarchy in network processors; a program specific adapta-

tion exploiting the knowledge of applications that execute in network processors. This is

followed by a general application of cache shaping through customized placement for em-

bedded processors using profile data in Section 5.2. Section 5.3 applies active management

techniques for promoting fault tolerance in embedded processors, again using profile data

aimed at limiting performance degradation as the percentage of usable cache size decreases

because of defects.

5.1 Data Trace Cache

This section outlines techniques to address the memory bottleneck problem for network

processors with the goal of minimizing off-chip memory demand and average memory

access latency by the use of a small application specific compiler-visible data trace cache.

The key insight is to provide small caches that service accesses to key data structures that

account for the bulk or a significant portion of the data accesses. This section this technique

is applied to network processors where a significant portion of the memory accesses are

performed to tree data structures that implement the routing table. Accesses to tree data

structures contribute significantly (greater than 75% of memory references) to the memory

traffic in packet processing applications. A tree access creates a simple to characterize

34

trace of memory references and the data trace cache proposed herein exploits the locality

of reference in these data traces to improve performance.

These application specific data trace caches outperform conventional caches in off-chip

bandwidth demand and miss rates by up to 50% for accesses to rooted tree data structures

at small (256–1024 bytes) cache sizes. This is found to translate to a 30% reduction in

average memory access time (AMAT) for the entire application kernel, i.e., route lookup.

Such caches are philosophically in the same category as victim caches, stream buffers, and

pre-fetch buffers in that relatively small investments in silicon realizes substantive reduction

in off-chip memory bandwidth demand resulting in improved performance.

5.1.1 Caching for Network Processors

In network processors, a cache hierarchy is normally absent[94]. This is due to the belief

that packet data has little re-use, and therefore, there is no reference locality across pack-

ets. However, it is found that caching the application data structure alone (in this case, the

routing table tree or packet classification tree) using the data trace cache can yield signifi-

cant performance benefits. The approach described in this section takes a close look at the

application data structures for an important group of kernels: those with large rooted tree

data structures.

If a tree data structure access requires a traversal from the root to a leaf node (i.e., a

node which has no children) and is partitioned into tree node sets with each set consisting

of nodes at the same height, it is observed that a tree access is characterized by the following

properties: i) a tree node is accessed from each set, and, ii) no more that one tree node in

each set is accessed. Thus, a tree access generates a trace of accesses to relatively few

tree nodes, or few memory addresses, compared to the size of the entire tree data structure.

Even if traversal to the leaves are not necessary (i.e., traversal can stop at an intermediate

node with children), the tree access still generates some references. The nodes closer to the

root are always accessed more often than those closer to the leaves. Thus, with respect to

the memory footprint of the tree as whole, memory access patterns are skewed in that some

35

regions of memory consistently accessed more often than others.

Many applications often query large data structures where the processing of the query

leads to highly skewed access patterns. Characterizing these access patterns can lead to per-

formance improvements by combining compiler optimizations (data re-layout for example)

and cache design. This philosophy is applied to large rooted trees. The resulting cache de-

sign is called a data trace cache (DTC). The DTC design utilizes a flexible placement

policy, distinguished from the fixed application independent placement policies of tradi-

tional cache architectures. Only memory accesses to the application tree data structures are

processed by the DTC. Non-tree data structure references are handled by a conventional

memory hierarchy that operates in parallel with the DTC.

This work can be easily extended to packet classification algorithms [95, 96] which

employ search trees. Most of the literature on network processor caches rely on caching re-

cently accessed routing table entries [97, 98, 99]. For example, Baer et al.[100] suggests a

scheme for compressing the routing table data structure such that it can be more effectively

cached. Unlike the approach described here, these schemes do not exploit access patterns

in the routing table data structure to improve locality.

5.1.2 Characterizing Memory Reference Behavior

This section presents a characterization of the reference behavior of accesses to tree data

structures which drives the design of the DTC. There are numerous applications of search

trees, ranging from routing table lookup and packet classification in network processors to

indexing databases, dictionaries and file systems.

5.1.2.1 Tree Data Structure MAPs

Figure 14 illustrates a binary search tree data structure. A tree access involves traversing

the tree from the root to a leaf based on matching a key or other values in each intermediate

node. If the tree is complete, and assuming any leaf node is equally likely to be accessed

during a search operation, the probability with which a node at level i is accessed during

36

Level 0 – probability of a node access = 1.0

Level 1 – probability of a node access = 0.5

Level 2 – probability of a node access = 0.25

Figure 14. A Binary Search Tree

a tree access is 1/2i. There is significant reuse of nodes close to the root, whereas nodes

close to the leaves are not accessed as often. Only one node at each level is accessed during

a tree traversal. For example, if one considers a tree with 24 levels there can be more than

1 million nodes at a level of the tree with each traversal accessing one of these nodes. This

suggests that a relatively small number of cache lines devoted to these 1 million nodes will

suffice with respect to capturing any reference locality in accesses to this level of the tree.

The cache placement policy is the vehicle for determining relationship between memory lo-

cations and cache locations. A flexible, configurable placement policy can take advantage

of such lack of locality in references to specific (large) regions of data structures. While

trees may not be balanced or be necessarily binary, the preceding observations concerning

locality generally apply.

5.1.2.2 Exploiting Reference Locality in Tree Data Structures

Each tree traversal produces a number of accesses: a balanced binary tree with 4 billion

nodes will have at most 31 nodes. Thus, a trace of tree access references will access a

maximum of 31 levels. If two memory accesses per node is assumed, this represents a

trace of 62 memory addresses. This sequence of memory addresses is the memory footprint.

Application tree data structures may be very large (>100000 nodes) but footprints are small

(50–60 memory references). Distinct footprints tend to have common references at levels

close to the tree root and footprints are the same for accesses to the same leaf in a tree—

these observations are exploited for performance benefits.

37

C0

C1

C2

Ck-1

Ci is the set
of data
elements at
tree level i

Figure 15. A n-ary Tree Data Structure

Figure 15 captures another way of visualizing tree data structure memory access pat-

terns. The application data structure in this example is a complete n-ary search tree. The

set Ci represents the data nodes at tree level i. C0 will have one node, whereas C1 will have

n nodes, C2 will have n2 nodes and Ci will have ni nodes. Each tree access will reference

exactly one node in each Ci. Also, Cis are accessed in ascending order and the cardinality

of the sets increase with level.

Memory is partitioned into conflict sets. In traditional caches, each conflict set has the

same number of entries. The key idea is to have a placement policy where all nodes of Ci

are grouped into a conflict set, i.e., the cardinality of each conflict set is different.

5.1.3 Architecture and Design
5.1.3.1 Data Trace Cache: Principle

The placement policy used in traditional cache architectures assigns memory line L to cache

set L mod S where there are S sets in the cache. Thus S contiguous lines in memory are

mapped to S distinct sets in the cache exploiting spatial reference locality. The placement

policy determines membership of a memory line in a conflict set. Existing placement poli-

cies create conflict sets of equal size, i.e., the same number of memory lines map to each

set. Successive references to lines in a conflict set can create conflict misses in the cache.

For a tree data structure, a traditional cache allows the higher level nodes in the tree

which are accessed more frequently to conflict with lower level tree nodes that are accessed

rarely which leads to many misses. The DTC is designed to exploit locality in footprints.

38

L0
L1

M0
M1
M2
M3

Four word main
memory 2-line direct mapped

cache Conflict Sets C()

C(L0) = {M0}

C(L1) = { M1, M2, M3}

Figure 16. Data Trace Cache Principle

This is achieved by redefining the placement policy such that (ideally) all nodes at a level

in the tree reside in the same conflict set, and conflict sets are allocated across sets in the

cache. Thus, successive memory references in a tree access will reside in distinct sets in

the cache. If the cache is large enough to hold a few complete traces, accesses to memory

can be lowered.

As illustrated in Figure 16, fixed conflict sets are replaced by an allocation of conflict

sets via a flexible placement policy. In Figure 16, the conflict set sizes increase with the

level of the tree data structure. Additionally, one conflict set may be allocated to multiple

sets in the cache. The practical difficulty with arbitrary conflict set resolution is in the

run-time indexing of the DTC directory, thereby constraining the actual placement policies

employed.

5.1.3.2 System Architecture

The DTC is primarily targeted towards embedded systems which have a relatively small

sized L1 cache (1KB-4KB) with no L2 cache. A small sized DTC (512–1K bytes) in addi-

tion to a primary L1 cache significantly outperforms an L1 cache of the same magnitude.

The architecture employed for using a DTC is shown in Figure 17. The DTC is em-

ployed parallel to the L1 cache, and every memory address passes through both caches.

Since the data contained in L1 and the DTC are mutually exclusive, there will be less pol-

lution of non tree data in L1 and can lead to better miss rates for L1. The performance

evaluation is limited to that between a traditional L1 and a DTC making the reported im-

provements conservative; if the improvements in L1 miss rate due to lower pollution were

also factored in, the results will have higher improvements.

39

Figure 17. Data Trace Cache: System Architecture

The architecture model consists of a multi-threaded processor with a cache hierarchy.

Each thread is assumed to execute the same code fragment (thus replication of the place-

ment hardware is not required). Additionally, the code fragment is assumed to access a

large application data structure (e.g., indexing a binary search tree) repetitively. Multi-

threading follows a switch on miss strategy, i.e., thread switching occurs on a cache miss.

This strategy is commonly implemented in network processors [94].

Since the L1 and the DTC operate in parallel, the additional overhead involved in in-

dexing the DTC would not affect cache performance on a hit on L1. A miss in L1 indicates

that the reference may be a tree reference that may or may not be present in the DTC, or is

a non tree data reference that missed in L1. The L1 cache proceeds on a memory fetch only

if it is a non tree data reference. This is indicated using a flag that is set by the DTC (set

in a couple of cycles within accessing the DTC) indicating whether the incoming reference

was a tree data reference. If it is a hit in the DTC, no memory fetch occurs. If, on the

other hand it is a miss in the DTC, a memory fetch is initiated by the trace cache. Thus,

the memory reference is brought into the L1 cache or the DTC, depending on which cache

initiated the memory fetch. This architectural setup ensures in most applications, that, even

if additional cycles are consumed while indexing the DTC, the average memory latency is

relatively unaffected, since the L1 is not delayed more than a few cycles on an L1 miss.

Whereas, on a DTC hit, execution cycles can be saved by not going to off-chip memory.

40

K-level binary tree

Level k

Level 1

Level 0

Physical
memory

Re-mapping
Level 0

Level 1

Level 2

Partitioning Placement

Conflict sets
are allocated

sets in the
cache

Conflict
sets

Set 1

Set 2

S0
S1
S2
S3

Set 0

Cache
memory

Figure 18. Methodology

5.1.3.3 Design

To exploit the reference locality in tree data structures, the rooted tree is statically remapped

and augmented with a cache that employs a placement policy that is tailored to the remapped

tree and, to the tree access patterns. Figure 18 outlines the strategy steps:

1. Remap the tree data structure so that all nodes occupy a contiguous region of memory

2. Partition this memory region into conflict sets

3. Assign or place conflict sets to sets in the cache

The goal is to find combinations of remapping, partitioning and placement schemes

that collectively realize lower miss rates. Traditional caches create conflict sets guided by

expectations of spatial locality in the reference stream, e.g., successive lines in memory are

mapped to distinct cache sets. In principle, the static remapping of the tree data structures

can be such that nodes at a level can be relocated to memory locations that are in such

a conflict set. This would simplify indexing into the cache but would leave “holes” in

memory. Such an approach which leads to memory wastage is eschewed in favor of greater

control over the relationship between remapping and partitioning steps.

41

5.1.3.4 Remapping

The prescribed approach exploits tree data structure access characteristics for reductions in

cache miss rate via flexible placement policies. To gain control over the placement policy

for tree nodes in the cache, the tree is remapped into a contiguous region of memory. The

remapping can also improve the spatial locality of nodes closer to the root that have higher

probabilities of access when traversing the tree. Any existing remapping algorithm can

be employed [53, 51]. Even a simple remapping of the tree into a contiguous segment of

memory using a breadth-first traversal of the tree was found to be sufficient for performance

gains.

5.1.3.5 Partitioning and Placement

After the tree is remapped to occupy a contiguous segment of memory as illustrated in

Figure 18, the next step defines conflict sets (partitioning) and allocates (placement) sets in

the cache to each conflict set. Run-time indexing of the cache (i.e., which is determined by

the placement policy) is kept simple and fast by restricting placement choices. Additionally,

sufficient cache resources is provisioned to store a few footprints.

For partitioning, a simple power of two assignment is chosen as shown in Figure 19.

The first two conflict sets will have two nodes each, followed by a conflict set with four

nodes, then eight nodes and so on; this approach is tailored for a balanced binary tree data

structure. The partitioning can be performed independent of the placement function, but

for optimizing performance, the placement function has to be tailored to the partitioning

algorithm.

The inputs to the placement algorithm are the number of memory lines that were

remapped, the total number of cache sets, and, the cache line size. The partitioning and

placement algorithm used is shown in Figure 19. The algorithm outputs a set of masks

which are the offsets of the first cache set allocated for each conflict set. These values are

used for runtime decoding of incoming memory addresses. Additionally, the algorithm also

returns a DTC code that is used to identify whether a given memory address is cached in

42

Input: Num memory lines,Numcache sets,Cache LS (linesize)
Output: Mask[],DTCcode

1: intCS , Elements[],Mask[], pn, i
2: Num CS = 1; CS G = 0
3: for i = 2 to i < Num memory lines do
4: NUM CS G+ = 1; Elements[CS G] = i {Power of two partitioning of conflict sets}
5: end for
6: {Allocation of Cache sets to conflict sets}
7: pn = Num Cache S ets/Num CS {Initialize packing number}
8: for i = 0 to i < Num CS do
9: if Elements[CS] > pn then

10: Cache S ets[CS] = Elements[CS]/Cache LS
11: else
12: Cache S ets[CS] = pn
13: end if
14: Remaining Cache S ets− = Cache S ets[CS]
15: end for
16: while Remaining Cache S ets > 0 do
17: pn∗ = 2
18: for i = 0 to i <= Num CS do
19: if Cache S ets[CS] == Elements[CS G]/Cache LS then
20: break {Do nothing}
21: else
22: if Remaining Cache S ets > pn/2 then
23: Cache S ets[CS]+ = pn/2
24: Remaining Cache S ets[CS]− = pn/2
25: else
26: Cache S ets[CS]+ = Remaining Cache S ets
27: Remaining Cache S ets[CS] = 0
28: end if
29: end if
30: end for
31: end while
32: for i = 0 to i <= Num CS do
33: if i == 0 then
34: Mask[i] = Cache S ets[i] − 1
35: else
36: Mask[i]+ = Mask[i − 1] + Cache S ets[i]
37: end if
38: end for
39: DTC code = binary complement(Num CS G)
40: return DTC code,Mask[]

Figure 19. Algorithm for Allocating Cache Sets to Conflict Sets

43

DTC ADDR?

Get conflict set
of address

Get final cache set
address for conflict

set

Compute and add
offset to starting

cache set address

Use lower order bits
as tag

32-bit memory address

32-bit DTC address

XOR, priority
encoder, DTC
Check

XOR,priority
encoder

Lookup table

Logical Unit

Left shifter

Generate
normalized memory
address relative to
tree root address

SUB1

Figure 20. Flowchart for Indexing the DTC

the DTC or not. The placement algorithm initially allocates an equal number of cache sets

to each conflict set ;the algorithm assumes that there are at least as many cache sets as there

are conflict sets. If this assumption is not true, one can double the number of levels (new

conflict sets) per cache set. Following which, a greedy distribution of cache sets to conflict

sets is performed. The mask values returned by the placement algorithm are stored in a

lookup table. There will be as many entries in the lookup table as there are conflict sets.

Since for a 32 bit address, the maximum number of conflict sets possible is 32, a maximum

of 32 entries can be stored in the lookup table.

Cache indexing in the case of a traditional cache is simple as all conflict sets are of

the same size and a modulo approach is sufficient. For the DTC, however, due to cache

sets having varying conflict set sizes, a different approach is required. An overview of the

runtime decoding scheme is shown in Figure 20. Figure 21 depicts the implementation of

the scheme for a given 32-bit byte addressed memory address.

First, the runtime indexing identifies a given memory address as belonging to the DTC

or not. The DTC check block performs this function along with the priority encoder and the

XOR gate. Next, the conflict set to which the incoming address belongs is identified using

a priority encoder. The priority encoder indexes the lookup table to obtain the cache set and

the cache line to which the incoming address is mapped, i.e., the placement information for

44

Tag Set Line

LST

LST

LSHIFT

Traditional Cache
Address

Data Trace Cache
Address

32bit
Memory
Address

32bit
Tree
Root

Address

Input
Priority

Encoder

Mask
(S bits)

0xF4

…

…

Lookup
Table

32-L

32-L

32-L

5

L

S S

32

DTC Code AND-OR
5

DTC_addr

DTC Check Block

Logical Unit

XOR

SUB1

AND

SUB2

OR

S

S

S

S

Figure 21. Implementation of Runtime decoding for the DTC

the particular address. This is simple enough if there are only as many cache sets as there

are conflict sets. Since one conflict set could point to multiple cache sets, the placement

information has to be determined. The cache set in which a particular memory address

may be located is a function of the number of cache sets allocated for the particular conflict

set (computed using a SUB block), and, the cache set offset of the address (an XOR block

provides this). A logical unit as shown in Figure 21 is employed to perform this function.

Since application specific placement in actual hardware is realized by manipulating the

lower order address bits (so that each conflict set has a different size), using the higher order

bits as a tag in a conventional cache is no longer sufficient to uniquely identify a memory

address. Hence, the lower order bits starting from the set address are used as the tag for the

DTC which is achieved using a left shift operation as shown in Figure 21.

For incomplete, unbalanced or n-ary trees, the tree is remapped using a breadth first

traversal as earlier. The partitioning of memory into sets is performed, again assuming a

45

Table 1. Description of Benchmarks

Benchmark Description Tree Data Structure Size

bin
Synthetic application implementing a para-
metric balanced binary tree 1MB

rtr Radix tree based routing table lookup bench-
mark from CommBench [101]

1MB

avl
AVLtree implementation. AVLtrees are com-
monly used in databases and filesystems 64KB

aa
AAtree implementation. AAtrees are com-
monly used in databases and filesystems 128KB

treap
Tree heap implementation. Tree heaps are
commonly used in databases and filesystems 128KB

complete binary tree (i.e., the same power of two partitioning described earlier is followed).

This assumption allows the runtime indexing to remain fast and practical, and handles any

general case. However, the proposed design is best suited for a complete binary tree.

5.1.4 Performance Evaluation

A brief explanation of the benchmarks used to evaluate the DTC is given in Table 1. The

evaluation infrastructure built for the study is depicted in Figure 22. For simulating the

DTC, the tree data structure is statically remapped using a breadth first traversal placing tree

nodes in contiguous locations in memory. The application kernels are then compiled using

gcc (version 3.2.2) and the data memory address traces generated using the valgrind[102]

profiling tool. This address trace is filtered to remove non tree data structure accesses

(stack memory accesses for example). The address trace is processed to apply the cache

decoding scheme and produce a trace of directory entries and tags to drive dineroIV[103]

cache simulator, which was modified to support multi-threading. The cache parameters are

also fed into an area estimator, Cacti 3.2 [104].

A conservative miss penalty of 100 cycles was assumed in the simulations (200–300

46

Application

Remapping

gcc

valgrind

Address filter f(x) to
filter out non tree

accesses

Partitioning

Multithreaded
simulator (dineroIV)

Thread Scheduling
Policy(e.g. switch

on cache miss)

Cache config

Cache area estimates and
cache simulation results

Cacti

Placement

gcc

valgrind

Address filter f(x) to
filter out non tree

accesses

Fl
ow

 fo
r D

at
a

Tr
ac

e
C

ac
he

Fl
ow

 fo
r C

on
ve

nt
io

na
l C

ac
he

Figure 22. Evaluation Infrastructure

cycles are the norm). As mentioned earlier, network processors (for example, the IXP)

lack caches, and this section proposes the introduction of a small cache in the philosophy

of stream buffers and victim caches to aid in reducing the memory demand. Hence, the

performance evaluation focusses on small sized caches.

Table 2 tabulates the miss rates of the DTC versus a traditional cache for a single

threaded processor and a multi-threaded processor. The comparison between a 1KB DTC

and a 1KB traditional cache for a single threaded and multi-threaded processor are shown

in 23 and 24. It can be seen that there is a significant reduction in miss rates (by 20% to

50%) by using a DTC for a single threaded processor. For a 4-way multi-threaded proces-

sor, the skew in miss rates are even higher, since the DTC design considers the non-uniform

access probability of tree nodes and the total number of misses do not significantly change

with multi-threading, while misses in the traditional cache increase with multi-threading.

Given the large miss rates with small caches, there is a compromise to be made between

cache sizes and lower miss rates. This, in addition to the expectation that packet processing

applications do not reuse packet data are some of the reasons for network processors lacking

caches. From the analysis presented, it is seen that while miss rates are high, given the

47

Table 2. Performance comparison of Data Trace Cache Vs. a Traditional Cache

Miss rates for single Miss rates for multi-
threaded processor threaded processor

Appl. Cache Size DTC L1 cache DTC L1 cache

bin
512 57.3% 70.3% 58.6% 75.3%

1024 54.3% 65.6% 55.7% 69.9%

rtr
512 27.6% 32.2% 28.7% 34.8%

1024 19.5% 22.6% 20.1% 25.6%

avl
512 33.8% 56.3 % 38.9% 73.4%

1024 27.7% 56.7% 30.7% 67.8%

aa
512 22.2% 27.3% 46.1% 56.3%

1024 14.8% 20.7% 29.2% 44.6%

treap
512 24.0% 26.0% 22.5% 19.4%

1024 12.1% 15.7% 13.2% 16.4 %

 0

 10

 20

 30

 40

 50

 60

 70

treapaaavlrtrbin

M
iss

 R
at

e
%

 fo
r a

 1
K

Ca
ch

e

Benchmarks

Traditional Cache
Data Trace Cache

Figure 23. Single threaded DTC Results

significant miss penalties, the addition of a small cache remains beneficial, especially so, if

it is a customized cache solution as the area and energy footprints for such caches remain

lower while achieving better performance compared to traditional caches.

For the rtr benchmark, at lower cache sizes the performance difference between the

data trace and the traditional cache was found to be starker (33% at a 256 byte cache size).

48

In addition, if flow pinning [105] was employed, the DTC was observed to perform better

(miss rate for a 256 byte cache drops to 39% as opposed to 60% in a conventional cache).

The DTC performs well for all the benchmarks considered though none of these required

traversals to a leaf node; i.e., a tree access can terminate at any node where there is a match.

 0

 10

 20

 30

 40

 50

 60

 70

treapaaavlrtrbin

M
iss

 R
at

e
%

 fo
r a

 1
K

Ca
ch

e

Benchmarks

Traditional Cache
Data Trace Cache

Figure 24. Multi-threaded DTC Results

Additionally, increasing the cache size from 512 bytes to 1024 does not significantly

affect the DTC performance. This is because most of the performance gains due to the

DTC principle are achieved at smaller DTC sizes. There is a significant reduction in miss

rates to the rooted tree data structure in these applications. Since the results tabulate only

references to the tree data structure, it is necessary to investigate whether the reduction in

miss rates to the tree data structure results in a reduction of average memory latency. This

is especially important as the DTC has a higher access latency than a comparable L1 due

to the additional logic present. The additional logic as shown in Figure 21 is estimated to

increase access latency by 7–8 cycles over a comparable L1 cache.

Figure 25 shows the DTC performance for the avl benchmark. It is seen that increasing

associativity and size of the cache have lesser impact on miss rates than using a DTC. As the

49

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000 1100

M
iss

 R
at

e
%

Cache Size in Bytes

Direct Mapped Traditional Cache
Direct Mapped Data Trace Cache

8-way Associative Traditional Cache

Figure 25. DTC performance for avl

size increases, the divergence between DTC and traditional caches narrows, but the DTC

still performs better corroborating further that tree benchmarks benefit with the addition of

a DTC.

If a same sized L1 was used instead of the DTC (with both caches having a parallel

L1—this is referred to as L1base, and the L1 to be used instead of the DTC is called

L1addl), the average memory latency can be calculated as:

L1addl = (L1at + L1addlmr ∗ mp) cycles

where L1addlmr is the miss rate, L1at is the L1 access time assumed, and the miss penalty

is mp cycles.

For the DTC, the average memory latency would be:

tDTC = (DTCat + DTCmr ∗ mp) cycles

Where DTCat is the DTC access time and DTCmr is the DTC miss rate.

Assuming that the L1 access time is 4 cycles, and very conservatively assuming the DTC

access time to be 12 cycles (due to additional logic as shown in Figure 21), miss penalty

of 100 cycles, for the avl benchmark with a 1024 byte cache, the following is obtained:

tL1addl = 4 + 0.7 ∗ 100 = 74 cycles

tDTC = 10 + 0.3 ∗ 100 = 40 cycles

50

It is seen that, DTC performs by a factor of more than 1.5 over a same sized L1 in

average memory access latencies for the tree data structure accesses. Assuming that L1base

has the same hit rate (5% overall) with and without the trace cache, if 25% of the application

memory accesses are to the tree data structure, overall latencies are computed as:

tDTC = 0.25 ∗ 40 + 0.75(4 + 0.05 ∗ 100) = 16 cycles

tnoDTC = 0.25 ∗ 74 + 0.75(4 + 0.05 ∗ 100) = 24 cycles

For the entire system, the DTC is observed to decrease the average memory latency by

approximately 30%. If the higher hit rate for the L1base in parallel with the DTC (due to

lower data pollution), the performance gains will be higher. There is some area costs due

to the decoding logic and the lookup table (32 * 5 bits per mask = 20 bytes for the lookup

table), but the performance gains offset the slight increase in area.

Though the design in this section is applicable to any type of tree data structure, this

idea can be extended to other data structures such as directed graphs. Using profile infor-

mation to construct conflict sets, the idea can be extended across application data structures.

For example, if data structures A and B each have a group of elements accessed more of-

ten than the other elements, and if accesses to A and B occur in an interleaved manner,

these elements from A and B can be grouped into one conflict set. This would prevent an

element from data structure A that is accessed very rarely from phasing out an element ac-

cessed more frequently in data structure B. For example the bit vector packet classification

algorithm used for packet processing has five tree data structures [96].

Large data structures often have highly skewed non-uniform access patterns to the in-

dividual elements (for example, trees and directed graphs). This skewed access pattern

can be exploited by using caches customized to the application memory access behavior.

Application specific data trace caches with static remapping coupled with partitioning and

placement functions can realize significant reductions in miss rates. The DTC demonstrates

this phenomenon by achieving significant reductions in miss rates for several network pro-

cessing kernels based on tree data structures. This philosophy can be extended to other data

51

structures such as directed graphs.

5.2 Customized Placement Cache

In this section the lessons of the data trace cache are generalized to techniques to cus-

tomize the placement functions in traditional general-purpose caches to implement sizing

and shaping. These techniques are profile driven and primarily targeted at embedded sys-

tems.

Embedded processors typically have single level caches with a miss accessing main

memory. The power and energy constraints on embedded processors make cache energy

and performance profiles especially critical. This section summarizes the work done in the

context of embedded processor caches using partitions, which are finer grained than con-

flict sets, for realizing the mapping from main memory lines to cache sets. The concept of

interference among partitions and conflict sets are used to drive the programmable place-

ment policy resulting in enhanced performance for embedded processor applications. The

analysis in this section is focussed on performance alone in exploring the potential of using

customized placement solutions to increase cache performance as opposed to traditional

caches with larger sizes and associativity. Thus, the strategy proposed here does not ex-

plicitly seek energy savings, though there is energy saved as a result of using lesser energy

hungry caches with customized placement in comparison to traditional caches.

5.2.1 Partitions and Conflict Sets

If the total number of lines in the cache is represented by Cl, a partition Pi is defined as the

set of memory lines, where memory line Lk ∈ Pi if Lk mod Cl = i. A traditional k-way set-

associative cache with S sets will define S conflict sets. The set of lines in each conflict set

will be the union of k partitions. In a direct-mapped cache, partitions and conflict sets are

equivalent. The optimization problem that is tackled in this section can be formulated thus:

Given a memory reference profile, synthesize an assignment of partitions to conflict sets to

minimize the number of conflict misses. Figure 26 illustrates the concept of partitions and

52

alternate customized placement functions.

Partitions correspond to the conflict sets of direct mapped caches. Rather than the

general problem of partitioning the set of main memory lines into conflict sets (O(MS)

design space with M lines and S sets), the problem is re-formulated as the problem of

grouping partitions into conflict sets (O(CS) design space)

L5

L6

L7

L0

L1

L2

L3

L4

8−line Main Memory

P0

P1

P3

P2

L1,L5

L0,L4

L3,L7

L2,L6

Partitions

direct mapped cache

L0,L1,L4,L5

Partitions are conflict sets for a

Alternate conflict set reconstruction

L1,L3,L5,L7

P0 U P2

P1 U P3

Conflict sets in a traditional set−associative cache

L2,L3,L6,L7

P0 U P1

P2 U P3

L0,L2,L4,L6

Figure 26. Partitions and conflict sets in a traditional cache.

Within a program phase, memory reference behavior exhibits spatial and temporal lo-

cality around a set of memory locations. The utilization of each partition in a program

phase is measured and used to capture the potential conflicts between references to two

partitions using the concept of interference potential, which is quantified as follows.

5.2.2 Greedy Algorithm Based Placement

A memory reference trace is partitioned into contiguous segments of references called win-

dows where each window represents a program execution phase. For window w the number

of references to partition i is defined as r[w][i]. In this study, the interference potential be-

tween partitions i and j in window w is min(r[w][i], r[w][j]) - representative of the average

increase in the number of conflict misses in window w if partitions i and j are mapped to

the same cache set (the maximum increase in the number of conflict misses is twice the

53

interference potential). The interference potential between two partitions is the sum of the

interference potential between the partitions across all windows. As associativity increases,

the interference potential is an increasingly pessimistic measure of conflict misses as the

merged partitions will share an increasing number of lines in the target set. Customized

placement will create new conflict sets by composing partitions based on their interference

potential and assign these conflict sets to cache sets.

The algorithm shown in Figure 27 is the pseudo-code for the computation of customized

placement for a set-associative cache. For a k-way set-associative cache with Cs sets, there

are P = k ∗Cs partitions. These P partitions are merged to form Cs sets of partitions, which

form the conflict sets for the cache. The primary inputs to the algorithm are the reference

counts for each partition in each profile window (r[P][W], where W represents the total

number of windows), interference potential between partitions (ip[P][P]), and, the number

of sets (Cs).

A greedy algorithm iteratively traverses the interference potential matrix to select the

partition pair with the minimum interference potential (line 5) and merges them to form

a new conflict set (line 6) and updates the reference counts (line 7) and the interference

potential matrix (line 8) to reflect the removal of one partition. This process is iterated

P − Cs times, to ensure that the resulting number of sets of partitions (the new conflict

sets) is equal to the number of cache sets. A partition can be allocated a maximum of one

cache set, and multiple partitions may share a single cache set. Finally, the mapping is

updated so that the partitions map to actual cache set indexes (line 10). The output is the

conflict set membership for all partitions (map[P]).

Direct-mapped caches are a special case where the number of partitions is equal to the

number of cache sets (associativity = 1) and each set is one cache line. Thus partitions can-

not be merged without leaving some cache lines unassigned and therefore unused. Thus

direct-mapped caches are treated as a separate case and the algorithm is shown in Figure 28.

The algorithm for direct-mapped caches consist of an allocation stage where partitions are

54

allocated cache lines (with a minimum of one cache line) based on their access demand,

followed by merging partition pairs based on interference potential and updating the ref-

erence counts and the interference potential matrix. The algorithm returns an assignment

of partitions to conflict sets (cache lines), and an allocation count equal to the number of

cache lines allocated to each partition.

This flexibility in placement is accompanied by a relatively complex translation of 32-

bit physical addresses to access the cache set, tag, and word. In a conventional modulo

placement, log2 Cs bits of the address, the set index, are used to determine the set containing

the referenced memory line. With custom placement a partition may be mapped to any of

the sets in the cache, and therefore requires the re-mapping of the set index bits. This re-

mapping is implemented using a look-up table as shown in Figure 29. There is no constraint

on the composition of conflict sets and therefore two lines in memory with the same tag

may share the same cache set. Therefore the conventional tag is extended with the original

set index to ensure that all lines can be correctly differentiated in a cache set with a unique

tag.

Address decoding in a direct mapped cache is a bit more complex because each conflict

set corresponds to a single partition and is traditionally allocated to a single cache line. If

Input: r[P][W], ip[P][P], Cs

Output: map[P]

1: for i = 0 to P − 1 do
2: map[i] = i {Initialize}
3: end for
4: for i = 1 to P − Cs do
5: find imin, jmin s.t. ip(imin, jmin) = min(ip[P][P])
6: map[jmin] = map[imin] {Merge imin, jmin}

7: update(r) {Update reference counts after merging}
8: update(ip) {Update ip[P][P] after merging}
9: end for

10: update(map[P]) {Update mappings to point to actual cache sets}
11: return map[P]

Figure 27. Algorithm for determining set-associative cache placement.

55

partitions are coalesced based on interference potential to form new conflict sets, and if

all cache lines are used, then at least one partition will have to be allocated multiple cache

lines. When this happens, the memory lines in a partition are mapped to the allocated cache

lines using modulo placement. In this implementation, the number of cache lines that can

be allocated a to a single partition is limited to be 1, 2, or 4. Address translation now

operates as illustrated in Figure 30 and implemented as shown in Figure 31.

5.2.3 Performance Evaluation

The techniques described in this section were evaluated by modifying the Cachegrind [102]

simulator to support alternative placement functions. Cachegrind has a write-allocate pol-

icy on write misses with LRU replacement in set-associative caches. The benchmarks

Input: r[P][W], ip[P][P], Cs

Output: map[P], alloc[P]

1: avg = (
P−1∑
i=0

W−1∑
j=0

r[i][j]) / P

2: partitions to merge = 0
3: for i = 0 to P − 1 do
4: map[i] = i{Initialize}
5: alloc[i] = 1{Initialize one cache line per partition}

6: p re f =

W−1∑
j=0

r[i][j]{Partition reference count}

7: if p re f > avg then
8: alloc[iter]=2blog2 valc{Allocate lines to partition in powers of two}
9: partitions to merge += alloc[i]

10: end if
11: end for
12: for iter = 1 to partitions to merge do
13: find imin, jmin s.t. ip(imin, jmin) = min(ip[P][P])
14: map[jmin] = map[imin] {Merge imin, jmin}

15: update(r) {Update reference counts after merging}
16: update(ip) {Update ip[P][P] after merging}
17: end for
18: update(map[P]) {Update mappings to point to actual cache sets}
19: return map[P], alloc[P]

Figure 28. Direct-mapped cache placement

56

Figure 29. Address decoding for set-associative caches.

studied included a subset of kernels from the Mibench [106] benchmark suite including

basicmath, cjpeg, djpeg, fft, inverse fft, susan, tiff2bw, tiff2rgba, tiffmedian, tiffdither, pa-

tricia, ispell, and, ghostscript. The area, power and cache latency estimates were generated

using Cacti 3.2 [104] for 90 nm technology.

This analysis does not implement phase detection, but rather, each phase (window)

was chosen to be one million references empirically. The window chosen has to be suffi-

ciently large such that interference potential is not tied too closely to the profile (since any

slight change in profile would affect performance), whereas it has to be sufficiently small

to ensure the interference information captured is useful enough to drive miss rates down.

The kernels had reference counts ranging from 40 million to 100 million references, and a

value of one million references was chosen as the window size as a compromise between

the conflicting arguments.

Figure 32 illustrates the average memory access time (AMAT) averaged over the Mibench

kernels obtained for various cache configurations, with a miss penalty of 200 cycles. In this

case, no access time penalty was assessed for the look-up table access. The AMAT using

the customized placement cache (CPC) is consistently better, and can be seen to offer the

57

Figure 30. Address translation of direct-mapped caches - concept

Figure 31. Address decoding for direct-mapped caches (bypass path not shown)

58

same effect as increasing associativity in traditional caches. This is caused by improved

sharing which comes at the expense of the additional re-mapping but garners the effect of

increased associativity.

 2

 3

 4

 5

 6

 7

 8

 9

 10

4-way CPC4-way2-way CPC2-wayDM CPCDM

A
M

A
T

 (
av

er
ag

ed
)

in
 c

yc
le

s

Cache Configurations

4KB
8KB

16KB

Figure 32. AMAT comparison for various cache configurations.

The latency penalty for customized placement is approximately 0.3 ns, over the base

latency of 0.6 ns for a direct-mapped 4 KB cache and 0.8 ns for a 4-way 4 KB cache. The

latency cost consists primarily of the decoding necessary for indexing the SRAM based

look-up table. The effect of the added latency decreases as the cache size increases or the

associativity increases. For the caches considered, the access latency including the look-

up stage is well within 1.2 ns corresponding to a clock of less than 750 MHz for single

cycle hit time - well within the scope of modern embedded processors. Therefore the

analysis assumed single cycle hit times. Even if a penalty of half a cycle was applied to the

customized placement cache, it would still outperform traditional caches, as the difference

in AMAT between traditional caches and customized placement cache is greater than one

cycle for most configurations.

Figures 33 and 34 illustrate the area and energy costs for various cache configurations.

Figure 33 plots the area in mm2 for various cache configurations. The additional area cost

of the CPC is very low(2–5%) with the lookup table contributing to most of the increase

59

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 9 10 11 12 13 14 15 16 17 18 19

G
lo

ba
l M

iss
 P

er
ce

nt
ag

e
(a

ve
ra

ge
d)

Area (sq. mm)

Traditional Placement
Adaptive Placement

Figure 33. Area costs of various cache configurations

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

4-way CPC4-way2-way CPC2-wayDM CPCDM

E
ne

rg
y

pe
r

ac
ce

ss
 (

nJ
)

Cache Configurations

4KB
8KB

16KB

Figure 34. Energy costs of various cache configurations

60

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

A
M

A
T

 (
av

er
ag

ed
)

in
 c

yc
le

s

Energy per access (nJ)

Conventional Placement
Customized Placement

Figure 35. Energy-AMAT curves compared for traditional and customized placement caches.

in area. Figure 34 plots the per access energy consumed (in nJ) by various cache con-

figurations. It is seen that associativity increases energy costs significantly, whereas the

increase due to the addition of customized placement (keeping associativity fixed) is again

low (2–5%). Looking at the these results in conjunction with Figure 32, the desirable de-

sign point is to use smaller caches with customized placement, or lower associativity with

customized placement to have miss rates comparable to larger caches or caches with higher

associativity resulting in energy savings.

Figure 35 illustrates the (interpolated) relationship between the AMAT provided and

the energy consumed by traditional and customized placement caches. For caches with the

same configuration (consuming approximately the same energy - CPC consumes slightly

higher energy than the modulo cache for the same configuration corresponding to two

nearby points in the x-axis), customized placement caches can provide significantly lower

AMAT (10–40%) compared to traditional placement caches.

If caches for a specific AMAT were designed, customized placement offers energy sav-

ings (25% or more) over the traditional placement caches since caches of smaller sizes

and lower associativity may be chosen. The energy savings increase as lower AMATs

are obtained—this is because with customized placement lower AMATs are realized with

61

lower associativity and cache sizes compared to traditional caches. This discussion did not

consider the energy saved in off-chip memory owing to a lower number of misses result-

ing in fewer requests to off-chip memory. Considering the decreased number of off-chip

requests would lead to higher energy savings than reported in this section.

5.3 Fault Tolerant Cache (FTC) Architecture

The preceding designs led to the observation that shaping via customized placement could

be used to mask errors in the cache. Conventional fault tolerant memory includes the use

of redundant rows and columns of memory cells. Customized placement permits a more

flexible masking of faulty rows by remapping memory lines to cache lines, building on the

basic observation from Agarwal et al. [82].

The operation of the fault tolerant cache is based on a simple principle—main memory

lines which are mapped to faulty cache lines are re-mapped to non-faulty cache lines. The

determination of this mapping or placement is driven by application reference profiles and

is under software control reflecting the active management principles. The small hardware

footprint and fast hit times of these customized caches make them attractive for embedded

processors. However, the techniques have natural extensions to larger set associative caches

found in general-purpose processors.

In comparison to Section 5.2, the level of abstraction dealt with in this section is conflict

sets, as opposed to partitions, and the techniques presented herein are focussed on providing

graceful degradation in performance to caches with faulty lines.

5.3.1 Placement Model

The target of this approach are embedded processors that typically have a single level cache

and where servicing a miss from off-chip memory is typically two orders of magnitude

slower, e.g., 300 cycles in the IXP 2800 [94].

In a direct mapped cache a specific operating supply voltage is applied and conse-

quently some memory cells fail as defined in Agarwal et al. [82]. Assuming a RAM Tag

62

Figure 36. Cache with Customized Placement

implementation, tags and lines with failed cells are marked as faulty lines. Now consider a

direct mapped cache where there are f such faulty lines. If a tag is faulty, the correspond-

ing line is treated as faulty. The optimization problem is to find a new assignment of the

S conflict sets to the S − f non-faulty cache lines. The assignment is computed with the

goal of minimizing conflict misses. Conflict sets from the fault free cache are merged in

the faulty cache leading a lower number of conflict sets (and cache sets, since there are

less fault free sets available). Thus, there are now S − f conflict sets in the fault tolerant

cache. An example of profile-driven customized placement is illustrated in Figure 36. The

challenges are i) the development of algorithms to determine the most effective placement

policy, and ii) the efficient implementation of address translation mechanisms for the cus-

tomized placement policy. The former is driven by the locality properties of the reference

profile measured as described in the following section.

5.3.2 Capturing Reference Locality

During a program phase, program reference behavior exhibits spatial and temporal refer-

ence locality around a set of memory locations. Group temporal locality has been defined

as behavior wherein memory references in a phase that are not spatially local, are tempo-

rally local, i.e., they are clustered in time [107]. For example, when access to a data element

allocated on the heap is strongly correlated (i.e., invariably followed by) an access to a local

variable allocated on the stack. Studies have proposed various metrics [53, 108, 107] for

capturing group temporal locality.

63

In the presence of faulty cache lines, multiple conflict sets are mapped to a non-faulty

cache line. This results in the number of conflict misses to the particular cache line to

increase. The optimization problem is to find an assignment of conflict sets to cache lines

that will minimize the increase in conflict misses in the FTC. Conflict sets that exhibit group

temporal locality are poor candidates for sharing a cache line. To identify good candidates

for sharing a cache line, interference potential is used.

A memory reference trace is partitioned into contiguous segments of references called

windows as defined earlier. For window w the number of references to cache line i is

defined as r(w, i). In this study, the interference potential between conflict sets i and j

is min(r(w, i), r(w, j)) - representative of the potential increase in the number of conflict

misses in window w if conflict sets i and j are mapped to the same cache line in that

window. The interference potential between two conflict sets for the application is the sum

of the interference potential between the conflict sets across all windows.

5.3.3 Fault Tolerant Placement Policies

Two placement policies for fault tolerant direct mapped caches are evaluated. The first is a

profile-agnostic policy that is representative of existing approaches to address faulty cache

sets [81, 82]. The second is a profile-driven placement policy customized from a reference

stream.

5.3.3.1 Modulo Placement

Modulo placement is employed in existing fault-free caches and is representative of fixed

alternatives realized by existing proposals for by-passing faulty cache sets or lines [81, 82].

Consider a cache with f faulty lines and S − f non faulty lines that are addressed contigu-

ously 0 through (S − f). Main memory line L is mapped to L mod (S − f). The practical

difficulty is performing modulo (S − f) arithmetic on every cache access. Since the fault

pattern is not known a priori, address translation must be programmable. Thus, the decoder

64

has to be programmed such that faulty sets in the cache are bypassed. Similar implementa-

tions are also described in literature [81, 82]. For comparison purposes, the implementation

of address translation for custom placement is also used to implement modulo placement.

This is shown in Figure 37, where a lookup table performs the modulo function and bypass

faulty lines.

Depending on the fault pattern, two lines with the same tag can now map to the same

non-faulty cache line. Therefore to ensure unique tags across all memory lines that map

to cache line, the new tags are comprised of the old tags concatenated with the index bits.

For example, in Figure 36, if the line size was 16 bytes, memory addresses 0x00000010

and 0x00000070 map to the same line in the faulty cache (line 1), but the original higher

order tag bits (0x000000 in both cases) are not sufficient to identify the memory location

uniquely. If the index bits are concatenated with the old tag, the tags are now 0x0000001

and 0x0000007, which can be used to differentiate the memory lines.

5.3.3.2 Customized Placement

The goal of customized placement is to map conflict sets to non-faulty lines so as to min-

imize conflict misses. The algorithm for determining such a placement is outlined in Fig-

ure 38. The number of conflict sets in the original cache is S , which is equal to the number

of cache lines in a direct-mapped cache and the total number of windows is W. The input

to the algorithm consists of the reference count per cache line per window for all cache

lines, r[S][W], the interference potential matrix, ip[S][S] and the number of faulty lines f .

The algorithm first initializes the placement, by mapping each conflict set in the original

fault-free cache to the corresponding cache line. This if followed by an iterative traversal

of the interference potential matrix to i) select the conflict set pair with the minimum inter-

ference potential, ii) merge them to form a new conflict set (lines 5–6) and iii) update the

interference potential matrix and reference counts (lines 7–8). The algorithm terminates

after f merges, i.e., the number of new conflict sets have been made equal to the number of

65

Figure 37. FTC Placement Implementation

fault-free cache lines. At this point the S conflict sets in the fault-free cache have been as-

signed to the S − f cache lines. Multiple conflict sets in the fault-free cache can be mapped

to a single cache line. The algorithm returns a placement map[S], which maps conflict sets

in the original cache to fault-free cache line. All conflict sets are re-mapped—not just those

sets that are mapped to faulty-cache lines! The only requirement is that there are f merge

operations. This enables a tighter control of AMAT as the number of faulty lines increases.

Hence, a final update of the map[S] array is required (line 9), where the mappings of the

conflict sets are updated such that they point to fault free lines in the cache.

The technique and algorithms are similar in concept to that applied in Section 5.2. How-

ever, in this section, customized placement is performed at the granularity of conflict sets,

as opposed to partitions that was used in Section 5.2. Additionally, techniques provided in

Section 5.2 were not tailored to providing fault tolerance to defects in the cache.

Address translation is achieved using a lookup table as shown in Figure 37. Main

memory addresses are translated via a lookup table, which is indexed by the original cache

index (i.e., the index for the fault-free case), the output of which contains the new cache

66

Input: r[S][W], f , ip[S][S]
Output: map[S]

1: for iter = 0 to S − 1 do
2: map[iter] = iter {Initialize}
3: end for
4: for iter = 1 to f do
5: find i, j s.t. ip[i][j] = min(ip[S][S]) {Find conflict sets having minimum ip}
6: map[j] = map[i] {Merge the two conflict sets}
7: update(r[S][W]) {Update reference counts}
8: update(ip[S][S]) {Update the ip matrix}
9: end for

10: update(map[S]) {Update to remove mapping to faulty lines}
11: return map[S]

Figure 38. Placement Algorithm for FTC

line to which a memory address is mapped. The width of the tag array is increased by the

size of the index to differentiate distinct memory lines as in the case of the modulo fault

tolerance scheme. Faulty cache lines are never activated.

5.3.4 Results and Analysis
5.3.4.1 Evaluation Methodology

In the simulations, the following assumptions were made. The probability of a cache line

being faulty is assumed to be normally distributed with mean µ and standard deviation σ.

The fault detection model in Agarwal et al.[82] is assumed, where the cache has BIST

circuitry which identifies defects and errors post fabrication and marks faulty SRAM cells.

Access time failures or read/write failures due to process variation are considered faulty

behavior. If a single bit in a cache line or tag is faulty the entire line is marked faulty. An

S -bit register records the result of the BIST operation. The contents of this register can

be read by compiler/configuration software. The customized placement is loaded by the

software into the lookup table.

The fault tolerant cache placement schemes were simulated using valgrind [102]. The

area, latency and power estimates were derived using Cacti 3.2 [104]. The kernels that were

analyzed belong to the Mibench embedded benchmark suite [106] which covers a broad

domain of embedded system kernels. With a target of embedded processors, the focus

67

is on smaller caches where the effect of parameter variations is expected to be relatively

higher and the benefits of the proposed approach the greatest. The miss penalty used in the

analysis was as 100 cycles for a 32-byte cache line predicated on off-chip DRAM accesses

of 100–300 cycles [94]. The miss penalties for 64-byte and 128-byte cache lines were 108

and 124 cycles , with the typical memory bank model assumed [109]. A fixed window size

was used in the analysis, 100000 references, which was about 1% of the trace length for

most of the Mibench kernels.

5.3.4.2 Fault Tolerance

Figure 39 compares the performance of a fault tolerant cache using a modulo scheme and

one using the customized placement scheme. It is observed that the performance degra-

dation for the customized placement cache in AMAT is less than 5% with 12.5% of the

cache faulty, and the degradation is only 20% when 50% of the cache is faulty, compared

to degradations of 10% and 60% for the modulo scheme. As the percentage of cache area

that is faulty nears 100%, the difference between the two schemes will be less noticeable,

as both techniques will yield very high miss rates. The better performance of the cus-

tomized placement cache is due to the more efficient sharing of cache resources among

memory lines. Since, the conflict sets that are grouped (equivalently merged) have a rel-

atively lower interference potential, the effect on miss rates and hence AMAT and cache

performance are reduced.

From Figure 41, it is observed that for larger caches using customized placement, the

AMAT remains flat for a higher percentage of faulty cache area. This is because, the AMAT

will not be affected as long as the number of fault-free lines in the cache is larger than the

application footprint. Thus, the slope of the curves decrease as the cache size increases. The

AMAT shown in Figures 39 and 41 represent AMAT averaged over the Mibench kernels.

Figure 40 captures the performance variation of the individual Mibench kernels with faults.

From Figure 40, it is seen that for certain benchmarks, the performance degradation is less

than 5% even with 50% of the cache area being faulty using the customized placement FTC.

68

Thus customized placement shares cache resources effectively, that even with the effective

cache being halved, there is very little (< 5%) performance degradation. The trends were

found to be similar with varying cache line sizes.

Figure 39. Modulo Vs Custom Placement

Figure 40. AMAT Variation with Faults

69

 2

 4

 6

 8

 10

 12

 14

-10 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
(c

yc
le

s)
 fo

r F
TC

Percentage area of cache faulty

4KB cache with 32 byte lines
8KB cache with 64 byte lines

16KB cache with 128 byte lines

Figure 41. AMAT Variation with Faults for Various Cache Configurations

5.3.4.3 Area, Latency and Power

The area and latency costs of the fault tolerant cache were measured using Cacti 3.2 [104].

The area cost for a 4K direct mapped cache with 32 byte lines is a lookup table consisting of

128, 7-bit entries plus an additional 128 ∗ 7 bits of increased tag store and a 128-bit register

where the fault status of the cache lines are stored which together constitute approximately

5% of the overall cache area. For a 16K cache with 128 byte lines, the increased storage is

again 310 bytes, which is less than 2% of the overall cache area.

The access time for an 4K direct mapped cache with 32 byte lines is 0.48 ns (0.58 ns

for a 16KB, 128 byte line cache) using 90 nm technology, whereas the added latency for

the lookup is 0.23 ns (comprising mainly of the decoding latency necessary for indexing

the lookup table). Thus, the combined access time of the variable placement cache is

around 0.7 ns. For an embedded processor running at 1.2 GHz, the access can therefore be

performed within one cycle. However, modern embedded processors typically operate at

250–500 MHz and therefore the separate lookup stage will not adversely affect the AMAT.

Larger the cache size or higher the associativity, the effect of the additional latency will

be reduced considerably (for a 16KB cache, the lookup table increases latency by 30%,

as opposed to nearly 45% for a 4KB cache). For the modulo fault tolerant scheme, the

70

hardware implementation of the address translation is also on the critical path, although its

effect is not significant.

Since the lookup table size is very small compared to the cache size, and additionally,

there are no tags or multiplexors required, the energy consumed by the lookup table is again

concentrated in the decoding circuitry. This adds about 12% power increase to a 4K cache,

and the increase diminishes with larger caches and caches with higher associativity (for

example, for a 4K 4-way cache, the increase is approximately 2.5%, and for a 16 KB cache

the increase is 8%).

5.3.4.4 Performance Yield

Performance yield recognizes that at the micro-architecture level yield is measure of the

ability to meet performance goals and it is not a measure of identification of defect-free

substructures. Thus we measure yield as the percentage of implementations (for conve-

nience we use the term die) that produce an AMAT that deviate no more than 5% from the

non-faulty die. The simulations were carried out for 1000 dies and for various µ, σ values

of the number of faulty cache lines. The measured AMAT was averaged across all of the

kernels. Those die whose AMAT was within 5% of the averaged AMAT for non-faulty

designs were classified as usable die. The results are summarized in Table 3.

From Table 3, it is observed that the number of usable dies is substantially higher for

the customized placement scheme over the modulo placement scheme. For a distribution

with σ = 8 and µ = 8, it is seen that die yield is over 85% for the customized placement

scheme compared to 27% for the modulo placement scheme. The difference in the number

of usable dies is noticed to be significant irrespective of the fault distribution. This effect

on performance yield is graphically captured in Figure 42, where customized placement

increased the total number of usable dies by as much as 600 for a set of 1000 dies for a

given fault distribution.

If the application footprint fit into the set of fault free lines, the difference in yield is not

expected to be significant. However, in practice this is rarely the case. Further, the results

71

Table 3. Performance Yield Comparison
µ, σ Dies usable with Dies usable with

Mod. Placement Cust. Placement
1,2 921 998
1,8 380 958
2,2 820 990
4,4 604 984
4,8 355 925
8,8 279 859

16,16 130 612

suggest a strategy of using smaller caches to save area and power with minimal sacrifice

is performance. This performance loss may well be recovered by putting the recovered

silicon area to good use, e.g., larger register file.

 0

 100

 200

 300

 400

 500

 600

 0
 2

 4
 6

 8
 10

 12
 14

 16 0
 2

 4
 6

 8
 10

 12
 14

 16

 0

 100

 200

 300

 400

 500

 600

Difference in usable chips between customized and modulo placement

µ faulty lines
σ faulty lines

Figure 42. Performance Yield

The definition of yield includes a measure of performance resulting in a more stringent

requirement than only requiring that the design tolerate faults and enable the die to be

functional. Therefore, if a weaker definition of yield sufficed, the number of usable die

72

would be higher. Finally, a better definition of yield would include binning by frequency

and power (leakage). That is the subject of current efforts.

5.4 Concluding Remarks

Approaches to improve the cache performance and providing tolerance to faults using off-

line profile driven strategies, which configure the cache one time per application were de-

scribed in this chapter. Several problems were identified and solutions were prescribed

with a view on increasing cache energy and execution time performance. The solutions

were matched with characteristic of the embedded processing domain, where they are ap-

plied. These techniques were found to improve cache execution times and energy perfor-

mance significantly compared to traditional cache designs in addition to providing graceful

performance degradation in the presence of defects in the cache.

73

CHAPTER 6

STATIC STRATEGIES FOR IMPROVING EFFICIENCY

This chapter identifies several active management solutions in the context of improving

cache energy and performance efficiencies using static program analysis. Static strategies

are well suited for domains such as scientific computing and embedded processing, since

application workloads in these domains are well defined. In this dissertation, the analysis

is limited to identifying program working set sizes and access strides. Section 6.1 applies

these techniques to the scientific domain exploiting the domain specific knowledge for

improving efficiencies in the scientific domain, called strided placement, and Section 6.2

extends these principles to the multi-threaded scientific domain with studies accounting for

the effect of the operating system as well.

6.1 Strided Placement Cache

Strided array accesses are common in many scientific computing kernels. These strides

are either statically computable at compile-time or are dynamically computed at run-time.

For example, grid processing systems partition multi-dimensional array data among nodes

using a run-time determination of available processors (this leads to each node having a

different access stride to the array data structure). Sequences of accesses across orthogo-

nal dimensions of multi-dimensional arrays typically generate many conflict misses. Such

structured access patterns can benefit from customized placement with dramatic reduc-

tions in conflict misses and energy consumption with low overhead. The strided place-

ment caches proposed here to optimize efficiencies for scientific computing results in a

large reduction in execution times, average memory access times (AMAT), overall energy

consumption and the energy delay product (EDP) with performance and energy efficiency

improvements being greater than 4X and 10X.

The proposed technique can extend existing compiler memory optimizations to improve

74

performance and lower energy. This work was motivated in part by the data skewing tech-

niques for concurrent access to interleaved memory banks including Lawrie and Vora [110],

Raghavan and Hayes [111], Sohi [112], and, Rau [113]. The work specifically targets large

array data structures with memory accesses to multidimensional arrays realized as accesses

to addresses in a linear memory address space. The techniques are first developed for

one-dimensional arrays with a single stride and extended to multi-dimensional arrays with

multiple strides. The techniques are applied to single-threaded and multi-threaded applica-

tions and are found to very effective in improving cache efficiency.

6.1.1 Strided Placement for One-dimensional Arrays

Consider a one dimensional array, A[N], with N = 2n elements where a memory block

or line consists of x = 2b array elements. Thus, the array A is stored in L = N/x

contiguous memory lines, addressed l0, l1 · · · li · · · lL−1, with line li containing the elements

A[ix], A[ix + 1] · · · A[ix + x − 1]. Traditional caches use the fixed modulo placement policy

where memory line li is stored in cache set li mod S , with S sets in the cache.

An access pattern is a sequence of memory accesses to the array. Now consider an

access pattern that begins with an access to element A[0] and has a stride k = 2p, i.e.,

consecutive accesses are to elements A[k], A[2k], A[3k], and so on. This corresponds to

a memory line access stride of K = k/x , i.e., memory lines are accessed in the order

(l0, lK , l2K · · · l(L−1)−(L−1) mod K)). When k < 2x, all lines in the array are touched in a single

array traversal. When k ≥ 2x, all lines are not touched in a traversal. For example, with k =

2x, every even line is touched when traversal is started at any of the elements A[0] · · · A[x−

1], and every odd numbered line is touched when traversal starts at elements A[x] · · · A[2x−

1]. The stride set is the set of lines accessed during one traversal of the array with a stride

of k. Thus, there will be K stride sets, each with cardinality L/K. The cardinality of a

stride set corresponding to an access of stride k is the stride number, snk. These concepts

are illustrated in Figure 43.

Now consider a traditional direct-mapped cache with modulo placement and S lines

75

(equivalently S sets). For accesses with stride k, if S = K, all of the lines in a stride set

belong to the same conflict set producing a conflict miss on every access! To eliminate

conflict misses, lines l0, lK , l2K · · · can be mapped to separate cache sets via the customized

placement called strided placement.

Using strided placement, memory line li is mapped to cache set bli/Kc mod S . Now

the first S strided accesses to lines in this set, with stride k, will not produce any conflict

misses! When S ≥ snk, all lines in a stride set can be resident in the cache and thus all

conflict misses can be eliminated leaving only compulsory misses, whereas with modulo

placement there are snk misses for every array traversal. This is significant for column

major access to matrices stored in row major order where the number of conflict misses

that are eliminated can be as high as snk ∗ (x− 1). Figure 43 also illustrates this property of

strided placement. Increasing the associativity of the traditional cache will not help because

all the lines being accessed still belong to a few conflict sets (all the lines will be grouped

into ka sets, where ka is the associativity). An associativity of snk is required to eliminate

conflict misses in a single array traversal with stride k. This is undesirable and infeasible

for larger values of snk. If snk = S the number of conflict misses for strided placement

equals that of a fully-associative cache with S lines as illustrated in Figure 43. This is

achieved without the area and power penalties of a fully-associative cache. However, if

there is pollution in array accesses, a fully-associative cache will have all accesses miss

since it has only one set, whereas the strided placement cache by virtue of having multiple

cache sets is more resilient. For strided placement, if the cache associativity is ka with S

sets in the cache, the strided placement model changes to mapping memory line li to cache

set bli/K ∗ kac mod S , because ka lines are present in each cache set.

For multidimensional arrays with strided access patterns, the goal, is to similarly se-

quentially refer elements in distinct conflict sets. Thus the lines corresponding to the ac-

cessed elements can be concurrently resident in the cache. Conflict set formation is the

key. For example, to have conflict-free access to all elements along the third dimension

76

of a 3-D array stored in row-major order, a placement function that places each xy-plane

(corresponding to the first and second dimension) in a distinct conflict set is required as

shown in Figure 45.

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

L0
L1

LKN

L2K

LK

L0 LK L3KL2K

map to the same conflict set
All elements of a stride set

L0 LK L3KL2K
L1 LK+1L2K+1

Direct mapped

Modulo placement (S=K)

to different conflict sets
Elements of a stride set map
Strided placement

LK

L0 L1 L2

L2K L2K+1

LK+1

Direct mapped (S=K)

Main memory

Fully associative

Figure 43. Strided placement: Basic concepts.

The criterion for conflict-free accesses using modulo placement has the following con-

ditions: S ∗ ka ≥ snk, and, S ∗ ka ≥ snk.gcd(S ,K), where gcd(S ,K) represents the greatest

common divisor between the number of cache sets and the stride K. If S and K are co-

prime, the requirement reduces to S ∗ ka ≥ snk for conflict-free access. If S is even, and the

stride is even, modulo placement cannot provide conflict-free accesses. With customized

placement, the criterion for conflict-free access is just S ∗ka ≥ snk for conflict-free accesses.

6.1.1.1 Multi-dimensional arrays and Multiple Strides

For a 2-D array with dimensions M,N (stored in row-major order with M rows and N

columns), row-major accesses translate to an elemental stride of unity, and, column-major

access translate to an elemental stride of N. Therefore, the placement function that mini-

mizes conflict misses for column order accesses will map line li to set bli/bN/x∗kacc mod S

in the cache as illustrated in Figure 44. Similarly, the conflict set construction for three di-

mensional arrays is shown in Figure 45. To traverse a matrix in both row and column-major

orders, storage can be row-major and the placement be optimized for column-major order

77

to minimize conflict misses The same placement policy can be used for forward and back

diagonal accesses, because the conflict set construction remains the same.

L N/x − 1

L LL

L L0 1

(M−1)N/x+1 NM/x − 1(M−1)N/x

Row−order access: Each column is a conflict set (L_i mod S)

Col−order access: Each row is a conflict set (L_i/(N/x) mod S)

Diagonal access: Each row is a conflict set (L_i/(N/x) mod S)

M

N

Figure 44. Strided placement for matrices.

L N/x − 1

L LL

L
NM/x

L

L
2NM/x L

x−order access: Each column is a conflict set (L mod S)

y−order access: Each row is a conflict set (L /(N/x) mod S)

z−order Diagonal access: Each row is a conflict set (L /(NM/x) mod S)

M

L L0 1

(M−1)N/x+1 NM/x − 1(M−1)N/x

(O−1)NM/x

NM/x+1

N

O

Figure 45. Strided placement for 3D arrays.

If a one dimensional array, A is accessed with line strides P and Q in distinct program

regions seg1 and seg2, distinct placement functions can be employed in each region. If A

is accessed with line strides P and Q in the same program region, placement is optimized

78

for the stride K′ = gcd(P,Q), which yields conflict-free accesses if S ∗ ka ≥ snK′ , because

the stride set for each stride will be either placed in distinct cache sets (if direct-mapped) or

mapped to cache sets such that each cache set accommodates references from both stride

sets without thrashing. For multiple strides, therefore, the general solution is a placement

function optimized to the stride K′ = gcd(P,Q, · · · .).

If two arrays with the same dimension are accessed within the same loop nest with

the same stride, K, the placement is optimized for the stride K, if the cache is two-way

associative. The general solution is to optimize for the stride K ∗ ka/X, when X arrays

are present. If two arrays have different strides P, and Q, the placement policy must be

optimized for the stride K′ = gcd(P,Q). Accesses will be free of conflicts as long as the

condition, S ∗ ka ≥ 2 ∗ snK′ is satisfied. As only one placement function is applied to both

arrays, the stride numbers are calculated based on the larger sized array. All these relations

can be extended to multiple arrays with multiple strides.

One can also apply different placements at different levels of the cache hierarchy. For

example, customized placement optimized to stride P is used in one cache, say the L1

cache, and placement optimized to stride Q is used in the L2 cache. Alternately, one can

apply multiple placement functions (based on addresses) for different arrays, i.e., array A

has a placement function Pa applied to it, and array B has a placement function Pb applied

to it, and so on.

6.1.2 Miss Folding

Miss folding is the technique through which multiple conflict sets are merged to form a

single conflict set (mapping to a single cache set) with no increase in the number of misses.

Miss folding results in conflict sets with higher cardinality, but reduces the total number

of conflict sets, allowing cache sets to be switched off, increasing energy efficiency with

no drop in performance. An increase in the number of misses may be tolerated to benefit

from higher energy savings and is a design compromise. The applied placement policies

ensure that a memory line will have an active cache set to map to, limiting performance

79

degradation. An example of miss folding was illustrated in Figure 8(d). The technique

focuses on folding conflict sets on live range information without increasing the total num-

ber of misses. In this case, miss folding folds conflict sets as well as conflict misses. The

challenge has been development of low cost mechanisms that determine the lines to be

turned off, and, when they should be turned off with minimal performance degradation (for

example see Kaxiras et al.[66] and Abella et al.[65]). This segment of research exploits

domain knowledge about structured array accesses and application footprints to improve

energy and performance efficiency through customized placement.

A sizing algorithm restricts the number of active sets in the cache based on the stride

number. The computation of the placement function follows directly from the cache siz-

ing step. Informally, the goal is to have the active number of cache lines equal to the

stride number. In practice, issues including the number of available sets, the stride num-

ber, matrix dimensions, performance versus energy optimizations will direct the specific

sizing and placement functions. Algorithms shown in Figure 46 and Figure47 outline the

implementation.

The cache lines required for eliminating conflicts for strided accesses to 1-D arrays is

S = snk/ka, so the remaining sets may be turned off without affecting performance. Both

the stride and the stride number are programmable, so the programmer can override the

stride number to increase energy savings at the expense of performance. This is useful in

many scenarios. For example, if the footprint of the application reference pattern (repre-

sented by the stride number) is contained in the cache, the cache can be downsized. The

benchmark 164.gzip requires a 256 KB cache to saturate hit rates. The stride can be identi-

fied as unity and the stride number can be programmed to keep the downsized cache at 256

KB even if the physical cache is larger for energy savings.

Traditional caches map successive memory lines to successive cache sets. If the access

stride is unity, and, the data is touched only once, there will only be compulsory misses.

This pattern is common—an array access with unit stride or a matrix that is accessed in

80

rowmajor order exactly once. All the conflict sets in this case can be merged to form a

single conflict set resulting in the number of misses remaining the same as misses migrates

from compulsory to conflict.

Input: li,K, snk, S , ka

Output: cache set(li)
1: if bypass = 1 then
2: return(li mod S) {Modulo place-

ment}
3: else
4: S a = active sets (snk, S , ka)

5: return (
li

K ∗ ka
mod S a){Customized

placement}
6: end if

Figure 46. Algorithm computing the cache
placement function.

Input: snk, S , ka

Output: S a, the number of active cache
sets

1: if S nK < S ∗ ka then
2: return (S) {Keep all sets active}
3: else
4: return (S−

snk

ka
) {Number of active

cache sets after turnoffs}
5: end if

Figure 47. Algorithm computing the number
of active cache sets.

If an application data structure includes pointer intensive or random accesses with high

miss rates that are changed with larger cache sizes, multiple conflict misses can be folded

keeping the number of misses the same, but saving energy. Several strategies for customiza-

tion by the programmer or the compiler may be applied based on the metric that is being

optimized, e.g., reducing power via decreased performance.

6.1.2.1 Hardware Implementation

Customized placement is manually invoked by the programmer by calling the placement

function with the stride and the stride number as arguments. If a programmer wishes to turn

off more cache sets than computed by the placement function, a smaller stride number can

be provided deliberately. Although customized placement can be implemented at all cache

levels, for the scientific domain the L2 caches are larger and consume higher energy (leak-

age) and area budgets compared with the L1 cache. L2 cache misses result in expensive

long latency memory accesses, therefore miss rate reductions have a more potent effect on

execution time. Hence L2 caches are targeted for the scientific domain. Additionally, any

81

address translation time overhead can be overlapped with L1 cache access and thus hidden.

When the customized placement block is activated, the cache address decode path has

another step as shown by the shaded region in Figure 48. In strided placement, memory line

li is placed in set bli/Kc mod S , where K equals bk/xc. The number of array elements per

cache line, x is always a power of two enabling K = bk/xc to be easily obtained with a shift

operation. Furthermore, if the resulting value of K is also a power of 2, the computation

of the placement reduces to a shift operation on the line address. Alternatively, compilers

have been known to pad arrays to simplify addressing and maximize pre-fetch mechanisms.

Those techniques are feasible here as well.

.....

..........

.....

Tag Array Data Array

Index Mask

Stride Register

Shift

OffsetOriginal Tag Index

D
ec

o
d
er

S
ta

te
 C

tr
l

=?=?

Hit/Miss

Mux
Select

Data

New Tag

Bypass

Address Translation

Figure 48. Run-time address translation for strided placement.

If the stride is not a power of two, one can adapt the placement for a stride K′ which

is a power of two, where K′ = gcd(K,K′). This makes the resulting stride odd, and there-

fore co-prime with the number of cache sets, which distributes accesses evenly reducing

conflicts.

The hardware implementation of the run-time address decoding for customizing place-

ment depicted in Figure 48 consists of a stride register that contains the number of bits by

which the line address (tag plus index) must be shifted to compute the set address, i.e.,

bli/Kc mod S prior to traditional tag look-up (i.e., the value log2(K)). For even strides,

82

that are not a power of two, this register will contain the number of bits for the gcd of the

stride and the closest power of two. The new tag is the old tag augmented with the original

cache set index because the cache tag array may contain tags from customized as well as

modulo placement. Traditional modulo placement can be invoked by writing a zero into

the stride register or by invoking the bypass circuit. Writing to the stride register can be

implemented as a customized instruction, or, by making the stride register an addressable

region in memory. With multiple software threads, the stride register state will have to be

saved along with the thread state on context switches. For hardware threads (simultaneous

multi-threading), there must be separate stride registers for each hardware thread which

maintains the cache placement information on a per-thread basis.

Zhang et al.[114], and, Mamidipaka and Dutt et al.[115] explain the leakage mech-

anisms in a 6-T SRAM cell and provide leakage models which are used in Cacti. The

mechanism for turnoff of cache sets used is called gated-Vdd and was proposed by Pow-

ell et al.[67]. The technique enables turning off the supply voltages to caches lines to bring

the leakage energy dissipation to negligible levels. The state of cache sets, i.e., whether a

cache set is on or off is maintained in a register and is programmable. Customized place-

ment ensures that a turned off cache set is never accessed to provide energy savings with

low performance loss.

For implementing the customized turn-offs, the mask corresponding to the number of

sets required to be active is maintained in the index mask register, which is decoded (the

state control decoder) to turn cache sets on or off, by controlling the gated-Vdd transistor.

This mask is the value snk/ka − 1 computed from the algorithms presented in the previous

section. This ensures that whenever cache sets are turned off, no inactive cache sets are

accessed. The current design downsizes or up-sizes the cache in powers of two. A more

general implementation is writing to the gated-Vdd transistors directly, but this simple

design was sufficient for scientific computing as evident by the efficiency results. Thus,

an access to a conflict set that originally mapped to an inactive cache set does not have to

83

result in a miss as happens with techniques reported in the literature.

The additional area costs for the customized placement cache consists of the extra tag

bits required for identifying memory addresses uniquely, i.e., the tag matching logic re-

quires the original tag and the original index to be stored. The stride register and index

mask do not add any appreciable area costs. Thus, for a 256 KB 8-way L2 cache with 128

byte lines, an additional eight bits per set has to be stored, a total of 256 bytes, which is an

addition of 0.1% area to the cache.

6.1.3 Performance Evaluation

The utilization and efficiency comparisons are shown in Figures 49, 50, and, 51. Tradi-

tional placement caches are represented in the figures as TC, and CC represents customized

placement caches. Customized placement share cache resources better among memory

lines than traditional caches as a result of better conflict set construction, even when cache

sets are turned off adverse effects on AMAT and execution time were marginal as indicated

by the higher efficiency numbers. Many of the chosen benchmarks had accesses to large

multi-dimension array data structures with dimensions exceeding 1024 in many applica-

tions.

Figure 52 shows the average efficiencies across benchmarks studied among various

configurations of traditional and customized placement caches.

The performance efficiency numbers with customized placement caches average 22%

versus 5.6% for the traditional placement caches. Increasing associativities had a very

limited effect on efficiencies for the strided benchmarks, because associativities that were

impractical were required to reduce conflict misses substantially. Increasing cache sizes

had only marginal improvements in performance efficiency compared to their energy costs

as seen from Figure 52.

The numbers indicate that merging of conflict sets based on live ranges through cus-

tomized placement created few extra misses attributable to cache set turn offs overall. The

numbers show that customized placement was tolerant to pollution since each polluting

84

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

188.am
m

p

179.art

256.bzip2

choleski

doolittle

183.equake

164.gzip

kernel18

m
m

ult

hydroexp

linrec
ADI

linpack

lowerinverse

181.m
cf

177.m
esa

svd

U
til

iz
at

io
n

fo
r

a
25

6K
B

 L
2

Benchmarks

TC
CC

Figure 49. Cache utilization comparison for scientific computation.

access affects only one cache set, compared to higher associative caches which are more

susceptible because the number of cache sets is smaller.

The utilization values for customized placement was 60% compared to 15% for a 256

KB 8-way traditional L2 cache. The average energy efficiency of customized placement

caches were 5.5% from 0.38% for traditional placement caches. Section 3 has more ex-

planations on the causes of inefficiency in traditional caches. The utilization improvement

causes were two fold—first, by decreasing the percentage of dead cycles by turning off

cache sets, and second, by customizing the cache placement, live data percentage increased

as data likely to be reused was maintained in the cache as opposed to traditional cache

where the same data was being evicted. The latter phenomenon was especially noticeable

in the benchmarks with strided accesses.

AMATs and execution time for customized placement cache generally dropped com-

pared to traditional caches because of the better sharing of active cache sets among memory

lines, and because of the smarter conflict set construction, even when cache sets are turned

off, adverse effects on AMAT and execution time were marginal. Figure 53 shows the av-

erage EDP across benchmarks and customized placement caches the EDP by more than an

85

 0

 10

 20

 30

 40

 50

 60

188.am
m

p

179.art

256.bzip2

choleski

doolittle

183.equake

164.gzip

kernel18

m
m

ult

hydroexp

linrec
ADI

linpack

lowerinverse

181.m
cf

177.m
esa

svd

P
er

fo
rm

an
ce

 e
ffi

ci
en

cy
 fo

r
a

25
6K

B
 L

2

Benchmarks

TC
CC

Figure 50. Performance efficiency comparison for scientific computation.

 0

 5

 10

 15

 20

 25

 30

188.am
m

p

179.art

256.bzip2

choleski

doolittle

183.equake

164.gzip

kernel18

m
m

ult

hydroexp

linrec
ADI

linpack

lowerinverse

181.m
cf

177.m
esa

svd

E
ne

rg
y

ef
fic

ie
nc

y
fo

r
a

25
6K

B
 L

2

Benchmarks

TC
CC

Figure 51. Energy efficiency comparison for scientific computation.

86

 0

 5

 10

 15

 20

 25

 30

256KB TC

512KB TC

1024KB TC

256KB CC

512KB CC

E
ffi

ci
en

cy

Cache Size (TC:Trad. placement,CC:Cust.Placement)

Performance Efficiency
Energy Efficiency

Figure 52. Efficiency variation with cache size.

order of magnitude as both delay and energy gets reduced.

Figure 54 shows the instructions per cycle (IPC) comparison of various cache configu-

rations. While the IPC of the customized cache with downsizing rarely drops by more than

5% for the individual benchmarks, the overall IPC shows an improvement of 20% to the

baseline traditional cache. This IPC improvement, coupled with the significant savings in

energy indicate the efficacy of customized placement as a technique.

A drawback with customizing placement is that whenever the placement function is

changed within an application, write-backs are necessary to ensure consistency. This is

expected to cause slowdowns because of replacements, but, eager write-backs have been

shown to improve performance [66, 116]. However, placement is changed relatively few

times (mostly twice of thrice) within a program and the number of cache writes are a

fraction of the total number of accesses. The number of invalidations were generally lower

than 1% of total accesses and the results suggesting conflict misses were almost eliminated

for many benchmarks indicate that any adverse effects were low.

The benchmark 164.gzip required 128 KB for supporting data structures and a cache

87

 0

 0.5

 1

 1.5

 2

 2.5

256KB TC

512KB TC

1024KB TC

256KB CC

512KB CC

E
D

P

Cache Size (TC:Trad. placement,CC:Cust.Placement)

Normalized to 256KB traditional placement cache

Figure 53. EDP variation with cache size.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

256KB TC

512KB TC

1024KB TC

256KB CC

512KB CC

IP
C

Cache Size (TC:Trad. placement,CC:Cust.Placement)

Normalized to 256KB traditional placement cache

Figure 54. IPC variation with cache size.

size of 256 KB is expected to saturate performance, hence customized placement was op-

timized to the 256 KB footprint, and this resulted in energy savings compared to larger

traditional caches with almost no increase in execution time.

For 177.mesa, the customized placement chosen was the same as traditional place-

ment, and thus led to no improvements–this is one option to pursue. For the benchmark

88

256.bzip2, the cache was downsized by two, and that resulted in a 20% increase in execu-

tion time although significant savings in energy and decrease in dead cycles followed. Thus,

the programmer can determine the time criticality of the application and decide accordingly

on downsizing. These results show the potential of using active cache management tech-

niques to improve cache efficiency.

Scientific computing applications sometimes adopt customized algorithms that are finely

tuned to the hardware. For example, algorithms may be customized for a particular cache

size, line size and associativity. In the performance evaluation, the comparison is made on

generalized algorithms that are not tuned to the particular cache parameters. Making this

comparison might yield a smaller divergence in energy and performance efficiency between

strided placement and modulo placement. However, strided placement is an orthogonal ar-

chitectural optimization to the algorithms used. Therefore, it may be possible to come up

with more powerful algorithms to optimize energy and performance efficiency of caches

using strided placement. This evaluation is outside the scope of this thesis and offers a

potential extension to this work.

Additionally, such customization by the developer is not scalable as it has been pur-

sued with a specific cache configuration in mind. Thus, for every machine configuration

change, the algorithms have to be re-customized. With customized placement, the solution

is scalable as the new placement function can be computed with the new cache as it pri-

marily depends on the memory access pattern which is not subject to change as long as the

algorithm remains the same, as opposed to re-writing the algorithms.

6.2 Extensions to Multi-threaded Applications

This section extends the discussion of the strided placement cache in the previous section

to multi-threaded applications. The efficacy of active management techniques in improving

cache efficiencies in the multi-threaded domain is seen by the significant improvements in

89

energy and performance efficiencies with relatively low overheads in hardware and soft-

ware costs. The simulations in this section are carried out with the Linux OS running to

make the results realistic and the impact of the OS on cache efficiencies is also discussed.

6.2.1 Hardware Extensions for Multi-threading

With multiple software threads, the stride register state will have to be saved along with

the thread state on context switches. For hardware threads (simultaneous multi-threading),

there must be separate stride registers for each hardware thread which maintains the cache

placement information on a per-thread basis. When processes/threads are swapped out by

the operating system, the dirty cache lines have to be written back to maintain consistency.

6.2.2 Impact of the Operating System

Additional misses mean additional accesses to memory which increases execution time,

which forms a feedback loop as more OS accesses interfere, further increasing execution

time (similar to a damped feedback loop).

The simulator was configured to track the application alone ignoring the OS. This al-

lowed us to measure OS involvement, and found that it is generally a small percentage (less

than 5% of the total accesses) and can be ignored. Most of the OS related memory accesses

were hits in the L1 and L2 caches. Thus, if adopting customized placement causes the

execution time to be dropped sharply, along with the total number of references (because

of shortened execution time, OS interference related accesses also decrease) it is possible

for miss rates to vary interestingly. For example, the L1 miss rates will be different af-

ter applying customized placement to the L2 because the number of accesses to the L1 is

decreased. For example, if the L1 cache had 5 million accesses with 1 million accesses

caused by the OS (with a 99% hit rate), and 4 million references to the application hav-

ing 0.5 million misses, and after applying customized placement to the L2, the execution

time was shortened, and OS only contributed 0.5 million accesses, the L1 miss rate will be

seen to increase from 0.5/5.0 to 0.5/4.5! Thus, one has to factor in all metrics including

90

efficiency, execution times and miss rates to account for such anomalies.

6.2.3 Performance Evaluation
6.2.3.1 Simulation Methodology

The execution of the benchmarks were simulated on the SIMICS full system simulator

which was configured for x86 processors running the Linux OS. The cache simulator was

modified to obtain cache efficiencies. Strided placement was implemented by modifying

the cache simulation module of SIMICS.

Energy estimates were obtained using Cacti 5.0 [117] for 70 nm technology. It is as-

sumed that the L2 cache access latency to be 15 cycles independent of the size and associa-

tivity of the cache (this affected execution time by less than 2%). The efficiency definitions

assume that the read and write energies are the same—which increases energy efficiency

compared to a more precise definition. Leakage energy is predominant and cache writes

constitute a small fraction of the total number of accesses, (for example, Tarjan et al.[90]

estimate that at 70 nm, greater than 95% of the total cache power is leakage) therefore this

assumption affected efficiency by less than 1%, as given by Cacti estimates. Finally, the

energy was calculated with the cache operating at the highest expected frequency as given

by Cacti estimates.

6.2.3.2 Results and Discussion

The performance of the strided placement cache was evaluated against the traditional mod-

ulo placement cache for a variety of single threaded and multi-threaded benchmarks. Many

of the chosen benchmarks had accesses to large multi-dimension array data structures with

dimensions exceeding 1024 in many applications.

Figure 55 shows that effectiveness has increased significantly across all applications.

This means that strided placement caches were able to eliminate a large portion of dead

cycles, when the cache lines were storing dead data. This increase in effectiveness can be

also seen in performance efficiency as shown in Figure 56. The increase in performance

efficiency is also broad across all benchmarks, suggesting that effectiveness was increased

91

 0

 20

 40

 60

 80

 100

cholesky:1T
cholesky:4T
fm

m
:1T

fm
m

:4T
ge:1T
ge:4T
lu:1T
lu:4T
m

m
:1T

m
m

:4T
ocean:1T
ocean:4T
raytrace
raytrace
volrend
volrend
w

atersp
w

atersp

E
ffe

ct
iv

en
es

s
E

%

Benchmarks (1T:Single-threaded;4T: 4-way multi-threaded)

Traditional Cache
Customized Cache

Figure 55. Effectiveness comparison

 0

 20

 40

 60

 80

 100

cholesky:1T
cholesky:4T
fm

m
:1T

fm
m

:4T
ge:1T
ge:4T
lu:1T
lu:4T
m

m
:1T

m
m

:4T
ocean:1T
ocean:4T
raytrace:1T
raytrace:4T
volrend:1T
volrend:4T
w

atersp:1T
w

atersp:4T

P
er

fo
rm

an
ce

 E
ffi

ci
en

ci
es

 η
p

%

Benchmarks (1T:Single-threaded;4T: 4-way multi-threaded)

Traditional Cache
Customized Cache

Figure 56. Performance efficiency comparison

without significantly affecting miss rates or execution times. The benchmark watersp is an

outlier where the performance efficiency decreases, suggesting that aggressively shutting

of cache lines hurt its performance.

The comparison of energy efficiencies is shown in Figure 57. Again, it is seen that

energy efficiency increases across all applications and energy efficiencies double and triple

for the strided placement cache over the traditional cache for many benchmarks. Though

92

 0

 2

 4

 6

 8

 10

 12

 14

cholesky:1T
cholesky:4T
fm

m
:1T

fm
m

:4T
ge:1T
ge:4T
lu:1T
lu:4T
m

m
:1T

m
m

:4T
ocean:1T
ocean:4T
raytrace
raytrace
volrend
volrend
w

atersp
w

atersp

L2
 E

ne
rg

y
E

ffi
ci

en
ci

es
 η

p
%

Benchmarks (1T:Single-threaded;4T: 4-way multi-threaded)

Traditional Cache
Customized Cache

Figure 57. Energy efficiency comparison

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

cholesky:1T
cholesky:4T
fm

m
:1T

fm
m

:4T
ge:1T
ge:4T
lu:1T
lu:4T
m

m
:1T

m
m

:4T
ocean:1T
ocean:4T
raytrace
raytrace
volrend
volrend
w

atersp
w

atersp

 E
D

P
 w

ith
 S

tr
id

ed
 P

la
ce

m
en

t

Benchmarks (1T:Single-threaded;4T: 4-way multi-threaded)

EDP normalized

Figure 58. EDP comparison

the energy efficiency improvements as an absolute percentage seem modest, it has to be

factored in that there are some fundamental constraints while attempting to improve energy

efficiency. Given, that an L2 cache line is accessed only once every few million cycles,

leakage energy dominates. Thus, in spite of the improvements brought forth by strided

93

placement caches, absolute energy efficiency improvements were limited although rela-

tively large.

For multi-threaded benchmarks, the performance gains are as strong as that for single

threaded benchmarks, signifying that the conflicting data demands across threads were

satisfied by strided placement with the benefit of energy savings. All the improvements are

seen with an OS under realistic conditions.

The Energy Delay Product shown in Figure 58 is calculated for the entire processor (not

for the cache alone), assuming that the L2 cache accounts for 30% of the processor energy

consumption. Even under these assumptions, EDP for most benchmarks are reduced by

more than 15% (if the EDP were captured only for the cache, this would mean an increase

of over 66%).

By providing the software control over the cache placement, reductions in execution

time and energy consumption are achieved for single and multi-threaded applications ex-

ecuting on a Linux OS. This approach is able to increase energy efficiency by a factor of

four and decrease EDP by 33% for a range of benchmarks. Although the improvements are

significant the results still indicate much headroom left to explore.

Similar arguments made in Section 6.1.3 regarding the adoption of customized algo-

rithms tuned to the cache parameters hold true for multi-threaded applications as well, and

these techniques can be applied together for performance and energy benefits.

6.3 Concluding Remarks

This chapter describes techniques to optimize the memory performance of multidimen-

sional arrays by relaxing the fixed placement constraint currently used by cache hierarchies

by using information available at compile-time to drive sizing and shaping strategies. By

building on the work of data skewing techniques, multidimensional array accesses are an-

alyzed and cache placements developed that significantly improve cache performance and

energy efficiencies. By giving software greater control over the cache structure, some of

94

the performance headroom that is obscured by fixed, design time partitioning of cache

resources across memory lines is recovered.

95

CHAPTER 7

RUNTIME STRATEGIES FOR IMPROVING EFFICIENCY

This chapter provides solutions for improving cache efficiencies at runtime using heuristics

to reconfigure the cache based on runtime measurements of memory reference patterns.

These strategies are well suited for applications lacking statically characterizable profiles.

Miss folding is used for dynamically sizing and shaping the cache in Section 7.1. Sim-

ple folding schemes relying on various heuristics were found to be effective in decreasing

the energy-delay product (EDP) significantly and increasing energy and performance effi-

ciency. Section 7.2, in addition to providing an efficient mechanism for tracking the runtime

utilization of applications using a low-overhead approach, provides a framework to exploit

utilization and efficiency concepts to identify program memory behavior phases and uses

that information to re-configure the cache to improve cache efficiencies.

7.1 Improving Efficiency via Resizing+Remapping

This section proposes an evolution to the dynamic scaling of cache resources for improving

both cache performance and energy efficiency. Resource scaling is a natural extension to

the prior techniques for intelligently turning off portions of the cache for short periods of

time, and which requires solving a basic problem of mapping all of memory into the scaled

down cache or a scaled up cache i.e., computing a new placement function.

7.1.1 Cache Downsizing

The concept of conflict sets is combined with run-time reference counts to realize simple

(hardware) techniques to dynamically resize the cache to a subset of active components and

recompute the placement function . The L2 cache is targeted because of its larger size and

consequently greater impact on energy consumption. The concept of folding is proposed

by which memory regions that normally map to disjoint cache resources are combined to

share cache sets producing a new placement function. Folding enables powering down

96

cache sets at the expense of possibly increasing conflict misses.

Effective folding heuristics can substantially increase energy efficiency at the expense

of an acceptable increase in execution time. Section 3 describes the model and metrics

for computing cache efficiency and the application to a set of benchmarks. The resulting

insights lead into several folding heuristics.

If two conflict sets have non-overlapping live ranges, the two may be merged and a

cache set corresponding to one of those sets can be turned off without any increase in the

number of misses. This merging of conflict sets is referred to as folding. Folding requires

re-mapping a set of main memory lines to a new set. Conversely, splitting is the reverse

process and is accompanied by a corresponding up-sizing of the cache.

Re-constructing conflict sets alters the mapping from memory lines to cache sets, i.e.,

the cache placement is altered. Conflict set folding and splitting, along with cache sizing

customize the placement for energy and performance efficiency. All conflict sets do not

necessarily have the same cardinality as opposed to conflict sets in traditional caches which

have the same cardinality. That is, the number of memory lines contained in a conflict set

may vary over time using customized placement. A newly created conflict set by merging

original conflict sets has a higher cardinality than other conflict sets which were not altered.

Associated with each set is a reference counter that approximates the “liveness” of the

lines in a cache set. This reference count is used in the heuristics described later in this

section. The existence of the ability to turn off cache lines using the Gated-Vdd approach

proposed by Powell et al.[67] is assumed.

7.1.2 Runtime Heuristics

Three heuristics were evaluated—cache decay resizing, power of two resizing and segment

resizing. The cache decay resizing heuristic is an extension to the cache decay strategy

proposed by Kaxiras et al.[92]. Based on a 4-bit counter value, cache sets are turned off.

If a cache set is accessed while it is turned off, a cache miss results and the cache set is

powered back on during the servicing of the miss. This is extended this by folding conflict

97

sets that have long periods of inactivity or little activity. Splits from the merged conflict

set occur if multiple accesses (four) to the original conflict set occur within the sampling

period. Eager write-backs of dirty lines are required whenever the cache is resized. Two

lines with the same tag can now map to the same cache set. Therefore to ensure unique tags

across all memory lines that map to a cache set, the new tags are comprised of the old tags

concatenated with the index bits. The address decoding is shown in Figure 59.

New Tag

IndexOriginal Tag Offset

Lookup table height = #Sets

Lookup table width = log (#Sets)

Lookup Table
(new index)

To decoder

2

Figure 59. Cache decay resizing.

A simple version of customized placement is downsizing or sizing the cache upwards in

powers of two. Powell et al.[67] adopt such a mechanism for instruction caches where the

active cache size is increased or decreased based on miss rates being within a certain bound

determined by profiling. The advantage of this strategy is the simple address translation

mechanism which uses simple bit masking as shown in Figure 60. This scheme is adopted

for data caches. The number of references for a time interval is used as our basis for sizing

the cache. This scheme creates a smaller number of uniformly sized denser conflict sets

upon downsizing.

Index Offset

To decoder
ANDMask

Tag

Figure 60. Power of two resizing.

In the segment resizing approach, the cache is split into segments that are a power of

98

two, where a segment is a group of contiguous cache sets. For example, a cache with

256 sets can be split into 8 segments of 32 sets each, or 16 segments of 16 sets, and so on.

Conflict sets from one segment are folded with those in another segment based on reference

count within a time interval. For example, with 8 segments and 256 conflict sets originally,

conflict sets belonging to two segments can be folded which results in 224 conflict sets

allowing 32 cache sets to be turned off.

This strategy attempts to size the cache on utilization. For example, if the utilization

was 12.5%, and if the cache was divided into eight segments, ideally only one of the eight

segments has to be turned on if the application footprint in the cache is contiguous. On

the other hand, if the application footprint was small but non-contiguous, finer grained

approaches are better suited.

The incoming address is split into a segment offset and the segment index. The look-up

table is indexed using the original segment index to identify the new segment. The new

segment index concatenated with the segment offset gives the new cache set index to be

sent to the cache decoder. The new tag is the original tag appended with the segment index

to ensure unique tags. The address decoding is shown in Figure 61.

Index OffsetTag

To decoder

Lookup table width = log (#Segments)
Lookup table height = #Segments

New tag

Segment index
Segment offset

2

Figure 61. Cache segment resizing.

7.1.3 Performance Evaluation

The heuristics are named as follows: i) decay representing the cache decay technique with a

sample interval of 512K cycles, ii) dec-res:4b:2s, representing the decay resizing heuristic

99

with a 4-bit counter with all folded conflict sets merged to two sets with the other dec-

res heuristics representing changed parameters, iii) pow-res represents the power of two

resizing technique with a threshold of 1000 accesses for downsizing, iv) seg-res:125:8S

represents segment resizing with eight segments and a threshold of 125 accesses per seg-

ment per 512K cycles. The thresholds were chosen on the basis that on average access to

an L2 cache line occurs once every 80000 cycles.

Average energy efficiency is shown in Figure 62. The normalized average execution

time increases less than 4% for the heuristics, compared to a 5.5% increase for the cache

decay technique. The folding heuristics have each memory line mapped to an active cache

set. This provides resilience against occasional accesses to a conflict set that was folded,

because the active cache set can satisfy the request. This feature allows more conflict sets

to be folded and more aggressive turn offs to be scheduled.

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0.21

baseline-256KB
decay

dec-si:4b:2s
dec-si:4b:4s
dec-si:2b:4s
dec-si:2b:2s
pow-si:1000
seg-si:125:8S

E
ne

rg
y

E
ffi

ci
en

cy

Techniques

Figure 62. Energy efficiency comparison of folding heuristics.

Performance efficiency numbers are shown in Figure 63 also improves indicating that

the heuristics folded conflict sets with large inactivity periods and therefore cache misses

were kept low. Energy efficiency increases by about 20% relative to the base line. If half

100

the cache was turned off to reduce the leakage energy by half, the number of hits must

stay constant for energy efficiency to double. Every added miss will add to execution

time, and to leakage energy increasing the denominator and lowering the numerator in the

energy efficiency equation. These effects provide the context for evaluating the efficiency

improvement of 20%. This improvement is captured more effectively in the drop in EDP

shown in Figure 64. The EDP improves by up to 45% compared with the base line cache.

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

baseline-256KB
decay

dec-si:4b:2s
dec-si:4b:4s
dec-si:2b:4s
dec-si:2b:2s
pow-si:1000
seg-si:125:8S

P
er

fo
rm

an
ce

 E
ffi

ci
en

cy

Techniques

Figure 63. Performance efficiency of folding heuristics.

Among the heuristics studied, the 2-bit hierarchical counters for the decay resizing

heuristic provide the largest improvements in EDP, because of the aggressive turn offs

folding all unused conflict sets into just two sets. The segment resizing technique, reduces

the EDP by 30%, but affects the execution time by less than 1%.

The power of two sizing heuristic lowered EDP by 20%, and performed worse than

the original cache decay approach and the other heuristics. The reason for the under-

performance is that it tries to create different “conventional caches,” by resizing conflict

sets uniformly, and therefore the sources of inefficiency remained.

The folding heuristics were found to be stable independent of the exact thresholds,

101

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

decay

dec-si:4b:2s

dec-si:4b:4s

dec-si:2b:4s

dec-si:2b:2s

pow-si:1000

seg-si:125:8S

 E
D

P
 (

N
or

m
al

iz
ed

)

Techniques

Figure 64. EDP of folding heuristics.

counters or banks chosen, indicating that the techniques are robust to the variance in mem-

ory reference behaviors, as long as the parameters chosen were in the expected reference

range. The IPC degradation followed the execution time pattern, and was limited to less

than 4% for all the heuristics.

Active management strategies by shaping and sizing the cache were found to increase

cache efficiency and the performance yield of caches. The research completed thus far

exhibits the potential of this approach in dealing with the costs associated with designs in

the deep sub-micron region. Furthermore, it lays the foundation for improved approaches

to be studied in increasing cache efficiency and reliability.

7.2 An Utilization Driven Framework for Improving Efficiency

With the shift of scaling from frequency to the number of cores, efficiency has become

a primary design constraint. It is determined that cache performance efficiencies are less

than 10% and energy efficiencies are in the range 1–5% for L2 data caches! This is es-

pecially significant because caches are dominant consumers of energy and area on-chip.

102

Consequently, the ability to scale the number of cores concurrently with pushing back the

memory and power walls with small overall increases in die size will require significant

improvements in cache performance efficiency and cache energy efficiency. This section

provides strategies to improve L2/L3 cache efficiencies by coupling voltage scaling with

flexible cache management policies to enable significant efficiency improvements in data

caches. Specifically, a framework with a low overhead mechanism is proposed for the

runtime computation of line/set utilization to i) voltage scale and size the cache to match

program-phase footprint, and ii) shape the cache to the application memory behavior, i.e.,

change the placement function. The proposed techniques were applied to several bench-

marks resulting in performance efficiency more than doubling, energy efficiency improving

by 10% with a 10% improvement in an EDP.

Sizing and shaping are consolidated into a solution for improving L2/L3 cache effi-

ciency. The key insight is to combine sizing and shaping with voltage scaling in the cache.

As voltages are scaled down, the defect-free failure rate for cache memory cells increases,

for example due to timing failures [118]. Additionally, some program phases have smaller

cache footprints than others. These two insights are combined into an off-line generated

voltage-sizing profile of the cache and this profile is traversed dynamically. First, we pro-

pose a low overhead heuristic for the on-line computation of cache utilization. An empir-

ical analysis has demonstrated that this heuristic tracks the actual utilization very closely.

The utilization measurements are used to up-size/down-size the cache. Each change in the

cache size is accompanied by a refinement of the placement function to map memory to

the active cache lines. Companion measurements of miss rates are used to modulate siz-

ing decisions to prevent efficiency gains that carry excessive performance penalties e.g.,

significantly higher miss rates. The result is significant improvements in performance and

energy efficiencies with an EDP improvement of over 10%.

103

7.2.1 Empirical Analysis

Detailed analyses of the utilization and efficiency of traditional caches can be summarized

as follows. The simulations were performed using S implescalar [89] and the energy mod-

eling was performed using Cacti 5.1 [117] using the ITRS-HP model. More details about

the simulation methodology can be found in Section 7.2.6.1. The utilization and perfor-

mance efficiency numbers are shown in Figure 65, and the energy efficiency numbers is

Figure 66.

• The low utilizations indicate that the majority of the cache energy and area costs are

spent in maintaining dead lines.

• Performance efficiency, for which the upper bound is utilization, is shown in Fig-

ure 66 and averages less than 10% for the L2 cache. Although, most of the appli-

cations had a low miss rate, performance efficiencies were still considerably lower

than utilizations reflecting that the residency of live lines was not well exploited for

performance.

• Cache energy efficiency with current designs averages under 5% (Figure 66) with

leakage being the prime source of inefficiency.

• When associativity is increased, miss rates are lowered, but dead cycle counts in-

crease because of the deeper LRU stack. When the cache size is increased, it may

decrease miss rates, but more lines are dead. Thus, utilizations remain flat with cache

sizes and associativity.

• L1 cache utilizations were comparable to that of the L2 cache.

To make significant improvements in efficiency it is imperative to: i) reduce the number

of dead lines in the cache, and, ii) make better use of active lines. The first step improves

energy efficiency and the second improves performance efficiency. The approach reported

here differs from prior efforts in: i) coupling voltage scaling with resizing and remapping,

104

 0

 5

 10

 15

 20

 25

am
m

p

art

bzip2

health

m
cf

perim
ete

transiti

treeadd
U

til
iz

at
io

n
η u

 a
nd

 P
er

fo
rm

an
ce

 E
ffi

ci
en

ci
es

 η
p

%

Benchmarks

ηu
ηp

Figure 65. Utilization and Performance Efficiencies for a traditional 256KB L2 Cache

 0

 1

 2

 3

 4

 5

am
m

p

art

bzip2

health

m
cf

perim
ete

transiti

treeadd
L2

 E
ne

rg
y

E
ffi

ci
en

ci
es

 η
p

%

Benchmarks

256KB L2 Cache Energy Efficiencies

Figure 66. Energy efficiencies for a 256KB L2 cache

and ii) creation of a static voltage-sizing profile that is dynamically traversed, with iii)

cache shaping performed dynamically using a model employing utilization and miss-rate.

Thus, caches are one-time reconfigured to produce this profile (post manufacturing) and

105

L5

L6

L7

L0

L1

L2

L3

L4

8−line Main Memory

(a) Eight line
main memory

L2,L5

L3,L6

L3,L7

L0,L4 CS0

CS1

CS3

CS2

(b) Modulo
placement

�����
�����
�����
�����
�����

�����
�����
�����
�����
����������
�����
�����
�����
�����

�����
�����
�����
�����
�����

L1,L3,L5,L7

L0,L2,L4,L6 CS0

CS1

CS3 (Set is off)

CS2 (Set is off)

(c) Energy Efficient
Cache

Figure 67. Conflict set construction

this profile is traversed in an application-specific manner. Specifically we need to identify

triggers to move to a new voltage-sizing point concurrently with the computation of a new

placement function.

7.2.2 Operational Model

Customized placement is implemented for the L2 cache as described in Section 4.5. The

L2 access is remapped through a lookup table (to implement customized placement) and

this additional lookup is overlapped with the L1 access hiding the address translation. Op-

erationally, when a down-sizing or up-sizing operation is performed, the remapping table

is reloaded with address translations, which is performed in software. The existence of the

ability to turn off cache lines using the Gated-Vdd approach proposed by Powell et al.[67]

is assumed, which enables turning off the supply voltages to caches lines, and has an ad-

ditional area cost of 3%. The area and energy costs of the lookup table is addressed in

Section 7.2.6 and is negligible.

7.2.3 On-Line Cache Management

Improving performance and energy efficiencies relies on three main steps: i) off-line char-

acterization, ii) on-line computation of cache utilization, iii) cache sizing, and, iv) cache

shaping.

106

7.2.3.1 Off-line Characterization

Several studies have documented the challenges of the manufacturing process to fabri-

cate devices with design tolerances because of the significant variations in transistor device

characteristics within a die (WID), across dies (D2D), and between wafers (W2W) [119, 6].

Parameter variation can cause SRAM cell failures due to a variety of factors for example,

threshold voltage fluctuation in transistors can occur due to random dopant effects, as well

as parametric variations due to the manufacturing process including sub-wavelength lithog-

raphy, imprecision in chemical polishing, and uneven exposures. Thus the number of fault

free cells in the cache will vary with the cache voltage level and parametric effects are

generally spatially correlated.

Assumptions include i) the existence of built-in-self-test (BIST) capability for the cache

as described in Agarwal et al.[82], ii) operation of the L2 cache as a separate voltage island

(for example, the Barcelona die has separate voltage island for the L3 cache), and iii) the

availability of four voltage levels. The BIST is operated off-line at each voltage level to

identify fault free sets. A cache set is marked as failed if one cache line within it is marked

failed—this is a line with at least one failed bit cell. Failures are assumed to be monotonic,

i.e., a line marked faulty at a voltage level cannot be operational at a lower voltage level.

This information is captured in a voltage-sizing map that reflects available fault free cache

sets at each voltage level. This map can be made more aggressive by further down-sizing

the cache at each voltage. However, the converse is not true. The following sections deal

with when to resize (equivalently change voltage levels and power down unused lines) and

how to remap memory to the active cache sets.

7.2.3.2 Online Computation of Cache Line Utilization

Effectively sampling activity in the data cache is found to provide a reasonable estimate of

utilization. The approach is as follows. Within each set, the last hit is recorded via a hit

status bit associated with each line. The status bit will be equal to 1 for the last line hit

in the set, and 0 for all other lines in the set. The hit status bits of all lines are sampled

107

every S cycles. The utilization is computed every W > k × S cycles for some integer k.

The utilization of a line is determined by the number of times its hit status bit is set in

this interval W. If it is k, the utilization for that line is 100%. This cache line utilization

averaged across all cache lines is the measured global cache utilization. The simulations

used a value of one million cycles for one sampling period, and used 5 million L2 cache

references as the value for W.

Figure 68 illustrates the accuracy of the measured utilization by comparing it with sim-

ulations that accurately keep track of real utilization. The sampled values are within 10%

of the actual utilization values in absolute terms for all benchmarks (for the majority of the

benchmarks the measured utilization is within 5% of actual). As shown in Section 7.2.6,

this degree of accuracy is sufficient to drive sizing decisions to produce substantive im-

provements in efficiency.

 0

 5

 10

 15

 20

 25

am
m

p

art

bzip2

health

m
cf

perim
ete

transiti

treeadd
A

ct
ua

l a
nd

 M
ea

su
re

d
U

til
iz

at
io

n
%

Benchmarks

Real Utilization
Measured Utilization

Figure 68. Utilization Measured vs. Actual

108

7.2.4 Cache Sizing

The memory behavior of programs can be viewed as progressing through a sequence of

phases where the memory referencing behavior of each phase is characterized by its work-

ing set of memory lines (often referred to as its footprint). At phase transitions, online

utilization measurements drive sizing decisions. Phase detection is a challenging prob-

lem that has inspired several efforts [93]. While this approach can naturally accommodate

such phase detectors, here it is shown that even with empirically determined fixed duration

phases, efficiencies can be substantially improved. Specifically the results are presented for

phases that are 5M references long. As described in the preceding section, the measured

utilization at the end of each phase maps is used to select a cache size/voltage.

Since real failure rate data necessary to construct the maps in Section 7.2.3.1 is lacking,

two synthetic voltage-sizing maps are utilized. The first provides caches sized at 25%, 50%,

75%, and 100% of the original cache with voltage levels assigned accordingly (i.e., the

highest voltage level is associated with a fully sized cache). The second map utilizes cache

sizes of 60%, 70%, 80%, and 100% with increasing voltage levels. This map is informed

in part by the work in Chapter 5 that noted significant performance penalties when the

unusable cache size exceeded 40%. Utilization values uniformly index both maps, i.e., a

measured average line utilization of 50% would index into the either a cache size of 50%

or 70% respectively. Thus operationally, at the end of a phase, the average measured cache

utilization is used to index a map to obtain a new cache size, and a new placement function

is computed and loaded into the address remapping table in the L2.

7.2.5 Shaping the Cache

Shaping the cache is comprised of two steps—i) computing the placement function for a

specific cache size, and ii) configuring the cache to implement this new mapping. Two

heuristics are defined for the former.

109

7.2.5.1 Computing the Placement Function

At the end of a phase, a software implementation updates or improves the cache efficiency

as follows. The global cache utilization across all sets is computed from the cache line

utilizations. This utilization is used to index the voltage-sizing map which identifies the

sets that will be active in the next phase. The group of sets that will be powered down

are known through the model described in Section 7.2.3.1. The corresponding conflict sets

(memory lines that map to these sets) must be merged with conflict sets that map to cache

sets that are active in the next phase. Merging takes place with active cache sets that had the

lowest utilization in the last phase. In this implementation cache down-sizing is performed

in steps as described here. However, only one cache up-sizing operation is performed—full

cache operation.

For comparison purposes the nearest neighbor merging described in Agarwal et al. [82]

where only the pairs of conflict sets that map to adjacent sets in the cache are merged is

also evaluated. This approach is simpler in that no status information is maintained nor

is any online decision made and is described as Option 2 in Figure 70. However, both

techniques are invoked based on phase changes as determined by the online computation

of cache utilization using the heuristic and cache miss rates and the existing voltage level

(corresponding to a certain number of cache sets that are powered down).

7.2.5.2 Configuring the Cache

The remapping is implemented by updating the address remapping table which is illustrated

in Figure 69. The configuration update is performed in software. The hardware logic

requires BIST data, which contains information on which sets fail at which voltage level.

A set of four mask registers contain the status of each cache set at each of four voltage

levels. For a given cache set, the voltage level indicator indexes the mask bits for the set.

The selected mask bit is used to power down the corresponding set or leave it powered

on. These mask registers will use 256 ∗ 4 bits. Additionally, hit status bits have to be

maintained per cache line (2048 bits for a 256KB 8-way 128 byte L2 cache). The major

110

investment in area comes from the lookup table used for remapping. For the 256 KB L2

used in our experiments, 256, byte-wide entries are required for this look up table. The new

tag is the old tag augmented with the original cache set index because the cache tag array

may contain tags from customized as well as modulo placement. This adds another 256*8

bits, resulting in a total additional storage of 896 bytes for customized placement, which

is insignificant compared to the L2 cache size. The energy consumption of this additional

logic is less than 1% of the total cache energy consumption. Finally, when the placement

is changed, cache lines that had multiple conflict sets mapping to it are written back if dirty

and invalidated to avoid any synonym or aliasing problems.

In terms of latency, an additional cycle is required for the address translation logic.

While this can be easily masked by performing the lookup in parallel with an access to the

L1 cache, even if the lookup was not performed in parallel with the L1 cache access, the

additional cycle does not alter execution time by more than 2% in our simulations.

.....

..........

.....

Tag Array Data Array

Index Mask

Stride Register

Shift

OffsetOriginal Tag Index

D
ec

o
d
er

S
ta

te
 C

tr
l

=?=?

Hit/Miss

Mux
Select

Data

New Tag

Bypass

Address Translation

Figure 69. Hardware Implementation

7.2.6 Performance Evaluation
7.2.6.1 Simulation Methodology and Assumption

The execution of a subset of applications from the SPEC2000 suite [86] and DIS [88]

and Olden [87] was simulated. The applications were simulated using the S implescalar

111

Input: util[], utilization,missrate
Output: remap[]

1: initialize(trigger old, trigger new, new voltageindex, old voltageindex)
2: trigger new = utilization ∗ tc/(tc + tp ∗ missrate) { This is the metric used to detect

phases in memory behavior;this combines utilization and miss rate}
3: if trigger new > trigger old then
4: new voltageindex = int(utilization)/25 {Defining four voltage indices based on uti-

lization, with index 3 corresponding to the highest voltage level}
5: else
6: turn on all sets(); new voltageindex = 3 {if performance is suffering more than the

savings in utilization, turn all sets back on}
7: end if
8: if new voltageindex > old voltageindex then
9: new voltageindex = old voltageindex {up-sizing the cache cannot occur in steps

other than turning all sets back on, whereas down-sizing can occur in steps}
10: end if
11: turn o f f (new voltageindex) {schedule cache sets to turn off based on corresponding

voltage level which were identified during BIST}
12: for all faulty cache sets, f c, at new voltageindex do
13: OPTION 1: remap(f c) = f ault f ree nextneighbor set
14: OPTION 2: remap(f c) = f ault f ree lowestutil set
15: OPTION 2: update(util[]) { the utilization array is updated with the utilization of

the set being remapped being added to the set to which it is remapped}
16: end for{ Option 1 signifies the next neighbor strategy, whereas Option 2 is the utiliza-

tion driven remapping strategy}
17: trigger old = trigger new
18: old voltageindex = new voltageindex

Figure 70. Shaping Algorithm using Utilization

3.0 [89] simulator.

Energy estimates were obtained using Cacti 5.1 [117] for 70 nm technology, which is

the latest version of Cacti (therefore, the efficiency numbers without any energy manage-

ment were revised upwards from the numbers in earlier chapters; this is because the latest

version use the ITRS-HP technology models). The L2 cache access latency was assumed

to be 15 cycles. The efficiency definition assumes that the read and write energies are the

same—which increases energy efficiency compared to a more precise definition. Leakage

energy is predominant and cache writes constitute a small fraction of the total number of ac-

cesses, these assumptions affected efficiency by less than 1%, as given by Cacti estimates.

112

The energy was calculated with the cache operating at the highest expected frequency as

given by Cacti estimates. The L1 cache configuration was 16KB 2-way with 64-byte lines.

Results focus on the efficacy of the shaping algorithm in saving energy without regressing

performance by turning off cache sets. As a result, only the effect of the cache size on

energy savings (though this results from voltage scaling) is estimated; the energy saved in

the cache and processor through voltage scaling as well as the increases in the cycle period

is not accounted in the results.

7.2.6.2 Results and Discussion

 0

 20

 40

 60

 80

 100

am
m

p

art

bzip2

health

m
cf

perim
eter

transitive

treeadd
E

ffe
ct

iv
en

es
s

C
om

pa
ris

on
%

Benchmarks

No Energy Management
Next Neighbor Scheme (1)

Customized Shaping Scheme (1)
Next Neighbor Scheme (2)

Customized Shaping Scheme (2)

Figure 71. Effectiveness comparison

The five schemes represented in the figure are as follows:

1. No energy management representing traditional caches

2. Next neighbor scheme (1) representing the next neighbor scheme with cache sizing

maps of 60, 80, 90 and 100%

3. Customized Shaping scheme (1) representing the utilization based remapping scheme

with cache sizing maps of 60, 80, 90 and 100%

113

 0

 5

 10

 15

 20

am
m

p

art

bzip2

health

m
cf

perim
eter

transitive

treeadd
P

er
fo

rm
an

ce
 E

ffi
ci

en
ci

es
 η

p
%

Benchmarks

No Energy Management
Next Neighbor Scheme (1)

Customized Shaping Scheme (1)
Next Neighbor Scheme (2)

Customized Shaping Scheme (2)

Figure 72. Performance Efficiency comparison

 0

 1

 2

 3

 4

 5

am
m

p

art

bzip2

health

m
cf

perim
eter

transitive

treeadd
L2

 E
ne

rg
y

E
ffi

ci
en

ci
es

 η
p

%

Benchmarks

No Energy Management
Next Neighbor Scheme (1)

Customized Shaping Scheme (1)
Next Neighbor Scheme (2)

Customized Shaping Scheme (2)

Figure 73. Energy Efficiency comparison

4. Next neighbor scheme (2) representing the next neighbor scheme with cache sizing

maps of 25, 50, 75 and 100%

5. Customized Shaping scheme (2) representing the utilization based remapping scheme

114

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

am
m

p

art

bzip2

health

m
cf

perim
eter

transitive

treeadd
E

ne
rg

y
D

el
ay

 P
ro

du
ct

 %

Benchmarks

No Energy Management
Next Neighbor Scheme (1)

Customized Shaping Scheme (1)
Next Neighbor Scheme (2)

Customized Shaping Scheme (2)

Figure 74. Energy Delay Product comparison

with cache sizing maps of 25, 50, 75 and 100%

From Figure 71, it can be observed that effectiveness has increased significantly across

all applications with all the energy management schemes. The next neighbor schemes

perform as well as the customized shaping schemes in terms of effectiveness—this can be

explained by the utilization tracking mechanism which predicts shut down phases well.

However, the performance of the schemes diverge when performance efficiencies are

compared, as shown in Figure 72. When performance efficiencies are compared, the cus-

tomized shaping schemes relatively out perform the next neighbor schemes on average by

10% (a 1% difference in performance efficiency represents a 10% improvement). Com-

pared to the traditional caches, performance efficiencies are more than doubled in many

benchmarks.

The comparison of energy efficiencies are shown in Figure 73. Again, it is seen that

energy efficiency increases for all applications over the traditional cache for many bench-

marks. Though the energy efficiency improvements as an absolute percentage seem mod-

est, it has to be factored in that there are some fundamental constraints while attempting to

115

improve energy efficiency. Given, that an L2 cache line is accessed only once every few

million cycles, leakage energy dominates and this constraint keeps tabs on any improve-

ments achieved. A 1% improvement in energy efficiency is a 25% increase—this has to

be factored in the evaluation. The customized shaping scheme consistently outperforms

the next neighbor schemes by 0.05–1.0%, representing an average improvement of 0.5%

(again, this is a 10–15% improvement relative to the values of energy efficiency).

The increase in energy efficiency can be captured by looking at the Energy Delay Prod-

uct as shown in Figure 74. EDP is calculated for the cache alone, since it is assumed to be

in a separate voltage domain. EDP for most benchmarks are reduced by more than 15%

using the customized shaping scheme with no EDP regressions for any benchmark. The

next neighbor approach, however suffers significant regression for many benchmarks; for

example, the EDP for benchmark health doubled using next neighbor (this is not repre-

sented in the figure). In summary, both energy management schemes perform well using

the online utilization tracking mechanism, whereas the customized shaping scheme is able

to provide an additional 10–15% relative improvements in energy efficiencies and EDP.

Relative to the prior work demonstrated in this thesis, the approach here is distinct

in the following: i) integration of voltage scaling, ii) computation of a static profile of

voltage-sizing behavior, and iii) dynamically traversing this profile using run-time mea-

sured utilization. In addition this chapter proposes a low cost, and effective approach for

the run-time computation of cache set/line utilization that could readily be used to drive

other cache management policies.

7.3 Concluding Remarks

The shift to scaling via increasing the number of cores now places a premium on more

efficient cache design. Large L2/L3 caches are dominant and very inefficient consumers

of energy and therefore buying performance with larger caches is no longer feasible. Effi-

ciency will be a dominant design driver for future processors. Many applications are hard to

116

characterize statically, and therefore runtime strategies are necessary. This chapter presents

frameworks and implementation strategies for substantive improvements in the efficiency

of on-chip caches. The first part of the chapter focusses on using runtime heuristics to

improve efficiencies, whereas the second part provides a means to track runtime utilization

and efficiency and couples this with voltage scaling to realize gains in cache efficiency.

117

CHAPTER 8

CONCLUSION

This chapter explores some of the potential research directions that can emerge from this

thesis and briefly summarizes how these techniques presented in this thesis can be adopted

and improved upon. Following this, this chapter concludes this dissertation by summarizing

the work presented in this dissertation.

8.1 Future Extensions

Design trends indicate a shift towards multiprocessing as envisioned by the increase in the

number of multi-core processors. Many of these processors have independent L1 caches

with a shared last level cache. In traditional shared caches, the cache allocated to any core

is a function of the memory behavior of applications executing on both cores. Although

this approach is simple, this may lead to inefficiency as the competing programs from the

multiple cores may thrash in the cache leading to poor efficiencies.

Sizing and shaping the cache provides for a single cache having shared partitions as

well as private partitions for competing applications to improve efficiencies further. Private

partitions can eliminate thrashing among competing applications. Sharing cache sets allows

certain cache sets to be unused for periods of time permitting power down strategies to

be scheduled for energy savings. Similarly L1 and L2 caches need not be hardwired for

inclusiveness or exclusiveness; they may be customized for inclusiveness or exclusiveness

using placement.

The research can also be extended to allocate the cache across multiple threads and

multiple cores. For example, a program for which performance improves with a larger

cache size is allocated a larger portion of the cache at the expense of a program that does

not benefit from increased cache size. The cache partitions allocated to the competing

threads or applications can be shaped to minimize misses and improve efficiencies further.

118

This research also opens up new opportunities for compiler-driven placement optimiza-

tions. Compiler techniques for optimizing strided array accesses include data pre-fetching,

data re-layout and loop transformations (e.g., Mowry et al.[44], Chilimbi et al.[51], Panda

et al.[52], Rabbah and Palem[53]). These optimizations are targeted to fixed modulo place-

ment caches. By making the cache placement customizable, these techniques have greater

freedom, e.g., a specific layout may no longer preclude certain instruction schedules for

good performance. This can lead to powerful optimizations combining compiler optimiza-

tions with cache placement optimizations. Another related area is using customized place-

ment for scientific computing applications in conjunction with algorithms that are tuned to

cache parameters such as associativity and line size.

Another promising branch of this work is adaptive power management built on accurate

models of devices that incorporate failure modes, leakage power, short circuit power etc.

The goal is to adaptively trade-off bit error rate, power, and performance inspired by the

work with microprocessor datapaths [120]. A convergence of these techniques with the dat-

apath techniques can produce robust single chip embedded processor power management

strategies for deep sub-micron implementations.

8.2 Summary

This dissertation addresses two major sets of challenges facing processor design as the

industry enters the deep sub-micron region of semiconductor design. The first set of chal-

lenges relates to the well understood memory bottleneck [1] that shows no signs of easing

even as the focus shifts from scaling processor frequency to scaling the number of cores.

This trend has led to the increasing reliance on larger on-chip caches which occupies 50–

60% of area on chip and consuming 15–30% of energy expended on chip.The second set of

challenges is posed by transistor leakage and process variation (both inter-die and intra-die)

at future technology nodes with leakage power anticipated to increase exponentially and

sharply lower defect-free yield with successive technology generations. This dissertation

119

focuses on resolving these two challenges by abstracting them as one problem—developing

efficient caches.

This dissertation defines efficiency as it applies to caches and analyses the efficiency

of modern caches for various workloads and finds them to be extremely low (with per-

formance efficiencies less than 15% and energy efficiencies in the order of 1%), with a

majority of the cache storing data that will not be re-used (with utilization less than 25%).

This is followed by strategies to improve efficiency, predicated on addressing the two

sources if inefficiency—transistor leakage and the manner in which main memory lines

share the cache in traditional caches. The approach to improving energy efficiency pri-

marily relies on sizing the cache to match application memory footprint or working set

during a program phase and powering down all remaining cache lines. The approach to

improving cache utilization and performance efficiency primarily relies on cache shaping,

i.e., changing the placement function.

Sizing and shaping are applied at different phase of the design cycle. The thesis de-

scribed the various solutions that were proposed for different domains to improve the effi-

ciency of caches. These included solutions that deal with off-line profile driven strategies

followed by those applying compile-time strategies and strategies that are applied at run-

time using runtime measurements. This dissertation contributes techniques at all of the

preceding points in the life cycle of a program.

By giving software greater control over the cache structure, some of the performance

headroom that is obscured by fixed, design time partitioning of cache resources across

memory lines is recovered leading to significant improvements in cache execution time

performance and energy performance leading to improvements in cache energy efficiency,

cache performance efficiency, average memory access times and Energy-Delay products.

In conclusion, the active management techniques presented were found to improve

cache execution times and energy performance significantly compared to traditional cache

120

designs leading to improved energy and performance efficiencies. In addition active man-

agement of cache resources provides graceful performance degradation in the presence of

defects in the cache leading to improved performance yield. The presented techniques offer

a more flexible and cost-effective approach to solve current-day technology challenges in

terms of energy consumption and performance scaling compared to traditional approaches

including increasing associativity, sizes and agnostic powering down of cache segments.

The flexibility of the approach lends it to be applied in various domains at various program

execution points; for example, active management can be applied one-time, at compile-time

or at run-time using available data including off-line profile analysis, compile-time analy-

sis or run-time measurement. Additionally, the improvements are achieved with relatively

moderate hardware and software overheads.

121

REFERENCES

[1] S. A. McKee, “Reflections on the memory wall,” in Proc. of the Conference on
Computing Frontiers, 2004.

[2] P. Ranganathan, S. Adve, and N. P. Jouppi, “Reconfigurable caches and their appli-
cation to media processing,” in Proc. of the International Symposium on Computer
Architecture, pp. 214–224, 2000.

[3] Y.-F. Tsai, A. Hegde, N. Vijaykrishnan, and M. J. Irwin, “Chippower: An
architecture-level leakage simulator,” in Proc. of IEEE System on Chip Conference,
pp. 395–398, September 2004.

[4] M. Zhang and K. Asanovi, “Fine-grain CAM-tag cache resizing using miss tags,”
in Proc. of the International Symposium on Low power Electronics and Design,
pp. 130–135, 2002.

[5] Intel Corporation, Dual-Core Intel Itanium 2 Processor 9000 Series Datasheet, July
2006.

[6] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4,
pp. 23–29, 1999.

[7] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers.,” in Proc. of the International
Symposium on Computer Architecture, pp. 364–373, 1990.

[8] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The v-way cache: Demand based
associativity via global replacement.,” in Proc. of the International Symposium on
Computer Architecture, pp. 544–555, 2005.

[9] J.-K. Peir, Y. Lee, and W. W. Hsu, “Capturing dynamic memory reference behavior
with adaptive cache topology,” in Proc. of the International conference on Archi-
tectural support for programmin g languages and operating systems, pp. 240–250,
1998.

[10] A. Agarwal, J. Hennessy, and M. Horowitz, “Cache performance of operating sys-
tem and multiprogramming workloads,” ACM Trans. Comput. Syst., vol. 6, no. 4,
pp. 393–431, 1988.

[11] A. Agarwal and S. D. Pudar, “Column-associative caches: A technique for reducing
the miss rate of direct-mapped caches,” in Proc. of the International Symposium on
Computer Architecture, 1993.

122

[12] B. Calder, D. G, and J. Emer, “Predictive sequential associative cache,” in Proc. of
the International Symposium on High Performance Computer Architecture, 1996.

[13] E. G. Hallnor and S. K. Reinhardt, “A fully associative software-managed cache de-
sign.,” in Proc. of the International Symposium on Computer Architecture, pp. 107–
116, 2000.

[14] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Distance associativity for high-
performance energy-efficient non-uniform cache architectures,” in Proc. of the In-
ternational Symposium on Microarchitecture, 2003.

[15] A. Seznec, “A case for two-way skewed-associative caches.,” in Proc. of the Inter-
national Symposium on Computer Architecture, pp. 169–178, 1993.

[16] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using prime numbers for cache
indexing to eliminate conflict misses.,” in Proc. of the International Symposium on
High Performance Computer Architecture, pp. 288–299, 2004.

[17] N. Topham and A. Gonzalez, “Randomized cache placement for eliminating con-
flicts,” IEEE Trans. Comput., vol. 48, no. 2, pp. 185–192, 1999.

[18] C. Zhang, “Balanced cache: Reducing conflict misses of direct-mapped caches,” in
Proc. of the International Symposium on Computer Architecture, (Washington, DC,
USA), pp. 155–166, IEEE Computer Society, 2006.

[19] J. T. Robinson and M. V. Devarakonda, “Data cache management using frequency-
based replacement,” in SIGMETRICS ’90: Proceedings of the 1990 ACM SIGMET-
RICS conference on Measurement and modeling of computer systems, (New York,
NY, USA), pp. 134–142, ACM Press, 1990.

[20] S. Jiang and X. Zhuang, “Lirs: An efficient low inter-reference recency set replace-
ment policy to improve buffer cache performance,” in Proc. of SIGMETRICS, 2002.

[21] R. Subramanian, Y. Smaragdakis, and G. H. Loh, “Adaptive caches: Effective shap-
ing of cache behavior to workloads,” in Proc. of the International Symposium on
Microarchitecture, (Washington, DC, USA), pp. 385–396, IEEE Computer Society,
2006.

[22] Y. Smaragdakis, S. Kaplan, and P. R. Wilson, “EELRU: Simple and effective
adaptive page replacement,” in Measurement and Modeling of Computer Systems,
pp. 122–133, 1999.

[23] T. R. Puzak, Analysis of cache replacement-algorithms. PhD thesis, 1985.

[24] J.-S. Lee, W.-K. Hong, and S.-D. Kim, “Design and evaluation of a selective com-
pressed memory system,” in Proc. of the IEEE international Conference on Com-
puter Design, (Washington, DC, USA), p. 184, IEEE Computer Society, 1999.

123

[25] Y. Zhang, J. Yang, and R. Gupta, “Frequent value locality and value-centric data
cache design,” SIGPLAN Not., vol. 35, no. 11, pp. 150–159, 2000.

[26] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for high-
performance processors,” in Proc. of the International Symposium on Computer ar-
chitecture, (Washington, DC, USA), p. 212, IEEE Computer Society, 2004.

[27] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The case for compressed caching in
virtual memory systems.,” in USENIX Annual Technical Conference, General Track,
pp. 101–116, 1999.

[28] K. Ghose and M. B. Kamble, “Reducing power in superscalar processor caches using
subbanking, multiple line buffers and bit-line segmentation,” in Proc. of the Inter-
national Symposium on Low power Electronics and Design, (New York, NY, USA),
pp. 70–75, ACM Press, 1999.

[29] C.-L. Su and A. M. Despain, “Cache designs for energy efficiency,” in Proceed-
ings of the Hawaii International Conference on System Sciences, (Washington, DC,
USA), p. 306, IEEE Computer Society, 1995.

[30] F. Dahlgren and P. Stenstrom, “On reconfigurable on-chip data caches,” in Proc. of
the International Symposium on Computer Architecture, pp. 189–198, 1991.

[31] P. Petrov and A. Orailoglu, “Towards effective embedded processors in codesigns:
customizable partitioned caches,” in Proc. of the International Symposium on Hard-
ware/Software codesign, (New York, NY, USA), pp. 79–84, ACM Press, 2001.

[32] H.-H. S. Lee and G. S. Tyson, “Region-based caching: an energy-delay efficient
memory architecture for embedded processors,” in Proc. of the 2000 international
conference on Compilers, architecture, and synthesis for embedded systems, (New
York, NY, USA), pp. 120–127, ACM Press, 2000.

[33] H. S. Stone, J. Turek, and J. L. Wolf, “Optimal partitioning of cache memory,” IEEE
Trans. Comput., vol. 41, no. 9, pp. 1054–1068, 1992.

[34] G. E. Suh, S. Devadas, and L. Rudolph, “A new memory monitoring scheme for
memory-aware scheduling and partitioning,” in Proc. of the International Sympo-
sium on High Performance Computer Architecture, (Washington, DC, USA), p. 117,
IEEE Computer Society, 2002.

[35] R. Iyer, “Cqos: a framework for enabling qos in shared caches of cmp platforms,” in
ICS ’04: Proceedings of the 18th annual international conference on Supercomput-
ing, (New York, NY, USA), pp. 257–266, ACM Press, 2004.

[36] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni, “Communist, utilitarian, and
capitalist cache policies on cmps: caches as a shared resource,” in Proc. of the IEEE
international Conference on Parallel Architectures and Compilation Techniques,
(New York, NY, USA), pp. 13–22, ACM Press, 2006.

124

[37] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches,” in Proc. of the
International Symposium on Microarchitecture, (Washington, DC, USA), pp. 423–
432, IEEE Computer Society, 2006.

[38] J. Chang and G. S. Sohi, “Cooperative caching for chip multiprocessors,” in Proc. of
the International Symposium on Computer Architecture, (Washington, DC, USA),
pp. 264–276, IEEE Computer Society, 2006.

[39] C. Liu, A. Sivasubramaniam, and M. Kandemir, “Organizing the last line of defense
before hitting the memory wall for cmps,” in Proc. of the International Symposium
on High Performance Computer Architecture, (Washington, DC, USA), p. 176, IEEE
Computer Society, 2004.

[40] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache structure
for wire-delay dominated on-chip caches,” in Proc. of the international conference
on Architectural support for programming languages and operating systems, (New
York, NY, USA), pp. 211–222, ACM Press, 2002.

[41] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Distance associativity for high-
performance energy-efficient non-uniform cache architectures,” in Proc. of the In-
ternational Symposium on Microarchitecture, (Washington, DC, USA), p. 55, IEEE
Computer Society, 2003.

[42] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A nuca substrate
for flexible cmp cache sharing,” in ICS ’05: Proceedings of the 19th annual inter-
national conference on Supercomputing, (New York, NY, USA), pp. 31–40, ACM
Press, 2005.

[43] C.-K. Luk and T. C. Mowry, “Automatic compiler-inserted prefetching for pointer-
based applications.,” IEEE Trans. Computers, vol. 48, no. 2, pp. 134–141, 1999.

[44] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation of a compiler al-
gorithm for prefetching.,” in Proc. of the International conference on Architectural
support for programmin g languages and operating systems, pp. 62–73, 1992.

[45] J. Kim, R. M. Rabbah, K. V. Palem, and W.-F. Wong, “Adaptive compiler directed
prefetching for epic processors.,” in PDPTA, pp. 495–501, 2004.

[46] J. Kim, K. V. Palem, and W.-F. Wong, “A framework for data prefetching using
off-line training of markovian predictors.,” in Proc. of the IEEE international Con-
ference on Computer Design, pp. 340–347, September 2002.

[47] Y. Sazeides and J. E. Smith, “Modeling program predictability,” in Proc. of the In-
ternational Symposium on Computer Architecture, pp. 73–84, 1998.

[48] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching in scalar
processors,” in Proc. of the International Symposium on Microarchitecture, pp. 102–
110, 1992.

125

[49] S. Sair, T. Sherwood, and B. Calder, “A Decoupled Predictor-Directed Stream
Prefetching Architecture,” IEEE Trans. Computers, vol. 52, no. 3, pp. 260–276,
2003.

[50] S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equations: a compiler frame-
work for analyzing and tuning memory behavior,” ACM Trans. Program. Lang. Syst.,
vol. 21, no. 4, pp. 703–746, 1999.

[51] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Cache-conscious structure layout.,” in
Proc. of the ACM Conference on Programming Language Design and Implementa-
tion, pp. 1–12, 1999.

[52] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau, “Augmenting loop tiling with
data alignment for improved cache performance.,” IEEE Trans. Computers, vol. 48,
no. 2, pp. 142–149, 1999.

[53] R. M. Rabbah and K. V. Palem, “Data remapping for design space optimization of
embedded memory systems.,” ACM Trans. in Embedded Computing Systems, vol. 2,
no. 2, pp. 186–218, 2003.

[54] J. B. Carter, W. C. Hsieh, L. Stoller, M. R. Swanson, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama,
“Impulse: Building a smarter memory controller,” in Proc. of the International Sym-
posium on High Performance Computer Architecture, pp. 70–79, 1999.

[55] D. Kim, M. Chaudhuri, M. Heinrich, and E. Speight, “Architectural support for
uniprocessor and multiprocessor active memory systems,” IEEE Trans. Comput.,
vol. 53, no. 3, pp. 288–307, 2004.

[56] M. Heinrich, E. Speight, and M. Chaudhuri, “Active memory clusters: Efficient mul-
tiprocessing on commodity clusters,” in Proceedings of the International Symposium
on High Performance Computing, (London, UK), pp. 78–92, Springer-Verlag, 2002.

[57] P. R. Panda, N. D. Dutt, A. Nicolau, F. Catthoor, A. Vandecappelle, E. Brockmeyer,
C. Kulkarni, and E. D. Greef, “Data memory organization and optimizations in
application-specific systems,” IEEE Design and Test of Computers, vol. 18, no. 3,
pp. 56–68, 2001.

[58] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel, “Scratchpad
memory: design alternative for cache on-chip memory in embedded systems,” in
Proc. of the International Symposium on Hardware/Software codesign, 2002.

[59] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel, “Assigning Program and Data
Objects to Scratchpad for Energy Reduction,” in Proc. of Design Automation and
Test Europe, 2002.

[60] J. E. Miller and A. Agarwal, “Software-based instruction caching for embedded pro-
cessors,” in Proc. of the International conference on Architectural support for pro-
gramming languages and operating systems.

126

[61] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation for scratch-
pad memory using compile-time decisions,” ACM Trans. on Embedded Computing
Sys., vol. 5, no. 2, 2006.

[62] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient Utilization of Scratch-Pad Mem-
ory in Embedded Processor Applications,” in Proc. of the European conference on
Design and Test, (Washington, DC, USA), p. 7, IEEE Computer Society, 1997.

[63] D. Chiou, P. Jain, L. Rudolph, and S. Devadas, “Application-specific memory man-
agement for embedded systems using software-controlled caches,” in Proc. of the
Design Automation Conference, pp. 416–419, 2000.

[64] D. H. Albonesi, “Selective cache ways: On-demand cache resource allocation.,” in
Proc. of the International Symposium on Microarchitecture, 1999.

[65] J. Abella, A. Gonzalez, X. Vera, and M. F. P. O’Boyle, “IATAC: a smart predictor to
turn-off l2 cache lines,” ACM Trans. Archit. Code Optim., vol. 2, no. 1, pp. 55–77,
2005.

[66] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting generational be-
havior to reduce cache leakage power,” in Proc. of the International Symposium on
Computer Architecture, pp. 240–251, 2001.

[67] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, “Gated Vdd: A
circuit technique to reduce leakage in deep-submicron cache memories,” in Proc.
of the International Symposium on Low power Electronics and Design, pp. 90–95,
2000.

[68] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache architecture for
embedded systems,” in Proc. of the International Symposium on Computer Archi-
tecture, pp. 136–146, 2003.

[69] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte, “Adaptive mode control:
A static-power-efficient cache design,” ACM ACM Trans. on Embedded Computing
Sys., vol. 2, no. 3, pp. 347–372, 2003.

[70] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches: Simple
techniques for reducing leakage power,” in Proc. of the International Symposium on
Computer Architecture, 2002.

[71] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin,
“Compiler-directed instruction cache leakage optimization,” in Proc. of the Interna-
tional Symposium on Microarchitecture, pp. 208–218, 2002.

[72] W. Zhang, M. Kandemir, M. Karakoy, and G. Chen, “Reducing data cache leak-
age energy using a compiler-based approach,” Trans. on Embedded Computing Sys.,
vol. 4, no. 3, pp. 652–678, 2005.

127

[73] M. J. Geiger, S. A. McKee, and G. S. Tyson, “Drowsy region-based caches: min-
imizing both dynamic and static power dissipation,” in Proc. of the conference on
Computing frontiers, (New York, NY, USA), pp. 378–384, ACM Press, 2005.

[74] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache: an energy efficient
memory structure,” in Proc. of the International Symposium on Microarchitecture,
(Washington, DC, USA), pp. 184–193, IEEE Computer Society, 1997.

[75] G. Memik, G. Reinman, and W. H. Mangione-Smith, “Just say no: Benefits of early
cache miss determination,” in Proc. of the International Symposium on High Per-
formance Computer Architecture, (Washington, DC, USA), p. 307, IEEE Computer
Society, 2003.

[76] D. H. Woo, M. Ghosh, E. Ozer, S. Biles, and H.-H. S. Lee, “Reducing energy of
virtual cache synonym lookup using bloom filters,” in Proc. of the international
conference on Compilers, architecture and synthesis for embedded systems, (New
York, NY, USA), pp. 179–189, ACM Press, 2006.

[77] P. R. Turgeon, A. R. Steel, and M. R. Charlebois, “Two approaches to array fault
tolerance in the IBM enterprise system/9000 type 9121 processor,” IBM J. Res. Dev.,
vol. 35, no. 3, pp. 382–389, 1991.

[78] M. A. Lucente, C. H. Harris, and R. M. Muir, “Memory system reliability improve-
ment through associative cache redundancy,” IEEE Journal of Solid-State Circuits,
vol. 26, pp. 404–409, 1991.

[79] D. Nokolos, “Performance recovery in direct-mapped faulty caches via the use of
a very small fully associative spare cache,” in Proc. of the International Computer
Performance and Dependability Symposium, p. 326, IEEE Computer Society, 1995.

[80] H. L. Kalter, C. H. Stapper, J. E. B. Jr., J. DiLorenzo, C. E. Drake, J. A. Fifield,
G. A. K. Jr., S. C. Lewis, W. B. van der Hoeven, and J. A. Yankosky, “A 50-ns 16-
mb DRAM with a 10-ns data rate and on-chip ECC,” IEEE Journal on Solid-State
Circuits, vol. 25, pp. 1118–1128, October 1990.

[81] P. P. Shirvani and E. J. McCluskey, “PADded cache: A new fault-tolerance technique
for cache memories,” vol. 00, p. 440, IEEE Computer Society, 1999.

[82] A. Agarwal, B. C. Paul, and K. Roy, “A novel fault tolerant cache to improve yield
in nanometer technologies.,” in Proc. of the IEEE International Online Testing Sym-
posium, pp. 149–154, 2004.

[83] Y. Ooi, M. Kashimura, H. Takeuchi, and E. Kawamura, “Fault-tolerant architec-
ture in a cache memory control LSI,” IEEE Journal on Solid-State Circuits, vol. 27,
pp. 507–514, April 1992.

[84] H. R. Zarandi, S. G. Miremadi, and H. Sarbazi-Azad, “Fault detection enhancement
in cache memories using a high performance placement algorithm,” IOLTS, vol. 00,
p. 101, 2004.

128

[85] D. C. Burger, J. R. Goodman, and A. Kagi, “The Declining Effectiveness of Dynamic
Caching for General-Purpose Microprocessors,” Tech. Rep. UWMADISONCS CS-
TR-95-1261, University of Wisconsin, Madison, January 1995.

[86] “The SPEC CPU2000 Benchmarks.” http://www.spec.org/cpu/.

[87] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren, “Supporting dynamic data
structures on distributed-memory machines,” ACM Trans. on Programming Lan-
guages and Systems, vol. 17, pp. 233–263, March 1995.

[88] “DIS Stressmark Suite: Specifications for the Stressmarks of the DIS Benchmark
Project v 1.0.,” tech. rep., 2000.

[89] “The Simplescalar Simulator.” Available at http://www.simplescalar.com/.

[90] N. P. J. David Tarjan, Shyamkumar Thoziyoor, “CACTI 4.0,” tech. rep., HP Labora-
tories.

[91] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 pro-
grams: Characterization and methodological considerations,” in ISCA, 1995.

[92] Z. Hu, M. Martonosi, and S. Kaxiras, “Improving cache power efficiency with an
asymmetric set-associative cache,” in Workshop on Memory Performance Issues,
2001.

[93] T. Sherwood, G. Varghese, and B. Calder, “A pipelined memory architecture for
high throughput network processors.,” in Proc. of the International Symposium on
Computer Architecture, pp. 288–299, June 2003.

[94] Intel Corporation, Intel IXP2800 Network Processor Hardware Reference Manual,
November 2002.

[95] P. Gupta and N. McKeown, “Packet classification on multiple fields.,” in Proc. of
the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pp. 147–160, 1999.

[96] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple space
search.,” in Proc. of the ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pp. 135–146, 1999.

[97] P. C., “Locality and route caches,” in Proc. of the NSF Workshop on Internet Statis-
tics Measurement and Analysis, February 1996.

[98] T. cker Chiueh and P. Pradhan, “High performance routing table lookup using CPU
caching,” in Proc. of the IEEE Conference on Computer Communications, vol. 3,
pp. 1421–1428, March 1999.

[99] K. Gopalan and T. cker Chiueh, “Improving route lookup performance using net-
work processor cache.,” in Proceedings of the ACM/IEEE conference on Supercom-
puting, pp. 1–10, November 2002.

129

[100] J.-L. Baer, D. Low, P. Crowley, and N. Sidhwaney, “Memory hierarchy design for a
multiprocessor look-up engine.,” in Proc. of the International Conference on Parallel
architectures and compilation techniques.

[101] T. Wolf and M. Franklin, “Commbench — a telecommunications benchmark for
network processors.,” in Proceedings of the IEEE International Symposium on Per-
formance Analysis of Systems and Software, pp. 154–162, April 2000.

[102] “Valgrind tool suite version - 2.1.2.” Available at http://www.valgrind.org.

[103] “Dinero IV Trace-Driven Uniprocessor Cache Simulator.”

[104] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An integrated cache timing, power
and area model,” tech. rep., HP Laboratories.

[105] I. Stoica, “Stateless core: A scalable approach for quality of service in the internet,”
2001. Doctoral Dissertation.

[106] M. Guthaus, J. Ringenberg, D. Ernst, T. M. T. Austin, , and R. Brown, “MiBench: A
free, commercially representative embedded benchmark suite,” in Proc. of the IEEE
International Workshop on Workload Characteristics, pp. 3–14, 2001.

[107] P. Petrov and A. Orailoglu, “Towards effective embedded processors in codesigns:
customizable partitioned caches.,” in Proc. of the International Symposium on Hard-
ware/Software codesign, pp. 79–84, 2001.

[108] K. Hazelwood, M. C. Toburen, and T. M. Conte, “A case for exploiting memory-
access persistence,” in Workshop on Memory Performance Issues, June 2001.

[109] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach. Morgan Kauffman, 3 ed., 2003.

[110] D. H. Lawrie and C. R. Vora, “The prime memory system for array access.,” IEEE
Trans. Computers, vol. 31, no. 5, pp. 435–442, 1982.

[111] R. Raghavan and J. P. Hayes, “Reducing Interference Among Vector Accesses in
Interleaved Memories,” IEEE Trans. Computers, vol. 42, no. 4, pp. 471–483, 1993.

[112] G. S. Sohi, “High-bandwidth interleaved memories for vector processors - a simula-
tion study,” IEEE Trans. Comput., vol. 42, no. 1, pp. 34–44, 1993.

[113] B. R. Rau, “Program behavior and the performance of interleaved memories.,” IEEE
Trans. Computers, vol. 28, no. 3, pp. 191–199, 1979.

[114] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan, “Hotleakage:
A temperature-aware model of subthreshold and gate leakage for architects,” Tech.
Rep. TR-CS-2003-05, Univ. of Virginia, Dept. of Computer Science, March 2003.

130

[115] M. Mamidipaka and N. Dutt, “ecacti: An enhanced power estimation model for on-
chip caches,” Tech. Rep. 04-28, CECS, University of California, Irvine, September
2004.

[116] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager writeback – a technique for
improving bandwidth utilization,” in International Symposium on Microarchitecture,
pp. 11–21, 2000.

[117] S. Thoziyoor, N. Muralimanohar, and N. P. Jouppi, “Cacti 5.0,” tech. rep.

[118] S. Mukhopadhyay, H. Mahmoodi-Meimand, and K. Roy, “Modeling of failure prob-
ability and statistical design of SRAM array for yield enhancement in nanoscaled
CMOS.,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 24, no. 12,
pp. 1859–1880, 2005.

[119] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter
variations and impact on circuits and microarchitecture.,” in Proc. of the Design
Automation Conference, pp. 338–342, 2003.

[120] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power pipeline based on
circuit-level timing speculation,” in MICRO 36: Proceedings of the 36th an-
nual IEEE/ACM International Symposium on Microarchitecture, (Washington, DC,
USA), p. 7, IEEE Computer Society, 2003.

131

