

A KNOWLEDGE-BASED SYSTEM FRAMEWORK FOR SEMANTIC

ENRICHMENT AND AUTOMATED DETAILED DESIGN IN THE AEC PROJECTS

A Dissertation

Presented to

The Academic Faculty

by

Shiva Aram

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

College of Architecture

Georgia Institute of Technology

December 2014

A KNOWLEDGE-BASED SYSTEM FRAMEWORK FOR SEMANTIC

ENRICHMENT AND AUTOMATED DETAILED DESIGN IN THE AEC PROJECTS

 Approved by:

Professor Charles M. Eastman, Advisor Associate Professor, Rafael Sacks
School of Architecture

Georgia Institute of Technology

Faculty of Civil and Environmental

Engineering
Technion - Israel Institute of Technology

Assistant Professor, Jakob Beetz David Orndorff
Department of the Built Environment Vice President of Engineering

Eindhoven University of Technology The Shockey Precast Group

Associate Professor Russell Gentry
School of Architecture

Georgia Institute of Technology Date Approved: January 07, 2015

https://www.tue.nl/en/university/departments/built-environment/
http://w3.bwk.tue.nl/nl/

To my parents, Mohammad Bagher and Sarah

iv

ACKNOWLEDGEMENTS

Successful completion of my PhD dissertation wouldn’t have been possible without the

guidance of my advisor and committee members and support of my family and friends.

My journey throughout my PhD studies has been long and at times challenging but a

rewarding and exciting one . I have had the honor of working under the supervision of Professor

Chuck Eastman. I am deeply gratified by his intellectual contribution, continued support and

inspiring leadership. I am so thankful for the trust he placed in me that provided the opportunity

for me to work as part of his research team. Professor Eastman has an exceptional experience

and profound knowledge in the BIM research domain. Participating in his classes and working

with him on four different research projects and authoring several papers with him have been

very influential in shaping my research direction and methods. I am also very grateful for his

understanding, flexibility and patience in providing me with the freedom to find and pursue my

own research path. I would like to thank Professor Rafael Sacks for his thoughful guidance and

valuable advice during my PhD research work. He has been a great inspiration to me. I am

extremely grateful to him for providing the opportunity of working with his research team in

Technion that enabled me to implement the developed framework for the research work

presented in this dissertation. I would like to thank Professor Jakob Beetz for his insightful

feedback and helpful recommendations. He has been influential in initiating the direction of

this research work for which I am grateful. Many thanks to David Orndorff who generously and

patiently supported me during the industry knowledge acquisition of this research work. He has

an excellent expertese in the precast concrete domain. His collaboration was instrumental to my

v

understanding of the domain and industry best practices. I would like to thank Professor Russell

Gentry for reviewing my dissertation and providing feedback during my defense.

I was fortunate to work with Michael Belsky, a PhD candidate in Technion’s Virtual

Construction Laboratory, during the development and implementation of the rule set libraries.

He provided a close collaboration on the research over the course of several months and enabled

me to implement the developed framework using the SEEBIM reasoning engine that he had

developed. I am very thankful to him for his valuable help and contribution and his patience

and understanding. I will miss our discussions and collaborative work.

 I am grateful to Professor Fried Augenbroe for his great insight and valuable guidance

and his trust in me that helped me find the support I needed for continuing my research work at

Georgia Tech. I would like to thank Phil Bernstein and Professor Arto Kiviniemi for their

support of my research work and the stimulating discussions we had. Many thanks extended to

William David Bone a dear friend and a mentor who supported me during difficult times.

I would like to express my gratitude to many construction companies that supported my

research. This work would not have been successful without their generosity in sharing their

expertese and vast experiences. Special thanks are extended to Bill Farnsworth from Tindall

Corp., Kip Varner and Matthew Cooper from Shockey Precast, Larbi Sennour, Paul Arthur,

Van Diep, and Michael King from Consulting Engineers Group (CEG), Jonathan Lazenby and

Dan Wiggins from Gate Precast, Robert Adkins and Mo Kright from Castone Corp., and Jason

Lien from EnCon Colorado for volunteering their time and sharing their valuable knowledge.

Finally I would like to use this opportunity to deeply thank my loving parents

Mohammad Bagher, the university professor, and Sarah, the high school teacher. From my

childhood they created an environment in the family in which education and learning had the

vi

highest value and priority. They taught me to dream big and to be persistent and resilient in

pursuing higher education and cherished my endeavors. Their love, unmatched care and wise

guidance provided me with the strength, courage and direction to navigate this challenging

journey.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iv

LIST OF FIGURES ... xii

LIST OF TABLES .. xvi

SUMMARY.. xviii

I RESEARCH MOTIVATION AND GOALS... 1

1.1 INTRODUCTION ... 1

1.2 PROBLEM FORMULATION .. 2

1.3 RESEARCH QUESTIONS.. 6

1.4 RESEARCH OBJECTIVES AND GOALS.. 8

1.5 RESEARCH IMPACT AND POSSIBLE EXTENSION .. 10

II LITERATURE REVIEW ... 13

2.1 COST ESTIMATION .. 13

 2.1.1 COST ESTIMATION METHODS ... 14

 2.1.2 INTUITIVE AND ANALOGICAL METHODS: EARLY DESIGN STAGES 16

 2.1.3 LIMITATIONS OF INTUITIVE AND ANALOGICAL METHODS 19

 2.1.4 ANALYTICAL METHODS: LATE DESIGN STAGES .. 20

 2.1.5 ANALYSIS CONCLUSION AND ADOPTION ... 24

2.2 KNOWLEDGE-BASED SYSTEMS ... 25

 2.2.1 KNOWLEDGE-BASED SYSTEMS FOR COST ESTIMATING....................................... 27

 2.2.2 COMPONENTS OF KNOWLEDGE BASED SYSTEMS .. 30

III RESEARCH METHODOLOGY AND SOLUTION DEVELOPMENT 33

3.1 RESEARCH METHODS AND PROBLEM SOLVING APPROACH.. 33

viii

3.2. KBS FRAMEWORK DEVELOPMENT FOR PRECONSTRUCTION ACTIVITIES 38

 3.2.1 MODULARIZED STRUCTURE .. 38

 3.2.2 DOMAIN LAYER: KNOWLEDGE BASE ... 39

 3.2.3 KNOWLEDGE ACQUISITION: METHODS AND SOURCES .. 41

3.3 REASONING LAYER: RULE LIBRARY AND INFERENCE ENGINE 44

3.4 VALIDATION ... 47

IV SEMANTIC ENRICHMENT OF DESIGN MODELS: PRECAST

 CONCRETE COLUMN CASE ... 50

4.1 INTRODUCTION ... 50

4.2. MULTI-PARTY COLLABORATION AND SEMANTIC INTEROPERABILITY 52

 4.2.1 MODEL QUERY SOLUTIONS ... 53

 4.2.2 SEMANTIC ENRICHMENT OF MODELS .. 54

4.3 PROBLEM DEFINITION ... 55

4.4 PROPOSED SOLUTION FRAMEWORK .. 56

4.5 PRODUCT MODEL: PRECAST CONCRETE COLUMN .. 58

 4.5.1 PROBLEM SOLVING METHODS AND KNOWLEDGE ROLES 60

4.6 DEVELOPMENT OF A PROBLEM SOLVING ALGORITHM ... 62

4.7 RULE SET DEVELOPMENT AND SEMANTIC MODEL ENRICHMENT FOR

 COLUMN SEGMENTATION ... 65

 4.7.1 SEEBIM ADOPTION .. 65

 4.7.2 RULE STRUCTURE ... 66

 4.7.3 RULE FUNCTION CATEGORIZATION... 69

 4.7.4 GEOMETRIC AND NON-GEOMETRIC ATTRIBUTES EXTRACTION

ix

 AND DISCOVERY... 70

 4.7.5 FUNCTIONAL CATEGORIZATION OF OPERATORS ... 72

4.8 EXAMPLE RULE SETS: STRUCTURE ANALYSIS AND RESULTS .. 76

 4.8.1 OBJECT CLASSIFICATION RULES ... 76

 4.8.1.1 BEAM CLASSIFICATION .. 76

 4.8.1.2 INTERNAL AND EXTERNAL COLUMN CLASSIFICATION 77

 4.8.1.3 POCKETED AND NON-POCKETED COLUMN CLASSIFICATION 82

 4.8.2 RULES TO FIND CLOSEST OBJECTS TO ANOTHER OBJECT IN A SPECIFIED

 DIRECTION ... 83

4.9 THE ENRICHED IFC FILE RESULTS AND FINAL PHASE .. 87

4.10 CONCLUSION AND NEXT STEPS ... 91

V A KNOWLEDGE BASED SYSTEM FRAMEWORK FOR AUTOMATIC

EVALUATION AND PREPARATION OF BIM-BASED DESIGN FOR

CONSTRUCTION .. 93

5.1 INTRODUCTION .. 93

5.2 KNOWLEDGE-BASED SYSTEMS OVERVIEW ... 94

 5.2.1 KNOWLEDGE BASED SYSTEMS ARCHITECTURE .. 95

 5.2.2 PROPOSED KBS FRAMEWORK FOR PRECONSTRUCTION ACTIVITIES 96

 5.2.3 COST ESTIMATION METHODS: ADOPTION IN THE FRAMEWORK........................... 98

5.3 PROBLEM DEFINITION ... 100

5.4 THE KBS FRAMEWORK IMPLEMENTATION: SOLUTION OVERVIEW............................. 102

5.5 SEMANTIC ENRICHMENT OF DESIGN MODELS .. 104

 5.5.1 DEVELOPED RULE SET FOR THE SLAB MODULARIZATION 104

x

5.6 AUTOMATIC DESIGN OF SLAB PIECES ... 113

 5.6.1 STRUCTURAL ANALYSIS TO FIND THE MAXIMUM STRUCTURALLY FEASIBLE

 WIDTH OF SLABS .. 113

 5.6.2 AUTOMATION AND OPTIMIZATION OF SLAB PIECE DESIGN 116

 5.6.2.1 USER INPUT: COMPANY PREFERENCES AND LIMITATIONS 117

5.7 TEST CASE RESULTS ... 122

5.8 CONCLUSIONS ... 125

VI AUTOMATED DETAILED DESIGN FOR STREAMLINED APPLICATION

OF BIM IN PRECONSTRUCTION ACTIVITIES .. 126

6.1 INTRODUCTION ... 126

6.2 DESIGN AUTOMATION... 126

6.3 INTEGRATION WITH DESIGN OPTIMIZATION METHODS ... 127

6.4 INTEGRATION WITH KNOWLEDGE-BASED SYSTEMS AND OBJECT-ORIENTED

MODELING... 129

6.5 AUTOMATED DETAILED DESIGN: PRECAST CONCRETE CONNECTIONS 131

 6.5.1 INTRODUCTION TO PRECAST CONCRETE CONNECTIONS 134

6.6 PROTOTYPICAL IMPLEMENTATION OF THE PROPOSED SOLUTION 134

 6.6.1 COLUMN TO COLUMN CONNECTIONS .. 136

 6.6.2 BEAM TO COLUMN CONNECTIONS... 138

 6.6.3 SPANDREL TO COLUMN CONNECTIONS ... 138

 6.6.3.1 IMPACT OF SPANDREL DESIGN CONDITIONS ON PREDICTIVE

 DETAILED DESIGN .. 140

 6.6.3.2 RULE SET DEVELOPMENT FOR PREDICTIVE DETAILED DESIGN

xi

 OF SPANDRELS ... 147

 6.6.4 DOUBLE-TEE, SHEAR WALL AND BEAM CONNECTIONS 156

VII LIMITATIONS AND GENERALIZATION OF THE PROPOSED

FRAMEWORK ... 159

7.1 RESEARCH LIMITATIONS ... 159

7.2 SYSTEM GENERALIZATION.. 160

7.3 SYSTEM EXTENDIBILITY TO OTHER DOMAINS ... 162

VIII BROADER IMPACTS AND CONCLUSIONS ... 164

APPENDIX A - RULE SET FOR AUTOMATIC SEGMENTATION OF

 PRECAST CONCRETE COLUMNS……………………………….168

APPENDIX B - RULE SET FOR AUTOMATIC MODULORIZATION

 OF PRECAST CONCREE SLAB ………………………...……..….173

APPENDIX C - RULE SET FOR AUTOMATIC DESIGN OF COLUMN

 TO COLUMN AND COLUMN TO BEAM CONNECTIONS...….177

APPENDIX D - RULE SET FOR AUTOMATIC CLASSIFICATION AND

 DESIGN OF SPANDREL TO COLUMN CONNECTIONS …….181

APPENDIX E - RULE SET FOR DESIGN OF CONNECTIONS BETWEEN

 DOUBLE-TEE SLABS, SHEAR WALLS AND BEAMS………….193

REFERERENCES………………………………………………………………….…...204

xii

 LIST OF FIGURES

Figure 1.1: Design progress and design data availability for preconstruction activities….5

Figure 2.1: Integrated analytical cost estimation process.………………………….…....21

Figure 2.2: Shift in the routine versus creative design time using KBE……………........27

Figure 3.1: Problem decomposition – A precast concrete beam feature- and

 function-mode…………………………………………………………..........37

Figure 3.2: Developed framework for knowledge-based quantity takeoff and cost

estimation……………………………………………………………………40

Figure 4.1: A precast concrete column product decomposition and information flow

model………………………………………………………………….…….59

 Figure 4.2: Example of a problem-solving method structure: inputs, outputs and

actions ………………………………………………………………………61

Figure 4.3: The algorithm developed for precast column segmentation………………....63

Figure 4.4: Relative spandrel-column positions; (a) outboard spandrel & pocketed

column; (b) outboard spandrel but no pockets in the column………………..64

Figure 4.5: List of attributes and operators used in the column segmentation rule set….68

Figure 4.6: column length evaluation and split pieces creation rule…………………….69

Figure 4.7: Color code legend for rules………………………………………………….70

Figure 4.8: Implementation of two objects’ adjacency relationship analysis operator….73

Figure 4.9: Range of width, height and aspect ratio for different types of precast

 concrete beams………………………………………………………………77

Figure 4.10: Rules to identify spandrels and non-spandrel beams………………………78

Figure 4.11: Internal column classification rule…………………………………………79

xiii

Figure 4.12: Classification of columns to be segmented like internal columns………....80

Figure 4.13: External column classification…………………………………………......82

Figure 4.14: The enriched IFC model for column classifications…………………….....83

Figure 4.15: Rule I - Closest floor to internal and segmented like internal columns'

centroid……………………………………………………………..……...84

Figure 4.16: Rule II - Closest floor to internal and segmented like internal

 columns' centroid……………………………………………………..........86

Figure 4.17: The enriched IFC model depicting closest floor/spandrel to columns

 as well as beam classification example results...88

Figure 4.18: Collection of snapshots from an enriched IFC P21 file created by

 execution of column segmentation rule sets……………………….…........89

Figure 5.1: Knowledge based systems structure……………………………………..…..96

Figure 5.2: The proposed KBS framework………………………………………………99

Figure 5.3: Implementation of the KBS framework for precast concrete slab

 segmentation and quantity take-off………………………………...............103

Figure 5.4: List and categorization of object attributes and operators used in semantic

enrichment of models for slab modularization………………………..……105

Figure 1.5: The algorithm developed for developing the rule set required for

 semantic enrichment for slab modularization………………………….......106

Figure 5.6: Height range of different types of precast concrete slabs used for slab

classification……………………………………………………………….107

Figure 5.7: Relationships created between model objects for identifying column

 bays and assigning them to slabs………………………………………….108

xiv

Figure 5.8: The rule to build column_bay relationships………………………………...109

Figure 5.9: The rule to add bay lengths to column_bay relationships…………………..111

Figure 5.10: Collection of snapshots from an enriched IFC P21 file created by

 execution of the slab modularization rule set……………………….........112

Figure 5.11: Added slab entities to the enriched IFC model and their attribute

 information ……………………………………………………………….124

Figure 6.1: Current versus proposed QTO and CE process…………………………….132

Figure 6.2: List of attributes and operators used in the predictive design of precast

concrete element connections……………………………………………....135

Figure 6.3: Load-bearing and non-load bearing spandrels: (a) LB spandrel with

 added corbels to support transfer of loads; (b) NLB outboard spandrel;

 (c) NLB inboard spandrel dapped to allow the intersecting beam’s

 access to the column surface………………………………………............142

Figure 6.4: Approximate load eccentricity in outboard and inboard LB spandrels……144

Figure 6.5: Spandrel intersecting a non-pocketed column with a notch to hide

 the HSS tube bracket…………………………………………………........145

Figure 6.6: Various possible design situations for spandrels at the building corner…...148

Figure 6.7: Various possible design situations for spandrels on the building edge…….149

Figure 6.8: The rule designed to identify spandrel and slabs that are aligned in both

 sides ……………………………………………………………………….153

Figure 6.9: The rule designed to identify columns and slabs that are aligned only

 in one sides……………………………………………………………........153

xv

Figure 6.10: The rule designed to identify and create

 outboard_spandrel_pocketed_column connection relationships and

 to create the required connections…………...155

Figure 6.11: Design situations for Double-tee, shear wall and beam connections

 (model courtesy of The Consulting Engineering Group company)………157

Figure 6.12: The enriched IFC model imported to Navisworks Manage that depicts

 the added double-tee, shear wall and beam connections.…………………158

xvi

LIST OF TABLES

Table 4.1: comparative list of attributes and operators in SEEBIM used in this

 research work……………………………………………………………….....67

Table 5.1: User input for precast concrete double-tee slab structural analysis to find

 max. DT width and stem reinforcement design in various loading and

 span conditions ……………………………………………………………..113

Table 5.2: Results of the slab structural analysis including the max structurally

 feasible DT width and stem reinforcement design for each DT width………..115

Table 5.3: Results of the design model semantic enrichment and performed

 structural analysis used as input for automated and optimized slab design….119

Table 5.4: User input reflecting company preference and limitations used as

 input for automated and optimized slab design………………………………119

Table 5.5: Semantically enriched IFC test model data extracted to be used as

 input for automated and optimized slab design………………………………119

Table 5.6: Output of the automatic design of the slab pieces: slab piece lengths and

 widths in each floor level, total quantity of slabs in each level and size,

 and slab stem reinforcement design……………………………………….....123

Table 5.7: Output of the automatic design of the slab pieces: slab piece quantity

 and stem reinforcement in each size group in the whole project……………..124

Table 6.1: The guideline developed for predictive design of beam to column

 connections …………………………………………………………………..139

Table 6.2: Various object relationships analyzed in developing the spandrel

 identification and connection design rule sets for corner spandrels.................150

xvii

Table 6.3: Various object relationships analyzed in developing the spandrel

identification and connection design rule sets for corner spandrels...................151

xviii

SUMMARY

The current industry practices in many preconstruction and construction activities, especially

quantity take off (QTO) and cost estimation (CE) activities which were closely studied in

this research, remain to a large extent manual, error-prone and time-intensive, mostly relying

on 2D drawings. Adoption of a BIM integrated workflow for preconstruction activities will

provide the rich information embedded in parametric models to incorporate in the process,

potentially enhancing the accuracy of the results. The intelligent behavior of the parametric

models can automate most of the process enhancing efficiency of these processes. There are

significant obstacles for providing a streamlined, efficient and practical work flow

integrating BIM-assisted design information into these preconstruction activities. These

obstacles have prohibited the wide adoption of BIM in these areas. Two main challenges for

such a streamlined information flow throughout the AEC projects that haven’t been

sufficiently addressed by previous research efforts include lack of semantic interoperability

and a large gap and misalignment of information between available BIM information

produced by design activities and the required information for performing preconstruction

and construction activities. This research effort proposes a knowledge-based system (KBS)

that encapsulates domain experts’ knowledge and represents it through modularized rule

libraries. The goal is to first semantically enrich design models and embed the design

information essential for preconstruction activities. The enriched design models are then

used for automated detailed design to evaluate and classify the design objects and modify

representation of the objects to demonstrate appropriate constructible product units.

Subsequently, the product features and their attributes that are normally missing from the

design models like connections and reinforcement elements are inferred and automatica l ly

xix

added to the enriched and modularized models. This research work is intended to improve

accuracy and cost-effectiveness of adopting BIM in preconstruction and construction

activities with a focus on QTO and CE, by providing an enriched model of a project that

incorporates the expertise of domain experts. The proposed framework will assist automation

of the repeated and time-consuming tasks in preconstruction and detailed structural design,

enabling experts to focus more on creative aspects of these activities. It will facilitate a

paradigm shift in knowledge availability in projects, disseminating construction and detailed

structural engineering knowledge to designers and other parties involved in the AEC

projects.

1

CHAPTER I

RESEARCH MOTIVATION AND GOALS

1.1 Introduction

Efficient and accurate quantity take off (QTO) and cost estimation (CE) are pivotal to a

project’s success. They are knowledge-intensive [1]; they are the prerequisites to many

other activities in a project from budgeting, bidding and contracting to value based design,

production planning and budget control; they require extracting information based on the

knowledge of domain experts about the processes and their constraints throughout the

lifecycle of products and projects.

A study by Sacks & Barak [2] measured the potential productivity improvement in

design and detailing of building structures due to using 3D parametric modeling instead of

2D drawing. The study showed considerable productivity gain in quantity take off

activities. Another study [3] explored various benefits of using BIM in the precast concrete

industry reported a measured productivity improvement of 82-84% in developing detailed

engineering drafts of precast concrete designs.

A study by Aram et al. [4] identified areas of potential contribution by BIM

platforms in the concrete reinforcement supply chain in four categories of design and

modeling, editing and updating, interoperability, and project and construction

management. Requirements of BIM platforms to improve the industry performance in

these four areas were identified based on a developed information process model.

2

Examples of assessed quantitative and qualitative enhancement in the reinforced concrete

projects using BIM for budgeting and estimating were provided. A report that aggregated

26 project case studies [5] stated that the four test case projects that had used model based

quantity take off experienced 25% reduction in resource investment and improved

accuracy. In the one project that 3D models were linked to a cost estimating database 80%

time saving was realized.

All these studies illustrate the broad benefits that preconstruction activities can

expect by adopting a BIM-based process. Yet, there are significant obstacles for providing

a streamlined, efficient and practical work flow integrating BIM into preconstruction

activities that have prohibited wide adoption of BIM in these areas and have kept them

largely manual and 2D drawing dependent.

1.2 Problem Formulation

There are commercial software products available that attempt to semi-automate these

tasks through augmenting the quantitative information elicited from design models,

creating pre-structured yet customizable cost databases and reducing repetitive aspects of

these tasks [6].

Based on our study, QTO software products need to maintain three conditions for

their successful performance (i) architectural and structural design models to be readily

suitable for quantity take off and cost estimation; (ii) all the needed information to be

quantitative in nature; (iii) designers’ models to contain complete information needed for

these tasks. In practice these conditions are rarely met. The focus here is not on users’

3

modeling practices and their use of correct modeling methods. Yet even when designs are

correctly modeled:

1. Categories of contained information in models developed by designers and

constructors and the way the information items are modeled and represented are

different, as these models serve different purposes. Two examples are Cast-In-Place

(CIP) and precast reinforced concrete products where the units of quantity take off

and cost estimation are each concrete placement breaks and a product piece,

respectively. However, the units of fabrication or casting often are not distinguished

in models, which means for instance in the case of precast concrete products,

elements like columns, slabs and wall panels are modeled as monolithic objects and

not as column, slab or wall panel pieces. This difference leads to rework and often

for preconstruction purposes, different construction parties have to create their own

models from scratch.

2. The main focus of these solutions are eliciting and enhancing a set of

standard quantities like volume, surface area, etc. for different products. The

problem is that (a) each product type needs elicitation of a specific set of design

properties for QTO and CE which can only be determined based on that product’s

supply chain, (b) sometimes the properties that impact cost of a product are not

inherently quantitative. Current systems either don’t elicit information about these

properties from design models or they are represented as raw data and can’t provide

the user with the insight needed for decision-making. An example is product shape.

Different shape parameters that impact the cost and in what value ranges their cost

relationships and behavior change should be identified.

4

3. Amount of detailed information provided in design models before

contractual agreements is different based on the adopted project delivery method.

Yet, most often detailed design with complete information for rigorous cost

estimation are developed late in the project lifecycle and usually for fabrication and

production of products. For instance due to high time and cost required, many

features of reinforced concrete products like connections that are important for

accurate cost estimation of reinforced concrete products are often designed and

modeled after the companies are contractually bound to the project.

This is the case in most projects including the projects that use traditional Design

Bid Build delivery method. Some alternative project delivery methods like Design Build

try to shift the involvement of construction entities to earlier stages of a project lifecyc le,

which requires detailed design information to be available for accurate cost estimation to

mitigate the risks for construction entities at a time when most of this information doesn’t

exist [7].

Hence, and as demonstrated in Figure 1, currently QTO and CE experts mostly rely

on their judgment and rules of thumb which are developed based on historical information.

For unusual design situations, they seek the expertise of structural designers, plant

managers, erectors and others on a case by case basis. This process is manual, time

consuming and error prone.

These issues create considerable technical drawbacks for efficient and accurate

model-based quantity take off and cost estimation. My field studies have shown that

currently the QTO and CE processes employed by most construction subcontractors, where

a detailed QTO and CE is required:

5

 are generally based on 2D drawings rather than 3D parametric models, as the object

representation in models is not suitable for QTO and CE and design models don’t

include the level of detail required.

 mostly rely on the judgment of estimating experts and rules of thumb which are

developed based on experience of estimators and historical data. For unusua l

situations estimators seek expertise of structural designers, plant managers, erectors

and others on a case by case basis.

 as a result of the above two, are manual, time-consuming and error prone. Providing

more accurate QTO and CE reports means allocating more resources to the tasks

and having a more costly estimation process [7]. Adopting such a costly process is

risky as construction companies on average win a small percent of the projects they

bid on. Hence, often impact of many of the design conditions and features on cost

of a project are not incorporated in the estimation.

Figure 1.1: Design progress and design data availability for preconstruction activities

6

 These difficulties are reflected in the low adoption rate of BIM based cost

estimation in the AEC industry. Based on a McGraw Hill study in 2012 [8] frequency of

using BIM for quantity take off and cost estimating activities is low among BIM users of

all engagement levels. Three quarters of contractors with low BIM engagement level, 31%

of respondents, never use it and even contractors with very high BIM engagement level

have a low frequency index of 2.2 for using BIM in quantity take off and cost estimating.

For 53% of non-BIM users, important factors that can influence their BIM adoption include

improved budgeting and cost estimating capabilities of BIM solutions.

It is critical to rectify shortcomings of BIM platforms in providing efficient and

semi-automatic QTO and CE workflows and that such improvements will promote overall

BIM adoption in the AEC industry thereby providing far-reaching value to the industry

that goes beyond preconstruction activities.

1.3 Research Questions

The broad question that this research work attempts to answer is:

How can 3D parametric design models be used for preconstruction

activities, more specifically for quantity take off and cost estimation, in

realistic business environments where considerable amount of information

critical for success of those tasks is not available until late phases of a

project? How can BIM integrated work flow for preconstruction be

7

designed to perform effectively yet without requiring the manual rebuilding

of design models for domain-specific purposes?

To answer this question, this research is primarily concerned with the nature and

representation of information required for BIM-enabled construction work compared to

what is available in BIM-enabled design and how this gap can be filled in an efficient and

automatic or semi-automatic manner.

The question above leads to several more specific questions below:

1. What are the differences between design and construction information

items? How can they be identified, defined and represented in a BIM-

enabled design process?

2. How can knowledge of construction experts be extracted, captured, and

retrieved in earlier project stages? Can we devise a set of rules to

methodically encapsulate, represent and reuse construction experts’

knowledge?

3. How should the various sets of constraints includ ing

production/construction feasibility, structural design and economica l

optimization constraints be formulated and applied to model

information?

4. What is the system framework that enables semantic enhancement of

design information? How can information extracted from three sources

of design models, expert knowledge and user preferences and limitat ions

8

be applied to infer new knowledge, forecast the critical construction

information absent from design and provide this information to users?

5. How can the intent and results of knowledge inference and design

semantic enhancement be effectively communicated with users?

1.4 Research Objectives and Goals

To enable automatic and cost-effective deployment of BIM designs for

construction activities, mainly quantity take off and cost estimation as well

as value-based design, by developing a knowledge-based system that

facilitates automatic semantic enhancement of information extracted from

design models to make their information suitable and adequate for these

preconstruction activities.

In an attempt to overcome these limitations, a framework is developed for a

Knowledge-Based System (KBS) to identify, define and retrieve the minimum set of model

information required for quantity take off and cost estimation of building systems. The

example building system selected to implement a proof of concept is precast concrete.

However, the developed methodology and structure of this framework have been defined

to address broader applications and is adaptable to other building systems.

This framework is designed in a way that it addresses the three above mentioned

shortcomings. I have been studying and developing rule sets to enhance and represent

information provided by BIM platforms in a compatible form with QTO and CE purposes.

The specific set of design features and their properties, both qualitative and quantitat ive,

9

that impact the cost of a project are identified. The criteria to categorize and represent these

features in groups are defined, based on parameters and their value ranges where their cost

relationships change. Knowledge of domain experts is elicited and codified to forecast the

properties of design features required for QTO and CE tasks but absent from design models

(e.g. connections) with acceptable accuracy. The complete method will provide estima tors

with a complete set of design-related information required to perform a model-based cost

estimation in an efficient and semi-automated way.

It is important to note that developing cost relationship formulas are different based

on local economic situations, adopted supply chain technology, and resource and work

breakdown structure used by different companies. Hence, developing cost relationship

formulas and providing cost of a project is out of the scope of this research project. The

focus here is to provide a detailed level of input for estimators earlier in the project lifecyc le

to use for a more accurate cost estimation and to provide this input in a cost-effective way.

The dilemma for managers is that many times they have to choose between

incurring losses due to less accurate QTO and CE, and higher initial investment in more

detailed and accurate QTO and CE and risking loss of the investment in case of not winning

the contract [7]. Yet current obstacles to use BIM technologies for QTO and CE and

automating the process makes it very costly to achieve higher level of detail in their

estimation efforts. Based on the interviews with several construction companies, many

companies, especially subcontractors with fewer resources, can’t afford a highly detailed

QTO and CE. In such an environment, a solution to automate the QTO and CE activit ies

and replace the manual process that uses drawings with a BIM-integrated one, will enable

10

construction companies to achieve more detailed and accurate estimations at much lower

cost.

1.5 Research Impact and Possible Extension

 Automation and improved cost-effectiveness and accuracy of

preconstruction activities. Semantically enriched models will be able to meet many

of the requirements for preconstruction activities from QTO and CE to fabrication

and construction planning. The system will to a large degree eliminate the need to

make a new model with all the design details required for preconstruction purposes.

While there will always be unusual designs that will require manual involvement

of users to adjust a model, the system can fulfill semantic enhancements for

standard design situations and construction companies can shift the focus of their

preconstruction human resources to more detailed estimation, detailed design

optimization and creative aspects of designs.

Currently, due to large amount of preconstruction work and lack of using the computing

power of BIM platforms in these tasks, many times the rules of thumb used for QTO and

CE over simplify design conditions, not contributing many features and conditions that

impact the cost of a project leading to less accurate estimations. Adding the computing

power of BIM platforms and automating the process will enable providing a more detailed

and accurate QTO and CE in a cost-effective way.

 Conceptualization and reuse of knowledge. The process of working with

industry experts to define the rules many times involved “rule discovery”, “thought

process discovery” and “reasoning reform”. Many times the thought process and

11

rationale behind QTO, CE and structural design decisions were not clear or were

not structured. So the work involved various stages of discovery, conceptualizat ion,

formalization and sometimes modification of thought process and rules. Creating a

repository that houses classified and hierarchically structured rules and allows

communicating the rules and factors impacting them with users will increase

transparency of preconstruction decisions both inter- and intra-organizationally. It

will provide the opportunity to more efficiently customize and seamlessly share the

experts’ knowledge among business partners. This transparency will help

standardize preconstruction practices in firms and facilitate reusing the

encapsulated knowledge in different projects in a consistent manner.

Potential broader impacts are explained in the conclusion chapter.

Possible future extensions. Two major extensions to the current work include

(i) Providing the capability of geometry creation and manipulation to reflect advice of

the system on detailed design automation. Currently, while we create logical objects

and provide various geometric attributes for those objects like dimensions and

volume which are required as an input for QTO and CE activities, physical

geometry is not created.

(ii) Linking the developed KBS to various analysis tools that can augment or optimize

the predicted design. For example, the max feasible width of double tees from the

structural standpoint depends on the loading conditions and span of the double tee

and requires analyzing the total stress, deflection and ultimate strength of the slab.

In the current work we performed the required analyses for a range of possible

conditions and developed a table. In the future by linking the KBS system to a

12

structural analysis platform, the data from design models and user inputs can be

pushed to the right tool and output can be pulled and used as an input for the slab

modularization. Then all the new design conditions can be covered.

13

CHAPTER II

LITERATURE REVIEW

The three pillars of this research work and thus main areas of investigation include:

 Cost estimation methods: as the target application area of the system. Hence it is

important to explore different means and methods used for cost estimation and

design the system to provide the design input needed by the selected cost estimation

method.

 Design automation: the end goal of this work with semantic enhancement of design

as a middle goal and a design automation facilitator. To be achieved by the

developed rule-based KBS.

 Knowledge-based systems: As a framework of choice for this effort to enable

automation of BIM-based QTO and CE and improve the accuracy and cost-

effectiveness of these tasks.

2.1 Cost Estimation

Efficiency, flexibility and accuracy of cost estimation methods significantly impacts every

project, product development, and corporate success. Cost estimation is performed

throughout a project and product development lifecycle and according to AACE

International [9] can be categorized in five classes: concept screening, feasibility study,

budget authorization and control, bidding/tendering, and check/control estimate. The major

complexities of cost estimation are twofold: (i) the fact that at early stages of a project

14

when quality of cost estimation has the highest impact on the success of a project and

product outcome, there is limited information available [10]; (ii) high variety of interna l

and external factors from design and engineering specifications to supply chain

technologies and local regulations and limitations impact the total cost. Identifying all

relevant factors, systematically selecting significant predictor variables, factoring them in

the model, methodically defining their relationships with cost, and finally building a robust

yet flexible and extendable cost model all add to the complexity of cost estimation activit ies

[11, 91].

In this review, current cost estimation techniques used in both the AEC and

manufacturing industries have been analyzed. The analysis outcome is used to select the

most suitable problem decomposition methods and cost estimation techniques for cost

estimation in advanced design stages of construction projects. This in turn provides a

stepping stone to design a framework for detailed quantity take off and cost estimation

through extracting design model data and analyzing the extracted data.

2.1.1 Cost Estimation Methods

Numerous studies have explored and implemented different cost estimation methods for

generalized uses as well as specific use cases. We found many different implementat ions

of qualitative methods used in the early design stages both in the AEC and manufactur ing

industries. Research efforts focused on the quantitative and analytical methods for later

design stages have mostly targeted the manufacturing domain. Important reasons include

the standardized production processes and higher consistency, reliability and

generalizability of measurements, resource consumption, productivity rate and time and

cost of each activity in a controlled manufacturing environment.

15

The AEC industry’s progress toward more standardization is accompanied with

proliferation of two major trends of prefabrication and modularization. Many trades of the

AEC industry and especially prefabrication sectors such as the precast concrete industry

are increasingly using analytical cost estimation methods. The controlled production

environment in construction prefabrication resembles that of the manufacturing industry.

Thus, the lessons drawn from manufacturing including analytical cost estimation methods

can provide useful insights for implementing them in areas like precast concrete which is

the main focus area of this research effort.

Researchers have categorized cost estimation techniques in a variety of ways:

Cavalieri et al. [10] classified cost estimation methods as analogy-based, parametric and

engineering models. Niazi et al. [11] further divided intuitive methods into Case-Based

Reasoning (CBR) and decision support systems, analogical methods into regression

analysis and Artificial Neural Network (ANN), and analytical methods into breakdown,

operation-, tolerance-, feature-, and activity-based cost modeling. Chougule & Ravi [12]

classified cost estimation methods as intuitive, analogical, analytical, feature-based and

parametric.

In both construction and manufacturing industries, the amount and level of detail

of available design information at each stage of a project and the purpose of cost estimation

determine the feasibility and suitability of the various cost estimation methodologies.

Available information and cost estimation purpose are in turn dependent upon project

phase and degree of design completion. Hence, the project phase provides a good basis for

categorizing cost estimation research and methods.

16

2.1.2 Intuitive and Analogical Methods: Early Design Stages

Numerous studies have focused on conceptual design and initial design development stages

of products and projects. Due to the lack of complete design information in early stages of

a project, cost estimation solutions use qualitative methods in which new projects and

products are compared to previous similar ones to identify the weight of different variables

and degree of similarity in important aspects of projects, which are established by the

researchers. As such, they are mostly categorized as analogical decision support systems

[11].

In response to limitations of traditional statistical techniques and to improve their

performance in terms of accuracy and consistency, new techniques including the non-linear

machine learning method of Artificial Neural Networks (ANNs), the problem-solving and

learning method of Case-Based Reasoning (CBR), heuristic optimization algorithms like

Genetic Algorithm (GA), and probability distribution optimization methods like Monte

Carlo, and decision trees were introduced.

Two of the most frequently studied cost estimation methods for early design stages

are ANN and CBR. The major advantages reported for ANN models are that they do not

require the project cost to be defined as a specific function of cost-affecting variables. Also

many studies in both construction and manufacturing have shown their higher accuracy

compared to traditional regression models [10, 13, 14]. Major advantages of CBR models

are transparency of the process which turns it into a suitable decision support tool, the

ability to handle missing attribute information from previous cases and the feasibility of

long-term use due to ease of updating models through the addition of new cases [10, 15].

17

 The goal of these methods is to predict project costs with limited information provided in

early stages of a project with an acceptable accuracy rate. These cost predictions are

generally used by project owners for feasibility studies and budgeting purposes. While

several different techniques are utilized for an early stage cost prediction, the applied

methodologies are comparable in many aspects and can be generalized as the following

steps:

 Data collection from previous sample projects of the same type and

identification of important cost-driving attributes in the projects. These attributes

and their values are used as inputs for the cost estimating system where the total

project cost is the output. These are high level inputs. One example involves ten

attributes of project type, scope, year, season, location, duration, size, capacity,

water bodies, and soil condition which were used in a cost prediction study for

highway projects [16]. Another study [17] collected values of 6 LEED certifica t ion

categories in addition to building type, year and location data and used them as the

system inputs to predict LEED certified projects’ cost premium.

 Identification and assignment of the optimal weights to input attributes

using different methods from linear statistical methods like Multiple Regression

Analysis (MRA) [18, 23] to ANN [17, 19], GA [20] and decision trees [21].

In these methods usually data from part of the collected project cases is used to

train the model. The rest of collected project cases are used to test and validate performance

of the built model in predicting total costs of projects, using the assigned weights for

different attributes. The training involves systematically adjusting weights of attributes

through comparing predicted output of the model – here the project cost – to the actual

18

project cost. The goal is to minimize the error between predicted output of the model and

the actual project output. One training method example is the back propagation algorithm

which is the most broadly used method in ANNs. In this method, Mean Square Errors

(MSE) are measured and minimized.

 Prediction power assessment of the system. Quality of a cost estimating

model is evaluated by measuring its performance in predicting a project’s cost using

the final assigned weights for different attributes. As mentioned earlier, some of the

collected project cases are used to compare predicted outputs of a model to the

actual costs of those projects. Various algorithms and statistical methods can be

used to assess the prediction power. For example, in the MRA method, the R2, the

coefficient of multiple determination, or the adjusted R2 (R̄2) is used where the

closer its value to 1, the higher the model’s cost prediction accuracy. In the CBR

method, different algorithms like the nearest-neighbor algorithm are used to

calculate the similarity of the test project to training projects by a methodic

comparison of their attributes. Finally the project case with the highest similar ity

rate is retrieved [22].

 In the CBR method, the retrieved project is revised and adapted to the test project.

Some CBR studies have applied subjective model revision approaches, while a few have

used a systematic and analytical revision and adaptation process; one example is a

construction CBR study that has applied a MRA-based process for revision [23]. Marzouk

& Ahmed [24] used four methods of null, weighted, neuro and fuzzy adaptation to revise

the retrieved manufacturing cases.

19

2.1.3 Limitations of Intuitive and Analogical Methods

Part of the shortcomings of cost prediction methods stems from their inherent nature that

inevitably rely on the availability of data from past similar projects. Methods like ANN

can achieve more accurate results with fewer historical projects compared to traditiona l

methods. Yet, they need a substantial number of similar historical projects with known

project costs and cost driving attribute values [13]. This not only prompts feasibility issues

due to rather scarce construction projects’ data, but also hinders wide application of these

methods because of the considerable time and funding needed to collect the required data.

Better methods for reliable handling of incomplete historical data should be investigated

[25].

A few studies have tried to apply a systematic process to attribute selection. For

example, [24] conducted a statistical analysis on the results of a survey about cost driving

factors in the pump station projects to identify the factors with the highest cost impact.

While attributes selected for inputs of a cost estimation model significantly impact

accuracy of predictions of the built models, most studies haven’t analytically established

that the selected attributes are the most critical cost driving factors of the selected test

project. Often selected attributes were just a subset of what could be easily determined and

collected from early stages of historical projects or were based on selections of previous

studies.

20

Moreover, while the improved techniques that different cost estimation methods

use to improve the accuracy of their cost prediction models most of the studies haven’t

explored situations where the results are not satisfactory.

Shortcomings specific to each method have been determined and analyzed in

numerous studies. Important examples are the difficulty in handling large numbers of

variables (project attributes) and the requirement for establishing a cost function between

inputs and outputs by regression analysis methods [10]. ANN models have been reported

to require considerable time and effort to retrain and update when new cases are added,

making them unsuitable for long-term use. Moreover, unknown relationships of inputs and

outputs in the hidden layers result in a black box technique. Providing analyt ica l

explanations for the process and results to decision makers is thus difficult [14].

Furthermore, these methods and researches have not considered cost effects of

technological changes such as process automation, prefabrication and Build ing

Information Modeling (BIM). Other issues to be investigated include alternative contract

types like design-build and IPD that allow concurrent design and construction, the selected

structural, production and construction methods, and unusual design forms on their analogy

and outcome.

2.1.4 Analytical Methods: Late Design Stages

Methods used in late design stages attempt to analyze a product design and its supply chain

processes in detail to achieve more accurate cost estimation. As such, they can be

categorized as quantitative or analytical methods and can be further divided into three

categories of function-, feature- and activity-based cost estimation. Boundaries between

these methods are blurred, and studies sometimes use a collection of cost factors associated

21

with production processes, morphological design features, and consumed resources. Figure

2 summarizes the methodology used by the analytical methods. Analytical methods at use

a product decomposition structure and later need to integrate the collected knowledge about

features, functions and activities. The analytical methods vary in terms of level of

granularity present in their models.

An activity-based parametric solution for estimating cost of the foundry stage of

disk brake production was developed in a study by Qian & Ben-Arieh [26]. Major activit ies

and their total cost of production were identified. Activities were divided into three

categories: (i) activities with fixed costs in the batch level, (ii) activities with variable costs

in the batch level and a linear relationship with the batch size, (iii) activities with

diseconomy of scale. The major cost driver for activity i was defined (e.g. machining hour

for the testing activity).

Figure 2.1: Integrated analytical cost estimation process

22

These parametric cost estimation studies have been mostly performed in the context

of manufacturing industry and scope of studies has been typically limited to one part type

and one phase of the production with limited parameters and activities.

In another study [27], the cost of manufacturing was estimated by modeling

resources required for each activity and aggregating them to estimate the cost of operation

process of features of the product. A product model describing the product from the

manufacturing point of view was developed. The different available operations and

alternate machine uses were identified for each feature. The cost reasoning model estimated

the total cost as the sum of the manufacturing operations costs of all product features

through solving a constraint satisfaction problem.

In the study by Roy et al. [28] to estimate cost of an automotive exhaust system

production, the product was functionally decomposed, specification parameters describing

each function were identified, historical data regarding processes and resource

consumption rates were collected, and finally cost items were linked to each function to

estimate cost of adding each function to the product.

A study by Chougule & Ravi [12] created a system in which cost of activity

resources were calculated using (i) various geometry, quality and production attributes of

the product; (ii) a process model; and (iii) a 3D model for feeding and gating systems, as

inputs of the cost model. Another study [29] developed a mathematical model to minimize

cost of the concrete structures while satisfying structural strength and stiffness

requirements.

Based on the reviewed research efforts on the analytical cost estimation the following

methodology can be formulated:

23

 Product Decomposition. One of the product decomposition methods is

selected. A product decomposition model for the standard product design is

developed. Optional functions or features and alternative processes are defined.

After an initial design, parts of the designed model that are of high complexity or

of cost significance should be further broken down to achieve an appropriate level

of detail.

 Data collection. Data regarding product, process, projects, functions, and

cost driving parameters are collected from various resources including historica l

databases, engineering specifications, recording production supply chain, expert

knowledge and judgments. This data is used to identify cost driving parameters and

their relationship with total cost of each activity, function or feature. Evaluating the

quality of acquired data to ensure of its measurability, reliability and completeness

[10] is important for defining accurate cost functions.

 Cost driving parameters/variables/attributes are specified for each unit of

the decomposition model ‒i.e. each activity, function or feature ‒ through analyzing

the supply chain and eliciting knowledge of domain experts. For accurate cost

estimation, selected attributes should reflect all aspects of a product’s lifecyc le.

Various categories of parameters concerning geometry, quality, aesthetical

requirements, engineering performance and production technology should be

analyzed.

 Define cost relationships/functions. Cost behavior of units of the product

decomposition model with regard to changes in the magnitude of those units is

analyzed. These cost functions are expressed mathematically by equations between

24

parameters defining each unit to total cost of the unit which basically requires a

regression analysis. Usually an operation process involving several activities is

required to produce a feature or provide a function. Hence, analyzing cost behavior

of functions and features often leads to further decomposing them into activities.

In terms of cost relationships, activities most frequently belong to one of the four

types of (1) fixed, (2) variable (proportionate to activity volume), (3) mixed (with a fixed

and a variable cost portion), and (4) step (fixed within specific activity volume intervals ,

but jump to a higher level from one interval to the next) [30]. In some cases activities have

nonlinear and sometimes multi-variable cost relationships. In late design stages and in

presence of the complete required design data and with a sufficient level of detail in

decomposing a product, the cost behavior of activities can be adequately approximated by

a linear function.

 Aggregate cost relationships and estimates. Aggregation of cost functions

for all units of product decomposition model provides the total product cost. Cost

aggregation can be done on various levels and each provides a unique insight into

the product cost: (i) when a variable affects several different activities or features

and hence is repeated in different cost functions, these functions can be aggregated

to analyze the overall impact of each variable on the total product cost; (ii) all cost

functions related to each specific resource can be aggregated throughout the supply

chain to identify resources that comprise the largest portion of the overall cost; (iii)

aggregation of the cost of activities at each stage or sub-process to focus on stages

25

or processes with highest share of total costs or higher cost rates than industry

averages.

2.1.5 Analysis Conclusion and Adoption

CE methods used in early stages of a project mostly can work only with a limited number

of variables and provide a rough approximation of cost of a project suitable for budgeting.

Considering this, they are not suitable for a more detailed CE process when there are more

design information available and for instance geometry of building and different spaces

within a building, type of building structure and location of structural elements are

determined. Hence, for this research work, I adopted an analytical CE method. The main

takeaway here was to define a method to analyze and decompose different products to their

basic features, functions and processes. This decomposition provides a basis to identify the

parameters that determine cost of each feature, function and process. Then sources and

methods to extract and represent value of these parameters are identified. An example of a

product decomposition and how it is developed will be provided in Chapter 4. Results of

the study of these CE methods used in different project stages and analysis of the

performance and shortcomings of each method has been published by the author in ISARC

2014 conference [31].

2.2 Knowledge-based Systems

Knowledge-Based Systems (KBS) have emerged from the Artificial Intelligence (AI) field

and are employed for numerous purposes in various industries. KBS are systems that

acquire, represent and process data, information and knowledge to generate new

26

knowledge. Unlike traditional information systems they can act as decision makers and

serve like an expert on demand [54, 55].

Knowledge in the sense that is used in KBS can be defined as a system, that

provides the ability to manipulate, transform or create data and information to make a

decision, perform skillfully or solve a problem [56]. One useful classification of knowledge

that grasps two of its important dimensions is (i) conceptual knowledge that is

“understanding of the principles that govern the domain and of the interrelations between

pieces of knowledge in a domain” versus procedural knowledge defined as “action

sequences for solving problems” [57]; (ii) explicit knowledge that involves articulated and

structured or semi-structured knowledge versus tacit knowledge built by experience,

guided by intuition and residing in one’s subconscious [58].

A closely related concept to KBS is Knowledge Based Engineering (KBE). Various

definition have been provided for KBE and have usually classified it as a special type of

KBS. One of the early definitions of KBE provided by Chapman & Pinfold [59] defined

KBE as “an engineering method that represents a merging of object oriented programming

(OOP), Artificial Intelligence (AI) techniques and computer-aided design technologies,

giving benefit to customized or variant design automation solutions.”

 Later Cooper & La Rocca [60] defined KBE as ‘the use of dedicated software

language tools (i.e. KBE systems) in order to capture and re-use product and process

engineering knowledge in a convenient and maintainable fashion. The ultimate objective

27

of KBE is to reduce the time and cost of product development by automating repetitive,

non-creative design tasks and by

supporting multidisciplinary integrat ion

in the conceptual phase of the design

process and beyond.” According to a

review by Verhagen et al. [61] KBE

definitions have evolved from older

narrow and technology-dr iven

definitions to a wider and less restrictive

ones.

The notion in the KBE definit ion

of Cooper & La Rocca that identifie s

automation of repetitive and non-creative design tasks as one of the major benefits of

implementing KBE systems, is shared by other researchers. This concept, illustrated in

Figure 3 [94], highlights the fact that by significant time and cost savings resulted from

automation of repetitive tasks, designers can focus more of their efforts on creative aspects

of design [61].

2.2.4 Knowledge-Based Systems for Cost Estimating

Developing and using KBS for cost estimation in the manufacturing and AEC industry

started in the 1990s and has continued till now with an increased interest in expanding their

applications to the web. Numerous research efforts [1, 62, 63, 64, 65, 66, 67, and 68] have

developed knowledge-based systems for product and project cost estimation purposes.

Figure 2.2: Shift in the routine versus
creative design time using KBE [94]

28

Some have attempted to create a framework for a broad application area but most have

focused on one specific application area. These solutions have employed various cost

estimation methods from intuitive and analogical to analytical and parametric [69].

Some of these systems were developed both as a decision-making support system

for choosing the manufacturing process, machines and material of products and as a cost

estimation solution based on the selected options. For example, Chan & Lewis [63]

developed a knowledge-based system incorporating product design, process and cost

knowledge into inference engines used for material and process selection and ultima te ly

for cost estimation.

An example in the manufacturing industry is the system developed by Shehab &

Abdalla [62] for modeling cost of machining components as well as molded components.

The system’s inputs include a material, a mold and a processing database as well as

geometric and feature data of the product design model. Domain knowledge was

represented in an expert system toolkit through frames and rules like material selection

rules and manufacturing process and tool selection rules based on various characterist ics

such as material cost, product functionality and machine availability. Based on the system’s

recommended process, the product’s manufacturing cost was estimated. While some

product features like number of cavities and surface finish were factored in the estimated

cost, it is not clear how qualitative aspects like shape complexity were contributed to the

cost model.

Another research effort [70] acquired domain experts’ knowledge about the

lifecycle cost of jet engine flanges. It created a KBS that was tied to a lifecycle cost

simulation model developed to analyze 3D designs based on their lifecycle cost and provide

29

feedback to designers. The goal was to make downstream knowledge available during early

design stages.

A diverse team sponsored by the National Institute of Standards and Technology

sponsored Advanced Technology Program (NIST ATP) developed the Federated

Intelligent Product EnviRonment (FIPER) [66] knowledge-driven environment for

concurrent engineering to reduce cost of product development. In FIPER product cost

information is integrated with the knowledge base. Koonce et al. [67] developed a cost

with the goal of providing an integrated web-based estimation tool in which they used the

design data provided by FIPER at different stages of design completion. They integrated

the design data with a cost engine consisted of Work Breakdown Structure (WBS) elements

and element attributes that determine the cost of an element using a hierarchical structure

for attribute inheritance.

Knowledge-based systems have been developed for various purposes for the

Architecture, Engineering and Construction (AEC) industry as well. For the cost estimation

domain, Staub-French et al. [1] proposed a reasoning process based on cost estimators’

knowledge to represent and apply their rationale about impact of design features on cost

estimation. This process customizes the activities and allocation of resources to each

activity to account for project-specific features. Lee et al. [71] developed a framework that

uses an ontology designed for work conditions and work items in tiling and through

reasoning rules automatically selects the most appropriate work item. The inference

process is designed based on knowledge of an expert and the selected work items are then

used for cost estimation. In both of these efforts the focus has been on developing an

30

ontology to represent different design and construction conditions that affect the cost of a

project.

Another research effort [72] focused on developing a production planning system

for bespoke precast concrete products in which a knowledge-based solution was provided

to extract geometry and other product properties from 2D design drawings using rule-based

object recognition. In this solution, manual modularization of the 2D design drawings by

precast fabricators, and preparation of detailed design drafts were the prerequisites for the

retrieval of object properties. Another initiative [73] developed a KBS for integrating CAD

systems with structural analysis and quantity and cost data. The system had an interface

with available CAD software and performed a preliminary analysis of steel columns, beams

and joints based on AISC and CISC code and connected the results to member cost data to

generate a project quotation.

The reviewed KBSs all assume that product models used for cost estimation include

all the information about feature properties that impact projects’ cost and that the unit of

products represented in product design models fit the cost units of manufacturers. In other

words, they only extract information represented explicitly in design models, but cannot

modify the design to reflect the fabrication and installation units critical for cost estimation.

They do not anticipate product features missing from design until very late stages of a

project nor attempt to enhance the information retrieved from design models to contribute

to a project’ cost estimation.

These systems would only work under ideal situations when late project

information is available early in the project for design entities and is represented in design

models, which is relatively rarely the case.

31

2.2.5 Components of Knowledge Based Systems

Domain Layer: Domain layer consists of a knowledge base which is a repository that

represents the knowledge acquired from various domains and represented using different

representation tools. Knowledge acquisition and representation deal with content and

format of knowledge respectively and enhance availability and usability of knowledge

[76]. Various textual, graphical and computer-interpretable knowledge representation

conventions and tools have been developed to standardize knowledge modeling in different

domains. Examples include UML and family of IDEF languages [78].

A knowledge base represents the acquired domain knowledge using an ontology.

Ontologies, originally defined by Gruber [79] as “explicit specification of a

conceptualization”, are fundamental for sharing and reusing knowledge. An ontology

specifies a vocabulary - set of representable objects, their properties and relationships – for

a universe of discourse. KBSs model their domain of interest through explicit abstraction

hierarchies and rules about their relations that comprise an ontology. Shared ontologies tie

modules of a KBS and are essential for communication and reuse of knowledge among

different modules of one knowledge base and for integrating knowledge base of separate

KBSs [75].

Reasoning Layer: The reasoning layer includes modules of rule libraries and

inference engines. Reasoning processes in this layer are outlined by utilizing the concept

of a Problem-Solving Method (PSM) which specifies the logics behind the reasoning

processes. A PSM determines required inference actions, their dependencies and sequence

as well as role of each acquired knowledge piece, namely observables, abstract

32

observables, solution abstractions and solutions to reach a specific goal [74]. Notion of a

shared ontology facilitates implementation of a modularized structure for the reasoning

layer where different modules computationally work as an integrated whole.

Task Layer: While hierarchy and relations of tasks are defined in the reasoning

layer, a finer decomposing of tasks to the goal, required input, expected output and the

strategy applied to generate the output is provided in the task layer [80]. Decomposing a

KBS in this way allows having several hierarchies of tasks where tasks can be mixed and

matched and different task compositions can be built to solve various problems.

Interface Layer: User interface systems enable interactions of KBSs with users [76].

For efficient communication, these interactions should consist of two main aspects of (a)

receiving inputs from users that outline users’ organization preferences, limitations or

requirements. These inputs are used during the reasoning process to refine problem-solving

strategies and achieve a dynamic and customized solution based on users’ needs; (b)

representing the outputs of reasoning and task layer based on users’ criteria for selecting,

filtering and grouping outputs.

33

CHAPTER III

RESEARCH METHODOLOGY AND SOLUTION DEVELOPMENT

3.1 Research Methods and Problem Solving Approach

The current research effort tackles the design automation problem by developing a KBS

framework integrated with parametric object-based modeling schemas to automate

acquisition and structuring of the design data and the domain experts’ knowledge and to

facilitate the reuse of acquired knowledge in broad design conditions.

The developed methodology intends to address the research questions and achieve its goals

through the following methods:

(i) Semantic enhancement of design: Enhancing models by transforming implic it

information to explicit ones or calculating and creating new object attributes to

provide all the necessary design information for QTO and CE activities. The task-

essential set of information items for each object type is identified based on the

defined product decomposition models. Most semantic enhancement attributes and

operators as illustrated in Figure 11 are general; the attributes can be defined for

and operators can be applied to a broad range of object types, and, they can be

mixed and matched to create a wide variety of rules.

(ii) Task-based design evaluation and preparation: As explained earlier, while the unit

of QTO and CE for precast concrete products is a precast concrete piece, in the

architectural design and early structural design models often pieces of precast

34

concrete products are not correctly distinguished. This capability automates the

process of critiquing the design for manufacturability, constructability and cost

performance currently performed manually by cost estimation experts. Through

extracting the geometric and spatial relation information of products from models,

semantically enhancing the model information and applying modularization rules

developed based on the acquired domain knowledge, precast concrete model

objects are properly segmented to represent acceptable approximations of precast

concrete pieces that can then be used for preconstruction activities and detailed

design.

This capability automates design evaluation, preparation and adjustment

and eliminates the need to create new models for preconstruction purposes.

Geometric and non-geometric attributes of the precast concrete pieces includ ing

dimensions, surface areas, volume and weight measurements can be derived from

the existing object models and based on the predefined rules explained later in

section 5.2.

(iii) Automated detailed design: This part involves predicting the design information

about product features absent from design models. Detailed design of many key

cost-driving components of precast concrete products like connections,

reinforcement and form stripping and lifting inserts for the most part is performed

by structural engineers who work for trade contractors. The process is costly and

time consuming and normally is performed after winning the bid and securing the

project and before the fabrication and construction. During the preconstruction

activities information related to these components are mostly absent from models.

35

Similar to the model enhancing process, set of information items for each object

type is identified and attribute values for each inferred from design models. Those

component attributes that are important for domain tasks (e.g. number and type of

reinforcement elements) are identified using the developed product models and

values of those essential attributes are calculated.

The designed methodology involves the following steps:

 Product and process studies: Study the supply chain of both architectural and

structural precast concrete products. Investigated different cost estimation

conventions practiced in the precast concrete industry in the USA. Analyzed

performance of the different cost estimation methods and documented the results

of the study in [31]. These studies aimed to identify the weaknesses in current

practices, opportunities for a BIM integrated KBS to improve and to define the

goals for the research effort. An example product feature model is shown in Figure

5.

 Problem decomposition:

o Devise a combined feature- and function-based analytical cost estimation

method [31] as the most suitable one for the intended estimation level of

detail and accuracy.

o Decompose precast concrete products into their functional components and

identified features required for each function.

o Develop a process map for quantity take off and cost estimation for each

function and feature.

36

o Identify cost-driving attributes of each feature and specify the parameters

required to measure the impact of each attribute on cost of a project. These

variables comprise the information items necessary for precast concrete cost

estimation.

o Define the rule sets to infer knowledge about the required information items

either typically implicit in design models or absent from models

 Knowledge acquisition: Identify different sources of knowledge for the domain of

discourse; captured the relevant knowledge and validated the acquired knowledge.

Strategize the direction and focus of the work based on the importance of each

subdomain and the available opportunities to improve them. The goal of knowledge

acquisition is to learn the methods and processes used by domain experts to figure

out values of the parameters that compose features and activities that in turn make

up a product type and affect cost of a product and ultimately a project.

 Knowledge formalization: Develop a rule library comprised of sets of rules to infer

knowledge about the information items typically implicit in or absent from design

models, specially before completion of detailed design, based on the availab le

design information and company and project information provided by users. These

rules might use different mathematical, statistical or heuristic methods to achieve

the value of a parameter based on the existing information.

 Knowledge representation: Structure and represent the rule sets using the IFC

schema as the medium to represent the structured knowledge. The IFC is the most

widely accepted data standard in the AEC industry that enables the interoperability

among different BIM platforms. This includes mapping the rules to the IFC data

37

structure including objects, object hierarchies and object properties used in the rule

sets to the IFC data structure.

 System implementation: Adopt the rule engine and the user interface under

development for the Semantic Enrichment Engine for Building Information

Modeling (SEEBIM) project [81] that uses the IFC Viewer [83] tool that reads the

model information from the IFC data files. IFC Viewer is built around the IFC

Engine DLL [82] that generates 3D geometry based on the IFC schema. Part of the

rule engine capabilities needed to run the rule sets developed for this research work

Figure 3.1: Product decomposition – A precast concrete beam feature- and function-
model

38

have already been developed by the research team at the BIM lab of Technion and

the rest is collaboratively being identified, defined and developed. A list of defined

attributes and operators that is used in the example rule set for column segmentat ion

is provided later in Figure 11.

3.2 KBS Framework Development for Preconstruction Activities

We have developed a KBS framework to provide a streamlined, 3D parametric model

based quantity take off and cost estimation for construction products. This framework is

represented in Figure 6 and includes the 4 layers of domain, reasoning, task and interface,

designed for the precast concrete products which comprises the area chosen to implement

a proof of concept for this research effort. This is an ongoing effort and so far the focus has

been on developing a knowledge base and rule libraries.

 Several precast companies have collaborated and provided their company

standards, practice manuals and their historical project cost estimation information. The

principal researcher of this effort co-located for a few weeks with company experts to

collect information from estimators, structural engineers, plant managers and erectors; to

observe their QTO and CE process; and to formulate the inference rules with the help of

these experts. The knowledge base and reasoning rules are being developed both for

architectural and structural precast concrete products.

3.2.1 Modularized Structure

The basis for the proposed system is modularizing the whole design into components

defined by users and developing rule libraries for each module. These User Defined

39

Features (UDF) will provide the container needed for storing, distributing and processing

and reusing the acquired knowledge [84].

The key here is to develop a data structure that identifies the parameters needed to

define different categories of features, provides all-encompassing parameter definitions for

various design situations and distributes them to relevant features. Yet it allows the users

to share their knowledge about company practices as well as local or national industry

practices by deciding which parameters they want to use, the value of the parameters and

the measurement method for each parameter. As long as the user input follows the data

structure defined for each product type and the general constraints, they are accepted. This

provides a robust yet flexible rule development archetype.

3.2.2 Domain Layer: Knowledge Base

The domains studied in order to develop an example knowledge base that guided the listed

steps from product decomposition to process mapping and rule development included

architectural and structural design, and supply chain analysis (fabrication, transportation

and erection) of precast concrete products. The focus of knowledge acquisition was on

those domain aspects that are interdependent with quantity take off and cost.

40

Figure 3.2: Developed framework for knowledge-based quantity
takeoff and cost estimation

41

3.2.3 Knowledge acquisition: Methods and Sources

Knowledge acquisition sources used for this research work include:

 International and national standards: Examples of standards practiced in the precast

concrete industry and referred to in this research work are the International Build ing

Code (IBC) [85] and national design codes like those published by the Precast

Concrete Institute (PCI) [86, 87, 88], by the American Concrete Institute (ACI) [89]

and Architectural Precast Connection Guide published by National Precast

Concrete Association (NCPA) [90].

 Historical data collected by different companies: Different companies have

collected project cost information in different level of details from project cost to

product cost, product feature cost and finally to materials and part cost used in each

feature.

 Industrial engineering data: data collected about the time and cost of labor for each

activity, cost of material and equipment under standard situations.

 Company standards: different companies over the years have developed a standard

design book based on the layout of their plants, their forms, their suppliers and the

type of projects they specialize that guide them throughout the design for instance

for the types of connection designs in different situations and reinforcement

assemblies. These standards reflect company preferences and while they sometimes

develop creative designs that optimize company sources to a large degree design

solutions overlap in the industry especially in the structural concrete precast that is

more standardized.

42

 Domain experts: As the knowledge-based system used in the title of this research

effort implies domain expert have been the critical source of knowledge in this

work. Knowledge acquisition has been conducted by weeks of relocation to

company offices and continued long distance communications with experts over

the course of a year. Experts from the Beck and DPR general contractors, the

Consulting Engineers Group (CEG) that specializes in precast concrete design and

provides services to many precast concrete companies in the USA and overseas as

well as several precast concrete companies including Tindall Corp., Shockey

Precast, Gate Precast, Castone Corp., and EnCon Colorado collaborated on this

project.

The specific aspects that distinguishes domain experts from other knowledge

sources include:

 Connecting industry practices to design standards: Domain experts based on their

vast experience provide valuable insight about the preferences by different

companies, trends in different parts of the industry including recent changes and

the future outlook, about the right interpretation of design codes for various design

situations, and short cuts, customization, and implementation of design standards

across the industry.

 Insight into “why” in design decisions: They not only share the knowledge as to

“what” and “how” in their decision-making process but also as to “why” which

many times standards fail to illustrate. They provide additional insight about the

rationale behind their decisions and the criteria that guides their decisions to choose

from feasible solutions: how project-based factors including architectural and

43

structural design intent, building type and size, and so on as well as external factors

like the current technologies used by different companies and macroeconomic

factors affect both constructability and economy of each design decision.

Understanding underlying factors affecting design decision is crucial for forming

quality rules that cover a wide variety of situations and strike the right balance

between generalization and specialization.

 Focus area and strategic direction: Another aspect in decision-making that is

important for formulating the rules is “frequency”: (1) How often does a specific

design condition occur? (2) How often is a specific solution used? No amount of

effort, in a practical manner, can cover all possible design conditions or all feasible

solutions. A good knowledge acquisition strategy is to use the 80/20 rule in

collecting information and forming and implementing the rules: To focus the

research efforts on a subsection of the domain of discourse that accounts for a large

percentage of problems and/or solutions. Only domain experts with vast experience

can provide such an insight.

Two major difficulties involved with domain expert knowledge acquisition are:

(i) Managing tacit knowledge: Explicit and tacit knowledge were defined in the

section 2.3. Tacit knowledge comprises a large chunk of experts’ knowledge which

usually deals with “why” and “how” questions. Tacit knowledge is difficult to

express and transfer and is unstructured. Hence, the process of capturing the tacit

knowledge and transforming it into explicit knowledge is a challenging task [93].

44

(ii) Developing unbiased and general rules: As explained earlier different companies

develop their own standards and practices that suit best their production plant and

local conditions. Also different experts develop their own preferences and choices

through years of experience. Hence, the devised processes and rules by experts

reflect a combination of personal and company preferences and can be as narrow

or broad as the experts’ experiences.

These shortcomings were recognized in this work and different techniques were

used to mitigate the impact on the quality of the research outcome. Process maps for each

product type was developed that identify the type of information required for features and

functions composing a product. In the product information process maps, modules of rule

sets required for each feature and function were identified. To develop the rule sets,

various design conditions were devised and presented to experts and the design process

adopted by experts were traced and recorded. This process resulted in decision trees that

represent the rules used in the decision-making process.

The developed process maps and decision-trees were reviewed by experts

representing different segments of the industry to identify other potential decision paths.

The knowledge acquisition process, of course, is a repetitive cycle where each cycle

involves modification- expansion, deletion and change - of previously developed decision-

trees and process models and development of new ones.

3.3 Reasoning Layer: Rule Library and Inference Engine

As shown in Figure 6, the reasoning layer is structured by developing domain-specif ic

modularized rule libraries for various functions (e.g. connections, reinforcement, finishing,

etc.) of different precast concrete product types (e.g. columns, beams, slabs, etc.). Rule

45

libraries are being developed using different inference mechanisms to infer new knowledge

for QTO and CE of different aspects of a product. These rules have been applied on the

information extracted from 3D parametric design models as well as user inputs regarding

company limitations and preferences. We will use a combination of generic inference tools

many times found as off-the-shelf inference shells and specific purpose reasoning modules

developed for domain applications.

These modules represent the rules and reasoning for three major purposes semantic

enhancement of design, task-based design evaluation and preparation and automated

detailed design explained in detail in chapter three. These goals are achieved by developing

rule sets that from the functional and operational aspects can be categorized in five major

categories as follows:

 Geometric and non-geometric attribute discovery and enrichment rules. In the

IFC schema each object type is defined by a minimal number of mandatory

attributes and a larger set of optional attributes. Geometric attribute enrichment

deals with:

(i) the optional attributes that although are defined in the data schema their values

might be missing from an object definition in a design model. Object tag and

Description are among these attributes.

(ii) attributes that their availability depends on the selected method of geometric

representation: For instance in the solid extruded geometric modeling only the

object profile geometry and extrusion length is available. In the boundary

representation (Brep) method a solid object is created by a collection of

46

surfaces each of which defined by faces, edges and vertices. So surfaces are

accessible in the Brep modeling but not in the extruded modeling.

(iii) attributes that are not part of the general object definition in the selected data

schema but can be derived from the basic (geometric) information used to

define an object. These range from simple object dimensions of width, length

and height, to object surface areas and volume, to attributes related to specific

features or variations of an object like blockouts, recessions and projections.

Value of these attributes when calculated and generated can be used only for the

internal use in the chain of rules to reference features of an object and to filter and

select objects based on features of interest and/or can be finally returned to the user

by publishing them to the design model.

 Attribute configuration rules. These rules use a combination of logical and

mathematical operations to configure new facts about geometry, topology, or other

attributes of an object. These configurations are used to select objects from the work

space to then apply other rules on them for property enrichment or predictive

design.

 Spatial topological relationship discovery. These rules allow evaluating,

discovering, expressing and referencing position, orientation and relation of one

object or parts and features of an object relative to another object.

 Object creation rules. Design evaluation and advisory in our KBS often requires

creation of new objects based on the existing objects with the advised attribute

values. Some KBE systems provide the capability of geometry creation and

manipulation. While geometry creation is out of the scope of this effort, this need

47

is fulfilled by creating logical objects and assigning to them the geometric and non-

geometric attributes, necessary to perform the defined functions.

In the proposed system, object creation rules are typically developed to fulfill the

automated detailed design goal. They usually use as input, results of a chain of rules

in the above-mentioned categories which mostly aim at semantic design

enhancement.

 Object relationship creation rules. Creating new object relationships enable

building a hierarchical structure for the resulting enhanced and detailed design

model. They are also important to reflect and communicate the design intent with

the users which enables the users evaluate the inferred conclusions of rule sets and

if necessary, to tweak the rules to achieve new results. Similar to new object

creation rules, typically antecedents used in these rules are evaluated by previously

discussed semantic design enhancement rules.

3.4 Validation

Various approaches have been deployed in this research to achieve higher levels of

reliability about the acquired knowledge, developed rules and improving the current

preconstruction practice. The major process includes:

 Development of product decomposition models illustrating information flow from

various sources of knowledge for a selected class of building products. Various

product models in different levels of detail were assessed.

 Development of a modularized library of rule sets that cover the complete set of

functions from semantic enhancement of design to design evaluation and

preparation for preconstruction tasks to automated detailed design

48

 Identification and formalization of a mapping between information flow

requirements for automated design and sets of object model attributes and various

classes of operators including geometric, spatial relationship operators.

 Implementation of the system by executing the developed rule sets on example test

models representing identified design scenarios by domain experts. Verification of

the results with the industry experts.

Approaches developed for each step to test and validate the results include:

 Assessing various product models developed in different levels of detail and

developing all-encompassing models that represent various design scenarios and

solutions.

 Identifying a wide range of design conditions by studying previous designs and

introducing them to different experts and recording their thought process and

rationale and variances in their selected approach.

 Identifying the differences in the QTO and CE process and rules and methods used

by different industry experts.

 Generalizing the rules using parametric definitions in a way that different

approaches and rules can be accommodated: the key is to define a minimum core

industry-wide shared concept for each function and accommodate variances by

parameters that users can select, tweak and adjust based on their local and company

conditions and preferences.

 Validating the ultimate rules and their results with the experts representing different

segments of the industry.

49

 Perform a comparative analysis between results achieved by execution of the rules

in the developed KBS with similar design situations previously managed by

traditional manual methods.

50

CHAPTER IV

SEMANTIC ENRICHMENT OF DESIGN MODELS: PRECAST CONCRETE

COLUMN CASE

Adoption of a BIM-integrated workflow in the AEC projects will provide different project

entities with the rich information embedded in parametric models to incorporate in various

activities, improving their efficiency and potentially reducing errors and reworks and

enhancing the accuracy of results. Streamlining such a workflow will enable exchanging

and applying the information created by BIM platforms both horizontally across different

entities working in parallel and vertically throughout the supply chain. Two main

challenges for such a streamlined information flow throughout the AEC projects that

haven’t been sufficiently addressed by previous research efforts include lack of semantic

interoperability and a large gap and misalignment of information between BIM information

provided by design activities and the information required for performing preconstruction

and construction activities. This research effort proposes a four stage framework for

automatic semantic enrichment of design models and filling the information gap between

design and preconstruction project activities. These four stages include development of

product models, problem-solving algorithms, libraries of rule sets and a process for

automatic addition of lacking information.

51

4.1 Introduction

Today’s AEC projects involve many stakeholders and their collaboration on various

aspects of design and construction is key for success of the projects [97]. Various studies

[117, 118, and 119] have shown that collaborative practices lead to downsizing the errors

and reworks and improving efficiency and productivity in creating, using and reusing

knowledge throughout a project lifecycle. An efficient collaboration is only possible when

sharing mechanisms for the created information by different entities from the contractual,

cultural and technical standpoints are in place. While interoperability efforts and the

resulted data model standard of the IFC [101] try to solve lexical and syntactic

interoperability issues, semantic interoperability has remained to a large degree unsolved.

There is specially a lack of research in interpreting implicit semantics of design

models, turning them to explicit facts and sharing them among different project

stakeholders. The second unsolved problem is the large misalignment and gap between

available information for design and analysis compared to required information for

construction purposes. Based on the interviews conducted with several general contractors

and subcontractors, this information misalignment and gap often imposes construction

parties a complete rebuilding of models.

We conducted field studies interviewing with industry experts from several

companies with a focus on using BIM for quantity take-off (QTO) and cost estimation

(CE). This study showed that the current construction industry practice in these activit ies,

especially in mid-sized and small construction companies, remains to a large extent,

manual, error-prone and time-intensive, mostly relying on 2D drawings.

52

This chapter proposes a framework that attempts to use semantic enrichment of

design models to provide semantic interoperability and fill the large information gap

between normally available design model information at the end of the design development

stage and information required for preconstruction and construction activities. The

developed framework includes four major steps:

(i) developing a product information model that identifies the information needed

for preconstruction activities and information sources and processes that enable

providing the required information;

(ii) developing a problem solving algorithm to derive the required information from

the available information;

(iii) developing libraries of rule sets to implement the developed algorithm using a

reasoning engine to infer new facts from the input data;

(iv) developing a process to fill the remaining information gap between required and

available model information in the enriched models

4.2 Multi-Party Collaboration and Semantic Interoperability

From the technical standpoint, collaborative design and construction means

interoperability of software platforms that support various stages of design and

construction activities.

 Representation of information and information interoperability can take on

various levels: encoding level, lexical level, syntactic level, semantic level and semiotic

level [98]. Different industries have developed information sharing standards that to a large

degree have resolved the interoperability issue in the encoding, lexical and syntactic level

53

[99]. EXPRESS language formalized in STEP (ISO 10303) [100] is one of the early

interoperability standardization efforts. In the AEC/FM industry, the IFC data model [101],

which was developed based on the EXPRESS language, with its comprehensive product

modeling data schema and expandable structure is now the preferred interoperability

solution. Although lexical and the syntactic interoperability are addressed by these

standards, semantic interoperability still poses an enormous challenge. The model

semantics comprise of two types of explicit semantics, directly expressed in design models

and implicit hidden semantics [99]. Both explicit and implicit semantics are context

dependent and refer to propositional meaning of the represented information [102].

 IDM and MVD development efforts [103, 104] attempt to facilitate and

standardize implementation of the IFC schema by establishing IFC bound concepts or units

of information that are accepted industrywide to represent a standard interpretation of

model semantics. The focus of IDM and MVD has been on defining explicit semantics and

do not adequately address interoperability of implicit semantics.

4.2.1 Model Query Solutions

The first step for semantic interoperability of 3D parametric design models is providing

the capability of querying spatial and non-spatial properties of objects. Querying models

involves reading, extracting and analyzing the information relevant to the query subject.

Different Product Lifecycle Platforms (PLM) platforms aim in accommodating exchange

of information among different project stakeholders. Central model management servers

both proprietary and open source [105] are being developed to provide querying,

integration of and leveraging shared information for different purposes.

54

A detailed review of major PLM systems, their querying and interoperability capabilit ies

and a framework for integrating BIM servers with PLM solutions was previously provided

by the author [106]. PLM solutions enable users to query a database for classified product

(parts and assemblies) and project information mainly based on predefined criteria.

Designed objects can be classified in various levels which is prerequisite for semantic

queries. Semantic queries usually involve context-based and design-dependent

classifications of objects which require semantic enrichment of design models. However,

they do not perform semantic queries requiring object relationships interpretation.

Various methods have been developed to query model objects and index and

retrieve them based on their geometric and topological similarity for use in the context of

the manufacturing industry [107, 108, and 109]. However, in the building industry

environment there have been a few efforts to analyze and query design objects and their

relationships. One such effort [110] was built on the generalized model subset definit ion

(GMSD) schema and aimed to filter models and build multi model views adding non-

design related information to models. Another work [111] attempted to interpret implic it

properties of objects and query model objects based on their predefined properties. Adachi

developed a formal query language to use on the IFC-based models [112].

 Analysis of spatial topological relationships of objects is an important aspect of

querying BIM based 3D design models. A few research efforts have embarked on

developing algorithms for analyzing topological relationships of 3D objects, and method s

for implementation of spatial reasoning, for use in the AEC industry [113]. Most of these

efforts either analyze each object individually and don’t cover topological relationship

analysis of objects or remain in theory and haven’t been implemented.

55

4.2.2 Semantic Enrichment of Models

Semantic enrichment of models involves a rule-based expert system that utilizes a

reasoning engine processing domain-specific rule sets and inferring new facts about model

objects and their relationships and augments the models with these new facts [81]. Model

information querying, filtering and retrieving based on object properties and relationships

is an important prerequisite for the reasoning process and semantic enrichment of models.

In the context of mechanical assemblies and using PLM platforms, research efforts

attempted to enrich models with information with functional and technological data of

assembly features [114]; and, semantically enriched process models [115]. One of the few

efforts for application in the AEC industry to semantically enrich models is called semantic

enrichment engine for BIM (referred to as ‘SEEBIM’) [81]. SEEBIM reads and extracts

variety of geometric and non-geometric object properties based on their IFC representation

and is able to run spatial and non-spatial object relationships analysis on a simplified object

geometry based on their bounding boxes.

4.3 Problem Definition

While Problem of interoperability, model query and semantic enrichment exist throughout

projects’ lifecycle, it is more complex and difficult to solve when there is a large shift in

the model creation and application domains. In the AEC industry, this is specifically the

cast when transitioning from design to preconstruction and construction stages. The type

of information required in models and the useful way to represent this information is vastly

different in design and construction stages. This creates a large gap between information

creation and delivery in design development stages and information needs of construction

56

stages. While resolving interoperability issues can help the common sets of information

created in design to be reused during the construction stages, it doesn't solve the

misalignment and the gap between available and required information for preconstruc tion

and construction purposes. Many times this information misalignment and gap imposes a

complete rebuilding of models for construction parties that want to use BIM or limits the

use and value of BIM.

Two of the major preconstruction activities that often additional information not

available in design models and require different object representation methods are quantity

take-off (QTO) and cost estimation (CE) activities. Our industry study show that due to

these issues, the current industry practice in these activities, especially in small- and

medium-sized companies remains to a large extent, manual, error-prone and time-

intensive, mostly relying on 2D drawings.

One closely studied domain by the author is the precast reinforced concrete

industry. In this industry, the units of quantity take off and cost estimation are precast

concrete product pieces. However, the units of fabrication often are not distinguished in

design models, which means elements like columns, slabs and wall panels are modeled as

monolithic objects and not based on geometry of product pieces. This difference leads to

rework and often for preconstruction purposes, different construction parties have to create

their own models from scratch or as is the case in many of the interviewed companies

abandon use of models and rely on 2D drawings.

57

4.4 Proposed Solution Framework

The resolve the problems discussed earlier and to streamline and semi-automate the use of

BIM and BIM-based design throughout a project lifecycle, enhancing its value for project

stakeholders a comprehensive framework is developed. This framework attempts to use

semantic enrichment of design models to fill the large gap that normally exist between

normally available design model information at the end of design development and

information required for preconstruction and construction activities. The developed

framework includes the following four major steps:

 Develop Product models for precast concrete building elements. This step relied on

the knowledge acquired from domain experts and answers the ‘what’ question: (i)

what design information is needed for preconstruction activities including QTO,

CE and element fabrication; (ii) what design information is usually available by

standard project contracts at the end of design development stage; (iii) what design

information needs to be supplemented to enable automatic evaluation and

preparation of BIM-based design model for preconstruction activities; (iv) what

are the sources to acquire each information piece identified to be supplemented to

design models; and finally (v) what rule libraries are required to guide the process

of new information inference and addition to design models.

 Develop a problem solving process for each cluster of information required to be

supplemented to design models. These groups of supplemented information will fill

the gaps of available and required information for detailed design and construction

of each product feature and for performing each step of the supply chain. This step

like the previous one is based on acquired domain knowledge from experts and

58

answers the question of ‘How’ in a high level: These problem solving methods are

in fact algorithms that demonstrate how through a set of successive steps that each

use the outcome of the previous step they can supply the required information and

fill the gaps between required and supplied design model information.

 Develop rule libraries, each comprising of multiple rule sets. These rule libraries

together will solve the defined problems. This step answers the question of ‘How’

in a computer implementable level: In the rule libraries the pieces of data required

to implement each step of the previously designed algorithms are identified; the

data processing logic is defined; the data processing operators needed are defined

and implemented; and finally the inferred information resulted from running the

rule sets are added to design models to semantically enrich them.

 Develop a path to provide the user with the lacking pieces of information required

for automated detailed design but not included in the semantically enriched models.

This tracks both the initially available information in models and the supplemented

design information and finds out how they can be used to derive the value of the

yet unavailable pieces of information and complete the process of automated

detailed design.

The next chapter sections delve deeper into each of these four major steps and will

provide examples developed and implemented for each.

4.5 Product Model: Precast Concrete Column

Product models provide generic representations of different product types in the domain of

discourse and build the core of knowledge bases. Various standards like the Unified

59

Modeling Language (UML) have been developed and used for structure, behavior and

function modeling of products. Design and analysis rules can be embedded in product

models to generate various design configurations of a specific product type. Figure 4.1

Figure 4.1: A precast concrete column product decomposition and
information flow model

60

illustrates the product model developed for precast concrete columns.

The mainstream notations were studied and a customized notation was developed to

demonstrate different types of information and information processing required for various

stages of precast concrete column design and fabrication. The main goal of product

modeling here was to

(i) identify what types of inputs are required to infer new knowledge about

different product features and to carry out diverse tasks throughout the supply

chain of a product;

(ii) identify information sources to acquire those essential inputs. These

information sources include parametric design models, users and domain

experts and are color coded in Figure 4.1; and

(iii) identify essential rule sets to be developed to perform information processing

and inferring new knowledge.

The nature of the information inputs cover a wide range from dynamic (e.g. design

model data that is project-specific and often even changes throughout a project lifecyc le)

to relatively static (e.g. modularization rules based on architectural and structural design

and supply chain rules) that can usually be considered fixed at the company level until new

standards, products, or production technologies are adopted by the industry and the

company at which point they need to be refined.

4.5.1 Problem Solving Methods and Knowledge Roles

The base of the developed rule sets is the notion of Problem Solving Methods (PSMs) and

their knowledge roles. PSMs represent dynamic reasoning knowledge and make the

61

interactions between knowledge and problem solving processes and assumptions explic it

[95]. An example of application of a PSM and different knowledge roles is illustrated in

Figure 4.2. In this example if the value “60'” is extracted from a design model as an

observable for “total building height”, it can be abstracted to “above max height” using

another observable of “50'” which is a user input for “max feasible column height”. This

abstracted observable will be followed by applying a solution abstraction of “divide to

pieces below max length”, which will produce the solution of “column piece length”.

Note that to generate this solution, the PSM requires another set of inputs which

are “segmentation rules for columns”. These rules are the end results of the process of

knowledge acquisition and representation from domain experts. These rules themselves

comprise of a cluster of PSMs that define the actions and the rationale behind each action

and their implementation might require additional inputs.

Figure 4.2: Example of a problem-solving method structure:
inputs, outputs and actions

62

4.6 Development of a Problem Solving Algorithm

Based on the PCI design handbook [86], the goal of precast concrete modularization is to

achieve minimum number of product pieces which will minimize the cost of production,

transportation and erection. Therefore, the dimensions of each piece and its weight should

be maximized within the constraints dictated by numerous supply chain related factors

from plant layout to available form sizes, to truck and crane capacities, and transportation

rules and crane access on the site. For precast concrete columns cross section profile is

determined by loading conditions and structural analysis. So the main factor that

maximizes size of columns is segmenting columns in a way that piece length is the closest

possible to “max feasible column length” provided by the user.

Based on the interviews with industry experts, another criteria in segmenting

columns, when the column length exceeds the max feasible column length, is to segment

the columns in a way that lengths of the segmented column pieces are close to each other.

That way the pieces can share most of the same features. Therefore, location of the column

splices is determined relative to middle of the column.

Figure 4.3 shows the algorithm developed for segmenting precast concrete columns

and inferring size and other attributes of suggested column pieces based on the acquired

domain knowledge. Depending on whether the column is an internal or an external column,

one of accessibility or aesthetics rules governs segmentation of the columns. If the column

is an internal column the main criteria for the exact location of column splices are

accessibility and comfort of working on connections between those columns. Hence, the

column splices are usually located about 1.5'-2' above the finished floor.

63

If the column is an external column the determining criteria are related to aesthetics. When

the spandrel intersecting the column is outboard meaning that its exterior vertical wide

surface is aligned with exterior vertical surface of the column and the column is pocketed

(Figure 4.4 (a)), and it is possible to hide the connection behind the spandrel, the column

Figure 4.3: The algorithm developed for precast column segmentation

64

splice is located in 6"-12" below the top of the spandrel. When the intersecting spandrels

are inboard, locating the exterior vertical wide surface of a spandrel aligned with the

interior vertical surface of the column and the column is pocketed, hiding the column joints

is not feasible. Then aesthetic criteria suggest locating the column joints in line with the

top of spandrel. In the third situation the spandrel edge ends at the column edge which

means the spandrel is not passing through the column and the column is not pocketed

(Figure 4.4 (b)). In these cases, both when the spandrel is inboard and outboard, hiding the

column joints is not feasible and the column splice location will be in line with the top of

spandrel.

Figure 4.4: Relative spandrel-column positions; (a) outboard spandrel & pocketed column; (b)

outboard spandrel but no pockets in the column

65

4.7 Rule Set Development and Semantic Model Enrichment for Column

Segmentation

The goal here has been to implement the algorithm demonstrated in Figure 4.3 by

developing a set of rules to ultimately infer all the knowledge the user needs to segment

the precast concrete columns. These rules use design information and user criteria and work

in succession and each produce an output that is used as an input for the next rule.

The rules are defined as sets of logic rules that use the IF-THEN conditioning to

infer a conclusion. Rule sets are related to each other through forward chaining. So the

output of each rule is used as an input for the next rule. The inference engine searches and

triggers all the rules whose antecedent match the available data queried from the design

model data. The rule matching and activation progresses in cycles where in each cycle the

rules in a rule set library are scanned sequentially to determine the ones match with the

known facts. When passing through each rule, it scans all the objects in the model for

finding the matches. Initiation of each rule results in inferring new facts determined in the

‘Then’ part of the rule. The facts inferred by running the matched rule in the first cycle will

be added to the knowledge space. Once new facts are found by a rule, another cycle starts

and the rule engine scans the rules once again since the new facts might provide the input

required for initiation of other rules. These cycles proceed until no new fact is found.

4.7.1 SEEBIM Adoption

This research effort has adopted a rule inference engine called SEEBIM [81]. The rule

engine is specifically developed for the AEC industry applications. In SEEBIM design

model data is parsed using an open source product called IFC Viewer [83]. SEEBIM

provides the capability of working with variety of geometric and non-geometric object

66

properties based on their IFC representation. It is also able to run variety of spatial and

non-spatial object relationships analysis on a simplified object geometry based on the

object bounding box. Examples of spatial topological operators include objects adjacency,

contact, containment, and alignment. List of all the object attributes and operators used in

this research effort are presented in Table 1. Many of these operators in this list had already

been implemented by SEEBIM developers and tested on other use cases. The rest were

identified, defined, developed and tested during this research work. In Table 1, the left

column shows the attributes and operators available in SEEBIM before this research work

and those added collaboratively during this effort.

4.7.2 Rule Structure

The developed rule sets use a set of geometric and non-geometric object attributes. These

attributes and their values are either directly extracted from design model data or are

calculated using the extracted model data. The developed rules also employ a set of spatial

topological and non-spatial operators as well as mathematical and logical operators.

All the attributes and operators that are used in the column segmentation rule set is

presented in Figure 4.5.

These attributes and operators provide the underlying structure of the rules: Different

rules are built by mixing and matching these operators to apply task related analysis on

selected objects and make certain conclusions. Rules are developed based on the following

structure:

 Select maximum of two objects based on geometric and non-geometric properties

(boxes with yellow heading in Figure 4.5) using the object attribute analysis

operator of is.

67

 Table 4.1: comparative list of attributes and operators in SEEBIM

used in this research work

68

 Evaluate the selected objects based on predefined criteria applying a subset of the

following operator categories (boxes with purple heading in Figure 4.5):

o mathematical and logical operators

o spatial topological operators

o non-spatial property analysis operators

o non-spatial elements relationship analysis operators

Figure 4.5: List of attributes and operators used in the column segmentation rule set

69

 Derive the conclusions and add the inferred knowledge to design models data using

a subset of the following operator categories (boxes with blue heading in Figure

4.5):

o non-spatial relationship creation and deletion operators

o abstract object creation operators

o non-spatial property value designation operators

These attributes, operators and their functions are explained in the next sections.

4.7.3 Rule Function Categorization

In a very high level and in terms of the end goal that various rules serve in the column

segmentation use case, they belong to one or more of the following categories:

(i) design evaluation

(ii) semantic design enrichment

(iii) automated design for preconstruction and construction tasks

Figure 4.6: column length evaluation and split pieces creation rule

70

 object so that the user can examine which column pieces belong to which parent column.

 A uniform color code for different components of rules is used in the pseudo codes

representing the rules (Figure 4.7).

The rest of the rules in this rule set perform a combination of design evaluation and

semantic enrichment to identify the best location on precast concrete columns for the ir

segmentation. Semantic enrichment of a design is the result of some form of analysis on

the extracted model data. Such analysis or reasoning attempts to discover the objects

properties and relationships implicit in design models and make them explicit. This fact

discovery process is called knowledge inference and is followed by semantic design

enrichment that communicates the new facts to users by adding them to the design model.

4.7.4 Geometric and Non-Geometric Attributes Extraction and Discovery

In the IFC schema each object type is defined by a minimal number of mandatory attributes

and a larger set of optional attributes. The subset of attributes in this group that are extracted

and used in the current rule set are listed under “non-geometric properties” in Figure 4.5

and are capitalized. These attributes are directly used as extracted from design models.

Figure 4.7: Color code legend for rules

71

Geometric and non-geometric attribute analysis and discovery deals with the following

scenarios:

(i) the attributes that are defined in the IFC data schema, yet are optional and their

values might be missing from an object definition or might not reflect the exact

object properties or specific and sometimes domain-specific properties of

significance for solving the defined problem. ObjectType, Tag and Description

are among these types of attributes. For example whether a column is internal or

external is of importance for segmenting columns. In our rule set after inferr ing

the facts about this property for each column, the object Tag property is set to the

inferred fact with respect to the column being internal or external (e.g.

internal_column).

(ii) attributes that their availability depends on the selected method of geometric

representation: For instance in the solid extruded geometric modeling only the

object profile geometry and extrusion length is available. In the boundary

representation (Brep) method a solid object is created by a collection of surfaces

each of which defined by faces, edges and vertices. So surfaces are accessible in

the Brep modeling but not in the extruded modeling.

(iii) attributes that are not explicitly definition in the IFC data schema but their value

are derived from the basic geometric and topological information used to define

the design model objects. These attributes range from simple object dimens ions

of width, length and height, to top, bottom and centroid elevation of an object and

to object faces like horizontal_top_face and horizontal_bottom_face.

72

Value of these attributes when calculated and generated are used for the interna l

use in the chain of rules to reference, filter and select objects based on features of

interest. When needed, these values are returned to the user by publishing them

to the design model.

4.7.5 Functional Categorization of Operators

 Spatial topological operators. These operators allow evaluating, discovering,

expressing and referencing topological relationships of two objects in the design

model. The concept of bounding box or minimum bounding box is used to define

and implement all the topological operators. It is important to note that in this work

always when relationships like adjacency, overlap, containment and alignment

between two objects are considered, they are defined and examined between

bounding box of two objects. Hence, features like recession, blockout or dap in an

object won’t impact its relationships with other objects since they don’t impact the

geometry of its bounding box. The experience of solving several problems using

the system has shown that simplifying object geometry to its bounding box

sometimes have been helpful for solving problems and sometimes didn’t provide

complete information about an object needed to solve a problem and required

developing a workaround.

An example of topological operators that is used in several of the developed rule

sets is is_adjacent_to. Adjacency is defined here between two selected faces of two

objects [81]. The definition below is provided in reference to Figure 4.8 where

vertical wide face of object1 (F1) is adjacent to vertical narrow face (F2) of object2

within the given tolerance of D.

73

Two objects have adjacent faces in a given tolerance limit if

 when two specified faces (F1 & F2) of the objects’ bounding boxes are

projected on two perpendicular axes that are parallel with those object

faces (axis1 & axis2), have a common projected surface area of larger

than zero, and;

 other surfaces of the two objects when projected (pf1 & pf2) on parallel

axes (axis3) are disjoint and have no common surface area, and;

 the distance between those projected surfaces on parallel axes to those

faces (pf1 & pf2) is within the selected tolerance limit (D <= tolerance).

Figure 4.8: Implementation of two objects’ adjacency relationship
analysis operator

74

are the proximate surface area created by extending and projecting one of the first

object’s faces within a given tolerance limit and in the surface normal direction

over second object is larger than zero.

 Mathematical and logical operators. They are employed to evaluate dimensions of

an object using logical operators or compare attributes of two objects to each other.

Examples of their application is provided later in object classification rule

examples.

 Non-spatial property analysis and value designation operators. The operators is,

is_not and is_made_of examine the non-geometric object attributes to find out if

they are equal or unequal to a certain value. The operator filter_objects_between

selects an object located in the proximate volume between two objects based on a

specified object attribute value. This enables referencing an object between two

selected objects in a rule and performing an operation on it.

Using property value designation operators in the consequent clauses of the rules,

a certain value is assigned to an attribute or set of attributes of an object that meets

the specified conditions in the antecedent part of the rule.

 Non-spatial relationship analysis, creation and deletion operators. In the IFC data

schema various relationships can be defined between objects. These relationships

are subtypes of the abstract entity of IfcRelationship. Relationships serve different

purposes like creating a hierarchical building structure in a design model among

different objects, or connecting objects to each other. The relationship creation and

deletion operators can create or delete any number of relationships between objects.

The elements relationship analysis operators can examine existing relationships in

75

design models or relationships created by the rule engine and can be further divided

into 3 groups:

1. is_related_to and is_not_related_to examine the existence of a selected

relationship among two objects

2. is_part_of / belongs_to and is_not_part_of examine whether an object has

participated in a relationship as a related or relating object or a realizing

element.

3. get_related_objects and similar operators provide access to objects in a

specified relationship with the selected objects in a rule.

As mentioned earlier in each rule a maximum of two objects can be selected.

Yet many complex design situations involve several objects and require getting

access and operating on other objects that are related to the main selected objects.

The second and third group in relationship analysis operators’ category as well as

do_objects_between_exist in spatial topological operators’ group and

filter_objects_between in non-spatial attribute analysis operators’ group are

valuable in these situations. They enable selecting and explicitly referencing

objects related to the two selected objects in the rules. In section 4.8.1.2 one

example of such scenarios will be discussed.

 Abstract object creation operators. Design evaluation and advisory often requires

creation of new objects based on the existing objects with the advised attribute

values. While geometry creation for new objects is out of the scope of this effort,

this need is fulfilled by creating logical objects and assigning to them the geometric

and non-geometric attributes necessary to be counted as the intended type of objects

76

absent from the design. The function of create_a_set_of_split_objects operator that

belongs to this category was earlier explained. In the proposed system, object

creation operators are typically developed to fulfill the automated detailed design

goal.

4.8. Example Rule Sets: Structure Analysis and Results

4.8.1 Object Classification Rules

These rules attempt to classify the designed objects based on specific aspects of their design

which are of interest to solving the problem at hand. Three sets of rules in the rule set

library created for column segmentation deal with object classification. The results of these

rules are used to narrow down the work space and select specific instantiations of an object

class for further analysis, semantic enrichment or automated design purposes.

4.8.1.1 Beam Classification

Both spandrels and rectangular, L-shape and inverted-tee beams are structurally considered

as beams and are extracted from BIM authoring tools as IfcBeam. Yet for many different

purposes, we need to distinguish spandrels from other types of precast concrete beams. In

the column segmentation problem, this classification provides an input for rules in step 3-

10 of the algorithm presented in Figure 4.3. The best geometric metric to distinguish

spandrels from other beam types is the aspect ratio. Aspect ratio for structural members is

generally defined as the profile height divided by width. Figure 4.9 demonstrates the range

of width and height dimensions of major precast concrete beam types and spandrels [86].

Since in some very deep non-rectangular beams, ratio of the top surface width to beam’s

77

height can get very close to spandrels’ and to avoid any overlap the rule is defined to use

the bottom surface width in the formula.

Figure 4.10 represents spandrel versus non-spandrel beam classification rules. After

defining the concept of aspect ratio and calculating it for the selected object, the result is

examined and the appropriate classification is assigned to the object Tag. In figure 4.18

these values can be seen in the resulted enriched IFC file opened in the Solibri Model

Viewer [116]. The same results can be viewed when the enriched file is opened in Autodesk

Navisworks Manage software under object properties. They are shown under the BATID

attribute which is the Solibri equivalent for Tag attribute in IFC.

4.8.1.2 Internal and External Column Classification

Other examples of classification rules developed for the algorithm depicted in Figure 4.3

are rules to define and distinguish between internal columns, external columns and a third

type that we refer to as segmented_like_internal_column. The reason for this type of

classification and how it helps to solve the column segmentation problem is discussed in

Figure 4.9: Range of width, height and aspect ratio for different
types of precast concrete beams

78

section 4.6. The following definitions are developed for this classification, based on the

acquired knowledge of domain experts:

// If a precast concrete column is intersecting with at least 2 beams at the same

floor level the column is an internal column.//

//If a precast concrete column is intersecting with a spandrel or a wall panel

(building cladding element) the column is an external column.//

//If a precast concrete column is intersecting with a spandrel as well as at least 2

beams at the same floor level the column needs to be segmented like an internal

column.//

Figure 4.10: Rules to identify spandrels and non-spandrel beams

79

The rule developed for identifying internal columns is depicted in Figure 4.11. First

beams were classified and two non-spandrel beams were selected. To find out if they were

in the same floor their top elevation was examined. Then the selection pool was narrowed

down to those beams that were adjacent within the distance that equals a column’s width.

Most often width of the precast concrete columns is below 3’, hence this distance was given

as the tolerance number for adjacent faces, but depending on the largest column size used

in a given project, and if needed, this number can be changed by the user. At this point, the

proximate volume between the two selected adjacent beams was evaluated and the

selection pool was further narrowed down to those beam pairs that had an object in between

with an ElementType equal to IfcColumn.

Figure 4.11: Internal column classification rule

80

In the next step Tag of the column between the beams was examined. As the

definition of columns to be segmented like an internal column shows, these columns meet all the

conditions of internal columns plus they are intersecting spandrels. Thus, and as demonstrated in

Figure 4.12, after columns were identified as internal columns, they were examined in the next rule

to see if they were adjacent to or overlapping with a spandrel. If they were, their Tag values were

changed accordingly.

After a column is classified as ‘segmented_like_internal_column’, and in the next

cycle the same column can be selected in the internal column rule and since it meets interna l

column conditions its Tag will be changed to internal_column. This cycle will then be

repeated and it can create an infinite loop. To avoid this problem, Tag of the column was

examined to make sure it was not ‘segmented_like_internal_column’.

The last step in the IF clause of the internal column rule was to make sure that this

rule had not already been applied to the selected beams. In the THEN clause a classifica t ion

relationship with the domain_type of ‘adjacent_beams_same_floor’ was created.

Therefore, if this beam pair had earlier undergone this rule they should be related to each

other by a relationship of this domain_type. Without this condition, this rule will be

Figure 4.12: Classification of columns to be segmented like internal columns

81

executed on the same beam pair over and over again which will again create an infinite

loop.

The first type of infinite execution loop that is caused when new facts found by one

rule reactivates another rule is called a complex-loop. The second type of infinite loop that

is caused by infinite times of execution of one rule is called a self-loop [96]. The strategies

explained above to prevent these loops are used in most of the other rules and will be briefly

referred from now on as no-loop control declarations.

In the THEN clause in addition to creating a relationship between the two beams,

Tag of the filtered column is changed to internal_column to communicate this fact with the

user.

Earlier in segment 4.7.4, it was mentioned that in some situations more than two

objects need to be examined in a rule. The situation explained for internal column

classification involved three objects: two beams and a column between them. As seen

above, the two operators of do_objects_between_exist and filter_objects_between enabled

access to the third object which is a column.

The last rule in this rule set is depicted in Figure 4.13 which classifies external

columns. External columns intersect a spandrel or a wall panel and in each floor level

intersect maximum of one non-spandrel beam. The intersecting columns and spandrels are

either adjacent or overlapping each other (Figure 4.4) and these conditions are examined

in this rule. In general columns intersecting a spandrel or a wall panel can intersect up to

three beams in each floor. Hence the columns to be segmented like internal columns can

also be selected by this rule as external columns which again creates an infinite loop. The

last two lines in the IF clause provide no-loop control declarations to avoid the two types

82

of loops explained earlier. The THEN clause changes the column’s Tag to reflect its

classification.

Figure 4.14 depicts the results of the enriched IFC file where all three types of

columns in the test model were correctly classified. Note that while in the context of this

chapter, this classification is used as a guide for column segmentation, it is an important

concept with broad applications. This classification is essential for design, production

planning and construction of insulations, finishes, type of connections used and other

aspects of building elements.

4.8.1.3 Pocketed and Non-Pocketed Column Classification

Step 7 of the algorithm depicted in Figure 4.3 deals with the type of intersectio n between

a spandrel and a column and whether the column bounding box is overlapping the spandrel

bounding box in which case the column is pocketed. This classification is achieved through

Figure 4.13: External column classification

83

a simple rule where in its THEN clause the appropriate classification value is assigned to

columns’ Description attribute as depicted in Figure 4.14.

4.8.2 Rules to Find Closest Objects to another Object in a Specified Direction

This concept also has a broad applications and for example can be used to optimize

locations of emergency exits in buildings. In the context of precast concrete column

segmentation it is used to find the closest floor to internal and segmented like interna l

columns’ centroid and the closest spandrel to external columns’ centroid. To find the

closest floor or spandrel to a column’s centroid the distance of top elevation of floors and

spandrels to column’s centroid elevation in the vertical direction is compared. After

figuring this out, columns will be segmented in an elevation relative to the closest finished

Figure 4.14: The enriched IFC model for column classifications

84

floor level or top of spandrel according to the algorithm in Figure 4.3. This will then enable

users to calculate length of each column piece after splicing columns.

The rule set for this purpose includes four rules, two for finding the closest floor to

internal and segmented like internal columns’ centroid and two for finding the closest

spandrel to external columns’ centroid. The logic and rules’ structure used for internal and

external columns are similar; hence, only one set is depicted (Figure 4.15 and 4.16) and

discussed in this chapter.

The first rule (Rule I) in this group of rules and its steps is illustrated in Figure 4.15.

In a nutshell, it creates an association relationship between each internal and segmented

like internal column in the model (C1) and only one of the non-spandrel beams intersecting

each column (B1). The operator is_not_part_of verifies that the selected column does not

belong to a relationship with the domain_type of ‘closest_intersecting_beam_column’.

Since this relationship is created between the column and its intersecting beam after the

Figure 4.15: Rule I - Closest floor to internal and segmented like internal columns'
centroid

85

rule is executed once on any selected column, this operator doesn’t allow more than one

such a relationship to be created for each column. This rule makes an initial assumption

that the randomly selected intersecting beam in Rule I is closest to the column centroid and

changes the beam’s Description attribute to reflect this assumption. This will be the case

until the next rule in the group proves otherwise. Changing the beam’s attribute will help

if the randomly selected beam in this rule is in fact the closest beam to the column’s

centroid. In that case Rule II will not be triggered and the Description of B1 will remain as

‘closest_intersecting_beam_to_column_centroid’.

Note that to find the closest floor to a column’s centroid both beams and slabs

intersecting the column can be used in the rules since the top finished elevation of both in

each floor is usually the same and the choice of the object1 in rules doesn’t impact the

rules’ logic, only that slabs intersecting the column might either be adjacent to or

overlapping with columns. Hence, in the case of using slabs in the rules one line should be

added to examine whether the overlapping relation of two objects in addition to their

adjacency relation.

The structure and steps of the second rule (Rule II) in this group is demonstrated in

Figure 4.16. This rule is executed on all the internal or segmented like internal columns in

the model that have already passed through Rule I and all their intersecting beams except

the one passed through Rule I. The goal of the this rule is to find out whether there is

another intersecting beam with the column that is closer to the column centroid and replace

the beam found in the first rule with this closer beam.

In this rule again we need to have access and reference three objects: If we assume

the rule is being executed for the nth time on a column, in addition to that column (C1), we

86

need to have access to an intersecting beam selected in this execution (B2), and to either

the beam undergone the previous execution of this rule (n-1th time) or if n=1, the beam

undergone Rule I (B1). Whenever Rule I and II are executed on a column, a relationship

of domain_type closest_intersecting_beam_column is created between the column and the

beam involved in that rule execution. As mentioned earlier this rule is only executed on

Figure 4.16: Rule II - Closest floor to internal and segmented like internal columns'
centroid

87

columns that have passed through Rule I and are already part of such a relationship. The

operator belongs_to used in step (4) of Rule II examines and verifies this condition.

Moreover it enables us to get access to objects related to the column in this relationship.

Hence in step (5) is_closest operator has access to both B1 and B2 and compares the

distance of the top elevation of B1 and B2 to the column and finds out if B2 is closer than

B1 to the C1 centroid. Only if the B2 is closer to the C1 centroid than B1, the rule will be

executed.

In the THEN clause first the operator get_related_objects finds the objects related

to the column in relationships earlier found by belongs_to operator, designated as B1. Since

the execution of Rule II means that another beam found to be closer to the column than B1,

in step (7) the operator set_element_attribute changes Description of the B1 to

not_closest_beam and in step (9) builds a new relationship between C1 and B2. Finally in

step (10) Description of B2 is set to closest_intersecting_beam_to_column_centroid.

When the execution of rules end, the beams with such a Description value will

actually be the closest to their intersecting column’s centroid; since it means that Rule II

couldn’t find any other beam closer to each column evaluated by Rule I and II, otherwise

it would have changed its Description to not_closest_beam. Figure 4.17 illustrates the

results achieved by running the rule sets on a test model for an example internal column

and an example external column.

4.9 The Enriched IFC File Results and Final Phase

Figure 4.18 depicts a collection of snapshots taken from an enriched IFC P21 file that was

the result of execution of all the rule sets explained earlier in this chapter. The test model

88

is a 6-floor building with 4 column bays in one side and 5 in the other side. Heights of the

columns in the model are above 67’ which means they exceed the maximum feasible

column length set at 50’ and are required to be segmented.

 One external column (#324), one internal column (#2046) and one segmented like

internal column (#1357) is selected for these snapshots and their classification as inte rna l

or external is expressed in their Tag attribute values. Also for the pocketed columns this

fact is reflected in their Description value. The value of ‘column_segmented’ verifies that

the columns have passed through the rule in Figure 4.6 that evaluates their length and it

Figure 4.17: The enriched IFC model depicting closest floor/spandrel to columns as well
as beam classification example results

89

has determined that the columns depicted here needed to be segmented and new column

pieces are added to the IFC file. One of the three beams selected for the snapshots is a

spandrel (#17287) and the other two are of non_spandrel_beam type (#11924 & #19340)

and this fact is conveyed through their ObjectType value. Each of these selected beams is

also closest to one of the selected columns, illustrated in their Description. As such in each

of the IfcRelAggregates relationships created one of the column beam pairs that are closest

Figure 4.18: Collection of snapshots from an enriched IFC P21 file created by execution
of column segmentation rule sets

90

to each other participate; the column as the RelatingObject and the beam as the

RelatedObjects.

The only step in the column segmentation algorithm not discussed in this chapter

is step (6) that involves evaluation of spandrels to figure out if they are inboard or outboard.

With the currently available operators, this proved to be a complex problem that involves

many different design situations and requires several rule sets to solve. Due to this and also

that being inboard or outboard is an important factor in determining the type of connections

between spandrels and columns, the related rule sets to step (6) will be discussed in the

chapter that discusses automated design of connections between precast concrete elements.

Except that, all the information essential for determining the location of precast concrete

columns’ segmentation are provided by the rule sets discussed in this chapter.

The final steps to estimate the length of newly created column pieces based on the

information added to the enriched model are as follows:

 If we assume that a column is segmented to two pieces, the bottom elevation of one

of them (which will be referred here as bottom column) will be equal to the bottom

elevation of the parent column and the top elevation of the other (which will be

referred here as top column) will be equal to the top elevation of the column.

Through the relationships created between the top and bottom column pieces and

their parent columns, the top and bottom elevation of parent columns for each new

column pair can be assigned to new columns’ attributes.

 The next step is to find the top elevation of the bottom column piece and to find the

bottom elevation of the top column piece which will equal the top elevation of the

first piece plus the joint distance between spliced columns, usually equal to 2”.

91

According to step (8), (9) and (10) of the column segmentation algorithm (Figure

4.3), top and bottom elevations of the bottom and top column pieces are calcula ted

relative to the top elevation of the closest intersecting spandrel or beam to the

middle of their parent column. Since between each segmented column and its

closest intersecting beam/spandrel an aggregation relationship is built (Figure 4.15,

4.16 and 4.18), the top elevation of closest intersecting beam/spandrel to the parent

column of top and bottom column pieces can be tracked. Through this then top and

bottom elevations of the bottom and top column pieces are derived and added to

their properties

 With their top and bottom elevation available, height of the newly created column

pieces is calculated. With their height provided and since the cross section profile

of new columns is the same as the parent column, volume of the top and bottom

columns are then calculated, which are essential inputs for quantity take off, cost

estimation and other preconstruction activities.

4.10 Conclusion and Next Steps

This chapter discussed a four step framework to perform an automatic semantic enrichment

of design models for the purpose of evaluating and preparing model objects for

preconstruction activities namely QTO and CE. First a product information model was

developed, followed by a problem solving algorithm to infer new information needed to

perform a BIM-based QTO and CE activities. Then a set of rules were designed to

implement the designed algorithm. It was shown with the test models how the inferred facts

were added to design models and users could inquire about them.

92

In the next steps algorithms and rule sets are developed for evaluation and preparation of

other major product types. Also the process will be taken one step further and a knowledge -

based system framework will be developed to use the semantic enrichment for automatic

design, predicting design features absent from models and adding them to models.

This framework can be adopted for other building systems to fill the gap between

available and required BIM design information in different project stages. Yet, considering

that SEEBIM uses a simplified geometry of objects and does not deal with curved shapes,

there are some inherent limitations to using the rule sets on complex models with free form

objects. Future efforts can expand the rule sets and required operators to handle various

geometric forms.

93

CHAPTER V

A KNOWLEDGE BASED SYSTEM FRAMEWORK FOR AUTOMATIC

EVALUATION AND PREPARATION OF BIM-BASED DESIGN FOR

CONSTRUCTION

5.1 Introduction

The AEC industry has been on a fast track in adopting BIM in recent years; yet the BIM

adoption for many preconstruction and construction activities has been slow due to large

gaps between BIM-assisted design information and required preconstruction and

construction information. Moreover, the current workflow for adoption of BIM in activit ies

like quantity take-off (QTO) and cost estimation (CE) is not cost-effective and practical

especially for small and medium sized companies.

A knowledge-based system (KBS) framework is designed to represent the acquired

knowledge of construction experts, infer the knowledge required to perform QTO and CE

activities and produce the results in the form of enriched IFC design models and tabular

QTO information.

 This framework is deemed to streamline flow of information from BIM design

platforms to preconstruction activities in the AEC project. It acquires the knowledge of

construction people and not only provides the necessary design information to construction

people but also makes it accessible to design people. Implementation of this framework

facilitates adoption of BIM for contractors and sub-contractors specially small and medium

sized companies with less resources to implement BIM using the current workflow. It also

94

attempts to make the adoption of BIM cost-effective for QTO and CE activities in which

construction parties are involved in fast track processes and limited time and resources

which often makes building the new models with required information and appropriate

object representation impractical.

 A prototypical solution was developed to automatically modularize monolithic

precast concrete slabs and provide their quantitative information to construction users for

CE, bidding and production planning purposes.

5.2 Knowledge-Based Systems Overview

Knowledge-Based Systems (KBS) provide a platform to acquire, represent and process

data, information and knowledge to generate new knowledge. Unlike traditiona l

information systems they can act as decision makers and serve like an expert on demand

[54, 55]. KBS have emerged from the Artificial Intelligence (AI) field and are employed

for numerous purposes in various industries.

Knowledge in the sense that is used in KBS can be defined as a system, that

provides the ability to manipulate, transform or create data and information to make a

decision, perform skillfully or solve a problem [56]. One useful classification of knowledge

that grasps two of its important dimensions is (i) conceptual knowledge that is

“understanding of the principles that govern the domain and of the interrelations between

pieces of knowledge in a domain” versus procedural knowledge defined as “action

sequences for solving problems” [57]; (ii) explicit knowledge that involves articulated and

structured or semi-structured knowledge versus tacit knowledge built by experience,

guided by intuition and residing in one’s subconscious [58].

95

A closely related concept to KBS is Knowledge Based Engineering (KBE). KBE

has mostly been classified as a special type of KBS. Cooper & La Rocca [60] defined KBE

as “the use of dedicated software language tools (i.e. KBE systems) in order to capture and

re-use product and process engineering knowledge in a convenient and maintainab le

fashion.” The ultimate objective of KBE is to reduce the time and cost of product

development by automating repetitive, non-creative design tasks and by supporting

multidisciplinary integration in the conceptual phase of the design process and beyond.

The notion that identifies automation of repetitive and non-creative design tasks as

one of the major benefits of implementing KBE systems, is shared by many researchers.

This concept, highlights the fact that by significant time and cost savings resulted from

automation of repetitive tasks, designers can focus more of their efforts on creative aspects

of design [61, 94].

5.2.1 Knowledge Based Systems Architecture

The two major components of the KBS architecture include a knowledge base and a

reasoning engine [54]. Some researchers have also included a task [74, 75] and a user

interface layer [76, 77] as essential and separate components of a KBS structure. Figure

5.1 illustrates structure of a knowledge-based system.

Domain layer consists of a knowledge base that serves as a repository that

represents the knowledge acquired from various domains and represented using different

representation tools. Knowledge acquisition and representation deal with content and

format of knowledge respectively and enhance availability and usability of knowledge

[76]. Various textual, graphical and computer-interpretable knowledge representation

conventions and tools have been developed to standardize knowledge modeling in different

96

domains. A knowledge base represents the acquired domain knowledge using an ontology.

User interface systems enable interactions of KBSs with users [76]. For effic ient

communication, these interactions should consist of two main aspects of (a) receiving

inputs from users that outline users’ organization preferences, limitations or requirements.

These inputs are used during the reasoning process to refine problem-solving strategies and

achieve a dynamic and customized solution based on users’ needs; (b) representing the

outputs of reasoning and task layer based on users’ criteria for selecting, filtering and

grouping outputs.

5.2.2 Proposed KBS Framework for Preconstruction Activities

The reviewed knowledge-based systems assume that design models used include

all the information required for cost estimation about designed products and their features

Figure 5.1: Knowledge based systems structure

97

and that the representation method and units in design models fit the cost units of

manufacturers, fabricators and constructors. In other words, they only extract information

represented explicitly in design models, but do not modify the design to reflect the

fabrication and installation units critical for cost estimation. They do not anticipate product

features missing from design in earlier stages of a project, nor attempt to enhance and

complete the information retrieved from design models to fill the gap between design

model data and data required for a project’ cost estimation. Hence, most designed syste ms

would only work under ideal situations when late project information is available early in

the project for design entities and are contributed to design and represented in design

models, which is rarely the case.

The proposed KBS framework, depicted in Figure 5.2, aims to build on the

previously developed KBS frameworks and modify and improve them to depict real project

work limitations. This is achieved by designing a framework to adjust design models and

make them suitable for cost estimation without the need for rebuilding the design models.

The key extension is to infer the knowledge critical for accurate cost estimation about

missing design features. Thereby the proposed system attempts to enhance the knowledge

extracted from design models and to automate the current mostly manual and time-

consuming QTO and CE process.

A KBS framework was developed to provide a streamlined, 3D parametric model

based quantity take off and cost estimation for construction products. This framework is

represented in Figure 6 and includes the 4 layers of domain, reasoning, task and interface,

designed for the precast concrete products which comprises the area chosen to implement

a proof of concept for this research effort.

98

 Several precast companies have collaborated and provided their company

standards, practice manuals and their historical project cost estimation information. The

principal researcher of this effort co-located for a few weeks with the industry

representatives to acquire domain knowledge of various experts including estimators,

structural engineers, plant managers and erectors.

Process maps for each product type was developed that identify the type of

information required for features and functions composing a product. In the product

information process maps, modules of rule sets required for each feature and function were

identified. To develop the rule sets, various design conditions were devised and presented

to experts and the design process adopted by experts were traced and recorded. This process

resulted in decision trees that represent the rules used in the decision-making process.

The developed process maps and decision-trees were reviewed by experts

representing different segments of the industry to identify other potential decision paths.

The knowledge acquisition process, of course, is a repetitive cycle where each cycle

involves modification- expansion, deletion and change - of previously developed decision-

trees and process models and development of new ones.

5.2.3 Cost estimation Methods: Adoption in the Framework

A combination of activity- and feature-based product decomposition is used in this

research. The study investigates a variety of design features that compose a specific product

type, the supply chain process and activities that are required to fabricate each feature, and

identifies design variables that affect cost of each activity and therefore are important to be

provided for cost estimators.

99

 The main goal of the reviewed CE methods has been defining relationships of

different design variables to cost of a project using historical data and applying various

machine learning and optimization methods [11]. The focus in building the knowledge base

of this framework is not to define cost relationships, rather to identify existence of those

relationships between different variables and cost of a project and providing value of these

variables to users, when they are not readily available in design models, through building

Figure 5.2: The proposed KBS framework

100

a rule library and a rule processing engine. When the value of different variables are

determined and provided to users they can then plug them in their formulas that are built

based on their production process and local economic conditions.

5.3 Problem Definition

Precast concrete slabs designed and modeled by architects and structural engineers working

for design parties are often monolithic pieces passing through several column bays. These

huge monolithic elements cannot be fabricated and erected. They need to be segmented to

narrower pieces usually with a maximum width of 15', based on our interviews with several

precast concrete companies.

Providing the information about the size and geometry of each slab piece is critical

for construction companies and is a prerequisite for detailed design of slabs, production,

shipping and erection planning as well as quantity take-off (QTO) and cost estimation

(CE). Many of the cost contributing factors like building forms, number of concrete pours,

number of slab connections with other building elements, amount of reinforcement

required in slab design and weight of each slab piece that determine the required number

of truck loads and appropriate crane type and capacity for the project, depend on the size

and geometry of each slab piece.

The information that can be extracted by the design models that are provided by

design entities to construction parties is limited to the total volume and weight of concrete

used in slabs which is not enough for the decisions made throughout the supply chain or

providing an accurate QTO and CE by precast concrete companies.

101

The same modularization problem and lack of necessary information in design

models exist for columns, discussed in chapter 4, and wall panels. Thus, those precast

concrete companies that decide to adopt BIM, have to develop their own models. Only a

fraction of the projects for which companies prepare QTO and CE and participate in their

bidding process is awarded to each company. Considering that, most companies can’t

afford the resources required to build a BIM model for each project that they bid for.

Moreover, the manual evaluation of design and modularization of slabs is error-

prone and difficult to optimize. In the manual modularization process estimators have to

rely on their judgment and prior experience which are subjective and difficult to formalize,

communicate and standardize. When errors occur and less than optimal element design is

used for the rest of the supply chain, they lead to additional costs to the company that won

the bid and project delays. Even when the initial design during the QTO and CE is modified

and improved during the detailed design, since companies’ compensation is based on their

initial bids, the cost change has to be absorbed by the construction company which can lead

to less project profitability.

In addition to automating the process and saving time and providing the potential

for less errors and more optimal design solutions, when the QTO and CE activities are

performed using BIM and their quality is improved the results can be used as the basis for

later detailed design, production planning and fabrication. Currently and based on our field

studies, there is a disconnect between the QTO and CE and subsequent activities after

winning the project, which creates considerable waste and rework in the process. BIM

based QTO and CE using the proposed KBS framework for semantic enrichment of designs

and automated modularization and preparation of models can help not only streamline flow

102

of the information from design phases to QTO and CE but also from them to other

preconstruction and off-site and on-site construction activities.

5.4 The KBS Framework Implementation: Solution Overview

 The steps of implementing the developed KBS framework as well as the software products

used during the implementation are illustrated in Figure 5.3. The knowledge base

development for precast concrete slab segmentation was executed with a focus on Double -

Tee (DT) slabs that comprise the majority of slabs used in the precast concrete industry.

The whole process can be divided into two major steps:

(1) Semantic enrichment of the initial design models. Span of the slabs and column bay

lengths of bays that each slab is passing through are inferred from the model and

added to the design model

(2) Automatic optimized design of slab pieces.

(i) Structural analysis to find maximum structurally feasible width for various

loading conditions and slabs of different span lengths

(ii) Developing a solution for automation and optimization of slab piece design. As

illustrated in Figure 5.3, this plugin received the data input from various sources

including enriched design model data, results of the structural analysis as well

as the user input that reflected the company preferences and limitations. Then

the data input from these sources were integrated and processed in an algorithm

developed to suggest the best slab modularization scheme for various possible

design situations to meet the predefined criteria by users. The results are

presented in two ways:

103

 The slab pieces and their width, length and elevation information were

added to the enriched design model.

 The quantity of slabs of various sizes along with other QTO information

was written in Excel tables.

First the product information model throughout the slab design, fabrication and erection

was developed. Product models and an example developed for precast concrete columns

Figure 5.3: Implementation of the KBS framework for precast concrete slab
segmentation and quantity take-off

104

were provided in Chapter 4. Then algorithms for each of the above two steps were

developed.

5.5 Semantic Enrichment of Design Models

The goal here is to infer the information about column bays and their lengths for each slab

that passes through them. A column bay is defined as the horizontal distance parallel to

slabs’ direction between centroids of two neighboring columns. Providing this information

is important since DT slabs are generally segmented in a way that their joins lie in line with

the center of intersecting columns. One reason for this is to make sure that DT stems are

located in places that they interface with a beam, a spandrel or a wall panel and not with a

column. Hence, the distance of column bays provide the first guideline for modularizing

slabs.

As mentioned in Chapter 4, SEEBIM was adopted for semantic enrichment in this

research work. A categorization of operators and attributes in SEEBIM and their functio n

was discussed in detail in that chapter. Figure 5.4 shows all the object attributes and

operators of different categories used for slab modularization. The operators in boxes color-

coded with purple headings are used in the IF clause of the rules to analyze the object

attributes and spatial and non-spatial relationships of objects. Those in boxes color-coded

with blue headings are used in the THEN clause of rules to perform a task and add the

inferred semantics to BIM-based design models. These attributes and operators were used

in a set of rules to implement the algorithm depicted in Figure 5.5.

5.5.1 Developed Rule Set for the Slab Modularization

The following provides a summary of the rule set developed for semantic enrichment of

models for slab modularization purpose:

105

Slab Classification. This is the first step in semantic enrichment of models for slab

modularization. Classification rules, and examples of them were discussed in detail in

Chapter 4. Like beams, slabs also can be classified based on their profile geometry. As

shown in Figure 5.6, small overlap between hollow-core and flat slab, the profile height

Figure 5.4: List and categorization of object attributes and operators used in

semantic enrichment of models for slab modularization

106

range for the three slab types are distinct. For the purpose of identifying DT slabs profile

height condition was used.

Slab Width Assignment. Moreover the information about object width and length is

implicit in IFC models. SEEBIM is able to access, infer and work with various attributes

Figure 5.5: The algorithm developed for developing the rule set required for semantic
enrichment for slab modularization

107

of objects including width. Yet for the purpose of using it for automated design, it was

required to provide the width value explicitly for each slab in one of its IFC attributes. Slab

width was assigned to each slab’s ObjectType.

Assignment of Number of Bays Each Slab is Passing Through. Step 2-4 of the

algorithm depicted in Figure 5.5 explain the process for finding and assigning the number

of bays each slab is passing through. First a relationship between each slab and all the

intersecting columns is created which is referred to as rel-type A in Figure 5.7. As depicted

in Figure 5.10 that represents selected parts of the resulting enriched IFC file, the Name

and Description value of “columns_supporting_the_slab” is assigned to this relationship.

Then another rule finds the “columns_supporting_the_slab” relationship that each slab

belongs to as RelatingObject. It uses the operator count_objects_in_a_relationship to count

the number of RelatedObjects in this relationship. These RelatedObjects are the columns

that support each slab. The rule then using the change_element_attribute operator changes

Figure 5.6: Height range of different types of precast concrete slabs used for slab
classification

108

the Description of slabs in each of those relationships according to the formula
n

2
− 1in step

4 of the algorithm in Figure 5.5. For example, as you can see in Figure 5.7 each slab is

supported by 8 columns but is passing through 3 bays.

Finding Column Bay Lengths and Assigning Slabs to Column Bays. From all the

possible column-column relationships that can be built among the columns supporting each

slab, we needed to only select those column pairs that (i) are neighbor of each other; and

(ii) the axis between their centroid is parallel to the intersecting slab’s direction and not

Figure 5.7: Relationships created between model objects for identifying column bays
and assigning them to slabs

109

perpendicular to it. This means selecting column pairs at the end of blue beams and

spandrels in Figure 5.7 and not those at the end of pink beams and spandrels.

First as explained in step 5 of the algorithm in Figure 5.5, beams and spandrels that

(i) their vertical_wide_faces are adjacent to vertical_wide_faces of each slab; or (ii) are

overlapping with the slab and their vertical_wide_faces are aligned with

vertical_wide_faces of the slab, are selected. This means all the blue beams and spandrels

in Figure 5.7. Then a relationship named “column_pair_and_beam_supporting_the_slab”

with Description and domain_type of column_bay is created between slabs and each of

those beams and spandrels. This relationship is depicted by rel-type B in Figure 5.7.

The next rule, depicted in Figure 5.8, implements step 6-7 of the algorithm and

picks up the columns that are adjacent to or overlapping with each beam. By using the

is_part_of operator, it narrows down the pool of selected beams to those that participate in

the column_bay relationship. Next line acts as a no-loop control declaration, explained in

Figure 5.8: The rule to build column_bay relationships

110

detail in 4.8.1.2 section, to make sure that the rule is performed only once on each beam-

column pair and avoid an infinite loop. Next, access to column_bay relationship that the

selected beam is involved in needs to be provided. The selected beams might be part of

several different relationships. The find_relationships_containing_element operator finds

only those relationships with column_bay as their domain_type. In the THEN clause the

column is added to the previously found column_bay relationships.

Now in each rel-type B relationship two columns and one beam participate as

RelatedObjects and one slab as the RelatingObject. Note that since each column might pass

through several floors, and also in each floor interior columns support two slabs, each

column participates in multiple rel-type B relationships. Also since slabs are adjacent to or

overlapping with several beams, each slab participates in multiple rel-type B relationships.

The last rule, depicted in Figure 5.9, in this rule set implements step 8-9 and finds lengths

of the column bays and assigns them to the column_bay relationships that slabs are

participating in. The rule selects the pairs of columns that belong to the same column_bay

relationships which means they are neighbor of each other and the distance between their

centroids is the bay length. Next it finds all the column_bay relationships that the selected

column pair participate in. In the THEN clause it first finds the distance between centroid

of column pairs and saves it in a variable called C1_C2_bay. Then the

set_attribute_list_of_relationships sets the Description of all the relationships found in the

IF clause to the C1_C2_bay value. The last segment in the THEN clause as well as the line

with the is_not_related_to operator in the IF clause act as a no-loop control declaration:

Each time the rule is executed a relationship (rel-type C in Figure 5.7) is created in the

THEN clause and next time if the same column pair is selected by the rule, the

111

is_not_related_to will not allow the rule to execute again, since already a relationship

between those columns was built.

Now as illustrated in Figure 5.10, each slab is in a series of relationships with

domain_type of column_bay and Name of “column_pair_and_beam_supporting_the_slab”.

The Description of each relationship is the bay length of those columns that participate in

that relationship. Since domain_type is an object attribute used internally by SEEBIM to

refer to relationships but is not an IFC object attribute, the domain_type value

(column_bay) is not among the written attributes of the relationships in the IFC enriched

file.

Figure 5.9: The rule to add bay lengths to column_bay relationships

112

Figure 5.10: Collection of snapshots from an enriched IFC P21 file created by execution
of the slab modulorization rule set

113

5.6 Automatic Design of Slab Pieces

5.6.1 Structural Analysis to Find the Maximum Structurally Feasible Width of Slabs

The next step was to create a library that provides the maximum feasible double-tee (DT)

slab width under various possible design conditions. Creating such a library and linking it

to design automation and optimization plugin will help users to pull and reuse the analysis

results for various projects. Table 5.1 shows the user input for performing the structural

analysis and Table 5.2 demonstrates part of the library created for the selected pretopped

DT profile with 4" think flange and 30" depth. The depicted segment in Table 5.1 is for

DT span of 50' and 70' which are the DT spans in the test case provided in this chapter. In

the future and when there are data interfaces built between structural design and analysis

tool and knowledge-based systems used for automated design, the analysis results can be

pulled from structural analysis tools in real time. PCI Design Handbook [86] provides all

the standard DT profiles used in the industry. Each precast concrete company uses a

handful of those standard profiles. Hence, building such a library using structural analysis

tools like Bentley LEAP PRESTO, which is used in our analysis, is a practical solution.

Table 5.1: User input for precast concrete double-tee slab structural analysis to find max.
DT width and stem reinforcement design in various loading and span conditions

Design code ACI 318-05

Selected DT profile [86] pretopped, 4" thick flange, 30" deep

Precast concrete strength 6000 psi

Concrete in flange topping 5000psi

Slab self-weight [86] based on normal weight concrete 150 pcf

Prestressed strand type & size 9/16" dia. 270ksi, parallel pull

Longitudinal rebar size #5 or #6 of grade 60

Loading eccentricity 0

114

To create the library, the structural analysis to determine (i) the total final stress

(psi) on the bottom of DTs under prestress plus all dead loads (DL) and all live loads (LL),

(ii) ultimate strength (pMn/Mu), (iii) camber and deflection (inch) under live loads, and for

DTs with width greater than 9' also (iv) transverse bending on flanges, all based on the ACI

318-05 design code was performed. The library is created for five live loads ranging from

40-250 psf.

The LL range and values are selected based on the ASCE/SEI 7-10 standard [116]

that defines minimum design loads for buildings and other structures. The selected live

loads cover the minimum uniformly distributed live loads for most of different building

types in this standard from schools and libraries to hospitals, office buildings, recreational

uses, heavy manufacturing buildings and more.

The library is created for DTs with the span of 40' to 90' with increments of 5' based

on the span range provided for standard DT profile design in the PCI design handbook

[86]. Since tests showed that in terms of maximum allowed DT width and stem

reinforcement design, 5' difference in span doesn’t make a meaningful difference specially

in the accuracy required for QTO and CE, the spans in between two can be rounded up to

the next number. The selected strand and rebar size and type (Table 5.1) are the typical

ones used by most companies for DT stem design. The table is developed by first finding

the maximum DT slab width and the minimum number of strands (tendons) required in

each DT stem for every DT span and LL combination that satisfied the above mentioned

design code requirements.

115

 Using the maximum structurally feasible DT width minimizes the number of

pieces for each project which is one of the goals of DT piece design by precast concrete

companies. However, the building design, specifically bay sizes as well as fabrication,

shipping and erection costs often impose design and fabrication of narrower DTs. These

factors will be explained in more detail in section 5.6.2.1. To satisfy these situations

minimum number of strands that satisfy the above mentioned structural requirements for

DTs narrower than maximum structurally allowable width and equal or wider than the

minimum feasible DT width (7') are also calculated.

Hence, the table provides stem reinforcement design for all possible DT widths and

lengths (spans) and loading conditions. In Table 5.1, for example the far left cell in cross

section of 80 psf LL and 50' span reads 14’ and 10, meaning that the maximum allowed

Table 5.2: Results of the slab structural analysis including the max structurally

feasible DT width and stem reinforcement design for each DT width

116

DT width is 14' and 14' wide DTs in this design situation require 10 strands. In the same

design situation, 13' wide DTs require 8 strands and so on.

In a number of situations like the cell in the far left cross section of 70' span and 60

psi live load the numbers under the width reads like “16S+2R+8k C”. This means that this

design situation requires 16 strands and 2 rebars and 8000 psi concrete. Rebars are used

when the number of strands specified were not satisfying the structural criteria and are

added to increase the moment capacity. There are two reasons to opt for this solution

instead of adding to the number of strands: Either the depth of stems and the available DT

forms don’t allow adding to the number of strands (maximum number of strands in most

standard DT forms is 8 per stem.) or since per unit of measurement (foot) rebar on average

costs less than a strand, if adding 2 rebars was enough to meet the structural requirements,

that option was preferred. The 8000 psi concrete was only used when strands and rebars

were not enough to meet the structural requirements and without the increased concrete

strength, the maximum allowed DT width had to be lowered. These choices were preferred

since based on the experience of the interviewed industry experts, the economic benefits

achieved by less pieces per project with designing wider DTs surpasses the cost of added

rebars and stronger concrete.

5.6.2 Automation and Optimization of Slab Piece Design

The goal in this section is to develop and implement an algorithm that suggests the best

feasible slab modularization scheme that meet the design limitations and the user criteria.

The implemented algorithm would work like a plugin that receives, integrates and

processes the information from the enriched IFC models (Table 5.5), the structural analysis

117

results (Table 5.2 and Table 5.3), and the user input that reflects the company preferences

and limitations (Table 5.4).

5.6.2.1 User Input: Company Preferences and Limitations

Preferred DT Width. Due to various factors affecting the supply chain of double-tees (DTs)

and additional shipping and handling costs incurred by companies for wide DTs, many

times the ideal DT slab width for companies to minimize the fabrication, shipping and

erection costs of DTs is different than the maximum structurally allowed width. An

example of these factors that affect the total cost for companies is the permit fee in most

U.S. states for shipping DTs wider than 12'.

This ideal DT slab width to minimize the total supply chain costs of DTs is here

referred to as “Preferred Width” and is denoted by Wpref in the algorithm developed for the

automated design of DT pieces. The preferred width is determined by companies based on

their historical data of prior projects. The preferred width in our interviews with several

precast concrete companies is determined to be 12' by most companies in the U.S. Hence,

in the test case 12' is used for Wpref when running the program. Yet it is recognized that

this preferred width might be different for different companies. So Wpref is defined as a

variable whose value is provided by users and the algorithm optimizes the DT piece design

for different values of Wpref.

Maximum Feasible DT Width of the Plant. While generally segmenting slabs

according to companies’ Wpref value minimizes the fabrication and erection costs,

sometimes and depending on the bay length fabricating wider slabs can help reduce the

number of pieces by one, i.e. instead of two narrow slabs one very wide slab is used. In

these cases and based on the experience of the precast concrete companies the saving that

118

results from reducing the number of slabs surpasses the additional cost of shipping and

erecting wider slabs. In our designed algorithm, only when designing slabs wider than

Wpref leads to decreasing the number of slab pieces by one, these slabs are used.

The maximum feasible DT width that can be used for these wide slabs is determined

by the forms in each plan and other plant design factors like plant’s gate width. Here, this

maximum feasible width is denoted by Wplant.max. Based on our studies while a few

companies can produce 15' wide DTs, maximum width for most companies in the US is

14', hence this value is used in the test case.

Minimum Feasible DT Width of the Plant. This is determined based on the DT

profiles that each company can fabricate which in turn depends on the installed forms in

the plant. The maximum feasible DT width, denoted by Wplant.min, in each plant needs to be

larger than the DT stem centroid to centroid distance. According to the PCI design

handbook [86] this distance for standard DT profiles range from 4' to 7'-6". Since this

distance in the selected DT profile for the test case was 6', the minimum feasible DT width

of 7' was used.

119

Table 5.3: Results of the design model semantic enrichment and performed structural
analysis used as input for automated and optimized slab design

Table 5.4: User input reflecting company preference and limitations used as input for
automated and optimized slab design

Table 5.5: Semantically enriched IFC test model data extracted to be used as input for
automated and optimized slab design

Symbols User Inputs: Outputs of Semantic

Enrichment & Structural Analysis

Lbay Semantic enrichment output: Length of

column bays that each slab is passing through

Wstruc.max Structural analysis output: maximum

structurally feasible DT width

Symbols User Input: Company Limitations &

Preferences

Values Used in

the Test Case

Wpref Preferred DT width 12'

Wplant.max Maximum feasible DT width of the

plant

14'

Wplant.min Minimum feasible DT width of the

plant

7'

Symbols Values Extracted from the Initial Test Model & Added to the

Enriched Model

Slab Type1 Slab Type2

slab span 49.93' 69.5'

of slabs in the model 3 (level 1,2 &3) 3 (level 1,2 &3)

Wbay of bays that each

slab is passing through

32', 45', 48', 50', 53' 32', 45', 48', 50', 53'

120

As explained earlier Wpref is the company desired width for DTs and this algorithm is

designed to maximize the use of Wpref unless Wstruc.max is lower than Wpref and structura lly

it is not feasible to use Wpref in the design. For this reason first the minimum of Wpref and

Wstruc.max for each slab in the model, denoted by Typ (W), is found and used in the formulas.

Moreover, when designing slabs using Wplant.max decreases the number of slab pieces by one, these

slabs are used, unless again the Wstruc.max is smaller than Wplant.max. Thus, we need to find the

minimum of these two variables, denoted by Max (W) and use that in formulas.

Typ (W) = Min (Wpref, Wstruc.max)

(1)

Max (W) = Min (Wplant.max, Wstruc.max)

(2)

Since the algorithm intends to use as many slabs with the width of Typ (W) in each bay,

the first step is to find out if Typ (W) is a divisor of Lbay:

RL = Lbay % Typ (W)

(3)

where RL is the remainder of dividing Lbay by Typ (W). RL stands for “Remaining Length”

which indicates that when the bay slab is segmented using slabs of Typ (W) width, the

remaining length of bay will be equal to RL. value. Table 5.6 depicts the outputs of

formulas used in the rest of the algorithm and their meaning. The formulas provide the

number of slab pieces with width of Typ (W) in each bay and the width and number of

slabs used in the remaining length of bay.

The rest of the algorithm is structured based on the value of R.L. and can proceed in one

of the following four directions:

(1) if (RL= 0) (4)

then DTquant = DTquant.typ = Lbay / Typ (W) (5)

DTquant.last = 0 (6)

In this situation the whole bay length will be divided into slab pieces of Typ (W) width.

(2) if (RL >= Wplant.min) (7)

 then WDT.last = RL (8)

DTquant = ⌊Lbay / Typ (W)⌋ + 1 (9)

DTquant.typ = ⌊Lbay / Typ (W)⌋ (10)

121

DTquant.last = 1 (11)

In the second case, the whole RL will be one slab. This will produce DTs with typical

width for most of the bay length and at one end of the bay one narrower DT with a width

somewhere between Wplant.min and Typ (W). DTquant is the floor of Lbay divided by Typ (W)

plus one for the DT that goes to the remaining length of the bay.

(3) if (RL < Wmin & RL <= Max (W) - Typ (W)) (12)

then WDT.last = Lbay – (Typ (W) * (⌊Lbay / Typ (W)⌋ - 1)) (13)

DTquant = ⌊Lbay / Typ (W)⌋ (14)

 DTquant.typ = ⌊Lbay / Typ (W)⌋ – 1 (15)

DTquant.last = 1 (16)

Formulas in the third situation will produce DTs with typical width for most of the bay

length and at one end of the bay one wider DT with a width larger than Typ (W) and

smaller or equal to Max (W).

(4) if (RL < Wplant.min & RL > Max (W) - Typ (W)) (17)

then WDT.last = (Lbay – (Typ (W) * (⌊Lbay / Typ (W)⌋ - 1)))/ 2 (18)

 if WDT.last >= Wplant.min (19)

 then DTquant = ⌊Lbay / Typ (W)⌋ + 1 (20)

 DTquant.typ = ⌊Lbay / Typ (W)⌋ – 1 (21)

 DTquant.last = 2 (22)

 if WDT.last < Wplant.min (23)

 then WDT.last = (Lbay – (Typ (W) * (⌊Lbay / Typ (W)⌋ - 2)))/ 3 (24)

 DTquant = ⌊Lbay / Typ (W)⌋ + 1 (25)

 DTquant.typ = ⌊Lbay / Typ (W)⌋ – 2 (26)

 DTquant.last = 3 (27)

Fourth situation will produce DTs with typical width for most of the bay length and at one

end of the bay 2 or 3 narrower DTs. Consider the Lbay of 53' with Typ (W) of 10'. Based on

line (18), the WDT.last is 6.5' which is less than Wplant.min. Thus, WDT.last will be calculated

based on line (24) which results in WDT.last ≈ 7.66'. Hence, this bay will be segmented to

two 10'wide DTs and three 7.66' wide DTs. If the resulting WDT.last in line (24) is still

smaller than Wplant.min then the algorithm will continue with the same logic shown above

until the WDT.last >= Wplant.min, however, that situation rarely occurs.

122

5.7 Test Case Results

The test model used to illustrate the system results is a 3 floor building structure with two

large monolithic precast concrete slabs in each floor that each pass through five bays (Table

5.5). The lengths of the bays were chosen in a way that all the four situations explained in

the algorithm above occur.

The code is written in Python but any programming language for which plugins are

written to be able to pull data from IFC files as well as Excel sheets can be used. The code

is written in a way at the end it automatically writes the results of precast concrete slab

modularization into the enriched IFC file as well as Excel sheets which is the form that

cost estimators usually use for QTO and CE activities. The following is the information

that are provided for users in the output files:

Enriched IFC file: Equal to the number of the slab pieces that the algorithm devises

for each slab to be segmented into, IfcSlab entities are created and added to the end of IFC

file. Examples of these added entities can be seen in Figure 5.11. Slab width, floor level,

span length and number of strands and rebars used in its stem design were added to Name,

Description, ObjectType and Tag attributes of the entities as seen in Figure 5.11.

Excel tables: The results are provided in two tables. In the first table (Table 5.6)

the slab piece is organized per floor level. The tables and their information items were

designed based on actual QTO tables that were collected from precast concrete companies.

The code finds all the slabs with equal width and span length that are in the same floor

level and writes their size and concrete and reinforcement quantity information in one row.

Quantities were first provided per piece and then total quantity of same size slabs in each

level is provided. Total concrete volume was calculated multiplying the DT slab profile

area by its span and by number of DT pieces in each floor, where DT slab profile area was

123

extracted from PCI Handbook [86]. The second table (Table 5.7) the same information was

provided for DTs of similar size in the whole project as well as total linear feet, volume

and weight of concrete used in the whole project.

Table 5.6: Output of the automatic design of the slab pieces: slab piece lengths and

widths in each floor level, total quantity of slabs in each level and size, and slab stem
reinforcement design

124

Table 5.7: Output of the automatic design of the slab pieces: slab piece
quantity and stem reinforcement in each size group in the whole project

Figure 5.11: Added slab entities to the enriched IFC model and their
attribute information

125

5.8 Conclusion

In this chapter a knowledge-based system framework for automatic semantic enrichment of design

models as well as automatic and optimized design for preconstruction and construction activities.

The framework was implemented for precast concrete slab modularization as a proof of concept to

illustrate how it can automatically infer the information needed for practitioners to be able to

segment monolithic slabs and perform QTO and CE on them. The algorithm was designed in a way

that it minimized the number of slab pieces while adhering to user preferences and limitations. It is

important to note that the framework and design algorithms can easily be edited by users to provide

optimal design solutions for different users.

 Ideally and for a completely integrated and automated process, such a KBS platform should

be integrated with various design and analysis tools like the structural analysis tool used in the

illustrated example to pull the necessary information in real time from various sources of creating

knowledge throughout a project. This will need solving the interoperability problems among

design, analysis and project management platforms. Also right now users insert their input

through separate interfaces: one built for developing rules in SEEBIM and Excel for

automated design. Integrating these user interfaces and automating transfer of data between

the first and second step of the process will improve the user experience in the future.

126

CHAPTER VI

AUTOMATED DETAILED DESIGN FOR STREAMLINED APPLICATION OF

BIM IN PRECONSTRUCTION ACTIVITIES

6.1 Introduction

The current industry practices for QTO and CE activities are mostly manual, time -

consuming and error-prone. This chapter proposes enhancement of the proposed KBS

framework to be used for automated detailed design. The area of focus is automated design

of connections between precast concrete elements. Various design factors impact the

quantity and types of connections used among different building elements. This solution

enables practitioners to analyze the building design conditions, infer the quantity and type

of appropriate connections for each design situation and automatically add the connections

to design models so that cost estimators can extract this information from the design models

and use for estimation activities.

6.2 Design Automation

The concept of design automation, to a large extent, has been synonymous to Computer

Automated Design which suggests using an automated and computer integrated system to

assist with the product and project design. The focus of design automation has mostly been

on engineering design. While design automation aims to automate the mundane

engineering tasks and to predict the design, in doing so most often it attempts to achieve

design optimization, and in some forms to even improve the innovation in design. As such

the concepts of “automated design”, “predictive design” and “design optimization” are

closely tied together.

127

6.3 Integration with Design Optimization Methods

Throughout the efforts for automated design a variety of solution search and optimiza t ion

methods have been utilized. Classical mathematical and probabilistic methods have long

been used for design automation. Later and with the emergence of evolutionary

computation methods they were increasingly applied to design automation especially to

more complex problems with a high number of variables and large search space [32].

Evolutionary algorithms evolve the solution space by conducting iterated and interrelated

selection and reproduction processes. Several studies [32, 33, 92] have reviewed, classified

and compared the research body on mathematical as well as heuristic models used in the

facilities design.

The level of design progress determines the amount of available information and

how well the problem and its constituent parameters can be defined. Generally formal

mathematical methods perform well in the detailed design stages and on the well-formed

problems. On the other hand the major advantage of evolutionary methods is in dealing

with solving problems with fuzzy objectives and vague structure [33]. While the solutions

for detailed design problems are only selected based on quantitative criteria, the conceptual

design solutions are selected using a combination of qualitative and quantitative criteria.

In the context of cost estimation applications, the underlying methodologies, differences,

advantages and disadvantages of mathematical and heuristic methods were presented in

Chapter 2, section 2.1 of this work.

Kicinger et al. [33] categorized the structural design optimization efforts in three

major groups:

128

 Topology and layout optimization which is the focus of conceptual design stage

 Shape optimization performed during design development

 Sizing optimization focused on optimizing member profiles and dimensions and

performed during the detailed design

To a large extent the same categorization can be applied to the architectural design

optimization problems. The design stage determines the amount of available information

and how well the problem and its constituent parameters can be defined. Generally formal

mathematical methods perform well in detailed design stages and on the well-formed

problems. On the other hand the major advantage of evolutionary methods is in dealing

with solving problems with fuzzy objectives and vague structure. While the solutions for

detailed design problems are only selected based on quantitative criteria, the conceptual

design solutions are selected using a combination of qualitative and quantitative criteria.

Examples of research efforts in these three categories using evolutionary algorithms

include optimization of topology of truss structures using Genetic Algorithms (GAs) [34,

35], optimization of beam and slab layout using a GA [36], design optimization of tall

reinforced concrete buildings using fuzzy logic [37], structural shape optimization [38],

truss size optimization by heuristic method of harmony search [39], and optimizing the size

of large steel structures [40], and finally optimizing design of the reinforced concrete

frames based on cost, constructability, environmental impact, and safety performance of

the design using multi-objective simulated annealing [41].

Examples in the architectural design domain include applying evolutionary

algorithms to produce novel space compositions during the architectural design [42], using

129

ant colony method to optimize design of the building envelopes based on lighting and cost

performance [43].

One important application domain of design automation has been to explore a large

variety of design solutions and to generate distinctive designs. Evolutionary design process

is one of the major automated design generation tools that is used mainly during the

conceptual design when some of the objectives are unquantifiable and subjective [44].

Shape grammars were combined with evolutionary design computation to generate a

shelter design [45]. Maher et al. [46] introduced co-evolutionary design process in which

both design requirements and solutions evolved and fitness function changed based on the

interactions among requirements and solutions.

Another classical example of design automation problem is layout design

optimization. A computer-aided automated design procedure [47] was developed to

explore spatial and structural design interactions and to automatically generate spatial

designs, building zones, structural system for each zone and room positioning within

constraints of the selected structural design. Numerous research efforts chronicled in [48]

have focused on automating and optimizing layout design of buildings specially

manufacturing facilities. Another study [49] generated developed a set of geometric

constraints and objectives to generate and optimize architectural layout designs of

residential blocks.

6.4 Integration with Knowledge-Based Systems and Object-Oriented Modeling

The focus of the above systems has been on automatic search for solutions and improving

the performance of the solutions against a defined function. Another words, they have

130

tackled automation of data processing while the processes for acquiring design data,

structuring, representation and reusing the data for a broader problem spectrum to a large

extent was left unsolved.

Realizing the need for providing flexible and intelligent product design definit ion

and manipulation to cover broader design automation problems more efficiently resulted

in using object-oriented parametric design modeling tools in design automation efforts.

The demand for a platform to store, represent and reuse the knowledge about the product

and process design from various sources deemed the concepts and methodologies used in

Knowledge Based Systems (KBS) a suitable fit to augment design automation efforts [50].

Sacks et al. [51] approached the design automation through automating design data

representation and storing using parametric product modeling and data integrat ion

technologies. They developed a parametric template for defining data units with geometric,

topological, and production processing information in a way that their combinations can

generate various object classes which then instantiate a set of designs based on predefined

rules. The system comprises of a set of knowledge modules with rules for structural design,

floor plan design using different slab/column spacing combinations and generating work

assembly for each structural element.

KBS development to attack design automation problems have been pursued by a

number of other researchers. One of the early initiatives to use object-oriented product

modeling for knowledge representation [50], introduced a Design Analysis Response Tool

(DART) considering cost, functionality and manufacturing aspects of the design using a

KBE methodology for the automotive industry. Other efforts applied a KBS to automate

design of aircraft wiring harnesses [93], developed a KBE tool to propose appropriate

131

design changes throughout the finite element analysis and based on the results of the

analysis [52], developed a KBS for automation of assembly design and cost estimation

using an object-oriented knowledge representation method. Yet another study [53]

proposed a knowledge-based framework linked to CAD product design and structural

analysis software to support automation of the design of ascent assemblies and boom boxes

for ship cranes.

6.5 Automated Detailed Design: Precast Concrete Connections

Connections perform a fundamental role in buildings and infrastructure construction. They

transfer loads and stabilize the structure. There are a broad range of factors that affect

design of connections. Hence, it is essential to consider all these factors that influence

determination of the applied loads and other design aspects of connections. According to

the PCI Connections Manual [88], the major connection design and performance criteria

include strength to transfer the subjected forces, ductility, durability, fire resistance,

tolerance, aesthetics, seismic requirements and constructability.

Connections and their quantity, type and design play an important role in

determining cost of the construction projects. Observation of the QTO and CE practiced

process in several precast concrete companies showed that currently the main guidelines

for estimators in forecasting the quantity and type of connections in each project is their

judgment of design situations and rules of thumb that they have developed based on their

experience. As mentioned earlier variety of factors affect the design of connections and the

purpose of developed rules of thumb by estimators is to simplify the process which is to a

great degree manual and time-consuming. This simplification of connection design process

132

many times leads in not contributing some of the design features and conditions that affect

the design of connections and results in less than accurate estimations.

A prototypical solution is proposed here that integrates the KBS concept with

detailed QTO and CE methods as well as semantic enrichment of design models to forecast

the type and quantity of connections required for precast concrete elements for vario us

design situations. Figure 6.1 provides a comparison between the current and proposed QTO

and CE practice. Similar to examples provided in Chapter 4 and 5 the inferred knowledge

is added to design models to make it accessible for users.

The knowledge required for the predictive design of precast concrete connections

has been acquired from precast concrete industry guidelines for connection design [86, 87,

88, 89, 90], extended interviews with several industry experts including some of the

members of the Precast Concrete Institute (PCI) connections committee as well as studying

company developed connection design and detailing standards and historical data from

example projects provided by collaborating companies.

Figure 6.1: Current versus proposed QTO and CE process

133

It is important to note that many structural engineers develop creative connection

solutions especially when standard design solutions don’t address the limitations and

demands of extraordinary design situations. Capturing all the possible connection design

configurations is impossible. The proposed connection solutions represent the standard

connection quantity and types used in majority of projects. As explained in Chapter 2, the

objective of the proposed solution is not to replace domain experts. The objective is to

assist them by reducing the time and cost required for manual product detailed design, QTO

and CE processes by automating repetitive, non-creative design tasks and by supporting

multidisciplinary integration of knowledge to increase the efficiency and accuracy of

results. Hence, the proposed connection design schemes for different situations reflect the

typical solutions mostly practiced in the industry.

In this chapter, through a series of examples, impact of building design, relative

positioning of building elements, location of element interfaces, aesthetics, constructability

and erection considerations on the number and type of connections are discussed. Detailed

connection assembly configuration design to meet the required strength involves complete

analysis of the design loads which is out of the scope of this effort. Such a detailed

structural analysis and design is performed in later stages of projects before product

fabrication. The goal here is to provide enough information about the type and quantity of

connections among different design elements to enable automatic QTO and CE of

connections. Construction companies develop and maintain a database of unit cost for

standard types of connections. Thus, when estimators are provided with the number and

type of connections and their location i.e. between which design elements they occur, they

134

can pull the unit cost for the standard configurations used for that connection type and

ultimately can calculate the total cost of connections.

6.5.1 Introduction to Precast Concrete Connections

Various criteria can be used to categorize the connections used among the precast concrete

elements. In a high level and in terms of the structural role, connections can be divided to

(i) gravity or bearing connections that transfer vertical loads and require a bearing surface;

(ii) tie-back connections that can play various roles and provide tension, compression,

torsion, shear and moment resistance; and (iii) tie-back plus gravity connections that are a

combination of the first two connection types. This high level classification is used by

many industry practitioners to describe the connections and is used in the provided

examples in this chapter.

Various load transferring devices are used in design of connections. Some of the

major categories of these devices include [86] concrete anchors or studs, deformed bar

anchors and post-installed anchors like grouted anchors, rebar couplers and splice devices,

bolts and threaded connectors and threaded rods. Examples of these devices are provided

later in this chapter. These devices use welding or mechanical load transfer mechanisms.

6.6 Prototypical Implementation of the Proposed Solution

First all the precast concrete building elements and their interfaces with each other

where they require connections were identified. Then for all element interfaces that need

connections a human-readable guideline to determine number and type of connections was

developed using the knowledge acquisition sources explained in section 6.5. This guideline

identifies the design variables that affect the decision-making about connection designs.

135

Table 6.1 shows an example developed guideline. Then, several computer interpretab le

libraries of rule sets were developed and tested using the SEEBIM solution.

A categorization of operators and attributes in SEEBIM and their functions was

discussed in detail in Chapter 4. Figure 6.2 shows all the object attributes and operators of

different categories used for precast concrete connection design. The operators in boxes

color-coded with purple headings are used in the IF clause of the rules to analyze the object

Figure 6.2: List of attributes and operators used in the predictive design of precast
concrete element connections

136

attributes and spatial and non-spatial relationships of objects. Those in boxes color-coded

with blue headings are used in the THEN clause of the rules to perform a task and add the

inferred semantics to BIM-based design models. As shown in the figure, spatial topologica l

relationships of adjacency, alignment and overlap as well as several mathematica l

operators to analyze element dimensions are used here to evaluate the designed objects.

Testing of the developed rule sets was performed on various precast concrete design

models representing different frequently used design situations to infer quantity and type

of connections in the following categories:

 Column to column connections

 Beam to column connections

 Spandrel to column connections

 Double-tee (DT) slab to double-tee connections

 DT slab to beam connections

 DT connections to shear walls parallel and perpendicular to DT direction

 Shear wall to shear wall connections

These categories contain major types of connections among structural precast concrete

elements.

6.6.1 Column to Column Connections

Chapter 4 explained implementation of an algorithm developed for determining the best

place for segmenting the precast concrete columns that their height exceeds the maximum

feasible height determined by users. For those columns that were required to be segmented,

new column pieces were created using the create_a_set_of_split_objects operator. This

operator also creates a relationship with the domain_type value of split_pieces between the

137

created split column pieces and their parent column object so that the user examine which

column pieces belong to which parent column.

The split column pieces need two connections in between, usually designed to be

hidden: One acts as a tension, compression, shear and moment resisting connection and the

other is a bearing pad that acts as a gravity connection. The first connection is a mechanica l

connection that usually is designed using one of the two major methods of (1) grouted

splice sleeve coupler, or (2) bolted connections using anchor rods and a plate.

Figure 6.3 depicts the rule developed for creating column to column connections.

A uniform color code for representing different components of the rules is used in the

pseudo codes and the legend to the color code is provided in Chapter 4, Figure 4.7.

When split column pieces were created their ObjectType was set to split_pieces so

that they are distinguishable from the parent columns. Hence, the rule selects the objects

based on their ObjectType. Next to verify that both selected columns are split pieces of the

same parent column, the rule checks to see if they are related by a relationship of

domain_type split_pieces.

When the conditions are met, the rule is triggered and in the THEN clause creates

the first connection using the IfcDiscreteAccessory entity with Name, Description and

ObjectType values that reflect the type of connection. Then

create_connection_relationship operator creates a connection relationship between the

created connection and the column pieces. IfcRelConnectsWithRealizingElements is used

to create the relationship which requires the realization of the relationships by its

RealizingElements attribute. RealizingElements can be a set of objects that are used to

represent the connections created between two elements. In order to add the created

138

connection to the RealizingElements attribute of this relationship first a set from the created

connections is made. The two column pieces are added to RelatingElement and

RelatedElement attribute of the relationship. Next the second connection is created and

added to the relationship using the add_object_to_relationship operator.

6.6.2 Beam to Column Connections

Inverted-tee beam (ITB), L beam and rectangular beam are the three main types of precast

concrete beams. Beams generally transfer the floor loads to the interesting columns through

the beam to column connections. In general beams either intersect with one side of columns

or transfer the loads to the top surface of the columns. Table 6.1 shows the guidelines

developed for predicting the type and number of connections in each design situation.

First a classification rule distinguishes the spandrel beams from non-spandrel

beams. Then beam to column connection creation rule, selects a non-spandrel beam and a

column. Next it checks to see which faces of the two objects are adjacent: If one of the

vertical_narrow_faces of the beam is adjacent with one of the vertical faces of the column,

it means that the beam is intersecting with the side of the column. If

horizontal_bottom_face of the beam is adjacent with the horizontal_top_face of the

column, then beam is intersecting with the top of the column. In each situation, the

appropriate number and types of connections are created in the THEN clause. The structure

and function of the THEN clause is similar to the column to column connection rule.

6.6.3 Spandrel to Column Connections

Spandrels might be non-load bearing (NLB) or load-bearing (LB). NLB spandrels provide

support in front of seismic forces, wind and other environment factors and carry their self-

139

Table 6.1: The guideline developed for predictive design of beam to column

connections

140

weight load. Load-bearing spandrels replace the beams and receive the floor loads and

transfer them to columns.

There are various design factors in addition to their structural role that affect design

of the spandrel to column connections. In most design situations three connections used

between each spandrel and interfacing column: One tie-back connection close to the top

edge of the spandrel, one tie-back connection close to the bottom edge of the spandrel and

one gravity connection in the bottom. However, the contributing design factors affect many

aspects of connection designs leading to variety of connection types used. They also

determine necessity of additional design features to accommodate the connections.

6.6.3.1 Impact of Spandrel Design Conditions on Predictive Detailed Design

Structural role of spandrels as well as their positioning relative to intersecting columns

impact:

 Number, type, assembly detail, capacity and location of spandrel-column

connections

 Spandrel design features like daps, notches, and added corbels or ledges

 Column design and its features like added corbels

 Erection sequence and necessary provisions

Therefore, it is essential that for accurate prediction of spandrel-column

connections first a set of rules to be designed to determine the following:

 Whether the spandrel is load-bearing or non-load bearing

 Whether the spandrel is inboard or outboard

 Whether the spandrel is passing through the interfacing column creating a pocket

(recess) in the column

141

 Whether the spandrel is connecting to columns at the building corners

The following section provides examples to illustrate how structural role and

positioning of spandrels impact each of the above-mentioned aspects:

1. Structural Role (LB versus NLB spandrels): When spandrels receive the floor loads

from double-tee (DT), hollow-core or flat slabs and transfer the floor loads to

columns eliminating the need for beams, they are considered LB spandrels.

Otherwise they are NLB.

 The structural role of spandrels affect the required capacity of the connections

which in turn impacts specifications of connection designs. In most design

cases connections with capacity of 23-33 kips are used for LB and with

capacity of 9-18 kips for NLB spandrels.

 LB spandrels transfer floor loads from double-tee and other slab types to

columns. Therefore, LB spandrels intersecting slabs that transfer their load to

the spandrels need a bearing surface on them that is provided either by adding

a ledge in the bottom edge of the LB spandrels or a set of corbels at the

intersection of double-tee slab stems (Figure 6.3 (a)).

 The structural role of spandrels along with their positioning relative to

exterior face of their interfacing columns (i.e. inboard versus outboard,

explained in point 2) affect the access to spandrel and column surfaces for

connection inserts which in turn impacts the choice of connection assemblies.

Examples of design situations in which spandrels’ structural role affects the

design of connections include:

142

o If the spandrel is NLB and outboard interfacing a pocketed column, the

beam that intersects the column will obstruct the access required for

mechanical connections with pocketed sleeves (Figure 6.3 (b)). So

usually welded connections with slotted inserts are used for the bottom

spandrel-column (SP-C) connections.

Figure 6.3: Load-bearing and non-load bearing spandrels: (a) LB spandrel with added
corbels to support transfer of loads; (b) NLB outboard spandrel; (c) NLB inboard
spandrel dapped to allow the intersecting beam’s access to the column surface

143

o If the spandrel is NLB and inboard interfacing a pocketed column, the

beam that intersects the column clashes with bottom of the spandrel.

Hence, these spandrels are dapped to allow the beam to pass through

(Figure 6.3 (c)). Mechanical connections with pocketed sleeves can then

be used for both top and bottom SP-C connections. The bottom SP-C

connection will be above the bottom dap and therefore distanced further

from the bottom edge of the spandrel than the bottom connections in non-

dapped spandrels.

2. Inboard versus outboard: When the exterior face of spandrels is aligned with the

exterior face of the intersecting columns, they are considered outboard and when

the interior face of spandrels is aligned with the interior face of the intersecting

columns, they are considered inboard.

 When mechanical sleeved connections are used, the pocketed sleeve and

grouted surface to fill the pocket should be on the interior face hidden from

outside. Therefore, if the spandrel is inboard, the sleeve and the grouted

surface are placed on the spandrel and if it is outboard they will be on the

column. This means that the whole connection assembly is rotated 180°

depending on the spandrel’s position which also affects some of the other

connection assembly details like the length of the threaded or coiled rod used.

 For LB spandrels, the distance of approximate column centroid from the axis

along which DT slabs transfer their load to spandrels for outboard spandrels

is much smaller than the inboard spandrels. This means that the vertical load

eccentricity is smaller in outboard spandrels than inboard spandrels (Figure

144

6.4). This results in more tendency for the column interfacing inboard

spandrels to lean out of plumb during erection, resulting in the need for special

bracing and alignment during erection. Therefore, outboard spandrels are

generally easier and more economical to erect.

 Connection tension and/or compression loads are identical but reversed

between the two spandrel positions: For outboard spandrels, the bottom

connection is in tension and for inboard spandrels the top connection is in

tension. The tension condition generally governs design of the top and bottom

connections. The compression connection can be simplified to a plain bearing

condition if desired for economic reasons. Moreover, during the erection the

tension connection should be placed first and is essential for stabilizing the

spandrel.

3. Spandrels connecting to columns at the building corners versus those connecting

to columns on the edge of building:

Figure 6.4: Approximate load eccentricity in outboard and inboard LB spandrels

145

 When spandrels are at the building corner, the two spandrels intersecting the

column from two sides meet at angle of 90°. This results in limitations in

location of top and bottom spandrel-column connections, might impose some

changes to connection assembly design and might require an added

connection between the two spandrels at the corner eliminating connections

between one of the corner spandrels and the intersecting column or in addition

to those connections.

4. Pocketed versus non-pocketed column: When spandrels pass through the column,

the column is pocketed and when they end where the column starts the column is

non-pocketed.

 For non-pocketed columns, the interfacing spandrels need some type of

support with a bearing surface to accommodate the gravity connection. Thus,

either a corbel is added to the column or when depending on the design

situation and for aesthetic reasons the support needs to be hidden, a Hollow

Structural Section (HSS) tube steel bracket embedded in the column or

Figure 6.5: Spandrel intersecting a non-pocketed column with
a notch to hide the HSS tube bracket

146

welded to the column and filled with concrete or grout is used. In these

situations often the bottom of the spandrel is notched to embrace the HSS tube

and hide it (Figure 6.5).

 When columns are pocketed their cross-section area is reduced to a large

extent. This sometimes requires designing columns with larger cross-section

when they are pocketed compared to non-pocketed columns under similar

design loads.

 Fabrication and erection of pocketed columns interfacing spandrels (inboard

or outboard spandrels) is often more economical than non-pocketed columns

despite the likelihood of having to use larger cross-section columns when they

are pocketed. This is due to the forming complexity and extra cost of the

added corbels on non-pocketed columns. Additionally, the pocketed columns

are very tolerance insensitive, and thus these columns are easier to mainta in

consistent alignments during their erection.

The above considerations in design, fabrication and erection aspects in turn impact

the cost of fabrication, shipping and erection of precast concrete members and ultima te ly

the total cost of projects. Thus, it is important for all the project stakeholders to be able to

quickly and reliably identify spandrels’ positioning and structural role. This information is

important for the constructors to more easily and accurately calculate projects’ cost and be

able to provide detailed design and develop product planning. It is also important for the

designers to learn about the cost implications of their design choices and be able to make

educated design decisions.

147

6.6.3.2 Rule Set Development for Predictive Detailed Design of Spandrels

The first step in developing the rules to predict the number and type of connections between

spandrels and columns is to identify the previously discussed four design conditions that

affect the design of connections. The methods used to identify these design conditions

analyzes spatial topological relationships of the objects involved in the spandrel-column

interface. The only design condition from the top four that can be identified by only

analyzing direct spandrel-column relationship, is identifying whether the column is

pocketed or non-pocketed: If the spandrel and column bounding boxes are overlapping, the

column is pocketed. If they are adjacent, the column is non-pocketed.

Identification of other three design situations requires analyzing not only the direct

relationship of spandrels and columns but also their relationship with other neighboring

objects including:

-Spandrel and slab relationships (SP-SL): adjacent, overlapping or aligned in both sides or

only in one side

-Column and slab relationships (C-SL): adjacent, overlapping or aligned in both sides or

only in one side

-Column and beam (B-C): adjacent

-Spandrel and beam for NLB spandrels (SP-B): adjacent

148

These relationships change depending on the structural role of the spandrel and its relative

positioning. Hence, they can be used to help identify these design conditions. Figure 6.6

and 6.7 illustrate the broad range of possible design situations for spandrels connecting to

corner columns (referred to as corner spandrels) and those connected to columns. As shown

in the figures some of the described object relationships change from one design situation

to another.

Figure 6.6: Various possible design situations for spandrels at the building corner

149

Design and testing of the rule sets for various design situations proved that affirma tive

identification of spandrel design situations in most cases require assessment of several

object relationships.

Figure 6.7: Various possible design situations for spandrels on the building edge

150

As mentioned earlier in each rule a maximum of two objects can be selected. Yet complex

design situations like this involve several objects and require getting access and operating

on other objects that are related to the main selected objects. For this purpose first a set of

basic rules were developed to identify various spatial relationships that the design objects

involved in spandrel-column connections can have. The inferred result of each of these

Table 6.2: Various object relationships analyzed in developing the spandrel
identification and connection design rule sets for corner spandrels

151

basic rules are then used in final set of rules that provide an affirmative identification of

spandrel design condition and create the necessary connections according to the identified

spandrel design scenario.

Table 6.2 and 6.3 illustrates the object relationships used for identification of the

type of spandrel in each of the 15 design scenarios of corner spandrels and 18 design

scenarios of the spandrels on the building edge. As shown in the tables 12 different object

Table 6.3: Various object relationships analyzed in developing the spandrel
identification and connection design rule sets for corner spandrels

152

relationships marked from (a) to (l) are analyzed for slab connection design rules. For

identifying the relationships of spandrels and columns with neighboring objects,

relationships (c) to (l), ten basic rules, numbered as Rule#1 till Rule#10, were written. The

numbers in the third row of the Table 6.2 and forth row of the Table 6.3 denote the design

situations depicted in Figure 6.6 and 6.7. The blue colored cells represent the relationships

that apply in each design situation. The dark blue colored cells signify the minimum

number of relationships required to affirmatively distinguish each design situation from the

others. The light blue colored cells designate the relationships that although apply to those

design situations, are not necessary to be used as a condition in the rules for positive

spandrel type identification and connection design.

The attributes of inboard and outboard, pocketed and non-pocketed and corner and

non-corner are identified for each spandrel-column interface and assigned to the connection

relationship created between them. The reason is that these attributes can be different in

one end of the spandrel compared to the other end of the same spandrel. This means that

the spandrel for example can be inboard in one end and outboard in the other end. Hence,

these are in fact attributes of spandrel-column connections. However, a spandrel can either

be load-bearing or non-load bearing and the structural of a spandrel is the object attribute

and as such, is assigned to spandrel object entities.

Figure 6.8 and 6.9 depict two of these ten rules, namely Rule#4 and Rule#5,

developed to identify relationships of spandrels and columns with neighboring their

objects. As Figure 6.8 depicts, when vertical_narrow_faces of the spandrel is aligned with

either vertical_narrow_faces or vertical_wide_faces of the slab they are considered aligned

in both sides. The reason that condition of the alignment of vertical_wide_faces of the

153

Figure 6.8: The rule designed to identify spandrel and slabs that are

aligned in both sides

Figure 6.9: The rule designed to identify columns and slabs that are
aligned only in one sides

154

spandrel with one of the vertical faces of the slab is not used in the rule is that always this

condition is true. Figure 6.6 and 6.7 verify this point. The reason that the aligned face of

the slab can be either of narrow or wide vertical faces is that the slab direction can be either

parallel or perpendicular to the spandrel direction. In the first situation the wide vertical

faces will be aligned with the narrow faces of the spandrel and in the second situation the

narrow vertical faces will be aligned with the narrow faces of the spandrel. Finally the

reason for adding the adjacency condition to the rule is that faces of two objects that belong

to two different floors or are in different parts of the same floor can be aligned. So

alignment does not verify that the two selected objects are neighboring objects. Adding the

adjacency condition verifies that the two selected objects are also each other’s neighbors

which are the only objects of interest in the rules.

Figure 6.9 depicts Rule#5 that identifies columns and slabs that are aligned only in

one sides. Part I of this rule verifies that when one of the vertical_narrow_faces of the

selected slab is aligned with one of the vertical faces of the column, vertical_wide_faces

of the slab are not aligned with any of the vertical faces of the column. Part II of the rule

verifies that when one of the vertical_wide_faces of the selected slab is aligned with one

of the vertical faces of the column, vertical_narrow_faces of the slab are not aligned with

any of the vertical faces of the column. When Part I or Part II of the rule holds true for the

selected slab and column, it means that they are aligned only in one side.

The result of the ten basic developed rules is creating a relationships between the

two selected object according to the examined object relationship in the rule. These

relationships are then called in Rule#11 till Rule#25 by using one of the is_part_of or

belongs_to operators.

155

Figure 6.10: The structure of the rule designed to identify and create
outboard_spandrel_pocketed_column connection relationships and to

create the required connections

156

Figure 6.10 illustrates the structure of Rule#11 which can be used both for corner

and edge spandrel-column connections. The structure of this rule is representative of rules

11-25. In these rules first the relationship between the selected objects are examined. Then

it is checked to see if the other required relationships between selected objects and other

objects involved in the design situation holds true. In Rule#11 for example

adjacent_spandrel_slab and overlapping_column_slab are required to hold true. The

is_part_of and belongs_to operators check if the selected objects are at least in one such a

relationship. But these might be involved in the designated relationship type with many

objects in the model.

Hence, it is important to verify that the third object involved in the relationships

with the main objects is in fact the same object. In this example it is verified that the slab

adjacent to the spandrel and overlapping with the column is the same slab. This verifica t ion

is performed through compare_elements_attributes operator and by examining the

part21_line number of the related objects in those relationships. Part 21 files are IFC files.

In these files each object instance has a unique line number that can be used for the

verification of identity of design entities. When part21_line number of the related objects

in those two relationships is equal, it means they are in fact the same object. The logic and

structure of the THEN clause of these rules is similar to column to column connection rules

explained in section 6.6.1.

6.6.4 Double-Tee, Shear Wall and Beam Connections

Figure 6.11 illustrates the design situations where the connections between two DTs,

between DTs and shear walls, between DTs and beams and between two shear walls can

157

happen. The model depicted in this figure is also used as a test model for the rules of this

section. Similar to previous sections, the rules in this section examine the spatial

topological relationships of objects to identify the type and number of connections used

between them. Results of running the rule sets are added to IFC files to create enriched

models. As illustrated in Figure 6.12, these added connections can be seen by users when

the enriched IFC models are imported to Autodesk Navisworks Manage software. They

Figure 6.11: Design situations for Double-tee, shear wall and beam
connections (model courtesy of The Consulting Engineering Group

company)

158

can be found in Find Items window and Selection Tree window that provide a breakdown

structure of the objects in the model.

Figure 6.12: The enriched IFC model imported to Navisworks Manage
that depicts the added double-tee, shear wall and beam connections

159

CHAPTER VII

LIMITATIONS AND GENERALIZATION OF THE PROPOSED

FRAMEWORK

7.1 Research Limitations

Limitations of this research work can be discussed from the technical point of view as well

as industry implementation point of view.

From the technical implementation standpoint the first limitation is using a

simplified object geometry based on object bounding boxes to develop and test rule sets.

Hence, features like recession, blockout or dap in objects don’t impact their relationships

with other objects since they don’t impact the geometry of its bounding box. The

experience of solving several problems using this system showed that simplifying object

geometry to its bounding box sometimes have been helpful for solving problems and

sometimes didn’t provide complete information about an object and required developing a

workaround. Moreover, this system can only be applied to objects with rectangular shapes

and spatial relationships of curved or otherwise free-form objects cannot be handled within

this system. This limitation was not significant in the test domain of the structural precast

concrete since most objects have standard shapes. Yet, it will impose an important

limitation for extending the system to areas like architectural precast concrete.

Moreover, in the current implementation, the created new objects like column and

slab pieces, tendons, connections and corbels don’t have a geometric representation or

placement. In the framework of using design models for QTO and CE this is not an

160

important drawback since it doesn’t impact the ability to extract the quantities of objects.

However, automatic addition of geometric representation for created objects using the

previously developed MVDs will support expanding the use of the enriched models

directly for other downstream activities like detailed design and production planning.

The vision discussed in detail in Chapter 5 considers the KBS a platform that has

access to and can use the information created by different design, analysis and project

management platforms in order to extract knowledge, infer new knowledge and present it

to uses. Yet, due to lack of interoperability among different tools used in a project lifecyc le,

in the current test cases the information output of each tool was manually imported in the

other tool. This of course is a long-discussed problem and many research teams and

industry organizations attempt to solve it.

7.2 System Generalization

System generalization can be discussed both in terms of implementing the developed

framework across the industry in the domain for which the prototypical solution was

developed and in terms of expanding the proposed methodology to other domains in the

AEC industry. Several strategies during the research work was used to mitigate the

limitations of generalizing the developed framework.

Lack of standardization which is one of the characteristics of the AEC industry,

poses a great challenge to this research: Various processes and rules are practiced in

different parts of the industry. The problem is how to develop the rules so that they

represent a wide array of options and approaches practiced by different industry

practitioners.

161

The first step to handle this challenge was to consult with different companies of

different sizes, in various levels of technology adoption and in diverse segments from trade

companies to engineering consulting companies to general contractors. This helped to

define the problems from different points of view and build a wide vision about the

processes and solutions deployed in different segments. Also the results of each step of the

work explained in the methodology segment was checked and verified with representatives

of different companies and sectors.

Another fundamental approach used to mitigate the impact of nonstandard industry

solutions, was to define a minimum industry-wide core concept for each step of the

problem solving algorithms. This minimum concept included the common practice that

was accepted by representatives of different companies. Differences in company practices

that reflected company production limitations and preferences were represented by

variables which are parameters that users can select, and tweak and adjust their values to

reflect their project or company conditions and preferences.

This can be explained using the example of column segmentation: One shared core

concept is max column length that is feasible to fabricate and erect or otherwise

economically practical and hence preferred. Yet, this length can be different for different

companies based on their production plant and available trucks and sometimes specific

conditions of each project might impose setting a different maximum length for each

project. So instead of setting a specific number for all users, “max feasible column length”

is identified and incorporated in rules as a variable for which the users can provide their

selected value.

162

Another core concept is segmenting columns in closest location possible to the

middle of the column and that the closest location to the middle of column is defined in

relationship with intersecting floors or spandrels. The preferred splicing location for

instance for internal columns, is 2' above the finished floor of closest intersecting floor to

the middle of the column. While this is practiced by majority of the companies, the location

compared to finished floor depends of the building design and connection types used.

Hence, it is in a range usually between 1.5'-2' above the finished floor and cannot be

presented by one number. Hence, again this range is represented as a variable in the rule

sets not as fixed number.

So basically the design rule differences are identified and represented as a set of

variables so that the rules and their outcome can be easily adjusted to represent preferences

of different users. Using this method throughout the rule development ensures flexibi lity

of the system and applicability to a wide array of practices.

7.3 System Extendibility to Other Domains

There are many fundamental similarities in the supply chain and information workflow of

different building systems. While the knowledge body and content of the rules are different

for different domains, the proposed architecture, methodology and fundamental building

blocks of the system can be reused to expand its applications to other domains in the AEC

industry.

If we consider for instance other building structure systems including CIP concrete

and steel structures, analogies in the preconstruction processes, the sub-functions and the

type of information required exist among them. For instance, forecasting type and number

163

of connections among different objects or segmenting the objects into constructib le

modules are also required for steel structures. In the precast concrete and steel these

modules are product pieces and in CIP concrete they are concrete pours which act as a type

of connection. Of course, the supply chain process and different structural properties of

different systems impose different rules for each system and the knowledge for building

the rules need to be investigated. But to a large degree they all use the same fundamenta l

concepts and information items.

These reusable building blocks include the concepts developed to define geometric

and non-geometric attributes of each product type, the concepts developed to define various

spatial and non-spatial relationships among objects, and flexible rule structures that use

these shared attribute and object relationship concepts which can be mixed and matched to

customize the rules and build virtually infinite number of rule sets.

164

CHAPTER VIII

BROADER IMPACTS OF THE RESEARCH AND CONCLUSIONS

This research effort proposed a framework for a knowledge-based system integrated with

parametric object-oriented modeling platforms to support and streamline BIM-based

preconstruction activities. The focus was on providing a framework for acquiring,

structuring, representing and reusing the domain experts’ knowledge and inferring new

knowledge to be used in downstream project activities. The knowledge base includes

process maps, product decomposition models and elucidation of required information

items, the flow of information throughout these activities that simulates the process adopted

by industry experts.

The simulated expert processes were then represented as a set of problem solving

algorithms, based on which modularized libraries of rule sets were created. First category

of rule sets semantically enhance design models by embedding the identified design

information required for preconstruction activities. The enhanced design models are then

used for modularization of the design objects into elements that can be fabricated and

erected. Finally the last module is applied to the modularized and prepared design model

that includes the rule sets designed to automatically predict the product features and those

attributes that are missing from the design and to automatically add them to the design

models. These rule sets are developed to discover and embed geometric and non-geometr ic

165

attributes of design objects, to detect spatial topological relationships among objects, and

to create new logical objects and various relationships between objects.

The industry experts contributed to the project all emphasized the necessity of

developing such a knowledge-based automation system and the potential benefits for the

industry. They have been consulted with about outcomes of each step and their comments

and modifications were reflected in the developed models and rule sets. The methodology

and building blocks of the system can be reused for developing BIM-based automated

preconstruction activities in other domains of the AEC industry.

 Streamlining flow of information from BIM-based design to preconstruction

activities. Currently there is a misalignment of object representation in design models

compared to the object representation in the form of constructible modules required for

preconstruction and construction activities. Due to this misalignment, construction entities

often have to develop models from scratch. This research work proposes a framework that

evaluates the designed objects based on the defined rules and when necessary creates new

objects with constructible geometry and provides their quantity information to users. As a

result the need to create new models are eliminated and design models can be directly used

as the base model for elaborated detailed models used in construction activities.

 Semi-automating preconstruction activities. Currently even when BIM is

adopted for preconstruction activities, since many object features and design elements

important for accurate QTO, CE and other construction activities are absent with a

potential to improve accuracy, they need to be manually forecasted and accounted for.

Through semantic enrichment and automated detailed design the proposed framework

166

automatically forecasts the missing features and elements of the design and adds them to

the model.

 Improving the cost-effectiveness of adopting BIM in preconstruction activities.

This is the result of eliminating the need to create models from scratch for preconstruction

purposes as well as semi-automating the process. The time-saving resulted from these two

improvements will make the adoption of BIM for these activities economically viable.

Currently due to the fact that these activities are labor-intensive and also that companies

only win a fraction of the projects that they bid for, and to make the process economica lly

practical, many of the estimations rules are simplified and some design conditions are not

accounted for in estimations.

 Through automating the repeated and time-consuming tasks during the

preconstruction and detailed structural design stage, the proposed framework enables the

industry practitioners to focus on creative aspects of these activities and optimizing the

design. Moreover, it facilitates accounting for more design conditions in their estimations

and provide more detailed estimations and potentially improving the accuracy of cost

estimations.

 Communication enhancement. A KBS for BIM-integrated preconstruction

activities will provide a visual medium to streamline communication of the logic and intent

of project cost estimation with different entities in a project lifecycle from architects to

structural engineers, plant managers and general contractors. Right now the applied

estimation process and rules are not well communicated among different project parties

and sometimes even inside one company. Using this system trade contractors can more

efficiently communicate their estimation logic with general contractors. Even though

167

preconstruction experts try to consult with structural engineers on unusual design

situations, as it is done through traditional time-consuming methods, collaboration between

them is limited and unstructured. Many times there is a disconnection between actual

structural design and estimators’ assumptions.

This system provides a two way systematic communication between structural

designers and estimators, where structural engineers can, to the degree possible, follow in

their design the same logic used in the estimation. This way the actual cost of a project will

be kept more in line with the estimated cost. And when structural limitations don’t allow

this to happen, they can provide feedback through the system to alter and improve the

estimation rules. Hence, a continuous and virtuous feedback and improvement loop

between structural designers and estimators will be created.

 Paradigm shift in knowledge availability. In the proposed solution, the detailed

structural design, fabrication and construction knowledge was encapsulated and the

inferred knowledge was provided through enriched design models. Hence, implementa t ion

of this methodology will facilitate capturing construction and disseminating this

knowledge to both construction entities as well as designers and other parties involved in

the AEC projects. This will shift the availability of detailed structural design and

construction process information to earlier in the project lifecycle and during conceptual

design and design development. Such a shift in knowledge availability will create a new

paradigm where architects and structural engineers of record can in real time see results of

their design decisions on constructability and cost of a project and can instantly modify

and improve their design rather than waiting until late project stages when changes in the

design will be more costly.

168

APPENDIX A

RULE SET FOR AUTOMATIC SEGMENTATION OF PRECAST CONCRETE

COLUMNS

 int x;
 bool why;

 for (int i = 0; i < Element_list.Count ; i++)
 {

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcColumn") &&
 !Operators.if_is_a(Element_list[i], "ObjectType","column_segmented") &&
 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&

 Operators.is_dimension(Element_list[i], "height",">",50) &&
 Operators.is_dimension(Element_list[i], "height","<=",100))
 { if (Operators.change_element_attribute(Element_list, Element_list[i],

"ObjectType","column_segmented") &&
 Operators.split_up(Element_list, Rel_list, Element_list[i], "2"))
 {Flag=true;

 System.Console.WriteLine("Rule #1.: i = " + i);}
 }

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&
 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&
 Operators.calculate_aspect_ratio(Element_list[i], "height","width") &&

 Operators.is_dimension(Element_list[i], "aspect_ratio","<",4.6) &&
 !Operators.if_is_a(Element_list[i], "ObjectType","non_spandrel_beam"))
 { if (Operators.change_element_attribute(Element_list, Element_list[i],

"ObjectType","non_spandrel_beam") &&
 Operators.change_element_attribute(Element_list, Element_list[i],

"Tag","non_spandrel_beam"))

 {Flag=true;
 System.Console.WriteLine("Rule #2.: i = " + i);}
 }

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&
 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&

 Operators.calculate_aspect_ratio(Element_list[i], "height","width") &&
 Operators.is_dimension(Element_list[i], "aspect_ratio",">=",4.6) &&
 !Operators.if_is_a(Element_list[i], "ObjectType","spandrel"))

 { if (Operators.change_element_attribute(Element_list, Element_list[i],
"ObjectType","spandrel") &&

 Operators.change_element_attribute(Element_list, Element_list[i], "Tag","spandrel"))

 {Flag=true;
 System.Console.WriteLine("Rule #3: i = " + i);}
 }

 for (int j = 0; j <= Element_list.Count; j++)
 {

 if (j == Element_list.Count)
 {break;}
 if (i == j) continue;

169

List<DB.IFCArray> elements = new List<DB.IFCArray>();
 DB.IFCArray element = new DB.IFCArray();

 DB.RelObj relationship = new DB.RelObj();
 DB.RelObj relationship1 = new DB.RelObj();
 DB.RelObj relationship2 = new DB.RelObj();

 if (Operators.if_is_a(Element_list[i], "ObjectType","non_spandrel_beam") &&
 Operators.if_is_a(Element_list[j], "ObjectType","non_spandrel_beam") &&

 Operators.is_not_related_to(Rel_list, Element_list[i], Element_list[j],
"adjacent_beams_same_floor") &&

 Operators.has_adjacent_faces_with(Element_list[i].vertical_narrow_faces(),

Element_list[j].vertical_narrow_faces(), 3) &&
 Operators.compare_elements_attribute(Element_list[i],

"Top_Elevation","=",Element_list[j], "Top_Elevation") &&

 Operators.is_obj_between_exist(Element_list, elements, Element_list[i],
Element_list[j]) &&

 Operators.filter(elements, "ElementType","IfcColumn")

 {
 if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[i],

Element_list[j], "adjacent_beams", "adjacent_beams",

"adjacent_beams_same_floor") &&
 Operators.change_elements_attribute(Element_list, elements,

"Tag","internal_column"))

 {Flag=true;
 System.Console.WriteLine("Rule #4: i = " + i + " j = " + j);}
 }

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcColumn") &&
 Operators.if_is_a(Element_list[j], "ObjectType","spandrel") &&

 !Operators.if_is_a(Element_list[i], "ObjectType","split") &&
 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 !Operators.if_is_a(Element_list[i], "Tag","segmented_like_internal_column") &&

 !Operators.if_is_a(Element_list[i], "Tag","external_column") &&
 !Operators.if_is_a(Element_list[i], "Tag","internal_column") &&
 Operators.is_made_of(Rel_list, Element_list[i], "concrete"))

 { if (Operators.change_element_attribute(Element_list, Element_list[i],
"Tag","external_column"))

 {Flag=true;

 System.Console.WriteLine("Rule #5: i = " + i + " j = " + j);}
 }

 if (Operators.if_is_a(Element_list[i], "Element_Type","IfcColumn") &&
 Operators.if_is_a(Element_list[j], "ObjectType","spandrel") &&
 !Operators.if_is_a(Element_list[i], "ObjectType","split") &&

 Operators.is_overlapping(Element_list[i], Element_list[j]) &&
 !Operators.if_is_a(Element_list[i], "Tag","segmented_like_internal_column") &&
 !Operators.if_is_a(Element_list[i], "Tag","external_column") &&

 !Operators.if_is_a(Element_list[i], "Tag","internal_column") &&
 Operators.is_made_of(Rel_list, Element_list[i], "concrete"))
 { if (Operators.change_element_attribute(Element_list, Element_list[i],

"Tag","external_column"))
 {Flag=true;
 System.Console.WriteLine("Rule #6: i = " + i + " j = " + j);}

170

 }

 if (Operators.if_is_a(Element_list[i], "Tag","internal_column") &&
 Operators.if_is_a(Element_list[j], "ObjectType","spandrel") &&

 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 !Operators.if_is_a(Element_list[i], "Tag","segmented_like_internal_column"))
 { if (Operators.change_element_attribute(Element_list, Element_list[i],

"Tag","segmented_like_internal_column"))
 {Flag=true;
 System.Console.WriteLine("Rule #7: i = " + i + " j = " + j);}

 }

 if (Operators.if_is_a(Element_list[i], "ObjectType","non_spandrel_beam") &&
 Operators.if_is_a(Element_list[j], "Tag","internal_column") &&

 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.is_not_part_of(Rel_list, ref relationship, Element_list[j],

"closest_intersecting_beam_column"))

 {
 if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],

Element_list[i], "closest_intersecting_beam_column",

"closest_intersecting_beam_column", "closest_intersecting_beam_column") &&
 /* Operators.change_element_attribute(Element_list, Element_list[j],

"DomainType", "column_checked_for_closest") && */

 Operators.change_element_attribute(Element_list, Element_list[i], "Description",
"closest_intersecting_beam_to_column_centroid"))

 {Flag=true;

 System.Console.WriteLine("Rule #8: i = " + i + " j = " + j);}
 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "non_spandrel_beam") &&
 Operators.if_is_a(Element_list[j], "Tag", "internal_column") &&

 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.belongs_to(Rel_list, ref relationship1, Element_list[j],

"closest_intersecting_beam_column") &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"closest_intersecting_beam_column") &&

 Operators.is_closest(Element_list, relationship1, Element_list[i], Element_list[j],

"centroid_elevation"))
 {
 if (Operators.get_related_objects(Element_list, relationship1, ref elements) &&

 Operators.change_element_attribute(Element_list, elements[1], "Description",
"not_closest_intersecting_beam_to_column_centroid") &&

 Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],

Element_list[i], "closest_intersecting_beam_column",
"closest_intersecting_beam_column", "closest_intersecting_beam_column") &&

 Operators.delete_relationship(Rel_list, relationship1) &&

 Operators.change_element_attribute(Element_list, Element_list[i], "Description",
"closest_intersecting_beam_to_column_centroid"))

 {

 Flag = true;
 System.Console.WriteLine("Rule #9: i = " + i + " j = " + j);
 }

171

 }

 if (Operators.if_is_a(Element_list[i], "ObjectType","non_spandrel_beam") &&
 Operators.if_is_a(Element_list[j], "Tag","segmented_like_internal_column") &&

 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.is_not_part_of(Rel_list, ref relationship, Element_list[j],

"closest_intersecting_beam_column"))

 { if (Operators.create_rel(Rel_list, element, "IfcRelAggregates", Element_list[j],
Element_list[i], "closest_intersecting_beam_column",
"closest_intersecting_beam_column", "closest_intersecting_beam_column") &&

 /* Operators.change_element_attribute(Element_list, Element_list[j],
"ObjectType", "column_checked_for_closest") && */

 Operators.change_element_attribute(Element_list, Element_list[i], "Description",

"closest_intersecting_beam_to_column_centroid"))
 {Flag=true;
 System.Console.WriteLine("Rule #10: i = " + i + " j = " + j);}

 }

 if (Operators.if_is_a(Element_list[i], "ObjectType","non_spandrel_beam") &&

 Operators.if_is_a(Element_list[j], "Tag","segmented_like_internal_column") &&
 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.belongs_to(Rel_list, ref relationship1, Element_list[j],

"closest_intersecting_beam_column") &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"closest_intersecting_beam_column") &&

 Operators.is_closest(Element_list, relationship1, Element_list[i], Element_list[j],
"centroid_elevation"))

 {

 if (Operators.get_related_objects(Element_list, relationship1, ref elements) &&
 Operators.change_element_attribute(Element_list, elements[1], "Description",

"not_closest_intersecting_spandrel_to_column_centroid") &&

 Operators.create_rel(Rel_list, element, "IfcRelAggregates", Element_list[j],
Element_list[i], "closest_intersecting_beam_column",
"closest_intersecting_beam_column", "closest_intersecting_beam_column") &&

 Operators.delete_relationship(Rel_list, relationship1) &&
 Operators.change_element_attribute(Element_list, Element_list[i], "Description",

"closest_intersecting_beam_to_column_centroid"))

 {Flag=true;
 System.Console.WriteLine("Rule #11: i = " + i + " j = " + j);}
 }

 if (Operators.if_is_a(Element_list[i], "ObjectType","spandrel") &&

 Operators.if_is_a(Element_list[j], "Tag","") &&
 (Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) ||
 Operators.is_overlapping(Element_list[i], Element_list[j])) &&

 Operators.is_not_part_of(Rel_list, ref relationship, Element_list[j],
"closest_intersecting_spandrel_column"))

 {

 if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],
Element_list[i], "closest_intersecting_spandrel_column",
"closest_intersecting_spandrel_column", "closest_intersecting_spandrel_column")

&&
 Operators.change_element_attribute(Element_list, Element_list[i], "Description",

"closest_intersecting_spandrel_to_column_centroid") &&

172

 Operators.change_element_attribute(Element_list, Element_list[j], "ObjectType",
"column_checked_for_closest"))

 {Flag=true;
 System.Console.WriteLine("Rule #12: i = " + i + " j = " + j);}
 }

 if (Operators.if_is_a(Element_list[i], "ObjectType","spandrel") &&
 Operators.if_is_a(Element_list[j], "Tag","external_column") &&

 (Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) ||
 Operators.is_overlapping(Element_list[i], Element_list[j])) &&
 Operators.belongs_to(Rel_list, ref relationship1, Element_list[j],

"closest_intersecting_spandrel_column") &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"closest_intersecting_spandrel_column") &&

 Operators.is_closest(Element_list, relationship1, Element_list[i], Element_list[j],
"centroid_elevation"))

 { if (Operators.get_related_objects(Element_list, relationship1, ref elements) &&

 Operators.change_element_attribute(Element_list, elements[1], "Description",
"not_closest_intersecting_spandrel_to_column_centroid") &&

 Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],

Element_list[i], "closest_intersecting_spandrel_column",
"closest_intersecting_spandrel_column", "closest_intersecting_spandrel_column")
&&

 Operators.delete_relationship(Rel_list, relationship1) &&
 Operators.change_element_attribute(Element_list, Element_list[i],

"Description","closest_intersecting_spandrel_to_column_centroid"))

 {Flag=true;
 System.Console.WriteLine("Rule #13: i = " + i + " j = " + j);}

 }

 if (Operators.if_is_a(Element_list[i], "ObjectType","spandrel") &&

 Operators.if_is_a(Element_list[j], "ElementType","IfcColumn") &&
 !Operators.if_is_a(Element_list[j], "ObjectType","split") &&
 Operators.is_overlapping(Element_list[i], Element_list[j]) &&

 !Operators.if_is_a(Element_list[j], "Description","pocketed_column"))
 { if (Operators.change_element_attribute(Element_list, Element_list[j],

"Description","pocketed_column"))

 {Flag=true;
 System.Console.WriteLine("Rule #14: i = " + i + " j = " + j);}
 }

 }//j

 if ((i + 1 == Element_list.Count) && (Flag == true))
 {i = -1; Flag = false;}
 }//i

 new Export_IFC(sPath, Element_list, Rel_list);
 }//main
 }

 }

173

APPENDIX B

RULE SET FOR AUTOMATIC MODULORIZATION OF PRECAST CONCRETE SLAB

 for (int i = 0; i < Element_list.Count ; i++)

 {
 int x = 0;
 bool why = false;

 DB.RelObj relationship6 = new DB.RelObj();
 DB.IFCArray element1 = new DB.IFCArray();

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcSlab") &&
 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&

 Operators.is_dimension(Element_list[i], "height",">=",2) &&
 Operators.is_dimension(Element_list[i], "height","<=",2.85) &&
 Operators.is_dimension(Element_list[i], "width",">",30) &&

 !Operators.if_is_a(Element_list[i], "Tag","double_tee_slab"))
 { if (Operators.change_element_attribute(Element_list, Element_list[i],

"ObjectType","non_spandrel_beam") &&

 Operators.change_element_attribute(Element_list, Element_list[i],
"Tag","double_tee_slab"))

 {Flag=true;

 System.Console.WriteLine("Rule #7: i = " + i);}
 }

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&

 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&

 Operators.is_dimension(Element_list[i], "height",">=",1.5) &&

 Operators.is_dimension(Element_list[i], "height","<=",5) &&
 Operators.is_dimension(Element_list[i], "width",">=",2.3) &&
 Operators.is_dimension(Element_list[i], "width","<=",3.4) &&

 !Operators.if_is_a(Element_list[i], "Tag","inverted_tee_beam"))
 { if (Operators.change_element_attribute(Element_list, Element_list[i],

"Tag","inverted_tee_beam"))

 {Flag=true;
 System.Console.WriteLine("Rule #8: i = " + i);}
 }

174

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcSlab") &&

 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&
 Operators.if_is_a(Element_list[i], "Tag","double_tee_slab") &&
 !Operators.if_is_a(Element_list[i], "Name","Floor:Precast Concrete Slab - 30 inch

thick"))
 { if (Operators.get_element_dimension(Element_list, Element_list[i], "width",ref y) &&
 Operators.change_element_attribute(Element_list, Element_list[i],"ObjectType", "slab

width" + y.ToString() + "'") &&
 Operators.change_element_attribute(Element_list, Element_list[i],"Name",

"Floor:Precast Concrete Slab - 30 inch thick"))

 {Flag=true;
 System.Console.WriteLine("Rule #9: i = " + i);}
 }

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcSlab") &&
 Operators.is_part_of(Rel_list, ref relationship6, Element_list[i],

"columns_supporting_the_slab") &&

 !Operators.if_is_a(Element_list[i], "DomainType",
"checked_for_number_of_supporting_columns"))

 { if (Operators.count_objects(relationship6, "RelatedObjects", ref x) &&

 Operators.get_relating_object(Element_list, relationship6, ref element1) &&
 Operators.change_element_attribute(Element_list, element1, "Description", "slab

passes through " + (int) Math.Ceiling(x/2 -1) + " bays") &&

 Operators.change_element_attribute(Element_list, Element_list[i], "DomainType",
"checked_for_number_of_supporting_columns"))

 {Flag=true;

 System.Console.WriteLine("Rule #3: i = " + i);}
 }

 for (int j = 0; j <= Element_list.Count; j++)

 {
 if (j == Element_list.Count)
 {break;}

 if (i == j) continue;

 List<DB.IFCArray> elements = new List<DB.IFCArray>();

 List<DB.IFCArray> elements1 = new List<DB.IFCArray>();
 List<DB.IFCArray> elements2 = new List<DB.IFCArray>();
 DB.IFCArray element = new DB.IFCArray();

 DB.RelObj relationship = new DB.RelObj();
 DB.RelObj relationship1 = new DB.RelObj();
 DB.RelObj relationship2 = new DB.RelObj();

 DB.RelObj relationship3 = new DB.RelObj();
 DB.RelObj relationship4 = new DB.RelObj();
 DB.RelObj relationship5 = new DB.RelObj();

 List<DB.RelObj> list = new List<DB.RelObj>();
 List<DB.RelObj> list1 = new List<DB.RelObj>();

 float y = 0;

175

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcColumn") &&

 Operators.if_is_a(Element_list[j], "ElementType","IfcSlab") &&
 Operators.is_made_of(Rel_list, Element_list[j], "concrete") &&
 (Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) ||

 Operators.is_overlapping(Element_list[j], Element_list[i])) &&
 Operators.is_not_part_of(Rel_list, ref relationship, Element_list[j],

"columns_supporting_the_slab"))

 { if (Operators.create_rel(Rel_list, "IfcRelAggregates", Element_list[j], Element_list[i],
 "columns_supporting_the_slab", "columns_supporting_the_slab",

"columns_supporting_the_slab"))

 {Flag=true;
 System.Console.WriteLine("Rule #1: i = " + i + " j = " + j);}
 }

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcColumn") &&
 Operators.if_is_a(Element_list[j], "ElementType","IfcSlab") &&
 Operators.is_made_of(Rel_list, Element_list[j], "concrete") &&

 (Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) ||
 Operators.is_overlapping(Element_list[j], Element_list[i])) &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"columns_supporting_the_slab") &&
 Operators.is_part_of(Rel_list, ref relationship,Element_list[j],

"columns_supporting_the_slab"))

 { if (Operators.add_object_to_relationship(relationship, Element_list[i],
"RelatedObjects"))

 {Flag=true;

 System.Console.WriteLine("Rule #2: i = " + i + " j = " + j);}
 }

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&

 Operators.if_is_a(Element_list[j], "ElementType","IfcSlab") &&
 (Operators.has_adjacent_faces_with(Element_list[i].vertical_wide_faces(),

Element_list[j].vertical_wide_faces (), 0.1) ||

 (Operators.is_overlapping(Element_list[j], Element_list[i]) &&
 Operators.are_aligned_with(Element_list[i].vertical_wide_faces(),

Element_list[j].vertical_wide_faces (), 0.9)))&&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i], "column_bay"))
 { if (Operators.create_rel(Rel_list, "IfcRelAggregates", Element_list[j], Element_list[i],
 "column_pair_and_beam_supporting_the_slab", "column_bay", "column_bay"))

 {Flag=true;
 System.Console.WriteLine("Rule #4: i = " + i + " j = " + j);}
 }

176

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcColumn") &&

 Operators.if_is_a(Element_list[j], "ElementType","IfcBeam") &&
 (Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) ||
 Operators.is_overlapping(Element_list[j], Element_list[i])) &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i], "column_bay")
&&

 Operators.is_part_of(Rel_list, ref relationship,Element_list[j], "column_bay") &&

 Operators.find_relationships_containing_element (Rel_list, Element_list[j],
"column_bay", "RelatedObjects", list))

 {if (Operators.add_object_to_relationships(Rel_list, list, Element_list[i],

"RelatedObjects"))
 { Flag = true;
 System.Console.WriteLine("Rule #5: i = " + i + " j = " + j);}

 }

 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcColumn") &&

 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_related_to(Rel_list, Element_list[j], Element_list[i], "column_bay") &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"checked_for_column_bay_length") &&
 Operators.find_relationships_containing_element(Rel_list, Element_list[i],

"column_bay", "RelatedObjects", list))

 {
 if (Operators.change_relationships_attribute(Rel_list, list, "Description", " Bay

Length", Element_list[i], Element_list[j]) &&

 Operators.create_relationships(Rel_list, list, "IfcRelAssociatesClassification",
Element_list[j], Element_list[i], "checked_for_column_bay_length",
"checked_for_column_bay_length", "checked_for_column_bay_length"))

 {Flag = true;
 System.Console.WriteLine("Rule #6: i = " + i + " j = " + j);}
 }

177

APPENDIX C

RULE SET FOR AUTOMATIC DESIGN OF COLUMN TO COLUMN AND COLUMN TO BEAM

CONNECTIONS

 for (int i = 0; i < Element_list.Count; i++)
 {

 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcColumn") &&
 !Operators.if_is_a(Element_list[i], "DomainType", "segmented") &&
 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&

 Operators.is_dimension(Element_list[i], "height", ">", 30) &&
 Operators.is_dimension(Element_list[i], "height", "<=", 60))
 {if (Operators.change_element_attribute(Element_list, Element_list[i], "DomainType",

"segmented") &&
 Operators.split_up(Element_list, Rel_list, Element_list[i], "2"))
 { Flag = true;

 System.Console.WriteLine("Rule #1.1: i = " + i);
 }
 }

 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcBeam") &&
 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&

 Operators.calculate_aspect_ratio(Element_list[i], "height", "width") &&
 Operators.is_dimension(Element_list[i], "aspect_ratio", "<", 4.6) &&
 !Operators.if_is_a(Element_list[i], "ObjectType", "non_spandrel_beam"))

 { if (Operators.change_element_attribute(Element_list, Element_list[i], "ObjectType",
"non_spandrel_beam"))

 {Flag = true;

 System.Console.WriteLine("Rule #2.: i = " + i);
 }
 }

 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcBeam") &&
 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&

 Operators.calculate_aspect_ratio(Element_list[i], "height", "width") &&
 Operators.is_dimension(Element_list[i], "aspect_ratio", ">=", 4.6) &&
 !Operators.if_is_a(Element_list[i], "ObjectType", "spandrel"))

 { if (Operators.change_element_attribute(Element_list, Element_list[i], "ObjectType",
"spandrel"))

 { Flag = true;

 System.Console.WriteLine("Rule #3: i = " + i);
 }
 }

 for (int j = 0; j <= Element_list.Count; j++)
 {
 if (j == Element_list.Count)

 { break; }

 if (i == j) continue;

178

 List<DB.IFCArray> elements = new List<DB.IFCArray>();

 DB.IFCArray element = new DB.IFCArray();
 DB.RelObj relationship = new DB.RelObj();
 DB.RelObj relationship1 = new DB.RelObj();

 //DB.RelObj relationship2 = new DB.RelObj();

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcColumn") &&

 Operators.if_is_a(Element_list[j], "ElementType","IfcColumn") &&
 Operators.if_is_a(Element_list[i], "ObjectType","split") &&
 Operators.if_is_a(Element_list[j], "ObjectType","split") &&

 !Operators.if_is_a(Element_list[i], "DomainType", "checked") &&
 !Operators.if_is_a(Element_list[j], "DomainType", "checked") &&
 Operators.is_related_to(Rel_list, Element_list[i], Element_list[j], "split"))

 { if (Operators.create_new_element(Element_list, ref element,
"IfcDiscreteAccessory", "column_to_column_connection", "grouted sleeve coupler or
anchor bolted connection", "column_to_column_connection",

"column_to_column_connection") &&
 Operators.create_set_from_element(elements, element) &&
 Operators.create_rel(Rel_list, elements, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"connecting_2_columns", "connecting_2_columns_through_realizing_elements",
"connecting_2_columns") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"column_to_column_connection",
"shim_as_gravity_connection_column_to_column", "bearing_pad_C_C",

"bearing_pad_C_C") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.change_element_attribute(Element_list, Element_list[i], "DomainType",
"checked") &&

 Operators.change_element_attribute(Element_list, Element_list[j], "DomainType",

"checked"))
 {Flag=true;
 System.Console.WriteLine("Rule #1: i = " + i + " j = " + j);}

 }

 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcColumn") &&
 Operators.if_is_a(Element_list[j], "ObjectType", "non_spandrel_beam") &&
 !Operators.if_is_a(Element_list[i], "ObjectType", "split") &&

 (Operators.has_adjacent_faces_with(Element_list[i].vertical_narrow_faces(),
Element_list[j].vertical_narrow_faces(), 0.1) ||

 Operators.has_adjacent_faces_with(Element_list[i].vertical_wide_faces(),

Element_list[j].vertical_narrow_faces(), 0.1)) &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"connecting_beam_to_side_of_column_through_corbel"))

 { if (Operators.create_new_element(Element_list, ref element,
"IfcProjectionElement", "corbel_beam_to_column",
"corbel_connecting_beam_to_column", "corbel_beam_to_column",

"corbel_beam_to_column") &&
 Operators.create_set_from_element(elements, element) &&
 Operators.create_rel(Rel_list, elements, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"connecting_beam_to_column",

179

"connecting_beam_to_side_of_column_through_corbel",
"connecting_beam_to_side_of_column_through_corbel") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"shim_connecting_beam_to_column_through_corbel",
"gravity_connection_beam_to_side_of_column",

"shim_connecting_beam_to_column_through_corbel", "bearing_pad_B_C") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"top_of_beam_stem_to_side_of_column_connection",
"tie_back_connection_beam_to_column", "tie_back_beam_to_column",

"tie_back_beam_to_column") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bottom_of_beam_to_side_of_column_connection",
"tie_back_connection_beam_to_column",

"bottom_of_beam_to_side_of_column_connection", "tie_back_beam_to_column")
&&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))

 { Flag = true;
 System.Console.WriteLine("Rule #2.2: i = " + i + " j = " + j);
 }

 }

 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcColumn") &&

 Operators.if_is_a(Element_list[j], "ObjectType", "non_spandrel_beam") &&
 !Operators.if_is_a(Element_list[i], "ObjectType", "split") &&
 Operators.has_adjacent_faces_with(Element_list[i].vertical_wide_faces(),

Element_list[j].vertical_narrow_faces(), 0.1) &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"connecting_beam_to_side_of_column_through_corbel"))

 { if (Operators.create_new_element(Element_list, ref element,
"IfcProjectionElement", "corbel_beam_to_column",
"corbel_connecting_beam_to_column", "corbel_beam_to_column",

"corbel_beam_to_column") &&
 Operators.create_set_from_element(elements, element) &&
 Operators.create_rel(Rel_list, elements, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"connecting_beam_to_column",
"connecting_beam_to_side_of_column_through_corbel",

"connecting_beam_to_side_of_column_through_corbel") &&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"shim_connecting_beam_to_column_through_corbel",

"gravity_connection_beam_to_side_of_column",
"shim_connecting_beam_to_column_through_corbel", "bearing_pad_B_C") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"top_of_beam_stem_to_side_of_column_connection",

"tie_back_connection_beam_to_column",
"top_of_beam_stem_to_side_of_column_connection", "tie_back_beam_to_column")
&&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")
&&

180

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bottom_of_beam_to_side_of_column_connection",

"tie_back_connection_beam_to_column",
"bottom_of_beam_to_side_of_column_connection", "tie_back_beam_to_column")
&&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))
 {Flag = true;
 System.Console.WriteLine("Rule #2.1: i = " + i + " j = " + j);

 }
 }

 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcColumn") &&
 Operators.if_is_a(Element_list[j], "ObjectType", "non_spandrel_beam") &&
 !Operators.if_is_a(Element_list[i], "ObjectType", "split") &&

 Operators.has_adjacent_faces_with(Element_list[i].horizontal_top_face(),
Element_list[j].horizontal_bottom_face(), 0.1) &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"connecting_beam_stem_top_to_top_of_column"))
 {if (Operators.create_new_element(Element_list, ref element,

"IfcDiscreteAccessory", "beam_stem_top_to_top_of_column_connection",

"gravity_plus_tie_back_anchor_bolted_connection",
"beam_stem_top_to_side_of_column_connection",
"beam_stem_top_to_top_of_column_connection") &&

 Operators.create_set_from_element(elements, element) &&
 Operators.create_rel(Rel_list, elements, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

"connecting_beam_stem_top_to_top_of_column",
"connecting_beam_stem_top_to_top_of_column",
"connecting_beam_stem_top_to_top_of_column") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bearing_pad_B_C", "gravity_connection_beam_to_top_of_column",
"bearing_pad_B_C", "bearing_pad_B_C") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))
 {Flag = true;
 System.Console.WriteLine("Rule #3: i = " + i + " j = " + j);

 }
 }

 }//j

 if ((i + 1 == Element_list.Count) && (Flag == true))
 { i = -1; Flag = false; }

 }//i
 new Export_IFC(sPath, Element_list, Rel_list);

 }
 }
}

181

APPENDIX D

RULE SET FOR AUTOMATIC CLASSIFICATION AND DESIGN OF SPANDREL-COLUMN

CONNECTIONS

 for (int i = 0; i < Element_list.Count ; i++)
 {

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&
 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&

 Operators.calculate_aspect_ratio(Element_list[i], "height","width") &&
 Operators.is_dimension(Element_list[i], "aspect_ratio","<",4.6) &&
 !Operators.if_is_a(Element_list[i], "ObjectType","non_spandrel_beam"))

 { if (Operators.change_element_attribute(Element_list, Element_list[i],
"ObjectType","non_spandrel_beam") &&

 Operators.change_element_attribute(Element_list, Element_list[i],

"Description","non_spandrel_beam"))
 {Flag=true;
 System.Console.WriteLine("Rule #1.: i = " + i);}

 }

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&

 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&
 Operators.calculate_aspect_ratio(Element_list[i], "height","width") &&
 Operators.is_dimension(Element_list[i], "aspect_ratio",">=",4.6) &&

 !Operators.if_is_a(Element_list[i], "ObjectType","spandrel"))
 { if (Operators.change_element_attribute(Element_list, Element_list[i],

"ObjectType","spandrel") &&

 Operators.change_element_attribute(Element_list, Element_list[i],
"Description","spandrel"))

 {Flag=true;

 System.Console.WriteLine("Rule #2.: i = " + i);}
 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&
 !Operators.if_is_a(Element_list[i], "Description","non_load_bearing_spandrel") &&
 !Operators.if_is_a(Element_list[i], "Description","load_bearing_spandrel"))

 { if (Operators.change_element_attribute(Element_list, Element_list[i],
"Description","load_bearing_spandrel"))

 { Flag = true;

 System.Console.WriteLine("Rule #28: i = " + i);
 }
 }

 for (int j = 0; j <= Element_list.Count; j++)
 {

 if (j == Element_list.Count)
 {break;}
 if (i == j) continue;

 List<DB.IFCArray> elements = new List<DB.IFCArray>();
 List<DB.IFCArray> elements1 = new List<DB.IFCArray>();

182

 List<DB.IFCArray> elements2 = new List<DB.IFCArray>();
 DB.IFCArray element = new DB.IFCArray();

 DB.RelObj relationship = new DB.RelObj();
 DB.RelObj relationship1 = new DB.RelObj();
 DB.RelObj relationship2 = new DB.RelObj();

 DB.RelObj relationship3 = new DB.RelObj();
 DB.RelObj relationship4 = new DB.RelObj();
 List<DB.RelObj> relationship_list2 = new List<DB.RelObj>();

 List<DB.RelObj> relationship_list1 = new List<DB.RelObj>();

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcColumn") &&

 Operators.if_is_a(Element_list[j], "ElementType","IfcSlab") &&
 Operators.is_not_related_to(Rel_list, Element_list[i], Element_list[j],

"overlapping_column_slab") &&

 Operators.is_overlapping(Element_list[j], Element_list[i]))
 { if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],

Element_list[i], "overlapping_column_slab", "overlapping_column_slab",

"overlapping_column_slab"))
 {Flag=true;
 System.Console.WriteLine("Rule #3: i = " + i + " j = " + j);}

 }

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcColumn") &&
 Operators.if_is_a(Element_list[j], "ElementType","IfcSlab") &&
 Operators.is_not_related_to(Rel_list, Element_list[i], Element_list[j],

"adjacent_column_slab") &&
 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1))
 { if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],

Element_list[i], "adjacent_column_slab", "adjacent_column_slab",
"adjacent_column_slab"))

 {Flag=true;

 System.Console.WriteLine("Rule #4: i = " + i + " j = " + j);}
 }

 /* used in rule 14 and 18 */
 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcColumn") &&

 Operators.if_is_a(Element_list[j], "ElementType", "IfcSlab") &&
 (Operators.are_aligned_with(Element_list[i].vertical_wide_faces(),

Element_list[j].vertical_narrow_faces(), 0.1) ||

 Operators.are_aligned_with(Element_list[i].vertical_narrow_faces(),
Element_list[j].vertical_narrow_faces(), 0.1)) &&

 (Operators.are_aligned_with(Element_list[i].vertical_wide_faces(),

Element_list[j].vertical_wide_faces (), 0.1) ||
 Operators.are_aligned_with(Element_list[i].vertical_narrow_faces(),

Element_list[j].vertical_wide_faces (), 0.1)) &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"aligned_column_slab_both_sides"))

 { if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],

Element_list[i], "aligned_column_slab_both_sides",
"aligned_column_slab_both_sides", "aligned_column_slab_both_sides"))

 {

 Flag = true;
 System.Console.WriteLine("Rule #5: i = " + i + " j = " + j);}
 }

183

 /* used in rule 12, 16, and 17 */

 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcColumn") &&
 Operators.if_is_a(Element_list[j], "ElementType", "IfcSlab") &&
 (((Operators.are_aligned_with(Element_list[i].vertical_wide_faces(),

Element_list[j].vertical_narrow_faces(), 0.1) ||
 Operators.are_aligned_with(Element_list[i].vertical_narrow_faces(),

Element_list[j].vertical_narrow_faces(), 0.1)) &&

 !Operators.are_aligned_with(Element_list[i].vertical_wide_faces(),
Element_list[j].vertical_wide_faces (), 0.1) &&

 !Operators.are_aligned_with(Element_list[i].vertical_narrow_faces(),

Element_list[j].vertical_wide_faces (), 0.1)) ||
 ((Operators.are_aligned_with(Element_list[i].vertical_wide_faces(),

Element_list[j].vertical_wide_faces (), 0.1) ||

 Operators.are_aligned_with(Element_list[i].vertical_narrow_faces(),
Element_list[j].vertical_wide_faces (), 0.1)) &&

 !Operators.are_aligned_with(Element_list[i].vertical_wide_faces(),

Element_list[j].vertical_narrow_faces(), 0.1) &&
 !Operators.are_aligned_with(Element_list[i].vertical_narrow_faces(),

Element_list[j].vertical_narrow_faces(), 0.1))) &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"aligned_column_slab_only_in_one_side"))

 {if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],

Element_list[i], "aligned_column_slab_only_in_one_side",
"aligned_column_slab_only_in_one_side",
"aligned_column_slab_only_in_one_side"))

 { Flag = true;
 System.Console.WriteLine("Rule #6: i = " + i + " j = " + j);}
 }

 /* used in rule 16 and 18 */
 if (Operators.if_is_a(Element_list[i], "ObjectType","spandrel") &&

 Operators.if_is_a(Element_list[j], "ElementType", "IfcSlab") &&
 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 (Operators.are_aligned_with(Element_list[i].vertical_narrow_faces(),

Element_list[j].vertical_narrow_faces(), 0.1) ||
 Operators.are_aligned_with(Element_list[i].vertical_narrow_faces(),

Element_list[j].vertical_wide_faces (), 0.1)) &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"aligned_spandrel_slab_both_sides"))

 { if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],

Element_list[i], "aligned_spandrel_slab_both_sides",
"aligned_spandrel_slab_both_sides", "aligned_spandrel_slab_both_sides"))

 { Flag = true;

 System.Console.WriteLine("Rule #7: i = " + i + " j = " + j);}
 }

 /* used in rule 11, 12, 14, 15, 17, 19, 21, 23, 26 */
 if (Operators.if_is_a(Element_list[i], "ObjectType","spandrel") &&

 Operators.if_is_a(Element_list[j], "ElementType", "IfcSlab") &&
 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 !Operators.are_aligned_with(Element_list[i].vertical_narrow_faces(),

Element_list[j].vertical_wide_faces (), 0.1) &&
 !Operators.are_aligned_with(Element_list[i].vertical_narrow_faces(),

Element_list[j].vertical_narrow_faces(), 0.1) &&

184

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"aligned_spandrel_slab_only_in_one_side"))

 {if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],
Element_list[i], "aligned_spandrel_slab_only_in_one_side",
"aligned_spandrel_slab_only_in_one_side",

"aligned_spandrel_slab_only_in_one_side"))
 { Flag = true;
 System.Console.WriteLine("Rule #8: i = " + i + " j = " + j);}

 }

 /* used in rule 21*/

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&
 Operators.if_is_a(Element_list[j], "ObjectType", "non_spandrel_beam") &&
 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"adjacent_spandrel_beam"))

 {if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],

Element_list[i], "adjacent_spandrel_beam", "adjacent_spandrel_beam",
"adjacent_spandrel_beam"))

 { Flag = true;

 System.Console.WriteLine("Rule #9: i = " + i + " j = " + j);}
 }

 if (Operators.if_is_a(Element_list[i], "ObjectType","spandrel") &&
 Operators.if_is_a(Element_list[j], "ObjectType","spandrel") &&
 Operators.has_adjacent_faces_with(Element_list[i].vertical_narrow_faces(),

Element_list[j].vertical_narrow_faces(), 0.2) &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"adjacent_spandrel_spandrel_VNF_VNF"))

 {if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],
Element_list[i], "adjacent_spandrel_spandrel_VNF_VNF",
"adjacent_spandrel_spandrel_VNF_VNF",

"adjacent_spandrel_spandrel_VNF_VNF"))
 {Flag = true;
 System.Console.WriteLine("Rule #9.1: i = " + i + " j = " + j);}

 }

 /* used in rule 11*/
 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&
 Operators.if_is_a(Element_list[j], "ElementType", "IfcSlab") &&

 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"adjacent_spandrel_slab"))

 {if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],
Element_list[i], "adjacent_spandrel_slab", "adjacent_spandrel_slab",
"adjacent_spandrel_slab"))

 { Flag = true;
 System.Console.WriteLine("Rule #9.2: i = " + i + " j = " + j);}
 }

 /* used in rule 27 for lb/nlb*/
 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&
 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&

 (Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) ||
 Operators.is_overlapping(Element_list[j], Element_list[i])) &&

185

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"adjacent_or_overlapping_spandrel_column"))

 { if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],
Element_list[i], "adjacent_or_overlapping_spandrel_column",
"adjacent_or_overlapping_spandrel_column",

"adjacent_or_overlapping_spandrel_column"))
 {Flag = true;
 System.Console.WriteLine("Rule #9.3: i = " + i + " j = " + j);}

 }

 /* used in rule 19, 23, 27 */
 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcColumn") &&
 Operators.if_is_a(Element_list[j], "ObjectType", "non_spandrel_beam") &&

 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"adjacent_column_beam"))

 { if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[j],
Element_list[i], "adjacent_column_beam", "adjacent_column_beam",
"adjacent_column_beam"))

 { Flag = true;
 System.Console.WriteLine("Rule #10: i = " + i + " j = " + j); }
 }

 /* used in rule 23 */
 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcColumn") &&

 Operators.if_is_a(Element_list[j], "ObjectType", "non_spandrel_beam") &&
 !Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"non_adjacent_column_beam"))
 { if (Operators.create_rel(Rel_list, "IfcRelAssociatesClassification", Element_list[i],

Element_list[j], "non_adjacent_column_beam", "non_adjacent_column_beam",

"non_adjacent_column_beam"))
 { Flag = true;
 System.Console.WriteLine("Rule #10.1: i = " + i + " j = " + j); }

 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&

 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_overlapping(Element_list[i], Element_list[j]) &&
 Operators.is_part_of(Rel_list, ref relationship1, Element_list[j],

"overlapping_column_slab") &&
 Operators.belongs_to(Rel_list, ref relationship2, Element_list[i],

"adjacent_spandrel_slab") &&

 Operators.get_related_objects(Element_list, relationship1, ref elements) &&
 Operators.get_related_objects(Element_list, relationship2, ref elements1) &&
 Operators.compare_elements_attributes_in_lists(elements, "p21line", "=",

elements1, "p21line") &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"outboard_spandrel_pocketed_column"))

 { if (Operators.create_new_element(Element_list, ref element,
"IfcDiscreteAccessory", "bearing_pad_SP_C",

186

"gravity_connection_spandrel_to_pocketed_column",
"shim_connecting_spandrel_to_pocketed_column", "bearing_pad_SP_C") &&

 Operators.create_set_from_element(elements2, element) &&
 Operators.create_rel(Rel_list, elements2, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

"outboard_spandrel_pocketed_column", "outboard_spandrel_pocketed_column",
"outboard_spandrel_pocketed_column") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"top_tie_back_outboard_spandrel_to_pocketed_column",
"top_tie_back_outboard_spandrel_to_pocketed_column",
"top_tie_back_outboard_spandrel_to_pocketed_column",

"top_tie_back_outboard_spandrel_to_pocketed_column") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bottom_tie_back_outboard_spandrel_to_pocketed_column",
"bottom_tie_back_outboard_spandrel_to_pocketed_column",

"bottom_tie_back_outboard_spandrel_to_pocketed_column",
"bottom_tie_back_outboard_spandrel_to_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))

 {Flag = true;
 System.Console.WriteLine("Rule #11: i = " + i + " j = " + j);
 }

 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&
 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_overlapping(Element_list[i], Element_list[j]) &&

 !Operators.is_part_of(Rel_list, ref relationship3, Element_list[i],
"adjacent_spandrel_spandrel_VNF_VNF") &&

 Operators.is_part_of(Rel_list, ref relationship, Element_list[i],

"aligned_spandrel_slab_only_in_one_side") &&
 Operators.is_part_of(Rel_list, ref relationship1, Element_list[j],

"aligned_column_slab_only_in_one_side") &&

 Operators.belongs_to(Rel_list, ref relationship2, Element_list[i],
"adjacent_spandrel_slab") &&

 Operators.get_related_objects(Element_list, relationship1, ref elements) &&

 Operators.get_related_objects(Element_list, relationship2, ref elements1) &&
 Operators.compare_elements_attributes_in_lists(elements, "p21line", "=",

elements1, "p21line") &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"outboard_spandrel_pocketed_column"))

 {if (Operators.create_new_element(Element_list, ref element,

"IfcDiscreteAccessory", "bearing_pad_SP_C",
"gravity_connection_spandrel_to_pocketed_column",
"shim_connecting_spandrel_to_pocketed_column", "bearing_pad_SP_C") &&

 Operators.create_set_from_element(elements2, element) &&
 Operators.create_rel(Rel_list, elements2, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

"outboard_spandrel_pocketed_column", "outboard_spandrel_pocketed_column",
"outboard_spandrel_pocketed_column") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"top_tie_back_outboard_spandrel_to_pocketed_column",
"top_tie_back_outboard_spandrel_to_pocketed_column",

187

"top_tie_back_outboard_spandrel_to_pocketed_column",
"top_tie_back_outboard_spandrel_to_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")
&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bottom_tie_back_outboard_spandrel_to_pocketed_column",
"bottom_tie_back_outboard_spandrel_to_pocketed_column",
"bottom_tie_back_outboard_spandrel_to_pocketed_column",

"bottom_tie_back_outboard_spandrel_to_pocketed_column") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))
 { Flag = true;

 System.Console.WriteLine("Rule #12: i = " + i + " j = " + j);
 }
 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&

 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_overlapping(Element_list[i], Element_list[j]) &&
 Operators.is_part_of(Rel_list, ref relationship, Element_list[j],

"aligned_column_slab_both_sides") &&
 Operators.belongs_to(Rel_list, ref relationship1, Element_list[i],

"adjacent_spandrel_slab") &&

 Operators.get_related_objects(Element_list, relationship, ref elements) &&
 Operators.get_related_objects(Element_list, relationship1, ref elements1) &&
 Operators.compare_elements_attributes_in_lists(elements, "p21line", "=",

elements1, "p21line") &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"inboard_spandrel_pocketed_column"))

 { if (Operators.create_new_element(Element_list, ref element,
"IfcDiscreteAccessory", "bearing_pad_SP_C",
"gravity_connection_spandrel_to_pocketed_column",

"shim_connecting_spandrel_to_pocketed_column", "bearing_pad_SP_C") &&
 Operators.create_set_from_element(elements2, element) &&
 Operators.create_rel(Rel_list, elements2, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"inboard_spandrel_pocketed_column", "inboard_spandrel_pocketed_column",
"inboard_spandrel_pocketed_column") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"top_tie_back_spandrel_to_pocketed_column",
"top_tie_back_spandrel_to_pocketed_column",

"top_tie_back_spandrel_to_pocketed_column",
"top_tie_back_spandrel_to_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bottom_tie_back_spandrel_to_pocketed_column",

"bottom_tie_back_spandrel_to_pocketed_column",
"bottom_tie_back_spandrel_to_pocketed_column",
"bottom_tie_back_spandrel_to_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))
 {Flag = true;
 System.Console.WriteLine("Rule #14: i = " + i + " j = " + j);

 }
 }

188

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&
 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&

 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.is_part_of(Rel_list, ref relationship1, Element_list[j],

"overlapping_column_slab") &&

 Operators.belongs_to(Rel_list, ref relationship2, Element_list[i],
"adjacent_spandrel_slab") &&

 Operators.get_related_objects(Element_list, relationship1, ref elements) &&

 Operators.get_related_objects(Element_list, relationship2, ref elements1) &&
 Operators.compare_elements_attributes_in_lists(elements, "p21line", "=",

elements1, "p21line") &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"outboard_spandrel_ended_in_non_pocketed_column"))

 { if (Operators.create_new_element(Element_list, ref element,

"IfcProjectionElement", "corbel_for_spandrel_to_column_connection",
"corbel_connecting_spandrel_to_column", "corbel_spandrel_to_column",
"corbel_spandrel_to_column") &&

 Operators.create_set_from_element (elements2, element) &&
 Operators.create_rel(Rel_list, elements2, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

"outboard_spandrel_ended_in_non_pocketed_column",
"outboard_spandrel_ended_in_non_pocketed_column",
"outboard_spandrel_ended_in_non_pocketed_column") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bearing_pad_SP_C", "gravity_connection_spandrel_to_non_pocketed_column",
"shim_connecting_spandrel_to_non_pocketed_column", "bearing_pad_SP_C") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")
&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"top_tie_back_outboard_spandrel_to_non_pocketed_column",
"top_tie_back_outboard_spandrel_to_non_pocketed_column",
"top_tie_back_outboard_spandrel_to_non_pocketed_column",

"top_tie_back_outboard_spandrel_to_non_pocketed_column") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bottom_tie_back_outboard_spandrel_to_non_pocketed_column",
"bottom_tie_back_outboard_spandrel_to_non_pocketed_column",

"bottom_tie_back_outboard_spandrel_to_non_pocketed_column",
"bottom_tie_back_outboard_spandrel_to_non_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))

 { Flag = true;
 System.Console.WriteLine("Rule #15: i = " + i + " j = " + j);
 }

 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&

 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.is_part_of(Rel_list, ref relationship, Element_list[i],

"aligned_spandrel_slab_both_sides") &&
 Operators.is_part_of(Rel_list, ref relationship1, Element_list[j],

"aligned_column_slab_only_in_one_side") &&

 Operators.belongs_to(Rel_list, ref relationship2, Element_list[i],
"adjacent_spandrel_slab") &&

 Operators.get_related_objects(Element_list, relationship1, ref elements) &&

189

 Operators.get_related_objects(Element_list, relationship2, ref elements1) &&
 Operators.compare_elements_attributes_in_lists(elements, "p21line", "=",

elements1, "p21line") &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"outboard_spandrel_ended_in_non_pocketed_column"))

 { if (Operators.create_new_element(Element_list, ref element,
"IfcProjectionElement", "corbel_for_spandrel_to_column_connection",
"corbel_connecting_spandrel_to_column", "corbel_spandrel_to_column",

"corbel_spandrel_to_column") &&
 Operators.create_set_from_element(elements2, element) &&
 Operators.create_rel(Rel_list, elements2, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"outboard_spandrel_ended_in_non_pocketed_column",
"outboard_spandrel_ended_in_non_pocketed_column",

"outboard_spandrel_ended_in_non_pocketed_column") &&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bearing_pad_SP_C", "gravity_connection_spandrel_to_non_pocketed_column",

"shim_connecting_spandrel_to_non_pocketed_column", "bearing_pad_SP_C") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"top_tie_back_outboard_spandrel_to_non_pocketed_column",
"top_tie_back_outboard_spandrel_to_non_pocketed_column",

"top_tie_back_outboard_spandrel_to_non_pocketed_column",
"top_tie_back_outboard_spandrel_to_non_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bottom_tie_back_outboard_spandrel_to_non_pocketed_column",

"bottom_tie_back_outboard_spandrel_to_non_pocketed_column",
"bottom_tie_back_outboard_spandrel_to_non_pocketed_column",
"bottom_tie_back_outboard_spandrel_to_non_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))
 {Flag = true;
 System.Console.WriteLine("Rule #16: i = " + i + " j = " + j);

 }
 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&
 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&

 Operators.is_part_of(Rel_list, ref relationship, Element_list[j],
"adjacent_column_slab") &&
 Operators.is_part_of(Rel_list, ref relationship, Element_list[i],

"aligned_spandrel_slab_only_in_one_side") &&
 Operators.is_part_of(Rel_list, ref relationship1, Element_list[j],

"aligned_column_slab_only_in_one_side") &&

 Operators.belongs_to(Rel_list, ref relationship2, Element_list[i],
"adjacent_spandrel_slab") &&

 Operators.get_related_objects(Element_list, relationship1, ref elements) &&

 Operators.get_related_objects(Element_list, relationship2, ref elements1) &&
 Operators.compare_elements_attributes_in_lists(elements, "p21line", "=",

elements1, "p21line") &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"inboard_spandrel_ended_in_non_pocketed_column"))

190

 { if (Operators.create_new_element(Element_list, ref element,
"IfcProjectionElement", "corbel_for_spandrel_to_column_connection",

"corbel_connecting_spandrel_to_column", "corbel_spandrel_to_column",
"corbel_spandrel_to_column") &&

 Operators.create_set_from_element(elements2, element) &&

 Operators.create_rel(Rel_list, elements2, ref relationship,
"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"inboard_spandrel_ended_in_non_pocketed_column",

"inboard_spandrel_ended_in_non_pocketed_column",
"inboard_spandrel_ended_in_non_pocketed_column") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bearing_pad_SP_C", "gravity_connection_spandrel_to_non_pocketed_column",
"shim_connecting_spandrel_to_non_pocketed_column", "bearing_pad_SP_C") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"top_tie_back_inboard_spandrel_to_non_pocketed_column",

"top_tie_back_inboard_spandrel_to_non_pocketed_column",
"top_tie_back_inboard_spandrel_to_non_pocketed_column",
"top_tie_back_inboard_spandrel_to_non_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")
&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bottom_tie_back_inboard_spandrel_to_non_pocketed_column",
"bottom_tie_back_inboard_spandrel_to_non_pocketed_column",
"bottom_tie_back_inboard_spandrel_to_non_pocketed_column",

"bottom_tie_back_inboard_spandrel_to_non_pocketed_column") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))
 {Flag = true;

 System.Console.WriteLine("Rule #17: i = " + i + " j = " + j);
 }
 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&

 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.is_part_of(Rel_list, ref relationship, Element_list[i],

"aligned_spandrel_slab_both_sides") &&
 Operators.is_part_of(Rel_list, ref relationship1, Element_list[j],

"aligned_column_slab_both_sides") &&

 Operators.belongs_to(Rel_list, ref relationship2, Element_list[i],
"adjacent_spandrel_slab") &&

 Operators.get_related_objects(Element_list, relationship1, ref elements) &&

 Operators.get_related_objects(Element_list, relationship2, ref elements1) &&
 Operators.compare_elements_attributes_in_lists(elements,"p21line", "=", elements1,

"p21line") &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"inboard_spandrel_ended_in_non_pocketed_column"))

 { if (Operators.create_new_element(Element_list, ref element,

"IfcProjectionElement", "corbel_for_spandrel_to_column_connection",
"corbel_connecting_spandrel_to_column", "corbel_spandrel_to_column",
"corbel_spandrel_to_column") &&

 Operators.create_set_from_element(elements2, element) &&
 Operators.create_rel(Rel_list, elements2, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

191

"inboard_spandrel_ended_in_non_pocketed_column",
"inboard_spandrel_ended_in_non_pocketed_column",

"inboard_spandrel_ended_in_non_pocketed_column") &&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bearing_pad_SP_C", "gravity_connection_spandrel_to_non_pocketed_column",

"shim_connecting_spandrel_to_non_pocketed_column", "bearing_pad_SP_C") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"top_tie_back_inboard_spandrel_to_non_pocketed_column",
"top_tie_back_inboard_spandrel_to_non_pocketed_column",

"top_tie_back_inboard_spandrel_to_non_pocketed_column",
"top_tie_back_inboard_spandrel_to_non_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bottom_tie_back_inboard_spandrel_to_non_pocketed_column",

"bottom_tie_back_inboard_spandrel_to_non_pocketed_column",
"bottom_tie_back_inboard_spandrel_to_non_pocketed_column",
"bottom_tie_back_inboard_spandrel_to_non_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))
 { Flag = true;
 System.Console.WriteLine("Rule #18: i = " + i + " j = " + j);

 }
 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&
 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_overlapping(Element_list[i], Element_list[j]) &&

 Operators.is_part_of(Rel_list, ref relationship, Element_list[j],
"aligned_column_slab_only_in_one_side") &&

 !Operators.is_part_of(Rel_list, ref relationship3, Element_list[i],

"adjacent_spandrel_beam") &&
 Operators.is_part_of(Rel_list, ref relationship4, Element_list[j],

"adjacent_column_beam") &&

 Operators.is_part_of(Rel_list, ref relationship1, Element_list[j],
"adjacent_column_slab") &&

 Operators.belongs_to(Rel_list, ref relationship2, Element_list[i],

"adjacent_spandrel_slab") &&
 Operators.get_related_objects(Element_list, relationship1, ref elements) &&
 Operators.get_related_objects(Element_list, relationship2, ref elements1) &&

 Operators.compare_elements_attributes_in_lists(elements, "p21line", "=",
elements1, "p21line") &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"outboard_spandrel_pocketed_column"))
 {if (Operators.create_new_element(Element_list, ref element,

"IfcDiscreteAccessory", "bearing_pad_SP_C",

"gravity_connection_spandrel_to_pocketed_column",
"shim_connecting_spandrel_to_pocketed_column", "bearing_pad_SP_C") &&

 Operators.create_set_from_element(elements2, element) &&

 Operators.create_rel(Rel_list, elements2, ref relationship,
"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"outboard_spandrel_pocketed_column", "outboard_spandrel_pocketed_column",

"outboard_spandrel_pocketed_column") &&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"top_tie_back_outboard_spandrel_to_pocketed_column",

192

"top_tie_back_outboard_spandrel_to_pocketed_column",
"top_tie_back_outboard_spandrel_to_pocketed_column",

"top_tie_back_outboard_spandrel_to_pocketed_column") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bottom_tie_back_outboard_spandrel_to_pocketed_column",
"bottom_tie_back_outboard_spandrel_to_pocketed_column",

"bottom_tie_back_outboard_spandrel_to_pocketed_column",
"bottom_tie_back_outboard_spandrel_to_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))

 { Flag = true;
 System.Console.WriteLine("Rule #19: i = " + i + " j = " + j);
 }

 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&

 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_overlapping(Element_list[i], Element_list[j]) &&
 Operators.is_part_of(Rel_list, ref relationship, Element_list[i],

"adjacent_spandrel_beam") &&
 Operators.is_part_of(Rel_list, ref relationship1, Element_list[j],

"aligned_column_slab_both_sides") &&

 Operators.belongs_to(Rel_list, ref relationship2, Element_list[i],
"adjacent_spandrel_slab") &&

 Operators.get_related_objects(Element_list, relationship1, ref elements) &&

 Operators.get_related_objects(Element_list, relationship2, ref elements1) &&
 Operators.compare_elements_attributes_in_lists(elements, "p21line", "=",

elements1, "p21line") &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"inboard_spandrel_pocketed_column"))

 { if (Operators.create_new_element(Element_list, ref element,

"IfcDiscreteAccessory", "bearing_pad_SP_C",
"gravity_connection_spandrel_to_pocketed_column",
"shim_connecting_spandrel_to_pocketed_column", "bearing_pad_SP_C") &&

 Operators.create_set_from_element(elements2, element) &&
 Operators.create_rel(Rel_list, elements2, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

"inboard_spandrel_pocketed_column", "inboard_spandrel_pocketed_column",
"inboard_spandrel_pocketed_column") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"top_tie_back_inboard_spandrel_to_pocketed_column",
"top_tie_back_inboard_spandrel_to_pocketed_column",
"top_tie_back_inboard_spandrel_to_pocketed_column",

"top_tie_back_inboard_spandrel_to_pocketed_column") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bottom_tie_back_inboard_spandrel_to_pocketed_column",
"bottom_tie_back_inboard_spandrel_to_pocketed_column",

"bottom_tie_back_inboard_spandrel_to_pocketed_column",
"bottom_tie_back_inboard_spandrel_to_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))

 {Flag = true;
 System.Console.WriteLine("Rule #20: i = " + i + " j = " + j);
 }

193

 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&
 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_overlapping(Element_list[i], Element_list[j]) &&

 Operators.is_part_of(Rel_list, ref relationship, Element_list[j],
"non_adjacent_column_beam") &&

 Operators.is_part_of(Rel_list, ref relationship3, Element_list[i],

"adjacent_spandrel_spandrel_VNF_VNF") &&
 Operators.find_relationships_containing_element (Rel_list, Element_list[j],

"adjacent_column_slab", "RelatedObjects", relationship_list1) &&

 Operators.find_relationships_containing_element (Rel_list, Element_list[i],
"adjacent_spandrel_slab", "RelatedObjects", relationship_list2) &&

 Operators.get_related_objects(Element_list, relationship_list1, ref elements1) &&

 Operators.get_related_objects(Element_list, relationship_list2, ref elements2) &&
 Operators.compare_elements_attributes_in_lists(elements1, "p21line", "=",

elements2, "p21line") &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"inboard_spandrel_pocketed_column"))

 { if (Operators.create_new_element(Element_list, ref element,

"IfcDiscreteAccessory", "bearing_pad_SP_C",
"gravity_connection_spandrel_to_pocketed_column",
"shim_connecting_spandrel_to_pocketed_column", "bearing_pad_SP_C") &&

 Operators.create_set_from_element(elements2, element) &&
 Operators.create_rel(Rel_list, elements2, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

"inboard_spandrel_pocketed_column", "inboard_spandrel_pocketed_column",
"inboard_spandrel_pocketed_column") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"top_tie_back_inboard_spandrel_to_pocketed_column",
"top_tie_back_inboard_spandrel_to_pocketed_column",
"top_tie_back_inboard_spandrel_to_pocketed_column",

"top_tie_back_inboard_spandrel_to_pocketed_column") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bottom_tie_back_inboard_spandrel_to_pocketed_column",
"bottom_tie_back_inboard_spandrel_to_pocketed_column",

"bottom_tie_back_inboard_spandrel_to_pocketed_column",
"bottom_tie_back_inboard_spandrel_to_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))

 { Flag = true;
 System.Console.WriteLine("Rule #22: i = " + i + " j = " + j);
 }

 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&

 Operators.if_is_a(Element_list[j], "ElementType", "IfcColumn") &&
 Operators.is_adjacent_to(Element_list[i], Element_list[j], 0.1) &&
 Operators.is_part_of(Rel_list, ref relationship, Element_list[i],

"aligned_spandrel_slab_only_in_one_side") &&
 Operators.is_part_of(Rel_list, ref relationship1, Element_list[j],

"adjacent_column_slab") &&

 Operators.belongs_to(Rel_list, ref relationship2, Element_list[i],
"adjacent_spandrel_slab") &&

 Operators.get_related_objects(Element_list, relationship1, ref elements) &&

194

 Operators.get_related_objects(Element_list, relationship2, ref elements1) &&
 Operators.compare_elements_attributes_in_lists(elements, "p21line", "=",

elements1, "p21line") &&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"inboard_spandrel_ended_in_non_pocketed_column"))

 { if (Operators.create_new_element(Element_list, ref element,
"IfcProjectionElement", "corbel_for_spandrel_to_column_connection",
"corbel_connecting_spandrel_to_column", "corbel_spandrel_to_column",

"corbel_spandrel_to_column") &&
 Operators.create_set_from_element(elements2, element) &&
 Operators.create_rel(Rel_list, elements2, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"inboard_spandrel_ended_in_non_pocketed_column",
"inboard_spandrel_ended_in_non_pocketed_column",

"inboard_spandrel_ended_in_non_pocketed_column") &&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bearing_pad_SP_C", "gravity_connection_spandrel_to_non_pocketed_column",

"shim_connecting_spandrel_to_non_pocketed_column", "bearing_pad_SP_C") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"top_tie_back_inboard_spandrel_to_non_pocketed_column",
"top_tie_back_inboard_spandrel_to_non_pocketed_column",

"top_tie_back_inboard_spandrel_to_non_pocketed_column",
"top_tie_back_inboard_spandrel_to_non_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bottom_tie_back_inboard_spandrel_to_non_pocketed_column",

"bottom_tie_back_inboard_spandrel_to_non_pocketed_column",
"bottom_tie_back_inboard_spandrel_to_non_pocketed_column",
"bottom_tie_back_inboard_spandrel_to_non_pocketed_column") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))
 {Flag = true;
 System.Console.WriteLine("Rule #24: i = " + i + " j = " + j);

 }
 }

 if (Operators.if_is_a(Element_list[i], "ObjectType", "spandrel") &&
 Operators.if_is_a(Element_list[j], "ObjectType", "non_spandrel_beam") &&
 Operators.find_relationships_containing_element (Rel_list, Element_list[i],

"adjacent_or_overlapping_spandrel_column", "RelatedObjects", relationship_list1)
&&

 Operators.find_relationships_containing_element (Rel_list, Element_list[j],

"adjacent_column_beam", "RelatedObjects", relationship_list2) &&
 Operators.get_related_objects(Element_list, relationship_list1, ref elements) &&
 Operators.get_related_objects(Element_list, relationship_list2, ref elements1) &&

 Operators.compare_elements_attributes_in_lists(elements, "p21line", "=",
elements1, "p21line") &&

 !Operators.if_is_a(Element_list[i], "Description","non_load_bearing_spandrel"))

 { if (Operators.change_element_attribute(Element_list, Element_list[i],
"Description","non_load_bearing_spandrel"))

 { Flag = true;

 System.Console.WriteLine("Rule #27: i = " + i + " j = " + j);
 }
 }

195

 }//j
 if ((i + 1 == Element_list.Count) && (Flag == true))

 {i = -1; Flag = false;}
 }//i
 new Export_IFC(sPath, Element_list, Rel_list);

 }//main
 }
 }

196

APPENDIX E

RULE SET FOR AUTOMATIC DESIGN OF CONNECTIONS BETWEEN DOUBLE-TEE SLABS,

SHEAR WALLS AND BEAMS

 for (int i = 0; i < Element_list.Count ; i++)
 {

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&

 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&

 Operators.is_dimension(Element_list[i], "height",">=",2) &&

 Operators.is_dimension(Element_list[i], "height","<=",5) &&
 Operators.is_dimension(Element_list[i], "width",">",7) &&
 !Operators.if_is_a(Element_list[i], "Tag","double_tee_slab"))

 { if (Operators.change_element_attribute(Element_list, Element_list[i],
"Tag","double_tee_slab"))

 {Flag=true;
 System.Console.WriteLine("Rule #7: i = " + i);}

 }

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&

 Operators.is_made_of(Rel_list, Element_list[i], "concrete") &&

 Operators.is_dimension(Element_list[i], "height",">=",1.5) &&

 Operators.is_dimension(Element_list[i], "height","<=",5) &&
 Operators.is_dimension(Element_list[i], "width",">=",2.3) &&
 Operators.is_dimension(Element_list[i], "width","<=",3.4) &&

 !Operators.if_is_a(Element_list[i], "Tag","inverted_tee_beam"))
 { if (Operators.change_element_attribute(Element_list, Element_list[i],

"Tag","inverted_tee_beam"))

 {Flag=true;
 System.Console.WriteLine("Rule #8: i = " + i);}
 }

 for (int j = 0; j <= Element_list.Count; j++)
 {
 if (j == Element_list.Count)

 {break;}
 if (i == j) continue;

 List<DB.IFCArray> elements = new List<DB.IFCArray>();
 List<DB.IFCArray> elements1 = new List<DB.IFCArray>();

 List<DB.IFCArray> elements2 = new List<DB.IFCArray>();
 DB.IFCArray element = new DB.IFCArray();

 DB.RelObj relationship = new DB.RelObj();
 DB.RelObj relationship1 = new DB.RelObj();

197

 DB.RelObj relationship2 = new DB.RelObj();
 DB.RelObj relationship3 = new DB.RelObj();

 List<DB.RelObj> list = new List<DB.RelObj>();

 List<DB.RelObj> list1 = new List<DB.RelObj>();

 float y = 0;

 /* shear wall to shear wall connection type E */
 if (Operators.if_is_a(Element_list[i], "ElementType","IfcWallStandardCase") &&
 Operators.if_is_a(Element_list[j], "ElementType","IfcWallStandardCase") &&

 Operators.has_adjacent_faces_with(Element_list[i].horizontal_bottom_face(),
Element_list[j].horizontal_top_face(), 0.1) &&

 Operators.is_dimension(Element_list[j], "Top_Elevation",">",18) &&

 Operators.is_dimension(Element_list[j], "Top_Elevation","<=",26)&&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"SW_to_SW_conn_rel_E"))

 { if (Operators.get_element_dimension(Element_list[i], "length", ref y) &&
 Operators.create_list_of_new_elements(Element_list, elements, (int)

Math.Ceiling(y/6) , "IfcDiscreteAccessory", "shear_wall_to_shear_wall_connection",

"SW_to_SW_mechanical_anchor_bolted_connection",
"SW_to_SW_mechanical_anchor_bolted_connection",
"SW_to_SW_mechanical_anchor_bolted_connection") &&

 Operators.create_list_of_relationships(Rel_list, elements,
"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"shear_wall_to_shear_wall_type_E_connection_relationship",

"shear_wall_to_shear_wall_type_E_connection_relationship",
"SW_to_SW_conn_rel_E"))

 {Flag=true;

 System.Console.WriteLine("Rule #1: i = " + i + " j = " + j);}
 }

 /* shear wall to shear wall connection type F */
 if (Operators.if_is_a(Element_list[i], "ElementType","IfcWallStandardCase") &&

 Operators.if_is_a(Element_list[j], "ElementType","IfcWallStandardCase") &&
 Operators.has_adjacent_faces_with(Element_list[i].horizontal_bottom_face(),

Element_list[j].horizontal_top_face(), 0.1) &&

 Operators.is_dimension(Element_list[j], "Top_Elevation",">",18) &&
 Operators.is_dimension(Element_list[j], "Top_Elevation","<=",26)&&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"SW_to_SW_conn_rel_F"))
 { if (
 Operators.get_element_dimension(Element_list[i], "length", ref y) &&

 Operators.create_list_of_new_elements(Element_list, elements, (int)Math.Ceiling(y /
24), "IfcDiscreteAccessory", "shear_wall_to_shear_wall_connection",
"SW_to_SW_grouted_coupler_connection",

 "SW_to_SW_V_pocket_angle_connection",
"SW_to_SW_V_pocket_angle_connection") &&

 Operators.create_list_of_relationships (Rel_list, elements,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"shear_wall_to_shear_wall_type_F_connection_relationship",

198

"shear_wall_to_shear_wall_type_F_connection_relationship",
"SW_to_SW_conn_rel_F"))

 {Flag=true;
 System.Console.WriteLine("Rule #2: i = " + i + " j = " + j);}
 }

 /* shear wall to shear wall connection type E */

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcWallStandardCase") &&
 Operators.if_is_a(Element_list[j], "ElementType","IfcWallStandardCase") &&
 Operators.has_adjacent_faces_with(Element_list[i].horizontal_bottom_face(),

Element_list[j].horizontal_top_face(), 0.1) &&
 Operators.is_dimension(Element_list[j], "Top_Elevation",">",26) &&
 Operators.is_dimension(Element_list[j], "Top_Elevation","<=",36)&&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"SW_to_SW_conn_rel_E"))

 { if (Operators.get_element_dimension(Element_list[i], "length", ref y) &&

 Operators.create_list_of_new_elements(Element_list, elements, (int)
Math.Ceiling(y/6) , "IfcDiscreteAccessory", "shear_wall_to_shear_wall_connection",
"SW_to_SW_mechanical_anchor_bolted_connection",

"SW_to_SW_mechanical_anchor_bolted_connection",
"SW_to_SW_mechanical_anchor_bolted_connection") &&

 Operators.create_list_of_relationships(Rel_list, elements,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"shear_wall_to_shear_wall_type_E_connection_relationship",
"shear_wall_to_shear_wall_type_E_connection_relationship",

"SW_to_SW_conn_rel_E"))

 {Flag=true;

 System.Console.WriteLine("Rule #1.1: i = " + i + " j = " + j);}
 }

 /* shear wall to shear wall connection type F */

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcWallStandardCase") &&
 Operators.if_is_a(Element_list[j], "ElementType","IfcWallStandardCase") &&
 Operators.has_adjacent_faces_with(Element_list[i].horizontal_bottom_face(),

Element_list[j].horizontal_top_face(), 0.1) &&
 Operators.is_dimension(Element_list[j], "Top_Elevation",">",26) &&
 Operators.is_dimension(Element_list[j], "Top_Elevation","<=",36)&&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"SW_to_SW_conn_rel_F"))

 { if (Operators.get_element_dimension(Element_list[i], "length", ref y) &&

 Operators.create_list_of_new_elements(Element_list, elements, (int)Math.Ceiling(y /
24), "IfcDiscreteAccessory", "shear_wall_to_shear_wall_connection",
"SW_to_SW_grouted_coupler_connection",

"SW_to_SW_V_pocket_angle_connection",
"SW_to_SW_V_pocket_angle_connection") &&

 Operators.create_list_of_relationships (Rel_list, elements,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"shear_wall_to_shear_wall_type_F_connection_relationship",
"shear_wall_to_shear_wall_type_F_connection_relationship",

"SW_to_SW_conn_rel_F"))
 {Flag=true;
 System.Console.WriteLine("Rule #2.1: i = " + i + " j = " + j);}

199

 }

 /* shear wall to shear wall connection type E */
 if (Operators.if_is_a(Element_list[i], "ElementType","IfcWallStandardCase") &&

 Operators.if_is_a(Element_list[j], "ElementType","IfcWallStandardCase") &&
 Operators.has_adjacent_faces_with(Element_list[i].horizontal_bottom_face(),

Element_list[j].horizontal_top_face(), 0.1) &&

 Operators.is_dimension(Element_list[j], "Top_Elevation",">",8) &&
 Operators.is_dimension(Element_list[j], "Top_Elevation","<=",18)&&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"SW_to_SW_conn_rel_E"))
 { if (Operators.get_element_dimension(Element_list[i], "length", ref y) &&
 Operators.create_list_of_new_elements(Element_list, elements, (int)

Math.Ceiling(y/6) , "IfcDiscreteAccessory", "shear_wall_to_shear_wall_connection",
"SW_to_SW_mechanical_anchor_bolted_connection",
"SW_to_SW_mechanical_anchor_bolted_connection",

"SW_to_SW_mechanical_anchor_bolted_connection") &&
 Operators.create_list_of_relationships(Rel_list, elements,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

"shear_wall_to_shear_wall_type_E_connection_relationship",
"shear_wall_to_shear_wall_type_E_connection_relationship",
"SW_to_SW_conn_rel_E"))

 {Flag=true;
 System.Console.WriteLine("Rule #1.2: i = " + i + " j = " + j);}

 }

 /* shear wall to shear wall connection type F */
 if (Operators.if_is_a(Element_list[i], "ElementType","IfcWallStandardCase") &&
 Operators.if_is_a(Element_list[j], "ElementType","IfcWallStandardCase") &&

 Operators.has_adjacent_faces_with(Element_list[i].horizontal_bottom_face(),
Element_list[j].horizontal_top_face(), 0.1) &&

 Operators.is_dimension(Element_list[j], "Top_Elevation",">",8) &&

 Operators.is_dimension(Element_list[j], "Top_Elevation","<=",18)&&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"SW_to_SW_conn_rel_F"))

 { if (Operators.get_element_dimension(Element_list[i], "length", ref y) &&
 Operators.create_list_of_new_elements(Element_list, elements, (int)Math.Ceiling(y /

24), "IfcDiscreteAccessory", "shear_wall_to_shear_wall_connection",

"SW_to_SW_grouted_coupler_connection",
"SW_to_SW_V_pocket_angle_connection",
"SW_to_SW_V_pocket_angle_connection") &&

 Operators.create_list_of_relationships (Rel_list, elements,
"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"shear_wall_to_shear_wall_type_F_connection_relationship",

"shear_wall_to_shear_wall_type_F_connection_relationship",
"SW_to_SW_conn_rel_F"))

 {Flag=true;

 System.Console.WriteLine("Rule #2.2: i = " + i + " j = " + j);}
 }

200

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&

 Operators.if_is_a(Element_list[j], "ElementType","IfcWallStandardCase") &&
 Operators.if_is_a(Element_list[i], "Tag","double_tee_slab") &&
 Operators.if_is_a(Element_list[i], "Name","CEG_DT:12DT30") &&

 Operators.has_adjacent_faces_with(Element_list[i].vertical_narrow_faces(),
Element_list[j].vertical_wide_faces (), 0.2) &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"perpendicular_DT_to_SW_connection")&&
 Operators.compare_elements_attribute(Element_list[j], "Bottom_Elevation", "<=",

Element_list[i], "Bottom_Elevation"))

 { if (
 Operators.create_new_element(Element_list, ref element, "IfcProjectionElement",

"corbel_for_double_tee_to_shear_wall_connection",

"corbel_1_connecting_perpendicular_DT_to_SW", "corbel_1_DT_to_SW",
"corbel_1_DT_to_SW") &&

 Operators.create_set_from_element(elements, element) &&

 Operators.create_rel(Rel_list, elements, ref relationship,
"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"double_tee_to_shear_wall_connection_relationship",

"perpendicular_DT_to_SW_connection", "perpendicular_DT_to_SW_connection") &&
 Operators.create_new_element(Element_list, ref element, "IfcProjectionElement",

"corbel_for_double_tee_to_shear_wall_connection",

"corbel_2_connecting_perpendicular_DT_to_SW", "corbel_2_DT_to_SW",
"corbel_2_DT_to_SW") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"perpendicular_double_tee_to_shear_wall_connection",

"DT_to_SW_fixed_welded_connection",
"DT_to_SW_slotted_insert_wall_embed_plate_flange",
"DT_to_SW_slotted_insert_wall_embed_plate_flange1") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")
&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"perpendicular_double_tee_to_shear_wall_connection",
"DT_to_SW_fixed_welded_connection",
"DT_to_SW_slotted_insert_wall_embed_plate_flange2",

"DT_to_SW_slotted_insert_wall_embed_plate_flange") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bearing_pad_DT_SW",
"gravity_connection_double_tee_to_shear_wall_connection",

"shim_connecting_DT_to_SW_with_corbel", "bearing_pad_DT_SW1") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"bearing_pad_DT_SW",
"gravity_connection_double_tee_to_shear_wall_connection",

"shim_connecting_DT_to_SW_with_corbel", "bearing_pad_DT_SW2") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcProjectionElement",
"corbel_for_double_tee_to_shear_wall_connection",

201

"corbel_1_connecting_perpendicular_DT_to_SW", "corbel_1_DT_to_SW",
"corbel_1_DT_to_SW") &&

 Operators.create_set_from_element(elements, element) &&
 Operators.create_rel(Rel_list, elements, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

"double_tee_to_shear_wall_connection_relationship",
"perpendicular_DT_to_SW_connection", "perpendicular_DT_to_SW_connection") &&

 Operators.create_new_element(Element_list, ref element, "IfcProjectionElement",

"corbel_for_double_tee_to_shear_wall_connection",
"corbel_2_connecting_perpendicular_DT_to_SW", "corbel_2_DT_to_SW",
"corbel_2_DT_to_SW") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")
&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"perpendicular_double_tee_to_shear_wall_connection",
"DT_to_SW_fixed_welded_connection",
"DT_to_SW_slotted_insert_wall_embed_plate_flange",

"DT_to_SW_slotted_insert_wall_embed_plate_flange1") &&
 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",
"perpendicular_double_tee_to_shear_wall_connection",
"DT_to_SW_fixed_welded_connection",

"DT_to_SW_slotted_insert_wall_embed_plate_flange2",
"DT_to_SW_slotted_insert_wall_embed_plate_flange") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bearing_pad_DT_SW",

"gravity_connection_double_tee_to_shear_wall_connection",
"shim_connecting_DT_to_SW_with_corbel", "bearing_pad_DT_SW1") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")

&&
 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bearing_pad_DT_SW",

"gravity_connection_double_tee_to_shear_wall_connection",
"shim_connecting_DT_to_SW_with_corbel", "bearing_pad_DT_SW2") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))

 {
 Flag = true;
 System.Console.WriteLine("Rule #3: i = " + i + " j = " + j);}

 }

 /* shear wall to parallel intersecting Double Tee connections */

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&

 Operators.if_is_a(Element_list[j], "ElementType","IfcWallStandardCase") &&
 Operators.if_is_a(Element_list[i], "Tag","double_tee_slab") &&
 Operators.if_is_a(Element_list[i], "Name","CEG_DT:12DT30") &&

 (Operators.has_adjacent_faces_with(Element_list[i].vertical_wide_faces(),
Element_list[j].vertical_wide_faces (), 0.2) ||

 Operators.is_overlapping(Element_list[j], Element_list[i])) &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"parallel_DT_to_SW_connection"))

 { if ((Operators.elements_overlapping(Element_list[i], Element_list[j], "length", ref y) ||

202

 Operators.elements_adjacency(Element_list[i], Element_list[j], "length", ref y)) &&
 Operators.create_list_of_new_elements(Element_list, elements,(int)Math.Ceiling(y /

2), "IfcDiscreteAccessory", "parallel_double_tee_to_shear_wall_connection",
"DT_to_SW_adjustable_connection",
"DT_to_SW_slotted_insert_wall_embed_plate_flange",

"DT_to_SW_slotted_insert_wall_embed_plate_flange") &&
 Operators.create_list_of_relationships(Rel_list, elements,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

"double_tee_to_shear_wall_connection_relationship",
"parallel_DT_to_SW_connection", "parallel_DT_to_SW_connection"))

 {Flag = true;

 System.Console.WriteLine("Rule #4: i = " + i + " j = " + j);}
 }

 /* Double Tee to Double Tee connections */
 if (Operators.if_is_a(Element_list[i], "ElementType", "IfcBeam") &&
 Operators.if_is_a(Element_list[j], "ElementType", "IfcBeam") &&

 Operators.if_is_a(Element_list[i], "Tag", "double_tee_slab") &&
 Operators.if_is_a(Element_list[j], "Tag", "double_tee_slab") &&
 Operators.if_is_a(Element_list[i], "Name", "CEG_DT:12DT30") &&

 Operators.if_is_a(Element_list[j], "Name", "CEG_DT:12DT30") &&
 (Operators.has_adjacent_faces_with(Element_list[i].vertical_wide_faces(),

Element_list[j].vertical_wide_faces (), 0.2) ||

 Operators.is_overlapping(Element_list[i], Element_list[j]))&&
 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],

"DT_to_DT_connection"))

 {if (
 (Operators.elements_adjacency(Element_list[i], Element_list[j], "length", ref y) ||
 Operators.elements_overlapping(Element_list[i], Element_list[j], "length", ref y)) &&

 Operators.create_list_of_new_elements(Element_list, elements, (int)Math.Ceiling(y /
7), "IfcDiscreteAccessory", "double_tee_to_double_tee_flange_connection",
"DT_to_DT_welded_connection_with_embed_plates",

"DT_to_DT_embed_plates_in_flange_and_slug",
"DT_to_DT_embed_plates_in_flange_and_slug") &&

 Operators.create_list_of_relationships(Rel_list, elements,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],
"double_tee_to_double_tee_connection_relationship", "DT_to_DT_connection",
"DT_to_DT_connection"))

 {Flag = true;
 System.Console.WriteLine("Rule #5: i = " + i + " j = " + j);}
 }

 /* Double Tee to Beam connections */

 if (Operators.if_is_a(Element_list[i], "ElementType","IfcBeam") &&
 Operators.if_is_a(Element_list[j], "ElementType","IfcBeam") &&
 Operators.if_is_a(Element_list[i], "Tag","double_tee_slab") &&

 Operators.if_is_a(Element_list[i], "Name","CEG_DT:12DT30") &&
 Operators.if_is_a(Element_list[j], "Name","CEG_IT_Beam") &&
 Operators.if_is_a(Element_list[j], "Tag", "inverted_tee_beam") &&

 (Operators.has_adjacent_faces_with(Element_list[i].vertical_narrow_faces(),
Element_list[j].vertical_wide_faces (), 0.2) ||

 Operators.is_overlapping(Element_list[j], Element_list[i])) &&

 Operators.is_not_related_to(Rel_list, Element_list[j], Element_list[i],
"DT_to_IT_or_L_beam_connection"))

203

 { if (Operators.create_new_element(Element_list, ref element,
"IfcDiscreteAccessory", "double_tee_to_beam_connection",

"DT_to_IT_or_L_beam_welded_connection",
"embed_angle_in_DT_flange_and_embed_plate_in_ITB",
"embed_angle_in_DT_flange_and_embed_plate_in_ITB") &&

 Operators.create_set_from_element(elements, element) &&
 Operators.create_rel(Rel_list, elements, ref relationship,

"IfcRelConnectsWithRealizingElements", Element_list[j], Element_list[i],

"double_tee_to_beam_connection_relationship",
"DT_to_IT_or_L_beam_connection", "DT_to_IT_or_L_beam_connection") &&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bearing_pad_DT_IT_or_L_beam",
"gravity_connection_double_tee_to_inveted_tee_or_L_beam",
"shim_connecting_DT_to_IT_or_L_beam", "bearing_pad_DT_IT_or_L_beam1") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements")
&&

 Operators.create_new_element(Element_list, ref element, "IfcDiscreteAccessory",

"bearing_pad_DT_IT_or_L_beam",
"gravity_connection_double_tee_to_inveted_tee_or_L_beam",
"shim_connecting_DT_to_IT_or_L_beam", "bearing_pad_DT_IT_or_L_beam2") &&

 Operators.add_object_to_relationship(relationship, element, "RealizingElements"))
 {
 Flag = true;

 System.Console.WriteLine("Rule #6: i = " + i + " j = " + j);}
 }

204

REFERENCES

[1] Staub-French, S., Fischer, M., Kunz, J., & Paulson, B. A. (2003). Generic feature-

driven activity-based cost estimation process. Advanced Engineering Informatics,
17(1), 23-39.

[2] Sacks, R., & Barak, R. (2008). Impact of three-dimensional parametric modeling
of buildings on productivity in structural engineering practice. Automation in
Construction, 17(4), 439-449.

[3] Sacks, R., Eastman, C. M., Lee, G., & Orndorff, D. (2005). A target benchmark of
the impact of three-dimensional parametric modeling in precast construction. PCI

Journal, 50(4), 126-139.

[4] Aram, S., Eastman, C., & Sacks, R. (2013). Requirements for BIM platforms in
the concrete reinforcement supply chain. Automation in Construction, 35, 1-17.

[5] Hartmann, T., Gao, J., & Fischer, M. (2008). Areas of application for 3D and 4D
models on construction projects. Journal of Construction Engineering and

Management, 134(10), 776-785.

[6] Forgues, D., Iordanova, I., Valdivesio, F., & Staub-French, S. (2012). Rethink ing
the cost estimating process through 5D BIM: A case study. Construction Research

Congress 778-786.

[7] Sacks, R., Eastman, C. M., & Lee, G. (2004). Process model perspectives on

management and engineering procedures in the precast/prestressed concrete
industry. Journal of Construction Engineering and Management, 130(2), 206-215.

[8] McGraw Hill Construction SmartMarket Report. (2012). The Business Value of

BIM in North America: Multi-Year trend analysis and user ratings (2007-2012).
McGraw-Hill Construction, New York.

[9] AACE International (1997). Recommended practice: cost estimate classifica t ion
system – as applied in engineering, procurement and construction for the process
industries. SSVR 18R-97, Morgantown, WV.

205

[10] Cavalieri, S., Maccarrone, P., Pinto, R. (2004). Parametric vs. neural network
models for the estimation of production costs: A case study in the automotive

industry. International Journal of Production Economic, 91(2),165–177.

[11] Niazi, A., Dai, J.S., Balabani, S., & Seneviratne, L. (2006). Product cost

estimation: technique classification and methodology review. Journal of
Manufacturing Science and Engineering, 128 (2), 563–575.

[12] Chougule, R. G., & Ravi, B. (2006). Casting cost estimation in an integrated

product and process design environment. International Journal of Computer
Integrated Manufacturing, 19(7), 676-688.

[13] Bode, J. (2000). Neural networks for cost estimation: simulations and pilot
application. International Journal of Production Research, 38(6), 1231-1254.

[14] Kim, G. H., An, S.H., & Kang, K. I. (2004). Comparison of construction cost

estimating models based on regression analysis, neural networks, and case-based
reasoning. Building & Environment, 39, 1235–1242.

[15] Arditi, D., & Tokdemir, O. B. (1999). Comparison of case-based reasoning and
artificial neural networks. Journal of computing in civil engineering, 13(3), 162-
169.

[16] Hegazy, T., & Ayed, A. (1998). Neural network model for parametric cost
estimation of highway projects. Journal of Construction Engineering and

Management, 124(3), 210-218.

[17] Tatari, O., & Kucukvar, M. (2011). Cost premium prediction of certified green
buildings: A neural network approach. Building and Environment, 46(5), 1081-

1086.

[18] Koo, C., Hong, T., Hyun, C., & Koo, K. (2010). A CBR-based hybrid model for

predicting a construction duration and cost based on project characteristics in
multi-family housing projects. Canadian Journal of Civil Engineering, 37(5), 739-
752.

[19] Günaydin, H. M., & Doğan, S. Z. (2004). A neural network approach for early cost
estimation of structural systems of buildings. International Journal of Project

Management, 22, 595–602.

[20] Kim, G. H., Yoon, J. E., An, S.H., Cho, H. H., & Kang, K. I. (2004). Neural
network model incorporating a genetic algorithm in estimating construction costs.

Building & Environment, 39, 1333–1340.

206

[21] Doğan, S. Z., Arditi, D., & Murat Günaydin, H. (2008). Using decision trees for
determining attribute weights in a case-based model of early cost prediction.

Journal of Construction Engineering and Management, 134(2), 146-152.

[22] An, S. H., Kim, G. H., & Kang, K. I. (2007). A case-based reasoning cost

estimating model using experience by analytic hierarchy process. Building and
Environment, 42(7), 2573-2579.

[23] Jin, R., Cho, K., Hyun, C., & Son, M. (2012). MRA-based revised CBR model for

cost prediction in the early stage of construction projects. Expert Systems with
Applications, 39(5), 5214-5222.

[24] Marzouk, M. M., & Ahmed, R. M. (2011). A case-based reasoning approach for
estimating the costs of pump station projects. Journal of Advanced Research, 2(4),
289-295.

[25] Kim, H. J., Seo, Y. C., & Hyun, C. T. (2012). A hybrid conceptual cost estimating
model for large building projects. Automation in Construction, 25, 72-81.

[26] Qian, L., & Ben-Arieh, D. (2008). Parametric cost estimation based on activity-
based costing: A case study for design and development of rotational parts.
International Journal of Production Economics, 113(2), 805-818.

[27] H’mida, F., Martin, P., & Vernadat, F. (2006). Cost estimation in mechanica l
production: The Cost Entity approach applied to integrated product engineer ing.

International Journal of Production Economics, 103(1), 17-35.

[28] Roy, R., Souchoroukov, P., & Griggs, T. (2008). Function-based cost estimating.
International Journal of Production Research, 46(10), 2621-2650.

[29] Moharrami, H. & Grierson, D. E. (1993). Computer-automated design of
reinforced concrete frameworks, ASCE Journal of Structural Engineering, 119(7),

2036–58.

[30] Hartgraves, A. L., & Morse, W. M. (2012). Chapter 2: Cost behavior, activity
analysis, and cost estimation. Managerial Accounting, 6th ed., Cambridge

Business Publishers, Westmont, IL.

[31] Aram, S., Eastman, C., Beetz, J. (2014). Qualitative and Quantitative Cost

Estimation: A Methodology Analysis, ICCCBE 2014 & 2014 CIB W78, Orlando,
Florida.

207

[32] Renner, G., & Ekárt, A. (2003). Genetic algorithms in computer aided design.
Computer-Aided Design, 35(8), 709-726.

[33] Kicinger, R., Arciszewski, T., & Jong, K. D. (2005). Evolutionary computation
and structural design: A survey of the state-of-the-art. Computers & Structures,

83(23), 1943-1978.

[34] Koumousis, V. K., & Georgiou, P. G. (1994). Genetic algorithms in discrete
optimization of steel truss roofs. Journal of Computing in Civil Engineering, 8(3),

309-325.

[35] Rajeev, S., & Krishnamoorthy, C. S. (1992). Discrete optimization of structures

using genetic algorithms. Journal of Structural Engineering, 118(5), 1233-1250.

[36] Nimtawat, A., & Nanakorn, P. (2009). Automated layout design of beam-slab
floors using a genetic algorithm. Computers & Structures, 87(21), 1308-1330.

[37] Pullmann, T., Skolicki, Z., Freischlad, M., Arciszewski, T., De Jong, K. A., &
Schnellenbach-Held, M. (2003). Structural design of reinforced concrete tall

buildings: evolutionary computation approach using fuzzy sets. Proc. of the 10th
International Workshop of the European Group for Intelligent Computing in
Engineering (EG-ICE). Delft, The Netherlands.

[38] Woon, S. Y., Querin, O. M., & Steven, G. P. (2001). Structural application of a
shape optimization method based on a genetic algorithm. Structural and

Multidisciplinary Optimization, 22(1), 57-64.

[39] Lee, K. S., & Geem, Z. W. (2004). A new structural optimization method based
on the harmony search algorithm. Computers & Structures, 82(9), 781-798.

[40] Sarma, K. C., & Adeli, H. (2001). Bilevel parallel genetic algorithms for
optimization of large steel structures. Computer‐Aided Civil and Infrastruc ture

Engineering, 16(5), 295-304.

[41] Paya, I., Yepes, V., González‐Vidosa, F., & Hospitaler, A. (2008). Multi-object ive

optimization of concrete frames by simulated annealing. Computer‐Aided Civil

and Infrastructure Engineering, 23(8), 596-610.

[42] Rosenman, M. A., & Gero, J. S. (1999). Evolving designs by generating useful

complex gene structures. Evolutionary Design by Computers, 345-364.

208

[43] Shea, K., Sedgwick, A., & Antonuntto, G. (2006). Multicriteria optimization of
paneled building envelopes using ant colony optimization. Intelligent Computing

in Engineering and Architecture, 627-636, Springer Berlin Heidelberg.

[44] Krish, S. (2011). A practical generative design method. Computer-Aided Design,

43(1), 88-100.

[45] O'Neill, M., McDermott, J., Swafford, J. M., Byrne, J., Hemberg, E., Brabazon,
A., & Hemberg, M. (2010). Evolutionary design using grammatical evolution and

shape grammars: Designing a shelter. International Journal of Design Engineer ing,
3(1), 4-24.

[46] Maher, M. L. (2000). A model of co-evolutionary design. Engineering with
computers, 16(3-4), 195-208.

[47] Hofmeyer, H., Rutten, H. S., & Fijneman, H. J. (2006). Interaction of spatial and

structural design, an automated approach. Design Studies, 27(4), 423-438.

[48] Singh, S. P., & Sharma, R. R. K. (2006). A review of different approaches to the

facility layout problems. The International Journal of Advanced Manufactur ing
Technology, 30(5-6), 425-433.

[49] Michalek, J., Choudhary, R., & Papalambros, P. (2002). Architectural layout

design optimization. Engineering optimization, 34(5), 461-484.

[50] Chapman, C. B., & Pinfold, M. (1999). Design engineering—a need to rethink the

solution using knowledge based engineering. Knowledge-based Systems, 12(5),
257-267.

[51] Sacks, R., Warszawski, A., & Kirsch, U. (2000). Structural design in an automated

building system. Automation in Construction, 10(1), 181-197.

[52] Novak, M., & Dolšak, B. (2008). Intelligent FEA-based design improvement.

Engineering Applications of Artificial Intelligence, 21(8), 1239-1254.

[53] Frank, G. (2013). An expert system for design-process automation in a CAD

environment. In ICONS 2013, The Eighth International Conference on Systems,
179-184.

[54] Akerkar, R. A. and Sajja Priti Srinivas (2010). Knowledge-based systems. Jones
& Bartlett Publishers, Sudbury, MA, USA.

209

[55] Dhaliwal, J. S., & Benbasat, I. (1996). The use and effects of knowledge based
system explanations: theoretical foundations and a framework for empirica l

evaluation. Information Systems Research, 7(3), 342–362, 1996.

[56] Milton, N. R. (2008). Knowledge technologies (Vol. 3). Polimetrica sas.

[57] Rittle-Johnson, B., & Siegler, R. S. (1998). The relation between conceptual and
procedural knowledge in learning mathematics: A review. In C. Donlan (Ed.), The
development of mathematical skills, 75–110, East Sussex, England: Psychology

Press.

[58] Emberey CL, Milton NR, Berends JPTJ, van Tooren MJL, van der Elst SWG, &

Vermeulen B. (2007). Application of knowledge engineering methodologies to
support engineering design application development in aerospace. Proc. of 7th
AIAA Aviation Technology, Integration and Operations Conference (ATIO),

AIAA-2007-7708, Belfast, Ireland.

[59] Chapman, C. B., & Pinfold, M. (2001). The application of a knowledge based

engineering approach to the rapid design and analysis of an automotive structure.
Advances in Engineering Software, 32(12), 903-912.

[60] Cooper, D., & La Rocca, G. (2007). Knowledge-based techniques for developing

engineering applications in the 21st century. 7th AIAA ATIO Conference, Belfast,
Northern Ireland.

[61] Verhagen, W. J., Bermell-Garcia, P., van Dijk, R. E., & Curran, R. (2012). A
critical review of Knowledge-Based Engineering: An identification of research
challenges. Advanced Engineering Informatics, 26(1), 5-15.

[62] Shehab, E. & Abdalla, H. (2002). An intelligent knowledge-based system for
product cost modeling. International Journal of Advanced Manufactur ing

Technology, 19:49–65.

[63] Chan D. S. K. & Lewis W.P. (2000). The integration of manufacturing and cost
information into the engineering design process. International Journal of

Production Research, 38(17), 4413-4427.

[64] Bouaziz, Z., Younes, J. B. & Zghal, A. (2006). Cost estimation system of dies

manufacturing based on the complex machining features. The Internationa l
Journal of Advanced Manufacturing Technology, 28(3-4), 262-271.

210

[65] Ko, K. H., Pochiraju, K. & Manoochehri, S. (2007). An embedded system for
knowledge-based cost evaluation of molded parts. Knowledge-Based Systems, 20,

291–299.

[66] Sobolewski, M. (2002). Federated P2P Services in CE Environments. Advances

in Concurrent Engineering. A.A. Balkema Publishers, ISBN 90 5809 502 9,13–
22.

[67] Koonce, D., Judd R., Sormaz D. & Masel, D. T. (2003). A hierarchical cost

estimation tool. Computers in Industry 50: 293–302.

[68] Benjaoran, V., & Dawood, N. (2006). Intelligence approach to production

planning system for bespoke precast concrete products. Automation in
construction, 15(6), 737-745.

[69] García-Crespo, Á., Ruiz-Mezcua, B., López-Cuadrado, J. L., & González-

Carrasco, I. (2011). A review of conventional and knowledge based systems for
machining price quotation. Journal of Intelligent Manufacturing, 22(6), 823-841.

[70] Sandberg, M., Boart, P., & Larsson, T. (2005). Functional product life-cyc le
simulation model for cost estimation in conceptual design of jet engine
components. Concurrent Engineering, 13(4), 331-342.

[71] Lee, S. K., Kim, K. R. & Yu, J. H. (2013). BIM and ontology-based approach for
building cost estimation. Automation in Construction, 41, 96-105.

[72] Steel, J., & Drogemuller, R. (2011). Domain-specific model transformation in
building quantity take-off. Proc. of Model Driven Engineering Languages and
Systems (MoDELS) International Conference, LNCS, 198–212,

Berlin/Heidelberg.

[73] Tabatabai-Gargari, M., & Elzarka, H. M. (1998). Integrated CAD/KBS approach

for automating preconstruction activities. Journal of Construction Engineering and
Management, 124(4), 257-262.

[74] Studer, R., Benjamins, V. R. & Fensel, D. (1998). Knowledge engineer ing:

principles and methods. Data & knowledge Engineering, 25(1), 161-197.

[75] Neches, R., Fikes, R.E., Finin, T., Gruber, T.R., Senator, T. & Swartout, W.R.

(1991). Enabling technology for knowledge sharing, AI Magazine, 12(3) 36-56.

211

[76] Li, B. M., Xie, S. Q. & Xu, X. (2011). Recent development of knowledge-based
systems, methods and tools for one-of-a-kind production. Knowledge-Based

Systems. 24(7), 1108-1119.

[77] Fensel, D. (2002). Ontology-based knowledge management. Computer, 35(11),

56-59.

[78] Kim, C. H., Weston, R. H., Hodgson, A. & Lee, K. H. (2003). The complementary
use of IDEF and UML modelling approaches. Computers in Industry, 50(1), 35-

56.

[79] Gruber, T. R. (1993). A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2) 199-220.

[80] Schreiber, G., Wielinga, B. & Breuker, J. (1993). KADS: A principled approach
to knowledge-based system development. Academic Press, 11.

[81] Belsky, M., Sacks, R., Brilakis, I. (2014). SEEBIM: A Semantic enrichment
engine for building information modeling. Computer-Aided Civil and

Infrastructure Engineering (Accepted).

[82] RDF Ltd, IFC Engine, http://rdf.bg/ifc-engine-dll.php?page=products (last
accessed on 12/15/2014).

[83] RDF Ltd, IFC Viewer http://rdf.bg/ifc-viewer.php (last accessed on 12/15/2014).

[84] Danjou, S., Lupa, N., & Koehler, P. (2008). Approach for automated product

modeling using knowledge-based design features. Computer-Aided Design and
Applications, 5(5), 622-629.

[85] ICC (2009), IBC (2009). The International Building Code (IBC). Internationa l

Code Council (ICC), INC, Country Club Hill, IL 60478.

[86] PCI Industry Handbook Committee (2010). PCI design handbook: 7th ed.,

Precast/Prestressed Concrete Institute, Chicago, IL 60606-5230.

[87] PCI. A guide to designing with precast and prestressed concrete.
http://www.gcpci.org/index.cfm/precast_solutions/primer

[88] PCI Connections Detail Committee (2008). PCI connections manual for precast
and prestressed concrete construction, 1st ed., Precast/Prestressed Concrete

Institute, Chicago, IL 60606-5230.

http://www.scimagojr.com/journalsearch.php?q=18144&tip=sid&clean=0
http://www.scimagojr.com/journalsearch.php?q=18144&tip=sid&clean=0
http://rdf.bg/ifc-engine-dll.php?page=products
http://rdf.bg/ifc-viewer.php
http://www.gcpci.org/index.cfm/precast_solutions/primer

212

[89] ACI Committee 318 (2005). Building code requirements for structural concrete
and commentary (ACI 318-05), American Concrete Institute (ACI).

[90] National Precast Concrete Association (NCPA) (2011). Architectural precast
concrete wall panels: connection guide, http://precast.org/wp-

content/uploads/2012/01/ArchitecturalConnectionsGuide.pdf

[91] Hartmann, T., Van Meerveld, H., Vossebeld, N., & Adriaanse, A. (2012). Aligning
building information model tools and construction management methods.

Automation in construction, 22, 605-613.

[92] Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., & Carlsson,

C. (2002). Past, present, and future of decision support technology. Decision
Support Systems, 33(2), 111-126.

[93] Van der Elst, S. W. G., & Van Tooren, M. J. L. (2008). Application of a knowledge

engineering process to support engineering design application development.
Collaborative Product and Service Life Cycle Management for a Sustainab le

World, 417-43, Springer London.

[94] Skarka, W. (2007). Application of MOKA methodology in generative model
creation using CATIA. Engineering Applications of Artificial Intelligence, 20(5),

677-690.

[95] Gómez-Pérez, A., & Benjamins, R. (1999). Overview of knowledge sharing and

reuse components: Ontologies and problem-solving methods. IJCAI and the
Scandinavian AI Societies. CEUR Workshop Proceedings.

[96] Aliverti, E. (2012). About Drools and infinite execution loops.

http://www.plugtree.com/about-drools-and- infinite-execution- loops/ (last
accessed on 11/23/2014).

[97] Lee, G., Sacks, R., & Eastman, C. M. (2006). Specifying parametric building
object behavior (BOB) for a building information modeling system. Automation
in construction, 15(6), 758-776.

[98] Euzenat, J. (2001). Towards a principled approach to semantic interoperability.
IJCAI Workshop on Ontology and Information Sharing, Seattle, USA, pp. 19–25.

[99] Liao, Y., Lezoche, M., Loures, E., Panetto, H., & Boudjlida, N. (2013). Semantic
enrichment of models to assist knowledge management in a PLM environment.
In On the Move to Meaningful Internet Systems: OTM 2013 Conferences (pp.

267-274). Springer Berlin Heidelberg.

http://www.plugtree.com/about-drools-and-infinite-execution-loops/

213

[100] ISO10303-11 (1994). 'Industrial automation systems and integration -- Product
data representation and exchange --Part 11: Description methods: The EXPRESS

language reference manual'. International Organization for Standardization (ISO).

[101] Liebich, T., Adachi, Y., Forester, J., Hyvarinen, J., Richter, S., Chipman, T. et al.,

Industry Foundation Classes, IFC 2x Edition 4 Release Candidate 2, Model
Support Group (MSG) of buildingSMART http://buildingsmart-
tech.org/ifc/IFC2x4/alpha/html/ (last accessed on 11/25/2014).

[102] Panetto, H. (2007). Towards a classification framework for interoperability of
enterprise applications. International Journal of Computer Integrated

Manufacturing, 20(8), 727-740.

[103] Eastman, C. M., Jeong, Y. S., Sacks, R., & Kaner, I. (2009). Exchange model and
exchange object concepts for implementation of national BIM standards. Journal

of Computing in Civil Engineering, 24(1), 25-34.

[104] Aram, S., Eastman, C., Venugopal, M., Sacks, R., & Belsky, M. (2013). Concrete

reinforcement modeling for efficient information sharing. Proc. of the 30th
International Symposium on Automation and Robotics in Construction (ISARC) -
Montreal, Canada.

[105] Beetz, J., van Berlo, L., de Laat, R., & Bonsma, P. (2011). Advances in the
development and application of an open source model server for building

information. Proc. of CIB W078-W102, Sophia Antipolis, France.

[106] Aram, S., & Eastman, C. (2013). Integration of PLM solutions and BIM systems
for the AEC industry. Proc. of the 30th International Symposium on Automation

and Robotics in Construction (ISARC) - Montreal, Canada.

[107] You, C. F., & Tsai, Y. L. (2010). 3D solid model retrieval for engineering reuse

based on local feature correspondence. The International Journal of Advanced
Manufacturing Technology, 46(5-8), 649-661.

[108] El-Mehalawi, M., & Allen Miller, R. (2003). A database system of mechanica l

components based on geometric and topological similarity. Part II: indexing,
retrieval, matching, and similarity assessment. Computer-Aided Design, 35(1),

95-105.

[109] Tsai, C. Y., & Chang, C. A. (2005). A two-stage fuzzy approach to feature-based
design retrieval. Computers in Industry, 56(5), 493-505.

http://buildingsmart-tech.org/ifc/IFC2x4/alpha/html/
http://buildingsmart-tech.org/ifc/IFC2x4/alpha/html/

214

[110] Katranuschkov, P., Weise, M., Windisch, R., Fuchs, S., & Scherer, R. J. (2010).
BIM-based generation of multi-model views. CIB W78.

[111] Nepal, M. P., Staub-French, S., Pottinger, R., & Zhang, J. (2012). Ontology-based
feature modeling for construction information extraction from a building

information model. Journal of Computing in Civil Engineering, 27(5), 555-569.

[112] Adachi, Y. (2003). Overview of partial model query language. In ISPE CE (pp.
549-555).

[113] Borrmann, A., & Rank, E. (2009). Topological analysis of 3D building models
using a spatial query language. Advanced Engineering Informatics, 23(4), 370-

385.

[114] Foucault, G., & Léon, J. C. (2010). Enriching assembly CAD models with
functional and mechanical informations to ease CAE. Proc. Of ASME 2010

International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference (pp. 341-351). American Society of

Mechanical Engineers.

[115] Liao, Y., Lezoche, M., Loures, E., Panetto, H., & Boudjlida, N. (2013). Semantic
enrichment of models to assist knowledge management in a PLM environment.

Proc. of on the Move to Meaningful Internet Systems: OTM 2013
Conferences (pp. 267-274). Springer Berlin Heidelberg.

[116] Solibri Inc., Solibri Model Viewer, http://www.solibri.com/products/solibr i-
model-viewer/ (last accessed on 12/1/2014).

[117] Eastman, C.M., Teicholz, P., Sacks, R., Liston, K. (2011). BIM Handbook: A

Guide to Building Information Modeling for Owners, Managers, Designers,
Engineers and Contractors, 2nd ed. Wiley.

[118] Wilson, C., Sutter medical center Castro Valley: IPD process innovation with
building information modeling,
http://network.aia.org/technologyinarchitecturalpractice/Resources (last accessed

on 10/13/2014).

[119] Scopano, S., Allen, C., Cousins, B., Muir, W., Martino, R., Schoen, R. (2009).

Interrupting the supply chain - Whitepaper,
www.tekla.com/us/Documents/Interlocken_whitepaper.pdf (last accessed on
05/21/2013).

http://www.solibri.com/products/solibri-model-viewer/
http://www.solibri.com/products/solibri-model-viewer/
http://network.aia.org/technologyinarchitecturalpractice/Resources
http://www.tekla.com/us/Documents/Interlocken_whitepaper.pdf

