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SUMMARY

This work examines the structural character of epitaxial graphene on sili-

con carbide via surface X-ray diffraction (SXRD) and scanning tunneling microscopy

(STM), as well as other surface science techniques. Graphene, a single sheet of car-

bon atoms sp2-bonded in a honeycomb lattice, is a possible all-carbon successor to

silicon electronics. Ballistic conduction at room temperature and a linear disper-

sion relation that causes carriers to behave as massless Dirac fermions are features

that make graphene promising for high-speed, low-power devices. Critical advantages

of epitaxial graphene (EG) grown on SiC are its compatibility with standard litho-

graphic procedures and the ability to fabricate both devices and contacts from the

same material.

SXRD and STM results are presented on the domain structure, interface composi-

tion and stacking character of graphene grown on both polar faces of semi-insulating

4H-SiC. The data reveal intriguing differences between graphene grown on these two

faces. Substrate roughening is more pronounced and graphene domain sizes are signif-

icantly smaller on the SiC(0001) Si-face compared to the SiC(0001̄) C-face. Specular

X-ray reflectivity measurements show that both faces have a carbon rich, extended

interface that is tightly bound to the first graphene layer. This results in charge

transfer between the graphene and the SiC substrate and leads to a buffering effect

that shields the first graphene layer from the bulk SiC, as predicted by ab initio

calculations.

In-plane X-ray crystal truncation rod analysis indicates that rotated graphene

layers are interleaved in C-face graphene films. These rotational faults are most likely

xiii



caused by joint graphene/SiC and graphene/graphene commensurate supercells. Cor-

responding superstructures are observed in STM topographs, further evidence for the

presence of rotational stacking faults. The unique stacking character of multilayer C-

face graphene is shown to preserve the linear dispersion found in single layer graphene,

making EG electronics possible even for a multilayer material.

Details about each experimental apparatus used and their principles of operation

are also explained to supplement the understanding of work presented.

xiv



CHAPTER I

INTRODUCTION

1.1 Research Motivation & History

Properties of epitaxial graphene grown on SiC have shown its potential as a viable

candidate for post CMOS electronics.1,2 At some point in the near future, the path

to lower power, faster, smaller integrated circuits via silicon technology will come to

an end. New systems will have to be implemented for the continuation of Moore’s

law and continued innovation in industry. This provides an impetus for a thorough

study of the properties of epitaxial graphene (EG) and how it can be produced.

Graphene studies sprouted from research on the attractive electronic properties

of carbon nanotubes (CNTs) that led to a variety of work towards developing CNT

electronic switching devices. Problems with large intrinsic resistance in contacts and

the inability to control tube helicity (i.e. whether or not they are metallic or semi-

conducting) made large scale CNT integrated circuit designs problematic. A solution

to these problems was proposed when it was deduced that the electronic properties

of a graphene ribbon patterned on a SiC substrate should be similar to those of a

CNT.1 It was pointed out that that graphene ribbons can be considered as an un-

rolled CNTs with different boundary conditions (two dimensional versus cyclic).1,3

The advantage of epitaxial graphene over CNTs for electronics resides in its planar

2D structure and the fact that it is affixed to a substrate. This enables circuit design

with standard lithography techniques and provides a platform on which graphene can

be cut with different shapes and selected edge direction. By selecting the correct

ribbon edge direction and ribbon width, it should be possible to tailor a bandgap for

semiconducting graphene ribbons3–6(analogous to helicity in CNTs).

1



Research into the electronic properties of graphene has followed two parallel

courses. One involves the study of mechanically exfoliated graphene sheets.7–9 Here,

graphene flakes (typically micron size) are mechanically pealed from a bulk graphite

crystal and placed onto a support substrate. Once a single graphene sheet is sub-

sequently located by optical microscopy, metal contacts are attached for transport

studies.7–9 The second research avenue involves graphene directly grown on large area

insulating or semiconducting SiC substrates. Once grown, the films are lithograph-

ically patterned and metal contacts applied to make electronic devices.1 Graphene

produced this way is referred to as Epitaxial Graphene (EG).

Mechanically exfoliated graphene flakes have been used to study a variety of fun-

damental graphene properties. They have been shown to exhibit 2D transport proper-

ties characteristic of chiral massless Dirac electrons expected for an isolated graphene

sheet.10 These include an unusual half integer quantum Hall effect and a non-zero

Berry’s phase.8,9 What has propelled epitaxial graphene research as a leading con-

tender for post CMOS electronics was the discovery that even multilayer graphene

films grown on SiC show electronic properties similar to an isolated graphene sheet.

These include a Berry’s phase of π, weak anti-localization and a square root depen-

dence of Landau level energies with applied magnetic field.11–13

The similarity of EG and exfoliated graphene’s transport properties to those of a

theoretically isolated graphene sheet is remarkable considering that graphene/substrate

interactions should influence the 2D Dirac electrons responsible for graphene’s unusual

properties. The result is also very fortuitous since graphene grown on an insulating

substrate promises the most practical and scalable approach to 2D graphene electron-

ics. For this reason graphene grown on SiC has been the focus of research targeting

a path towards graphene electronics.

Progress in this field requires a detailed understanding of both the structure and

growth of epitaxial graphene. For that reason, this thesis work examines the structure
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of graphene grown on SiC.

1.2 Research Objectives

The motivation provided above led directly to the goals of this work. They were:

• to characterize the surface morphology of graphene grown on the two polar

faces, (0001) and (0001̄), of hexagonal SiC

• to develop a structural model of the EG/SiC interface region for both polar

faces

• to gain an understanding of how graphene’s single layer properties are main-

tained despite its epitaxial relationship with a substrate.

All of the above was to be accomplished using a variety of experimental surface

science techniques, with a focus on surface X-ray diffraction (SXRD) and scanning

tunneling microscopy (STM). Indeed, all of these major goals have been addressed

in this thesis, with the hope that this work has contributed to the development of a

successful EG electronics paradigm.
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CHAPTER II

GRAPHENE BACKGROUND: WHY ALL THE HYPE?

2.1 Defining Graphene

Structurally, graphene is defined as a single two dimensional hexagonal sheet of carbon

atoms as shown in Fig. 1(a). The standard in-plane unit cell vectors are |aG| = |bG| =

2.4589Å.14 The unit cell contains two carbon atoms at (0,0) and (aG/3, 2bG/3). This

gives a carbon areal density of 3.820 atoms/Å
2
.

Graphene can also be defined by its unusual, theoretically predicted electronic

properties. This description involves an infinite 2D plane of carbon atoms, arranged

as described above, isolated in free space. This theoretical system has been studied

at length over the past 50 years. Predictions made regarding its linear energy disper-

sion (a signature of relativistic charge carriers) and 2D electron gas properties have

frequently been used as a second way of classifying what is known as “graphene” Any

physical study of graphene involves complications, (primarily manifested as graphene-

substrate interactions) thus recently the name “graphene” has been applied to a larger

family of physical materials for which the electronic properties mentioned above have

Figure 1: (a) Graphene hexagonal structure of identical carbon atoms. The unit cell
(shaded) containing 2 carbon atoms is shown along with standard unit cell vectors aG and
bG. The [21] “armchair” edge and the [10] “zig-zag” directions are shown. (b) Schematic
of the in plane σ bonds and the π orbitals perpendicular to the plane of the sheets.
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been experimentally verified. In this thesis, a structural definition of graphene will

be used, regardless of its surrounding environment. This is with the caveat that

the unique electronic properties of graphene refer to those from an electronically iso-

lated graphene sheet and that the electronic properties of epitaxial graphene (EG)

structures are not necessarily those of an isolated sheet.

Graphene bonds are hybridized into a sp2 configuration. There are three in-

plane (σ) bonds per atom. These bonds are extremely strong and form the rigid

backbone of the hexagonal structure. It is the partially filled pz orbitals (π orbitals)

perpendicular to the plane that are responsible for electron conduction [see Fig. 1(b)].

Due to the out-of-plane π orbitals, interactions between graphene and a substrate or

between graphene layers should and does influence the electronic structure of epitaxial

graphene. The fact that transport properties of isolated exfoliated graphene flakes

and multilayer epitaxial graphene grown on SiC are similar, despite the graphene/SiC

interface and layer interactions in multilayer EG films, is quite surprising. This point

will be addressed repeatedly throughout this thesis.

Sheets of graphene are known to stack in a number of ways to produce materials

with the generic name of graphite. The three most common stacking arrangements

are: Hexagonal or AA.. stacking, Bernal or AB.. stacking, and Rhombohedral or

ABC.. stacking [see Fig. 2]. The lowest energy stacking and most abundant con-

figuration (80%)15 in single crystal graphite is Bernal stacking. Bernal structure is

formed by stacking two graphene sheets on top of each other and rotating one 60◦

relative to the other about a z axis (in the ĉ direction through any atom). The sheets

are separated by a distance cG/2 where cG = 6.672Å at 4.2K and 6.708Å at 297K.14

This produces two sublattices of atoms, an A atom positioned above an A atom in

the sheet below or a B atom with no atom below it in the adjacent sheet. The Bernal

cell has four atoms/cell. In Bernal graphite the overlap of partially filled pz orbitals

(π orbitals) perpendicular to the plane account for the weak bonding between AB..
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Figure 2: Three common graphite structures with different graphene stacking arrange-
ments: (i) Hexagonal AA.. stacking, (ii) Bernal AB.. stacking and (iii) Rhombohedral
ABC.. stacking. Shaded area is the unit cell.

sheets. These bonds are sometimes referred to as Van der Waals bonds.16

Hexagonal AA.. stacking consists of two unrotated sheets separated by a distance

cG/2 perpendicular to the sheets [Fig. 2]. This is the least common form of graphite

(<6%). It contains a single sheet sublattice with two atoms per cell. Rhombohedral

graphite, which accounts for 14% of natural graphite,15 is formed with three graphene

sheets each separated by cG/2 [see Fig. 2]. The second sheet is rotated relative to the

first by 60◦ as in Bernal graphite. The third sheet has the same orientation relative to

the second but is translated (2aG/3, bG/2) from the second sheet. The Rhombohedral

cell has 6 atoms. Note that that cG/2 in Fig. 2 is slightly different for each stacking

arrangement. These differences are ∼ 0.2%17 of Bernal stacking and can usually be

ignored.
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2.2 Unique Properties of Graphene

2.2.1 Electronic Band Structure

The electronic band structure of graphene was first calculated by Wallace as early

as 1947.18 Figure 3(a) shows an ab initio band structure calculation for an isolated

graphene sheet. The crucial aspect of the band structure occurs at EF (E = 0 in

the plot) with the electron momentum near the K-point. Hopping between the two

equivalent carbon sublattices A and B (see Fig. 1) leads to the formation of energy

bands which intersect at the zone boundary K-point.19 These intersection points are

known as Dirac points. The energy dispersion near the Dirac points is linear; E=~kvF

where vF ≈c/300 and gives rise to a Fermi surface near E=0 that is composed of the

six Dirac cones seen in Fig. 3(b) and (c)). This unique linear dispersion means that

the effective mass of the electrons is zero near EF .

The linear dispersion has another important consequence on the electron states

below EF and the hole states above EF . Electrons and holes cannot be described

by independent Schrödinger equations, as they are in most solid state materials.

Instead the electrons and holes are represented as quasi-particles connected in a way

that is best described by the Dirac equation.10,20–28 Electrons and holes belonging

to the same branch of the dispersion curve are described by a pseudospin σ that is

parallel to the electron momentum but opposite the hole momentum. This “chirality”

means that an electron hopping from K to K ′ [see Fig. 3(b)] is not allowed since

the pseudospin is not conserved. This conservation rule gives rise to the ballistic

transport observed in graphene and CNTs.19 As in CNTs, electron phonon scattering

is expected to be very weak.29,30 This coupled with the fact that long range Coulomb

potentials cannot trap Dirac quasi-particles31,32 means that coherence lengths can be

very large in graphene.11

The fundamental properties of graphene discussed above are altered when the
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Figure 3: (a) An ab initio band structure calculation of graphene from [33]. (b) a schematic
of the Fermi surface of graphene consisting of points intersecting the Dirac cone. (c) The
two dimensional tight binding energy surface of graphene, from [34]. The blow up shows
the linear dispersion (Dirac cones) near the K-point in the vicinity of E=EF .

equivalence of A and B sublattices is broken. This can occur in many ways. For in-

stance, in thin ribbons of graphene the edge structure becomes important. A ribbon

width dependent gap opens at EF that depends on the details of the edge geometry

and termination.3–5 Graphene ribbons with “armchair” edges running in the [21] di-

rection in Fig. 1 contain both A and B sites on the edge while the “zig-zag” edges

running in the [10] direction contain either all A or all B sites. “Armchair” ribbons

are known to be semiconducting with a ribbon width dependent band gap. “Zig-zag”

ribbons were initially expected to be metallic,3 although more recent ab initio calcu-

lations show that they in fact have nonzero direct band gaps as well.5 Relationships

between ribbon width and crystallographic orientation have been studied experimen-

tally using mechanically exfoliated graphene sheets, however precise control over edge

directions has not yet been achieved.6

The stacking sequence of graphene layers can also significantly alter its band

structure by breaking the symmetry of the A and B sublattices.24,25,28,33 While AA..
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Figure 4: Ab intio band structures near the K-point at four different graphene stacking
arrangements. (a) an AB stacked graphene pair, (b) three ABC stacked graphene sheets
and (c) four ABCA stacked graphene sheets. Bottom panels are blowups of the band
crossings near E=EF . Taken from [33].

stacking of graphene sheets preserves the symmetry, AB.. stacking does not. In AB..

stacking the A atoms are bonded to A atoms in the plane above while B atoms have

no corresponding atom in the plane above [see Fig. 2]. This causes A and B lattice

atoms to be distinguishable.

Results from a density functional theory (DFT) calculation that explores the ef-

fects of different stacking on the band structure of multilayer graphene are shown in

Fig. 4. In both Bernal and Rhombohedral stacking the weak inter-planar interaction

breaks the lattice symmetry and produces bonding π and σ states and anti-bonding

π∗ and σ∗ states resulting in a splitting of the bands near the Dirac point and a

corresponding change change in energy dispersion that is no longer linear.

Such effects have also been demonstrated experimentally via angle resolved pho-

toemission spectroscopy (ARPES.)35–38 This is a photon-in, electron-out technique

which is capable of directly mapping a crystal’s electronic energy-momentum phase

space, providing a look at its electronic band structure. The incident beam, generated

by a synchrotron photon source, is generally hundreds of microns in diameter and,
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as a result, data from this technique has thus far only been obtained for epitaxial

graphene on silicon carbide (EG). (Various graphene materials will be introduced

thoroughly in the following section, but for the time being it is noted that most EG

samples are a few millimeters in length compared to 10 micron exfoliated graphene

samples.) Linear dispersion has been observed for single layer graphene on the polar

Si-face of SiC36–38 and for multi-layer graphene on the polar C-face.38 Parabolic dis-

persion and band splitting occurs, as predicted, for AB.. stacked graphite, observed

in multi-layer epitaxial graphene on the polar Si-face.36,37 The details regarding the

structures of these materials and resulting effect on their band structure will be thor-

oughly addressed in coming chapters.

2.2.2 2DEG Properties

The linear dispersion relation and ballistic transport unique to graphene are the

more exotic physical properties of this material, but perhaps an important character-

istic which involves a more familiar phenomenon is its two-dimensional electron gas

(2DEG) nature. 2DEG materials have been extensively studied over the past 50 years

and their properties are well established. Most of the literature on two-dimensional

systems focuses on either theoretical studies of two-dimensional Coulomb gases (sys-

tems of “electrons interacting in a strictly two-dimensional universe in which elec-

tromagnetic fields are confined to a plane”) or experimental studies of structures

consisting of metal-insulator-semiconductor heterojunctions.39 The most common of

such structures (and the most technologically well developed) is the metal-silicon

dioxide-silicon system. This is the basis for metal-oxide-semiconductor field effect

transistors (MOSFETs) used in integrated circuits as building blocks for complemen-

tary metal-oxide-semiconductor (CMOS) electronics. Other commonly studied 2DEG

systems are layered structures composed of materials with varying band gaps (such

as GaAs and AlGaAs) made by molecular beam epitaxy, as well as electrons on the
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surface of liquid helium. The common link between all of the above physical systems

is that their structure provides a thin layer with relatively defect-free interfaces in

which electron transport is confined.

It was long suspected that if a single layer of graphene could be isolated from

natural graphite, it would be possible to experimentally justify its addition to the

list of 2DEG materials. In November of 2005, this is precisely what happened, as

Andrew Geim’s group from the University of Manchester and Phillip Kim’s group

from Columbia University simultaneously published such evidence after determining

a method to mechanically isolate single graphene flakes.8,9 Evidence for the 2D nature

of epitaxial graphene shortly followed.11,12

It is somewhat intuitive that electrons traveling strictly in two dimensions (without

a third dimension to interact with) may have more appealing transport properties,

such as higher mobilities and simpler charge modulation. The signature experiment

which indicates two-dimensionality is measurement of the quantum Hall effect (for

which von Klitzing won the Nobel prize in 1985.40) In two-dimensional systems

Hall conductivity does not vary continuously, but exists in quantized steps called

Landau levels, which are integer multiples of e2/h. Lanadu levels are observable in

2D systems due to the reduced scattering that electrons experience when they are

confined to two dimensions. Landau quantization specifically refers to the cyclotron

orbits of charged particles exposed to magnetic fields, thus there are experiments other

than measurement of the quantum Hall effect that can be performed to conclusively

identify Landau levels. A second technique to be discussed below is far infrared

magneto-spectroscopy.

Klaus von Klitzing and his collaborators were the first to measure the quantum

Hall effect (QHE) with great precision in their seminal 1980 paper.40 For all 2D

materials studied (prior to graphene), this involved subjecting field effect transis-

tor (FET) devices made from 2DEG materials to liquid He temperatures ( 4K) and
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Figure 5: A typical Hall device structure, top view. Taken from [40].

high magnetic fields (≥ 10T .) These extreme conditions significantly reduce electron

scattering and amplify the effect to make measurement possible. (Although, in 2000

experiments with certain semiconducting materials pushed the upper detection tem-

perature to 30K.41) A typical Hall bar device is shown in Fig. 5. As electrons flow

lengthwise across the surface channel from source to drain the presence of a magnetic

field out of the plane of the page results in a build up of charge and thus a steady

state potential difference develops across the width of the channel. In 2D systems

the electron’s energy levels are completely quantized into cyclotron orbits, whereas

a third dimension (the direction of the magnetic field) would allow a more complex

electron energy spectrum. Measurement of the Hall voltage should result in a series

of steps corresponding to quantized Landau levels.

Initial measurements of the quantum Hall effect in graphene were performed on

exfoliated flakes patterned into devices similar to that described above at liquid He

temperatures and in high magnetic fields.8,9 More recent QHE data was obtained in

mechanically exfoliated devices all the way up to room temperature (yet still at high

magnetic fields.)41 This novel high temperature work demonstrates the truly unique

low-scattering character of graphene.

The QHE has not yet been observed in epitaxial graphene, although Shubnikov-de

Haas oscillations at the proper spacing to indicate Dirac carriers have been observed

in Hall bar devices.11 It has been noted that the Shubnikov-de Haas oscillations were
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observed more prominently in the poorer quality EG samples, possibly indicating

an absence of local defects necessary to observe the QHE in cleaner samples.42 An

alternative measurement confirming epitaxial graphene’s 2D nature has been demon-

strated by Sadowski et al. via far-infrared magnetospectroscopy.12 This technique

measures the far-inrared transmission spectrum at varying temperatures and mag-

netic field strengths. In epitaxial graphene peaks arise which correspond to Landau

level transitions characteristic of a two-dimensional material with Dirac-like carriers.

This study was performed on EG samples grown in Georgia Tech’s radio-frequency

induction furnace and it was observed that as these graphene samples grow in layer

thickness, the signature 2D graphene peaks actually increase in strength, rather than

reverting to a spectrum characteristic of Bernal stacked graphite. This clearly indi-

cates that multi-layer EG is a very different material than bulk graphite with unique

electronic properties. This point will be addressed in further detail later in this thesis,

as the crystal structure of this material, found to be responsible for this phenomenon,

is a focus of this work.

In conclusion, both exfoliated graphene and epitaxial graphene exhibit clear ev-

idence of electronic two-dimensionality. Both systems are also dominated by Dirac-

like carriers. Remarkably, these characteristics have been observed in both systems

at room temperature and very recently in EG at low magnetic fields. These exciting

results point towards promising potential for epitaxial graphene (which can be grown

on a large scale atop SiC wafers) to be used in revolutionary low-power devices as a

possible successor to CMOS electronics.
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2.3 Various Graphene Systems: Structure

In this section, structures of each of the experimental systems for which graphene has

been identified will be described. This includes epitaxial graphene on silicon carbide,

mechanically exfoliated graphene and graphene films on transition metals. The focus

of this thesis is EG on SiC, so that will be the first system discussed.

2.3.1 Epitaxial Graphene (EG) on Silicon Carbide

As implied in previous sections, the vast majority of research on epitaxial graphene

to date has focused on graphene grown on the (0001) and (0001̄) polar faces of sili-

con carbide. It is on these faces that there is an epitaxial match for the hexagonal

graphene lattice. For any epitaxial system it is important to be familiar with the sub-

strate material’s bulk crystal and surface structure when considering the formation

of a thin film overlayer and the interface structure in between. This happens to be

particulary true of silicon carbide’s surfaces since the growth and character of EG is

highly dependent on which SiC face it is grown.

SiC Structure

SiC grows in both cubic and a number of hexagonal polytypes. Most graphene

growth on SiC has focused on the hexagonal form. The two commonly used polytypes

of hexagonal SiC are 6H and 4H. Their unit cells are shown in Fig. 6. In both cases

the cells are composed of Si-C bilayers with different stacking arrangements. For

4H-SiC the stacking is ABCB.. and for 6H-SiC it is ABCACB... The cSiC and aSiC

spacings of the 4H and 6H unit cells are given in Table 1. A nH-SiC cell is made of n

SiC bilayers. Each bilayer contains a plane of C atoms and a plane of Si atoms. For

reference in later sections we define a relative areal density of carbon or silicon atoms,

ρ, to be 1 in a bilayer plane (the atom density in a bilayer is therefore ρ= 2). The
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Figure 6: The unit cell structure of 4H- and 6H-SiC. Filled circles are carbon atoms and
open circles are silicon atoms.

Table 1: Structural parameters of 4H- and 6H-SiC from [44].
SiC Polytype aSiC (Å) cSiC (Å)

4H 3.0805 10.0848
6H 3.0813 15.1198

ideal distance between bilayers for nH-SiC is (3/4)(1/n)cSiC and the Si-C bond length

is (1/4)(1/n))cSiC. There are small vertical relaxations from these ideal spacings that

are of the order (10−4)(cSiC).43 For the purpose of graphene growth on SiC, these

small relaxations can be ignored.

For graphene growth It is important to emphasize that SiC has two polar faces

perpendicular to the c-axis. The bulk terminated SiC(0001) Si-terminated face (Si-

face) has one dangling Si bond per Si atom, while the SiC(0001̄) C-terminated face

(C-face) has one C dangling bond per C atom [see Fig. 6]. As demonstrated in the

following chapters, the growth of graphene and the structure of graphene are very

different on these two polar faces.
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Epitaxy of Graphene on SiC

Because of the relationship between graphene and SiC lattice constants, there

are a large number of possible orientations of a graphene lattice that lead to nearly

commensurate structures with the SiC(0001) and (0001̄) surfaces. Many of these

structures are observed in the graphene/SiC system. Which of these structures form

depends on the specific SiC polar face chosen for growth along with other experimental

conditions. Therefore, these structures are presented in this section as a reference for

later discussions. Since both graphene and SiC basis vectors will be used, the need

to switch between notation to describe the surface periodicity of various supercells

will occur. To avoid confusion the periodic supercells in graphene basis vectors will

be written with the subscript G, i.e (n×m)G. Cells in the SiC basis vectors will not

be subscripted.

In general these commensurate phases can be calculated when an integer multiple

of the SiC unit cell is nearly equal to an integer multiple of the graphene unit cell;

|n′aSiC +m′bSiC| ≈ |naG +mbG| . (1)

where n′, m′, n and m are integers. For convenience we define the dimensionless

distances RG =
√
m2 + n2 − nm.

In terms of SiC unit vectors, a set of commensurate structures gives rise to both

(l×l) and (l
√

3×l
√

3)R30 SiC reconstructions when:

l ≈ Integer


aG

aSiC
RG (l × l)

aG

aSiC

√
3
RG (l

√
3× l

√
3)R30

(2)

The rotation angle of the commensurate graphene sheets, relative to the SiC n′aSiC

direction, can be calculated for different integer m and n’s:

θ(mod. 60◦)=

 cos−1
(

2m−n
2RG

)
(l × l)

cos−1
(

2m−n
2RG

)
−30 (l

√
3× l

√
3)R30

. (3)
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Table 2: A short list of graphene/SiC commensurate structures.
Commensurate Graphene angle Strain Ref.
SiC Unit Cell relative to SiC [001̄0] ∆l/l(%)

(6
√

3×6
√

3)R30◦

30◦ 0.15 45–47
Quasi (6×6)

(6
√

3×6
√

3)R30◦

±2.204◦ 0.15 48
Quasi (6×6)

(9×9)
30± 2.543◦ 0.05 49,50

Quasi (3
√

3×3
√

3)
(5×5) ±16.10◦ -0.30 49,51

(2
√

3×2
√

3)R30◦

±6.59◦ 0.44 49,52
Quasi (2×2)

One structure of particular relevance is the (6
√

3×6
√

3)R30◦ structure that is

the predominant reconstruction observed by low energy electron diffraction (LEED)

for graphene grown on the Si-face of SiC.45–47 A ball model of this commensurate

graphene structure is shown in Fig. 7. Note the high symmetry points of the graphene

lattice relative to the SiC (shaded hexagons). These are points where either a carbon

atom in the graphene layer sits directly above an atom in the SiC layer below, or that

a SiC atom lies directly below the center of a graphene hexagon. We can define a

quasi unit cell that is defined by these high symmetry points. For the commensurate

(6
√

3×6
√

3)R30◦structure shown in Fig. 7 the quasi cell would be a (6×6) SiC unit

cell. Many of the nearly commensurate graphene/SiC structures have these high

symmetry cites that lead to smaller quasi cells. These cells are mentioned because, as

we will see in later chapters, the influence of the SiC substrate/graphene interaction

and the graphene-SiC interface structure causes an apparent distortion of the first

1-2 graphene layers so that scanning tunneling microscopy (STM) images often see a

surface unit cell that is smaller than the cell measured by diffraction.
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Figure 7: (a) and (b) are two graphene-SiC (6
√

3×6
√

3)R30◦unit cells, one with graphene
rotated 30◦ and the other with graphene rotated −2.204◦ relative to the SiC unit cell (red
line). Open circles are atoms in the SiC and filled circles are C atoms in the graphene layer.
Shaded area shows high symmetry points between the graphene lattice and the SiC lattice.
A (6×6) unit cell connecting the high symmetry points is also shown. (c) a (2

√
3×2
√

3)R30
cell with graphene rotated 6.59◦ is also shown with its quasi (2×2) cell.

Table 2 is a short list of these commensurate graphene/SiC structures show-

ing the graphene sheet’s rotational angle relative to the SiC [001̄0] direction along

with their relative strain. The strain is defined as ∆l/l = 1 − (aG/aSiC)RG/l or

1 − (aG/
√

3aSiC)RG/l for the (l× l) and (l
√

3 × l
√

3)R30 cells, respectively. These

nearly commensurate structures represent a small fraction of the structures possible

but are important in that they have been observed in various experiments. A larger

group of rotational phases observed for graphene grown on the C-face of SiC will be

discussed in Chap. 7. The quasi cells, if they exist, are also listed along side the

commensurate structures in Table 2.

This background will be extremely useful when scanning tunneling microscopy

(STM) and surface X-ray diffraction (SXRD) data are presented later.
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Growing Graphene on SiC

At this point, a brief history and overview of graphene growth on SiC will be out-

lined, although details about graphene production at Georgia Tech will be covered in

Chap. 4. Important structural considerations will also be discussed here, particularly

regarding the stoichiometry of graphene growth from SiC substrates.

The pioneering investigations of graphite formation on 6H-SiC(0001) and (0001̄)

surfaces were performed by van Bommel et al.45 They showed that heating either the

C-face or the Si-face surfaces in ultrahigh vacuum (UHV) to temperatures between

1000◦C and 1500◦C sublimated sufficient Si to leave behind a carbon rich surface.

Low Energy Electron Diffraction (LEED) patterns from these surfaces were consis-

tent with a surface graphite structure. They also found a corresponding change in

the carbon Auger peak from a “carbide” character to a “graphite” character. Sub-

sequent work showed that that the carbon layers at these temperatures ordered into

a graphene structure with clear sp2 bonding that was aligned with the SiC sub-

strate.45,47,49,50,53–58 It was also clear from these early works that graphene formation

on the two polar surfaces was clearly different.45,47,53,55 Graphene growth on the

Si-face is much slower compared to growth on the C-face.45,59 In addition, Si-face

graphene is epitaxial with an orientational phase rotated 30◦ relative to the SiC while

C-face films can have multiple orientational phases.45,55 Because of the orientational

disorder in C-face grown graphene, most structural, growth and electronic studies of

epitaxial graphene focused on Si-face graphene. A major result of this thesis work is

that the quality of C-face graphene can be far superior to that grown on the Si-face.

In fact, improvements in growth already allow device integration over hundreds of

microns.

From stoichiometry alone the formation of a single graphene sheet requires the

carbon contained in 3.14 SiC bi-layers (2/a2
G)/(1/a2

SiC) = 3.139. Liberating this much
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carbon requires the removal and subsequent sublimation into the vacuum of Si from

more than three SiC bi-layers. This presents a serious challenge because even at

temperatures of 1440◦C (well above the graphitization temperature), the diffusion of

Si or C in bulk SiC is essentially zero.60,61

Another stoichiometric consequence of the SiC bilayer carbon concentration is

that when Si is removed from the SiC/graphene interface, so that enough carbon has

been liberated to form a single graphene sheet, there must be a partial SiC bilayer left

at the carbon-graphene interface. We can define the “excess carbon” remaining in the

partial SiC bilayer as the amount of surface carbon atoms/[(1×1) SiC cell] after the

nth graphene layer has formed but before enough carbon is available to complete the

nth+1 layer. In other words, this is an assumption that a graphene layer forms only

when the areal density of carbon is equal to the areal density of graphene. While this

is obviously not the case since partial graphene layers do form, the “excess carbon”

parameter allows us to view the amount of partial SiC bilayers remaining after the

completion of an integer number of graphene layers has formed (assuming all the

carbon comes from the SiC substrate). A plot of the excess carbon as a function of

SiC bi-layers consumed during Si sublimation reveals a periodic minimum every ∼7

graphene layers. This is demonstrated in Fig. 8. The role of this carbon is unclear.

It must play a role in the growth kinetics by affecting the diffusion of Si through

the bulk/graphene interface. Due to bonding symmetry differences on the two polar

faces, it is expected that the release of Si on these two faces must also be different.

Also, since a partial SiC bilayer lead to steps on the surface, achieving a smooth

graphene layer-by-layer growth becomes a problem unless the partial bi-layers can be

removed by some process.

A thorough understanding of the EG growth mechanism has yet to be achieved,

although it is a likely focus of much current experimental and theoretical work.
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Figure 8: Excess carbon versus the number of SiC bi-layers that have been completely
depleted of Si. Dashed lines indicate the number n of integer graphene layers that have
been formed after sublimating N SiC bi-layers.

2.3.2 Mechanically Cleaved Graphene

Another extensively studied graphene system is that of mechanically cleaved graphene

flakes. This form of graphene has been used as a prototype for studying the prop-

erties of an idealized single isolated graphene sheet. While exfoliated graphene is

not scalable to device applications, it is still an important physical system and what

is structurally known about these systems is particularly relevant as a comparison

to epitaxial graphene. It must be realized that exfoliated graphene is far from an

idealized isolated system due to processing and the disorder and interactions intro-

duced by laminating them to either a substrate or a support. Even “unsupported”

exfoliated graphene62 starts with a graphene sheet deposited on a substrate that is

subsequently chemically etched away. This process will leave a memory of the ini-

tial substrate’s structure on the sheet’s topography. A direct comparison between

structural order parameters of exfoliated graphene and epitaxial graphene show that
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Figure 9: An optical microscope image of an isolated graphene flake. Taken from [64].

exfoliated graphene is in general more disordered.

The process for producing single graphene sheets involves mechanically exfoliating

single crystal graphite followed by placement on a SiO2 substrate.9 The flakes are

exfoliated by mechanically rubbing or are peeled off with Scotch tape, deposited on

SiO2 and searched for using phase contrast optical microscopy.7,9 An image of such a

graphene sheet is illustrated in Fig. 9. Some work has also been done on chemically

exfoliating graphene from graphite,63 but since most transport measurements have

been done on mechanically exfoliated flakes, this discussion will be restricted to the

mechanically produced flakes.

Transmission electron microscopy (TEM) experiments on unsupported exfoliated

graphene sheets have shown that they exhibit a ±5◦ variation in the surface normal.62

This huge surface mosaic is nearly two orders of magnitude larger than even the poor-

est SiC grown graphene (a lower bound of 0.06◦ can be estimated from the graphene

rod width measured on Si-face samples via Surface X-ray Diffraction (SXRD.)65 The

huge mosaic angle corresponds to surface height fluctuations of 10Å. As a compari-

son, the rms surface fluctuation on C-face grown graphene is <0.05Å.66 The mosaic is

most likely due to defects in the graphene caused by either the exfoliation process, the

initial substrate roughness or the wet chemistry involved in forming the unsupported
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film. Because there are no studies of the chemical contamination in exfoliated films, it

is not possible to comment on the role of impurities on the graphene roughness. It is

clear however, that the roughness of exfoliated graphene is more endemic and not the

sole property of unsupported graphene. The main support for this conclusion is that

the rms roughness in exfoliated graphene supported on SiO2 surfaces is nearly the

same as unsupported graphene. Stolyarova et al.67 have used both STM and AFM

to measured peak-to-peak height fluctuation of 8Å to 15Å over a 200×200Å area.

This should be contrasted to the measured roughness on C-face films that are less

than 0.05Å over a 3000×3000Å area.66 It is clear that exfoliated graphene is not

nearly as flat as the 2D films grown epitaxially on SiC.

Another important structural property is the point defect density in graphene.

Raman experiments have shown that the D-band peak is absent in both exfoli-

ated68 graphene (as long as the edges of the sheets are avoided) and C-face epitaxial

graphene,,69 but present in Si-face EG films.70,71 Since the D-band is known to be

sensitive to impurities and defects in the lattice, it can be concluded that the defect

concentration is comparably low in exfoliated sheets and C-face EG.

2.3.3 Graphene on Metals

The first monolayer graphene systems studied experimentally (then called monolayer

graphite) were actually made over 20 years ago by depositing carbon on metals and

transition metal carbides. In the early 1980s, studies were published which investi-

gated the formation of graphite overlayers on metal surfaces, such as Ni(111).72 In

this instance, few-layer films were formed on Ni substrates cleaned under UHV con-

ditions and exposed to 10−5 − 10−6 torr CO at elevated temperatures. This work

was expanded upon over the years to include isolation of monolayer graphite films

on TaC(111), TiC(111), HfC(111) and WC(0001)73 as well as on Ni(111).74 In all

23



cases shifts in graphite’s chemical bonds were found, with related expansions (usu-

ally ∼ 3%) of the graphite in-plane lattice constant. Monolayer graphite (MG) films

were also always found to be closely bound to each of the substrates listed; for exam-

ple, on the Ni(111) surface the interface spacing was found to be 2.11± 0.07Å, much

lower than the graphite interlayer spacing.74 It was initially thought that the in-plane

bonding shifts could be related to significant charge transfer from the substrates, as

in graphite intercalation compounds, however work done by Nagashima et al. showed

that it was instead a result of rehybridized bonding between substrates and graphene

overlayers.75,76

With the recent explosion in graphene research, new attention is being given to

graphene films on metals. Work on Ni(111) has been revisited and chemical vapor

deposition (CVD) growth was compared to unsuccessful attempts to deposit thin

graphene films on Si(111) by Obraztsov et al.77 They found that as a result of the far

better epitaxial match, Ni surfaces were significantly better for thin film formation.

In fact, wrinkles, or “pleats” form in a similar way seen on C-face EG samples (see

discussion in Secs. 4.3.1 and 4.3.2.) This particular study did not report on the

isolation of monolayer graphene or on the stacking character of their few layer (1.5±0.5

nm) films.

Single layer films have been isolated recently on Ru(0001) surfaces as well.78 The

method used is unique; the carbon needed for graphene formation segregates from

impurities present in the single crystal bulk ruthenium wafer. In this study, annealing

was performed in a UHV chamber via electron beam heating and graphene forma-

tion occurred at a relatively low temperature, 1000 K. STM topographs show the

graphene lattice along with a 30 nm period Moiré pattern, explained as a hexagonal

superstructure which arises as a consequence of the overlap of the ruthenium and

graphene lattices.

Detailed studies of the graphene crystal (and electronic) structure, stacking order,
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and interface formation have yet to be performed on these graphene-metal systems.

Due to the promising film quality and domain size demonstrated recently,77,78 further

work will likely appear soon.
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CHAPTER III

EPITAXIAL GRAPHENE PRODUCTION:

EXPERIMENTAL APPARATUS

A number of common surface science techniques are employed during the production

and characterization of epitaxial graphene on silicon carbide. This chapter will outline

each experimental apparatus used at Georgia Tech and briefly describe its principles of

operation. Thorough explanations of the more complex theory behind each technique

can be found in the reference materials; the focus here will be with regard to concepts

necessary for data analysis of the EG system.

3.1 UHV Chamber

The ultra high vacuum growth and majority of characterization experiments done on

epitaxial graphene at Georgia Tech take place in a room temperature UHV chamber.79

The system, kept at a base pressure of 1× 10−10 torr, is maintained by a Perkin-

Elmer ion pump and a Varian Titanium Sublimation Pump (TSP.) The stainless

steel chamber is equipped with a low energy electron diffraction (LEED) apparatus,

an Auger electron spectroscopy (AES) apparatus, a field ion microscope, multiple

metal evaporators, as well as the scanning tunneling microscope (STM) discussed in

detail in Chap. 4. The UHV chamber is shown in Fig. 10 below.

3.1.1 Sample Mount and Transfer

A load lock apparatus enables transfer of two samples and four STM tips from the

laboratory into the main body of the UHV chamber. It is pumped down to pressures

in the 1× 10−8 torr range by a Balzer turbomolecular pump backed by an oil-free di-

aphragm pump. Samples are mounted on molybdenum holders using tantalum strips
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Figure 10: Room temperature UHV chamber.

to pin the sample in place via spot welds. An epitaxial graphene sample mounted in

this fashion is shown in Fig. 11. As seen in the photograph, there is usually a hole

centered on the molybdenum sample holder in order to expose the sample directly

to the electron beam used for heating. The top of the sample holder is designed for

easy grabbing with pincers which extend from the two wobble sticks engineered for

sample and tip manipulation within the chamber.

Mounted samples are placed in machined slots in the load lock arm (along with

any new STM tips ready for transfer) and the load lock chamber is sealed up with

either a 3 bolt and Viton seal configuration (for daily use) or a 6 bolt and copper

gasket configuration (for main chamber bakeouts.) Once the partitioned load lock

chamber is pumped down to the 1× 10−8 torr range, the load lock gate is opened and

the arm is extended into the main chamber via an ex situ magnet operated by the

user. One of the wobble sticks is then used to grab the sample (or tip) and transfer it

to its respective parking station or to the sample (or tip) heater for experimentation.
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Figure 11: Room temperature system molybdenum sample holder. An EG/SiC sample is
clamped down by tantalum strips.

The sample manipulator, shown in Fig. 12, houses the heater apparatus and is

also used to hold and position the sample for metal deposition, Low Energy Elec-

tron Diffraction (LEED) and Auger Electron Spectroscopy (AES) experiments. It is

contains one rotational and three translational degrees of motion. The holder itself

is fashioned out of 0.5mm tantalum wire (not shown), however a more stable design

consists of a molybdenum L-shaped plate bent to just over 90◦ with a slot cut out

for the sample holder. This piece simply attaches to the bottom of the holder block

and folds up to the front face of the block at a slight angle which keeps the sample

holder safely in place. Either design will work, but the tantalum wire in use now is

too malleable to reliably hold the sample in place through the full 360◦ of motion.

3.1.2 Electron Beam Heater

The sample heater can be seen behind the holder block in Fig. 12. It consists of

a homemade tungsten filament and a cone-shaped tantalum foil shield. The sample

block itself is held at ground potential and the filament and shield apparatus can

be set at a specified high voltage potential. With enough filament current flowing,

emission will occur. The sample block and sample holder fit just so the center of

the hole on the sample holder is directly in front of the filament. As long as the
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Figure 12: Sample heater on vacuum side of sample manipulator.

sample has been properly centered, it will receive the majority of the electron beam

flux and heating will occur. The filament currently being used is 0.05” tungsten wire

and is shaped in a standard hairpin geometry. Filament current between 4 − 5.4 A

is generally used for emission. A Thermionics high voltage power supply provides

both the filament current and voltage difference between the filament and sample

holder/block.

Temperature Determination

Temperature determination of silicon carbide samples under heat treatment proves

to be quite difficult. This is because silicon carbide is optically transparent, which

results in procedural error as IR and optical pyrometers read the temperature of

whatever is behind the sample rather than the sample itself. In our case this is

primarily the tungsten filament, which is at a far higher temperature than anything

else in the field of view. To date, the best solution for this problem is to ensure that

the samples are mounted with sufficient surface area overlapping the molybdenum

holder at the sample corners. This allows enough area in the optical pyrometer field

of view for a fairly accurate temperature reading. Unfortunately the spot size of the

IR pyrometer is too large to focus it fully on such an area, resulting in temperature
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readings that are usually 100-200◦C higher than optical pyrometer readings.

Another challenge for temperature determination is that SiC forms a eutectic with

the material usually used for thermocouples. This prohibits direct contact between

a thermocouple and a SiC sample. In the room temperature chamber, a type-K

thermocouple is attached to the sample manipulator and is designed to tighten down

on the molybdenum sample holder. The resulting thermocouple readings are usually

200-300◦C lower than what is read with the optical pyrometer.

Ultimately, temperature calibration on SiC/EG can only be accomplished by com-

paring observed temperatures for successive stages of growth from the literature with

results obtained at Georgia Tech. The optical pyrometer results are consistent within

±50◦C of literature values (which can also vary quite a bit.) Extensive detail about

the temperatures used to attain all stages of UHV graphene growth on SiC substrates

will be given in Chap. 4.

3.2 RF Induction Furnace

To date, EG samples produced by most research groups are made under UHV con-

ditions, in vacuum chambers much like the one described above. As it turns out,

the highest quality EG samples are made under low vacuum conditions in a radio

frequency (RF) induction furnace. This method for graphene growth was pioneered

by Walt deHeer’s group at Georgia Tech. The furnace shown in Fig. 13 was used to

produce most of the carbon-face samples studied in this work. The main components

of the furnace include an AC power supply, a large copper coil, quartz tube, sample

stage, and protective shield. The power supply provides alternating current in the

middle RF range (200 kHz.) This induces eddy currents in the sample, housed inside

the tube and thus generates heat. This method is particularly convenient because it

is not localized (as with an electron-beam) and no contacts need be made directly

to the sample. The furnace is evacuated by a turbopump but details of the vacuum
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Figure 13: RF induction furnace used for the production of high quality epitaxial graphene.

environment at the sample position are not known because the small furnace volume

makes pressure measurements difficult. It is estimated from conductance that the

pressure at the sample position is between P ∼ 10−4 − 10−3 Torr. Temperatures are

measured with a W Re type-C thermocouple on the sample enclosure. Ambient gases

can also be easily introduced into the tube, which may in fact be crucial to attaining

the high quality surfaces generated by this method. For this work, samples were

prepared by the de Heer group using the equipment described. The reader is referred

to the thesis work of Xuebin Li80 and Mike Sprinkle81 for further information.

3.3 Low Energy Electron Diffraction

One of the quickest and easiest experimental techniques which has provided a great

deal of structural information about the various stages of EG growth is Low Energy

Electron Diffraction (LEED.) The RT chamber is equipped with Princeton Research

model RVL 6-120 LEED optics, which include an electron gun, phosphor-coated

screen and nested set of hemispherical high voltage retarding grids. The optics work

in conjunction with Perkin Elmer PHI model 11-020 LEED electronics. This is es-

sentially a control unit which provides high voltage to the grids and screen, as well as
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Figure 14: Schematic of LEED optics. Main features are the electron gun, phosphor-coated
screen, and hemispherical grids. The sample and first grid are set to ground potential, while
the following two grids are set to a retarding voltage, VR, just below the filament bias. There
is one more grid at ground potential before electrons are accelerated to the screen, set at
VS .

providing power to the filament and emmision current. A schematic representative of

a general LEED apparatus is shown in Fig. 14.

The electron gun provides the incident beam of electrons (with a range of 0-

10 mA emission current) which contact the sample in its position on the sample

manipulator. The spot size of the incident beam is approximately 0.5 mm× 0.5 mm.

The scattered electron intensity travels in straight lines through the vacuum, which

is maintained as a field free region by setting the first hemispherical grid to ground

potential (the same as the sample.) This maintains the original radial distribution

of emitted electrons. The following two grids are set to retard all electrons which

were not elastically scattered by using a potential, VR, slightly less than that of the

source filament. Finally, the elastically scattered electrons are accelerated towards

the screen by applying a high voltage to the screen itself (VS). This ensures the

production of a visible diffraction spot pattern on the phosphor screen.82 This pattern
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is essentially a picture of the surface reciprocal net. The LEED electronics also allow

for adjustment of the incident beam energy. Due to the diffracted beam’s dependence

on the incident wavevector, this results in a scan through the reciprocal net at various

“magnifications.”

At key stages throughout the sample preparation process, the study of LEED spot

patterns provides a quick evaluation of the translational symmetries present on the

sample surface. This valuable information with regard to graphene will be discussed

thoroughly in Chap. 4.

Principle of Operation The physical realities of electron diffraction make it

an inherently surface sensitive technique. It is dependent upon elastically scattered

electrons, and its surface sensitivity can be equally attributed to two effects.82 First is

the very short mean free path of inelastically scattered electrons in the typical LEED

energy range (20 - 300eV.) This translates to a low probability of electrons reaching

deeper atomic layers in a material being elastically scattered back out, as it is likely

that much of the incident flux will lose energy and coherence to inelastic scattering.

The second issue is with regard to elastic scattering itself. Backscattering is strong

and is an inhibiting factor due to large ion core scattering cross sections (which can

be as large as 1Å.) Again, the end result is that layers farther from the surface do not

see as much incident flux and thus contribute less to the elastically scattered beam. It

is generally accepted that LEED experiments can only probe as far as 10−20Å into a

crystal surface. Scattering cross sections for elastic and inelastic processes are similar

enough within the typical LEED energy range that the associated effects are both

important causes for the technique’s surface sensitivity.83

Unfortunately, the same phenomena which are responsible for LEED’s surface sen-

sitivity also lead to very complex diffraction processes. Highly interactive low energy

electrons undergo elaborate scattering events upon entering a crystal, far more so
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than the high energy photons used for X-ray diffraction. Kinematic scattering theory

(used to model X-ray diffraction via single scattering events) is covered thoroughly in

Sec. 5.1.1 of this thesis and is a good starting point to describe electron diffraction,

yet a number of adjustments must be made to approach a realistic model for LEED.83

A thorough description of electron diffraction would necessarily involve a “dynamic

scattering theory,” the relevant details of which are far beyond the scope of this work.

For now it will suffice to list a few of the major physical issues which are corrected

for in order to provide a qualitative understanding of the differences between X-ray

and electron diffraction.

One of the most obvious modifications is that multiple scattering must be taken

into account. This can be achieved by adjusting the atomic form factors to allow for

multiple events to occur within the individual atoms. Secondly, attenuation factors

must be applied to reflect the short penetration depth of the electrons. Effects of

the inner potential, the spatial average of the periodic potential seen by the electron

in the crystal, are important and must be accounted for. This correction allows for

the band structure of the crystal to be addressed, something not necessary for X-ray

diffraction. Finally, the thermal motions of the crystal should be considered as well.83

In order to use LEED to qualitatively evaluate spot patterns, it is important to keep

in mind all of the phenomena mentioned above, although further detail will not be

necessary.

3.4 Auger Electron Spectroscopy

Another fast and well-known experimental technique which can provide critical in-

formation about the progression of EG production is Auger Electron Spectroscopy

(AES.) AES, like LEED, is an electron in, electron out technique. The major dif-

ference, as their names suggest, is that with LEED we were interested in elastically
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scattered (diffracted) electrons, while with AES we will be looking at an energy spec-

trum of emitted electrons which have experienced a specific type of interaction with

the sample.

Our room temperature Auger apparatus consists of a Perkin-Elmer PHI model

11-010 electron gun & controller, Perkin-Elmer PHI model 10-555 Cylindrical Auger

Electron Optics (containing a Cylindrical Mirror Analyzer, or CMA), a Physical Elec-

tronics Auger System Control unit, an EG & G Princeton Applied Research lock-in

amplifier, and a NIM standard model AEC-315B high voltage DC power supply. The

electron gun controller provides the power for the filament current and high voltage

needed for the emission of a 1.2mA electron beam incident on the sample. Meanwhile,

the Auger system controller modulates the DC voltage applied to the outer cylinder

of the CMA via an oscillator contained in the external lock-in amplifier. This allows

for the ramping of a specified bandwidth of acceptance energies for the incident elec-

tron flux from the sample surface. Thus, the range of electrons that contribute to

the collector current is limited, which reduces the already large background signal

to a narrower energy range. The electron current from the sample is also enhanced

by an electron multiplier contained within the cylindrical Auger optics (but powered

by the external power supply.) The AC component output of the electron multiplier

collector current is then amplified by the Auger system control and coupled to the

external lock-in amplifier. A first derivative of the resulting signal is displayed on a

computer monitor.

Principle of Operation An incident electron beam induces excited electron

states near a sample surface. The decay of these excited states will often result in

electron emission, the Auger process being the most common out of all such events.

Auger emission is characterized by three general steps: (1) an atom near the sample

surface is ionized (at the core level) by an incoming electron, (2) this core hole is
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filled by an electron from a shallower energy level (often at the valence level), and

finally (3) the resulting energy release is transmitted as kinetic energy to another

shallowly bound electron, which exits the surface.82 Due to the characteristic binding

energies of electrons to host atoms, the energy spectrum of the exiting electrons can

be used as a fingerprint for the chemical species present. Traditionally, three step

Auger processes are expressed using X-ray level notation. For example, the process

we are generally most interested in during graphene formation is the C (carbon) KLL

transition.

The energy spectrum of electrons emitted from solid materials consists of a large

background with fairly small peaks, therefore Auger data is usually presented as a

derivative energy spectrum.

3.5 Atomic Force Microscopy

A brief description of Atomic Force Microscopy (AFM) will round out our discussion

of initial characterization techniques. Two AFMs are in operation in Dr. deHeer’s

laboratory. One is a Park Scientific Autoprobe CP and the second is a newer model,

the Digital Instruments CP-II. Most EG samples, particularly those grown in the RF

furnace, are imaged with one of these instruments for initial surface characterization.

Scan sizes generally range from 5 − 20µm2. Vertically, the instrument resolution is

about an angstrom and laterally it is dependent on the tip in use (and is usually

about 7 nm.)

Principle of Operation AFM imaging can be performed in any of three stan-

dard modes: (1) contact mode, (2) non-contact mode and (3) intermittent contact (or

“tapping”) mode. All use a tip sharpened down to an angstrom-scale diameter that is

affixed to the end of a cantilever. Scanning occurs by moving the sample underneath

the tip via voltages applied to a piezo-electric tube underneath the sample holder.84

Contact mode is the simplest of the three methods. A feedback loop based on the
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measured deflection of the cantilever as it rasters over a sample surface provides a

topographical map of the surface.85 The downside of this method is that it can often

damage fragile sample surfaces as the tip is dragged over delicate features. Non-

contact mode is a good alternative, as its name implies. It uses a vibrating cantilever

held 50 − 100Å above the sample surface set at a frequency close to its mechanical

resonance frequency. It acquires information about the topography of the surface by

monitoring changes in its frequency of vibration due to “force gradients that vary

with the tip-to sample spacing.”84

Almost all AFM images taken on EG at Georgia Tech have been performed using

the third mode, “tapping mode”, which is essentially a cross between the other two.

As in non-contact mode, the tip is vibrated near its resonant frequency, but is allowed

to get close enough to the sample such that it actually makes contact at the lowest

point of its trajectory. Changes to the tip frequency are again interpreted to attain an

image of the surface topography. This method was selected to minimize any potential

damage to the surface and also avoid erratic tip vibrations that can occur during non-

contact operation. For a more in-depth treatment of the methodology behind tapping

mode AFM, see [86].

AFM imaging is an extremely effective way to attain a quick survey of sample

surface quality without having to deal with an UHV chamber. AFM results obtained

on EG grown on the the two polar faces of SiC exhibit striking differences and will

be discussed in the following chapter.
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CHAPTER IV

EPITAXIAL GRAPHENE PRODUCTION: PROCEDURES

& RESULTS

In the previous chapter all of the laboratory equipment used for EG film formation

and initial characterization was introduced. Now, the results attained when these

devices are put to work acquiring data on the EG/SiC system will be discussed.

Each technique plays its own role in developing an understanding of the character of

these unique films.

4.1 SiC Substrates

Due to interest in SiC as a wide gap semiconductor, a great deal of literature exists

on both its bulk and surface structure. For reviews the reader is referred to Refs. [52]

and [87]. The relevance of any initial SiC surface preparation techniques to epitax-

ial graphene growth or film quality has yet to be proven, but should nonetheless be

mentioned as a topic which could certainly be explored in greater detail. The earlier

SiC literature was concerned with producing ordered SiC surfaces with specific struc-

tural and chemical stoichiometries. Much attention was given to extensive cleaning

procedures and the CVD growth of silicon carbide itself.

4.1.1 Pre-cleaning & Surface Preparation Methods

Current studies use high quality commercial SiC samples (all Georgia Tech wafers

have been purchased from Cree, Inc.) and extensive cleaning techniques are not

necessary. Even so, surface scratches from polishing remain even in the highest grade

SiC wafers. To remove these scratches the samples are hydrogen-etched in either

the furnace shown in Fig. 13 or one with a similar design. This procedure starts by

38



After EtchingBefore Etching

Figure 15: Atomic force microscopy images of 6H-SiC(0001) surfaces as-received (left)
and after H2 etching. Scratches are removed and the surface is left with a stepped structure
which is determined by the miscut of the wafer when ordered.

ultrasonic precleaning in acetone and ethanol, followed by hydrogen etching steps that

are listed in the literature.56,88 This usually means etching occurs in an atmosphere

of 5% H2 and 95% Ar mixture at 1 atm pressure. A general furnace hydrogen etching

cycle consists of ramping to between 1500− 1600◦C at a rate of 100◦C/min followed

by a 30min soak at 1600◦C. The sample is then cooled at a rate ∼50◦C/min down to

800◦C and allowed to cool rapidly down to room temperature. It is important that

the samples are cooled slowly after reaching the maximum temperature to remove

crystalized Si deposits produced during etching.89 The H2 etching treatment leaves

a regular atomic stepped surface. This can be seen in Fig 15, where an AFM image

of an as-received (Cree, Inc.) SiC wafer is displayed along side a H2 etched wafer.

The difference is dramatic. The step density seen on the treated wafer is determined

only by the original sample miscut with the step height usually one unit cell high.

Typically terrace widths exceed many microns.

Once H2 etched, there still remains a problem with surface oxides. Heating the

samples to 1000 − 1100◦C for 6 min in UHV will remove the surface oxide by the

formation of SiO gas. This means that the oxide removal also depletes the Si surface

concentration. To get around this problem samples can be heated in the presence of
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a Si flux (∼ 1014/cm2sec for ∼ 2min) to remove oxides while preserving the surface

chemical stoichiometry.50,55,90,91 The sample temperature must be kept above 850◦C

in the presence of the Si flux to prevent the formation of a polycrystalline Si surface

and no higher than 900 − 1000◦C to prevent etching. Note that this process allows

the removal of O2 at a much lower temperature than by simply heating. A closer look

at effects of these pretreatments on the Si-face SiC structure will be addressed in the

following section.

Here at Georgia Tech a few Si-face samples were annealed in the presence of a Si

flux, although the process was soon abandoned due to a lack of noticeable difference in

graphene film quality. The massive material transport and rearrangement of many SiC

bilayers involved at the high temperatures during graphitization make the influence

of the details of the starting surface questionable. It is possible that the interface

region (between the bulk SiC and the graphene) remains more ordered as a result of Si

deposition pre-graphitization, but (1) there is no conclusive evidence for this assertion

and (2) it remains unknown how order in interface structure beneath graphene films

affects properties of the graphene itself. This is an interesting question for future

study, but was not addressed further in this work.

Because the series of reconstructions that form after the pre-cleaning steps are

specific to the two polar faces of SiC, the entire graphitization process will be discussed

for the Si-face and C-faces separately.

4.2 Si-face Epitaxial Graphene

Growth Phases

Prior to the formation of graphene, the SiC(0001) face goes through a number

of surface reconstructions depending on the surface Si concentration. To slow down
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Si desorbtion, many groups incorporate a Si flux not only in the pre-cleaning stages,

but throughout much of the graphitization process. STM experiments performed by

various groups have observed an initial sequence of transitions from (
√

3×
√

3)R30◦,

(2
√

3×6
√

3)R30◦, (3×3) and (7×7) structures as the surface Si concentration is

increased.90,91 LEED studies (both in the literature and in the experiments done for

this thesis), on the other hand, have only observed the (
√

3×
√

3)R30◦ and (3×3)

phases47,92 indicating that the (2
√

3×6
√

3)R30◦ and (7×7) structures are due to local

disorder. It is worth noting that an initial (1×1) LEED pattern has been seen by

our group, as well as others, immediately after introduction of the oxidized SiC(0001)

surface into the vacuum.49,80,93 The existence of the (1×1) pattern and its long

range order seem to depend on how the original SiC surface was grown and treated.

Regardless, this oxidized surface transforms to the well documented (
√

3×
√

3)R30◦

after heating above 1050◦C, consistent with the (
√

3×
√

3)R30◦ being a Si depleted

surface.49,80,94 Whether or not a Si flux is used, heating above 1050◦C results in a

well defined (
√

3×
√

3)R30◦ phase, further heating above 1100◦C causes a mixture

of (6
√

3×6
√

3)R30◦and (
√

3×
√

3)R30◦ phases to develop. Continued heating above

1200◦C results in only the (6
√

3×6
√

3)R30◦pattern (diffraction spots unique to the
√

3 structure are extinguished.) This is the precursor structure before graphene forms.

Due to the substantial substrate roughening which occurs on this face during

graphitization, research has been done investigating the effects of various substrate

pre-treatments. Starke et al.95 have done a detailed comparison of the 4H SiC

(
√

3×
√

3)R30◦ surface prepared via three different techniques:

1. Heating an ex situ prepared hydrogen etched sample in UHV for 30 min at 950◦.

2. Preparing the silicon rich (3×3) in a Si flux phase and subsequently heating the

sample for 30 min at 1000◦C.

3. Heating the sample between 1000−1100◦C in a Si flux to avoid silicon depletion
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Figure 16: Different stacking terminations denoted as S1, S2 or S3 according to the number
of identically oriented bilayers at the surface. Note that the S3 termination breaks the 4H
bulk-stacking sequence. Large and bright spheres represent Si atoms, while small and dark
spheres represent C atoms. From [94].

of the surface.

These different pre-cleaning procedures ultimately lead to the (
√

3×
√

3)R30◦

structure, but with different SiC stacking faults just below the surface.94,95 The

different types of faulted surfaces are shown in Fig. 16. Starke et al.95 assert that

the different stacking terminations are seeds for either cubic (S3 termination) or

hexagonal (S1 and S2) growth that in turn can influence the degree of surface order.

This statement might suggest that: (1) starting from a (3×3) versus a (
√

3×
√

3)R30◦

structure or (2) H2 etching the substrate versus no pre-etching might influence the

graphene that is subsequently grown from these different starting surfaces. To date,

no clear link has been made between these early preparation stages and the subsequent

quality of graphene films grown from them.

The sequence of growth phases seen during UHV sample preparation at Georgia

Tech is: (1×1)⇒ (
√

3×
√

3)R30◦ ⇒ (6
√

3×6
√

3)R30◦⇒ graphene. None of the above

stages are strictly separated; there is a continuous transition from one to the next and

various parts of the sample surface may be at different stages of growth at any given

time. Because growth happens quickly and at significantly higher temperatures in the

furnace, the sequence of growth phases in that environment has not been monitored.
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4.2.1 UHV Production

After the pre-cleaning and pre-graphitization processes described above, the SiC is

heated to higher temperatures until graphene forms. The vast majority of the Si-face

samples prepared in UHV at Georgia Tech have been made following the (beginning

to end) procedure below:

1. Ultrasonically clean in acetone and ethanol.

2. H2 etch ex situ as described in section 5.1.1. (Although this step was not

regularly included in earlier years.)

3. Transfer sample into UHV and outgas sample (and holder) at ∼ 600◦C, prefer-

ably overnight.

4. E-beam heat to ∼ 1050◦C to acheive (
√

3×
√

3)R30◦ structure.

5. Continue heating to ∼ 1200◦C to acheive (6
√

3×6
√

3)R30◦structure.

6. Heat beyond 1300◦C for graphitization, selecting soak temperature up to 1450◦C

based on desired film thickness.

Heating times were varied without much correlated change in film thickness; soak

temperature was far more determinate in final film heights. Standard heating proce-

dures consisted of steady ramping to each of the temperatures in steps (4) - (6) above

and holding for approxmately 6 minutes. Flash heating at soak temperatures was

also used sometimes, however notable differences in film character were not seen. All

annealing was accomplished with the electron beam heater (seen in Fig. 12) and heat-

ing was likely localized on whichever portion of the sample was most closely aligned

with the filament for a given sample mount.

An understanding of the onset of graphene formation has evolved over the last two

decades. In the earliest studies, conducted by Muehlhoff et al.,53 X-ray photoemis-

sion spectroscopy (XPS), Auger electron spectroscopy (AES) and electron energy-loss
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spectroscopy (EELS) data for both polar faces of 6H and 15R SiC polytypes revealed

that the Si/C surface concentration on the (0001) Si-face was very stable up until

∼ 1030◦C. Above this temperature a “massive surface segregation of C to the sur-

face” occurs. They report features in EELS and XPS data characteristic of graphite

at temperatures as low as 900◦C and that prolonged annealing at 1170◦C increases

the graphitic carbon concentration. This is indeed accurate, although recent work has

revealed a more detailed series of steps leading to the formation of epitaxial graphene.

Even though graphitic bonds begin forming as low as 1000◦C,91,96 it is generally

agreed that a carbon layer with a graphene structure only forms at temperatures

above 1250− 1350◦C.47,49,93 Graphene grown on the Si-face surface of SiC grows epi-

taxially, rotated 30◦ from the SiC substrate commensurate with the pregraphitized

SiC(0001) (6
√

3×6
√

3)R30◦reconstruction [see Fig. 7].45,47 A LEED pattern from a

1-2 layer graphene film is shown in Fig. 17. The LEED shows a 6-fold pattern from the

graphene overlayer, faint integer order SiC rods that are attenuated by the graphene

film and a large number of spots (rods) from the (6
√

3×6
√

3)R30◦reconstruction.

Other structures besides the (6
√

3×6
√

3)R30◦have also been observed in small con-

centrations, such as the (5×5).49,51 Riedl et al.51 have shown that the amount of

(5×5) present on the surface depends on which of three different preparation tech-

niques (described in the previous section) is used to prepare the substrate.

Surface Character

Initial characterization of graphene film character and quality is achieved by ex-

amining LEED and AFM images. AES data is generally used for layer thickness

determination, which will be described later in this chapter. Yet, due to a significant

change in the C peak shape when a transition is made from carbidic to graphitic

carbon, AES can also be used to gauge the onset of graphitization.
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Figure 17: LEED image taken at 69.1eV of a 4H Si-face graphene film (1-2 layers thick)
showing the (6

√
3×6
√

3)R30◦reconstruction. The principle graphene (1, 0, `)G rod is aligned
along the SiC [112̄0] direction. Also shown are the SiC rods: (1, 0, `) and (0, 1, `). The SiC
[101̄0] direction is shown for reference.

LEED images, such as the one shown in Fig. 17 can indicate a general degree of

surface order by the sharpness of the diffraction spots and amount of diffuse back-

ground seen. A bright background (which makes diffraction spots hard to distinguish)

is indicative of poor surface order. Blurry spots which cannot be focused are also sug-

gestive of smaller domains and possible surface contamination.

AFM images give very straightforward, real space data which provide large scale

surface character. A typical image of a graphitized Si-face sample is displayed in

figure 18. Even though the starting SiC substrate is composed of uniformly spaced

SiC steps, the surface after graphitization is very rough with random steps and deep

pits. A review of the published literature shows that the average SiC terrace size

after graphitization is no larger than 500Å and more typically 200Å42,51,97,98 with an

rms roughness of 0.17Å.99 This should be compared to 1 − 2µm SiC terraces before

graphitization. The substrate order (or lack of it) has turned out to be insensitive to

surface pretreatment. Using a H2 pre-etch, a Si-flux to remove the surface oxide or

preparing different starting surfaces as described by Riedl et al.,51 all lead to similar

terrace sizes as measured by AFM or STM.42,51,97,98 LEEM studies reach a similar
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Figure 18: A 10µm × 10µm AFM image of a 4H Si-face graphene film (1-2 layers thick)
graphitized in UHV. Surface pits are common and it can bee seen that the original substrate
steps (as seen with a different sample orientation in Fig. 15) have been eaten away.

conclusion.100

The good news is that there is an abundance of evidence in the literature (and data

taken for this thesis) which shows graphene films growing right over these substrate

steps, as a carpet can be laid over a staircase.97 This also holds true for graphene

growing over other graphene sheets.101 All of the details for this phenomenon will

be introduced in Chap. 6, when scanning tunneling microscopy (STM) imaging and

characterization is addressed in detail.

4.2.2 RF Furnace Production

Si-face graphene films grown in the RF induction furnace (see Fig. 13) have only re-

cently become a focus of study. Prior to the last year or so furnace growth was heavily

focused on C-face films (due to their superior quality and domain size.) The growth

parameters are quite different in the furnace than in UHV, however the variation

in soak temperature is less dramatic on the Si-face. Generally, the SiC samples are

heated to 1200◦C for ∼ 20min to outgas the furnace and remove surface oxides from

the SiC. After this step the furnace is quickly ramped to the graphitization temper-

ature. The thinnest of the Si-face graphene films are grown at soak temperatures of
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∼ 1430◦C and are an average of 1-2 layers thick. There is still a portion of the surface

that remains un-graphitized, as commonly seen with thin films grown in the UHV

environment, but it is always a far smaller portion of the surface area. Thicker films

(up to 10 layers) have been grown at temperatures up to ∼ 1475◦C. Further detail

about Si-face furnace growth can be found in the thesis work of Mike Sprinkle.81

Surface Character

Graphene film quality is greatly improved when a low-vacuum furnace environ-

ment is used. LEED images show an essentially identical diffraction pattern to that

seen in Fig. 17, indicating that the (6
√

3×6
√

3)R30◦ interface structure is also

formed during furnace growth. One difference in LEED images is that furnace grown

films consistently exhibit sharp spots with low diffuse intensity. The reason for this

becomes clear when AFM images of Si-face graphene surfaces grown in UHV and

the RF furnace are compared. A typical scan taken from one of these furnace grown

samples is shown in Fig. 19. As seen, the substrate pits that plague UHV grown

samples (Fig. 18) are now absent. The substrate steps present in the pre-graphitized

SiC are still intact, however evidence of step bunching and reformation of step edge

geometry and orientation can be seen. Perhaps most striking is the appearance of

new “tiger stripe” structures which form perpendicular to the step edges. The ori-

gin and composition of these novel features is not well understood, although (as will

be discussed later in Sec. 6.2.1) the current belief is that they are comprised of an

amorphous carbon material.

STM studies of this surface indicate that larger graphene domains and lower den-

sities of in-plane atomic defects are found. This will be discussed further when STM is

addressed in detail (Chap. 6.) For a more thorough treatment, the reader is referred

to the thesis work of Nikhil Sharma.102
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Figure 19: AFM image of a 4H Si-face graphene film (1-2 layers thick) graphitized in
a RF induction furnace. Original substrate steps can still be seen and new “tiger stripe”
structures are abundant. The substrate pits and roughening are greatly reduced from what
is observed in UHV grown Si-face films

4.3 C-face Epitaxial Graphene

As seen in the previous section, there are significant differences between Si-face

graphene grown under UHV and furnace conditions. This distinction pales in compar-

ison to the contrast seen on the C-face films grown in these two environments. Vast

differences in sample quality and film character are seen when the growth method is

varied on the polar C-face termination. These differences are outlined below.

Growth Phases

There have been far fewer studies of the SiC C-face than the Si-face, however,

samples have been prepared with a number of different pretreatment procedures.

Samples that were only H2 etched prior to introducing them into UHV have a SiO

layer with a (
√

3×
√

3)R30◦ reconstruction.80,103 Heating this surface in UHV leads

to a number of different reconstructions cited in the literature: heating to 1050◦C for

15 min removes the oxide and gives a (3×3) reconstruction,104,105 continued heating

to 1075◦C produces a (2×2)C phase in coexistence with the (3×3) phase.103 The
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subscript “C” is used to distinguish this phase from a (2×2)Si phase that is formed

by depositing Si on a graphitized C-face surface at 1150◦C.103 Seubert et. al106 have

determined the prominent stacking sequences for well annealed 6H C-face surfaces

with the (2×2)C reconstruction. While well annealed Si-face samples with a (3×3)

phase break the hexagonal stacking (S3) in a majority of the domains, the C-face

prefers to maintain the S1 hexagonal stacking shown in Fig. 16.

Other groups remove the initial surface oxide while preserving the substrate order

by heating in UHV to ∼ 850◦C in the presence of a Si flux55,91 or a Ga flux.91

The initial (1×1) pattern transforms into a (3×3) reconstruction following these

treatments.55,104 When heated above ∼ 1050◦C the (3×3) structure transforms to

the (2×2)C reconstruction.55,107 A number of groups have studied the effects of Si

surface concentration on the pre-graphitized surface reconstructions. The (3×3) can

be transformed into a (
√

3×
√

3) by heating at 950◦C in the presence of a Si flux.49,50

Reannealing to 850◦C reversible transforms the surface back to (3×3) structure.

The structures of these different reconstructions are not completely understood.

It is generally thought that the (
√

3×
√

3) structure is due to Si adatoms absorbed on

T4 sites of the carbon surface.49,50,108 This explanation is consistent with XPS results

that show surface carbon enrichment (i.e the loss of Si atoms) begins at 600−1000◦C

on the C-face.53 The Si adatom model also explains why a Si flux is necessary to

maintain the (
√

3×
√

3) structure when the surface is heated above 600◦C. The (2×2)C

structure is also thought to be made of Si adatoms.106 Instead of T4 sites, the Si atoms

lie in H3 sites but with a lower density than the silicon in the (
√

3×
√

3) structure..106

4.3.1 UHV Production

There have only been a handful of attempts to grow graphene on the C-face in UHV

at Georgia Tech over the past five years, due to the vast superiority of films grown in

the RF furnace. In any case, some data was taken on the few samples which actually
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exhibited crystal structure (rather than amorphous carbon mounds, another observed

outcome.) Consistent with reports in the literature about the growth of UHV grown

C-face films, graphene formation occurred at much lower temperatures than on the

Si-face. Onset of graphitization was at approximately 1150 − 1200◦C. Annealing

procedures closely mimicked those described for the Si-face films (see section 5.2.1)

although the temperatures used in steps (4) - (6) were lower, usually 1000◦C, 1100◦C,

and ≥ 1200◦C as a range for final soak temperatures. The sequence of reconstruction

patterns was not carefully monitored on this face, although there is no reason to

believe that they would be different from those seen by other groups in the absence

of an Si flux during annealing.

Surface Character

Unlike Si-face EG, C-face EG is not strictly epitaxial. A typical LEED image

from one of the UHV grown C-face EG samples (taken 12◦ off-axis) is shown in Fig.

20. It is immediately evident that rotational disorder is present in the graphene, due

to the existence of diffuse intensity seen as an almost continuous ring at the graphene

diffraction rod radius. There are clearly peaks in this intensity at positions rotated

30◦ and ± ∼ 15◦ from the SiC (0, 1̄, `) rods. Note that the only graphene rod position

for Si-face films is the 30◦ rotated position, seen in this image labeled as the (1, 0, `)G

graphene rod. (This can bee seen in Fig. 17 as well.) This characteristic diffuse-arc

graphene pattern has been observed by all groups that have published diffraction

data on C-face EG samples.38,107 Until the stacking of C-face furnace grown EG films

was studied, (a major focus of this thesis work) it was largely assumed that these

diffraction patterns were a result of small AB... stacked graphene domains rotated

at random angles from one another. This disorder was undesirable, and in search of

single crystal epitaxial growth, groups generally moved away from this C-face material

and focused on Si-face films.

50



(1, 0, l)G rod

(0, 1, l) rod R15 rod R0 rod

Figure 20: LEED image acquired at 54.6 eV from a 4H-SiC(0001̄) UHV grown C-face
sample with ≤ 5 graphene layers. The graphene and SiC spots are visible and diffuse arcs
are labeled as R0 and R15 rods.

Recent work done by Varchon et al.109 provides some of the best real space

imaging of typical domains found on UHV grown C-face graphene. To date, the

only type of imaging published on these films are scanning tunneling microscope

(STM) topographs. An image of a typical UHV grown C-face EG surface is shown

in Fig. 21. Even in this relatively small field of view, a large amount of disorder is

seen in the graphene film. The surface is covered with pleats, labeled with a “P”

in this image, which rise up out of the graphene and are assumed to be tube-like

all-carbon structures. Note the enormous height of these features, usually between

5− 20Å, far larger than a graphene layer spacing.109 In addition to the pleats, series

of beaded structures labeled with a “B” are also seen. These have been identified as

the characteristic beading typically seen in grain boundaries formed between adjacent

domains. The frequent presence of both “P” and “B” features are symptomatic of

the high degree of disorder found in these films.

The challenge of growing large graphene domains in UHV on the (0001̄) face

proved too great to sustain further interest in this material. This makes sense in light

of the improved order on UHV grown Si-face films, but will be even better understood

when comparisons are made with the furnace grown C-face films discussed below.

51



Figure 21: 150nm × 150nm scanning tunneling microscopy image acquired on a UHV-
grown 6H-SiC(0001̄) EG sample taken at 1.0V sample bias and 0.1 nA tunneling current.
Pleat (P) and bead (B) structures are indicated, as discussed in the text. Taken from [109].

4.3.2 Furnace Production

The RF furnace growth has been heavily focused on the C-face material ever since

the furnace was developed. As discussed for the Si-face graphene, the SiC samples are

heated to 1200◦C for ∼ 20min to outgas the furnace and remove surface oxides from

the SiC. The furnace is then quickly ramped to the graphitization temperature, which

is a minimum of 1420◦C on this face. This temperature is almost 300◦C higher than

the minimum graphitization temperature required to grow C-face graphene in UHV.

The graphene film thickness can be controlled by both the growth temperature and

growth time. At 1420◦C a 4-5 layer graphene film forms in ∼ 6min. This relatively

fast growth rate means it is difficult to produce very thin graphene layers because the

thermal mass of the furnace prevents rapid temperature control.

During the past five years, two students were primarily responsible for managing

the growth of samples in the RF induction furnace; Xuebin Li and Mike Sprinkle.

The design of the RF furnace evolved slightly when the responsibility for sample

preparation passed from one student to the other, therefore slight differences in the

surface character will be explored accordingly.
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Surface Character

The quality of the graphene grown by the furnace method is exceptionally good.

Figure 22 shows an AFM image from a furnace grown 10-15 layer graphene film on the

4H-SiC C-face. Unlike UHV grown films, the furnace growth method for C-face films

nearly preserves the pre-graphitized substrate step density (typical SiC terrace widths

are >1µm.) The bright lines running through the AFM image in Fig. 22 are not cracks

or grain boundaries in the graphene film. They are most likely graphene pleats due

to the thermal expansion difference between graphene and SiC as the samples are

rapidly cooled after graphitization. These pleats are similar to those seen in Fig. 21

on UHV grown C-face graphene films but are far less prevalent. It should be noted

that such pleats have also observed in graphene grown on Ni surfaces.77 The fact that

these pleats run continuously over many SiC steps indicates that the furnace grown

C-face graphene films are likely to be continuous over very large distances (> 9µm).

It should be noted that these features could also be tubes that form during growth,

as there is not yet conclusive evidence either way. It is also possible that both pleats

and tubes form on the C-face material.

The stark contrast in graphene quality between C-face films grown in an RF

furnace and in UHV cannot be overstated. The quality of the samples is such that

point defect densities (i.e. missing atoms or impurities) in these films can be difficult

to estimate. Raman spectroscopy offers sensitivity to these defects through a higher

order scattering process over a beam size of 10-100µm.68,110 In particular the D-

band near 1350cm−1 is known to be sensitive to impurities and defects in the lattice.

Raman experiments on furnace grown C-face epitaxial graphene conclude that the

D-band is absent69 indicating that the defect concentration in these films is very low.

While most of the SiC C-face surface preparation techniques described earlier

have little or no effect on the quality of the graphene films grown on the C-face, the

H2 pre-etching process does. Even though a comparison of H2 etched and unetched
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Figure 22: A 9µm×9µm AFM image of a 10-12 layer graphene film grown on the SiC(0001̄)
C-face in a furnace environment. Lines are most likely pleats in the graphene similar to
those shown in Fig. 21, although far less frequent.

graphitized samples by AFM show no discernible difference in the sample quality,

X-ray diffraction detects both a high degree of point-like defects and surface faceting.

This is explained a bit more at the end of Chap. 5, when X-ray diffraction data

is explained. The C-face furnace grown graphene is the only face and preparation

method combination for which extensive X-ray studies have been performed, so it is

quite possible that similar effects would be seen on the Si-face.

LEED images can also be examined for evidence of surface structure unique to this

material. As with UHV grown C-face graphene, strict epitaxy is not observed. There

is something inherent in the interface structure that allows films grown on this face

to rotate azimuthally as they develop. LEED images on this polar face again exhibit

the absence of diffraction rods associated with an interface reconstruction and show

the characteristic diffuse intensity along the graphene radius that indicates rotational

disorder.

It is in LEED data that differences in sample character from one furnace design to

the next appear. Figure 23 contains LEED images from (a) a representative sample

made by X. Li in the older RF furnace and (b) a representative sample made by M.
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Figure 23: LEED images acquired at (a) 72.2 eV and (b) 72.6 eV from 4H-SiC(0001̄)
C-face furnace-grown samples with ∼ 5.5 and ∼ 9 graphene layers, respectively. Graphene
and SiC spots are labeled, but note that the SiC rods do not appear on the thicker sample.
Diffuse arcs are labeled as the R2+ and R2− rods in (a) while they remain unlabeled in (b)
due to the broader intensity distribution. Image (a) was taken on sample 485, made by X.
Li in the older RF furnace, while (b) was from sample 7H3 made by M. Sprinkle in a RF
furnace with a new design. The SiC [101̄0] (φ= 0) direction is shown for reference. X-ray
azimuthal scans taken along the diffuse arcs on each of these samples are presented in Figs.
45 and 64, respectively.

Sprinkle in the newer RF furnace. A comparison can be made between the rotation

angles seen in the diffraction patterns. In both samples a similar intensity distribution

is present at the 30◦ position. (Rotation angles, φ, are referenced to the SiC (0, 1, `)

rods and sweep out in the counterclockwise direction.) Note that the 30◦ position is

also the (1, 0, `)G surface rod. The difference in the data appears near the φ = 0◦

position. In (a) the intensity is well focused and symmetric at either side of φ = 0◦

with no intensity at the center, whereas in (b) there is a broader, more asymmetric

distribution with some intensity present at φ = 0◦. A more detailed rotation angle

comparison will be made in Chap. 7 when X-ray and STM data regarding this issue

are investigated.

Another possible (and maybe more likely) reason for the differences in observed
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graphene rotation angles is the miscut angle (and thus step orientation) of the sub-

strate wafer. It happened that, along with the transition from one furnace design

to the next, there was also a transition in substrate wafers. Each wafer purchased

from Cree, Inc. has a distinct miscut angle, which is responsible for the particular

step structure on that wafer. All C-face samples made prior to and including the 400

series wafer (according to the de Heer lab numbering scheme) were made in the older

furnace. To date, C-face graphene samples have been grown on more than five wafers,

all with different miscut angles. A more careful examination of LEED patterns may

result in a correlation between miscut angle and observed rotational domains.

It should be noted that some C-face EG/SiC LEED images have, in rare cases,

contained possible interface reconstruction spots. Diffraction rods, other than the

(1× 1)G and (1× 1)SiC , were seen fairly frequently when the earliest C-face furnace

grown samples were prepared. A typical LEED pattern seen during this time was

used in the Berger et al.11 Science publication. Additional spots are located at

the (
√

3×
√

3) SiC position and could be due to an interface reconstruction of that

periodicity. Another possibility is that these spots appear because parts of the sample

surface remain ungraphitized. Due to the large spot size of the LEED beam, the signal

from any ungraphitized areas could certainly contribute to such a diffraction pattern.

On this particular sample, this reconstruction pattern was only observed when the

LEED beam was centered on one half of the surface. This, along with the fact that

the (
√

3×
√

3) reconstruction is characteristic of an ungraphitized surface, makes a

strong case that this is not due to an interface reconstruction.

There was one additional case in which another set of diffraction rods was ob-

served. The circumstances were unique, as this particular sample was studied by

X-ray diffraction and subsequently peeled with Scotch tape. The goal was to reduce

the graphene thickness by mechanically removing the top layers. This was the only

instance in which a furnace grown film exhibited a (2×2) reconstruction, similar to
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those seen in thin C-face UHV grown graphene films.107 The conclusion that this

(2×2) pattern is an interface reconstruction is consistent with the understanding that

furnace grown films are thicker, but can be thinned out via mechanical exfoliation.

The above observations are by and large preliminary and nowhere near compre-

hensive. There is a lot of interesting future work that must be done to gain further

understanding of how and why these C-face graphene rotations form.

4.4 Thickness Determination

To date, there is no standard procedure for absolute determination of the number

of graphene layers present on either polar face of SiC. A number of surface analysis

techniques have been employed to measure graphene film thickness. While different

methods provide pieces of the puzzle, a comprehensive and comparative study to de-

termine what is being measured, the relative accuracy of a particular technique and

under what conditions each is applicable has yet to be carried out. In this section

an attempt will be made to assess and correlate information from all current meth-

ods that have been applied to the problem of determining graphene coverage. As

previously mentioned, graphene can be defined both structurally and electronically.

Because there is no tool that can provide a complete picture of both these proper-

ties, it is critical to use more than one technique in order to make sensible conclusions

about the thickness of these films. Techniques used to probe graphene’s atomic struc-

ture include: SXRD, ellipsometry, LEED and LEEM. Techniques entirely based on

electronic band structure measurements are KRIPES and ARPES; capable of prob-

ing the type of bonding between atoms. Other techniques like STM, STS, AES,

XPS and Raman spectroscopy provide both structural, electronic and local chemical

composition.

It must be kept in mind that all of these techniques, with the exception of STM

and LEEM, measure properties averaged over the probe beam size. Because graphene
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thickness and growth rate are sensitive to temperature, thermal gradients across a

sample can produce a lateral height distribution in the graphene film. If the height

distribution is wide, an average thickness determined from a spatially averaging probe

must be taken with a grain of salt. As a final caveat, measurements of thickness by

many of these techniques are heavily dependent on a model of the EG/SiC system and

therefore have systematic errors that are dependent on the accuracy of the model.

In many cases it has been assumed that the graphene rests directly above a bulk

terminated surface. It will be shown in Sec. 5.4.2 that this cannot possibly be

correct.

An early method that is still used to determine graphene thickness is AES.53,54,80

The carbon (KLL) AES spectrum shows a distinct change from C in SiC to C in

graphene. This is shown in the insert of Fig. 24. The ratio of the Si(LVV)/C(KLL)

peak area can be tracked as the films develop and used as an estimate of the number

of graphene layers. Tianbo Li80 has calculated the Si(LVV)/C(KLL) ratios, including

the appropriate inelastic mean free paths and elemental sensitivity factors, for three

different models for graphene grown on the Si-face of SiC:

1. The graphene films grown directly on the bulk terminated Si-face of SiC.

2. A Si inferface layer with 1/3 the density of Si in the bulk bi-layer. This was

used to represent an adatom layer.

3. The same model as (2) but with C atoms substituted for the Si adatoms.

An important caveat to these estimates is that models (2) and (3) have only

about 1/3 and 1/2 of the density of C atoms in the interface layer as determined by

SXRD (to be discussed in Chap 5.4.2.) Model (1) does not have any C atoms at

the interface. This means that AES measurements based on the above models will

overestimate the film thickness by ∼1 layer because the experimental C(KLL) inten-

sity includes a contribution from additional carbon atoms at the interface. Beyond
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Figure 24: The number of estimated graphene layers versus Auger peak-to-peak ratio of
the Si(LVV)/C(KLL) lines for the three models: (I) bulk terminated SiC (dashed line), (II)
A Si adatom interface with 1/3 the bulk atom density (dotted line), (III) A C adatom
interface with 1/3 the bulk atom density (solid line). The inset shows Auger spectra
corresponding to different Si-face reconstructions after heating in UHV. (a) clean surface
after H2 etching, (b) (

√
3×
√

3)R30◦ surface after annealed to 1150◦C, (c) Graphitized
(6
√

3×6
√

3)R30◦surface after annealing to 1350◦C.

choosing the appropriate model, there are a number of other factors that must be

considered in applying AES to determine graphene thickness. Because the electron

penetration depth of the Si(LVV) electron is short, AES estimates becomes very un-

certain for graphene layers exceeding more than four layers. This makes the AES

method more applicable to Si-face films than to the thicker C-face graphene films.

The AES estimate also depends on the growth process. For instance, if the growth

leaves an excess of Si atoms on the surface, the AES method is seriously compromised

and will underestimate the number of graphene layers. Thickness estimates will be

discussed further (and some of these issues will be cleared up) in Chap. 5 when X-ray

layer estimates are introduced.

4.5 Growth Kinetics

Little is known about the growth kinetics on either polar face of hexagonal SiC. Ong

and Tok111 have done an STM study of the development of the (6
√

3×6
√

3)R30◦phase
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that precedes graphitization on the Si-face of SiC. Starting from the Si-rich (3×3)

phase, they follow a sequence of steps involving the formation different Si-clusters

that leads to a carbon rich surface. Outside of this study, kinetics information about

the growth of graphene must be gleaned from a number of unrelated experiments.

This section will outline what is and is not known about graphene growth on SiC.

The growth of graphene appears to be essentially independent of whether or not

it is grown from 4H- or 6H-SiC substrates. This is demonstrated in Fig. 25 were the

number of graphene layers as a function of growth temperature is plotted for both 4H-

and 6H-SiC substrates. This result is a bit surprising since the half-cell stacking fault

in the 6H polytype is 3-bilayers compared to 2-bilayer in the 4H polytype. Because

the carbon in ∼ 3-bilayers is needed to produce a single graphene layer, it would

seem that 6H-SiC would be more conducive to a layer-by-layer growth mode. There

is some evidence based on AES that graphitization on 4H-SiC appears to start 50◦C

higher compared to 6H-SiC but relative error bars on both absolute temperature and

the graphene thickness measurements make these claims hard to prove.54 There are,

however, fundamental differences in the kinetics between graphene grown on the Si-

face and C-face and also between graphene grown in UHV or in a furnace environment.

XPS, AES and EELS all indicate that on the Si-face the UHV grown graphene film

thickness increases slowly while on the C-face the films grow much faster.53

The minimum temperature for the formation of graphitic bonds, as determined

by KRIPES spectra, is approximately the same for UHV grown Si-face and C-face

graphene (∼ 1080 − 1100◦C measured by an infrared pyrometer using an assumed

emissivity of 0.9).55 The data in Fig. 25 shows the onset of graphitization occurring

at a much higher temperature, ∼1350◦C. Another interesting feature of UHV Si-face

grown graphene is that the number of layers grown is relatively insensitive to the

annealing time and seems to only depend on the growth temperature [see Fig. 25]. In

contrast, furnace grown C-face graphene depends on both temperature and growth
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Figure 25: The number of graphene monolayers grown in UHV on Si-face SiC for different
soak temperatures as determined by AES (see the previous section for details of the AES
estimate). Temperature was measured with an optical pyrometer. Filled symbols are for
6H-SiC substrates and open symbols are for 4H-SiC substrates. Symbols represent different
soak times: (�) 3min, (�) 5min, (◦) 6min, (5) 7min, (4) 8min and (hexagon) 20min. Red
partially filled circles are for furnace-grown graphene on the C-face of 4H-SiC (Thickness
determined by ellipsometry). Dashed line is a guide to the eye.

time. Also note in Fig. 25 that the thickness of furnace grown C-face graphene is a

rapid function of temperature.

It can be concluded that kinetics at the graphene/SiC interface control the growth

of graphene. This follows for a number of reasons. First, there is no significant

bulk diffusion at the graphitization temperatures.60,61 Second, diffusion through the

graphene film and sublimation of atoms or molecules containing Si or C from the

graphene/vacuum interface must be the same for graphene grown on both surfaces.

Finally, there are real structural differences in the interface between SiC and graphene

on the Si-face and the C-face (see Sec. 5.4.2 ) that potentially affect activation barriers

for diffusion of either C or Si. While there have been no published experimental

investigations of the growth kinetics of epitaxial graphene, there is indirect evidence

that suggest a number of kinetic processes that may be key to understanding and

controlling the production of epitaxial graphene.

61



Graphene growth on both polar faces requires diffusion of Si to the vacuum inter-

face were it can be removed. An estimate of Si diffusion through graphite shows that

Si can readily diffuse through the growing graphene film at the graphitization temper-

ature.112 Regardless of the exact mechanism to remove Si from the vacuum/graphene

interface, the rate of diffusion of Si, or some Si complex, through the graphene film

must be the same on either polar face. These observations point to a Si diffusion lim-

itation at the graphene/substrate interface. To explain the differences in graphene

growth on the two polar faces, the removal of Si from the interface must be different

for the Si-face and the C-face. This is consistent with evidence from XPS that carbon

enrichment at the surface occurs between 600−1000◦C on the C-face, while no signif-

icant carbon enrichment is observed on the Si-face in the same temperature range.53

The slower rate of Si removal from the interface on the Si-face of SiC would also

explain the higher surface roughness after graphitization. It is known from studies of

SiC growth that on the Si-face excess Si nucleates on the SiC terraces and gives rise

to faceting and twinning.113 Si that is trapped at the graphene/SiC interface would

recrystallize as SiC clusters on the SiC terraces that would then nucleate islands that

ultimately cause the surface to roughen.

Another important factor in graphene growth is the environment. In Sec. 4.3.2 it

was shown that furnace-grown graphene on the C-face grows in very large films with

little roughness in the SiC surface. Also, while UHV-grown C-face graphene begins

to grow ∼ 100 − 150◦C lower than Si-face graphene,47,107 the growth temperature

of furnace grown C-face graphene is shifted to higher temperatures. This is demon-

strated in Fig. 25. The differences between the growth of graphene in UHV and a

furnace environment are not understood. In part this is due to the lack of any detailed

knowledge of the furnace atmosphere. Regardless, there is evidence that enhanced

Si diffusion occurs in an O2 atmosphere. It has been suspected for some time from

experiments on the growth of CNTs on the C-face of SiC that active oxidation of
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Si occurs through diffusion of oxygen to the substrate.114,115 SiO gas is transported

back to the graphene/vacuum interface were it desorbs. Kusunoki et al.,114 using a

transmission electron microscope (TEM) equipped with energy loss optics, were able

to measure the oxygen K-edge loss feature across the CNT/SiC boundary from thin

crossectioned samples grown in a furnace environment at 1300◦C. The measurements

clearly show an oxide buildup at the CNT/SiC interface. In work done on previ-

ously prepared samples which were transported to Argonne National Lab for X-ray

diffraction experiments, the production of ozone near the SiC surface, by exposure to

X-rays in air produced SiO at the surface of thick graphene films. (This is explained

further in Sec. 5.4.4.) This process occurs at room temperature suggesting that ozone

rapidly leaches Si from the graphene/SiC interface to the surface.

It has been conjectured that the oxidation of Si at the interface occurs through

three possible reaction paths:114

SiC +
1

2
O2(gas)→ C(s) + SiO(gas) (4a)

SiC + CO(gas)→ 2C(s) + SiO(gas) (4b)

SiC +H2O(gas)→ C(s) + SiO(gas) +H2(gas) (4c)

In all three reactions O2 gas diffuses to the interface and reacts with the SiC to

form SiO gas that can diffuse out of the interface and through the graphene where

it can desorb from the surface. These processes are estimated to proceed in the

pressure range of 10−2−10−6torr at temperatures between 1200◦C-1600◦C.115 SiO gas

is also suspected to drive the formation of CNTs on the C-face of SiC by causing the

formation of nanocaps either on the SiC terraces or at step edges. The caps form

when the partial pressures of SiO at the SiC-substrate boundary exceeds the vacuum

partial pressures. This leads to a net force that lifts the graphene from the surface

and causes caps or nanotubes to grow.116 The effect of these oxidation processes is
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expected to be very different for UHV and furnace environments. In UHV the partial

pressure of these gases is much lower than in the furnace atmosphere and may enhance

nanocap formation.

Another consideration is that the vapor pressure of Si in a furnace environments

can be relatively high. In a furnace Si may be in near equilibrium with the sample

and the furnace walls through either SiO gas or a direct flux of Si atoms that are

continually deposited on to and subsequently evaporated from the hot oven walls.

There are a number of possible roles that a Si flux can play on the growing film.

Bernhardt et al.103 have shown that depositing Si in UHV on a graphitized C-face at

1150◦C causes the (1×1) graphene pattern to transform into a Si-rich (2×2)Si phase.

Continued heating of this phase at 1050◦C causes the surface to revert back to the

pre-graphitized (3×3) phase. This suggests that Si can etch the graphene film. In

a furnace environment a high O2 pressure can oxidize Si deposited on the graphene

surface and desorb as SiO gas. This process would prevent substantial diffusion of

O2 to the SiC-graphene interface, thus lowering the partial pressure of SiO at this

boundary. Clearly a good deal of work remains before a complete understanding of

the the growth of graphene on SiC is possible.
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CHAPTER V

SURFACE X-RAY DIFFRACTION ON EPITAXIAL

GRAPHENE

5.1 Introduction to X-ray Diffraction

X-ray diffraction has been used for precise determination of bulk crystal structure for

almost 100 years. No better technique exists for this purpose, as it is non-destructive,

precise and relatively quick. Diffraction occurs because the X-ray wavelength, λ is

on the order of the periodic spacing between atoms in a crystal, d, as described by

Bragg’s law, 2d sin θ = nλ. (Here, θ is the angle between the incident X-ray beam

and the scattering surface.) Rotating anode X-ray sources are abundant and readily

available at most research universities and commercial research labs across the world.

These instruments use Bremsstrahlung radiation generated when electrons emitted

from a cathode are decelerated at an anode, often copper, tungsten, or molybdenum.

Such set-ups are convenient for bulk crystallography and powder diffraction.

Synchrotron radiation provides a more powerful X-ray source, capable of far

greater resolution and several orders of increased flux.117 In this case, the X-ray

radiation is produced by a large particle accelerator that incorporates a series of

bending magnets and insertion devices to branch the X-ray radiation off into different

beamlines. Thin film and surface studies benefit greatly from higher X-ray flux and

highly focused beams. The development of synchrotron facilities, scattered across the

globe, introduced the high flux X-rays needed to spur development of surface X-ray

diffraction (SXRD) techniques in the 1970s.
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5.1.1 Kinematic Scattering

X-rays are the ideal weakly interacting investigation tool for crystals. This allows

for straightforward analysis using a simple, well developed kinematic scattering the-

ory.83,118,119 X-ray diffraction directly measures the Fourier transform of the electron

density around the atomic nuclei (also known as the auto-correlation function.) Elec-

trons have a far greater X-ray scattering cross section than protons or neutrons, which

is why their localized positions are detected. Unlike real space measurement tech-

niques, such as Scanning Tunneling Microscopy (discussed in the following chapter,)

diffraction data is taken in reciprocal space, where units are reciprocal lengths. The

primitive cell of the reciprocal crystal lattice is known as the first Brillouin zone and

unit vectors in reciprocal space (denoted with an asterisk) are related to the real

space primitive lattice vectors as follows:

a∗ =
2π(b× c)

a · (b× c)
, b∗ =

2π(c× a)

b · (c× a)
, c∗ =

2π(a× b)

c · (a× b)
. (5)

Note that a · a∗ = b · b∗ = c · c∗ = 2π. These definitions will become important

later. A great deal of information can be obtained from X-ray data, from inter-atomic

spacings and crystal structure to coherent domain lengths and strain evaluation. The

methods used to extract such information will be explained below.

Consider an X-ray beam as a collection of coherent monochromatic electromag-

netic waves. The incident and scattered wavevectors are ki and kf , respectively. Only

elastic scattering will be considered, thus their magnitudes are equal and related to

the X-ray wavelength, λ, as follows: |ki| = |kf | = 2π/λ . The incident wave can

be modeled as a plane wave, ψ ≈ eiki·r and in general, is scattered by a scattering

center as a spherical wave. However, here two important assumptions can be made:

(1) multiple scattering between atoms is negligible (such that the scattered wave only

interacts with an isolated scatterer) and (2) the outgoing wave can be considered as

a plane wave. This is the first Born approximation. As a result, the fundamental
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variable in X-ray diffraction is the momentum transfer vector, Q = kf − ki.

It is instructive to begin with a simple case, an arbitrary assortment of N atoms

uniformly illuminated by the incoming beam. The scattered amplitude, A, can be

written as follows:

A(Q) = Ao

N∑
i

fi(θ, E)eiQ·ri . (6)

Here fi(θ, E) is the atomic form factor for the atom located at position ri. Atomic

form factors are specifically calculated according to each atom’s electron density and

are well known, tabulated functions. Note that scattered intensity increases with the

number of electrons associated with a given atom and therefore grows with atomic

number, Z. Ao is simply a constant normalized to the flux of the incident beam. This

will be set to 1 for most of the following discussion, with a thorough treatment of the

relevant experimental constants and variable parameters to come later.

Now, rather than using arbitrary atomic positions, consider a rigid crystal struc-

ture. It is customary to define lattice positions using the primitive crystal lattice

vectors as follows:

ri = m1ia +m2ib +m3ic. (7)

Here, ri represents the set of lattice points, a, b, and c are the primitive lattice

vectors, and the mns are integers. Each lattice point is then decorated by a basis of

atoms, for which atomic positions, ρn can be defined:

ρn = una + vnb + wnc. (8)

Similar to equation 6, the scattering amplitude can be written:

A(Q) =
∑
i,n

fn(θ, E)eiQ·(ri+ρn) (9)

and separating sums,

A(Q) =

[∑
n

fn(θ, E)eiQ·ρn

]∑
i

eiQ·ri . (10)
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The term in brackets is defined as the crystal structure factor, F (θ, E), and is usually

the quantity sought after in diffraction experiments. The scattered intensity, I = AA∗

can thus be written:

I(Q) = |F (θ, E)|2
∑
i,j

eiQ·(ri−rj). (11)

The remaining summation term on the right is known as the interference function,

=(Q). Now imagine that the crystalline sample is divided up into N1, N2, and N3

unit cells in three orthogonal directions, x, y, and z. The interference function can

be broken up along these directions:

=(Q) =

N1−1∑
m1i,m1j=0

eiQxa(m1i−m1j)+

N2−1∑
m2i,m2j=0

eiQyb(m2i−m2j)+

N3−1∑
m3i,m3j=0

eiQzc(m3i−m3j). (12)

and, using a key mathematical identity:
∑N−1

n=0 x
n = 1−xN

1−x , each of the three terms in

this expression can be simplified as:

(1− eiQxaN1)(1− e−iQxaN1)

(1− eiQxa)(1− e−iQxa)
.

After applying a few trigonometric identities, all three terms can be recombined:

=(Q) =

[
sin2(1

2
N1Q · a)

sin2(1
2
Q · a)

] [
sin2(1

2
N2Q · b)

sin2(1
2
Q · b)

] [
sin2(1

2
N3Q · c)

sin2(1
2
Q · c)

]
. (13)

When large values of Ni for i = 1, 2, 3 are used (as is the case with any macroscopic

sample), each bracketed term is strongly peaked if the Q · ai’s are integer multiples

of 2π. In an infinite crystal, Ni → ∞ such that these terms reduce to Dirac delta

functions:

=(Q) = δ(Q · a− 2πh)δ(Q · b− 2πk)δ(Q · c− 2π`) (14)

and the scattered intensity, I(Q) = |F (θ, E)|2=(Q) is zero unless Q · a = 2πh,

Q · b = 2πk, Q · c = 2π`. These three constraints are called the Laue condidtions for

diffraction. These conditions are met when:

Q = ghkl = ha∗ + kb∗ + `c∗. (15)
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Here ghkl is a reciprocal lattice vector and a∗,b∗, and c∗ are the reciprocal space

primitive lattice vectors defined in Eq.(5). Thus, maximum scattering occurs at the

reciprocal lattice points, which can be directly obtained by the real space crystal

lattice structure.

5.1.2 Scattering at Surfaces

The previous section provided a very broad, general explanation of scattering from a

3D bulk material. Now the focus will be on surface scattering. Most surface science

techniques, such as LEED (discussed in Chap. 4), get their surface sensitivity from

the attenuation of the incident probe due to strong interactions with the material.

X-rays, on the other hand, have weak interactions with the material being studied. In

order to make an X-ray experiment surface sensitive, one often uses grazing incidence

geometry to take advantage of the low Qz and reduced Debeye-Waller effects. In

addition, the scattering is done far from the Bragg points to increase the relative

surface to bulk scattering intensity. This targets the top layers of a sample and

removes much of the strong background from the bulk structure.

A few adjustments must be made to the kinematic scattering theory when studying

surfaces. The treatment of all three crystal dimensions approaching infinite length is

no longer valid - at least not for the z direction. (It will be assumed that the crystal

is oriented such that the surface normal points in z.) For the crystal planes parallel

to the surface (along directions a and b), the number of unit cells N1 and N2 may

still be considered to tend towards infinity. However, perpendicular to the surface, N3

is now finite. This will affect the expression developed for the scattered intensity, as

the sin2 form in Eq.(13) is not the most appropriate for the truncated dimension (as

it will not be converted to a Dirac delta function anymore.) Now, a better expression

for the scattered intensity is:118

I(Q) = Io|F (θ, E)|2δ(Q · a− 2πh)δ(Q · b− 2πk)
1− cos(N3Q · c)

(1− cos(Q · c)
(16)
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It is clear that the in-plane Laue conditions are maintained; intensity is only observed

if Q · a = 2πh, Q · b = 2πk. Therefore, the surface reciprocal lattice vector, ghk must

obey:

Q‖ = ghk = ha∗ + kb∗ (17)

such that the maximum allowed intensity will still occur for all Qz. This means that

rather than reciprocal lattice points that coincide with diffracted intensity maxima,

the relaxed condition for the third dimension results in surface diffraction rods that

rise up perpendicular to the surface. The rod positions in reciprocal space are des-

ignated by Eq.(17). This is shown schematically in Fig. 26. The diffracted intensity

along the rod is modulated according to stacking features of the crystal planes near

the surface and will be affected by surface reconstructions, defects, or substrate steps.

Peak intensity will still occur at the third, out of plane Laue condition: Qzc = 2π`.

These diffraction rods are commonly referred to in the literature as crystal truncation

rods (CTR).

Note that a constant term, Io was inserted back into the the expression for

diffracted intensity, Eq.(16). For X-rays this should include the following factors:118

Io = E2
o

[
e2

mc2D

]
P (18)

This comes largely from the Thomson formula for scattering measured at a distance D

from a single electron. e and m are the charge and mass of the electron, respectively.

Eo is the electric field intensity of the incident photon and P is the polarization

factor for the incident radiation. If the sample is geometrically aligned such that the

polarization of the incident radiation is normal to the scattering plane, then P = 1.

However, if the polarization lies in the scattering plane, then

P = cos2(2θpol). (19)

θpol is defined as the angle between the polarization vector of the beam and the
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Figure 26: Surface diffraction rods normal to the (Qx, Qy) plane. As noted in the text,
the rods are separated by 2π/a1 in the a1 direction. Diffraction occurs whenever the Ewald
sphere intersects a surface diffraction rod at Q|| = 2πh/a1. Taken from [118].

observation direction.120 This is important because synchrotron beams are polarized

in the plane of the electron orbit.

Additionally, there are geometric corrections that must be considered. These

include an active area correction, which evaluates the fraction of the beam footprint

incident on the sample, and the determination of the Lorentz factor, a correction that

comes about when converting the integration volume from real space to reciprocal

space. These will be explained in the appendix. For a thorough treatment, see the

work of Vleig.120

This section and the previous one should provide enough background to aid under-

standing of the X-ray experiments performed during the characterization of epitaxial

graphene. Later in this chapter, each experimental technique will be described in

detail. At this point the X-ray instrumentation used for EG studies will be described.
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5.2 Synchrotron X-ray Diffraction

All of the X-ray diffraction experiments performed for this work were carried out

using synchrotron radiation at Argonne National Lab’s Advanced Photon Source

(APS.) The end stations used were the 6ID-B & -C-µCAT (Midwest Universities

Collaborative Access Team) beam lines and the photon energy used was always fixed

at 16.2 keV. The instrumentation at this facility will be thoroughly outlined in this

section.

5.2.1 Advanced Photon Source at Argonne National Lab

The APS at Argonne National lab boasts the highest brilliance X-rays in the western

hemisphere. For many experiments the flux of the X-ray beam, the total number of

photons per second in a 0.1% energy bandwidth, is the fundamental quantity.121 But,

for X-ray diffraction the important quantity is brilliance, the “photon flux per unit

transverse phase-space area.”121 This is essentially a measure of how tightly a coherent

beam can be focused. This is clearly of great importance for surface scattering.

Additionally, the APS is capable of producing X-rays on the hard (highly penetrating)

end of the spectrum, compared to soft X-ray sources such as the Advanced Light

Source (ALS) located at Lawrence Berkeley National Lab.122

X-rays at the Advanced Photon Source are produced in five basic stages.122 Fa-

cilities for each stage may be seen in Fig. 27, an aerial photograph of the site. First,

electrons are accelerated from a hot cathode in a linear accelerator (“LINAC”) us-

ing alternating high voltage electric fields. From here, the electrons (already at 450

MeV) are injected into a “booster synchrotron,” which uses radio-frequency electric

fields and focusing magnets to ramp the electron energy up to 7GeV, with electrons

velocities at 99.999999% the speed of light. These relativistic, high energy electrons

are then inserted into the much larger storage ring, which has a 1104m (about 7/10 of

a mile) circumference. A complex network of bending magnets and insertion devices
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Figure 27: An aerial view of the Advanced Photon Source facility. Taken from [122].

(undulators) maintain a well focused electron beam within a circular vacuum cham-

ber track. There are 35 straight segments of this track that are equipped to divert

portions of the stored beam for production of the X-ray radiation used at 35 beam-

lines. Either bending magnets or undulators can be used for X-ray beam production,

although undulators are particularly well suited for the focused high brilliance beams

needed for surface scattering.

An undulator is made up of a periodic network of dipole magnets with character-

istic wavelength λu which produce a standing magnetic field.123 This is illustrated in

Fig. 28. When relativistic electrons enter this field they oscillate, and thereby produce

radiation. The tighter spacing of the magnets used for undulator design (compared

to that of a wiggler insertion device) result in a highly concentrated radiation cone.

The final stage of X-ray beam production occurs when the radiation produced by

the undulator enters the experiment hutch at a designated end station. At the µCAT

end stations, the (3-40 keV) beam is focused using a vacuum enclosed double crystal

Si(111) monochrometer. The first crystal can be oriented to select the correct Bragg

angle for a desired beam wavelength such that the outgoing beam is monochromatic.
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Figure 28: A schematic model of an undulator insertion device. A relativistic electron
beam is sent through a periodic structure of dipole magnets. This results in a very intense
radiation cone concentrated in narrow energy bands. Taken from [123].

The second crystal reorients the outgoing beam to be in the original beamiline direc-

tion. The wavelength and energy selected for all epitaxial graphene experiments were

λ = 0.765334Å and 16.2keV, respectively.

The X-ray beam enters into and travels through both experimental hutches en-

closed in a tube filled with gaseous helium to prevent air scattering. For normalization

purposes, the beam passes through a series of ion chambers placed both before and

after the sample. The ion concentration is controlled by the user and generally fixed

for the duration of an experiment. Ion scattering rates monitor intensity fluctuations

in the beam that may arise due to mechanical drift or a number of other experimental

factors. The monitor that records the diffracted radiation can be normalized using

the readings obtained up the beam from the sample. The X-ray beam size can be

adjusted in both systems by pairs of horizontal and vertical slits. In most experiments

the vertical beam was set at 0.2mm and the horizontal dimension was fixed at 0.4mm.

5.2.2 Instrumentation: µCAT X-ray Diffractometers

All experiments were carried out using two diffractometers located at the 6ID-B & -C-

µCAT beam lines. The B station houses an in-air Huber six-circle psi diffractometer.

The C-station features a UHV surface scattering chamber that incorporates a six-

circle psi diffractometer, as well as LEED and Auger spectroscopy systems. Both
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systems will be described below.

In-air Six-Circle Diffractometer

A Huber six-circle diffractometer is used in the 6ID-B endstation. The “six-circle”

psi designation comes from the four degrees of freedom available for sample orientation

and the two degrees of freedom for detector orientation. This can be seen in Fig. 29.

φ, χ, η, and µ are angles by which the sample can be rotated, while δ and ν move

the detector arm. The sample is carefully aligned such that a central point on its

surface is at the center of rotation for all axes. The sample is shown oriented with the

scattering surface in the same plane as the beam polarization (not pictured.) This

is referred to as “in-plane” sample orientation. Another possible sample orientation

involves rotating χ = +90◦. This is called the “out-of-plane” sample orientation and

is always used with this diffractometer. The choice of sample orientation is largely

based on the ability of the stepper motors to rotate to certain parts of reciprocal

space that must be covered. Precise angle positions are obtained to within 5/1000 of

a degree.

A vacuum sample stage is outfitted with a ∼ 6 inch tall beryllium cap in order to

maintain a low vacuum (∼ 106 torr) near the sample. Beryllium is chosen because,

due to its low Z value, it has a low scattering cross section. A Displex cryostat can

then also be used to cool the sample down below 50K. All data taken for this work

was collected using a Cyberstar point detector, outfitted with adjustable guard slits

that block out most of the problematic background radiation. Alignment is generally

done using a simple photodiode detector.

The majority of the epitaxial graphene experiments described in this thesis were

performed in the B-hutch at room temperature, using the apparatus described above.

Although the sample was at room temperature, the cryostat was used to cryopump

the vacuum within the Be cap, which was almost always used to minimize surface
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Figure 29: A schematic drawing of the ‘4S+2D’ diffractometer. The sense of rotations,
laboratory frame, and incoming X-ray directions are shown as arrows. Taken from [124].

oxides that were found to form during X-ray exposure (see Sec. 5.4.4.) For one set

of experiments, including the C-face reflectivity measurement (Sec. 5.4.2) and the

first graphene azimuthal scan taken on the furnace grown material (Fig. 45), data

was taken in the C-hutch. Therefore, a brief description of that apparatus will be

included below.

Surface Scattering Chamber

The 6ID-C end station houses a UHV surface scattering chamber uniquely de-

signed for X-ray diffraction. This system is also equipped with a six-circle diffrac-

tometer, as described in the previous section. Here the sample orientation is “in-

plane,” thus there is no need to account for the polarization factor in the analysis (it

is always equal to 1.) The X-ray beam enters and exits the chamber through a large

beryllium window, specially designed for this chamber. It is shown in Fig. 30. It

allows for a large angular range, providing access to more of reciprocal space. The χ

arc here is mounted in vacuum and has a range of 100◦. Detection was accomplished

using a Bicron point detector with adjustable guard slits. The UHV base pressure

was approximately 1× 10−10 torr.
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Figure 30: A photograph of the surface scattering chamber highlighting its large beryllium
window. The detector arm can be seen in the background. A larger, labeled image of the
entire diffractometer can be found in [125.]

5.3 X-ray Diffraction Applied to Epitaxial Graphene

5.3.1 General Model for the EG/SiC System

To bring some coherence to subsequent discussions of X-ray data taken on both

Si-face and C-face epitaxial graphene and their respective interfaces with SiC, it is

necessary to define a standard model for the graphene/SiC system, along with a few

key parameters. This model is the result of a rough consensus of many experiments.

It is shown in Fig. 31. It consists of bulk SiC, where the last bulk SiC bi-layer may

or may not be relaxed. Black circles represent carbon atoms, open circles represent

silicon atoms and grey circles could be either atom type. Between the bulk SiC and

the graphene film is a reconstructed interface layer that we will refer to as “layer-

0”. Although depicted as possibly being up to three layers, this is a bit misleading.

The X-ray data, which will be discussed thoroughly in coming sections, consistently

fits this “layer 0” with atom densities and layer spacings more reflective of a single

corrugated layer or one layer plus an adatom structure. The first graphene “layer-1”

is a distance Do above the topmost atom in the interface layer. D1 is the spacing

between the first and second graphene layers and DG is the average spacing between

subsequent layers (note that DG is not necessarily equal to the bulk graphite spacing
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Figure 31: A schematic model of multi-layer graphene grown on the 4H-SiC(0001) sub-
strate. Dashed lines are the bulk SiC lattice planes before interface relaxation (∆’s). The
5th plane of atoms (adatom) is displaced dad from the topmost atom plane in the interface.
(•) are carbon atoms and (◦) are silicon atoms. The shaded circles in the interface (“layer-
0”) can be either carbon or silicon atoms. The graphene layers above the interface layer are
referred to as “layer-1”, -2, -3, etc. σG is the rms height variation in the graphene layer.

cG/2). σG is defined as the rms height variation of a graphene layer, which includes

both height variations due to a reconstruction in the interface and any roughness in

the graphene film. The SiC substrate roughness (e.g due to steps, etc.) σSiC is not

shown in the figure. Note that the (0001) termination was used in the figure, but the

same model and parameters will be used for the (0001̄) face. The only difference is

that the last SiC bilayer atoms must be reversed.

5.3.2 EG/SiC in Reciprocal Space

Throughout any discussion of X-ray diffraction data it is also helpful to have in mind

a simple reciprocal space map of the system. Figure 32 is this kind of schematic for

the EG/SiC system. Both graphene and SiC have a hexagonal (2D) Brillouin zone.

Depicted in the schematic are open circles, which represent the (1 × 1) diffraction

pattern from an unreconstructed SiC surface and filled, slightly elongated circles

which are the (1×1)G pattern for a graphene film. The graphene structure is rotated

azimuthally by 30◦ (R30◦) relative to the SiC (1×1) cell. The diffuse ring through the

(1× 1)G graphene spots mimics the (1× 1) LEED pattern from a graphene film with

rotational disorder. The notation (h, k, `)G identifies a reciprocal-space point in units
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Figure 32: A schematic model of the 2D graphene/SiC Brillouin zone. Open circles
represent the (1 × 1) diffraction pattern from an unreconstructed SiC surface and filled,
slightly elongated circles represent the (1 × 1)G diffraction pattern for a graphene film. A
diffuse ring with peaked intensity is also shown at the graphene radius, similar to what is
observed on C-face EG samples. Many of the graphene and SiC surface diffraction rods are
labeled for reference.

of the graphite hexagonal reciprocal lattice basis vectors: a∗G = 2.9508Å−1 and c∗G =

1.8829Å−1. Unsubscripted reciprocal-space coordinates (h, k, `) refer to the substrate

4H-SiC hexagonal reciprocal lattice units: a∗ = 2.3552Å−1 and c∗ = 0.6230Å−1. The

measured SiC lattice constants were: aSiC = 3.0802± 0.0006Å, cSiC = 10.081± .002Å

for doped samples and aSiC = 3.0791± 0.0006Å, cSiC = 10.081± .002Å for un-doped

samples. These are within error bars of published values.44

The schematic shown is more representative of the C-face graphene films, as the

Si-face films do not have any rotational disorder and sharp graphene spots with a com-

plex reconstruction pattern are seen in the LEED data. Nonetheless, this schematic

will be referred to as a general model when both faces are discussed.
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5.4 Surface X-ray Dfiffraction on Epitaxial Graphene: Re-
sults

5.4.1 Average Domain Size Characterization

Early on in the investigation of epitaxial graphene produced at Georgia Tech, de-

tailed information on the structural order of the samples was acquired by surface

X-ray scattering. This was achieved by measuring the width of the graphite (00`)G

and (11̄`)G rods on both RF furnace grown C-face and UHV grown Si-face samples.

Figure 33 shows radial scans across the graphene (1, 1̄, 1.5)G crystal truncation rod

(for orientation, see Fig. 32) for both the Si- and C-face samples. The Si-face samples

have a radial width of ∆qr ∼ 0.022Å−1 corresponding to a graphene mean coherent

domain size126 L = 2π/∆qr ∼ 290Å. This is very similar to the graphite domain size

observed by Charrier et al.57 and is typical of the quality of graphite grown under

UHV conditions on the SiC(0001) surface reported to date in the literature. Although

the particular surface treatment used in this study was different from that applied to

GT samples, (they applied a Si flux as a pre-treatment during the first heating stage

to remove oxygen) the fact that the domain sizes are similar suggests a limit on the

graphite quality other than the presence (or lack) of such pre-treatments.

In contrast, graphite grown on the C-face has much larger domain sizes demon-

strated by the smaller radial widths in Fig. 33: ∆qr ∼ 0.003Å−1, corresponding to

L ∼ 2100Å. So while the LEED patterns show azimuthal disorder in the C-face

graphene, the coherent graphene domains are more than 3 times larger than for the

Si-face graphene. The C-face ∆qr’s do not change for films between 7–13 layers.

This improved structural coherence correlates with the much higher carrier mobility

measured for C-face graphene compared to that measured on Si-face graphite films.42

The difference in film thickness may play a role in the long range order of the films.

There is also little difference in the long range order of 1-2 layer graphene films on
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Figure 33: Radial scans through the graphene crystal truncation rod (1, 1̄, 1.5)G for both
2-layers of graphene grown on a UHV-grown Si-face sample (•) and 7-layers of graphene
grown on a furnace-grown C-face sample (◦). Solid lines are Lorentzian fits.

the Si-face. In addition, growth of 4–5 graphene layers on Si-face requires temper-

atures above ∼ 1450◦C where substrate disorder becomes increasingly problematic

(see below).

The X-ray data also reveals a dramatic difference in the surface morphology of

the SiC substrate after film growth. Transverse scans along the specular (00`) rod

were taken on both C- and Si-face graphitized surfaces. The transverse peak widths

∆qt are plotted in Fig. 34 versus ` (SiC units). These scans reveal a modulation of

the width with ` that is very different for the C- and Si-face graphitized surfaces.

The peak-width modulation is due to atomic steps.126 In this case it is due to steps

on the SiC substrate and not steps in the graphene. There are two reasons that

this must be the case. First, if graphene steps were prominent, this would cause a

width modulation of the graphene (1, 1̄, `)G rod that is not observed. Second, the

modulation period ∆` seen in Fig. 34 is inversely proportional to the step height:

dstep = cSiC/∆`. For both C- and Si-face samples, ∆` corresponds to half of the

4H unit cell height (5.043Å) and not to the graphene step height (3.337Å) or any
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Figure 34: Comparison of the FWHM (∆qt) of the (00`)G rod vs. qz = `c∗SiC from (•)
a 2-layer graphene film grown in UHV on the Si-face and (◦) an 8-layer film grown in a
RF furnace on a C-face 4H-SiC substrate. Instrument broadening has been removed for
clarification. The lines are fits to a geometric distribution of steps and step heights with
either the (solid line) 1/2 4H-SiC step height or the (dashed line) graphene step height.

multiple. This is clearly demonstrated by the fits in Fig. 34. The fits are to a model

of a geometric distributions of steps and step heights based on either the half 4H unit

cell height or the graphene step height. It is clear that the graphene steps produce

the wrong period.

The maximum width in Fig. 34 is inversely proportional to the mean distance

between steps on the SiC substrate, D, D = 2π/∆qt.
126 Because the modulation

amplitude is much larger for the Si-face sample, the SiC step density is more than

an order of magnitude greater than on the graphitized C-face. The starting SiC

step density before graphitization was essentially the same for both samples. This

is evidence that the substrate roughening that is quite problematic on the Si-face

samples is far less on the C-face furnace grown samples.

Quantitatively, the C-face samples show that the mean terrace width of the SiC

substrate is DC ∼ 1.4µm, while the Si-face samples have a terrace size of DSi ∼

0.2µm. The higher step densities observed after graphitization on the Si-face substrate

correlate with the poorer long range order of the graphite grown on this face. Whether
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this is a cause or effect relation is still unclear.

5.4.2 Specular Reflectivity & Interface Characterization

In addition to the investigation of topography differences, there are more fundamen-

tal questions related to electron transport in EG films which can be addressed using

surface X-ray diffraction. For instance, what can be inferred about the electronic prop-

erties of this system and the nature of the bonds involved in the interface region by

the atom densities and displacements measured by SXRD? Transport measurements

infer11 and angle resolved photoemission spectroscopy (ARPES) measurements con-

firm the existence of a Dirac cone in both the band structure of single layer graphene

films on the Si-face37,38 and multi-layer graphene films on the C-face.38 From a sur-

face science perspective, the preservation of a delicate band structure is unexpected

for an epitaxial system chemically bonded to a substrate. One would assume that the

electronic structure of the graphene would be strongly influenced by the SiC and/or

the interface region. The fact that the linear dispersion and 2D nature of graphene is

maintained on both faces is remarkable. The nature of the graphene/SiC interfaces

is important to understanding the electronic structure of epitaxial graphene and in

turn, crucial to device applications.

Surface X-ray Diffraction is the only technique available which is capable of prob-

ing just the structure of the buried interface. For this purpose, X-ray specular re-

flectivity experiments on the structure of multi-layer graphene grown on both UHV

grown 4H-SiC(0001) and RF furnace grown 4H-SiC(0001̄) surfaces have been per-

formed. These measurements occur at the (00`) (“specular”) rod, seen in the center

of Fig. 32. To date, reflectivity data has been taken on six Si-face samples and eight

C-face samples.

Specular reflectivity only depends on the momentum transfer perpendicular to the

surface. The data is collected by integrating rocking curves [see Fig. 35(a)] around
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Figure 35: (a) Schematic drawing of the reflectivity geometry. Incident wave ki strikes
the sample surface at an angle Θ + ω. The diffracted wave, kf , is kept fixed at 2Θ from
ki. q is “rocked” through the (00`) rod by rotating the sample through an angle ±ω. (b)
Model of multi-layer graphene islands grown on a SiC substrate with a reconstructed SiC
interface layer. For specular reflectivity, all n-layers islands can be represented as one island
with a fractional surface coverage parameter, pn.

q‖ = 0 for different perpendicular moment transfer vectors, q⊥ = 2π`/cSiC , where

q = kf − ki. Since the reflectivity only depends on q⊥, the data can be analyzed

using a one-dimensional model where all lateral information is averaged over the

0.4×0.4mm X-ray beam. The scattered X-ray intensity I(Θ, `) is a result of a sum of

three scattered amplitudes; the bulk Fbulk, the interface region FI , and the graphene

FG:

I(Θ, `) = A(Θ, `)e−4γSiC sin2 π`/2

×
∣∣∣∣ Fbulk(`)

1− e−2πi`
+ FI(`) +

ρG

ρSiC

FG(`)

∣∣∣∣2 . (20)

A(Θ, `) is a term that contains all corrections due to the experimental geome-

try.117,120 (Also see the appendix of this thesis.) The exponential term accounts for

the substrate roughness caused by half-cell step fluctuations in the SiC surface (the

predominant step height on 4H samples; cSiC/2). γSiC is the variance in the number of

half-cell layers in the surface due to steps.127 Roughly, γSiC is proportional to the SiC
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step density. The first term in Eq.(20) is the bulk 4H-SiC structure factor, Fbulk(`),43

modified by the crystal truncation term, (1−e−2πi`)−1.119 FG(`) in Eq.(20) is weighted

by the ratio of the areal densities of a 4H-SiC(0001) and a graphene (0001) plane;

ρG/ρSi=3.132, to properly normalize the scattered amplitude from the graphene layer

per 4H-SiC(0001) (1×1) unit cell.

FI(`) in Eq.(20) is the structure factor of the interface region between the bulk

and the graphene film. Although we cannot obtain lateral information about the

SiC(0001) (6
√

3×6
√

3)R30◦or SiC (0001̄) interface reconstruction structure from re-

flectivity data, the vertical shifts of atoms and layer density changes associated with

them can be determined. To begin to understand this interface, we allow for a recon-

struction by placing a SiC bilayer plus an interface containing up to three additional

atomic layers between the bulk and the multi-layer graphene film [see Fig. 31]. We

then write the interface structure factor as:

FI(`) =
5∑
j=1

fj(`)ρje
i2π`zj/cSiC , (21)

where ρj is the relative atom density for the jth interface layer (ρj = 1 for a bulk layer

corresponding to 8.22×10−16atoms cm−2) at a vertical position zj (the zero height is

chosen as the last layer of atoms in the interface). fj(`) is the atomic form factor of

C or Si. The fifth atom layer is added to explore the possibility of adatoms between

the SiC and the graphene.

To be completely general the scattered amplitude from the graphene film takes

into account the possibility of a lateral distribution of varying graphene layers. This is

done by defining an occupancy parameter pn as the fractional surface area covered by

all graphene islands that are n graphene layers thick. pn is subject to the constraint

equation
∑
pn = 1, where p0 is the fraction of area that has no graphene. The

multilayer graphene structure factor can then be written in the general form:
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FG(`) = fC(`)
Nmax∑
n=1

pn

{
n∑

m=1

Fm(`)e2πilzm/cG

}
, (22a)

zm =

 D0 + (m− 1)D1 m ≤ 2

D0 +D1 + (m− 2)DG m > 2
. (22b)

fC is the atomic form factor for carbon and Nmax is the number of layers in the

thickest graphene film on the surface. D0 is the spacing between the bottom layer

of an island and the last atom layer in the interface. D1 is the spacing between

graphene layer-1 and layer-2, while DG is the average layer spacing between graphene

in subsequent layers [see Fig. 31].

Because STM studies of multi-layer graphene films grown on the Si-face indicate

some buckling of the graphite layer,,49,51,128 a small vertical height distribution in

each graphene layer must be allowed. This gives rise to a structure factor, Fm(`) in

Eq.(22a), for each layer. A vertical modulation of the graphene layers can be modeled

two ways. The simplest method is to assume an average, layer independent, random

vertical disorder, σG, that will give rise to a Debye-Waller term for each layer, i.e.

Fm(`) = e−q
2
⊥σ

2
G/2. Because the vertical modulation is known to decay quickly after

the first graphene layer,51 a more refined model uses the same average Debye-Waller

term for the upper graphene layers but allows for a different distribution of carbon

atoms in the first graphene layer such as those calculated in ab intio calculations.129

In this case the the structure factor of the first layer, F1(`), needs to be known. Both

models have been used for the Si-face fits and, as it turns out, give very similar results.

This will be discussed further in the following section.

Si-face Reflectivity Results

Reflectivity data for a Si-face multi-layer graphene film is shown in Fig. 36. The

main bulk 4H-SiC peaks occur at `=4 and `=8. The sharp peaks at `=2, 6 and 10
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are the “quasi-forbidden” reflections of bulk SiC.43 In SiC reciprocal lattice units, the

graphite bulk reflections are nominally expected at `∼3, 6 and 9 (i.e., `=`G(cSiC/cG),

where `G = 0, 2, 4 etc.).

A number of structural models for the graphene/4H-SiC(0001) interface have been

tested. While the majority of experimental studies point to a complicated interface

structure, simple models consisting of a nearly bulk terminated substrate with the

graphene on top are often proposed.38 However, these type of models always give poor

fits to the X-ray data. This is demonstrated in Fig. 36 where the best fit reflectivity

is plotted for a bulk terminated surface where the 6
√

3 interface layer is essentially a

structural graphene layer. In this model, the interface layer-0 in Fig. 31 is replaced

by a single carbon layer with a graphitic density. The last bulk bilayer density is

kept constant at the bulk value while the bilayer spacings are allowed to relax (the

relaxation from the bulk value are small; ∆2C = −0.03Å and ∆2Si = 0.01Å). The

distance between the last SiC bilayer and the graphitic interface layer relaxes to a

best fit value of 2.55Å and the distance between this layer and the next graphene

layer is 3.62Å (i.e, much larger than the bulk graphite spacing of 3.354Å). All other

parameters in Eqs. (21) and (22) are allowed to vary to achieve the best fit shown

in Fig. 36. As can be seen, this model gives a very poor fit to the data at values

of ` = 5 and 9, the anti-Bragg points for SiC. This is typical of all bulk terminated

models including those with a substantial modulation of the first graphene layer

such as the calculated (6
√

3×6
√

3)R30◦surface of Varchon et al.129 The calculated

reflectivity from this theoretical interface, including a relaxed bulk surface and the

structure factor F1(`) of the rippled first graphene layer, gives similarly poor fits to

the reflectivity near the anti-Bragg positions.

Better fits can be obtained by an extended interface where an additional partial

layer of adatoms is added to the simple relaxed bilayer model [see the schematic

models in Fig. 36]. As demonstrated in Fig. 36, the additional density from the
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Figure 36: Specular reflectivity versus q⊥ (in r.l.u.) for a graphitized 4H-SiC(0001) Si-face
surface. Circles are the data. Fits to the two model structures in the figure are given. In the
schematic models filled and open circles are C and Si atoms, respectively. Shaded circles
are Si adatoms. Dotted blue line is a fit to a bulk terminated SiC(0001) surface with a
single relaxed bilayer. Solid red line is a fit to a model similar to the relaxed bilayer but
with the addition of a layer of Si-adatoms with ρad = 0.21.

adatoms begins to correct many of the deficiencies in the relaxed bulk model fit at

the anti-Bragg points (especially near `= 9). Note that the adatom model used to

fit the reflectivity is very similar to the model proposed by Rutter et al.,128 including

the Si adatom density which is ρad =0.21 compared to 0.22 in their model.

The improvement in the calculated intensities by adding an adatom layer is due

to the increased scattered intensity at the SiC anti-Bragg condition that is normally

zero in a bulk terminated interface. Regardless, the simple adatom model cannot

reproduce a number of features in the reflectivity data above ` > 4. The inability

of this model to fit the experimental data is a result of both an insufficient atomic

density in the interface and the atomic gradient through the interface. Increasing the

width of the interface adds an additional Fourier component in Eq.(21) that both
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Figure 37: Three graphene/SiC interface ball models for graphene grown on the Si-face of
SiC determined by surface X-ray reflectivity; (b) Si-up model, (c) Si-down model and (d)
C-adatom model. Open circles are silicon atoms and shaded circles are carbon atoms. The
densities ρ are relative to the densities of bulk SiC shown in (a).

broadens the fit near `∼ 6 and removes the interference minimum at `∼ 9. There-

fore, to improve the fits, it is necessary to change both the atom distribution and the

thickness of the interface layer. The need for an additional plane of atoms is also con-

sistent with number of STM experiments of the SiC(0001) (6
√

3×6
√

3)R30◦interface.

STM images of “trimer-like” structures suggest at least one additional partial layer

of atoms.49,51,111,128,130

Adding a 5th layer of atoms and changing the atom density in the interface layer-0

leads to a set of nearly identical structures that are shown in Fig. 37. These structures

are distinguished by whether an atom plane in the interface is composed of carbon

or silicon atoms. This is because in X-ray diffraction the ratio of atomic form factors

of Si and C used in Eq.(21) is determined, to first order, by the ratio of their atomic
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numbers 14/6 = 2.33. Therefore, the model calculation should give a similar fit if

all silicon atoms are replaced by carbon atoms with 2.33 times the density (however,

there is a substantial difference in the ` dependence of the Si and C atomic form

factors that affects both the ρ’s and zj’s in the final fits). While X-ray reflectivity

data alone is unable to distinguish between different silicon and carbon compositions

in the interface layer, spectroscopic data from a number of experimental groups place

restrictions on the atomic makeup of layer-0 in Fig. 31.

Angle resolved photoemission spectroscopy (ARPES) studies by Seyller et al.97

as well as X-ray photoemission spectroscopy (XPS) studies by Johansson et al.93

conclude that the interface layer has a significant carbon concentration (at least 1.3

times more than the carbon in a bulk SiC bilayer) that rules out a purely silicon

interface. In fact the X-ray diffraction also rules out a purely silicon interface because

the density of silicon required to get reasonable fits to the reflectivity data is almost

half the density required for an sp3 silicon film, which is physically unreasonable.

These spectroscopic constraints reduce the number of possible structures that are

compatible with the reflectivity data to three: the “C-adatom”, “Si-up”, and “Si-

down” models shown in Fig. 37.

The best reflectivity fit to the data is nearly identical for all three models and is

shown in Fig. 38. Table 3 gives the fitting parameters for all models (uncertainty limits

include variations from sample to sample). In the C-adatom model a carbon rich layer

composed of three carbon layers is sandwiched between the graphene and a distorted

SiC bilayer. The total density of these three interface layers is ρ=0.61+1.38+0.71=

2.70±0.15. This density is lower than the density of a graphene sheet (ρG =3.13) but

is 30% higher than a bulk SiC bilayer. The two Si models are similar to the C-adatom

model in that they contain a carbon rich layer, although it is composed of two rather

than three carbon layers sandwiched between the graphene. The total carbon density

of the interface layers in the Si-up and Si-down models are ρ=1.44+0.74=2.18±0.15,
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Figure 38: Specular reflectivity versus q⊥ (in r.l.u.) for a graphitized 4H-SiC(0001) Si-face
surface. Circles are the data. Solid black line is the best fit to the Si-up model in Fig. 37(b)
with D0 =2.31Å(the C-adatom and Si-down model fits would be identical). Dashed red line
is the same fit but with a smaller D0 = 2.13Å. Dotted blue line is the same fit but with a
larger D0 =2.53Å.

and 0.58 + 1.50=2.08± 0.15, respectively. These values are similar to the total bulk

bilayer density (ρ=2.0) needed to form a sp3 bonded carbon layer. The two Si models

are distinguished by a low density of Si atoms either atop or below the carbon rich

interface layer.

There are two similarities between all three models. First, the carbon densities

in all three models suggest a complicated carbon bonding geometry that is neither

like bulk SiC or like graphene. This has also been noted by both Emtsev et al.38 and

Johansson et al.93 who studied the (6
√

3×6
√

3)R30◦ reconstruction that forms before

graphitization and is known to persist after a true graphene layer has formed. The

ARPES data of Emtsev et al. shows that the interface layer has σ bands (although

shifted to higher energy) but no π bands. This suggests that the carbon concentration

is high enough to at least locally support a sp2 bonding geometry. In addition, the

XPS studies of both Johansson et al.93 and Emtsev et al.38 find two surface related C
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1s core level shifts. As a result both studies conclude that the (6
√

3×6
√

3)R30◦ sur-

face contains a large amount of non-graphitic carbon in inequivalent surface sites in

spite of the σ bands.

The second similarity between these models is that, unlike the SiC(0001̄) C-face

(to be discussed in the following section,) the Si-face interface reconstruction ex-

tends deeper into the bulk. The bilayer between the interface layer and the bulk is

substantially altered from a bulk bilayer in both density and bonding. This deep

reconstruction on the (0001) surface is consistent with the prediction of Johansson

et al. based on relative intensity ratios of surface to bulk XPS peaks. Regardless of

the model, the bond lengths between this bilayer and both the bulk and the interface

layer are contracted by ∼17% from the bulk Si–C bond length making them similar

to the bonds in diamond (1.54Å).131

The main difference between the “C-adatom” and either the “Si-up” or “Si-down”

models is the low density Si layer in the interface region. While X-ray data alone

cannot discriminate between an all carbon interface and a carbon rich interface with

silicon, spectroscopic measurements strongly favor the two models with silicon in the

interface. XPS and photoemission spectroscopy (PES) experiments conclude that,

after graphene has formed, a significant fraction of Si remains at the interface.93,111,132

The complete XPS study by Johansson et al. finds that in addition to two surface

related C 1s core level shifts, there are also two surface related Si 2p core level shifts.

This is consistent with a Si adatom layer in the interface and a modified Si-C bond

between the interface and the bulk-like bilayer below. Additionally, the bonding

configuration of the Si-up model is very similar to a model proposed from STM

images of the (6
√

3×6
√

3)R30◦ interface structure below a layer of graphene.128 The

model of Rutter et al.128 suggests an adatom density of ρad =0.22; within error bars

of the X-ray value in Table 3. At the moment, however, there is no experimental data

that can exclude either of the two Si models.
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The most important result of this data is that the interface layer for Si-face

graphene is not a simple relaxed bulk termination of the SiC surface. This has a

bearing on how to interpret electronic structure calculations of the graphene-SiC

interface. To date, ab initio electronic structure calculations of the EG/SiC(0001)

system have started from a flat graphene layer placed above an idealized bulk termi-

nated SiC surface that is allowed to relax into a slightly distorted bilayer.128,133,134

These calculations use an artificially contracted graphene sheet that is commensurate

with a small SiC cell to allow for reasonably fast calculation times. Rutter et al.128

looked at a Si adatom model but, as with other calculations, used a simple relaxed

bulk SiC bilayer below the adatoms. The result of all these calculations is that the

first graphene layer above the relaxed bulk SiC bilayer acts as buffer that partially

isolates the electronic properties of the next graphene layer from the substrate.133,134

While these calculations are an important first step in predicting the existence of a

buffer layer, their ability to predict the structure of the interface and thus its electronic

properties is a concern given that the X-ray results show a much more substantial

reconstruction that has few characteristics of a bulk SiC bilayer. Further experimen-

tal evidence for a buffer layer comes from ARPES, where a carbon-rich layer with

substantial sp2-bonding is found without any indication of π bands characteristic of

graphene.38,93 ARPES measurements also clearly show π-bonded graphene layers

above this carbon-rich layer, although there are different interpretations of spectral

structure very close to the K-point of the graphene Brillouin zone for the first of these

structural graphene layers.135,136 It is possible that the first graphene layer in the ab

initio results mimics, to some extent, the properties of the interface layer-0. In fact,

recent ab initio calculations by Varchon et al.,129 using a full (6
√

3×6
√

3)R30◦ cell,

find that the first graphene layer is significantly distorted from a flat graphene sheet

and does not show the dispersion characteristic of an isolated graphene sheet. The

calculated modulation amplitude is 1.23Å, a value not far from the ∼1.8Å interface
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layer width measured for all the structural models in Fig. 37. These results suggest

that the assumption of a distorted thick carbon-rich layer acting like a buffer layer

may be correct. A more realistic interface calculation will be necessary to test this

assertion.

In addition to the interface structure, the reflectivity data provides additional evi-

dence supporting conclusions based on STM and LEED that the (6
√

3×6
√

3)R30◦ re-

construction observed after graphitization is a true reconstruction of the graphene

film. Since the discovery of the (6
√

3×6
√

3)R30◦ LEED pattern, it has been suggested

that it is a moiré pattern due to the near commensuration of graphene with SiC.45,50

However, recent STM experiments directly imaged the (6
√

3×6
√

3)R30◦ structure

and shown that the graphene has a vertical modulation with this lateral periodic-

ity.51,128 As mentioned above, recent ab initio calculations, using a full (6
√

3×6
√

3)

R30◦ cell, find that at least the first graphene layer above the SiC has a substantial

modulation amplitude.129 The X-ray reflectivity data supports these recent exper-

iments and confirms that there is a vertical modulation of graphene grown on the

Si-face. This can be seen by comparing the C-face and Si-face graphene layer rough-

ness or corrugation, σG, from Eq.(22a) [see Table 6, at the end of the reflectivity dis-

cussion]. σG is much larger on Si-face grown graphene than on C-face furnace grown

graphene. σG is determined almost solely by the intensity decay of the graphite Bragg

points as a function of `. Because of the exponential form in Eq.(22a), a finite σG

manifests itself as a decay in the graphite Bragg peak intensities at `=6 and 9. This

is demonstrated in Fig. 39 where a comparison is made between a graphene film with

σG = 0Å and a film with σG = 0.3Å. From the current experiments σG = 0.16Å for

Si-face graphene. We can interpret σG as originating from an actual modulation of

the graphene film, but the value of 0.16Å is considerably smaller than the value of

0.6Å measured by STM for the first graphene sheet above the interface layer.128 This

difference arises because STM is measuring a modulation in the electron density of
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states instead of an actual structural modulation but more importantly, because the

X-ray value is an average over all the graphene layers in the film. Riedl et al.51 have

shown that the vertical modulation amplitude decays by approximately a factor of

two from the first to the second graphene layer. Therefore, thicker graphene films

weight the average σG to lower values.

The first graphene layer modulation, σ
(0)
G , can be estimated from the measured

mean modulation σG if we assume that the modulation decays in subsequent layers as

σ
(n)
G =σ

(0)
G exp[−λDn] where λD = 1/ ln(2) (the factor of ln(2) assumes the amplitude

decay measured by Riedl et al.51 is correct). To calculate σ
(0)
G we only need to know

the relative amount of graphene that is thicker than N layers, PN . PN is calculated

from the areal coverage, pn’s in Eq.(22a); PN = C
∑Nmax

n=N pn (C is a normalization

constant). Then σ
(0)
G is given by;

σ
(0)
G = σG

∑
n

Pn/
∑
n

Pn exp [−λDn]. (23)

The measured distribution of graphene layer thickness, pn, for a nominally 2-layer

graphene film is shown in the layer height histogram in Fig. 40. The average number

of graphene layers is 1.9 ±1.5. The distribution is very wide, in part reflecting the

spatial average over the large X-ray beam footprint (the footprint is bigger than

the sample width of 3mm when ` < 1.8). In particular the high areal fraction not

covered by graphene (18%) can be associated with slow growth kinetics at cooler

substrate regions near the edge of the sample caused by non-uniformity in the e-

beam heater. These wide distributions are also seen in low energy electron microscope

(LEEM) images.100 Using this measured distribution, σ
(0)
G estimates range between

0.5-0.8Å reflecting the uncertainty in the measured value of σG. This result is in very

good agreement with the STM value of 0.6Å.128

The thickness of the first layer has also been estimated using a model of a mod-

ulated first graphene layer on-top of the Si-up adatom model. F1(`) in Eq.(22a) is
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Figure 39: Specular reflectivity versus q⊥ (in r.l.u.) for a graphitized 4H-SiC(0001) Si-
face surface. Circles are the data. Solid black line is the best fit to the Si-up model with
σG =0.16Å. Dashed red line is the same fit but with σG =0.0Å. Dotted blue line is the same
fit but with a larger σG =0.30Å.

calculated using the graphene structural coordinates of Varchon et al.129 The mod-

ulation of higher graphene layers is included using the rms roughness in the stan-

dard model. While the relative vertical carbon positions are maintained in the first

graphene layer, the absolute positions are scaled by a multiplicative constant so that

the peak-to-peak amplitude can be varied. The best fit structure to the reflectivity

data gives the first graphene layer amplitude to be 0.82Å, which is slightly larger than

than the range of σ
(0)
G estimated above.

It is worth comparing the graphene thickness measured by SXRD and an estimate

from the simpler AES method discussed in Sec. 4.453,54,80 in which the ratio of the

Si(LVV)/C(KLL) peak area was used, along with proper electron mean free paths

and excitation cross sections, to estimate of the number of graphene layers. This is

a model dependent calculation, so the use of a suitable interface model is crucial.

This was explained in Sec. 4.4. Most groups use an interface model consisting of

a bulk terminated substrate with graphene above. While this is clearly inconsistent
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Figure 40: The normalized probability, pn, of a n-graphene layer stack from a UHV grown
Si-face film as determined by X-ray reflectivity. The X-ray average is 1.9±1.5 graphene
layers while the AES estimate of the average is approximately one layer thicker (3.2 layers).

with the both models in Fig. 37, it can still be used with the proviso that it will

overestimate the film thickness by ∼1 layer because the measured C(KLL) intensity

includes a contribution from the dense non-graphitic interface carbon layer in Fig. 37.

AES measurements on the same sample as the data for Fig. 40 estimate the average

graphene coverage to be 3.2 layers compared to 1.9 by X-rays, consistent with the

lack of a realistic interface layer in the AES calculation.

C-face Reflectivity Results

Reflectivity data for a C-face multi-layer graphene film are shown in Fig. 41. As

on the Si-face, the main bulk 4H-SiC peaks occur at ` = 4 and ` = 8 and the sharp

peaks at ` = 2, 6 and 10 are the “quasi-forbidden” reflections of bulk SiC.43 The

graphene bulk reflections are again expected at ` ∼ 3, 6 and 9. While there are many

variables in Eqs. (20)-(22) that eventually must be fit, a number of the parameters are

quite unique and insensitive to the exact structural model used for the EG/SiC (0001̄)

interface. For instance, because the graphene Bragg points are intense and narrow

in ` on this face, the mean spacing between graphene layers, DG, is determined with

high accuracy relative to the known SiC lattice constant. Similarly, the graphene layer

roughness or corrugation, σG, is determined almost solely by the intensity decay of the
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Figure 41: Specular reflectivity vs. q⊥ (in r.l.u.) for a graphitized 4H-SiC(0001̄) C-face
surface with 9 graphene layers. Solid lines are best fits to the structural models described in
the text. Red solid line is the best fit to the structural model with a smooth graphene layer
(σG = 0.0Å). Blue solid line is the best fits with a corrugated graphite layer (σG = 0.25Å).
Magenta line is the best fit if the graphene substrate distance D0 is reduced 10%.

graphite Bragg points as a function of `. As will be seen, the roughness on the C-face

is far less than the comparable quantity on the Si-face, so only the simpler fit of σG

was used in this analysis. (This uses an average, layer independent vertical disorder

for σG that was described in the above introduction of the reflectivity discussion.)

Once these two nearly model-independent parameters are determined, they are fixed

so that different structural models of the interface can be compared without relying

on adjusting larger numbers of parameters.

A number of structural models for the EG/4H-SiC(0001̄) interface have been

tested. As on the Si-face, simple relaxations of the top SiC bi-layers always give

poor fits to the data. Attempts to make a carbon rich phase that extends many

layers into the bulk, a model that has been proposed in the literature,45,47,137 was not

compatible with the data. An important note, however is that all of these cited stud-

ies are on UHV grown C-face films, which could potentially have a different interface

structure because they grow at much lower temperatures (1250◦C vs. 1420◦C.)
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Table 4: Structural parameters for graphene grown on 4H-SiC(0001̄) C-Face. Parameters
are defined in Fig. 31

D0 (Å) D1 (Å) DG(Å) σG (Å)
fit value 1.62 3.41 3.368 0.00

uncertainty 0.08 0.04 0.005 0.05

The best fit model is a distorted bilayer between the graphene and bulk SiC. A

schematic of the model was shown in Fig. 31. For the C-face system, the first bilayer

above the bulk is slightly relaxed. However, the next bilayer (immediately below the

graphene) has a significant relaxation. As shown below, two similar versions of this

model structure give nearly identical fits to the data.

Before looking at the details of these models, we point out a few important model-

independent parameters for the graphite film. First, the average graphene inter-layer

spacing is found to be DG = 3.368± .005Å. This and other graphene film parameters

are given in Table 4. The value was determined from samples with films ranging

from 9-13 graphene layers (averaged over the beam footprint). As mentioned above

the inter-layer spacing is nearly independent of all other fit parameters and can be

determined with high accuracy because it is fixed by the ` position of the three

strong graphite Bragg peaks in Fig. 36. The inter-layer spacing is larger than bulk

crystalline graphite (3.354Å)14 but smaller than the lattice spacing of turbostratic

graphite (DTG = 3.440Å).138,139 The larger spacing is due to stacking faults between

adjacent layers caused by interference between π∗ states that give rise to a larger

repulsive interaction between adjacent graphene sheets.138 This phenomenon will be

fully explored in the following sections.

Another parameter that is insensitive to the details of the interface model is, σG,

in Eq.(22a). This parameter can be interpreted two ways: either as a finite width of a

graphene layer due to buckling of carbon atoms in the layer, or as an RMS roughness

of a graphene layer due to vertical disorder over the coherence length of the X-ray

beam (∼ 2µm). It was found that σG = 0.0 ± 0.05Å (see Table 4). Because of the
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exponential form in Eq.(22a), a finite layer width manifests itself as a rapid decay in

the graphene Bragg peak intensity at high `. This is demonstrated in Fig. 36 where

a comparison is made between a flat graphite film and a film with an RMS thickness

of σG = 0.25Å. The finite layer width severely reduces the graphite peak intensities

at ` =6 and 9.

Fits to the reflectivity show that two similar model structures for the interface

region between the bulk and the graphene represent the experimental data equally

well. These models have been labeled as the“Carbon-corrugated” and “Carbon-rich”

models. In both cases the SiC bilayer immediately above the bulk in Fig. 31 remains

“bulk-like” in terms of both density and inter-layer spacing. The two models are

distinguished by the structure of the next three layers just below the graphene film.

Ball models of the two structures are shown in Fig. 42 and the detailed fitting pa-

rameters are given in Table 5. Structural values were determined for three different

samples. The fitting parameter variations from sample to sample are included in the

uncertainty limits of Table 5.

In the C-Corrugated model the last SiC bilayer is contracted inwards towards the

bulk by 0.11Å to give a slightly smaller Si–C bond length. In the uppermost bilayer

the carbon is buckled into two equal density layers. The density of both the Si layer

(ρ1a) and the sum of the buckled carbon layers (ρad + ρ1b) in this bilayer are each

∼ 2/3 of the bulk value. It is unlikely that the last layer is a carbon adatom. If it

were, the density required to saturate the dangling bonds in the carbon layer below

would be ρad = ρ1b/3 instead of being equal. For this reason this model is refered

to as a corrugated surface. We note that the fits are very sensitive to the Si density,

ρ1a, in the last bilayer. If the last bilayer is forced to have the same Si atom density

as in the bulk, the best fit model cannot reproduce the data. This is demonstrated

in Fig. 43 where a best fit to the “C-Corrugated” model is shown where ρ1a was

forced to be the bulk denisity. Similarly, removing the buckling in the carbon layer
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Figure 42: Schematic ball models of bulk, C-Corrugated and C-Rich interface layers
between the substrate and the graphene film. (•) are carbon atoms and (◦) are silicon
atoms. Hatched atoms are carbon atoms in the first graphene layer. Interlayer spacings
and densities (relative to bulk SiC) are shown.

(“Smooth C-layer” model) while keeping the total density the same cannot reproduce

the reflectivity modulation between 0.5 < ` < 2.5 (see Fig. 43).

As mentioned in the previous section, to first order the ratio of the atomic form

factors for Si and C, fSi/fC in Eq.(21), is determined simply by the ratio of their

atomic numbers 14/6 = 2.33. Thus, the model calculation gives a similar fit if

the Si atoms in the top SiC bilayer are replaced by carbon atoms with 2.33 times

the density (∼ 2.33 × 0.64 = 1.49). This replacement gives the “C-rich” model

shown in Fig. 42 with densities and layer spacings adjusted to give the best fit to

the data. In Fig. 42 the best fit parameters show that there are two main differences
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between the C-Corrugated and C-Rich models. First, the layer spacings between bi-

layers is considerably shorter (1.60Å) and second, the densities in the last layers are

higher. The bilayer spacing measured in the C-rich model is slightly larger than the

bond length of diamond (1.54Å).131 The higher carbon layer densities have a similar

significance in that they lie half way between the SiC density (ρ = 1.0) and that of

graphene (ρ = 3.13). In fact, the first C-layer in the bilayer has a density close to the

atom density of a (111) diamond plane, 1.51.

While it may seem reasonable to expect that as Si sublimates from the surface

a carbon rich interface forms with some diamond-like character, we should caution

that there are other ways to interpret these results. First of all, the spacing between

planes in the bilayer is much larger, 0.63-1.03Å, while in diamond they should be

much lower, 0.51Å. The C-Rich phase is also considerably different from the “extended

diamond phase” proposed in the literature because it does not extend beyond the first

bilayer.45,47,137 In both models the relaxation of the bilayer above the bulk is small,

contrary to what might be expected if there were significant density changes in that

layer. These small changes from the model are not due to an insensitivity to either

the layer spacings or the layer density. This is shown in Fig. 44 where calculated

best-fit reflectivities are compared when either the Si density ρ2Si is reduced or the

Si–C spacing ∆2Si is changed from the ideal value. As can be seen, inter-planar

spacing changes of less than 5% (< 0.1Å) lead to obviously poor fits. Similarly,

reducing the Si atom density in this layer by more than 25% makes the fit much

worse. Therefore, the interfacial layer does not extend much beyond the top-most

SiC bilayer. Note also that the total layer density of the last three interface layers is

ρ = 1.47 + 1.29 + 0.77 = 3.53. This density is slightly larger than the density of a

graphene sheet (ρ = 3.13). Rather than thinking of this layer as an ideal diamond

like layer, it may be more appropriate to view it as a buckled graphene sheet with a

mixture of sp2 and sp3 bonded carbon.
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Figure 43: Specular reflectivity for a graphitized 4H-SiC(0001̄) C-face surface. (◦) are the
data. Red line is the best fit to the Carbon-corrugated top layer. The black dashed line
shows the fit for the same model if the Si layer density is fixed at the bulk value (ρ1a = 1).
The blue line is a fit when the carbon corrugation in the top layer is removed but the total
density remains the same (“Smooth C-layer”).

Arguably the most important finding from this reflectivity work is that the first

graphene layer sits above the last bulk carbon layer at a distance of D0 = 1.62±0.08Å.

This value is, within error bars, insensitive to which structural model is used and can

be determined with reasonable sensitivity as demonstrated in Fig. 36. The figure

shows that 10% variations in D0 from its optimal value lead to very poor fits to the

data. The very short bond distance measured suggests that the first graphene layer

is not simply bonded to the substrate with Van der Waal’s bonds but instead has a

much stronger interaction with the substrate.

As shown above, the X-ray reflectivity data shows that the interface between epi-

taxial graphene and the 4H-SiC(0001̄) substrate is sharp. The interface is comprised

of no more than 1–2 SiC bi-layers. The graphene that grows is flat (i.e. σG = 0Å)

except for a small potential buckling of the first layer. There are two key structural

parameters that deserve special attention. The first is the inter-layer spacing between

graphene sheets that is much larger than expected for AB... stacked graphene layers
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Figure 44: A comparison of the calculated reflectivity vs. q⊥ (in r.l.u.) for different first
SiC bilayer models. (Here the “first” bilayer is defined as the first one depicted in Fig.42
above the SiC bulk.) Red line is the best fit structure with bulk bilayer parameters. Blue
line is a fit with ρ2Si fixed at a value 25% less than the bulk. Magenta line is a best fit with
the both ∆2Si and∆2C relaxed towards the bulk by 5%.

and points to a significant stacking fault density in the film. As mentioned above,

because stacking faults cause interference between π∗ states in adjacent layers, these

layers have a larger spacing. The mean layer spacing can, therefore, be used to es-

timate the stacking fault density.138 If we define the probability, γ, that any two

adjacent sheets are faulted, then the inter-layer spacing will range from that of AB...

stacked graphite (3.354Å) when γ = 0 to that of turbostratic graphite (3.44Å) when

γ = 1. In that case the average inter-layer spacing for some finite number of stacking

faults is approximately;138

DG = 3.44− 0.086(1− γ2). (24)

Using the measured DG = 3.368Å, gives γ = 0.4 for these C-face films. In

other words, after every 1/(1 − γ) = 1.6 graphene sheets, a stacking fault occurs

in the film. The fact that there are frequent stacking faults is not surprising since
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there is significant rotational disorder of graphene layers grown on this surface,55 as

thoroughly discussed in the following section. A pair of graphene sheets that are

rotated with respect to each other would lead to regions of local AB... stacking

separated by regions with other stacking arrangements. The mean graphene inter-

layer spacing would then be determined by the degree of rotational disorder. The

existence of a large stacking fault density has an important bearing on the results of

conductivity experiments on C-face grown multi-layer graphene films. This will be

addressed in the following sections.

It is significant that the RMS layer width of the graphene is essentially zero, σG

in Eq.(22a). On the Si-face, we saw that σG can represent either a random film

roughness or a RMS corrugation of the graphene that is commensurate with the sub-

strate. Because it is zero on the C-face, it can be concluded that beyond the buffer

carbon layer the graphene layers are flat and must be very weakly interacting with

any substrate potential. This explains why C-face graphene films can be rotation-

ally disordered but have large domain sizes. The energy cost per atom to rotate a

graphene sheet on a flat graphene substrate is very low (< 50meV/atom).140,141 At

the growth temperatures of 1400◦C, and given the low registry forces implied from

these experiments, growing graphene sheets can rotate freely, rather than becoming

polycrystalline as suggested by Forbeaux et al.55 On Si-face multi-layer graphene

films the situation is different. As discussed above, there is a (6
√

3 × 6
√

3)R300 re-

construction in the first 2-3 graphene layers on this surface.45,54 The graphene has a

nonzero corrugation of about 0.16Å that could be enough to lock the growing film into

registry. Step boundaries or other defects in the substrate can put domain boundaries

in the graphene that are not easily removed by rotating large areas of the film. As

will be seen below, this freedom for films to rotate results in truly unique properties

for these C-face films.
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Table 6: Structural parameters for graphene grown in UHV on 4H-SiC(0001) Si-face and
those from furnace-grown 4H-SiC(0001̄) C-face graphene. Parameters are defined in Fig. 31

D0 (Å) D1 (Å) DG(Å) σG (Å) γSiC

Si-Face 2.32± 0.08 3.50± 0.05 3.35± 0.01 0.16(−.05/+ .02) 0.7± 0.1
C-face 1.62± 0.08 3.41± 0.04 3.368± 0.005 < 0.05 0.03± 0.01

Si-face & C-face Reflectivity Results: A Comparison

After looking at the data on each of the polar faces separately, it is worth pointing

out a number of important structural differences between Si-face grown graphene

and C-face grown graphene. Table 6 shows a comparison of structural parameters

determined from X-ray reflectivity data for graphene grown on the SiC(0001) and

(0001̄) surfaces. The first major difference is seen in the parameter D0. The distance

between the first graphene layer and the interface for a UHV grown Si-face graphene

film is D0 = 2.3 ± 0.08Å. Figure 38 shows the sensitivity of the Si-face fit to either

increasing or decreasing the value of D0 by 9%. For the furnace grown C-face films,

D0 is even smaller, 1.62 ± 0.08Å. Similarly, the magenta line in figure 41 shows

a significant deviation from the data when the value of D0 is varied by 10%. On

both faces the measured value of D0 is large compared to the bilayer distance in

bulk SiC (1.89Å) and at the same time less than the graphite interplanar spacing of

3.354Å.14 Note that the best fit value of D0 on the Si-face is similar to the value

of 2.5Å measured by STM.128 The difference in D0 measured for these polar faces

implies that the graphene is more strongly bound to the C-face interface. This is

also consistent with ab initio electronic calculations.133,134 It should be noted that a

publication based on recent ARPES experiments suggested that the C-face graphene

grown in UHV is in fact less tightly bound to the interface compared to the Si-

face,38 contradicting the conclusion of previous inverse photoemission, PES and XPS

experiments.55,104,107 Yet, one should be careful when comparing the above X-ray

data with other studies, as it is quite possible that UHV and RF furnace grown C-

face films have different interface structures. UHV C-face graphene used in previous
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studies38,55,104,107 grows nearly 200◦C lower in UHV compared to graphene grown

in the RF furnace. This temperature difference, as well as what is present in the

ambient atmosphere, may influence the interface structure or order.

D1, the spacing between graphene layer-1 and layer-2, is another interesting pa-

rameter that exhibits a difference on the two polar faces. It is shown in Table 6 to be

larger than the spacing between all other graphene layers (for both Si-face and C-face

graphene). As D0, this value is slightly larger for the Si-face films.

DG is yet another inter-layer spacing parameter that is dependent on which polar

face is being studied. In fact, although the variance seems small, (DG = 3.35 ±

0.01Å and 3.368 ± 0.005Å on the Si- and C-faces, respectively) it results in vast

differences between the electronic structure of films grown on each of the polar faces.

This is because the Si-face graphene is Bernal stacked and the C-face graphene has a

high density of stacking faults. This particular aspect of the C-face films is the topic

of the next section. Note that the error bar on DG is significantly larger on the Si-face

than C-face graphene films. This is because furnace grown C-face graphene films are

much thicker than UHV grown Si-face films. Thinner films broaden the graphene

Bragg peaks at `= 3, 6, and 9, making the peak position and thus the layer spacing

more difficult to measure.

Table 6 also shows that the roughness of the SiC surface is more than an order of

magnitude larger for Si-face graphene than for C-face graphene (the surface rough-

ness is proportional to γSiC). This is consistent with the Si-face substrate roughness

observed in many STM and AFM images.42,51,97,98 This may also affect the difference

in graphene layer corrugation (σG) seen, again to be an order of magnitude greater

on the Si-face. Variance in σG is also likely due to the roughness (and periodicity)

of the Si-face interface structure and may in turn impact the freedom for rotational

disorder in the C-face graphene.
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Finally, the fits to the interface region on each polar face can be compared. Imme-

diately apparent from LEED data is the absence of an ordered interface reconstruction

on the C-face, compared to a periodic reconstruction in the Si-face. This indicates

that although it may be quite complex, there must be some type of regular structure

underneath the Si-face graphene that is energetically favorable over the entire surface

of the material. The C-face, on the other hand, does not exhibit a periodic bonding

structure (or it is very poorly ordered.) A surface reconstruction has been observed

prior to graphene formation,104,107 but the atoms lose their ordered periodic arrange-

ment as the graphene overlayers form. Both faces have multiple interface models

which fit the X-ray reflectivity data equally well. On each face one of the possibilities

is an interface made up of only carbon atoms, while the other options involve a car-

bon rich layer with silicon adatoms either above or below. In all cases, the interlayer

spacings within the interface region relax to look like a single corrugated layer or one

layer with an adatom structure.

The models compatible with the Si-face data all have comparable total atomic

densities, being slightly lower when silicon atoms are present than when the interface

is all carbon. It is interesting that the C-face fits change so much in overall atomic

density when silicon atoms are used (compared to an all carbon interface.) When

Si is present, the density of atoms in the interface is considerably less than that of

a SiC bilayer and less than half of a graphene sheet. Yet, when the interface is en-

tirely carbon, the atomic density is more than twice as great, in fact more than that

of a single graphene layer. Further work needs to be done to investigate the possi-

ble bonding mechanisms which could lead to such atomic densities, as it is possible

that ab initio calculations could rule out one configuration or another. Particular

attention should be also be given to the tight bonding on both faces with the first

structural graphene layer and the effects such bonding could have on the stacking of

the subsequent graphene planes.

110



One last major difference in all of the the fits to the Si- and C-face interface regions

is the extent to which it extends into the bulk SiC. Note that the final SiC bilayer

in both of the C-face fits is quite bulk-like, with near bulk densities and inter-layer

spacings. On the Si-face this is not the case. The densities are substantially less than

in the bulk and the spacing within the bilayer is expanded. This demonstrates that

the Si-face graphene growth affects structure farther into the bulk, a phenomenon

that is likely linked to the increased surface roughening on the Si-face.

5.4.3 Crystal Truncation Rod Analysis

Probably the most significant difference between C-face graphene and Si-face graphene

is its epitaxial order with respect to the SiC substrate. Evidence for this difference

has been seen in LEED data and in the reflectivity data described above. In this sec-

tion yet another kind of data will be explained which addresses this difference more

directly.

It was originally thought that the azimuthal streaking in LEED images similar

to that seen in Fig. 23 was due to HOPG type graphite consisting of azimuthally

disordered AB.. stacked domains. The evidence presented below indicates that this

is not the case and that the LEED patterns are instead the result an unusual stacking

order that is forced by the graphene/substrate interaction.

Although it may not be clear from the LEED images, a detailed look at the

diffraction shows that the source of these streaks is not random rotational disorder.

This is demonstrated in Fig. 45, where a SXRD azimuthal scan (φ scan) around φ=0◦

is taken at the radial position of a graphene rod. This particular data was taken on

the same sample from which the LEED pattern in Fig. 23(a) was taken. The scan

shows intensity peaked at φ=±2.2◦ with widths of ∼ 2.7◦. The significance of the

±2.2◦ preferred rotation is two-fold. As seen in Sec. 2.3.1, graphene is commensurate

with the SiC substrate when a 13×13 graphene unit cell is rotated 30◦ from SiC.
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Figure 45: X-ray azimuthal scan of the diffuse graphite arc around φ= 0 as defined in
Fig.23. The scan was taken on the same sample for which LEED data is shown in Fig.23(a).

The 13×13 cell is ∼ 0.14% smaller than a SiC 6
√

3× 6
√

3 R30◦ cell. But, remember

that there are two other ways to orient a 13×13 graphene sheet that have the same

commensurabilty with the SiC 6
√

3×6
√

3 R30◦ structure. These occur when graphene

is rotated ±2.204◦ relative to SiC. As the LEED image in Fig. 23(a) clearly shows,

all three rotated phases can appear in C-face grown multilayer graphene. The two

spots near φ = 0 are indexed as the (8/13, 7/13, `) and (7/13, 8/13, `) graphene rods.

For simplicity they will be referred to as the R2± rods.

The significance of these three phases is even greater if it is recognized that two

stacked graphene sheets can be rotated relative to each other in a number of ways

that make the two sheets commensurate.141 The lowest energy commensurate rotation

angles are precisely φ= cos−1(11/13) or cos−1(23/26) i.e, 30 ± 2.204◦. This bi-layer

structure corresponds to a graphene
√

13×
√

13 (R± 46.1◦) cell. A schematic of such

a fault pair is shown in Fig. 46.

While the observation of three rotational phases is interesting, it will be seen that

it is their stacking order that bears directly on the film’s electronic properties. The

purpose of this section is to demonstrate via SXRD that R30 and R2± graphene sheets

are interleaved to produce a high density of R30/R2± fault pairs instead of occurring

as AB stacked R30 or R2± isolated domains. The existence of these particular kind

of stacking faults is responsible for decoupling individual graphene sheets and is thus

crucial for identification of these films as multi-layer graphene. These concepts will
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Figure 46: Schematic
√

13×
√

13 R46.1◦ fault pair unit cell (dashed line). Outlined circles
are R30 C atoms (a and b are graphene unit vectors). Gray circles are C atoms in the R2+

plane below, rotated 32.204◦ from the top plane.

be covered thoroughly in the remainder of this thesis.

Figure 47(a) shows X-ray radial scans through the graphene (1, 0, `) rod (R30 rod)

for different values of qz = 2π`/c. The two peaks correspond to a normal graphene

(1, 0, `) surface rod and the other to a graphene surface rod (1 + ∆h, 0, `) with a

compressed in-plane lattice constant (R30 compressed rod). The peak separation

corresponds to an in-plane compression of ∆a/a=−0.28 ± 0.01%. It is emphasized

that the strain is not due the graphene-SiC lattice mismatch, which would increase

the in-plane lattice constant. Note also that the compressed and uncompressed R30

rod widths are the same, meaning that the ordered domain size of both types of

graphene sheets are similar (> 3000Å). Note that this domain size is a lower limit

on the graphene quality because graphene grows over the SiC steps, destroying the

effective X-ray coherence length. Estimates from Raman and transport measurements

indicate that graphene domains are much larger, 4000− 10, 000Å11,69 (STM evidence

of this will also be shown in the following chapter.) This clearly demonstrates that

the compressed graphene is not due to lateral domain boundaries. Proof that the

compressed graphene occurs at the rotational stacking fault boundaries is presented

below. Note that the R2± rod widths [see Fig. 47(b)] are the same as the R30 rods,

indicating large sheets of this phase as well.

To confirm that the R2± rotated and compressed graphene layers are interleaved
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Figure 47: (a) Radial (h) scans through the graphite (h = 1, 0, `) rod for different ` (see
Fig. 32). Scans show two peaks corresponding to the normal graphene (1, 0, `) rod and a
compressed graphene (1+∆h, 0, `) rod. (b) comparison of radial scans through the R30 and
R2+ rods at `= 0.1. (c) Integrated intensity of the R30, R30-compressed and R2+ rods.
Solid line is a fit for 10 AB... stacked graphene layers. Dashed line is a fit for 10 graphene
layers with a random rotational fault model. Inset is an expanded view near `=2 showing
a shift to smaller ` (larger interlayer spacing).

in the R30 stack, the graphene stacking has been investigated via crystal truncation

rod (CTR) analysis. If the different rotational phases existed as isolated domains,

we would expect them to be AB stacked. Figure 47(c) shows integrated (radial and

azimuthal) intensity modulation of the R30, R30 compressed and R2± rods as a func-

tion of `. The modulation period and amplitude are due to the stacking arrangement

of films at each respective position in reciprocal space, which is clearly different for

each rod. For comparison the expected instrument corrected intensity for a 10-layer

AB stacked film (solid line) is shown in Fig. 47(c). While the R30 rod may have

some characteristic of AB stacking, the R30 compressed and R2+ rods do not. This

data shows conclusively that the graphene grown on the C-face has rotated graphene

sheets interleaved in a multi-layer graphene film.

A better fit to the R30 rod intensity can be made using a model where random
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rotational faults are introduced into the AB stack with a probability γ. To describe

all the data, both an in-plane lattice contraction (the source of the compressed R30

rod) and an interplanar expansion of ε (with respect to the bulk spacing) is allowed

at each fault pair boundary. The interplanar expansion is revealed in the inset of

Fig. 47(c) where the experimental peak near ` = 2 is seen to be shifted to a slightly

lower value. This expansion (1.8 ± 0.3%) is similar to azimuthally disordered tur-

bostratic graphite (described in Chap. 2), where rotational faults cause significant

interference of π∗ states between rotated planes.14 Note that the C-face graphene

films are not turbostratic since their domain sizes are much larger than the best tur-

bostratic graphite samples (. 1000Å) and are not randomly oriented.142 Also note

that the interplanar expansion coupled with the in-plane contraction at the fault is

consistent with graphite’s negative in-plane and positive out-of-plane thermal expan-

sion.143 A weaker bond caused by the interlayer expansion at the fault allows the

in-plane bonds to contract.143,144

A fit to the R30 rod intensity with γ= 0.38+.07/− .03 and ε= 0.06 ± 0.02Å for

a 10-layer film is shown in Fig. 47(c). This model fits the data better than simple

AB stacking. γ has also been estimated from the relative intensities of all three rods

at ` = 0. This is because in a random model at ` = 0 the diffraction intensity is

proportional to the square of the probability of finding each type of rotated layer:

IR30/IR30comp = 4(1− γ)4/γ4 and IR30/IR− = (1− γ)2/γ2. This method gives slightly

higher fault densities, γ=0.5±0.06. Measurements from samples with graphene films

thicknesses of 8, 10 and 30 layers give consistent values of γ ranging from 0.45-0.6.

Yet another type of fit to the inter-layer expansion that uses a random turbostratic

fault model138 to estimate γ found that γ=0.4. In other words, after every 1/(1−γ)=

1.6 graphene sheets, a stacking fault occurs in the film. This is within the error bars

of the fit in Fig. 47(c) described above.

Not to worry, this is not the end of the story for rotational domains in graphene
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on SiC. The R30, R2− and R2+ phases will be revisited in the following chapter, when

convincing real-space STM evidence regarding their existence is presented. Although

these structures were the first commensurate cells to be observed on C-face graphene

and thus provided a great starting place for further studies, by now many other

commensurate cells have been observed. These intriguing structures will be the focus

of the remaining chapters.

5.4.4 Other Results

Tilted Bulk Rods

One discovery made during X-ray studies of EG samples that isn’t necessarily

publishable on its own merit is nonetheless worth mentioning. Highly tilted surface

rods are observed on EG/SiC samples that were not H2 etched. They appear as

narrow peaks that pass through radial scans around the graphene in-plane lattice

position as well as through specular reflectivity scans. It was possible to track these

tilted diffraction rods up ` in both types of data. They were found to lean at angles

of ∼ 14◦ from the surface normal. A plot following the position of one such tilted rod

as it moves up in ` (Qr vs. Qz) is shown in Fig. 48. The degree of tilt for this rod

is 14.3◦ from the surface normal and was the same measured on other samples. The

presence of these tilted rods indicates that the unetched samples have a high density

of SiC surface facets. While the graphene film itself is most likely not effected by

this disorder, dangling SiC bonds associated with these defects should influence the

charge transfer between the SiC interface and the first few graphene layers.109

Surface Oxides After X-ray Exposure

Subsequent to X-ray beam exposure, all samples studied exhibit an intense silicon

oxide peak in AES scans and increased diffuse scattering in LEED data. These effects

seemed to be slightly less pronounced in samples that were exposed to X-rays under

UHV conditions and later exposed to air than in samples exposed to the X-ray beam
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Figure 48: A plot following the radial position (Qr) of a tilted bulk SiC surface diffraction
rod as it moves up in Qz. The degree of tilt is 14.3◦ from the surface normal.

for extended periods of time in air at atmospheric conditions. X-rays are known to

produce ozone in air. It is possible that the presence of ozone at the surface may

actively leach out Si from the SiC bulk or interface region. The resulting surface

material is most likely SiO2. This could be an accelerated version of a similar oxide-

producing process that occurs when EG samples are exposed to air for long periods

of time. A set of AES scans taken before and after X-ray exposure are shown in Fig.

49. In order to attain a surface scan without any trace of this oxide, the samples

were heated to a minimum of 1120◦C under UHV conditions. This is phenomenon

is important to take notice of now, as the characteristic evolution of these surface

contaminants over time must be understood and addressed before reliable, lasting

devices can be produced.
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Figure 49: Auger electron spectroscopy scans taken before (b) and after (a) exposure to
synchrotron X-rays. The carbon peak at 270 eV remains at the same position, but decreases
significantly in amplitude. After exposure a sizable, shifted Si peak is seen at 83eV. The
usual Si position is near 92eV, but a known to shift to lower energies occurs when it is part
of an oxide compound. A large O peak is also seen at 506eV. In this particular sample, it
appears that trace silicon oxides may have been present before X-ray experiments, but that
is not always the case.
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CHAPTER VI

SCANNING TUNNELING MICROSCOPY ON

EPITAXIAL GRAPHENE

6.1 Introduction to STM

The development of the scanning tunneling microscope (STM) was an exciting step in

the world of surface science. It provided novel real space images of individual surface

atoms within a crystal lattice. Although the ability to attain atomic resolution was

realized by Binnig et al.145 in 1983 (and earned them the 1986 Nobel Prize in Physics),

evidence of quantum tunneling in a metal-vacuum-metal system was presented as

early as 1971.146 Today, commercial scanning tunneling microscopes are commonplace

in surface science research groups. It is generally advantageous to operate an STM

in UHV where it is possible to have clean surfaces and tips, however in-air and even

in-liquid commercial apparatuses are available.

6.1.1 Theory of Operation

Scanning tunneling microscopes employ quantum mechanical tunneling to establish

an electrical current between a clean, conductive surface and atomically sharp metal

tip. Quantum mechanics predicts the wavelike nature of the electron, which has a

wavefunction that decreases exponentially with distance from its associated parent

atom.147 If an electron on an atom at the surface of a metal tip is held close to a

planar conducting surface, there is a small, but finite probability that the electron

will tunnel across the vacuum barrier. If a small bias voltage is applied between

the tip and surface, the probability of tunneling increases and a directional path is

provided such that an electrical current will flow. The amount of tunneling current is
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exponentially dependent on the physical separation of the tip and sample, as described

by the following one dimensional relation (as in Tersoff and Lang148) :

I ∝ e−2κZ (25)

where Z is the barrier width and the parameter κ is defined by:

κ2 =
2m(VB − E)

~2
. (26)

Here, VB is the potential barrier, E is the energy of the electron state, and m is the

electron mass. For simplicity, VB can be considered as constant across the gap and

if no bias voltage is applied, equal to the vacuum level. In this case, for electron

states at the Fermi level, (VB − E) is the work function for the material (on either

side of the barrier.) This is shown schematically in Fig. 50(a). The Fermi levels of

the tip and sample are shown, with a vacuum barrier between them. In Fig. 50(b),

a bias voltage, V has been applied between the sample and tip. Emission can occur

for electrons in the shaded region, as those filled states have available empty states to

tunnel into. Although not explicitly mentioned in Eq.(25), this aspect of the diagram

indicates the dependence of tunneling current on the local density of states near the

surface of the probed material. The tip will tunnel into available states and map the

electron density. Because electrons are (for the most part) localized around atoms,

scanning the tip at a fixed tunneling current will result in topographic imaging as

the tip adjusts its height to maintain constant current. The exponential relationship

between tip height and tunneling current is what makes the atomic scale resolution

possible. Usually κ is ∼ 1Å, which, by Eq.(25), leads to over an order of magnitude

change in current with 1Å of tip height variation.148

The diagrams in Fig. 50 only illustrate the scenario for electron tunneling, al-

though hole tunneling can occur in a similar way. When a positive sample bias is

applied, electrons tunnel from tip to sample and an “empty state” image is taken,

whereas a negative sample bias results in “filled state” imaging because electrons flow
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Figure 50: A schematic of potential barriers between tip and sample for vacuum tunneling.
(a) When no bias is applied, the difference in Fermi levels (EF ) is simply the difference in
the work functions of the materials. (b) A voltage is applied and there is a corresponding
voltage bias across the tunneling gap. The shaded region indicates where tunneling can
occur. Taken from [148].

from sample to tip. It is often advantageous to try both kinds of imaging and even

ramp through a series of positive to negative bias voltages. This is referred to as

bias dependent imaging and can provide information about changes in the density of

states at various energies away from the Fermi level.

One must be extremely careful when interpreting STM images, as there are many

possible sources of noise and false imaging. Noise can be greatly reduced by ensuring

that the apparatus is mechanically and electronically isolated. Mechanical vibrations

generally appear as low frequency noise in the tunnel current, usually due to contact

between some part of the sample stage and the rest of the experimental system.

Electronic noise often has a frequency of 60Hz (or another harmonic) and can be due

to local electromagnetic fields from nearby laboratory equipment. Depending on the

frequency of the noise, it can sometimes be misinterpreted as atomic corrugations or

other periodic features on the surface. Another possible source of false imaging is

a multiple tip. An ideal STM tip is sharpened down so that there is a single atom

at the apex of the tip. Such perfection is difficult to achieve and one often ends up

with tips that have two or more sharp terminations. If more than one of these is

close enough to the sample surface to induce an appreciable tunnel current, multiple
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imaging can occur.

Although suitable for the scope of this thesis, the theory described above has been

summarized from well established and accessible literature on principles of STM op-

eration. For a more thorough and rigorous treatment, the reader is referred to the

following reviews: Stroscio et al.148 and Golovchenko,147 as well as seminal experi-

mental145 and theoretical149 STM publications.

6.1.2 Instrumentation: RT System

The room temperature STM that was used to acquire all data taken for this thesis

is a homemade instrument that was constructed as part of the thesis work of Paul

Quesenberry.79 Extensive detail regarding the design of all mechanical components

and electronic circuits that make up the STM can be found in his dissertation, but

a brief overview will be given here. The tip scanner and sample mount reside on an

isolated stage attached to an 8-inch Conflat flange. There are two vibration damping

stages, each equipped with suspension springs and magnetic plates held close to planar

conductors. These steady any motion of the sample stage via internal resistance in

the conductors that respond to motion-induced eddy currents.

The tip scanner is comprised of two concentric cylindrical piezoelectric tubes that

sit inside an insulating block. It is responsible for rastering the tip across the sample

during imaging. The outer tube controls the z-motion of the tip (extension and

contraction along the tip axis) and the inner tube controls the x, y motion in the

plane of the sample surface. The user inserts the 1mm tungsten tip shank into a

socket on the scanner using one of the UHV chamber wobble sticks. The x, y and z

tip movement is then activated by voltages applied to the tubes by computer control.

A mounted sample can be inserted into wire arms attached to the stainless steel

sample block using the wobble stick as well. The sample block is mounted on three

tungsten carbide balls which enable sliding over the flat stainless steel base. Once
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the sample is inserted into the holder, a piezo-actuated Burleigh inchworm attached

to a copper slab is used to bring the sample block close to the tip. Coarse motion is

controlled by a handheld joystick, but the final approach is run by a computer program

that cycles between small forward steps and holds for tunneling signal detection. Once

an approach is complete, the inchworm steps the copper slab back such that there

is no longer any electrical or mechanical contact. The sample then remains in place

throughout the experiment as the tip moves during data collection.

All STM data acquisition is managed by an electronic circuit called the STM

servo. This is truly the “bread and butter” of the microscope operation because it is

responsible for maintaining a desired tunnel junction between the tip and sample. Via

a feedback loop, the servo monitors the tunnel current and correspondingly adjusts

the tip-sample separation. Thus, the result is a topographic image, as described in

the previous section. This explains STM operation in constant current mode, which

was always used for data taken in this work. The servo is also capable of holding

the tip in place at any time (during image acquisition or not) and ramping the bias

voltage to record a tunneling spectrum. Known as scanning tunneling spectroscopy

(STS), this technique will be the focus of Sec. 6.4.

Tip Preparation

Access to sharp STM tips is crucial to high quality tunneling data. All STM tips

used for this work were made of fine (0.004 to 0.010 inch diameter) polycrystalline

tungsten wires spot welded to 1mm diameter tungsten shanks. Once the spot weld

was secure, tips were transferred to a tip etching station. This included an optical

microscope for magnified viewing, a wire loop on which a thin bubble of 1M KOH so-

lution was mounted, a metal tip holder, and small power supply. The wire loop/KOH

bubble served as one electrode and the tungsten tip was the other. Once the tung-

sten wire was carefully inserted in the center of the loop, a voltage was applied and
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(a) (b)

Figure 51: Optical micrographs (400x magnification) of tungsten tips made via KOH
chemical etching. Tip (a) is of poorer quality; it only exhibited field emission spots at an
800V threshold. Tip (b) is a sharper tip that exhibited a 300V threshold. Note the inability
to focus on the end of tip (b). This is a good indicator of a sharp tip.

chemical etching of the tungsten occured. This very closely follows the method of

Melmed150 and a detailed diagram can be found there. For this work, the thin tung-

sten wire was quickly etched all the way through at a higher voltage setting to cut

the wire down to an appropriate length (≤ 1
2

inch). The resulting dull termination

was etched off by (1) the nearby formation of a “neck” in the tungsten wire and (2)

low voltage etching coordinated with physically pulling the KOH drop away from the

tip. Because the thinnest tungsten region etches fastest, this resulted in sharp tip

formation.

Two examples of tips made by this method are shown in Fig. 51. Optical micro-

graphs at 400x magnification enable the comparison of tip quality. The tip seen in

(b) is a sharper tip than the one in (a). An indicator of a good tip is the inability to

optically focus on the end of the tip, such that it always looks a bit blurry. This is

demonstrated in Fig. 51(b). Once inserted into the UHV chamber, tips were heated

via electron bombardment and their field emission threshold voltages were checked.

This involved pointing the tip at a microchannel-plate image intensifier and applying

a negative high-voltage bias to the tip. Sharper tips have a higher concentration of

electric field lines normal to the end of the tip and will therefore emit electrons at

lower threshold voltages. Electron emission is detected as electrons strike the image
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intensifier and make a bright spot. Tips that have field emission threshold voltages

below 1kV are useable, but it is ideal to have a tip that emits below 500V. The tip

in Fig. 51(a) had a threshold voltage of 800V, while the one in (b) exhibited a 300V

threshold. Scanning could sometimes improve the threshold voltages of tips, but it

was more often the case that extended use made them dull. In that case, tips could

be transferred out of the chamber and re-sharpened at the etching station by the

formation of a new neck and following the directions above.

Now that the STM apparatus and components have been explained, the emphasis

throughout the rest of this chapter will be on STM data taken on epitaxial graphene.

6.2 Topography of Epitaxial Graphene

Chapter 4 focused on the initial characterization of EG/SiC samples using a few

standard, relatively quick surface science techniques: LEED, AFM and AES. In this

section, further surface characterization attained via Scanning Tunneling Microscopy

(STM) will be outlined for all sample types. Because STM is a very localized probe,

the focus will be on atomic scale structures.

6.2.1 Si-face (0001) Topography

UHV Grown Graphene

The vast majority of literature available on epitaxial graphene focuses on the Si-

face UHV grown material. The true epitaxy observed makes this material attractive to

researchers, despite significant growth challenges. As mentioned during the discussion

of AFM data, a large number of substrate pits form during graphitization. This can

be seen in Fig. 52, a large scale STM topograph illustrating the degree of substrate

roughening. Essentially all of the steps seen on this scale are SiC steps. In this

image there are two particularly deep pits visible. Atomic scale defects found in this
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material have been characterized by Rutter et al.151

The largest continuous graphene domains seen on the Si-face UHV-grown material

are generally anywhere between 500 - 1000Å in the longest dimension. No matter the

extent of the continuous domain, the graphene films grow continuously over other

graphene sheets and features in the SiC surface. This can be seen in the work of

Seyller et al.97 and Rutter.34 In general, the largest area domains reside on the top

of the surface, so that graphene layer terminations are always observed underneath

larger continuous sheets. Step edges between the first graphene layer (“layer 1”)

and the reconstructed SiC surface (“layer 0”) are frequently observed, but layer 2

terminations atop layer 1 have not been observed. Instead, layer 2 tends to flow

uninterrupted over the more common layer 1/layer 0 edges, transforming the feature

to a layer 2/layer 1 boundary such that one graphene layer is shoved under the larger

top graphene sheet.

It is possible to identify different numbers of Si-face graphene layers by carefully

inspecting the corrugation of the surface.34,51,102,128 Layer 0 is perhaps the most

obvious to identify, as it has a semiconducting gap and must be imaged at higher

bias voltages. Lowering the tip-sample bias will result in a tip crash, rather than

imaging of the honeycomb lattice. There is a characteristic SiC (6×6), 18Å periodicity

of this layer that matches the “quasi cell” shown in Fig. 7. It is linked to the

(6
√

3×6
√

3)R30◦ reconstruction described at length in Sec. 4.2. Layer 1 is also

corrugated with this 18Å periodicity, but to a lesser degree. Riedl et al.51 suggest

an approximate 50% decrease in corrugation amplitude for each successive graphene

layer. Imaging layer-1 graphene at low bias voltages should result in observation of

the unmistakable graphene honeycomb lattice. Successive layers display the graphene

lattice more prominently and the (6×6) corrugation becomes less and less discernible.

Angle Resolved Photoemission Spectroscopy has been performed on the UHV

grown Si-face material by a number of research groups.37,97,136 This technique uses
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Figure 52: A large scale (300nm × 300nm) STM topograph of 1-2 layer epitaxial graphene
grown under UHV conditions on a 6H-SiC(0001) substrate. The sample bias and constant
tunneling current were -3V and 100 pA, respectively. Note the prevalence of substrate steps
and pits over the entire surface The scale bar displays shading contrast with height in Å.

synchrotron radiation to induce electron emission. Measurements of the outcoming

electron energy and direction provide information about the band structure of the

probed material. In regions of the sample dominated by layer 1 graphene, a linear

dispersion relation is observed for majority carriers at the K-point of the Brillouin

zone. This is the band structure expected for an isolated sheet of graphene. As

soon as a second layer of graphene grows, the dispersion relation becomes parabolic,

as expected for AB... stacked bilayer graphene. The X-ray data presented in the

previous chapter is consistent with this conclusion.

In the literature there are many claims made regarding the ability to distinguish

different stacking arrangements in STM topographs. It is often asserted that single

layer (non-AB... stacked) graphene is characterized by the six carbon atoms in the

honeycomb lattice being imaged symmetrically. It then follows that if the A and B
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sublattices are imaged with different intensities, the film is classified as mulitilayer

graphene (AB... stacked). While there is a correlation between the type of imaging

seen and the type of stacking present, it is not this simple. There is a bias dependence

involved in the type of imaging seen, such that the different symmetries only come

out at lower bias voltages. Above a certain threshold bias, all epitaxial graphene

can be imaged as a symmetric honeycomb lattice.101 This is an area that deserves

further experimentation, but for a current, thorough treatment of this and other Si-

face graphene phenomena, the reader is referred to the thesis work of Greg Rutter34

and Nikhil Sharma.102

Furnace Grown Graphene

Over the past year or two, increased attention has been given to Si-face graphene

growth in the RF furnace. This material was initially charaterized in Sec. ??. Much

larger SiC substrate terraces are observed when this growth method is used and the

pits that litter the UHV grown Si-face are completely absent (see the AFM scan

presented in figure 19.) Continuous graphene domains up to 1µm have been ob-

served,102 two orders of magnitude larger than what was seen on the UHV-grown

material. Atomic scale in-plane defects are still observed on this surface, but with

lower frequency.102

A new, possibly problematic feature appears on the surface of these films. The

“tiger stripe” features mentioned in chapter IV can be examined more closely with

STM. Figure 53 is a 120 nm × 120 nm STM topograph of one of these features.

in AFM images, the “stripes” appear to be larger, continuous structures, but here

seem to be made up of small clusters of amorphous carbon, possibly in a precursor

stage before island nucleation. Some preliminary work has been done indicating

that heating these samples in UHV causes reduction of these features.102 Further

experiments are planned to investigate whether this is indeed the case.
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Figure 53: A 120nm × 120nm STM topographic image of 1-2 layer epitaxial graphene
grown in the RF furnace on a 4H-SiC(0001) substrate. The sample bias and constant
tunneling current were +3V and 100pA, respectively. The sample was annealed at 1075◦C
in UHV before STM data was taken.

Collaborators at the University of California, Berkeley have performed ARPES

measurements on graphene samples made in the RF furnace as well. They found

that, just as with the UHV grown material, single layer regions exhibit linear disper-

sion, but multilayer films show parabolic dispersion. The only difference between the

two growth methods was that the lineshapes observed for the furnace grown material

were sharper, consistent with larger, more ordered graphene domains. All studies to

date indicate that the interface region of the furnace-grown Si-face material is the

same as the UHV-grown Si-face material, although careful comparisons have yet to

be performed.
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6.2.2 C-face (0001̄) Topography

UHV Grown Graphene

STM images were displayed in Fig. 21 taken from a typical UHV-grown C-face

film produced by Varchon et al.109,152 Imaging on this material can often be difficult

due to the presence of the large pleats mentioned earlier, as well as nanocap and

tube structures that are often prominent.80,153,154 A replica of Fig. 21 with enhanced

contrast in the graphene plane is presented in the rotational stacking section below,

as it shows evidence that the rotated graphene layers exist on the UHV grown C-face

material as well.

Furnace Grown Graphene

The quality of C-face furnace grown graphene is far superior to any other type of

epitaxial graphene made to date. As mentioned in Sec. 4.3.2, the original substrate

step density is preserved and continuous graphene films as large as 20µm have been

observed.81 In agreement with X-ray data, STM surface topographs show that these

films are extremely flat. Figure 54 is a 0.4µm×0.4µm STM topograph that illustrates

a tiny height variation (about 0.6Å) over this large area. Many images like this were

taken throughout experiments done for this thesis. It was difficult to find graphene

domain terminations, as most steps observed were SiC substrate steps covered with

continuous sheets of graphene. One example of this is seen in Fig. 55, a 3D-rendered

STM topograph of atomically resolved graphene growing over a 30Å SiC step. This

corresponds to three SiC unit cell heights for the 4H polytype. (The image shown

does not display the top of the step, but the full step height was measured other

topographs.)

On this material, carbon atoms within the honeycomb lattice sometimes image as

three-fold symmetric and sometimes image as six-fold symmetric. This is surprising

in light of the unique rotational stacking that decouples individual graphene sheets.48
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Figure 54: A 0.4µm × 0.4µm STM topograph on 4H-SiC(0001̄) furnace-grown EG with
only a 0.6Å height variation over the entire image. The sample bias and constant tunneling
current were +3V and 100 pA, respectively. The periodic structure seen is not the atomic
graphene lattice; it has a much larger 55Å period. This may be a superstructure due to
independently rotated graphene sheets or could possibly be an interface reconstruction. A
zoom-in taken on this terrace is displayed in Fig. 57.

One would expect that if the symmetry of the lattice is conserved, only six-fold sym-

metric imaging would occur. As of now, there have not been any studies targeted at

understanding this discrepency, but it could mean that sometimes an AB... stacked

bilayer appears at the surface. In the cases that six-fold symmetry is seen, the top

layer would instead be a rotated layer. An example of the six-fold symmetric hon-

eycomb imaging is shown in Fig. 56. Note the similar level of intensity seen at each

corner of the graphene hexagons. For comparison, look to Fig. 58(c) in the next

section, where three of the six carbon atoms in the honeycomb lattice are imaged

with far greater intensity than the others. This indicates that the A and B graphene

sublattices are distinguishable, despite the fact that there is a clear evidence that a

131



distance (Å)

he
ig

ht
 (Å

)

Figure 55: 3D rendered atomically resolved STM topograph of C-face furnace grown
graphene growing over a 30Å SiC step. (This image does not display the top of the step,
but the full step height was measured other topographs.) The sample bias and constant
tunneling current were -0.6V and 100 pA, respectively.

rotated layer is present near the surface. (Unique superstructures which indicate the

presence of rotated sheets are the topic of the next section.) As suggested above, this

may mean that the top bilayer is AB... stacked, with a rotated layer three down from

the surface.

Very little is known about the buried EG/SiC interface of this material. No

real space images of single or few layer graphene on the SiC(0001̄) face have ever

been published, likely because thin films are hard to grow. As explained in Chap.

Ch:PR, graphene grows very quickly on the C face so it is difficult to halt growth at

fewer than five layers. Nonetheless, some of the STM images taken on furnace-grown

graphene exhibit fairly disordered long range periodic structures that could be part

of an interface reconstruction. An example of such a structure is seen on a large

scale in Fig. 54 and at higher resolution in Fig. 57. When a Fourier transform is

performed on the large scale image, a six-fold symmetric structure becomes clear. It
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Figure 56: A 4nm × 4nm STM topograph of the graphene honeycomb lattice taken at
+0.5V sample bias and 100 pA constant current. The sample was RF furnace-grown on
4H-SiC(0001̄).

has a 55Å periodicity. In the high resolution image the atomic corrugation is seen

superimposed on the subsurface structure. The periodicity of the subsurface structure

is not so evident on this scale, but the centers of the raised circular features are indeed

approximately 5.5nm apart. It is possible that this image was taken on a region of the

surface that had fewer graphene layers. Although the distributions of layer heights

measured on the furnace grown C-face samples are far broader than on the Si face,

some thin layers still exist. For example, more than 25% of one furnace-grown film

with an average of 5.85 layers contains domains with two graphene layers or less.

The most fundamental difference between Si- and C-face graphene films grown via

both methods is their stacking character. C-face films always exhibit a unique kind

of stacking, characterized by interleaved rotated layers. Clear STM evidence of this

is presented in the following section.
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Figure 57: A closer look at the terrace shown in Fig. 54. A 20nm ×20nm STM topograph
taken at +0.5V sample bias and 100 pA constant current.

6.3 Rotational Stacking

X-ray diffraction data was presented in the previous chapter which demonstrated the

existence of unique stacking faults on the C-face material. In this section additional

evidence will be presented that supports this conclusion in the form of real space

STM images.

6.3.1 STM Evidence of Rotational Stacking

As was explained in Sec. 5.4.3, C-face EG is comprised of rotated graphene sheets

interleaved every two to three layers throughout the film. If this is the correct stacking

model for these samples, then a rotated fault pair should often occur near the surface

of the graphene. STM scans should be able to provide evidence of the rotations

because commensurate cells give rise to superstructures with periodicites defined by

the commensurate cell length. An example of one of these superstructures was shown

in Fig. 46 and is reproduced here in Fig. 58(a). The pattern seen in the figure is

called a Moiré pattern, a term generally used to describe interference patterns created

when two structures with different periods are overlayed. Technically speaking, the
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Figure 58: (a) The schematic (
√

13×
√

13)GR46.1◦ superlattice formed by a β= 32.204◦

rotated fault pair unit cell (dashed line) seen in Figure 46. (b) STM image of C-face
graphene showing a periodic superlattice with a (

√
13×

√
13)G cell. (c) High resolution

STM image (100 pA constant current, -0.8V sample bias) of the (
√

13×
√

13)GR46.1◦ unit
cell (solid line) and the principle graphene directions (dashed lines). For display, Gaussian
smoothing was used in (b) to reduce the atomic corrugation (15-20pm peak-to-peak in the
raw data) relative to the superlattice (∼ 8pm peak-to-peak). From [48].

STM is not able to see through the top layer of atoms, so a true “Moiré” pattern is

not observed. However, superstructures that arise due to high coincidence positions

in the commensurate cell should appear. Indeed, these characteristic features are seen

all over the C-face furnace grown material. The exact source of the image contrast is

not yet well understood.

Figure 58(b) and (c) show STM topographs that exhibit the kind of superstruc-

tures described above. The supercell is outlined in black and the dashed lines indicate

the principle graphene directions. In fact, the 8.9Å supercell period and 46.1◦ an-

gle between the supercell and top graphene lattice are precisely those expected for a

graphene bilayer pair with one layer rotated 30◦ and the other layer rotated +2.2◦ (or

−2.2◦) from the SiC substrate. They therefore have a 32.2◦ (or 27.8◦) rotation with
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Figure 59: A 12nm × 12nm STM topograph of another Moiré-like pattern taken at
+0.6 sample bias and 100 pA constant current. The sample was RF furnace-grown on
4H-SiC(0001̄).

respect to one another. This matches the angles measured by SXRD and provides

further evidence that there is some registry with the SiC substrate. It is important to

emphasize that this particular structure is associated with commensurate cells formed

by both a graphene-graphene rotation and a graphene-SiC rotation. This could be a

condition that guides the selection of rotation angles. The following chapter focuses

on possible rationale for the observed angles.

In STM we are searching for graphene-graphene commensurate cells because only

features of the first couple of layers can be detected. The 46.1◦ cell illustrated in figure

58 and discussed at length during the X-ray data analysis was the first supercell

observed, but to date many more have been discovered. The following additional

supercell periods have been measured on various terraces on two different samples:

25Å, 30Å, 40Å, 55Å, and 60Å(±2Å.) The 8.9Å supercell had the smallest cell area

of any observed so far. An image taken on the next largest cell (25Å superperiod) is

shown in Fig. 59.

A total of 13 continuous graphene domains ≥ 1µm in length were studied on two

different furnace-grown C-face samples for this work. Seven of the domains exhibited

clear superstructures like those seen in Figs. 58 and 59. The other six showed
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subsurface structure; three with ordered subsurface features (as seen in Figs. 54 and

57) and three with seemingly random subsurface features. Therefore, a little more

than half of the domains studied exhibited Moiré-like superstructures. In most cases,

the continuous domains were so large that their edges were not encountered during a

standard 1-3 day run (single tip approach.) There were two exceptions: in one case

a region without any superstructures became one that did exhibit superstructure as

the graphene flowed over a SiC step. The other involved the only grain boundary

found during these experiments. On one side of the grain boundary there was a

30Å superperiod and on the other side a 25Å superperiod.

Moiré-like supercell patterns are also seen on UHV-grown C-face graphene, al-

though the continuous domains are far smaller, causing an abundance of grain bound-

aries. This indicates that there is something inherent in the structure at the interface

and/or SiC bulk termination that allows the rotation of graphene films as they grow.

The same STM topograph displayed in Sec. 4.3.1 is reproduced in Fig. 60, but with

enhanced contrast in the graphene surface plane. Superperiod structures character-

istic of rotational stacking are seen in approximately half of the domains in the field

of view, a similar ratio measured on the furnace-grown material.

6.3.2 Rotational Stacking on HOPG surfaces

It should be noted that superperiod patterns attributed to rotational stacking have

also been observed on freshly cleaved highly oriented pyrolytic graphite (HOPG)

surfaces. It is believed that the cleaving process can tear single sheets of graphene,

overlaying them in rotated orientations. Thus, the major difference is that on HOPG

these features are due to a surface rotation only, whereas the rotational stacking

faults on EG are seen throughout the graphene stacks. A great number of studies

were performed on these cleaved structures in the 1990’s. For further information the

reader is referred to the extensive topical review by Pong and Durkin.155
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Figure 60: 150nm ×150nm scanning tunneling microscopy image acquired on a 6H-
SiC(0001̄) EG sample taken at 1.0V sample bias and 100 pA tunneling current. This
topograph was also displayed in Fig. 21, but here there is an enhanced contrast in the
plane. Note the abundant grain boundary features and various periodic superstructures.
Taken from [109].

Figure 61: (a) 160 nm×160 nm scanning tunneling microscopy image acquired on a freshly
cleaved HOPG sample. The bright spots correspond to a 38Å superperiod structure. (b)
10 nm× 10 nm STM image displaying both the atomic lattice and the larger superperiod.
Taken from [155].

6.4 Scanning Tunneling Spectroscopy (STS) on Epitaxial
Graphene

6.4.1 STS Basics

As mentioned in section 6.1.2, the STM servo is capable of a hold and voltage-

ramp procedure that results in the acquisition of a tunneling spectrum. This is

known as scanning tunneling spectroscopy (STS). For the system used in this work,

data was taken in the form of an I-V measurement and later differentiated using a

Savitzky-Golay algorithm156 to obtain dI/dV curves. The ratio of the differentiated
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conductance and the measured conductance, dI/dV
I/V

= d ln I
d lnV

corresponds closely to the

sample’s local density of states.157 Therefore, theoretical DOS calculations can be

compared to STS data and local band structure information can be obtained. This

was done with data taken on a furnace-grown C-face EG sample and the preliminary

results are explained in the following section. One important note is that in this type

of analysis, the tunneling transmission probability has not been taken into account.

The result is that electronic sample states that do not overlap with tip sample states

(for example, states localized near atomic cores) are not probed.157

6.4.2 STS Experiments on C-face EG

Although preliminary, STS experiments done for this thesis have provided interesting

results. An STM tip was placed in the center of a large continuous graphene domain

on a furnace-grown C-face sample. Imaging in the region revealed a ∼ 60Å Moiré-like

superstructure across the entire domain (with symmetric imaging of all six honeycomb

atoms,) so it can be assumed that a rotated stacking fault was close to the surface.

The servo was programmed to take STS spectra at six programmed z-direction tip

extensions. Recording spectra at many z positions covers a larger energy range of the

local density of states, in this case allowing the sample bias to span from -3V to +3V in

each set of spectra. Over 200 sets of spectra taken on a small portion of the graphene

domain were averaged to attain the d ln I/d lnV spectrum displayed in Fig. 62(a).

When compared to calculations of the density of states of graphite,158 it is clear that

basic features are similar. Figure 62(b) is taken from a study by Campanera et al.158

in which ab initio density of states calculations are performed on graphite stacks

with different surface bilayer stacking faults. While the small differences between

different stacking terminations are beyond the resolution of room temperature STS

(see comparisons made in [158],) it is encouraging to see that theory and experiment

share most prominent features. The two large peaks have been identified as Van Hove
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Figure 62: (a) Average STS spectrum acquired on furnace-grown C-face graphene. A
series of z-direction tip extensions allowed a large range of bias voltages to be probed and
stitched together. (b) Ab initio density of states calculation performed on graphite, taken
from [158]. Note the similar large scale peaks observed, which have been identified as Van
Hove singularities. There is an unexplained shift in both peak positions from theory to
experiment.

singularities, predicted to appear in graphite, which correspond to broadening of the

band structure away from the K-point.

The differences observed between theory and experiment are worth noting. There

is an unexplained, but identical shift in both peak positions. This could possibly be

attributed to tip effects, which are generally not well understood. It was, in fact, a

goal of this particular data set to seek out any influences of the tip. There is also a

noticeable kink in the STS spectrum near a sample bias of -1V which is not seen in the

theoretical calculation. The fact that the data was taken on epitaxial graphene, rather
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than HOPG, could certainly be a source of differences. Finally, thermal broadening is

evident in the experimental data due to the spectra being taken at room temperature.

Further STS experiments on varied stacking terminations on Si- and C-face epi-

taxial graphene and other graphites could provide interesting information regarding

differences in electronic structure. Hopefully this work can provide a point of reference

for such future studies.
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CHAPTER VII

ANALYSIS OF OBSERVED EPITAXIAL GRAPHENE

ROTATION ANGLES

This chapter takes a comprehensive look at the different angles of rotation observed

on C-face epitaxial graphene. Two types of commensurate structures are considered,

graphene-graphene cells and graphene-SiC cells.

7.1 Commensurate Structures

7.1.1 Graphene-Graphene Commensurate Cells

There are a large number of graphene-graphene commensuration angles other than

30±2.204◦. All commensurate rotations can be calculated when the vector naG+mbG

in one sheet equals the magnitude of the vector n1aG +m1bG in the second sheet (n,

m, n1 and m1 are integers). Defining `=n2 +m2 − nm, the relative rotation angle β

of these commensurate sheets is given by:

cos β(mod. 60◦) =
2m1m+ 2n1n−m1n−mn1

2`
. (27)

The commensurate structure formed by the rotated sheets is a (
√
`×
√
`)GRθ unit

cell where θ is the angle between the super cell formed by the rotated pair and the

(1×1)G graphene unit cell. θ is given by:

cos θ(mod. 60◦) =
2m1 − n1

2
√
`

. (28)

Remember that a rotation angle of β=60◦ gives a AB.. graphene pair. Figure 63

shows a set of commensurate rotations when `<64. The rotation angles are plotted

for display purposes using an arbitrary metric; their inverse unit cell size (`
√

3/2)−1.

The actual energy cost of these rotated pairs has only been estimated for two of the
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Figure 63: Commensurate graphene-graphene rotations for ` < 64. The rotations are
ranked according to the inverse of their (

√
`×
√
`)GRθ unit cell area; (`

√
3/2)−1. The

(
√

13×
√

13)GR46.1◦ cell (β = 30±2.204◦) and the (
√

7×
√

7)GR49.1◦ cell (β = 30±8.213◦)
are marked. (red lines and circles) an SXRD experimental distribution of rotations for a
25-layer C-face graphene film.

many commensurate cells: (
√

13×
√

13)GR46.1◦ cell and the (
√

7×
√

7)GR49.1◦ cell

in Fig. 63. Theoretical calculations find that the larger (
√

13 ×
√

13)GR46.1◦ cell

has the lower energy of the two by about 0.2-0.3meV/atom.141,158 An experimental

distribution of rotation angles, measured by SXRD, is shown for comparison. Note

that the experimental distribution shows a preference for angles slightly larger and

smaller than 30◦.

As discussed in the previous two chapters, SXRD and STM experiments have

shown that multilayer graphene grown on the C-face has a high density of rotational

stacking faults consisting of these commensurate graphene sheet pairs.48 Figure 58(b)

and (c) showed STM images of (
√

13×
√

13)GR(±46.1◦) modulation of the graphene

lattice from a C-face film. SXRD experiments determined that the stacking structure

is not AB.. stacked. Rather, the films contain many rotational fault pairs interleaved

in the multilayer graphene film (approximately one fault every 1.6-2.5 layers).48 This

is consistent with the additional X-ray reflectivity estimates described above.66 The

majority of these graphene-graphene faults are rotated approximately 30◦ apart.
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Figure 64: Commensurate graphene-SiC rotations near (a) φ = 0 and (b) φ = 30. The
rotations are ranked according to the inverse of their commensurate unit cell area. SXRD
experimental distributions of rotations for a 25-layer C-face graphene film are overlaid in
both plots. The X-ray data was taken on the same sample for which LEED data is shown
in Fig 23(b). Note that in (a) a log scale is used for intensity & inverse cell area. The
angle distribution near 30◦ is sample independent, but near 0◦ may depend on the step
orientations on the starting substrate wafer (Refer to discission in Sec. 4.3.2.)

7.1.2 Graphene-SiC Commensurate Cells

As thoroughly covered in Sec. 2.3.1, there are also a great number of graphene-

SiC (nearly) commensurate cells. One set of these structures was just reviewed as

a graphene-graphene commensurate pair: the (
√

13×
√

13)GR(±46.1◦) fault pair is

created when of two of the graphene-SiC commensurate pairs (30◦ and ±2.204◦ with

respect to the SiC) stack on top of one another. In order to further evaluate the

relevance of additional graphene-SiC commensurate structures, plots can be made

similar the one shown in Fig. 63, but now with graphene-SiC commensurate cells

plotted by the same inverse cell area metric. Such a plot is found in Fig. 64 for

rotations near (a) φ = 0◦ and (b) φ = 30◦. All rotation angles, φ are defined as in

Sec. 4.3.2.

Note that there are far fewer graphene-SiC commensurate cells near φ = 30◦ than

near φ = 0◦. The X-ray data is also more symmetric and sharply peaked in the 30◦

region, with maxima centered on or near commensurate cells. In fact, the sum of the
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area under the peaks at φ ≈ 31.5◦ and φ ≈ 28.5◦ is roughly equal to the area under the

peak at φ = 30◦. The fact that the intensity aligns well with the few commensurate

cells available is consistent with the notion that the SiC drives the selection of rotation

angles. It is also interesting to note that the angle distribution observed near 30◦ is

sample independent, which is not the case near φ = 0◦. Here the alignment between

peak angles and commensurate cells is not so straightforward, likely because there

are so many more graphene-SiC commensurate cells in this region. (Although they

are not nearly as abundant as the graphene-graphene commensurate cells shown in

Fig. 63.)

The X-ray scan overlaid in Fig. 64 was taken on the same sample from which

the LEED pattern in Fig. 23(b) was recorded. It is again interesting to note how

different the intensity distributions are near φ = 0 when the more detailed X-ray

azimuthal scans (Figs. 45 and 64(a)) from the different samples are compared. The

data from Fig. 45, with clearly peaked intensity at φ = ±2.204◦, exhibits a definite

link between the graphene-SiC commensurate cells and the chosen rotations. Addi-

tional experiments must be done to further analyze the rotational distributions on

other samples taken from different SiC wafers. The step direction, edge termination,

or step density could all be important factors.

There is still enough evidence to conclude that a highly directional graphene-

SiC interaction makes production of these faults more ubiquitous, while somehow

maintaining the flatness of the graphene sheets. How this is accomplished is not un-

derstood. Assuming that each new C-face graphene layer grows at the SiC/graphene

interface as observed for Si-face films, it is possible that stoichiometry changes as

successive SiC bi-layers are exposed during graphene growth act as new angular tem-

plates for the next graphene layer. Why rotations near 0◦ and 30◦ are selected has

yet to be determined. It is interesting to note that all LEED images taken from UHV

grown C-face films (see Fig. 20) show intensity not only near φ = 30◦ and 0◦, but
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also near φ = 15◦. At least one group saw a similar intensity distribution for C-face

UHV grown graphene,152 while yet another saw a more continuous ring peaked only

at φ = 30◦ and 0◦.154 As suggested during the examination of LEED images in Sec.

4.3.2, it is possible that SiC step edges influence the growth direction of a graphene

layer. This may explain the asymmetry of the experimental distribution of angles in

Figs. 63 and 64(a).

7.2 Effect on Electronic Structure

As discussed in Sec. 2.2.1, the electronic properties of graphite (and multi-layer

graphene) depend on the precise stacking order of the graphitic films. It was long

believed that the only way to maintain the unique 2D Dirac nature of the carriers in

graphene was to physically isolate a single atomic layer. The work done for this thesis

in conjunction with studies done by Georgia Tech collaborators12,48 prove otherwise.

Far-infrared transmission measurements12,159 on C-face films ranging from 3 to 60

graphene layers paradoxically show that these multilayer films behave like undoped

single-layer graphene. This was initially very surprising, since graphitic AB.. stack-

ing breaks the equivalency of the carbon sublattice atoms in a graphene sheet.28,33

While AA.. stacking faults might explain these results, the SXRD data from furnace

grown C-face films have shown that these types of faults are not present in any ap-

preciable fraction in the multilayer film.66 AA.. or ABC.. stacking faults produce

inter-layer contraction,17 contrary to the large average graphene inter-layer expansion

measured by SXRD.66 Thus, because of the presence of these unique stacking faults,

the electronic properties of C-face multilayer films should be very different from those

of AA.., AB.. or ABC.. graphite.

For the R30/R2± fault pair in Fig. 58(a) there are only 2 atoms/sheet out of 52 in

the (
√

13×
√

13)GR(±46.1◦) cell that are in high symmetry positions, i.e. atom-over-

atom sites. This suggests weak interplanar interactions in the fault pairs that help to

146



-2

-1

0

1

2

E-
Ef

 (e
V)

-0,4

-0,2

0

0,2

0,4

! !M K

K

Figure 65: Calculated band structure for three forms of graphene. (i) isolated graphene
sheet (dots), (ii) AB.. graphene bi-layer (dashed line) and (iii) R30/R2+ fault pair (solid
line). Inset shows details of band structure at the K-point. From [48].

preserve the symmetry of the graphene sheet.48,160,161 Figure 65 compares ab initio

band structure calculations48 for an isolated graphene sheet, a graphene bi-layer with

Bernal AB. . . stacking and the exact bilayer rotational fault pair of Fig. 58(a). The

Γ K M direction shown is the (
√

13×
√

13)GR± 46.1◦ cell high symmetry direction.

The main differences in the electronic structure of the three graphene forms show

up in the dispersion curves near the K-points. The band structure for an isolated

graphene sheet shows the linear gapless dispersion of the π bands at the K-point.

The normal Bernal stacking of graphene breaks the sublattice symmetry, giving rise

to splitting of the π bands with a corresponding change to a parabolic shape and a

lower group velocity.33 With the rotated fault, the linear dispersion is recovered near

the K-points. This dispersion is identical to the graphene dispersion (same Fermi

velocity) and clearly shows that in the rotated layers, the atoms in the A and B

sublattices are identical. More recent work done by Latil et al.161 demonstrates that

even in an ABA’.. stacked trilayer, (here the prime denotes a rotated film) linear

dispersion is maintained near the K-point.

This type of ab initio theoretical calculation convincingly ties together the rota-

tional stacking,48 enhanced Dirac carrier signal for thicker films12 and the superior

mobilities measured in the C-face furnace grown material.42 So, it turns out that
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nature has chosen to stack abundant forms of graphite in the only two ways that do

not maintain linear dispersion.
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CHAPTER VIII

CONCLUSIONS

8.1 Summary of Results

Structural characterization of epitaxial graphene grown on the (0001) and (0001̄)

surfaces of SiC has shown that there are vast differences in film quality dependent on

both the growth method and polar face selected. UHV growth induces a great deal of

substrate roughening and leads to small coherent graphene domains. Evidence that

supports this conclusion has been presented from surface X-ray diffraction (SXRD),

scanning tunneling microscopy (STM), low energy electron diffraction (LEED), and

atomic force microscopy (AFM) experiments. On the other hand, when SiC is heated

for graphene growth in an RF induction furnace under low vacuum conditions, the

substrate pits seen on the Si-face during UHV growth are no longer a problem and far

larger graphene domains form on both faces. The reasons for such vast differences in

graphene quality are not fully understood, but two factors have been identified that

are certainly involved. One is the higher Si desorbtion temperature under furnace

conditions. This results in a higher graphitization temperature on both polar faces,

although the difference is far greater on the C-face. A later onset of silicon removal

may allow for a more favorable ordering of the SiC surface before graphene forms. A

second factor is the furnace environment, as the presence of O2 (and possibly excess

Si) likely aids in the removal of Si from the surface. Because the partial pressures of

silicon oxides near the surface are far lower under UHV conditions, their removal is

more disruptive in the UHV environment.

Vast differences in film quality on the two polar faces have also been addressed.

Independent of the growth environment, graphene layers form far faster on the (0001̄)
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C-terminated surface. The furnace-grown C-face material is far superior to any other

epitaxial graphene films grown to date. Continuous graphene domains are routinely

measured at greater than 1µm. Because the kinetics of Si removal through the

graphene film must be the same on each face, the differences must exist at the EG/SiC

interface. The slower rate of graphene growth on the Si-face translates to rougher

films because Si clusters can get trapped in the interface region, leading to twinning

and defect structures. As discussed below, the interface structure on the opposing

faces has been shown to be significantly different.

Epitaxial graphene has been demonstrated to be extremely robust. Transfer of

samples in air does not substantially affect the film quality. On both polar faces of

SiC and in both growth environments graphene grows continuously over SiC substrate

steps and other graphene steps, much like a carpet lays atop and conforms to a

staircase. SXRD and STM data indicate that epitaxial graphene exhibits about an

order of magnitude larger surface corrugation on the Si-face, which is likely due to

the roughness and periodicity of the interface, “layer-0”. The graphene grown on the

C-face in the RF furnace is extremely flat.

X-ray specular reflectivity measurements have shown that the EG/SiC interface

region (also referred to as “layer-0”) extends deeper into the bulk on the Si-face than

the C-face. Both faces contain at least one highly corrugated layer or a bilayer/single

layer plus adatom region. The possible Si- and C-face models can be found in Figs.

37 and 42, respectively. On the Si-face, the last SiC bilayer (directly below layer-

0) is substantially altered from the SiC bulk densities and inter-layer spacings. On

the C-face, this bilayer is much more bulk-like. The interface can be conclusively

identified as carbon rich in both cases, but due to the fact that X-rays distinguish

between different atoms only through their atomic form factors, it is possible to find

more than one model that fits the reflectivity data by exchanging C and Si atoms

and multiplying the atomic density by the ratio of their form factors. For this reason,
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X-ray analysis alone cannot determine the final interface structure. The spacings

and densities on both faces suggest the presence of a mixture of sp2 and sp3 bonded

carbon.

Reflectivity results show that the first structural graphene layer is tightly bound

to the interface region on both polar faces. Do, the spacing between layer-0 and

layer-1, is 2.32± 0.08Å on the Si-face and 1.62± 0.08Å on the C-face, in both cases

far less than the spacing between planes of AB.. stacked graphite, ∼ 3.35Å. These

measurements indicate that layer-1 is more tightly bound on the C-face than the

Si-face, consistent with ab initio electronic calculations133,134 and previous inverse

photoemission and XPS experiments.55,104,107 The interface layer and possibly the

tightly bound first graphene layer provide a buffer between the bulk SiC and the rest

of the graphene film, thus allowing the graphene to be electronically isolated. Because

the interface structure is not yet fully understood it remains uncertain which layer

most fully exhibits the “buffering” characteristics.

One parameter that can be accurately measured via X-ray reflectivity is DG, the

average interlayer spacing between graphene planes (beyond layer-1.) On the Si-face,

DG = 3.35 ± 0.01Å, the same as Bernal stacked graphite. This is consistent with

ARPES37 and STM101 data that indicate Si-face EG grows as AB.. stacked graphite

beyond the first layer. On the furnace-grown C-face samples, DG = 3.368± 0.005 Å,

0.42% larger than AB.. stacked graphite. While this difference sounds small, it has an

enormous effect on the behavior of the graphene’s electronic carriers. The expanded

interlayer spacing translates to a stacking fault an average of every two to three layers

in the C-face graphene films. These stacking faults decouple adjacent graphene sheets

and allow the symmetry of an isolated graphene layer to be maintained.

The nature of the C-face stacking faults described above has been identified

through SXRD crystal truncation rod (CTR) analysis and STM topography. By sim-

ply glancing at a C-face EG low energy electron diffraction (LEED) pattern, one can
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tell that there are rotated graphene domains present. Surface X-ray analysis shows

that on the furnace-grown material there are graphene domains rotated either near

30◦ or spread on either side of 0◦ with respect to the SiC lattice orientation. The 30◦

rotated stacks always appear along with graphene sheets that exhibit a contracted in-

plane lattice constant. It is reasonable to expect that sheets with a contracted lattice

will appear at stacking faults, as weaker out-of-plane bonds caused by the interlayer

expansion can result in an contraction of the in-plane bonds. The continuous domain

sizes for the contracted graphene, as well as the graphene at each rotated position

are essentially identical. This, along with the expanded average interlayer spacing,

implies that the rotated sheets are interleaved, rather than independent AB.. stacked

regions.

However, there is further compelling evidence that the rotated films are inter-

leaved. By measuring the diffracted intensity modulation of the graphene CTRs,

information can be obtained about the stacking order of the graphene films. Data

sets from different graphene domains (at two rotated positions and at the in-plane

contracted lattice position) were compared to each other and to the calculated inten-

sity modulation expected for AB.. stacked graphite. The results clearly show that

none of the graphene domains are AB.. stacked and that they all have a distinctly

different (and complex) stacking character. The final piece of evidence was the ob-

servation of real-space periodic superstructures characteristic of rotated bilayer pairs

in STM topographs. Thus, due to: (1) the large rotated domains of similar size,

(2) expanded average interlayer spacing, (3) non-Bernal stacking order, and (4) STM

evidence of surface rotated layers, it is certain that furnace grown C-face graphene is

comprised of interleaved rotated sheets.

Azimuthal X-ray scans and LEED patterns were examined in order to gain in-

sight into any possible rationale for the rotation angles chosen by the C-face graphene

sheets. When compared to the rotation angles that define commensurate rotations
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between the SiC lattice and the graphene lattice, a loose correlation was found. Ev-

idence of a connection was more convincing near the 30◦ rotated position, as all

samples studied consistently lock into three angles that coincide with graphene-SiC

commensurate cells.

Experimental studies have shown that C-face graphene grown under both UHV38

and furnace12,159 conditions exhibits linear electron dispersion and Dirac-like carrier

behavior not only in the first graphene layer, but throughout the entire 3D film.

Mobilities are also always much higher on the furnace-grown C-face graphene.42 The

interleaved rotated stacking described above explains how this is possible. In order to

clearly link the two effects, ab initio band structure calculations were performed on a

unit cell of one of the exact bilayer pairs observed by SXRD and STM.48 Indeed, the

results show that the band structure of a single isolated graphene sheet and a rotated

bilayer pair are essentially indistinguishable.

Therefore, while Si-face graphene is truly epitaxial and always rotated 30◦ from

the SiC lattice, beyond the first layer it grows as Bernal-stacked graphite. C-face

graphene, on the other hand, is only loosely epitaxial and grows as interleaved, rotated

stacks. This unique stacking decouples individual graphene sheets and preserves

the Dirac-like linear dispersion relation, making EG electronics possible even for a

multilayer material.

8.2 Areas for Future Study

The study of epitaxial graphene on SiC is still relatively new and thus full of op-

portunity for future experimentation. The vast majority of research being done still

focuses on the (0001) Si-face, thus one popular direction is to attempt to improve the

quality of these Si-face films. Very recent work has shown that Si-face furnace growth

under an argon flux at atmospheric pressures leads to large graphene domains and

ordered substrate step structure.162 Trials with different furnace environments would
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be interesting, as well as further attempts at UHV “cleaning” of RF furnace-grown

Si-face films. Regarding the quality of RF furnace-grown C-face films, further STM

studies of the pleats and/or tubes that form are important. If their structure is better

understood, advances can be made in minimizing their formation.

Very little STM work has been done to characterize the interface structure of the

C-face material. Because thinner films are difficult to grow, possible strategies for ac-

cessing the interface are (1) setting up a heating gradient across a sample surface such

that graphitization increases steadily over the length of the sample or (2) mechanical

removal of surface layers via peeling.

Experiments using other surface science techniques must be performed to nail

down accurate interface models for each polar face. One technique that would provide

interesting results is scanning Auger electron mapping. Instruments are now available

with resolution on the order of 10nm. Auger peak height comparisons could be made

between zero, one, and two layer films. Changes in Si and C peak size would enable

identification of the ratios of chemical species in the interface. Such information would

help to rule out certain X-ray interface models introduced in this thesis.

Further modeling must be done to narrow down the precise rotational stacking

order of C-face films. More thorough characterization of rotation angles observed in

STM topographs before X-ray analysis on each sample would help in this effort. A

careful study of observed rotation angles along with wafer miscut angles may indicate

a correlation between step density or surface stacking termination with preferred

angles.

Finally, there are many further scanning tunneling spectroscopy studies that could

be done to further the work begun in this thesis. Comparisons made between STS

spectra taken on Moiré and non-Moiré regions would be interesting, as well as com-

parisons between bright and dark regions of the Moiré-like patterns. Conclusive

explanations for the positioning of the imaging contrast have not yet been made.
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There will no doubt be a great deal of exciting new research on epitaxial graphene

in the years to come.
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APPENDIX A

XRD GEOMETRY CORRECTIONS

A.1 Active Area Correction

When the X-ray beam is incident on a sample, there is a threshold angle at which the

beam footprint begins to spill off of the sample. Consider the diagram in Fig. 66. x

is the length of the sample, L is the length of the beam footprint, and (d× w) is the

cross-sectional area of the incident beam. (w is not depicted, but goes into the plane

of the page.) The active area, A, is defined as the sample area illuminated by the

beam footprint. From the diagram it can easily be determined that the beam spills

off the sample for sinα < d/x. Therefore, the active area can be described by the

following:

A =


wd

sinα
sinα > d/x

xw sinα < d/x
. (29)

These expressions will be useful in the following sections.

L

x

d

α

Figure 66: Schematic of the incident beam on the sample (grey.)
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A.2 Lorentz Factor: Specular Geometry

The Lorentz factor correction arises when a conversion must be made from a real space

integration window defined by the diffractometer to a reciprocal space integration

window on a surface diffraction rod. The sources used as outlines for this derivation

were Robinson117 and Vlieg.120 The geometry for the simpler case of the specular rod

is depicted in Fig. 67. The integration window (dQx dQy dQz) must be expressed in

terms of real space angles (dα dβ dγ):

dQx dQy dQz = dV = k2(dβ × dγ) · kdα = k3dβ dγ dα sin(2θ) (30)

Note that dα is the angle by which the sample is rocked for reflectivity measure-

ments. Using the above expression for dV , the experimental integrated intensity, E,

can be written:

E ∝
∫
Idα dβ dγ =

1

k3 sin 2θ

∫
IdQx dQy dQz. (31)

If I(Q) is broken into its parallel and perpendicular components with respect to

the scattering plane, then I(Q) = g(Qz) · f(Q||). Insertion of fundamental leading

constants leads to the following expression for E:

E =
r2
eP |F |2A

Auk3 sin(2θ)

∫
g(Qz) dQz

∫ ∫
f(Q||) dQx dQy. (32)

A is the active area defined in Eq.(29), Au is the area of the crystal unit cell, re

is the classical electron radius, and P is the polarization factor defined in eq.19. The

desired quantity is F(h, k, `), the crystal structure factor. In reflectivity experiments,

Qz = 2k sin(2θ/2), so dQz = 2k cos(2θ/2)∆(2θ/2). Additionally, ∆(2θ/2) = ∆γ,

the acceptance angle of the detector. The function g(Qz) varies very slowly over the

integration window of the detector, so it is possible to approximate:∫
g(Qz)dQz ≈ g(Qz)2k cos(2θ/2)∆γ. (33)

157



Qz

Qy

Qx

ki

2

d

d



d

kf

Figure 67: Schematic of the integration window for specular geometry.

After some algebra,∫
g(Qz)dQz ≈ g(Qz)

2k sin(2θ)∆γ

2 sin(2θ/2)
= g(Qz)

2k2 sin(2θ)∆γ

Qz

. (34)

And, again, because g(Qz) is essentially constant over the integration window of

the detector, it will be set equal to 1 for convenience. Therefore:

E =

[
r2
eP |F |2A
Auk

] [
2g(Qz)

Qz

]
∆γ

∫ ∫
f(Q‖) dQx dQy. (35)

Substituting in for the active area, A, defined in Eq.(29), gives:

E =

[
r2
eP

Auk

]
|F |2

∫ ∫
f(Q‖) dQx dQy


2kwd
Q2

z
sinα > d/x

xw
Qz

sinα < d/x
. (36)

The top expression is for the case that the entire footprint of the X-ray beam fits on

the sample and in the bottom expression the beam spills over part of the sample. The

term that is left to be integrated is simply a Gaussian or Lorentzian peak integration

and is thus just a number. All remaining terms are constants or numbers from the

experiment, other than F(h, k, `), the desired quantity.
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A.3 Lorentz Factor: Non-specular Geometry

In this section the goal is the same as it was in the previous section, but for off-

specular scans. Here, α is the incident beam angle relative to the sample surface and

β is the outgoing beam angle relative to the sample surface. They are always held

equal: α = β. Q‖ is the component of the momentum transfer vector that lies in the

plane of the sample surface, as depicted in Fig. 68. As usual, Qz is the component

that is normal to the sample surface. ∆χ is the vertical slit acceptance angle and ∆ψ

is the analyzer acceptance angle. (Both are expressed in radians.) It can be shown

that:

Q‖ = 2k cosα sin(ξ/2) (37)

And after some algebra, one can obtain:

dQx dQy dQz = dV = dQ‖ dψ dχk2 cosα sin(ξ/2) = dQ‖ dψ dχ(
k

2
)|Q‖| (38)

And again, we would like an expression for E, the experimental integrated inten-

sity. Inserting the proper constants:

E =
2r2

ePA

kAuQ‖

∫
|F |2 dQz

∫ ∫
f(Q) dQr dQt. (39)

See the previous section for definitions of all of the constant terms. In this geometry it

is convenient to break Q‖ up into Qr and Qt, the radial and transverse scan directions

(rather than Qx and Qy.) Unfortunately, this time all of the angles rotate as scans

are taken up the off-specular rods. This means that expressions must be obtained for

∆Qz, ∆Qr, and ∆Qt. One can work through the geometry to obtain:

∆Qz =
∆χ cosαQ‖k

[Q2
⊥ + (cos2 α)Q2

‖]
1/2

+
∆ψQ⊥

2
(40)

∆Qr =
∆χkQ⊥

[Q2
⊥ + (cos2 α)Q2

‖]
1/2

+
∆ψ cosαQ⊥

2
(41)
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Figure 68: Schematic of the integration window for non-specular geometry.

∆Qt =
∆ψ

4k
[−Q‖Q⊥ + (4k2 −Q2

⊥)1/2(4k2 −Q2
‖)

1/2] (42)

It will also be necessary to address each of the integrals in Eq.39 separately.

First, consider the dQz term, which is again slowly varying. By assuming F (h, k, `)

is essentially constant in Qz, as was done in the previous section, the integral is

simplified as seen below:∫
|F |2 dQz ≈

∑
∆Qz

F 2∆Qz ≈ F 2(Qz)∆Qz. (43)

Fortunately, f(Qr) is a simply a peak which will be fit with a number, so it can

be set to equal 1. That leaves f(Qt). Here only a small portion of the peak, ∆Qt, is

being measured over on any given scan and f(Qt) = foe
−Q2

t /2σ
2
, where σ is the full

width half maximum of the peak. Thus,∫
f(Qt) dQt ≈ [1/(

√
2πσ)]∆Qz. (44)
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Finally, all of the pieces can be put together to attain E as a function of F 2:

E =

[
r2
eP∆ψ√

2π2k2Q‖Au
A

] [
−Q⊥Q‖ + {(4k2 −Q2

⊥)(4k2 −Q2
‖)}1/2

]
×[

k∆χ cosαQ‖
(Q2
⊥ + (cos2 α)Q2

‖)
1/2

+
∆ψQ⊥

2

]2

F 2(Qz). (45)
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