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SUMMARY 

Optimal power flow (OPF) has always played an important role in the operation of 

power systems, which are highly nonlinear and complex networks. OPF provides an 

optimal or suboptimal solution to coordinate the power flows in the electrical network by 

controlling different devices. To ensure a safe and reliable operation of the system, 

constraints, such as the generator capacities, line thermal limits and bus voltage limits, are 

added into the optimization problem. By solving the OPF problem, the objective is 

achieved and at the same time the constraints imposed on the system are satisfied.  

In modern power systems, an increasing number of renewable resources and 

controllable devices are implemented every year. The conventional OPF that mainly 

models the generators, lines and loads, as well as some other devices considered due to 

specific reasons, is not suited for the modern networks. To deal with these new challenges, 

this proposed research develops a systematic way to formulate and solve the OPF problem 

autonomously. We introduce two specific problems facing modern power systems: the 

multi-stage quadratic flexible OPF (MQFOPF) and the security constrained quadratic OPF 

(SCQOPF). 

The presence of renewables and their associated uncertainties have created the need 

to utilize load flexibility and storage. This need makes the optimization of the system time 

dependent, i.e. the optimal operation at one instant is linked to the optimal operation at 

another instant. We are proposing a formulation for the optimization of the power system 

over a horizon by segmenting the horizon into a number of time periods or stages. This 

formulation results in a multi-stage OPF. We formulate the OPF as a quadratized problem, 
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yielding the multi-stage quadratic flexible OPF. The MQFOPF optimizes the operation of 

the system over multiple stages into the future, where a stage is defined as a time period. 

The solution of this problem provides the optimal operating points of all the flexible loads 

and storage resources of the system over the horizon of the MQFOPF defined as the total 

time spanned by all the stages. Flexible resources can be smart appliances, electric vehicles, 

thermostatically controlled loads, batteries, etc. The MQFOPF is important in modern 

power systems as it coordinates and optimizes the operation of all distributed resources in 

the system, whether they are owned by the utility or the customer.  

The objective of the optimal power flow (OPF) problem is to provide set points for 

power system controls that will optimize a given objective function without violating 

operating constraints. Furthermore, to ensure a reliable and secure operation, the system is 

often required to withstand the loss of one or more apparatus depending on the desired 

security criterion (e.g., N-1 criterion). When such requirement is included in the 

optimization problem, the problem is termed security constrained OPF (SCOPF). 

The SCOPF optimizes the operation of the system for the present conditions as well 

as for a number of critical contingencies and drastically improves operational security. We 

propose a new formulation of the SCOPF that models the physics of the modern power 

system rigorously. The models are cast into objects in a universal syntax, state and control 

algebraic companion form (SCAQCF), that consists of a number of linear and quadratic 

equations. The optimization problem is constructed via an object-oriented procedure 

operating on the device SCAQCF models. The resulting optimization problem consists of 

linear and quadratic constraints and a quadratic objective function. For this reason, we 

named it security constraint quadratic optimal power flow (SCQOPF). To ensure reliable 
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operation of the system, an SCQOPF problem usually includes many contingencies, 

making it computationally expensive.  

To accommodate a huge number of devices, both old and new, in power systems, a 

physically based object-oriented modeling approach is utilized. A unified general 

expression is introduced for the device models, based on which the network model is 

constructed. Together with the objective function, an OPF problem is formed and a tailored 

sequential linear programming algorithm is used to compute the optimal solution. During 

the solution process, the constraints are included gradually and the efficient costate method 

is applied to linearizing the OPF model with respect to the control variables only. Due to 

object orientation, the whole formulation and solution process of the selected OPF problem 

is fully autonomous. 

The performance of the proposed research method is tested in two different 

numerical cases. Detailed results are presented, including comparisons with a commercial 

optimization software. The autonomous OPF approach is proven to be promising and the 

SLP method outperforms the commercial solver.  
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CHAPTER 1. INTRODUCTION 

This chapter describes the problem statement, research objectives and outline of the 

thesis. The problem statement briefly discusses the current status of the optimal power flow 

and the existing shortcomings in this field. The research objectives are described next to 

address the possible solutions to these problems. Finally, the structure of the thesis is 

presented. 

1.1 Problem Statement 

The variability of renewable resources creates challenges for the operation and 

control of power systems. Renewable energy sources include wind farms, photovoltaic 

(PV) panels, battery storage units, etc. Figure 1 shows how wind and PV power outputs 

can vary in a day. These drastic power variations may cause disruption in conventional 

generation planning, imbalance between supply and demand, and voltage instability issues. 

The stress imposed on the grid by renewable generation can be mitigated by using the 

flexibility of customer resources, which include rooftop PV panels, thermostatically 

controlled loads (TCLs), batteries, smart appliances, etc.  

 

Figure 1 – Wind and PV power outputs. 
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Optimal power flow (OPF) has always played an important role in coordinating the 

operation of different devices so that the system remains in a healthy state. It is a term that 

describes a class of problems that optimizes the operation of power systems with respect 

to a certain objective function while satisfying a set of physical constraints and engineering 

limits. The physical constraints are normally defined as the hard constraints imposed by 

individual devices and materials, for instance, line thermal limits and generator capacities. 

As for the engineering limits, they are usually the limits that are introduced to achieve 

certain goals, like the acceptable range of bus voltages.  

Traditionally, OPF is used to optimize the power flows in transmission systems. 

The equalities are defined as real and reactive power flow equations derived from 

conservation of power at each node in the network. The solution mainly contains the flows 

of real and reactive powers on each branch. The power injection at each node is also 

obtained, thus giving information on the generation and demand. Nowadays, the OPF 

application has been extended to distribution systems. The problem consists of many other 

types of equations besides the traditional power flow equations, especially when more and 

more new devices are implemented and taken into account. However, today’s OPF 

formulations are still mostly based on nonlinear power balance equations, which makes the 

optimization problem extremely complex. In addition, the devices modeled are usually not 

detailed enough so the power networks are not formulated accurately. This is especially 

true in distribution networks, where individual devices may have huge impacts on the 

power grid. When solving the nonlinear and nonconvex OPF problems, many of the 

existing methods either simplify the problem through approximation or take too long to 

converge.  
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In order to deal with the above-mentioned issues in the existing OPF applications, 

a more accurate OPF formulation and a more efficient solution algorithm is required to 

accommodate the fast-changing power system.  

1.2 Research Objectives 

The existence of a variety of new resources calls for a systematic computational 

framework to integrate the new devices into the power system operations by optimally 

coordinating their control and operation. Due to the complexity of modern systems with 

many types of distributed energy resources (DERs), a complete automated process is 

required to formulate and solve the OPF problem in an autonomous and efficient way based 

on standardized device modeling.  

The proposed research develops a novel approach to optimally coordinate the 

control of different devices through autonomously formulating and solving OPF problems 

of the corresponding systems. Both multi-stage quadratic flexible OPF (MQFOPF) and 

security constrained quadratic OPF (SCQOPF) problems can be solved through the 

proposed method. Note that a stage is defined as a time period with a user-chosen interval, 

and “flexible” means that customer controllable resources such as rooftop solar panels, 

thermostatically controlled loads, smart appliances, etc. are included for the operation of 

the system, thus customer flexibility is incorporated. The term “quadratic” indicates that 

the problems are quadratized so that the highest order of nonlinearity is 2. 

The formulations of both the MQFOPF and SCQOPF problems build their 

foundations on a physically based object-oriented modeling approach. Every device is 

modeled as a mathematical object in a standard syntax called the state and control algebraic 
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quadratic companion form (SCAQCF), describing the physical laws the device satisfies. 

When different devices are connected to form a system, a network formulation procedure 

is performed to construct the network model presented in the same standard form. 

Combining the network model with a user-defined objective function yields either a multi-

stage quadratic flexible OPF model (MQFOPFM) or a security constrained quadratic OPF 

model (SCQOPFM) is formulated.  

The MQFOPFM is constructed by stacking up the network model over multiple 

stages in the quasi-dynamic domain, which neglects fast electrical transients but slower 

dynamics like electromagnetic transients are considered. This is because each network 

model describes the system in only one time period. Due to the existence of slow dynamics 

and time-dependent elements in the network, various stages are coupled. Therefore, the 

final MQFOPF problem can only be solved as a whole with the network models from 

different stages stacked together, which optimizes a multi-stage problem and gives the 

optimal system controls for each stage into the future horizon. 

The SCQOPFM is formulated by combining the base case and contingency network 

models in the frequency domain, where only a single instant of time is captured. The base 

case network model is formulated first with all the devices operational, while the 

contingency network models are copies of the base case network with the corresponding 

outage device models removed. Note that the frequency domain models are the steady-

state models, so there are no dynamics in the SCQOPFM. Solving it provides the optimal 

controls that achieve the objective and guarantee a safe operation of the system at the same 

time, even when a selected contingency occurs. 
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To solve the formulated OPF problem, a tailored sequential linear programming 

(SLP) method incorporating the costate method is utilized. Only the violated constraints 

are included in a set of constraints called model constraints, which are considered in the 

linearized OPF problem. The model constraints are added gradually in every SLP iteration. 

The whole process from device and network modeling to OPF problem formulation and 

solution is fully autonomous. 

Compared to the existing methods used for OPF, the proposed research has the 

following merits. 

1) Detailed physically based device models form the basis of the OPF formulation, 

giving more accurate information of the system, which is especially important in 

distribution systems since they can be impacted by individual devices easily due to 

smaller network scales. This is an advantage over the existing formulations that 

mainly use aggregate power injection information at each node. 

2) The devices are modeled in an object-oriented way using a standard syntax. This 

feature allows various DERs to be integrated into the system efficiently. Any new 

resources can be incorporated into the OPF formulation by simply modeling them 

in the standard form, thus achieving the flexibility of controlling various devices 

on the customer side.  

3) Object orientation is also applied to the network model by using the same standard 

modeling syntax, which makes it easy to be incorporated into different OPF 

applications. For instance, the same network model can be used to construct both 

the MQFOPF and SCQOPF problems as demonstrated in this thesis. 
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4) The proposed formulation uses current conservation equations at each node instead 

of power balance equations in conventional OPF, in which most equations are 

nonlinear. As a result, most of the equations in the OPF model are linear and the 

highest nonlinearity is 2. The objective function and inequality constraints have the 

same characteristics as the nonlinear parts are at most quadratic. This method gives 

a less complex OPF problem. 

5) When solving the OPF problem in SLP, constraints are gradually added to the 

linearized problem to be solved. In addition, the costate method is used to linearize 

the OPF model with respect to only the control variables. In addition, the costate 

method is extremely efficient as the computationally expensive Jacobian matrix 

used has already been computed in the previous iteration. These mechanisms 

significantly reduce the size of the problem and increase the algorithm efficiency. 

6) The whole OPF formulation and solution process achieves full autonomy. The 

method is free of human inputs, greatly reducing the possibility of human errors. 

Once the individual device models and the information of what is measured at 

various meters and relays in the system are given, the corresponding OPF problem 

is created autonomously from the output of either a simulator or a state estimator 

and the solution is subsequentially computed automatically. 

1.3 Thesis Outline 

The remainder of the thesis is structured as follows. 

Chapter 2 presents a literature review of OPF formulation and solution 

methodologies. Various methods in the existing literature are looked at and they are 
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compared with each other. The pros and cons of the popular approaches are discussed in 

detail.  

Chapter 3 contains the overview of the proposed research, which includes object-

oriented device modeling and network formulation, as well as OPF problem generation and 

solution. The whole process is fully autonomous. 

Chapter 4 describes a physically based object-oriented modeling approach. Any 

device can be modeled using the SCAQCF standard syntax. A detailed example is 

presented to demonstrate the device modeling process. When the SCAQCFs of all devices 

in a system are given, the network model is formulated based on the device models, 

yielding the network SCAQCF model.  

Chapter 5 introduces the automatic formulation of the MQFOPFM in the quasi-

dynamic domain. The OPF model is constructed based on a user-defined objective function 

and a pre-obtained network model in the SCAQCF expression. Two specific objective 

functions are discussed in detail: network voltage profile optimization and total generation 

cost minimization. Most of the equality constraints in the MQFOPFM is linear and the rest 

of the constraints are at most quadratic. Therefore, the MQOPFM is less complex than the 

conventional OPF problems. 

Chapter 6 develops an SLP method that is tailored for solving the MQFOPF 

problem. In each iteration, the algorithm goes through constraint violation test, 

convergence check, OPF linearization, linearized problem solving and operating point 

update. Adding model constraints incrementally and linearizing the problem with respect 
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to the control variables significantly reduces the size of the OPF problem. The linearization 

step is described in detail as it is the most important part of the process. 

Chapter 7 introduces the SCQOPF problem, which is formulated in the frequency 

domain for a specific time instant. In addition to the device SCAQCF models in the 

frequency domain, every device also has an outage model. The SCQOPF problem 

formulated includes one base case and many imported contingencies, with each being a 

separate network model. The contingency network models are formed directly from the 

base case network model with the corresponding outage device models removed. Stacking 

the base case and contingency network models together with a user-defined objective 

function yields the SCQOPFM, which is also solved through an SLP approach.  

Chapter 8 contains a numerical case used to demonstrate the performance of the 

proposed research method on the MQFOPF. The test system is a network model that 

simulates an actual feeder in the Public Service Company of New Mexico (PNM) power 

network. The voltages at selected nodes in the system are levelized in the MQFOPFM. The 

MQFOPF optimization results are also listed, with different cases run and compared. 

Chapter 9 performs the SCQOPF on the IEEE 57-bus system with several selected 

contingencies (possible device outages) included. The objective function of the SCQOPFM 

formulated is the minimization of total generation cost in the base case of the network. The 

optimal SCQOPF solution is given, together with comparisons between different cases. 

Chapter 10 concludes the proposed research and summarizes contributions of this 

thesis. In addition, possible future work directions are also discussed.  
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CHAPTER 2. LITERATURE REVIEW 

OPF is a term that describes a class of problems that optimizes the operation of 

power systems with respect to a certain objective function while satisfying a set of physical 

constraints and engineering limits. In 1962, Carpentier included power flow equations in 

formulating an economic dispatch problem [1], which is generally considered as the first 

publication on OPF. The paper gives the optimality conditions for OPF problems including 

variable bounds based on the Karush-Kuhn-Tucker conditions. Since then, different types 

of OPF formulation and optimization methods have been introduced in the literature. 

This chapter presents a thorough literature review that categorizes the existing 

literature based on formulation and solution in the field of OPF. Some popular approaches 

are discussed in detail.  

2.1 Problem Formulation  

Any OPF problem is composed of variables, objective function and constraints. The 

general structure of an OPF problem [2] is given by 

( )

( )
( )

min ,

s.t. , 0

, 0

J

g

h

=



x u

x u

x u

 (1) 

where x  and u  are the state and control variables of the problem, respectively. Together, 

they become the operating point ( ),x u . The objective function in this case is ( ),J x u , 

while ( ), 0g =x u  are the equality constraints and ( ), 0h x u  are the inequality 
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constraints. Note that the variable bounds of the states and controls can be written in the 

form of the inequality constraints.  

The variables represent the operational state of the electrical system. In early OPF 

formulations, the state variables x  are usually the voltage magnitudes and angles, as well 

as the real and reactive power injections at network nodes [3]-[6]. This kind of voltage 

representation is called polar form, which is trigonometric. An alternative representation 

used is the rectangular form, where real and imaginary parts of the voltages are the system 

states [7]-[9]. In this case, the power flow equations become quadratic. Besides bus 

voltages and power injections, other types of state like current injection [9] and battery 

state of charge (SOC) [10] are seen in recent years. The states are generally continuous 

variables, but this is not the case for control variables u . Some examples of the continuous 

controls are generator voltage setpoints and power outputs, while the discrete controls may 

include transformer tap settings and shunt reactive device switching controls [2]. The 

control is normally defined by the device or application, so new types of control variables 

may emerge when more and more new devices are introduced to modern power systems. 

In many OPF problems, states and controls are not treated distinctively different, as they 

are all OPF variables. 

The objective function defines the main goal of the OPF problems. The most 

common one is the minimization of total generation cost. Since the cost curves are 

generally nonlinear, they are often represented by piecewise linear functions [11] or 

quadratic functions [12]. Other kinds of objective function include minimization of power 

system losses [13], optimization of voltage profile [14], optimization of post-contingency 

corrective rescheduling actions [15], etc. Some publications have objective functions with 
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multi-objectives, which use different weights to prioritize various goals. For example, 

minimization of the weighted summation of voltage violation, generator reactive power 

violation and power losses is the objective in [16].  

For any optimization problem, there are two categories of constraints: equalities 

and inequalities. It is the same for OPF problems, in most of which equality constraints are 

the power flow equations. Every electrical node has both real and reactive power injections, 

corresponding to two equality constraints. In [9], they become the current injections, which 

are derived from Kirchhoff’s current law (KCL). Due to the integration of renewable 

sources and energy storage units, other equations such as those that describe converter 

operation [17] and storage dynamics [18] may also be included in the OPF formulation. As 

for the inequality constraints, they are the bus voltage bounds, line thermal limits, generator 

capacities, etc. They are either imposed by material physical properties or defined by 

engineers to ensure desirable system operation. Hence, the introduction of new devices has 

brought some new inequality constraints into the picture, an example of which is the battery 

SOC limits. When solving an OPF problem, not only the objective needs to be achieved, 

but also all the constraints should be satisfied. If any constraint violation exists after the 

problem is solved, the OPF solution is said to be infeasible. In many cases, to drive the 

solution to feasibility, penalties are added to the objective function. Therefore, in this sense, 

constraints are the most important part of an optimization problem.  

The concept of OPF formulation is based upon the three above-mentioned pieces: 

variables, objective function and constraints. Some existing OPF formulations are 

described in detail in the following sections. 
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2.1.1 Nonlinear Formulation 

The earliest OPF formulation is nonlinear, as first introduced in [1] and used by 

other researchers in the 1960s and 1970s [3]-[5]. The nonlinearity is introduced by power 

balance equations at each node. With respect to the voltage magnitude V  and angle  , 

the real and reactive power injections P  and Q  at node k  are given by 

 ( ) ( )( )

( ) ( )( )

cos sin

sin cos

k

k

k k j kj k j kj k j

j S

k k j kj k j kj k j

j S

P V V G B

Q V V G B

   

   





= − + −

= − − −




 (2) 

where subscript j  denotes node j  and kS  is the set of other nodes that are connected to 

node k . kjG  and kjB  are respectively the branch conductance and susceptance between 

nodes k  and j . The voltages are represented in polar form in (2), resulting in the equations 

being trigonometric. When the voltages are expressed using rectangular coordinates as 

shown in [7], (2) becomes 

( )

( )
k

k

k kj kr jr kj kr ji kj ki ji kj ki jr

j S

k kj ki jr kj ki ji kr ki ji kj kr jr

j S

P G V V B V V G V V B V V

Q G V V B V V G V V B V V





= + + −

= + − +




 (3) 

where r  and i  in the subscripts denote the real and imaginary parts of the voltages, 

respectively. Compared to (2), power equations in (3) are quadratic, making the 

formulation less complicated. 
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Generally speaking, nonlinear OPF formulation is able to accurately simulate the 

operation of the corresponding network. However, the resulting problem is nonconvex and 

hard to solve. 

2.1.2 Linear Formulation 

Although the nonlinear formulation of OPF accurately describes a system, it is 

nonconvex and solving it is computationally expensive. In contrast, linear formulation is 

convex and has a great advantage in computational speed. Direct current (DC) optimal 

power flow is an example of linear formulation and it has been extensively used in the 

electric power industry. In DC power flow introduced in [19], voltage magnitudes are 

assumed to be 1 pu and bus voltage angles are close to 0. Low resistance to reactance ratio 

is utilized in long transmission lines and losses in the system are neglected. Therefore, with 

0kjG   and ( )sin k j k j   −  − , the real power injection at node k  is approximated by 

 ( )
k

k kj k j

j S

P B  


= −  (4) 

In distribution networks, since the lines are much shorter in length, the resistance to 

reactance ratio is no longer low. Hence, the real and reactive power flows cannot be 

decoupled. As a result, DC power flow does not hold in distribution systems. 

Another kind of OPF linear formulation is the linearization of power flow equations 

around the current operating point, which is widely seen in literature using SLP techniques 

to solve OPF problems [20]-[22].  

2.1.3 Quadratic Formulation 
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Quadratic formulation falls between nonlinear formulation and linear formulation 

as it is made up of quadratic objective function 0.5 T TA +bx x x  and linear constraints [23]. 

The problem is convex only when matrix A   is positive semidefinite. Sequential quadratic 

programming (SQP) is applied when the constraints are linearized around the operating 

point iteratively [13].  

If the OPF constraints are also quadratic like those presented in [24] in addition to 

the quadratic objective function, the problem is said to be formulated as a quadratic 

constrained quadratic program, which is suited for many optimization problems in power 

systems [25]. Because of the computationally difficult nature, this type of problems is 

usually solved after relaxations are performed. 

2.1.4 Mixed Integer Formulation 

Due to the existence of discrete control elements in power systems, such as tap 

changers fitted to transformers and switched capacitor banks, the original nonlinear, linear 

and quadratic formulations of the OPF problems are not suitable anymore. Therefore, 

mixed integer linear and mixed integer nonlinear formulations are considered. Paper [26] 

proposes a two-level decomposition scheme that contains a master problem and a 

subproblem, with transformer tap settings and volt-ampere reactive sources modeled as 

discrete elements. The master problem is formulated as a mixed integer linear 

programming (LP) problem, whereas the subproblem uses a nonlinear formulation. Mixed 

integer nonlinear formulation is the most accurate representation of a power system, but 

also the most sophisticated one. Bai and Wei have formulated a security-constrained unit 
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commitment (SCUC) problem as a mixed integer nonlinear programming problem, 

incorporating operational and optimal power flow constraints [27].  

2.2 Solution Methodology  

Solution methodologies are usually selected depending on the formulation of the 

OPF problem. They can be categorized into deterministic and non-deterministic 

approaches.  

2.2.1 Deterministic Methods 

The first efficient solution to OPF was obtained through gradient methods. The 

reduced gradient (RG) method was applied to OPF by Dommel and Tinney [4], where 

penalty functions are used for inequality constraints. An extension of the RG is the 

generalized reduced gradient (GRG) method, which was first applied to OPF in [28]. The 

GRG procedure repartitions the variables whenever a dependent variable reaches the 

boundary, thus eliminating penalty terms. The Newton-Raphson method is used for 

unconstrained optimization problems based on the Taylor’s theorem. It solves the nonlinear 

power flow equations by linearizing them at each successive point reached [3]. To avoid 

having to compute the inverse of the Hessian matrix, which is computational expensive, 

quasi-Newton methods were developed to approximate the Hessian iteratively [29], but 

they are rarely used today due to the increase in computational power of computers. 

Convexity is required for global convergence of Newton-Raphson and quasi-Newton 

methods. When OPF is formulated as a linear program like DC optimal power flow, 

simplex method can be directly applied. Robust and easy to implement, simplex method 

performs well on LP problems by searching through the extreme points of the polytopes. 
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When the nonlinear constraints of an OPF problem are linearized with respect to the 

operating point successively, SLP or SQP are applied depending on whether the objective 

function is linear or quadratic, respectively. In each iteration, a linear program or a 

quadratic program around the current operating point is optimized, thus giving the 

operating point for the next iteration. The convergence is achieved at some point depending 

on the criteria set, but oscillations may be observed near the optimal solution [30]. However, 

the optimum is not guaranteed to be the optimal solution of the original nonlinear problem 

due to linearization errors. SLP can still be implemented to a problem with quadratic 

objectives by linearizing the objective function [31]. Nine years after the introduction of 

the first interior point method (IPM) for linear programs in 1984, this projective scaling 

algorithm made its debut in the OPF field in [32]. IPM converges faster than simplex 

method in large-scale LP problems, so it has been used to replace simplex method to solve 

the linearized program in each iteration of SLP. The use of IPM was extended to SQP in 

[33] and some other enhancements were evaluated in [34].  

Due to the nonlinear and non-convex nature of accurate OPF formulations, new 

relaxation techniques have been adopted in recent years, such as semidefinite programming 

(SDP) and second-order cone programming (SOCP). An SDP relaxation is seen in [25] for 

QCQP problems and an SDP relaxed SCUC problem solved by IPM is developed in [27]. 

Lavaei and Low have proposed an SDP optimization approach and provided the conditions 

that guarantee a zero duality gap for OPF problems [35]. Literature [36] concludes that 

SOCP relaxation is faster and more reliable than SDP relaxation while claiming that 

quadratic convex relaxation is even stronger. These convex relaxation methods introduce 
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approximations for the non-convex OPF problems, which makes it difficult to obtain the 

operating condition of the actual power system.   

2.2.2 Non-Deterministic Methods 

When using deterministic methods, the results produced by every run of the 

algorithm are the same. There also exist a number of non-deterministic optimization 

approaches, where the solutions may differ from run to run. Some of these methods are 

described as follows. Paper [16] uses genetic algorithm (GA), which is a type of 

evolutionary algorithm (EA), for optimal reactive power planning. Inspired by biological 

evolution, EAs usually go through initialization, iterations of selection including crossover 

and mutation, and termination to find the solution. The fitness of individual solution in a 

population is evaluated every iteration and the least-fit individuals are weeded out during 

the process. Besides GA, evolutionary programming [37] and differential evolution [38] 

also belong to the EA category. Swarm intelligence algorithms such as artificial bee colony 

algorithm [39], particle swarm optimization (PSO) [40], ant colony optimization [41], etc. 

have also been applied to solving OPF problems. These methods mimic the collective 

behaviors of decentralized and self-organized biological systems. Recently, machine 

learning (ML) has drawn much attention in academia, including in the OPF field of 

research. The idea is to give computers the ability to learn with large data sets. The 

computers are expected to find patterns and improve the performance on specific tasks 

using big data. ML is a subset of artificial intelligence and one of the tools used is artificial 

neural network (ANN), which is based on the operation of human brain. Similar to a 

biological neural network, elements in ANN are called artificial neurons. When a neuron 

receives an input, the neuron is activated by changing its internal state accordingly, and 
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then an output is produced by the neuron based on the input and the internal state. In [42], 

ANN is used to model stability and security constraints in OPF problems. Simulated 

annealing was proposed in 1983 as a nature-inspired metaheuristic and applied to OPF by 

Hsiao [43]. Another method belonging to this category is cuckoo search (CS) [44], in which 

a solution is represented by an egg in a nest. In every iteration, given that the total number 

of nests is constant, each cuckoo lays one egg in a random nest and the best nests with 

high-quality eggs are selected for the next iteration, while the worst nests are thrown away 

with respect to a probability. PSO and CS methods for unbalanced distribution system 

optimization are compared in [45]. There are also hybrid algorithms that combines both 

deterministic and non-deterministic methods. For instance, SQP and differential evolution 

algorithms are combined in [46] for OPF solving. The metaheuristics described are suitable 

for all types of OPF problems, including nonconvex ones with complicated constraints.  

Most non-deterministic methods are able to break away from local optima and 

better solutions may be reached compared to deterministic methods given sufficient time. 

However, the performance of metaheuristics is highly dependent on fine parameter tuning 

and suffers from scalability issues. In addition, the same initial conditions for the 

algorithms do not guarantee the same optimization results. As a result, these methods are 

not presently competitive for the solution of OPF problems. 

2.3 Summary 

In general, the OPF formulations in most existing papers mainly use power flow 

equations represented by voltages and currents in either rectangular or polar form, causing 

the OPF equalities to be mostly quadratic or nonlinear with trigonometric functions, 
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respectively. Using KCL equations at each node [24] significantly reduces the complexity 

of the formulation by making most of the OPF equalities linear. Moreover, the device 

models used in the existing OPF models are not accurate enough. For example, the energy 

storage system in [47] is only modeled with charging power, discharging power and state 

of charge, neglecting the possible circuit inside that may limit its performance. Detailed 

physically based device modeling is important in coordinating the controls of various 

distributed generation in a complex system. In addition, no standardization of device 

modeling is seen in the literature, which makes it difficult to incorporate various DERs and 

solve the OPF problem efficiently in an autonomous manner without any human 

involvement during the process. Last but not least, many of the OPF solution methods use 

convex relaxations or metaheuristic approaches, which results in an approximation of the 

actual problem or a computationally expensive solution, respectively. Better techniques are 

needed to solve the OPF problems efficiently and accurately. 
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CHAPTER 3. PROPOSED RESEARCH OVERVIEW 

In this dissertation, an autonomous formulation and solution method for object-

oriented based OPF problems is developed. This chapter goes through the overview of the 

research method. 

3.1 Method Overview 

The overview of the proposed research is shown in Figure 2. The method starts 

from device modeling and then to network modeling. Together with a pre-defined objective 

function, the users can choose to construct either an MQFOPFM or an SCQOPFM. After 

the selected OPF problem is solved, the corresponding solution is obtained. 

 

Device 
Model

Network 
Model

Objective 
Function

Multi-Stage Quadratic 
F-OPF Model
(MQFOPFM)

Security Constrained 
Quadratic OPF Model

(SCQOPFM)

MQFOPFM 
Solution

SCQOPFM 
Solution

 

Figure 2 – Overview of the proposed research. 
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A physically based object-oriented modeling approach is used to simulate device 

and network operations [48]. Any device can be presented in the SCAQCF standard 

modeling syntax as long as its physics are accurately written in mathematical equations. 

Quadratization and quadratic integration are involved during the process. Quadratization 

not only makes the highest order of terms 2, but also converts discrete variables continuous. 

The resulting models have the same form, including states, controls, equations and 

functional constraints. Through variables are defined and they serve as interface media that 

connect one device to another. The corresponding through equations are linear, while all 

nonlinear terms are converted into quadratic terms and grouped together as device internal 

equations. As a result, given all the interconnected devices in a network, the network model 

is automatically formulated, also presented in the SCAQCF expression. The standard 

modeling syntax achieves object orientation, which allows the models to be manipulated 

the same way without any knowledge of the model details. 

The device and network models are the foundation of the OPF problem in the 

proposed formulation process. The network model directly becomes the equality and 

inequality constraints of the optimization problem. With a user-selected objective function 

defined, users are able to choose from two OPF applications: MQFOPFM and SCQOPFM. 

The MQFOPFM is created in the quasi-dynamic domain where fast electrical transients are 

neglected, while the SCQOPFM is formed in the frequency domain where no transient is 

considered as only one single time instant is concerned. When the MQFOPFM is formed, 

the network model is stacked up over multiple time stages. The past history vectors in the 

network SCAQCF model link different stages together. As for the SCQOPFM, the base 

case and contingency network models are stacked together. The base case network model 



 22 

is solved first and its power flow solution is used to solve for the initial operating conditions 

of the imported contingencies to be included in the SCQOPF. Each contingency network 

model is generated by removing the corresponding outage devices from the base case 

network model. It has its own set of states, equations and constraints, while there is only 

one set of controls shared among all networks. Due to the way the SCAQCF syntax is 

defined, Kirchhoff’s current law (KCL) is applied at every node in an electrical network 

when the network model is constructed. Thus, most of the equations in the network model 

are linear KCL equations, while rest of the equations are quadratic. Hence, no matter which 

application is selected, the proposed OPF formulation gives a less complicated problem to 

solve compared to the conventional formulation.  

The MQFOPFM and SCQOPFM formulated are solved by tailored SLP methods. 

Initial operating point and past history vectors at the first stage are required for solving the 

MQFOPFM, while solving the SCQOPFM needs the initial operating point of each 

network model, including the base case and contingencies. In every SLP iteration, model 

constraints are first defined. The violated constraints that are not in the model constraint 

set are added as new model constraints, which are considered in the linearized OPF 

problem to be solved. Note that each network model in the SCQOPFM has its own model 

constraints. Due to the gradual inclusion of model constraints, the linearized problem size 

is the smallest possible in each iteration. The next step is the OPF linearization, in which 

the costate method is used to linearize the objective function and model constraints with 

respect to only the control variables. Hence, the states are eliminated from the linearized 

OPF model and the size of the problem to be solved is further reduced significantly. During 

the linearization process, inversing the Jacobian matrix is the most time-consuming step, 
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but it has already been computed in the previous iteration. Except for that, only a few 

additions and multiplications are required. As a result, the costate method is extremely 

efficient. In either OPF case, the linearized problem is solved through an LP solver. The 

results are the control movements that are used to update the controls. Then, the states are 

computed via Newton’s method, thus obtaining the new operating point. The SLP 

algorithm proceeds to the next iteration after the maximum control movement limits are 

adjusted based on the change in the OPF objective function value. The new states and 

controls are substituted into all the constraints to check for violations. The SLP 

convergence is determined following the model constraint defining process. The SLP 

algorithm converges only when the linearized problem gives feasible solution and all 

constraints satisfied. The optimal solution obtained is the control movements that drive the 

system to the operating condition that achieves the OPF objective while satisfying all the 

constraints. Note that for the SCQOPFM, the linearization and state update procedures are 

performed network by network iteratively using the corresponding Jacobian matrix.  

In general, it is expected that the user selects the objective function and chooses 

which OPF problem to formulate and solve, the MQFOPFM or the SCQOPFM. No matter 

which problem is chosen, the process starts from device and network modeling to the 

corresponding OPF formulation and solution. The whole process is fully autonomous.  

3.2 Summary 

An overview of the proposed autonomous OPF method is provided in this chapter. 

The main advantages of the research proposed is given as follows. First, the OPF problems 

formulated are more accurate than the conventional ones as the devices are modeled 
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physically in detail. Second, due to object orientation, any new DER can be easily 

integrated into the OPF formulation. Third, most equations in the proposed OPF models 

are linear while the rest are at most quadratic, so the they are less complex and easier to 

solve. Fourth, constraints are gradually added and the costate method is used during the 

OPF solution process to reduce the size of the problem to be solved and increase algorithm 

efficiency. Last but not least, the proposed method autonomously formulates and solves 

the OPF problems, thus reducing possible human errors. 

 

 

  



 25 

CHAPTER 4. PHYSICALLY BASED OBJECT-ORIENTED 

MODELING 

Physically based object-oriented modeling is the foundation supporting the 

autonomous formulation and solution of any multi-stage quadratic flexible optimal power 

flow problem. It is also the starting point of the whole process, including device modeling 

and network formation. A standard syntax is utilized to represent the device models based 

on their physical properties and subsequently form the network model as general 

mathematical objects. By doing this, each object is accurately constructed and manipulated 

the same way regardless of its characteristics. Everything is treated as a black box, thus 

achieving object orientation.  

This chapter describes how the devices are modeled and subsequently how the 

network model is formed based on the device models. Details of the standard syntax used 

for modeling is provided.  

4.1 Device Modeling 

The first step of the MQFOPF autonomous process is the modeling of devices. For 

every device, based on its physical properties, the device compact model is constructed. 

Since the compact model may contain many high order terms, which complicates the 

simulation process, quadratization is introduced. If any term has an order of 3 or above, 

new variables are introduced to bring down its order to 2, hence making the highest order 

of terms quadratic [49]. After quadratization, the state and control quadratized device 

model (SCQDM) is obtained. In order to simulate the operation of the device, quadratic 
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integration is then applied, yielding the state and control algebraic quadratic companion 

form (SCAQCF), which is the standard syntax for object orientation. Every device 

considered in the MQFOPF process is modeled in the SCAQCF syntax. The whole device 

modeling process is presented in Figure 3. 

Device 
Physical 

Properties

Device 
Compact 

Model

State and 
Control 

Quadratized 
Device 
Model

(SCQDM)

State and 
Control 

Algebraic 
Quadratic 

Companion 
Form 

(SCAQCF)

Mathematical 
Expression 

Quadratization 
Quadratic 

Integration
 

Figure 3 – Device modeling process. 

4.1.1 Device Compact Model 

Any device can be described mathematically using a set of equations and 

inequalities. The device compact model is the accurate mathematical description of an 

actual device according to the laws of physics it obeys. The general expression of the 

compact model of a device operating at time t  is given by 

 ( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

( )

1

2

cmin cmax

,

0 ,

, 0

t f t t

f t t

h t t

t

=

=



 

i x u

x u

x u

u u u

 (5) 
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where i , x  and u  are the vectors of through variables, state variables and control 

variables, respectively. 1f  describes the through equations and 2f  describes the internal 

equations of the device. The through equations are also called the terminal equations of the 

device. h  is a set of functions that represent the device functional constraints, which are 

defined as 0h  . The control lower and upper bounds are respectively cminu  and cmaxu .  

Since (5) is a generalized model for any type of device, it is not limited to electrical 

devices, in which the through variables are typically currents. For thermal and mechanical 

devices, their through variables are heat flows and torques respectively. Therefore, the 

modeling of any device starts from the construction of its device compact model. 

4.1.2 State and Control Quadratized Device Model 

 Although the device compact model may contain high order polynomials or even 

trigonometric and exponential terms, quadratization is able to convert (5) into a form with 

the highest order being 2, which is called the state and control quadratized device model 

(SCQDM). During the quadratization process, new state variables are introduced. For 

example, applying quadratization to term 1

nx  with 3n   yields 

 2

2

1

3 4

, if  is even

, if  is odd

n x n
x

x x n


= 


 (6) 

where 2x , 3x  and 4x  are new variables introduced for quadratization. They have the 

following relationships with 1x . 



 28 

2
2 1

1

2
3 1

1

2
4 1

n

n

n

x x

x x

x x

+

−

=

=

=

 (7) 

The process of (6) is repeated until all terms become either linear or quadratic. Similarly, 

(6) can be applied to trigonometric and exponential terms when they are approximated as 

polynomials with a certain number of terms depending on the required accuracy.  

Converting discrete binary variables into continuous variables is another advantage 

of quadratization. For any binary variable bx , a new state y  is introduced so that 

( )2 1b by x x= − . By adding 
2y  with a large weight to the OPF objective function to be 

minimized, 
2y  is driven to 0, thus making the value of bx  either 0 or 1. This method is 

used on devices with binary variables like switched capacitor banks. 

In the model, everything is in metric unit. For electrical devices, the voltage and 

current variables are represented in the rectangular form, including real and imaginary 

parts. The standard SCQDM is written as 
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(8) 

where matrices Y  and D  contain the linear and differential terms associated with the 

device states and controls, respectively. Quadratic coefficients are stored in matrices F , 

while constant terms are contained in vectors C . Subscripts x  and u  denote whether the 

coefficients correspond to states or controls, or even both for ux . 1, 2 and 3 in the 

subscripts denote equation sets 1, 2 and 3, respectively, while c  corresponds to constraints. 

Superscript k  of matrices F  corresponds to equation k . For the control limits in (8), the 

lower and upper physical control bounds respectively are cminu  and cmaxu . In addition, each 

device model also has a set of algorithmic constraints ( )cllim cllimt−  u d u , where d  is 

defined as the vector of control movements to keep the linearization errors below a certain 

threshold in the SLP algorithm and cllimu  contains the initial non-negative maximum 

control excursion limits (step sizes).  

The SCQDM models the operation of the corresponding device at time t  using 3 

sets of equations, functional constraints and control limits.  Equation set 1 is the through 
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equations, while equation sets 2 and 3 are the internal equations. All quadratic terms are 

only present in equation set 3. 

4.1.3 State and Control Algebraic Quadratic Companion Form 

To simulate the operation of a device, quadratic integration is applied to the first 

two equation sets of the SCQDM to acquire the SCAQCF, which is the standard syntax for 

device modeling.  

Quadratic integration is an integration method that assumes a function varies 

quadratically between two consecutive time steps. Different from the widely used 

trapezoidal integration, quadratic integration has been proven to be more accurate and 

numerical stable [50]. Comparison of the two integration methods are shown in Figure 4. 

 

Figure 4 – Quadratic and trapezoidal integration methods. 
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For any function ( )f  , its curve between two time steps ht t−  and t  can be 

approximated either by a line or a quadratic curve, where ht  is the time step size. As shown 

in Figure 4, trapezoidal integration assumes that ( )f   varies linearly between ht t−  and 

t , which gives 

( ) ( ) ( )
2 2h

t
h h

h
t t

t t
f d f t f t t 

−
= + −  (9) 

In equation (9), only ( )f t  and ( )hf t t−  are needed to approximate the integration of 

( )f   from ht t−  to t . As for quadratic integration, ( )f   varying quadratically between 

the two points is assumed. As a result, a third point is required during the integration 

process. In Figure 4, the midpoint mt  between time steps ht t−  and t  is selected, yielding 
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As shown in (10), there are two equations for quadratic integration. One is the integration 

of ( )f   from ht t−  to t , while the other one integrates ( )f   from mt t−  to t . Note that 

2

h
m

t
t t= −  (11) 

It can be noticed from (10) that besides points ( )f t  and ( )hf t t− , ( )mf t  is also required 

during the integration process. ( )hf t t−  is called the past history term in this case. 
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The general expression for the SCAQCF syntax obtained after the quadratic 

integration procedure is given by 
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where B  is the past history vector that stores the device model information from the 

previous time step ht t− . Matrices N  and M  contain linear coefficients of the variables 

at ht t− , while vector K  has the constant terms in the device equations. Subscript f  in 

(12) denotes the functional constraints. In the SCAQCF model, the algorithmic constraints 

become llim llim−  u d u . Including variables at time steps t  and mt , vectors x , u  and d  

are defined as 

( )

( )

( )

( )

( )

( )m m m

t t t

t t t

     
= = =     
     

x u d
x u d

x u d
 (13) 

Via quadratic integration, the matrices and vectors in the SCAQCF model are constructed 

as follows by those in the SCQDM. 
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(14) 

Note that 
( )( )size t

I
i

 in (14) is an identity matrix with dimensions equal to the size of ( )ti .  
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The SCAQCF in (12) is able to simulate the operation of any device with each time 

period containing the model information of both time t  and mt . Different time steps are 

connected through past history vector B . Paper [51] shows that the physically based TCL 

model represented in the SCAQCF syntax is much more detailed and accurate compared 

to the commonly used TCL model given in [52]-[54]. The general form shown in (12) is 

the object-oriented standard syntax that models devices, which are utilized to construct the 

network model and subsequently form the MQFOPF problem. Note that the process of 

forming the SCAQCF from the SCQDM is fully automatic. 

4.1.4 Example of Device Modeling  

A switched capacitor with capacitance C  shown in Figure 5 is considered as an 

example of device modeling in the quasi-dynamic domain, in which phasors are used. It is 

assumed to be switched on and off by a binary control variable su , where 1su =  means on 

and 0su =  means off. 

1V

2V

1I

2I

C

su

 

Figure 5 – Example switched capacitor. 
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The capacitor terminal voltages are 
1V  and 

2V , while their corresponding terminal 

currents 
1I  and 

2I . Assuming that a functional constraint of 
10.95 1.05nom nomV V V   with 

minV  and maxV  being the minimum and maximum voltage allowed, respectively, the device 

compact model of the switched capacitor is 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( )

( )  

1 1 2

2 1 2

min 1 max0.95 1.05

0,1

s

s

s

I t j C V t V t u t

I t j C V t V t u t

V V t V

u t





= −

= − −

 



 (15) 

where 02 f =  with base frequency 0f   being 60 Hz. To convert (15) to the SCQDM, the 

voltage and current phasors are represented by real and imaginary parts. Since all quadratic 

terms are moved to equation set 3 in the SCQDM, new state variables ( )1 1 2r r ss V V u= −  

and ( )2 1 2i i ss V V u= −  are introduced for quadratization. Another variable y  is added for 

the binary control variable so that ( )2 1s sy u u= − . By adding 
2y  to the objective function 

of an OPF problem with a large weight, minimizing 
2y  drives su  to a binary value. The 

maximum control excursion limit for the control movement sd  is 1 in this case. As a result, 

the SCQDM of the example switched capacitor is given by 
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where r  and i  in the subscripts denote the real and imaginary parts of the variables. The 

control movement constraints at time t  in this example are ( )1 1sd t−   . The SCQDM 

states are  
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x  (17) 

Note that (16) only has equation sets 1 and 3. After quadratic integration, according to (14), 

the SCAQCF of the switched capacitor is constructed as 
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(18) 

with the algorithmic constraints being 
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The capacitor SCAQCF states, controls and control movements are 
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x u d  (20) 

With the SCAQCF in (18) obtained, the capacitor modeling process is complete. 

4.2 Network Formulation  

Given the device SCAQCF models in a system, the model of the system or network 

is generated automatically and it is also represented in the SCAQCF standard syntax [55]. 

The states, controls, equations and constraints are mapped from the device level to the 

network level. The through variables of different devices connected to the same network 

node sum up to 0. In an electrical network, this corresponds to the Kirchhoff’s current law 

(KCL). In a mechanical system or a thermal system, it is the sum of torques or heat flows 

at the same node, respectively. Therefore, object orientation being one of the advantages 

of the SCAQCF is fully reflected in this case. Given n  device models in the SCAQCF 

syntax, Figure 6 illustrates the construction of the network SCAQCF model. The device 

number is denoted by superscript i  in the device models, where 1,2, ,i n= .   
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Figure 6 – Network model construction process. 

The device equations corresponding to each network node are combined into one 

network internal equation using KCL by eliminating the through variables of the devices 

connected to that node. These equations are expressed in terms of device state variables, 

which now become the network states. Note that the network states are the union of all 

device states, as the terminal voltages of connected devices are the same variables. The 

network through variables at the interface nodes are denoted by neti . The internal equations, 

functional constraints and control limits of the network model directly come from those of 

the individual device models. Through equations ( ) ( )( ), ,i i i i

ht f t t= −i x u i  of each device 
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i  are also formed as part of the network model. Subscript i  denotes the matrices and 

vectors for the device through equations. Note that mapping lists for the equations, states, 

controls and constraints are created and utilized during the network formulation process.  

Since every variable has its own unit, which may result in different orders of 

magnitude for different variables in metric unit, normalization factors are defined for the 

states, controls, equations and constraints. They are used to normalize the network 

SCAQCF model shown in Figure 6. The general network model after normalization is 
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(21) 

The network SCAQCF model is almost the same as the device SCAQCF model, 

except that it has one more set of equations, which consists of the through equations of all 

devices in the network. These equations are needed for the formation of the multi-stage 

quadratic flexible OPF model (MQFOPFM), as the device through variables become a part 
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of the network past history. The network model is also object-oriented and it can be treated 

like a large virtual device. Through vector neti  contains the currents flowing into the 

network and all its elements are zero if the network is a close system, meaning that it does 

not have any interface nodes that are connected to other systems. With the network 

SCAQCF model formulated, the MQFOPFM can be formed after an objective function is 

defined. 

4.3 Summary 

A physically based object-oriented modeling approach is presented in this chapter. 

The operation of any device can be represented using a set of mathematical equations based 

on the device physical properties. Due to possible nonlinearity in the equations, 

quadratization is applied to ensure that the highest order of terms in the model is 2, thus 

producing the SCQDM of the device. Since transients exist in the device operation and 

they are expressed in differential terms, quadratic integration is utilized to convert the 

SCQDM to the SCAQCF standard syntax. When all devices in a system or network are 

represented in SCAQCF, the corresponding network model is constructed automatically, 

also in SCAQCF.  

All types of devices and networks, including those that are not electrical, can be 

modeled in the standard form, so object orientation is achieved. The advantage is that every 

model is in the same format and hence can be manipulated the same way without knowing 

what it really is. Therefore, the object-oriented modeling method provides the basis for the 

formation of the MQFOPFM.  
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Besides the OPF formulations, the SCAQCF unified syntax also has important 

applications in other areas of the power systems, such as state estimation [56] – [60], 

protection [61] – [68], harmonic analysis [69] – [71], and cyber security [72] – [74]. 

 

 

  



 43 

CHAPTER 5. AUTONOMOUS MULTI-STAGE QUADRATIC 

FLEXIBLE OPTIMAL POWER FLOW FORMULATION 

With the network SCAQCF model acquired, a multi-stage quadratic flexible 

optimal power flow model (MQFOPFM) is formed autonomously. This chapter illustrates 

the process of the MQFOPFM formation. First, an objective function is selected by the 

users, defined and generated accordingly. Then, a quadratic OPF problem is formulated by 

combining the objective function with the network model. Finally, by stacking the OPF 

model over multiple time stages, an MQFOPFM is obtained. The MQFOPF is performed 

in the quasi-dynamic domain, where fast electrical transients are neglected but slower 

dynamics such as electromechanical transients are considered [71].  

5.1 Objective Function 

 The objective function is a part of the MQFOPFM that specifies the objective or 

goal of the OPF problem. It is selected by the users and represented in a general form, 

which serves an object-oriented purpose. In this dissertation, specifically two types of 

objective function are described in detail: network voltage profile optimization and total 

generation cost minimization. 

5.1.1 General Form of Objective Function 

 Similar to the SCAQCF, a normalization factor is defined for the objective function. 

To achieve object orientation, the normalized objective function J  of the MQFOPFM also 

has a general form, whose mathematical expression is given by 
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T T T T T

ox ou oxx ouu oux oJ Y Y F F F C= + + + + +x u x x u u u x  (22) 

where subscript o  denotes the objective function. Similar to the SCAQCF, in (22) vectors 

Y  have the linear coefficients and matrices F  contain the quadratic coefficients. There is 

only one constant term oC . 

With the objective function general expression introduced, every user-selected 

objective function can be written in the form of (22) and manipulated the same way no 

matter how it is defined, thus achieving object orientation.  

5.1.2 Network Voltage Profile Optimization 

 Optimization of the voltage profile in an electrical network is defined as the 

levelization of selected node voltages [75]. Therefore, the objective is to minimize the sum 

of squared voltage magnitude mismatches at selected nodes, which is mathematically 

expressed as 

2

, ,

,

min
bus

mag i tar i

i S i tar i

V V
J

V

 −
=   

 
  (23) 

where busS  is the set of selected buses. ,mag iV  and ,tar iV  are the voltage magnitude and 

targeted voltage value at node i , respectively, while i  is a pre-defined tolerance value 

(e.g. 5%) at the node. In a three-phase system, the voltages of all three phases at a bus can 

be selected for levelization. 
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When devices with binary control exist in the network, for example switched 

capacitors described in Section 4.1.4, each continuous variable iy  related to binary 

variable 
,b iu  is added to the objective function with a big number iW  as its coefficient. As 

a result, the objective function for voltage profile optimization becomes 

2

, , 2

,

min
bus bv

mag i tar i

i i

i S i Si tar i

V V
J W y

V 

 −
= +  

 
   (24) 

where bvS  is the set of binary variables. Note that coefficients W  are large numbers to 

make sure that states y  are driven to 0, thereby making the binary variables equal to either 

0 or 1.  

Objective function (24) can be written in the form of (22), in which every voltage 

magnitude magV  is a state of the network. For every node that is selected for voltage 

levelization, magV  is introduced by a fictious voltage magnitude device connected to that 

node. In addition, the following equations are included as the device internal equations.  

2 2 2

2

0

0

r i mag

mag d

V V V

V s

= + −

= −
 (25) 

States rV  and iV  are respectively the real and imaginary parts of the selected voltage, while 

ds  is a dummy variable added to make the computed magV  non-negative. Although vector 

x  includes states at both time t  and mt , the voltage magnitudes considered in (24) only 

include the time t  variables. 
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5.1.3 Minimization of Total Generation Cost 

 The total generation cost minimization is to minimize the sum of the costs of all 

generator real power outputs, which is given by 

,min
gen

gen i

i S

J C


=   
(26) 

where genS  is the set of generators in the network and ,gen iC  is the generation cost of 

generator i . In order to generate (26), every generator has genC  as a state and its 

corresponding internal equation is 

20 g gen g gen g genc P b P a C= + + −  (27) 

where genP  is the real power output of the generator, which is also a state. gc , gb  and ga  

are parameters entered by the users. For different generators, the parameters may be 

different. 

Similar to the voltage profile optimization objective function, when binary related 

variables y  are included, (26) becomes 

2

,min
gen bv

gen i i i

i S i S

J C W y
 

= +   
(28) 

where the generation costs are from time t . Note that (28) can also be expressed in the 

general form. 
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5.2 Quadratic Optimal Power Flow 

 Combining the network SCAQCF model in (21) and the objective function in (22) 

yields the quadratic optimal power flow problem, which is given by 

( ) ( ) ( )
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 (29) 

Note that neti  and i  in (21) are moved to the right hand side of the equations in (29) so that 

the left hand sides are left with 0. Since OPF is performed on a closed or isolated network 

without interface nodes, neti does not exist in (29). The algorithmic constraints are 

llim llim−  u d u . As a result, the problem is subject to two sets of equality constraints and 

one set of inequality constraints with bounds on the controls and control movements. 

The network states x , controls u  and control movements d  include both time t  

and mt  variables. However, in the quadratic OPF problem, the optimization states consist 

of ( )tx , ( )mtx  and ( )ti . The optimization controls remain the same including ( )tu  and 
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( )mtu . The optimization control movements are also not changed as they contain ( )td  

and ( )mtd . Time ht t−  is seen as the previous time step, so past history vectors B  and iB  

are constant vectors computed by the states and controls at time ht t− . With (29) obtained, 

the MQFOPFM is directly formed [55]. 

5.3 Multi-Stage Quadratic Flexible Optimal Power Flow Model 

 The multi-stage quadratic flexible OPF model is assumed to be constructed over n  

stages or time intervals. The timeline is shown in Figure 7. Time imt  represents the 

intermediate time step between it  and 1it + , where 1i i ht t t+ = +  and , 12 2i m i it t h t h+= + = −

, with ht  being the time interval between stages as well as the modeling time step size for 

the device and network SCAQCF models.  

0t 1t 2t nt1,mt 2,mt ,n mt
 

Figure 7 – Timeline of stages. 

In the timeline, 0t  is the present. The goal is to optimize the power flow over a 

horizon of n  stages into the future. At every time stage i  where 1,2, ,i n= , let the 

corresponding states, controls and control movements be 

( )

( )
( )

( )
( )

( ), , ,
i i i

i i i

t t t

i m i m i m

t t t

t t t

     
= = =     
          

x u d
x u d

x u d
 (30) 
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Then, the OPF problem in (29) is rewritten in (31), which is called the single-stage 

quadratic flexible OPF model (SQFOPFM) at stage i . 
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 (31) 

The control movements are bounded as llim llimit
−  u d u . Note that when 1i = , past 

history vectors ( )0B t  and ( )0iB t  are constants that can be provided either by simulation 

or state estimation [56].  

In order to form a quadratic flexible OPF model with n  stages as shown in Figure 

7, the SQFOPFM in (31) with 1,2, ,i n=  are stacked together. The general expression of 

the MQFOPFM is given by 
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where M  in the subscripts denotes the model with multiple stages. Similarly, the 

algorithmic constraints on d  are Mllim Mllim−  u d u . The states, controls and control 

movements for model (32) are 
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 (33) 

As mentioned in Section 4.2, the through variables i  become a part of the states. J , g  

and h  are all functions of x  and u .  

When the objective function in (32) is formed, the coefficient matrices and vectors 

as well as the constant value are given by 
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When the equality constraints of n  stages are stacked up, past history vectors B  

and iB  from (31) link variables among different stages. As long as they are not 0, the 

various stages are coupled. In the absence of coupling, the problem collapses to a problem 

of n  independent OPF problems. Hence, with ( )0B t  and ( )0iB t  known, the constant 

vector MK  of the equality constraints 0g =  in (32) is 
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The other matrices of the equality constraints are formed as follows.  
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(36) 

As for the inequality constraints and control limits, the corresponding matrices and 

vectors in the MQFOPFM are constructed as 
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(37) 

where Mllimu  only contains the initial maximum control excursion limits. Their values are 

adjusted in the SLP algorithm utilized to solve the MQFOPF problem. 

From (33) – (37), the MQFOPFM in (32) is successfully acquired. The duration of 

the dynamics included in the model cannot be less than the length of a time stage ht . When 

the number of stages is equal to 1, model (32) becomes an SQFOPFM. Since the network 

model and objective function, upon which the MQFOPFM is built, are already normalized, 

all the variables are in per unit. The formation process of the MQFOPF problem is fully 

autonomous from device modeling, to network formulation, and to the construction of the 

SQFOPFM as well as the final MQFOPFM. The next step is to solve the multi-stage 

quadratic flexible OPF problem through SLP [55], which is described in detail in the 

following chapter. 
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5.4 Summary 

This chapter describes how a MQFOPFM is formulated upon a network model in 

the quasi-dynamic domain. First, a user-selected objective function is defined in a general 

form based on the network states and controls. Two specific objective functions are 

discussed. Network voltage profile optimization levelizes the voltages at selected network 

nodes, while minimization of total generation costs minimizes the sum of the costs of all 

generator real power outputs. Second, the SQFOPFM is obtained with the network 

SCAQCF model providing the states, equations and inequality constraints, as well as the 

controls and their boundaries. Finally, the MQFOPFM is constructed by stacking the 

SQFOPFM over a horizon of multiple time stages or periods into the future.  

Since the formulation of the network model is based upon device models in the 

SCAQCF syntax, whose connection to other devices is defined by through variables, most 

of the network equations are linear KCL equations. Therefore, most of the equality 

constraints in the resulting MQFOPFM are linear, while the rest quadratic. This structure 

of the OPF problem is different from the conventional formulation, where power balance 

equations dominate the model and higher nonlinearities like trigonometric terms exist. As 

a result, the MQFOPFM is less complex and easier to solve compared to the conventional 

OPF models.   
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CHAPTER 6. OPTIMAL POWER FLOW SOLUTION METHOD 

VIA SEQUENTIAL LINEAR PROGRAMMING 

The method used to solve the OPF problem is sequential linear programming (SLP). 

The costate method is utilized to linearize the MQFOPFM with respect to the controls, 

generating the linearized flexible OPF model (LFOPFM), which is solved by a linear 

programming (LP) solver in every iteration. By updating the operating point and adjusting 

the maximum control excursion limits iteratively, eventually an optimal operating point is 

obtained with the corresponding controls being the optimal control actions for the network.  

6.1 Overall Approach 

 As illustrated in Figure 8, the SLP algorithm starts after the formation of the 

MQFOPFM. Obtained through either simulation or state estimation, the initial system 

conditions at 1t  include states ( )0

1tx , controls ( )0

1tu  and device through values ( )0

1ti , as 

well as past history vectors of the network ( )0B t  and ( )0iB t . The initial operating point 

( )0 0,x u  for the algorithm is 
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 (38) 
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In addition, three small positive values 0 , 1  and 2  used throughout the SLP algorithm 

are defined in the initialization process.  

Initialize algorithm.
xv  = x0, uv = u0

Define small tolerances ε0, ε1 and ε2.

LFOPFSolution = 1

NonModelConstraints = 1

Yes

No

Linearize objective function.
Linearize model constraints.

Set control excursion limits.

Add constraints violated by ε0 or more 
as model constraints.

If new model constraints are added,
set NonModelConstraints = 0

else NonModelConstraints = 1.

ModelConstraints = 1

v = v+1

Solve LFOPFM by in an LP solver 
introducing surplus variables.

Check violations of model constraints.
If any violation is ε0 or more,

set ModelConstraints = 0,
else ModelConstraints = 1.

Update control variables uv+1 = uv+dv.
Update states by solving equality 

constraints (g(x,uv+1) = 0, ε1)   xv+1.

If ǁsvǁ    ε2, 
set LFOPFSolution = 1, 
else LFOPFSolution = 0.

Compute objective value J(xv+1,uv+1).

Multiply maximum control excursion 
limits for continuous controls by ρ if 

J(xv+1,uv+1) > J(xv,uv).

Retrieve MQFOPFM and obtain initial 
operating point (x0,u0).

Algorithm converges with optimal 
operating point (xv+1,uv+1).

Start

End

 Obtain variables dv and surplus 
variables sv from the LFOPFM solution.

Yes

No

No

Yes

 

Figure 8 – Sequential linear programming algorithm. 
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In each SLP iteration  , the solution method works in a subspace of the MQFOPF 

constraints, which is defined as the model constraint set. The model constraints are defined 

as the constraints that are considered for linearization and included in the linearized 

problem to be solved. At the start of the iteration, the operating point ( ), 
x u  is substituted 

into all inequality constraints ( ),h x u  to check for violations. The newly violated 

constraints are added to the set of model constraints ( ),mh x u . In other words, with 

tolerance 0  defined, constraint i  becomes a new model constraint if ( ) 0,ih   x u  

while it is not already in the set. By doing this, the size of the OPF problem to be solved in 

each iteration is greatly reduced. 

After the model constraints are picked out, the MQFOPFM is linearized with 

respect to only the control variables using the costate method. Both the objective function 

and the model constraints are linearized. The control excursion limits are set after the 

linearization process.  With these steps completed, the LFOPFM is formed and then solved 

by an LP solver.  

When solving the LFOPFM, non-negative surplus variables 
s  are introduced and 

minimized to avoid infeasibility of the linearized problem. The solution is 
d , which 

contains the control movements 1 + −u u . They are used to update the controls in the 

network. Then, the new states are computed from Newton’s method with tolerance 2  . 

Hence, the operating point is updated as ( )1 1, + +
x u , which is used to compute the 

objective function value J . The maximum control excursion limits Mllimu  are adjusted 
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according to the comparison between ( )1 1,J  + +
x u  and ( ),J  

x u . The SLP algorithm 

proceeds to the next iteration afterwards, with the constraints tested for violations using the 

new operating point, followed by the convergence check. If the LFOPFM was successfully 

solved with the maximum surplus variable being less than 1  in the previous iteration and 

no constraint is violated in the current iteration, the SLP algorithm has converged.  

The MQFOPFM is solved automatically through the SLP algorithm after the 

MQFOPFM is formed. Therefore, the whole process of the formulation and solution of the 

MQFOPF problem is fully autonomous. Note that metaheuristics like the EA implemented 

in [76] are not used at all in the proposed algorithm.  

6.2 Linearization of Optimal Power Flow  

Linearization of the MQFOPFM is a vital part of the SLP algorithm, as it generates 

a linearized problem that can be solved easily using an LP solver. The costate method is 

utilized during the linearization process, yielding the LFOPFM. It is an extremely efficient 

method and the size of the problem becomes much smaller after linearization.  

6.2.1 Costate Method 

The MQOFPFM consists of both states and controls. To simplify the problem, the 

costate method is applied so that the quadratic model becomes a linearized model 

represented by only the control variables. Note that the costate method is a sensitivity-

based linearization approach, which utilizes the sensitivities of the OPF model with respect 

to controls u  [77]. As shown in Figure 9, the process includes the linearization of both the 
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objective function and model constraints. After linearization, with the help of an LP solver, 

the MQFOPF problem can be solved easily. 

Linearization 
Start

Linearize Objective 
Function

Linearize Model 
Constraints

Linearization 
End

 

Figure 9 – Linearization process. 

Given the objective function J  in (32), based on Taylor’s expansion with respect 

to the controls, at iteration   around operating point ( ), 
x u , J  is approximated by 

( )
( ),

,
dJ

J J
d

 

  +
x u

x u d
u

 (39) 

where = −d u u  are the control movements and ( ),dJ d 
x u u  is given by 
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( ) ( ) ( ), , ,dJ J J d

d d

      
= +

 

x u x u x u x

u u x u
 (40) 

Since the objective function is quadratic and all the coefficient matrices have been defined 

in (34), the partial derivatives in (40) are computed as 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

,

,

T T T

Mou Mouu Mouu Moux

T T T

Mox Moxx Moxx Moux

J
Y F F F

J
Y F F F

 

  

 

  


= + + +




= + + +



x u
u u x

u

x u
x x u

x

 (41) 

Derivative d dx u  is obtained from the equality constraints 0g = . Differentiating both 

sides of the equations yields 

( ) ( ), ,
0

g g d

d

    
+ =

 

x u x u x

u x u
 (42) 

Therefore, d dx u is calculated as 

( ) ( )
1

, ,g gd

d

   
−

  
 = −
  
 

x u x ux

u x u
 (43) 

where the partial derivatives are acquired from (36) as 
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( )
( )

( )
( ) ( )

,

,

T T

T
k k k

Mu Muu Muu Mux

T

T T
k k k

Mx Mxx Mxx Mux

g
Y F F F

g
Y F F F
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 

  

     
      
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u
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x

 (44) 

Partial derivative ( ),g   x u x  is the Jacobian matrix. With (43) obtained, substituting 

(40) into (39) yields 

( )
( ) ( ), ,

ˆ,
J g

J J

   

 
  
  + −
  
 

x u x u
x u x d

u u
 (45) 

where the costate vector x̂  is given by 

( ) ( )
1

, ,
ˆ

J g   
−

  
 =
  
 

x u x u
x

x x
 (46) 

Similarly, the model constraints are also linearized using the costate method. 

Functions mh  are linearized around operating point ( ), 
x u  as 

( )
( ),

,
m

m m

dh
h h

d

 

  +
x u

x u d
u

 (47) 

where ( ),mdh d 
x u u  has the following expression. 
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( ) ( ) ( ), , ,m m mdh h h d

d d

      
= +

 

x u x u x u x

u u x u
 (48) 

The partial derivatives are also computed as follows based on the MQFOPFM constraint 

matrices in (37). 
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 (49) 

Note that k  in the subscripts represents constraint k , which is a model constraint. As a 

result, the expression in (47) becomes 

( )
( ) ( ), ,

ˆ,
m

m m

h g
h h

   

 
  
  + −
  
 

x u x u
x u y d

u u
 (50) 

where ŷ  is the costate matrix in this case and it is given by 

( ) ( )
1

, ,
ˆ

mh g   
−

  
 =
  
 

x u x u
y

x x
 (51) 

To sum up, the linearized expression of the objective function and model 

constraints produced by the costate method are (45) and (50), respectively. The detailed 

linearization procedures are shown in Figure 10. controln  and mconstn  are the number of 
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controls and number of model constraints, respectively. i  and j  are indices for counting 

the controls and model constraints. Temporary matrix   and vector   are used during 

calculations. Note that the model constraints are linearized one at a time. 

Objective Function
Linearization

Start

( ),
Compute i

i

J

u

 




=


x u

0i =

No
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1i i= +

( )Compute ,e J  = x u
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Figure 10 – Detailed linearization procedures. 
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By using the costate method to linearize the MQFOPFM with respect to only the 

controls, the size of the linearized problem is significantly reduced. Although inversing the 

Jacobian matrix is most time-consuming step in the linearization process, the costate 

method uses the Jacobian matrix available from the previous iteration. In addition, only a 

few partial derivatives need to be computed with simple additions and multiplications in 

every iteration. Therefore, the costate method is extremely efficient.  

6.2.2 Linearized Flexible Optimal Power Flow Model 

From the costate method, it is obvious that the control movements d  are the 

variables of the linearized problem. Therefore, besides the linearized objective function 

and model constraints, the variable bounds are required to complete the LFOPFM. The 

lower and upper bounds of d  are introduced as mind  and maxd , respectively. Based on 

= −d u u  in each iteration  , as well as Mmin Mmax u u u  and Mllim Mllim−  u d u  

defined in (32), every entry i  in mind  and maxd  is computed as 

( )

( )

min, Mmin, Mllim,

max, Mmax, Mllim,

max ,

min ,

i i i i

i i i i

d u u u

d u u u





= − −

= −
 (52) 

Combining the objective function in (39), model constraints in (47) and control 

movement limits (52) yields the LFOPFM, whose general expression is given by 

min max

min

s.t. 0

Tc e

a b

+

+ 

 

d

d

d d d

 (53) 
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where Tc , e , a  and b  are  

( ) ( ) ( )

( )

( ) ( ) ( )

( )

, , ,
ˆ
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 
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= = −
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=

x u x u x u
x

u u u

x u

x u x u x u
y

u u u

x u

 (54) 

6.3 Iterative Solution Process  

 Iteratively, an LP solver is utilized to solve the LFOPFM formed. Solution d  

obtained is used to update the controls and states, thus acquiring the new operating point 

for the next iteration. 

6.3.1 Linear Programming Solution 

After (53) is obtained, it is solved in an LP solver. To ensure the feasibility of the 

linearized problem, non-negative surplus variables s  are introduced. A surplus variable is 

assigned to every model constraint and minimized in the objective function with a large 

weight. As a result, (53) becomes  

min max

min

s.t. 0

0

T Tc e w

a b

+ +

+ − 

 



d s

d s

d d d

s

 (55) 

where w  is the weight vector. Due to s  being non-negative, the inequality constraints in 

(55) are always satisfied.  
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Linear problem (55) is fed to an LP solver, which produces vectors d  and s  as its 

solution. If all entries in s  is driven to 0, the original problem in (53) is said to be feasible. 

Otherwise, the it is infeasible. No matter whether the LFOPFM is feasible or not, d  is used 

to compute the new operating point. 

6.3.2 Operating Point Update 

By definition, the control movements 
d  given by the solution of (55) is the 

difference between 1 +
u  and 

u . Therefore, the controls are updated as 1  + = +u u d . It is 

assumed that the controls are applied to the system at time t  in each stage, so the time mt  

values are the same as the time t  values. Then, Newton’s method is applied to the 

MQFOPFM equality equations 0g =  to solve for the updated states 1 +
x . Let   be the 

iteration count, max  be the maximum number of iterations allowed, and 1  be a pre-

defined tolerance value for Newton’s method. The steps for updating the state variables are 

listed as follows. 

1) Let 0 =  and  =x x . 

2) Substitute   and 1 +
u  into the MQFOPFM equations and compute ( )1,g   +

x u . If 

( )1

1,g   +


x u , the procedure terminates and 1 + =x x . Otherwise, go to the 

next step. 

3) Compute Jacobian matrix ( )1,g   + x u x .  

4) Calculate 1+
x  as 
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( )
( )

1
1

1 1
,

,
g

g

 

   

−
+

+ +
 
 = −
 
 

x u
x x x u

x
 (56) 

5) Let 1 = + . If max  , go to step 2). Otherwise, non-convergence is reported 

for Newton’s method. 

With the states updated, new operating point ( )1 1, + +
x u  is obtained. The SLP 

proceeds to the next iteration, which is 1 + , after the maximum control excursion limits 

are adjusted. Operating point ( )1 1, + +
x u  is used in iteration 1 +  for constraint violation 

check, and subsequently linearization if the algorithm does not converge at this point. 

6.4 Algorithm Convergence 

As illustrated in Figure 8, the SLP algorithm convergence is determined after the 

check of constraint violations in every iteration. The linearization process follows if the 

algorithm continues.  

In order to drive the algorithm to convergence, another step is required after the 

update of operating point. This step includes the computation of the objective function 

value, based on which the maximum control excursion limits Mllimu  are adjusted. 

6.4.1 Adjustment of Maximum Control Excursion Limits 

Once operating point ( )1 1, + +
x u  is obtained, the objective function value 

( )1 1,J  + +
x u  is calculated accordingly. The adjustment of Mllimu  is based on the result of 
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comparison between ( )1 1,J  + +
x u  and ( ),J  

x u , which is from the previous iteration. If 

( ) ( )1 1, ,J J   + + x u x u , the maximum control excursion limits of all the continuous 

control variables are multiplied by  , a parameter between 0 and 1 that is tuned to get a 

better SLP performance. Otherwise, nothing needs to be done. Note that if  is too small, 

the algorithm may be stuck with an infeasible solution after several iterations. However, if 

  is too large, oscillations in the solution may be observed between iterations. Therefore, 

its value needs to be carefully selected. 

Adjusting Mllimu  affects the computations of mind  and maxd  in (52), which limit the 

control movements between two consecutive iterations. Since the initial values defined 

during the MQFOPFM formation already guarantee a small linearization error, halving 

Mllimu  makes sure that the error does not increase. 

6.4.2 Convergence Criteria 

 The SLP convergence is determined after operating point ( )1 1, + +
x u  is substituted 

into all the MQFOPFM inequality constraints to check for violations in iteration 1 + . 

There are three convergence criteria, which correspond to three binary indicators. As 

shown in Figure 8, the indicators are NonModelConstraints, ModelConstraints and 

LFOPFSolution. Indicator NonModelConstraints = 1 if all the constraints that are not in 

the model constraint set are satisfied. If any violation is detected, the corresponding 

constraint is added as a new model constraint and NonModelConstraints is set to 0. For 

indicator ModelConstraints, it is 1 when all the model constraints are satisfied. Otherwise, 

its value is equal to 0. The third indicator LFOPFSolution is set to 1 if the LFOPFM in (53) 
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is solved with a feasible solution in the previous iteration, meaning the surplus variables 

satisfy 2

 

s , where 2  is a pre-defined small positive number. If any variable s  is 

not driven to 0 during the LP solution process, LFOPFSolution = 0. The SLP algorithm 

converges at iteration 1 +  only when all three indicators are 1. In this case, ( )1 1, + +
x u  is 

the optimal operating point. The algorithm proceeds to the linearization process if any of 

the three indicators has a different binary value. However, if the iteration count exceeds 

the maximum number of iterations, non-convergence is reported. 

In general, the SLP algorithm converges when the LFOPFM has a feasible solution 

and all inequality constraints in the MQFOPFM are satisfied. Note that the optimal 

operating point contains the normalized states and controls in all stages within the 

optimization horizon. The control values at each stage are the optimal control actions to be 

implemented back into the selected network at that time period to derive the system to the 

optimal operating condition. With the system operating conditions estimated with field 

measurements and used as the initial operating point for solving the MQFOPF problem, 

applying the optimal controls back into the field completes a full state feedback control 

loop [78]. 

6.5 Summary 

In order to solve the MQFOPFM, an SLP algorithm is developed in this chapter. 

The operating point is substituted into the constraints to check for violations in each 

iteration. The violated constraints are added to the model constraint set that is considered 

in the linearized problem. The costate method is used to linearize the objective function 

and model constraints with respect to the control variables, giving the LFOPFM, which is 
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solved through an LP solver. The control movements obtained from the solution are used 

to update the controls, and then the new state values are computed via Newton’s method. 

The maximum control excursion limits are adjusted at the end of the iteration based on the 

objective function value calculated. The algorithm convergence is determined after the 

model constraints are defined. When the LFOPFM in the previous iteration has a feasible 

solution and no constraint is violated, the algorithm converges.  

Although the original MQFOPF problem has many states and controls, by adding 

model constraints incrementally, the size of the optimization problem becomes a lot 

smaller. The costate method further reduces the size of the problem by linearizing the 

model with respect to only the control variables and eliminate the states variables. Another 

advantage of the costate method is that it uses the Jacobian matrix already computed in the 

previous iteration. Only a few additions and multiplications are required for linearization. 

Hence, the process is extremely efficient. All the above-mentioned merits of the SLP 

algorithm makes it a good method for solving the MQFOPFM. If too many stages are 

considered and the OPF problem cannot be solved online, the model predictive control 

scheme used in [79] can be integrated so that the optimization becomes a moving-horizon 

problem with less stages in each horizon. 
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CHAPTER 7. SECURITY CONSTRAINED QUADRATIC 

OPTIMAL POWER FLOW  

Another application of the proposed autonomous formulation and solution method 

is the security constrained quadratic OPF (SCQOPF). With the network SCAQCF model 

given, a security constrained quadratic OPF model (SCQOPFM) can be constructed. 

Besides those procedures required for the MQFOPFM formation, the SCQOPFM 

formulation process also includes the introduction of device outage models and 

contingency networks. However, unlike the MQFOPF problem, the SCQOPF problem uses 

device and network models in the frequency domain, which neglects all transients and only 

a single time instant is considered during the process. 

The original network model formed from the device SCAQCF models is seen as 

the base case for the SCQOPF problem. When contingencies are imported, every 

contingency has a corresponding network model, which is adapted from the base case. First 

the base case model is copied over to the contingency. Then, the outage device is removed 

from the contingency network, before which an outage model is defined for each device. 

Note that the device outage models and contingency network models are also represented 

in the SCAQCF standard syntax. Together with a user-defined objective function, 

combining the base case and all contingency network models generates the SCQOPFM. 

Each network model has its own states, equations and constraints. However, all network 

models share the same set of controls. The SLP solution method is utilized to solve the 

SCQOPF problem. The costate method is applied to every contingency to linearize the 

network model, giving the linearized security constrained OPF model (LSCOPFM).  
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The overall autonomous formulation and solution process of the SCQOPFM is 

shown in Figure 11, in which N  imported contingencies are included. The figure only 

shows a general flow of procedures. Every step in this process is discussed in detail in the 

following sections. 

Construct Device 
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Form Base Case 
Network SCAQCF

Import N 
Contingencies

Formulate SCQOPFM
----------------------------

Objective Function
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End

Define Model 
Constraints 
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Figure 11 – Overall SCQOPFM formulation and solution process. 

7.1 Frequency Domain Modeling 

In the frequency domain, the modeling procedures are similar to those in the quasi-

dynamic domain. The construction of device models follows the steps shown in Figure 3 

except that quadratic integration is not applicable in this case because it is only for a single 
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instant in time. As a result, different from (12), the SCAQCF in frequency domain is 

derived from (8) as 

min max
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(57) 

with the algorithmic constraints on the control movements being llim llim−  u d u . The 

matrices and vectors are formed by those in (8) as follows. 
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 (58) 

Since (57) simulates the operation of the device at time instant t , there is no past history 

vector in the frequency domain SCAQCF. Note that (57) is regarded as the operational 

model of the device in the SCQOPF problem. 

The frequency domain network SCAQCF model is formulated the same way as that 

shown in Figure 6 except that no past history vectors and device through vectors are 
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needed. Hence, the frequency domain network model is also given by (57), with the 

through variables being neti  instead of i . This network model is called the base case model 

in the following SCQOPF problem. 

7.2 Security Constrained Quadratic Optimal Power Flow Formulation 

 The formulation of a security constrained quadratic OPF problem is done in the 

frequency domain. It includes the modeling of devices and networks. Besides the original 

device and network models described in Section 7.1, the device outage and contingency 

network models are also required. When the objective function, base case network model 

and contingency network model are put together, the SCQOPFM is formed. 

7.2.1 Device Outage Model 

When a contingency network is formed, the outage devices need to be removed. 

Since all contingency network models are first copied directly from the base case network 

model, in order to maintain the network structure and make minimal changes, the concept 

of the device outage model is introduced. Instead of taking the outage device models 

completely out of a contingency network model, the original device operational models are 

changed to their outage models. 

Every device in the network has an operational model and an outage model. Just 

like the operational model, the outage model is also written in the frequency domain 

SCAQCF standard syntax given in (57). The difference is that an outage control factor c  

is added to the outage model. Its value is user-entered, which is usually a small percentage, 

denoting the influence of the device on the network. The device outage models are only 
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used in the contingency networks when the corresponding outage devices need to be 

removed. 

The construction of a device outage model is the same as that of an operational 

model. The process goes through writing out the device compact model based on its 

physics, quadratization of the model, and eventually representing it in the frequency 

domain SCAQCF syntax. Only this time c  added into the model equations to reduce its 

operational impact on the network. Every type of device has c  included differently, 

depending on how the device operate. For a line or a transformer that is linear, c  is 

multiplied to all its terms. For a generator with real and reactive power outputs genP  and 

genQ , they become c genP  and c genQ  in the outage model, thus reducing the generator 

outputs to a small percentage. In this case, when minimizing the generation costs, (27) with 

ga  being a constant in the operational model becomes (59) in the outage model.  

2 20 g c gen g c gen c g genc P b P a C  = + + −  (59) 

Note that (59) is an approximation of the cost of the outage generator. With c  being close 

to 0, genC  ends up being a very small value as well. Hence, the impact of the outage 

generator on objective function (28) is close to none.  

To construct the device outage model, not only the equations need to be changed, 

the functional constraints also require some modifications. When a device is removed from 

the contingency network, its constraints should also be neglected in solving the SCQOPF 

problem.  
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Using the same switched capacitor in Figure 5 as an example, its outage model in 

the frequency domain is similar to the SCQDM in (8), given by 
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 (60) 

Similarly, the device has to satisfy 0 1sd   algorithmically. 

In general, by introducing the device outage model and writing it in the frequency 

domain SCAQCF syntax, the contingency network models are formed automatically and 

the structure of the base case network is well maintained for more efficient computations 

in the following procedures.  

7.2.2 Base Case and Contingencies 

The SCQOPF base case network model is directly given by (53), whose power flow 

is solved. The base case solution is used to compute the initial operating states of the N  

contingencies imported. The contingency network models are constructed by first copying 

the base case model over and then remove the outage devices. Both the base case and 

contingency networks are modeled in the frequency domain SCAQCF syntax. For 

simplicity of representation, they are in general expressed as  



 77 

( )

( )

min max
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x u

x u

u u u

 (61) 

where 0,1, ,i N=  is the network index. 0i =  denote the base case, while the model for 

contingency i  is represented when 1i  . The control movement bounds are 

llim llim−  u d u . From (61) it can be noticed that every contingency network has its own 

states, equations and constraints. However, control vector u  is shared by all network 

models. Thus, minu , maxu  and llimu  are also shared among networks. Again, due to the 

networks being close, through vector neti  does not exist. 

Since outage control factor c  defined for the device outage models only makes 

minimal changes to the network structure, the base case and contingency networks have 

almost the same structure.  

7.2.3 Security Constrained Quadratic Optimal Power Flow Model 

Objective functions in (24) and (28) also apply to the SCQOPF problem. With the 

objective function defined, stacking all the network models in (61) with 0,1, ,i N=  

together yields the SCQOPFM. Note that the objective is a function of the controls and the 

base case states only. The SCQOPFM is given by 
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where network 0 denotes the base case while networks 1 to N  are contingencies. As a 

result, there are 1N +  network models in total. Each network i  has its own set of power 

flow equations ( ), 0i ig =x u  and inequality constraints ( ), 0i ih x u . All network models 

use the same set of controls u , so there is only one set of control movement constraints 

llim llim−  u d u . When u  is substituted into the equations in different networks, the state 

vectors computed are different.  

Since the network models in (62) are defined in the frequency domain, the 

SCQOPFM can be viewed as an OPF problem that are constructed at time instant t  

including contingencies. The controls u  are also for time t  only.  

7.3 Solution Method for Security Constrained Quadratic Optimal Power Flow  

Figure 11 shows that the SCQOPF problem is solved through an SLP approach 

similar to the one used for the MQFOPF problem. However, instead of defining and 

linearizing the model constraints in multiple stages, the costate method linearizes the model 
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constraints defined in each network model. Combining all the linearized networks forms 

the LSCOPFM, which is solved by an LP solver. The solution is the control movement 

vector shared by all networks. The states of every network are updated independently after 

the update of controls in each iteration. The convergence criteria are the same as those 

defined in Figure 8, except that this time all constraints in all networks need to be satisfied 

to achieve SLP convergence.  

7.3.1 Linearized Security Constrained Optimal Power Flow 

At the beginning of each iteration  , the algorithm goes through all the network 

models. For every network i ,  operating point ( ), ,i  
x u  is substituted into the constraints 

of that network model. Violated constraints that are not model constraints are added to the 

set. It not all the convergence criteria are met, the algorithm linearizes the model constraints 

in all networks as well as the objective function via the costate method. 

Consider network model i  given in (61). From (50) and (51), the following 

equations are valid. 

( )
( ) ( )

( ) ( )

, ,

,

1
, ,

, ,
ˆ,

, ,
ˆ

i i i i

mi i i i

m m

i i i i

mi

i i

h g
h h

h g

   

 

   
−

  
  + −
  
 

  
 =
  
 

x u x u
x u y d

u u

x u x u
y

x x

 (63) 

where according to (44) and (49) the partial derivatives derived from the frequency domain 

network model in (57) are given by 
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Note that ( ), ,i i ig   x u x  is the Jacobian matrix of network model i . Therefore, the 

linearized model constraints are expressed as 

0i ia b+ d  (65) 

where ia  and ib  are 
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For the linearization of the objective function in (62), only the base case network 

states 0,
x  are needed. Hence, similar to (45) and (46), the LSCOPFM has 
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where ( )0, ,J   x u u  and ( )0, 0,J   x u x  are obtained as follows based on (41). 
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As a result, the objective function after linearization has the exact same expression as that 

the objective function in (53), but this time Tc  and e  are 
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Since all networks share the same set of controls u  as well as control movements 

d , the minimum and maximum limit of control movement j  are computed as 
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With 1N +  networks in total, the LSCOPFM is constructed by (66), (69) and (70) as 
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The following steps are solving (71), updating the operating point in every network, 

adjusting the maximum control excursion limits, and checking for constraint violations as 

well as the algorithm convergence in the next iteration. 

7.3.2 Acquisition of Optimal Solution 

Since the SLP algorithms utilized to solve the MQFOPFM and SCQOPFM are 

basically the same, tolerances 0 , 1  and 2  are also defined here. As for the binary 

convergence indicators, NonModelConstraints and ModelConstraints are defined and used 

the same way. Indicator LFOPFSolution is renamed as LSCOPFSolution in solving the 

SCQOPF problem.  

After the LSCOPFM is obtained, it is solved in an LP solver with non-negative 

surplus variables introduced to guarantee feasibility, producing solution d  and surplus 

variable values s . Indicator LSCOPFSolution is set to 1 only when 2

 

s . With 

controls 1 + = +u u d , the SLP algorithm sweeps through all network models and 

computes the updated states via Newton’s method described in Section 6.3.2. As a result, 

the new operating point for each network i  is acquired as ( ), ,i  
x u . Then, the objective 

function value is computed using the base case operating point. Again, same as the solution 
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method for the MQFOPFM, for every continuous control j , its maximum control 

excursion limit 
llim, ju  is multiplied by   if ( ) ( )0, 1 1 0,, ,J J   + + x u x u . 

After the llimu  values are adjusted, the SLP algorithm proceeds to the next iteration. 

The inequality constraints of each network are checked for violations with respect to the 

corresponding operating point. NonModelConstraints = 1 if there is no new model 

constraint in all networks, or else NonModelConstraints = 0. Similarly, ModelConstraints 

is set to 1 when the model constraints in all networks are satisfied. If any model constraint 

in any network model is violated, ModelConstraints is 0. The SLP algorithm converges 

when LSCOPFSolution, NonModelConstraints and ModelConstraints are all 1. 

The controls obtained upon algorithm convergence are the optimal control actions 

to be implemented into the system, which is able to operate safely and reliability. The 

occurrence of any contingency within the N  contingencies considered in the SCQOPFM 

should not violate any constraint in the network.  

7.4 Summary 

In addition to the MQFOPFM, another OPF related application of the network 

SCAQCF model is to construct the SCQOPFM in the frequency domain, in which the 

device and network SCAQCF models only model their operations for one single time 

instant. The SCQOPF problem formulated contains both the base case and contingency 

network models. All devices in the network are operational in the base case, while outage 

devices exist in the contingencies. The imported contingency networks are the same as the 

base case network except that the outage devices are removed. Hence, the device outage 
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model is introduced with an outage control factor and it is also presented in the frequency 

domain SCAQCF standard syntax. By stacking up the base case and contingency network 

models, the SCQOPFM is constructed together with a user-defined objective function. 

Note that each network model has its own states, controls and constraints, while the same 

set of controls are shared among all networks. Compared to the MQFOPFM, the 

SCQOPFM has only one stage but many contingencies.  

A similar SLP algorithm is used to solve the SCQOPF problem. Model constraints 

are defined in all networks. The costate method is applied to the objective function and 

each network model. Again, the use of model constraints and the costate method 

significantly reduces the size of the optimization problem to be solved. Combining the 

linearized network models with the linearized objective function yields the LSCOPFM. 

Solved by an LP solver, the LSCOPFM solution is the control movements, which are used 

to compute the controls shared by all networks. With the new control values, the states of 

every network model are updated via Newton’s method. After the adjustment of the 

maximum control excursion limits, the SLP algorithm moves on to the next iteration. 

Convergence is checked after the constraint violations are tested. This time, the algorithm 

converges if the LSCOPFM has a feasible solution in the previous iteration and no 

constraint is violated in all network models.  
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CHAPTER 8. MULTI-STAGE QUADRATIC FLEXIBLE 

OPTIMAL POWER FLOW NUMERICAL CASE 

A program has been written in Visual C++ to run the two OPF applications 

described in the above chapters. As shown in Figure 12, users need to select from the 

dropdown menu an OPF application and import the corresponding device models to start 

the process. The three tolerance values used in the SLP algorithms are also on the user 

interface for users to define. 

 

Figure 12 – Selection of OPF application on the user interface. 
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This chapter presents a numerical case to demonstrate the performance of the 

proposed method on the multi-stage quadratic flexible OPF application, which is run on a 

slightly modified real distribution feeder model provided by Public Service Company of 

New Mexico (PNM). The MQFOPFM of the feeder model is formulated in the quasi-

dynamic domain, containing the device SCAQCF models in (12) and the voltage profile 

optimization objective in (24). Before running the algorithm, the number of stages need to 

be entered. Once the selected MQFOPF problem is solved, the user is able to export the 

final OPF solution. 

8.1 Distribution Feeder Model Description 

The PNM distribution feeder model shown in Figure 13 has 187 buses, including 

177 three-phase buses and 10 single-phase buses. The distribution voltage is 12.47 kV 

which is stepped down from 115 kV at the transmission level. At the residential level, both 

480 V at three-phase buses and 120/240 V at single-phase buses with split phases exist. 

For the sake of describing the system in more details, it is divided into 4 sections as 

illustrated in Figure 13. 
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Figure 13 – Real PNM distribution feeder model. 

The 10 single-phase buses are supplied by 10 single-phase transformers with a 

secondary center tap, which converts 12.47 kV at the distribution level to split-phase 

120/240 V at the residential level. A 120 V load is connected to each split phase, so there 

are 20 single-phase loads in total. The number of three-phase loads is 10, including both 

12.47 kV and 480 V aggregated loads. The system also has 4 PV sources, 4 energy storage 

units (ESUs), 1 three-phase equivalent source, 2 three-phase capacitor banks and 10 three-

phase two-winding transformers. The PV sources and ESUs are distributed in section 1 and 
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section 4. The distribution lines include 159 three-phase lines and 7 single-phase lines 

modeled as equivalent Π circuits without neutral conductors. For voltage profile 

optimization, a fictious voltage magnitude device is added to each node selected for 

levelization, which adds up to 43 in total. The system is ground with a 1 Ω impedance at 

every bus with a neutral phase, resulting in 46 grounding impedances.  

 

Figure 14 – Zoomed-in view of the slack bus. 

The three-phase equivalent source is connected to slack bus B001 in section 2, 

simulating the 115 kV transmission system, as shown in Figure 14 a zoomed-in view. Both 

three-phase capacitor banks are located at B007 and B103 in section 1 of the system with 

a rated reactive power output of 1800 kVar. The PNM feeder loads are listed in Table 1. 

Note that the single-phase loads are connected to 120/240 V split-phase buses, with L1 and 

L2 representing the two 120 V nodes at those buses. The available controls are given in 

Table 2 with their initial values and maximum control excursion limits. For the control 

types, tap  denotes the unitless transformer tap setting (ratio between primary and 

secondary voltages), P  and Q  are the real and reactive power outputs respectively, while 

magV   represents the terminal voltage magnitude. All the controls are continuous variables. 
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Table 1 – PNM feeder loads. 

 
Bus Voltage Real Power Reactive Power 

Three-Phase 

Loads 

B099 12.47 kV 1885 kW 1292 kVar 

B199 480.0 V 23.092 kW 3.290 kVar 

B200 480.0 V 92.367 kW 13.162 kVar 

B206 480.0 V 23.092 kW 3.290 kVar 

B208 480.0 V 46.184 kW 6.581 kVar 

B209 480.0 V 92.367 kW 13.162 kVar 

B211 480.0 V 230.918 kW 32.904 kVar 

B212 480.0 V 9.237 kW 1.316 kVar 

B213 480.0 V 89.1 kW 12.696 kVar 

B217 480.0 V 25.5 kW 19.2 kVar 

Single-Phase 

Loads 

B201 
L1 120.0 V 1.539 kW 0.219 kVar 

L2 120.0 V 1.539 kW 0.219 kVar 

B202 
L1 120.0 V 3.849 kW 0.548 kVar 

L2 120.0 V 3.849 kW 0.548 kVar 

B203 
L1 120.0 V 3.849 kW 0.548 kVar 

L2 120.0 V 3.849 kW 0.548 kVar 

B204 
L1 120.0 V 1.539 kW 0.219 kVar 

L2 120.0 V 1.539 kW 0.219 kVar 

B205 
L1 120.0 V 3.849 kW 0.548 kVar 

L2 120.0 V 3.849 kW 0.548 kVar 

B207 
L1 120.0 V 1.539 kW 0.219 kVar 

L2 120.0 V 1.539 kW 0.219 kVar 

B210 
L1 120.0 V 1.539 kW 0.219 kVar 

L2 120.0 V 1.539 kW 0.219 kVar 

B214 
L1 120.0 V 3.849 kW 0.548 kVar 

L2 120.0 V 3.849 kW 0.548 kVar 

B215 
L1 120.0 V 1.539 kW 0.219 kVar 

L2 120.0 V 1.539 kW 0.219 kVar 

B216 
L1 120.0 V 3.849 kW 0.548 kVar 

L2 120.0 V 3.849 kW 0.548 kVar 
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Table 2 – Available control variables in PNM feeder. 

Device Bus Control Bounds 
Initial 

Value 

Initial Maximum 

Excursion Limit 

Transformer B093 – B199 tap  0.9 – 1.1 1.0 0.02 

Transformer B089 – B200 tap  0.9 – 1.1 1.0 0.02 

Transformer B082 – B206 tap  0.9 – 1.1 1.0 0.02 

Transformer B092 – B208 tap  0.9 – 1.1 1.0 0.02 

Transformer B031 – B209 tap  0.9 – 1.1 1.0 0.02 

Transformer B098 – B211 tap  0.9 – 1.1 1.0 0.02 

Transformer B157 – B212 tap  0.9 – 1.1 1.0 0.02 

Transformer B133 – B213 tap  0.9 – 1.1 1.0 0.02 

Transformer B198 – B217 tap  0.9 – 1.1 1.0 0.02 

Transformer B001 – B002 tap  0.9 – 1.1 1.0 0.02 

PV Source B170 Q  (MVar) -1.0 – 1.0 0.0 0.25 

PV Source B196 Q  (MVar) -5.0 – 5.0 0.0 1.0 

PV Source B217 Q  (MVar) -0.5 – 0.5 0.0 0.05 

PV Source B025 Q  (MVar) -3.0 – 3.0 0.0 0.5 

Energy 

Storage Unit 
B170 

P  (MW) -3.0 – 3.0 1.0 0.25 

magV  (pu) 0.95 – 1.05 1.0 0.01 

Energy 

Storage Unit 
B196 

P  (MW) -5.0 – 5.0 5.0 0.4 

magV  (pu) 0.95 – 1.05 1.0 0.01 

Energy 

Storage Unit 
B217 

P  (MW) -1.0 – 1.0 1.0 0.1 

magV  (pu) 0.95 – 1.05 1.0 0.01 

Energy 

Storage Unit 
B025 

P  (MW) -5.0 – 5.0 3.0 0.4 

magV  (pu) 0.95 – 1.05 1.0 0.01 

Within the horizon of 3 hours, the real power outputs P  of the PV sources at B170, 

B196, B217 and B025 are fixed at 2.5 MW, 8 MW, 1 MW and 9 MW, respectively. It is 

assumed that the PV sources are able to control their reactive power outputs Q . Besides 

the control bounds, the PV sources and ESUs also have some other operational constraints 
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that are presented in Table 3, where S  is the apparent power output computed by 

S P jQ= +  and E  is the energy stored. Subscript max  shows the maximum value 

allowed. The nominal voltage is denoted by nomV . Table 3 also presents the parameters used 

in the constraints and their corresponding units, which are all in actual units. The initial 

energy stored in the ESUs at B170, B196, B217 and B025 are around 0.5, 0.8, 0.3 and 0.5 

of their corresponding storage capacities maxE , respectively. 

Table 3 – Constraints in photovoltaic sources and energy storage units. 

Device Bus Constraint Parameter Unit 

PV Source B170 
maxS S  max 5.0S =   MVA 

0.95 1.05nom mag nomV V V   12.47nomV =  kV 

PV Source B196 
maxS S  max 20.0S =   MVA 

0.95 1.05nom mag nomV V V   12.47nomV =  kV 

PV Source B217 
maxS S  max 1.0S =  MVA 

0.95 1.05nom mag nomV V V   480.0nomV =  V 

PV Source B025 
maxS S  max 10.0S =  MVA 

0.95 1.05nom mag nomV V V   12.47nomV =  kV 

Energy 

Storage Unit 
B170 

maxS S  max 5.0S =  MVA 

max max0.1 0.9E E E   max 2.0E =  MWh 

Energy 

Storage Unit 
B196 

maxS S  max 8.0S =  MVA 

max max0.1 0.9E E E   max 5.0E =  MWh 

Energy 

Storage Unit 
B217 

maxS S  max 2.0S =  MVA 

max max0.1 0.9E E E   max 1.0E =  MWh 

Energy 

Storage Unit 
B025 

maxS S  max 8.0S =  MVA 

max max0.1 0.9E E E   max 4.0E =  MWh 
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Every fictitious voltage magnitude device described by (25) also has a constraint 

on its selected voltage, which is 0.95 1.05magV   in per unit. Nodes with capacitor banks 

and loads are selected for voltage levelization because a certain range of voltage is required 

for the devices at those nodes to be operational. All the selected voltages in the PNM feeder 

are listed in Table 4, grouped together based on the feeder sections. As shown in (24), each 

selected voltage is presented with its target value tarV  and tolerance  .  Although all the 

listed buses contain three phases, some of the buses only have one phase levelized when 

the phase is used to supply 2 split-phase loads at a split-phase bus. The steady-state values 

are the voltages obtained without optimization under the initial controls. Buses B010, 

B068, B076, B079, B106, B118, B130, B150, B155 and B169 are respectively connected 

to split-phase buses B201, B207, B202, B215, B205, B214, B216, B203, B204 and B210 

through transformers. As an example, a zoomed-in view of the connections at B010 and 

B201 in section 2 are given in Figure 15, which includes 2 single-phase loads, 2 grounding 

impedances, 1 single-phase transformer and 1 fictitious voltage magnitude device. 

Table 4 – Selected voltages to be levelized. 

Section Bus Phase Target Value Tolerance Steady-State Value 

 

B007 

A 7.2 kV 5 % 7.202 kV 

Section 1 

B 7.2 kV 5 % 7.211 kV 

C 7.2 kV 5 % 7.199 kV 

B099 

A 7.2 kV 5 % 7.197 kV 

B 7.2 kV 5 % 7.204 kV 

C 7.2 kV 5 % 7.194 kV 

B103 

A 7.2 kV 5 % 7.201 kV 

B 7.2 kV 5 % 7.210 kV 

C 7.2 kV 5 % 7.198 kV 
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Section 2 

B010 B 7.2 kV 5 % 6.884 kV 

B068 B 7.2 kV 5 % 6.890 kV 

B155 C 7.2 kV 5 % 6.871 kV 

Section 3 

B199 

A 0.277 kV 5 % 0.2640 kV 

B 0.277 kV 5 % 0.2641 kV 

C 0.277 kV 5 % 0.2630 kV 

B200 

A 0.277 kV 5 % 0.2638 kV 

B 0.277 kV 5 % 0.2639 kV 

C 0.277 kV 5 % 0.2628 kV 

B206 

A 0.277 kV 5 % 0.2617 kV 

B 0.277 kV 5 % 0.2618 kV 

C 0.277 kV 5 % 0.2599 kV 

B213 

A 0.277 kV 5 % 0.2617 kV 

B 0.277 kV 5 % 0.2619 kV 

C 0.277 kV 5 % 0.2601 kV 

B076 C 7.2 kV 5 % 6.857 kV 

B079 C 7.2 kV 5 % 6.773 kV 

B106 C 7.2 kV 5 % 6.840 kV 

B118 B 7.2 kV 5 % 6.835 kV 

B150 C 7.2 kV 5 % 6.803 kV 

B169 A 7.2 kV 5 % 6.836 kV 

Section 4 

B208 

A 0.277 kV 5 % 0.2756 kV 

B 0.277 kV 5 % 0.2760 kV 

C 0.277 kV 5 % 0.2750 kV 

B209 

A 0.277 kV 5 % 0.2742 kV 

B 0.277 kV 5 % 0.2747 kV 

C 0.277 kV 5 % 0.2737 kV 

B211 

A 0.277 kV 5 % 0.2757 kV 

B 0.277 kV 5 % 0.2762 kV 

C 0.277 kV 5 % 0.2753 kV 

B212 

A 0.277 kV 5 % 0.2753 kV 

B 0.277 kV 5 % 0.2757 kV 

C 0.277 kV 5 % 0.2747 kV 

B130 C 7.2 kV 5 % 7.167 kV 
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Figure 15 – Zoomed-in view of the connections at B010 and B201. 

With the feeder model defined, the voltage profile optimization for the PNM 

network is performed. The number of stages is set to be 12 in this test case with time step 

size ht  being 15 minutes, so the optimization horizon is 3 hours. Since each stage contains 

both time t  and mt  variables, with these setups, the MQFOPFM formulated has 67944 

states and 528 controls. The network voltage profile at time t of all stages are optimized. 

8.2 Multi-Stage Quadratic Flexible Optimal Power Flow Results 

The three pre-defined small positive tolerance values used in the SLP algorithm are 

0 0.0001 = , 1 0.0001 =  and 0 0.000001 = . Parameter   used to adjust the maximum 

control excursion limits in each iteration is set to be 0.8. After the device models are 

imported through the user interface in Figure 12 and 12 is entered as the number of stages, 

the MQFOPF is run on a personal laptop (i5-6300U, 8GB RAM). The whole process takes 

about 5.5 minutes, including constructing and solving the MQFOPFM. The optimal 

solution is obtained in 17 SLP iterations. 
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The optimal control values obtained upon convergence are given in Table 5. For 

every control in each stage, the time t  and mt  values are the same as listed. The optimal 

voltage magnitudes at the levelized nodes at time t  in all stages are listed in Table 6. 

Obviously, the selected voltages are successfully driven to their corresponding target 

values, which are very different from the steady-state values in Table 4. All the voltage 

magnitudes are well within the range of 0.95 – 1.05 pu. 

Table 5 – Multi-stage quadratic flexible OPF optimal control values. 

Section 1 

B170 

PV Source 

Stage 1 2 3 4 5 6 

Q  (MVar) -0.2446 -0.4084 0.3856 -0.4084 -0.4084 -0.8084 

Stage 7 8 9 10 11 12 

Q  (MVar) 0.4430 -0.2403 0.0836 -0.6729 -0.8204 -0.9024 

B196 

PV Source 

Stage 1 2 3 4 5 6 

Q  (MVar) 0.4483 0.4483 0.4483 0.4483 0.4483 0.6122 

Stage 7 8 9 10 11 12 

Q  (MVar) 0.6122 0.6122 0.4483 0.4483 0.4483 0.8170 

B170 

Energy 

Storage Unit 

Stage 1 2 3 4 5 6 

P  (MW) 0.3042 0.3042 0.3042 0.3042 0.1626 -0.2473 

magV  (pu) 1.0022 1.0022 1.0022 1.0022 1.0022 1.0039 

Stage 7 8 9 10 11 12 

P  (MW) -0.2726 -0.2769 -0.2200 -0.3253 -0.3253 -0.2509 

magV  (pu) 1.0039 1.0039 1.0022 1.0022 0. 9957 0.9994 

B196 

Energy 

Storage Unit 

Stage 1 2 3 4 5 6 

P  (MW) 0.9354 0.9354 0.9354 0.9354 0.9354 0.9354 

magV  (pu) 1.0022 1.0022 1.0022 1.0022 1.0022 1.0005 

Stage 7 8 9 10 11 12 

P  (MW) 0.9354 0.9354 0.9354 0.9354 1.1975 1.1975 

magV  (pu) 1.0005 1.0005 1.0022 1.0022 1.0022 1.0047 
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Section 2 

B001 – B002 

Transformer 

Stage 1 2 3 4 5 6 

tap   1.0557 1.0557 1.0557 1.0557 1.0589 1.0516 

Stage 7 8 9 10 11 12 

tap  1.0516 1.0516 1.0557 1.0557 1.0426 1.0499 

Section 3 

B093 – B199 

Transformer 

Stage 1 2 3 4 5 6 

tap   1.0159 1.0159 1.0159 1.0159 1.0159 1.0151 

Stage 7 8 9 10 11 12 

tap  1.0151 1.0151 1.0250 1.0250 1.0118 1.0118 

B089 – B200 

Transformer 

Stage 1 2 3 4 5 6 

tap   1.0159 1.0159 1.0159 1.0159 1.0159 1.0151 

Stage 7 8 9 10 11 12 

tap  1.0151 1.0151 1.0250 1.0250 1.0118 1.0118 

B082 – B206 

Transformer 

Stage 1 2 3 4 5 6 

tap   1.0250 1.0250 1.0250 1.0250 1.0118 1.0151 

Stage 7 8 9 10 11 12 

tap  1.0151 1.0151 1.0250 1.0250 1.0118 1.0118 

B133 – B213 

Transformer 

Stage 1 2 3 4 5 6 

tap   1.0250 1.0250 1.0250 1.0250 1.0118 1.0250 

Stage 7 8 9 10 11 12 

tap  1.0250 1.0250 1.0118 1.0118 1.0118 1.0118 

Section 4 

B092 – B208 

Transformer 

Stage 1 2 3 4 5 6 

tap   0.9779 0.9779 0.9779 0.9779 0.9779 0.9779 

Stage 7 8 9 10 11 12 

tap  0.9779 0.9779 0.9779 0.9779 0.9757 0.9757 

B031 – B209 

Transformer 

Stage 1 2 3 4 5 6 

tap   0.9770 0.9770 0.9770 0.9770 0.9770 0.9770 

Stage 7 8 9 10 11 12 

tap  0.9770 0.9770 0.9770 0.9770 0.9770 0.9770 
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B098 – B211 

Transformer 

Stage 1 2 3 4 5 6 

tap   0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 

Stage 7 8 9 10 11 12 

tap  0.9738 0.9738 0.9738 0.9738 0.9738 0.9738 

B157 – B212 

Transformer 

Stage 1 2 3 4 5 6 

tap   0.9757 0.9757 0.9757 0.9757 0.9790 0.9790 

Stage 7 8 9 10 11 12 

tap  0.9790 0.9790 0.9757 0.9757 0.9757 0.9770 

B198 – B217 

Transformer 

Stage 1 2 3 4 5 6 

tap   1.0112 1.0112 1.0112 1.0186 1.0054 1.0186 

Stage 7 8 9 10 11 12 

tap  1.0186 1.0186 1.0186 1.0186 1.0186 1.0061 

B217 

PV Source 

Stage 1 2 3 4 5 6 

Q  (MVar) -0.0037 -0.0037 -0.0037 -0.0034 -0.0037 -0.0037 

Stage 7 8 9 10 11 12 

Q  (MVar) -0.0034 -0.0037 -0.0037 -0.0034 -0.0035 -0.0015 

B025 

PV Source 

Stage 1 2 3 4 5 6 

Q  (MVar) -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 

Stage 7 8 9 10 11 12 

Q  (MVar) -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 

B217 

Energy 

Storage Unit 

Stage 1 2 3 4 5 6 

P  (MW) -0.0162 -0.0162 -0.0162 0.0316 -0.0162 -0.0162 

magV  (pu) 1.0210 1.0210 1.0210 1.0235 1.0301 1.0235 

Stage 7 8 9 10 11 12 

P  (MW) -0.0162 -0.0162 -0.0162 -0.0162 -0.0162 -0.0162 

magV  (pu) 1.0235 1.0235 1.0235 1.0235 1.0235 0.9970 

B025 

Energy 

Storage Unit 

Stage 1 2 3 4 5 6 

P  (MW) -0.0652 -0.0652 -0.0652 -0.0652 0.0167 0.0167 

magV  (pu) 1.0310 1.0310 1.0310 1.0310 1.0392 1.0392 

Stage 7 8 9 10 11 12 

P  (MW) 0.0167 0.0167 -0.0652 -0.0652 -0.2296 -0.5404 

magV  (pu) 1.0392 1.0392 1.0310 1.0310 1.0310 1.0310 
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Table 6 – Optimal voltage magnitudes at levelized nodes. 

Section 1 

Stage 1 2 3 4 5 6 

B007 

A 7.221 kV 7.221 kV 7.221 kV 7.221 kV 7.222 kV 7.225 kV 

B 7.230 kV 7.230 kV 7.230 kV 7.230 kV 7.230 kV 7.234 kV 

C 7.218 kV 7.218 kV 7.218 kV 7.218 kV 7.218 kV 7.222 kV 

Stage 7 8 9 10 11 12 

B007 

A 7.225 kV 7.225 kV 7.222 kV 7.222 kV 7.190 kV 7.214 kV 

B 7.234 kV 7.234 kV 7.230 kV 7.230 kV 7.199 kV 7.223 kV 

C 7.222 kV 7.222 kV 7.218 kV 7.218 kV 7.187 kV 7.210 kV 

Stage 1 2 3 4 5 6 

B099 

A 7.212 kV 7.212 kV 7.212 kV 7.212 kV 7.212 kV 7.224 kV 

B 7.221 kV 7.221 kV 7.221 kV 7.221 kV 7.221 kV 7.233 kV 

C 7.210 kV 7.210 kV 7.210 kV 7.210 kV 7.210 kV 7.221 kV 

Stage 7 8 9 10 11 12 

B099 

A 7.224 kV 7.224 kV 7.212 kV 7.212 kV 7.166 kV 7.192 kV 

B 7.233 kV 7.233 kV 7.221 kV 7.221 kV 7.174 kV 7.201 kV 

C 7.221 kV 7.221 kV 7.210 kV 7.210 kV 7.163 kV 7.190 kV 

Stage 1 2 3 4 5 6 

B103 

A 7.222 kV 7.222 kV 7.222 kV 7.222 kV 7.222 kV 7.223 kV 

B 7.230 kV 7.230 kV 7.230 kV 7.230 kV 7.231 kV 7.232 kV 

C 7.217 kV 7.217 kV 7.217 kV 7.217 kV 7.218 kV 7.219 kV 

Stage 7 8 9 10 11 12 

B103 

A 7.223 kV 7.223 kV 7.222 kV 7.222 kV 7.195 kV 7.218 kV 

B 7.232 kV 7.232 kV 7.230 kV 7.230 kV 7.203 kV 7.227 kV 

C 7.219 kV 7.219 kV 7.217 kV 7.217 kV 7.191 kV 7.214 kV 

Section 2 

Stage 1 2 3 4 5 6 

B010 B 7.156 kV 7.156 kV 7.156 kV 7.155 kV 7.172 kV 7.155 kV 

Stage 7 8 9 10 11 12 

B010 B 7.155 kV 7.155 kV 7.160 kV 7.161 kV 7.136 kV 7.166 kV 

Stage 1 2 3 4 5 6 

B068 B 7.279 kV 7.279 kV 7.279 kV 7.279 kV 7.298 kV 7.268 kV 

Stage 7 8 9 10 11 12 

B068 B 7.268 kV 7.268 kV 7.285 kV 7.287 kV 7.227 kV 7.269 kV 

Stage 1 2 3 4 5 6 

B155 C 7.246 kV 7.246 kV 7.246 kV 7.245 kV 7.264 kV 7.236 kV 
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Stage 7 8 9 10 11 12 

B155 C 7.236 kV 7.236 kV 7.252 kV 7.253 kV 7.199 kV 7.239 kV 

Section 3 

Stage 1 2 3 4 5 6 

B199 

A 277.02 V 277.02 V 277.02 V 276.98 V 277.75 V 277.10 V 

B 277.21 V 277.21 V 277.21 V 277.17 V 277.94 V 277.29 V 

C 276.03 V 276.03 V 276.03 V 276.00 V 276.76 V 276.11 V 

Stage 7 8 9 10 11 12 

B199 

A 277.10 V 277.10 V 279.54 V 279.55 V 275.60 V 276.52 V 

B 277.29 V 277.29 V 279.73 V 279.75 V 275.79 V 276.71 V 

C 276.11 V 276.11 V 278.54 V 278.56 V 274.62 V 275.54 V 

Stage 1 2 3 4 5 6 

B200 

A 276.97 V 276.97 V 276.97 V 276.94 V 277.74 V 277.09 V 

B 277.16 V 277.16 V 277.16 V 277.12 V 277.93 V 277.28 V 

C 275.94 V 275.94 V 275.94 V 275.90 V 276.70 V 276.06 V 

Stage 7 8 9 10 11 12 

B200 

A 277.10 V 277.10 V 279.49 V 279.50 V 275.57 V 276.48 V 

B 277.28 V 277.29 V 279.67 V 279.69 V 275.75 V 276.66 V 

C 276.06 V 276.06 V 278.44 V 278.46 V 274.54 V 275.45 V 

Stage 1 2 3 4 5 6 

B206 

A 279.38 V 279.38 V 279.38 V 279.34 V 277.13 V 277.73 V 

B 279.52 V 279.52 V 279.52 V 279.48 V 277.27 V 277.87 V 

C 277.47 V 277.47 V 277.47 V 277.42 V 275.23 V 275.83 V 

Stage 7 8 9 10 11 12 

B206 

A 277.73 V 277.73 V 279.43 V 279.44 V 275.72 V 276.46 V 

B 277.87 V 277.87 V 279.57 V 279.58 V 275.86 V 276.60 V 

C 275.83 V 275.83 V 277.52 V 277.53 V 273.83 V 274.57 V 

Stage 1 2 3 4 5 6 

B213 

A 279.42 V 279.42 V 279.42 V 279.37 V 277.17 V 280.43 V 

B 279.58 V 279.58 V 279.58 V 279.54 V 277.33 V 280.60 V 

C 277.65 V 277.65 V 277.65 V 277.60 V 275.41 V 278.65 V 

Stage 7 8 9 10 11 12 

B213 

A 280.43 V 280.43 V 275.92 V 275.93 V 275.76 V 276.50 V 

B 280.60 V 280.60 V 276.08 V 276.09 V 275.92 V 276.66 V 

C 278.66 V 278.66 V 274.17 V 274.18 V 274.01 V 274.74 V 

Stage 1 2 3 4 5 6 

B076 C 7.092 kV 7.092 kV 7.092 kV 7.091 kV 7.112 kV 7.102 kV 

Stage 7 8 9 10 11 12 
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B076 C 7.102 kV 7.102 kV 7.094 kV 7.094 kV 7.085 kV 7.108 kV 

Stage 1 2 3 4 5 6 

B079 C 7.070 kV 7.070 kV 7.070 kV 7.069 kV 7.104 kV 7.096 kV 

Stage 7 8 9 10 11 12 

B079 C 7.096 kV 7.096 kV 7.072 kV 7.072 kV 7.068 kV 7.086 kV 

Stage 1 2 3 4 5 6 

B106 C 7.087 kV 7.087 kV 7.087 kV 7.086 kV 7.110 kV 7.101 kV 

Stage 7 8 9 10 11 12 

B106 C 7.101 kV 7.101 kV 7.089 kV 7.089 kV 7.081 kV 7.103 kV 

Stage 1 2 3 4 5 6 

B118 B 7.123 kV 7.123 kV 7.123 kV 7.122 kV 7.156 kV 7.149 kV 

Stage 7 8 9 10 11 12 

B118 B 7.149 kV 7.149 kV 7.124 kV 7.124 kV 7.120 kV 7.139 kV 

Stage 1 2 3 4 5 6 

B150 C 7.093 kV 7.093 kV 7.093 kV 7.092 kV 7.129 kV 7.122 kV 

Stage 7 8 9 10 11 12 

B150 C 7.122 kV 7.122 kV 7.094 kV 7.094 kV 7.090 kV 7.108 kV 

Stage 1 2 3 4 5 6 

B169 A 7.118 kV 7.118 kV 7.118 kV 7.117 kV 7.151 kV 7.143 kV 

Stage 7 8 9 10 11 12 

B169 A 7.143 kV 7.143 kV 7.120 kV 7.120 kV 7.115 kV 7.135 kV 

Section 4 

Stage 1 2 3 4 5 6 

B208 

A 277.13 V 277.13 V 277.13 V 277.15 V 279.25 V 279.07 V 

B 277.53 V 277.53 V 277.53 V 277.54 V 279.65 V 279.47 V 

C 276.46 V 276.46 V 276.46 V 276.48 V 278.57 V 278.39 V 

Stage 7 8 9 10 11 12 

B208 

A 279.08 V 279.08 V 277.10 V 277.11 V 276.46 V 276.48 V 

B 279.47 V 279.47 V 277.50 V 277.50 V 276.85 V 276.88 V 

C 278.39 V 278.39 V 276.43 V 276.43 V 275.78 V 275.80 V 

Stage 1 2 3 4 5 6 

B209 

A 276.60 V 276.60 V 276.60 V 276.60 V 278.73 V 278.69 V 

B 277.05 V 277.05 V 277.05 V 277.04 V 279.18 V 279.13 V 

C 276.04 V 276.04 V 276.04 V 276.04 V 278.16 V 278.12 V 

Stage 7 8 9 10 11 12 

B209 

A 278.69 V 278.69 V 276.60 V 276.60 V 276.59 V 276.66 V 

B 279.13 V 279.13 V 277.04 V 277.05 V 277.04 V 277.10 V 

C 278.12 V 278.12 V 276.04 V 276.04 V 276.03 V 276.09 V 
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Stage 1 2 3 4 5 6 

B211 

A 276.85 V 276.85 V 276.85 V 276.85 V 279.05 V 279.05 V 

B 277.33 V 277.33 V 277.33 V 277.33 V 279.53 V 279.53 V 

C 276.42 V 276.42 V 276.42 V 276.42 V 278.61 V 278.61 V 

Stage 7 8 9 10 11 12 

B211 

A 279.05 V 279.05 V 276.85 V 276.85 V 276.86 V 276.86 V 

B 279.53 V 279.53 V 277.33 V 277.33 V 277.33 V 277.33 V 

C 278.61 V 278.61 V 276.42 V 276.42 V 276.42 V 276.42 V 

Stage 1 2 3 4 5 6 

B212 

A 276.38 V 276.38 V 276.38 V 276.40 V 279.42 V 279.26 V 

B 276.78 V 276.78 V 276.78 V 276.80 V 279.82 V 279.66 V 

C 275.70 V 275.70 V 275.70 V 275.72 V 278.74 V 278.58 V 

Stage 7 8 9 10 11 12 

B212 

A 279.26 V 279.26 V 276.36 V 276.36 V 276.35 V 276.74 V 

B 279.66 V 279.66 V 276.75 V 276.76 V 276.74 V 277.14 V 

C 278.58 V 278.58 V 275.68 V 275.68 V 275.67 V 276.06 V 

Stage 1 2 3 4 5 6 

B130 C 7.374 kV 7.374 kV 7.374 kV 7.375 kV 7.431 kV 7.426 kV 

Stage 7 8 9 10 11 12 

B130 C 7.426 kV 7.426 kV 7.374 kV 7.374 kV 7.373 kV 7.374 kV 

The state of charge (SOC) of all ESUs across the optimization horizon of 3 hours 

(12 stages) are plotted in Figure 16. Note that the SOC of an ESU is defined as the ratio 

between its stored energy E  and its storage capacity maxE , so SOC is unitless between 0 

and 1. Figure 17 shows how the MQFOPFM objective function value varies over the 17 

iterations, with the initial value (without optimization) being 271.8253. The optimal value 

obtained upon convergence is 13.5207. 
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Figure 16 – State of charge of energy storage units across optimization horizon. 

 

Figure 17 – MQFOPFM objective function value over iterations. 
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Since the optimization horizon is 3 hours but the algorithm only takes 5.5 minutes 

to run, the voltage profile of the PNM feeder can be optimized online. The algorithm 

performance with different optimization horizons is given in Table 7, which includes the 

problem dimensions, number of iterations and runtime in each case. 

Table 7 – Algorithm performance with different optimization horizons. 

Optimization 

Horizon 

Number of 

Stages 

Number of 

States 

Number of 

Controls 

Number of 

Iterations 

Algorithm 

Runtime 

1 hour 4 22648 176 24 33.687 s 

2 hours 8 45296 352 19 126.553 s 

3 hours 12 67944 528 17 322.880 s 

4 hours 16 90592 704 24 906.689 s 

5 hours 20 113240 880 30 2018.744 s 

6 hours 24 135888 1056 30 3723.605 s 

Since the PV source real power outputs may vary due to weather changes, the 

MQFOPF is able to incorporate this feature by optimizing the network voltage profile for 

a shorter period of time and using the model predictive control with moving optimization 

horizons.  

For comparison, the problem is also solved with commercial nonlinear optimization 

software Knitro [80]. The MQFOPFM in (32) is imported to the Knitro solver as a 

quadratic constrained quadratic program. Since running Knitro C++ interface consumes a 

lot of memory, only a single-stage problem of the PNM feeder with 5662 states, 44 controls 

as well as 5882 equality and inequality constraints can be run on the personal laptop. 

However, even with this small problem that represents a horizon of 15 minutes, Knitro 

takes nearly 6.5 hours to solve, while SLP needs less than 1 second. A much smaller case 
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with the reduced-order model of the PNM feeder [81] that contains 15 buses is also tested 

using Knitro. The sing-stage problem of the reduced-order PNM feeder has 820 states, 18 

controls and 922 optimization constraints, which takes 14.5 seconds for the Knitro 

embedded program to reach an optimal solution. When the number of stages is extended 

to 3 for this 15-bus system, Knitro returns an infeasible solution after 50 minutes of solving, 

while the SLP integrated MQFOPF algorithm takes only 0.5 seconds to reach an optimum.  

8.3 Summary 

This chapter demonstrates how the proposed method is used for the MQFOPF 

application, which is tested on an actual PNM feeder model. The algorithm is written in 

Visual C++. 

The MQFOPF is used to optimize the voltage profile in the PNM feeder model. 

The MQFOPFM constructed contains 12 stages with an interval of 15 minutes, so the 

optimization horizon is 3 hours. The OPF problem is solved within 18 SLP iterations. The 

optimal controls obtained upon convergence are able to drive the PNM system to the 

optimal operating point that minimizes the objective function value and at the same time 

satisfies all constraints in the system. The whole process starting from forming the network 

model based on the object-oriented device models to obtaining the optimal solution takes 

around 5.5 minutes on a personal laptop. Tests are also performed to measure the time 

spent for cases with different number of stages, up to 6 hours of optimization horizon. The 

results show that the algorithm runtime is much less than the horizon, meaning that the 

optimization can be run online.  
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Commercial optimization software Knitro is used to optimize the voltage profile in 

the PNM feeder considering only 1 stage, but the solution time is way over 6 hours. Even 

for a much smaller case, the proposed method greatly outperforms Knitro in terms of speed. 

These comparisons indicate that the SLP solution algorithm developed is very efficient. 

As a result, the proposed method for the MQFOPF application has been proven to 

be successful and promising. Moreover, the algorithm is able to exceed commercial 

nonlinear optimization software Knitro in both speed and solution quality. 
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CHAPTER 9. SECURITY CONSTRAINED QUADRATIC 

OPTIMAL POWER FLOW NUMERICAL CASE 

In this chapter, the security constrained quadratic OPF is chosen from the dropdown 

menu in Figure 12. The frequency domain device models, including the device outage 

models, are imported after the three tolerance values used in the SLP algorithms are 

defined.  

The SCQOPFM is constructed using (57) with the minimization of total base case 

generation cost in (28) as its objective. In this application, the contingencies to be 

considered are required before the algorithm can be run. The proposed method for the 

SCQOPF is tested on the IEEE 57-bus system. Since the original test case provided in [82] 

does not include any voltage or flow limits, some modifications have been made to the 

system to make it suitable for the proposed SCQOPF. Once the selected SCQOPF problem 

is solved, the user is able to export the final OPF solution. 

9.1 IEEE 57-Bus System Description 

The IEEE 57-bus system is shown in Figure 18, containing 42 loads, 65 lines, 15 

transformers, 3 capacitor banks and 7 generators. Note that it is a 138 kV three-phase 

system assumed to be balanced, so in this example only the positive sequence system is 

used for simplicity, but all the data given are in their three-phase quantities.  
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Figure 18 – IEEE 57-bus system. 

B1 is the slack bus with the generator at B1 being the slack generator, so its voltage 

setpoint is controllable. The other 6 generators are controlled through their real and reactive 

power outputs. The transformer taps are also controllable. Hence, there are 28 continuous 

controls in the system and they are given in Table 8 together with their bounds, initial 

values and initial maximum excursion limits. The voltage setpoint is denoted by magV  and 

the unitless transformer tap setting is represented by tap , while the real and reactive power 
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outputs are respectively P  and Q . Note that there are two transformers connected in 

parallel between B4 and B18. Similarly, B24 and B25 are connected via two parallel lines. 

Table 8 – Controls in IEEE 57-bus system. 

Device Bus Control Bounds 
Initial 

Value 

Initial Maximum 

Excursion Limit 

Generator B1 magV  0.95 – 1.05 1.04 0.01 

Generator B2 
P  (MW) 0.0 – 100.0 0.0 5.0 

Q  (MVar) -17.0 – 50.0 -0.755 2.5 

Generator B3 
P  (MW) 0.0 – 140.0 40.0 7.0 

Q  (MVar) -10.0 – 60.0 -0.905 3.0 

Generator B6 
P  (MW) 0.0 – 100.0 0.0 5.0 

Q  (MVar) -8.0 – 25.0 0.871 1.25 

Generator B8 
P  (MW) 0.0 – 550.0 450.0 27.5 

Q  (MVar) -140.0 – 200.0 62.1 10.0 

Generator B9 
P  (MW) 0.0 – 100.0 0.0 5.0 

Q  (MVar) -3.0 – 9.0 2.288 0.45 

Generator B12 
P  (MW) 100.0 – 410.0 310.0 20.5 

Q  (MVar) -150.0 – 155.0 128.631 7.75 

Transformer B4 – B18 tap  0.9 – 1.1 0.978 0.02 

Transformer B4 – B18 tap  0.9 – 1.1 0.97 0.02 

Transformer B7 – B29 tap  0.9 – 1.1 0.967 0.02 

Transformer B9– B55 tap  0.9 – 1.1 0.94 0.02 

Transformer B10 – B51 tap  0.9 – 1.1 0.93 0.02 

Transformer B11 – B41 tap  0.9 – 1.1 0.955 0.02 

Transformer B11 – B43 tap  0.9 – 1.1 0.958 0.02 

Transformer B13 – B49 tap  0.9 – 1.1 0.9 0.02 

Transformer B14 – B46 tap  0.9 – 1.1 0.9 0.02 

Transformer B15 – B45 tap  0.9 – 1.1 0.955 0.02 

Transformer B21 – B20 tap  0.9 – 1.1 1.043 0.02 
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Transformer B24 – B26 tap  0.9 – 1.1 1.043 0.02 

Transformer B34 – B32 tap  0.9 – 1.1 0.975 0.02 

Transformer B39 – B57 tap  0.9 – 1.1 0.98 0.02 

Transformer B40 – B56 tap  0.9 – 1.1 0.958 0.02 

Table 9 shows the loading condition of the test system, including the location as 

well as the real and reactive power consumptions of every load. The 3 capacitor banks are 

located at B18, B25 and B53 with respective ratings of 10 MVar, 5.9 MVar and 6.3 MVar.  

Table 9 – IEEE 57-bus system load information. 

Bus B1 B2 B3 B5 B6 B8 

Load 
55.0 MW 

17.0 MVar 

3.0 MW 

88.0 MVar 

41.0 MW 

21.0 MVar 

13.0 MW 

4.0 MVar 

75.0 MW 

2.0 MVar 

150.0 MW 

22.0 MVar 

Bus B9 B10 B12 B13 B14 B15 

Load 
121.0 MW 

26.0 MVar 

5.0 MW 

2.0 MVar 

377.0 MW 

24.0 MVar 

18.0 MW 

2.3 MVar 

10.5 MW 

5.3 MVar 

22.0 MW 

5.0 MVar 

Bus B16 B17 B18 B19 B20 B23 

Load 
43.0 MW 

3.0 MVar 

42.0 MW 

8.0 MVar 

27.2 MW 

9.8 MVar 

3.3 MW 

0.6 MVar 

2.3 MW 

1.0 MVar 

6.3 MW 

2.1 MVar 

Bus B25 B27 B28 B29 B30 B31 

Load 
6.3 MW 

3.2 MVar 

9.3 MW 

0.5 MVar 

4.6 MW 

2.3 MVar 

17.0 MW 

2.6 MVar 

3.6 MW 

1.8 MVar 

5.8MW 

2.9 MVar 

Bus B32 B33 B35 B38 B41 B42 

Load 
1.6 MW 

0.8 MVar 

3.8 MW 

1.9 MVar 

6.0 MW 

3.0 MVar 

14.0 MW 

7.0 MVar 

6.3 MW 

3.0 MVar 

7.1 MW 

4.4 MVar 

Bus B43 B44 B47 B49 B50 B51 

Load 
2.0 MW 

1.0 MVar 

12.0 MW 

1.8 MVar 

29.7 MW 

11.6 MVar 

18.0 MW 

8.5 MVar 

21.0 MW 

10.5 MVar 

18.0 MW 

5.3 MVar 

Bus B52 B53 B54 B55 B56 B57 

Load 
4.9 MW 

2.2 MVar 

20.0 MW 

10.0 MVar 

4.1 MW 

1.4 MVar 

6.8 MW 

3.4 MVar 

7.6 MW 

2.2 MVar 

6.7 MW 

2.0 MVar 
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The SCQOPFM is subject to a number of constraints, including bus voltage limits 

and branch flow limits. The voltage at each bus with either a generator or a load ranges 

from 0.95 pu to 1.05 pu. As for the branch flow limits defined in Table 10, the lines have 

current limits while the transformers have power limits. The current or power flowing into 

a line or a transformer from either side of the device has to satisfy the limits. The normal 

and contingency limits are the maximum amounts of flows allowed in the base case and 

contingencies, respectively. In this example, the branch flows have contingency limits that 

are 25 % higher than their normal limits. The terminal voltages of generators and loads 

must be between 0.95 pu and 1.05 pu in both base case and contingencies. For the slack 

generator at B1, its real and reactive power outputs are not controllable, but they are 

constrained within ranges 0 – 575.88 MW and -140 – 200 MVar, respectively.  

Table 10 – Branch flow limits. 

Line 

Location 
Normal 

Limit 

Contingency 

Limit 
Location 

Normal 

Limit 

Contingency 

Limit 

B1 – B2 915.81 A 1144.77 A B1 – B15 826.40 A 1033.00 A 

B1 – B16 825.75 A 1032.19 A B1 – B17 610.03 A 762.54 A 

B2 – B3 835.17 A 1043.96 A B3 – B4 344.81 A 431.01 A 

B3 – B15 357.04 A 446.30 A B4 – B5 94.61 A 118.26 A 

B4 – B6 147.72 A 184.65 A B5 – B6 51.33 A 64.16 A 

B6 – B7 87.57 A 109.47 A B6 – B8 268.26 A 335.33 A 

B7 – B8 955.42 A 1194.27 A B8 – B9 1980.80 A 2476.00 A 

B9 – B10 174.44 A 218.05 A B9 – B11 170.56 A 213.20 A 

B9 – B12 79.79 A 99.74 A B9 – B13 51.74 A 64.68 A 

B10 – B12 345.01 A 431.26 A B11 – B13 130.04 A 162.55 A 

B12 – B13 319.10 A 398.88 A B12 – B16 260.94 A 326.17 A 

B12 – B17 314.59 A 393.23 A B13 – B14 291.22 A 364.02 A 
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B13 – B15 389.33 A 486.66 A B14 – B15 405.02 A 506.27 A 

B18 – B19 26.71 A 33.39 A B19 – B20 19.17 A 23.96 A 

B21 – B22 8.40 A 10.50 A B22 – B23 52.89 A 66.11 A 

B22 – B38 121.77 A 152.22 A B23 – B24 33.66 A 42.08 A 

B24 – B25 51.06 A 63.82 A B24 – B25 62.82 A 78.53 A 

B25 – B30 44.93 A 56.16 A B26 – B27 72.51 A 90.64 A 

B27 – B28 110.95 A 138.69 A B28 – B29 149.09 A 186.36 A 

B29 – B52 110.99 A 138.74 A B30 – B31 38.53 A 48.16 A 

B31 – B32 9.89 A 12.37 A B32 – B33 53.30 A 66.63 A 

B34 – B35 71.34 A 89.18 A B35 – B36 128.60 A 160.75 A 

B36 – B37 142.41 A 178.02 A B36 – B40 58.80 A 73.50 A 

B37 – B38 182.54 A 228.18A B37 – B39 24.45 A 30.56 A 

B38 – B44 276.53 A 345.67 A B38 – B48 183.29 A 229.11 A 

B38 – B49 62.30 A 77.88 A B41 – B42 51.82 A 64.78 A 

B41 – B43 152.86 A 191.07 A B41 – B56 72.81 A 91.01 A 

B42 – B56 21.50 A 26.88 A B44 – B45 174.65 A 218.31 A 

B46 – B47 317.42 A 396.78 A B47 – B48 150.16 A 187.69 A 

B48 – B49 68.70 A 85.88 A B49 – B50 83.17 A 103.96 A 

B50 – B51 64.08 A 80.10 A B52 – B53 72.25 A 90.31 A 

B53 – B54 87.33 A 109.17 A B54 – B55 137.95 A 172.44 A 

B56 – B57 29.84 A 37.30 A    

Transformer 

Location 
Normal 

Limit 

Contingency 

Limit 
Location 

Normal 

Limit 

Contingency 

Limit 

B4 – B18 49.95 MVA 62.44 MVA B4 – B18 37.44 MVA 46.81 MVA 

B7 – B29 82.20 MVA 102.75 MVA B9 – B55 25.48 MVA 31.85 MVA 

B10 – B51 33.31 MVA 41.63 MVA B11 – B41 31.62 MVA 39.52 MVA 

B11 – B43 41.06 MVA 51.33 MVA B13 – B49 118.49 MVA 148.12 MVA 

B14 – B46 87.07 MVA 108.84 MVA B15 – B45 50.35 MVA 62.94 MVA 

B21 – B20 6.48 MVA 8.10 MVA B24 – B26 21.64 MVA 27.05 MVA 

B34 – B32 26.01 MVA 32.51 MVA B39 – B57 10.85 MVA 13.56 MVA 

B40 – B56 7.16 MVA 8.95 MVA    
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The objective function of the example SCQOPFM is the minimization of the total 

generation cost given by (28). Different generators have different quadratic cost functions, 

which are defined by cost coefficients 
ga , 

gb  and 
gc  in (27). The cost coefficients chosen 

for each generator that come from the MATPOWER case [83] are listed in Table 11. 

Table 11 – Generator cost coefficients. 

Generator ga  ($/hr) 
gb  ($/MW/hr) 

gc  ($/MW2/hr) 

Generator B1 0.0 20.0 0.07758 

Generator B2 0.0 40.0 0.01 

Generator B3 0.0 20.0 0.25 

Generator B6 0.0 40.0 0.01 

Generator B8 0.0 20.0 0.02222 

Generator B9 0.0 40.0 0.01 

Generator B12 0.0 20.0 0.03226 

In this test case, 5 contingencies are considered. Every contingency has a device 

outage, which is given in Table 12. The outage control factor c  is chosen to be 0.000001 

for constructing the device outage models. 

Table 12 – Contingencies considered in security constrained quadratic OPF. 

Contingency 1 2 3 4 5 

Outage 

Device 

Line  

B8 – B9 

Line 

B9 – B12 

Line 

B12 – B13 

Generator 

B3 

Transformer 

B15 – B45 

As a result, the example SCQOPFM constructed contains 6 networks, including 1 

base case and 5 contingencies. Each network model has 446 states. The 28 controls are 

shared among the 6 networks. The optimization is performed for only one single time 



 113 

instant in the frequency domain. The objective is minimizing the total generation cost in 

the base case while satisfying the constraints in both the base case and the selected 

contingencies. 

9.2 Security Constrained Quadratic Optimal Power Flow Results 

The tolerance values defined for the SLP algorithm are 0 0.0001 = , 1 0.0001 =  

and 0 0.000001 = . Parameter   used to adjust the maximum control excursion limits in 

each iteration is 0.8. With the frequency domain device models imported through the user 

interface in Figure 12, information of the 5 contingencies is also imported before the 

security constrained quadratic OPF is run. The whole SCQOPFM formulation and solution 

process takes about 1 second on a personal laptop (i5-6300U, 8GB RAM). The optimal 

solution is obtained at iteration 37, with the optimal control values listed in Table 13. Each 

one of them is within its allowable control range. It is noticeable from Table 8 that 6 

generator controls and 1 transformer tap setting are at their upper bounds. 

Table 13 – Optimal control values for IEEE 57-bus system. 

Device Location Control Optimal Value 

Generator B1 Voltage Setpoint 1.05 pu 

Generator B2 
Real Power Output 100.0 MW 

Reactive Power Output 50.0 MVar 

Generator B3 
Real Power Output 74.0102 MW 

Reactive Power Output 38.6257 MVar 

Generator B6 
Real Power Output 22.6886 MW 

Reactive Power Output 22.6227 MVar 

Generator B8 
Real Power Output 310.2826 MW 

Reactive Power Output 23.9020 MVar 
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Generator B9 
Real Power Output 100.0 MW 

Reactive Power Output 9.0 MVar 

Generator B12 
Real Power Output 410.0 MW 

Reactive Power Output 65.7106 MVar 

Transformer B4 – B18 Tap Setting 0.9765 

Transformer B4 – B18 Tap Setting 0.9688 

Transformer B7 – B29 Tap Setting 0.9824 

Transformer B9– B55 Tap Setting 0.9501 

Transformer B10 – B51 Tap Setting 0.9894 

Transformer B11 – B41 Tap Setting 0.9097 

Transformer B11 – B43 Tap Setting 0.9484 

Transformer B13 – B49 Tap Setting 0.9029 

Transformer B14 – B46 Tap Setting 0.9314 

Transformer B15 – B45 Tap Setting 0.9245 

Transformer B21 – B20 Tap Setting 1.0615 

Transformer B24 – B26 Tap Setting 1.1000 

Transformer B34 – B32 Tap Setting 0.9449 

Transformer B39 – B57 Tap Setting 0.9589 

Transformer B40 – B56 Tap Setting 0.9823 

The bus voltage magnitudes across the example test system under optimal operating 

conditions in all networks are given in Table 14. The system voltage profile is different in 

different networks. The voltages posted in Table 14 are also plotted in Figure 19 to better 

show the voltage profile differences between networks.  

Table 14 – Optimal bus voltage magnitudes in base case and contingencies. 

Bus Base Case 
Contingency 

1 2 3 4 5 

B1 1.0500 pu 1.0500 pu 1.0500 pu 1.0500 pu 1.0500 pu 1.0500 pu 
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B2 1.0465 pu 1.0463 pu 1.0455 pu 1.0437 pu 1.0368 pu 1.0456 pu 

B3 1.0327 pu 1.0320 pu 1.0289 pu 1.0215 pu 0.9942 pu 1.0291 pu 

B4 1.0266 pu 1.0303 pu 1.0217 pu 1.0149 pu 0.9896 pu 1.0208 pu 

B5 1.0196 pu 1.0316 pu 1.0130 pu 1.0076 pu 0.9854 pu 1.0114 pu 

B6 1.0215 pu 1.0373 pu 1.0142 pu 1.0094 pu 0.9889 pu 1.0122 pu 

B7 1.0090 pu 1.0276 pu 1.0002 pu 0.9963 pu 0.9784 pu 0.9974 pu 

B8 1.0197 pu 1.0453 pu 1.0101 pu 1.0077 pu 0.9913 pu 1.0087 pu 

B9 1.0088 pu 0.9779 pu 0.9978 pu 0.9970 pu 0.9828 pu 0.9976 pu 

B10 1.0158 pu 0.9931 pu 1.0091 pu 1.0184 pu 0.9928 pu 1.0044 pu 

B11 1.0008 pu 0.9779 pu 0.9927 pu 0.9811 pu 0.9758 pu 0.9889 pu 

B12 1.0307 pu 1.0144 pu 1.0272 pu 1.0500 pu 1.0117 pu 1.0220 pu 

B13 1.0058 pu 0.9894 pu 1.0002 pu 0.9796 pu 0.9823 pu 0.9954 pu 

B14 1.0021 pu 0.9892 pu 0.9971 pu 0.9808 pu 0.9778 pu 0.9919 pu 

B15 1.0177 pu 1.0098 pu 1.0137 pu 1.0023 pu 0.9935 pu 1.0156 pu 

B16 1.0302 pu 1.0179 pu 1.0276 pu 1.0444 pu 1.0161 pu 1.0238 pu 

B17 1.0327 pu 1.0260 pu 1.0314 pu 1.0404 pu 1.0251 pu 1.0293 pu 

B18 1.0468 pu 1.0499 pu 1.0413 pu 1.0333 pu 1.0074 pu 1.0381 pu 

B19 1.0027 pu 0.9976 pu 0.9969 pu 0.9864 pu 0.9681 pu 0.9802 pu 

B20 0.9873 pu 0.9774 pu 0.9813 pu 0.9694 pu 0.9560 pu 0.9567 pu 

B21 1.0377 pu 1.0266 pu 1.0312 pu 1.0172 pu 1.0070 pu 1.0014 pu 

B22 1.0366 pu 1.0243 pu 1.0300 pu 1.0157 pu 1.0069 pu 0.9983 pu 

B23 1.0360 pu 1.0242 pu 1.0293 pu 1.0151 pu 1.0060 pu 0.9980 pu 

B24 1.0401 pu 1.0370 pu 1.0320 pu 1.0199 pu 1.0071 pu 1.0076 pu 

B25 1.0302 pu 1.0258 pu 1.0215 pu 1.0078 pu 0.9944 pu 0.9940 pu 

B26 0.9478 pu 0.9443 pu 0.9404 pu 0.9298 pu 0.9178 pu 0.9186 pu 

B27 0.9812 pu 0.9912 pu 0.9726 pu 0.9657 pu 0.9500 pu 0.9615 pu 

B28 1.0002 pu 1.0157 pu 0.9913 pu 0.9859 pu 0.9688 pu 0.9845 pu 

B29 1.0160 pu 1.0355 pu 1.0070 pu 1.0025 pu 0.9846 pu 1.0030 pu 

B30 1.0124 pu 1.0064 pu 1.0036 pu 0.9893 pu 0.9760 pu 0.9749 pu 
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B31 0.9895 pu 0.9800 pu 0.9807 pu 0.9655 pu 0.9528 pu 0.9500 pu 

B32 1.0063 pu 0.9919 pu 0.9980 pu 0.9822 pu 0.9711 pu 0.9657 pu 

B33 1.0042 pu 0.9897 pu 0.9958 pu 0.9800 pu 0.9689 pu 0.9635 pu 

B34 0.9884 pu 0.9744 pu 0.9813 pu 0.9663 pu 0.9575 pu 0.9513 pu 

B35 0.9957 pu 0.9810 pu 0.9886 pu 0.9737 pu 0.9651 pu 0.9587 pu 

B36 1.0053 pu 0.9903 pu 0.9983 pu 0.9835 pu 0.9752 pu 0.9686 pu 

B37 1.0130 pu 0.9982 pu 1.0061 pu 0.9914 pu 0.9831 pu 0.9758 pu 

B38 1.0375 pu 1.0239 pu 1.0311 pu 1.0165 pu 1.0084 pu 0.9982 pu 

B39 1.0109 pu 0.9958 pu 1.0040 pu 0.9892 pu 0.9810 pu 0.9741 pu 

B40 1.0040 pu 0.9884 pu 0.9969 pu 0.9821 pu 0.9738 pu 0.9679 pu 

B41 1.0430 pu 1.0192 pu 1.0345 pu 1.0209 pu 1.0144 pu 1.0244 pu 

B42 1.0098 pu 0.9882 pu 1.0012 pu 0.9870 pu 0.9797 pu 0.9853 pu 

B43 1.0500 pu 1.0260 pu 1.0414 pu 1.0287 pu 1.0228 pu 1.0354 pu 

B44 1.0499 pu 1.0374 pu 1.0439 pu 1.0297 pu 1.0213 pu 0.9939 pu 

B45 1.0863 pu 1.0761 pu 1.0812 pu 1.0680 pu 1.0591 pu 0.9941 pu 

B46 1.0644 pu 1.0498 pu 1.0586 pu 1.0419 pu 1.0374 pu 1.0473 pu 

B47 1.0463 pu 1.0313 pu 1.0401 pu 1.0242 pu 1.0182 pu 1.0210 pu 

B48 1.0435 pu 1.0287 pu 1.0372 pu 1.0219 pu 1.0152 pu 1.0140 pu 

B49 1.0465 pu 1.0289 pu 1.0401 pu 1.0256 pu 1.0190 pu 1.0230 pu 

B50 1.0199 pu 0.9998 pu 1.0132 pu 1.0063 pu 0.9932 pu 1.0000 pu 

B51 1.0257 pu 1.0022 pu 1.0189 pu 1.0256 pu 1.0019 pu 1.0135 pu 

B52 0.9902 pu 0.9949 pu 0.9800 pu 0.9762 pu 0.9579 pu 0.9768 pu 

B53 0.9826 pu 0.9803 pu 0.9719 pu 0.9684 pu 0.9502 pu 0.9691 pu 

B54 1.0119 pu 0.9924 pu 1.0008 pu 0.9984 pu 0.9815 pu 0.9991 pu 

B55 1.0500 pu 1.0147 pu 1.0386 pu 1.0374 pu 1.0220 pu 1.0381 pu 

B56 1.0066 pu 0.9879 pu 0.9983 pu 0.9838 pu 0.9761 pu 0.9771 pu 

B57 1.0040 pu 0.9868 pu 0.9958 pu 0.9810 pu 0.9730 pu 0.9713 pu 
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Figure 19 – Voltage profiles across IEEE 57-bus system in different networks. 

It can be noticed that voltages at B26, B45 and B46 in some networks are outside 

the range of 0.95 – 1.05 pu. This is because there is no generator or load at those buses 

according to Figure 18, so no voltage constraint is defined for the three buses and the 

abnormal voltages will not cause any equipment damage. Since the SCQOPFM is 

constructed based on device models and the system constraints are introduced by device 

models, no voltage bounds can be directly added to a bus unless the devices connected to 

that bus contain voltage constraints. This problem can be solved by adding the voltage 

limits to both sides of a line model, but this approach will give many repetitive constraints. 

The proposed algorithm treats every device model the same way due to object orientation, 

which means that there are N sets of voltage constraints for the same bus when N lines are 

connected to it. Hence, to refrain from increasing the size of the example SCQOPFM due 

to redundant constraints, currently the bus voltage constraints are only defined in generator 

and load models. Besides B26, B45 and B46, the voltages at other buses are in the 

acceptable range as shown in both Table 14 and Figure 19. 
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When the security constrained quadratic OPF problem is solved, the optimal 

objective function value (minimum total generation cost) is 43698.15 $/hr. It has been 

reduced iteratively from an initial value of 51364.67 $/hr as shown in Figure 20. 

 

Figure 20 – Variation of total generation cost across iterations. 

For comparison, another security constrained quadratic OPF case is run without 

including any contingency, forming and solving the benchmark SCQOPFM. Hence, the 

optimization is performed on only 1 network, which is the base case with all devices 

operational. This time, the SCQOPF problem is solved at iteration 10 in 0.06 seconds. The 

optimal objective function value is 42631.03 $/hr, which is less than that of the example 

SCQOPFM with 5 contingencies considered. It makes sense as there are less constraints in 

the benchmark SCQOPFM with no contingency, so the solution space is larger.  

Table 15 gives the optimal controls of the benchmark case, which is quite different 

from those in Table 13. With no contingency involved, the benchmark problem does not 
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need to worry about possible device outages, so the controls are able to move more freely. 

The generator at B8 sees a large increase in its real power generation when Table 15 is 

compared with Table 13. This is because the outage of line B8 – B9 in contingency 1 of 

the example SCQOPFM causes a big problem in transferring the power from B8 to other 

parts of the system. Therefore, the generator at B8 cannot generate as much real power as 

in the benchmark case even though it helps reducing the total generation cost in the base 

case of the system. 

Table 15 – Solved controls in benchmark SCQOPFM. 

Device Location Control Optimal Value 

Generator B1 Voltage Setpoint 1.05 pu 

Generator B2 
Real Power Output 50.0 MW 

Reactive Power Output 24.2450 MVar 

Generator B3 
Real Power Output 79.4436 MW 

Reactive Power Output 29.0950 MVar 

Generator B6 
Real Power Output 48.0713 MW 

Reactive Power Output 0.8710 MVar 

Generator B8 
Real Power Output 444.5734 MW 

Reactive Power Output 58.4041 MVar 

Generator B9 
Real Power Output 20.1719 MW 

Reactive Power Output 4.0880 MVar 

Generator B12 
Real Power Output 410.0 MW 

Reactive Power Output 85.1336 MVar 

Transformer B4 – B18 Tap Setting 0.9827 

Transformer B4 – B18 Tap Setting 0.9824 

Transformer B7 – B29 Tap Setting 0.9712 

Transformer B9– B55 Tap Setting 0.9660 

Transformer B10 – B51 Tap Setting 0.9729 

Transformer B11 – B41 Tap Setting 0.9000 
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Transformer B11 – B43 Tap Setting 0.9578 

Transformer B13 – B49 Tap Setting 0.9067 

Transformer B14 – B46 Tap Setting 0.9672 

Transformer B15 – B45 Tap Setting 0.9556 

Transformer B21 – B20 Tap Setting 1.0030 

Transformer B24 – B26 Tap Setting 1.0687 

Transformer B34 – B32 Tap Setting 0.9750 

Transformer B39 – B57 Tap Setting 0.9939 

Transformer B40 – B56 Tap Setting 1.0380 

The same example SCQOPF with the 5 contingencies in Table 12 considered is 

also solved with Knitro [80] for more comparisons. Since the SCQOPFM is sent to the 

Knitro solver in the form of (62), which is referred to be Knitro SCQOPFM, the number 

of variables is 2704 while the total number of equality and inequality constraints is 4236. 

The total runtime including SCQOPF formulation and solution by Knitro is 11.5 minutes. 

The optimal objective function value is 43697.63 $/hr, which is only 0.52 $/hr less than the 

value obtained through the SLP approach. Since the proposed SCQOPF algorithm only 

takes about 1 second to solve the same problem, its overall performance is way better than 

Knitro. 

The base case optimal bus voltages of the example, benchmark and Knitro 

SCQOPFMs are plotted for comparison in Figure 21. In the benchmark results, only the 

voltage at B45 is above 1.05 pu because no voltage constraints are imposed on that bus. In 

general, the benchmark SCQOPFM has a better system voltage profile, which is 

reasonable. The existence of the 5 contingencies in the example case greatly affects the 

controls in the IEEE 57-bus system, so the voltages solved from the power flow based on 
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the controls have already taken the possible device outages into account. Since the Knitro 

SCQOPFM also includes the 5 contingencies, it gives a voltage profile that closely matches 

the one generated by the example SCQOPFM. This is reasonable considering the small 

difference in their objective function values. 

 

Figure 21 – Base case voltages in three different SCQOPFMs. 

9.3 Summary 

This chapter demonstrates how the proposed method is used for the SCQOPF 

application, which is tested on the IEEE 57-bus system with addition of selected 

contingencies. The whole SCQOPF problem construction and solution process is coded in 

Visual C++. 

The example SCQOPFM of the test system has 6 networks, 1 base case and 5 

contingencies, with different device types taken into consideration for possible device 

outages. The objective function is minimizing the total generation cost in the base case. 
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The process of forming and solving the SCQOPF problem takes about 1 second. It takes 

the SLP 38 iterations before the optimal controls shared among different networks are 

acquired. All the constraints in all the networks are satisfied under the optimal operating 

condition, which successfully minimizes the total generation cost of the 57-bus system. A 

benchmark case is introduced by only optimizing the base case without incorporating any 

contingency. The runtime for constructing and solving the benchmark SCQOPFM is 0.06 

seconds. The optimal objective function value is less than the example case as the optimal 

solution is less restricted, resulting in a different set of control values. The benchmark 

SCQOPFM also gives a better system voltage profile than the example SCQOPFM that 

has to accommodate 5 different contingencies. 

The numerical case with the same contingencies is also solved using commercial 

solver Knitro. The outcomes are very close to the results produced by the proposed 

SCQOPF algorithm. When the program uses Knitro instead of SLP, the final objective 

function value has a 0.52 $/hr decrease, but the program runtime is 11.5 minutes, which is 

much worse. The comparison demonstrates an outstanding performance of the developed 

approach, especially in efficiency. 

In general, the proposed method has generated promising results for the SCQOPF 

application. The performance of the algorithm developed is highly desirable as it 

outperforms commercial software Knitro. 
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CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

DIRECTIONS 

This chapter concludes the dissertation and discusses future work directions.  

10.1 Conclusions 

 The following work has been completed for this thesis. 

1) A new formulation of OPF problems based on KCL equations and detailed object-

oriented device models has been proposed. 

2) An algorithm that is able to autonomously formulate and solve multi-stage 

quadratic flexible OPF and security constrained quadratic OPF problems has been 

developed. 

3) Sequential linear programming algorithms tailored to the two different OPF 

applications have been developed with the costate method incorporated for 

linearization. 

4) A program with a user-interface has been written in Visual C++ to formulate and 

solve the OPF problems autonomously. 

5) Numerical cases have been used to demonstrate the performance of the proposed 

method on both OPF applications, giving promising results. 

Unlike the conventional OPF formulations that are based on power mismatch 

equations at each node in a power system, the proposed OPF formulation uses KCL 

equations instead and individual device models form the basis of the OPF problem. 

Standard modeling syntax SCAQCF is utilized for object orientation. With all the devices 
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modeled in the same form, the network model is constructed also in the SCAQCF syntax. 

Given an objective function by the user, an OPF problem is directly obtained.  

Two different types of OPF problems can be formed based on the proposed 

formulation method depending on the user’s selection, including the multi-stage quadratic 

flexible OPF and the security constrained quadratic OPF, whose objectives are the 

optimization of system voltage profile and the minimization of total generation cost, 

respectively. The MQFOPFM is formed by stacking the objective function and the network 

model over a number of stages defined, while the SCQOPFM construction involves the 

combination of different networks, including base case and contingencies.  

The OPF problems are solved via tailored SLP algorithms, in which the model 

constraints are added gradually. The costate method is used to linearize the objective 

function and the model constraints, giving a linearized problem with respect to controls 

only. Hence, the size of the problems to be solved is as small as possible in each iteration. 

The solution algorithms are extremely efficient due to the above features. The optimal 

solutions obtained are the control actions to be implemented to drive the systems to the 

optimal operating conditions. 

The whole process from network formulation to constructing and solving either 

OPF problem is autonomous, thus reducing possible human errors. The multi-stage 

quadratic flexible OPF is tested on a PNM real feeder model and the security constrained 

quadratic OPF is run on the IEEE 57-bus system. In both numerical cases, the algorithm 

developed gives promising results and outperforms commercial nonlinear optimization 

software Knitro. Therefore, the performance of the proposed method is highly desirable. 



 125 

The main contributions of this dissertation are: 

1) Detailed physically based device models form the basis of OPF formulation, giving 

more accurate information of the system. 

2) Object-oriented modeling makes it easy and efficient to integrate various DERs into 

OPF problems. 

3) Formulated OPF problems consist of mostly linear KCL equations and the rest are 

quadratic equations, thus reducing the complexity of the problem. 

4) Incorporating the costate method in tailored SLP algorithms with gradually added 

violated constraints greatly reduces problem size and increases efficiency. 

5) The whole OPF formulation and solution process is fully autonomous, reducing the 

possibility of introducing human errors. 

10.2 Future Work Directions 

The future work includes the following possible directions. 

First, since the OPF problems are formulated based on detailed device models, there 

are scalability issues, especially when the number of stages for the MQFOPFM or the 

number of contingencies for the SCQOPFM is too large. Hence, the algorithm efficiency 

needs to be improved, possibly by using parallel computing techniques. 

Second, the test systems are still not big enough to demonstrate the performance of 

the proposed method on practical systems. Larger real systems need to be simulated and 

used for testing the OPF algorithms. In addition, more devices such as converters, wind 

turbines and plug-in electric vehicles are to be modeled and incorporated into the process. 
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Third, the current SLP solution method for solving the OPF problems still has much 

space for improvements. For example, the parameter   used to adjust the maximum 

control excursion limits in each iteration is based on experience. A better method to adjust 

the control movements between consecutive iterations could be incorporated into the SLP 

algorithm to increase the speed and quality of convergence, like a mechanism that adjusts 

the movements based on the amount of existing constraint violations. 

Fourth, discrete variables such as binary controls are to be included in the systems 

in the future. The SLP algorithm requires some modifications to accommodate the addition 

of discrete variables, possibly by introducing some pre-defined rules to set the discrete 

values in the solution to appropriate integers. 

Last but not least, the two OPF applications can be combined into one, giving a 

security constrained multi-stage quadratic flexible OPF problem. When there are forecasts 

available, the model predictive control can be used to achieve optimizations on moving 

horizons with changing OPF models.  
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