Table of Contents

About This Document	1
Recitation Slides	4
Office Hour Slides for Quiz 2 Review	162
Office Hour Slides for Quiz 3 Review	178
Recitation Activity Solutions	187
Office Hour Activity Solutions	317

About This Document

This resource contains curriculum for the distance education version of a course offered at the Georgia Institute of Technology, Math 2401, in Spring 2014. This distance education course explored multivariable calculus concepts during lectures and recitations. Recitations are synchronous sessions that offer students an opportunity to apply and review course concepts, which they have been exposed to in lectures.

Contained in this curriculum are materials for 26 recitations and two office hour sessions, available in PDF and presentation slide formats. The slide format is offered for teaching assistants to import directly into web-conferencing software. Slides contain activities that students would solve. The associated notes contain solutions to corresponding activities and are available in PDF format.

Copyright

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

For Further Information

Questions regarding this document can be directed to Greg Mayer (gsmayer@gmail.com), who would be happy to hear your suggestions on how to improve this document.

List of Topics

The following table presents a list of topics that were explored in the recitation and office hour activities. The numbering system got a little strange: there should be a cancelled recitation for Quiz 1 in there, somewhere.

Recitation Number	Topics
1	Introduction to Math 2401, logistical matters, vector derivatives
2	Vector Functions
3	Vector Functions
4	Tangents, Arc Length
5	Arc Length, Acceleration
6	Acceleration, Level Curves
7	Surfaces, Domain, Limits, Gradients
8	Quiz Review, Gradients
9	Quadratic Surfaces, Extreme Values
10	Extreme Values, Lagrange Multipliers
11	Taylor Approximation, Integration
12	Polar Integration
13	Triple Integrals in Cartesian
14	Triple Integrals in Cartesian
15	No Recitation - Quiz 2
16	Triple Integrals in Cylindrical Coordinates
17	Triple Integrals in Spherical Coordinates

No Recitation - Quiz 3
Line Integrals and Work
Line Integrals: Circulation and Flux
Flux, Conservative Fields
Green's Theorem
No Recitation - Quiz 4
Surface Integrals
Surface Integrals
Divergence

Welcome Back!

1. Announcements
2. Vector Derivatives (14.1)

Technologies: same as last semester

Recitations run in Wimba
Wimba technical problems, can contact technical support http://www.wimba.com/services/support

- Recordings of our recitations on Tegrity gatech.tegrity.com
- Tablets, mics: please bring and use them
- All homework on MyMathLab
- Piazza: link in t-square

Grading Weights: Same as Last Semester

	QH6 (\%)	All other sections (\%)
Homework	10	10
Final	25	25
Quizzes	60	65
Recitations	5	0
Total	100	100

+ random pop quizzes

Questions, Office Hours

Office Hours

Generally held on the night before quizzes
(same as last semester)

Questions

email:
phone (office):
phone (cell):

Torque, τ, is defined as
$\tau=$

Angular Momentum

If the position of a particle with constant mass m is $\mathbf{r}(\mathrm{t})$, its angular momentum is $L(t)=m r(t) \times r^{\prime}(t)$.

Show that $L^{\prime}(t)$ is equal to torque.

Show that if the torque is a zero vector for all t, then the angular momentum of the particle is constant for all t .

MRI Scanner

MRI Image

The applied field creates a measurable signal, $\vec{M}(t)$.

Solve the differential equation, plot the solution.

Recitation 02

Today: Vector Functions $(13.1,13.2)$
Describe situations where the following is true for all t .

$$
\vec{r}(t) \cdot \frac{d \vec{r}}{d t}=0
$$

HW1 is on MyMathLab due next Tuesday at 11:59 pm covers 13.1 and 13.2

Velocity, Acceleration

1) The position of particle is $\mathbf{r}(\mathrm{t})=\sin (\mathrm{t}) \mathbf{i}+\cos (\mathrm{t}) \mathbf{j}$.
a) Show that position is perpendicular to its velocity
b) For what values of t do the position and acceleration have the same direction?
2) Provide another example of a vector function, $\mathbf{s}(\mathrm{t})$ that satisfies $\mathbf{s} \mathbf{s}^{\prime \prime}(\mathrm{t})=\mathbf{s}(\mathrm{t})$ for all t.

A moving object starts at point $(1,0)$ and its velocity is given by the vector [2, 4t]. Its position is given by:

Group Work

1. Group size is 2 or 3 students
2. Someone is in your group when they write their initials on board
3. Students can create breakout rooms
4. Have 10 minutes
5. Reflect on the problem for a minute before moving into groups

Integration

Consider the conjecture: $\int_{a}^{b} \vec{f}(t) \cdot \vec{g}(t) d t=\int_{a}^{b} \vec{f}(t) d t \cdot \int_{a}^{b} \vec{g}(t) d t$
Provide an example to the other members of your group of an $f(t)$ and a $g(t)$ such that 1) the conjecture is not satisfied.
2) the conjecture is satisfied (for non-zero f and g).

Recitation 03

Today: Vector Functions $(13.1,13.2)$

Consider the conjecture: $\int_{a}^{b} \vec{f}(t) \cdot \vec{g}(t) d t=\int_{a}^{b} \vec{f}(t) d t \cdot \int_{a}^{b} \vec{g}(t) d t$
Provide an example to the other members of your group of an $f(t)$ and a $g(t)$ such that

1) the conjecture is not satisfied.
2) the conjecture is satisfied (for non-zero fand g).
3) $f(t)=\quad g(t)=$

LHS : $\int_{a}^{b} \vec{f}(t) \cdot \vec{g}(t) d t=$

RHS : $\int_{a}^{b} \vec{f}(t) d t \cdot \int_{a}^{b} \vec{g}(t) d t=$

- Survey: reminder sent last night, only 5 people responded as of yesterday ...
- HW2: due Tues Feb 21 at 11:59 pm, covers sections 13.1 to 13.5
- HW1: due tonight, any questions related to the HW?
- Thursday: Graded Group Work: Question 1 from last years Quiz 1, group size 2 or 3

```
At what point does the twisted cubic
r
intersect the plane x + 2y + 3z=34?
Find their intersection and find the cosine of the
    angle between the tangent to the curve and the normal to this plane.
```


Sketching Vector Functions

Sketch $\mathbf{r}(\mathrm{t})=\mathrm{t}^{\mathbf{3}} \mathbf{i}+\mathrm{t}^{2} \mathbf{j}$

Wolfram Alpha Syntax for Parametric Curves

This is the syntax you would use for plotting parametric curves in WolframAlpha.

A projectile is fired at angle θ with speed v_{0}.
a) derive its horizontal distance as a function of time
b) derive its maximum height

Let $\mathbf{r}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathbf{i}+\mathrm{y}(\mathrm{t}) \mathbf{j}+\mathrm{z}(\mathrm{t}) \mathbf{k}$.
a) How is the unit tangent vector, $\mathbf{T}(\mathrm{t})$, defined mathematically?
b) Suppose $\mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{3}, \mathrm{z}=\mathrm{t}^{2}$, and t is any real number. Then what is the unit tangent vector when $t=0$?

Position Perpendicular to Tangent

$\mathbf{r}(\mathrm{t})$ is the position of a moving particle. Show that $\|\mathbf{r}(\mathrm{t})\|=$ constant iff $\mathbf{r} \perp \mathbf{r}^{\prime}$

Recitation 04
 Today: Tangents, Arc Length (13.3)

Let $\mathbf{r}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathbf{i}+\mathrm{y}(\mathrm{t}) \mathbf{j}+\mathrm{z}(\mathrm{t}) \mathbf{k}$.
a) How is the unit tangent vector, $\mathbf{T}(\mathrm{t})$, defined mathematically?
b) Suppose $\mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{3}, \mathrm{z}=\mathrm{t}^{2}$, and t is any real number. Then what is the unit tangent vector when $t=0$?

Announcements

- Quiz 1 is exactly 3 weeks away
- office hours, night before quiz
- HW2: Tue Feb 21 at 11:59 pm, sections 13.1-13.5 (hard?) Today: Graded Group Work: Question 1 from last years Quiz 1, group size 2 or 3

At what point does the twisted cubic
$r_{1}(t)=t i+t^{2} j+t^{3} k$,
intersect the plane $x+2 y+3 z=34$?
Find their intersection and find the cosine of the angle between the tangent to the curve and the normal to this plane.

Group Work

1. Group size: 2 to 3 students
2. Someone is in your group when they write their initials on board
3. Students can create breakout rooms
4. Colors:
a) Every student uses a different color
b) Every student signs initials (or name) on board in their color
5. Only have 10 minutes
6. Press SAVE button to submit your work

At what point does the twisted cubic
$r_{1}(t)=t i+t^{2} j+t^{3} k$,
intersect the plane $x+2 y+3 z=34$?
Find their intersection and find the cosine of the angle between the tangent to the curve and the normal to this plane.

Intersection Angle

$$
\begin{aligned}
& r_{1}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j} \\
& r_{2}(u)=\cos (u) \mathbf{j}+\sin (u) \mathbf{k}
\end{aligned}
$$

Find the point of intersection, and the angle between their tangent vectors at that point.

Additional Problems (if time permits)

1. A cable is suspended between two poles that are 10 m apart. Find the length of the cable, if the cable's shape is $y(x)=k[\cosh (x / k)-1],-5 \leq x \leq 5$.
2. Calculate the curvature of
a) $y=e^{-x}$
b) $r(t)=2 t i+t^{3} j$
3. Vector $\mathbf{r}(\mathrm{t})$ is the position of a moving particle. Show that $\|\mathbf{r}(\mathrm{t})\|=$ constant for all t iff $\mathbf{r} \perp \mathbf{r}^{\prime}$ for all t.
4. From last year's Quiz 1:

Find the arc length between 1 and t for the curve :

$$
r(s)=s i+\left(2-s^{2}\right) j+\left(s^{2}-4\right) k
$$

(Don' t evaluate the integral)

Recitation 05
 Today: Arc Length, Acceleration

A cable is suspended between two poles that are 10 m apart. Find the length of the cable, if the cable's shape is $y(x)=k[\cosh (x / k)-1],-5 \leq x \leq 5$.

Arc Length (2013 Quiz 1, Question 2)
Find the arc length between 1 and t for the curve :

$$
r(s)=s i+\left(2-s^{2}\right) j+\left(s^{2}-4\right) k
$$

(Don' t evaluate the integral)

Table of Formulas on page 756, 13.5

Unit tangent vector	$\mathrm{T}=$
Principle unit normal vector	$\mathrm{N}=$
Binormal vector	$\mathrm{B}=$
Curvature	$\kappa=$
Torsion	$\tau=$

Tangential and normal scalar components of acceleration:

Acceleration (Quiz 1, Q3)

Let $\mathrm{r}(\mathrm{t})=2 \mathrm{ti}+\mathrm{tj}+2 \mathrm{t}^{2} \mathrm{k}$ be a motion. Compute the tangential and normal components of the acceleration.

Rectifying, Normal, and Osculating Planes

The names of the three planes determined by T, N, and B

Rectifying, Normal, and Osculating Planes

Find $\mathbf{r}, \mathbf{T}, \mathbf{N}$, and \mathbf{B} at the given value of t . Then find the equations for the osculating, normal, and rectifying planes at that value of t.
$\mathbf{r}(\mathrm{t})=\cos (\mathrm{t}) \mathbf{i}+\sin (\mathrm{t}) \mathbf{j}-\mathbf{k}, \mathrm{t}=-\pi / 2$.

Position Perpendicular to Tangent

$r(t)$ is the position of a moving particle.
Show that $\|\mathbf{r}(\mathrm{t}) \mid\|=$ constant, for all t , iff $\mathbf{r} \perp \mathbf{r}^{\prime}$ for all t .

Recitation 06

Today: Acceleration, Level Curves

Write \mathbf{a} in the form $\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N}$ at the given value of t without finding \mathbf{T} and \mathbf{N}.

$$
\mathbf{r}(\mathrm{t})=\left(e^{\mathrm{t} \sqrt{2}}\right) \mathbf{i}+\left(e^{\mathrm{t}} \boldsymbol{\operatorname { c o s }} \mathrm{t}\right) \mathbf{j}+\left(e^{\mathrm{t}} \boldsymbol{\operatorname { s i n }} \mathrm{t}\right) \mathbf{k}, \quad \mathrm{t}=0
$$

$a_{\mathrm{T}}=\frac{d}{d t}|\mathbf{v}|$
$a_{\mathrm{N}}=\kappa|\mathbf{v}|^{2}=\sqrt{|\mathbf{a}|^{2}-a_{\mathrm{T}}{ }^{2}}$

Level Curves

1. The level curves of $z=f(x, y)$ are the curves that satisfy the equation:
2. In a topographic map, z describes \qquad , and the level curves describe

Recitation 07
 Surfaces, Domain, Limits, Gradient

Having trouble with your audio?

- make sure speakers are not muted
- navigate to Meeting >> Audio Setup Wizard

Other issues?

- navigate to Help >>Troubleshooting
- see Quick Start Guide (PDF)

Quadratic Surfaces

Consider $\mathrm{z}=\mathrm{Ax}{ }^{2}+\mathrm{By}^{2}, \mathrm{~A}$ and B are constants. Describe all possible surfaces for the following cases.
i) $A=B=0$
ii) $A B>0$
iii) $A B<0$

Case ii，AB＞ 0

WolframAlpha

plot $z=-2 * x^{\wedge} 2-3^{*} y^{\wedge} 2$

畨－百 国

Input interpretation：

$$
\text { plot } z=-2 x^{2}-3 y^{2}
$$

Geometric figure：

elliptic paraboloid

Case iii，AB＜ 0

凝WolframAlpha＂：

```
    plot z=x^2-y^2
```

－畨－「

Input interpretation：

$$
\text { plot } \quad z=x^{2}-y^{2}
$$

Geometric figure：

hyperbolic paraboloid

3D plot：

Show contour lines

Sketch the domain of $g(x, y)=(x+1)^{1 / 2} /\left(y^{2}+x y^{2}\right)$ in the $x y$ plane.

Evaluate

$$
\lim _{(x, y) \rightarrow(1,0)} \frac{x(x-1)^{3}+y^{2}}{4(x-1)^{2}+9 y^{3}}
$$

If $g(x, y)=K$ defines a curve C in the $x y$-plane, show that ∇g is perpendicular to curve C .

Recitation 08
 Quiz Review, Gradients

Having trouble with your audio?

- make sure speakers are not muted
- navigate to Meeting >> Audio Setup Wizard

Other issues?

- navigate to Help >>Troubleshooting
- see Quick Start Guide (PDF)

Let $\mathbf{F}=\nabla f=(x+\sin (y)) \mathbf{i}+(x \cos (y)-2 y)$. Find $f(x, y)$.

Quiz 1

As announced on Friday

- Covers HW1,2,3 + additional problems
- 2 sheet of $81 / 2 \times 11$ motes (both sides)
- Calculators allowed

Office Hours

- In Adobe Connect at
https://georgiatech.adobeconnect.com/distancecalculusofficehours/
- Tuesday and Wednesday 8:00 pm to 9:30 pm

Prepare

- Solve HWs on MyMathLab
- Practice Quiz

During Quiz

- I'll be in Adobe Connect
https://georgiatech.adobeconnect.com/distancecalculusquiz/
- Grady HS students: Klaus 2447

Do You Have Any Questions?

Gradient and Level Curves

At which point will the gradient vector have the largest magnitude?
a) $(0,2)$
b) $(-4,-4)$
c) $(0,0)$
d) $(6,-2)$

Explain why, and sketch the gradient at that point.

Tangent Planes

Consider $\mathrm{z}=3 \mathrm{xy}-\mathrm{x}^{3}-\mathrm{y}^{3}$.
a) Find an equation for the tangent plane at $(1,1,1)$.
b) Determine points where the tangent plane is horizontal.
c) What do points where the tangent plane is horizontal represent?

Wolfram Alpha

plot $z(x, y)=3 x y-x^{\wedge} 3-y^{\wedge} 3$

- 趿-

Input interpretation:

$$
\text { plot } \quad z(x, y)=3 x y-x^{3}-y^{3}
$$

Contour plot:

Directional Derivative

Find the directional derivative of $f=z \ln (x / y)$ at $(1,1,2)$ toward the point $(2,2,1)$ and state what it represents.

Mixed Partial Derivatives

$f(x, y)$ is a function with continuous $1^{\text {st }}$ and $2^{\text {nd }}$ partial derivatives on D, and $\mathrm{f}_{\mathrm{xy}}(\mathrm{x}, \mathrm{y})=0$ everywhere on D .
a) What can we say about $f(x, y)$ on D ?
b) Provide two functions that have this property.

Gravitation

Newton's Law of Gravitation in R^{3} is
$\mathrm{F}=$
a) Describe the shape of the level surfaces
b) Provide physical interpretations of the level surfaces and the gradient of F

Tangent Plane Intercepts

Show that, for all tangent planes to the given surface, the sum of their intercepts is the same.
surface: $\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{a}$

Recitation 09

Quadratic Surfaces, Extreme Values

Having trouble with your audio?

- make sure speakers are not muted
- navigate to Meeting >> Audio Setup Wizard

Other issues?

- navigate to Help >>Troubleshooting
- see Quick Start Guide (PDF)

The strength of an electric field at a point due to an infinitely long wire along the y-axis is given by

$$
E(x, y, z)=\frac{k}{\sqrt{x^{2}+z^{2}}}
$$

Describe, in words, the level surfaces of E. What do they represent?

Quadratic Surfaces

Circle the correct answer.
The set of all points whose distance from the z-axis is 4 is the:
a) sphere of radius 4 centered on the z-axis
b) line parallel to the z-axis 4 units away from the origin
c) cylinder of radius 4 centered on the z-axis
d) plane $z=4$

Announcements

- HW4 due tomorrow
- Quiz 1 marked on Friday:
A) Image $z=z(x, y)$

$$
\text { B) Surface Plot of } z(x, y)
$$

\square

1) Place a dot on image (A) that could correspond to a local maximum.
2) What characteristics does the gradient vector have at local maxima?
```
Stationary Points
```

Find and describe the stationary points of $f(x, y)=y+x \sin (y)$.

WolframAlpha

WolframAlpha knowledge engine

Enter what you want to calculate or know about：

```
plot y+xsiny
日
```

```
思-0-田-4
```

思-0-田-4
三 Examples 准 Random

```
三 Examples 准 Random
```

Input interpretation：

$$
\text { plot } \quad y+x \sin (y)
$$

3D plot：

Place dots on the

 3D plot where the gradient is zero．

$\longdiv { . }$

Let $f(x, y)=x^{2}+k x y+y^{2}$.
a) Where are the stationary points?
b) For what values of k will f have a saddle at the origin?
c) For what values of k will f have a local min at the origin?
d) For what values of k is the second partials test inconclusive?

Part a)

WolframAlpha

```
plot x^2+y^2 + 2xy
```

兼-

```
\equiv Examples 淔Random
```

> Input interpretation: $$
\text { plot }\left(x^{2}+y^{2}\right)+2 x y
$$

3D plot:

Part b)

WolframAlpha

$$
\text { plot } x^{\wedge} 2+y^{\wedge} 2-8 x y
$$

畦-
三 Examples \sim Random

Input interpretation:

```
    plot (\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2})-8xy
```

3D plot:

Temperature Optimization

The shape of a wire in R^{3} can be modeled by $x^{2}+y^{2} \leq 1$. If the temperature of the wire is $T(x, y)=x y$, find the coldest and hottest regions of the wire.

Recitation 10

Extreme Values, Lagrange Multipliers

Let's try group work in Adobe Connect

- You'll solve the question that we started at the end of Tuesday's recitation
- Three breakout rooms
- Everyone randomly assigned to a room
- Not graded
- You'll have 10 to 15 minutes
- I'll circulate between rooms

I suggest starting by discussing a solution strategy with the other people in your group using a mic and/or text chat.

Second Partials Test

Let $f(x, y)=x^{2}+k x y+y^{2}$.
a) Where are the stationary points?
b) For what values of k will f have a saddle at the origin?
c) For what values of k will f have a local min at the origin?
d) For what values of k is the second partials test inconclusive?

Part a）

WolframAlpha

```
plot x^2 + y^2 + 2xy
```

圆（0）田－席

```
\equiv Examples 淔Random
```

Input interpretation:
plot $\quad\left(x^{2}+y^{2}\right)+2 x y$
3D plot:

Part b)

WolframAlpha

$$
\text { plot } x^{\wedge} 2+y^{\wedge} 2-8 x y
$$

畦-
三 Examples \sim Random

Input interpretation:

```
    plot (\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2})-8xy
```

3D plot:

Lagrange Multipliers

The shape of a wire in three dimensions can be modeled by $x^{2}+y^{2} \leq 1$. If the temperature of the wire is $T(x, y)=x y$, find the coldest and hottest regions of the wire.

Recitation 11

Taylor Approximations, Integration

- Pop quiz grading
- Correct 5 points
- Name on page 3 points
- Did not take: 0 points.
- Time: 15 minutes
- To submit your work, either
a) work on whiteboard in breakout room
- press the SAVE button
b) work on paper and give work to facilitator
- leave 2 inch margin
- write your name and QH6 at the top
- facilitator can email quiz to cdlops@pe.gatech.edu
c) work on paper and take a photo of your work
- email your photo to me before 8:30
- write in text chat that you are emailing your work to me

Pop Quiz

Find the cubic approximation of $f(x, y)=4 x \cos (y)$ near the origin.

Announcements

- HW 5
- due tonight at $11: 59 \mathrm{pm}$
- seven questions on Taylor approximations from Section 14.9
- HW 6
- fifteen questions on integration from Section 15.2 and 15.3
- due Thursday at 11:59 pm
- Quiz 2: Tuesday March 4

How would you like to spend the rest of the recitaiton? Text your preference.
a) A Taylor approximation example and some integration
b) Integration examples

Do you have questions about the homeworks and/or the quiz?

Find and sketch the area of the triangular region with vertices $(1,1),(4,1),(3,2)$.

Change the order of integration and integrate

$\int_{122}^{1} \int_{x_{x}}^{x} d y d x$

Change the order of integration and integrate

$\int_{-1}^{0} \int_{-\sqrt{y+1}}^{\sqrt{y+1}} d x d y$

Change the order of integration and integrate
$\int_{1}^{3} \int_{-x}^{x^{2}} d y d x$

Quadratic Approximation

Find the quadratic approximation to $f(x, y)=\exp \left(-x^{2}-y^{2}\right)$ near the origin.

$$
\begin{aligned}
& \text { Surface Plots } \\
& \qquad f(x, y)=\exp \left(-x^{2}-y^{2}\right)
\end{aligned}
$$

quadratic approximation

$$
1-x^{2}-y^{2}
$$

Recitation 12
 Integration

Sketch the petal curve $r=2 \cos (2 \theta)$ and find the area of one petal.

1) Sketch and find the area of the region inside the curve $r=5+\cos (\theta)$ (from last year's quiz).
2) Sketch the region of integration, change the order of integration, and then integrate
$\int_{-1}^{0} \int_{-\sqrt{y+1}}^{\sqrt{y+1}} d x d y$
3) Sketch the region of integration, change the order of integration, and then integrate
$\int_{1}^{3} \int_{-x}^{x^{2}} d y d x$
4) Find the quadratic approximation to $f(x, y)=\exp \left(-x^{2}-y^{2}\right)$ near the origin.

$$
\begin{aligned}
& \text { Surface Plots } \\
& \qquad f(x, y)=\exp \left(-x^{2}-y^{2}\right)
\end{aligned}
$$

quadratic approximation

$$
1-x^{2}-y^{2}
$$

Recitation 14
 Triple Integrals

Set up a triple integral that represents the volume of the region bounded by $\mathrm{y}^{2}+\mathrm{z}^{2}=1$ and the planes $\mathrm{y}=\mathrm{x}, \mathrm{x}=0, \mathrm{z}=0$.
we need to first switch to the "Collaboration" layout

If $08 \leq N \leq 11$ students: 2 rooms
If $12 \leq \mathrm{N} \leq 15$ students: 3 rooms
If $16 \leq N \leq 19$ students: 4 rooms

Represent the volume of the region bounded by $z^{2}=y, y+z=2, x=0, z=0, x=2$ Set up the integral(s) in at least two different ways.

Set up a triple integral that represents the volume of the region bounded by $x^{2}+y^{2}+z^{2}=2$, and by $x^{2}+y^{2}=1$.

Recitation 15
 Triple Integrals

Set up an integral that represents the volume of solid bounded by $x^{2}+y^{2}=1$, $x^{2}+y^{2}=4$, bounded above by $x^{2}+y^{2}+4 z^{2}=36$, and bounded below by $z=1$.

Recitation 15
 Triple Integrals

Set up an integral that represents the volume of solid bounded by $x^{2}+y^{2}=1$, $x^{2}+y^{2}=4$, bounded above by $x^{2}+y^{2}+4 z^{2}=36$, and bounded below by $z=1$.

Announcements

Next HW due Thursday Mar 13: any questions?
Quiz 3 on Thurs Mar 27
Graded group work on Thurs Mar 13:

- 3 to 5 students per group
- random grouping
- include a rough sketch that describes the region of integration
- technical issues? email me, we'll figure something out
- can't make it? email me, we'll figure something out

The question is from last year's Quiz 3

Let V be the volume between the hyperboloid of two sheets
$-x^{2}-y^{2}+z^{2}=4$ above the plane $z=8$ and below the plane
$z=10$. Set up the volume as a triple integral. Do not Evaluate
we need to first switch to the "Collaboration" layout

If $06 \leq N \leq 10$ students: 2 rooms
If $11 \leq N \leq 15$ students: 3 rooms
If $16 \leq N \leq 20$ students: 4 rooms

Set-up an integral that represents the volume of the solid bounded above by $z=1$, and below by $z^{2}=x^{2}+y^{2}$. Set this integral up in at least two different ways.

Change the order of integration.

$$
V=\int_{0}^{2} \int_{0}^{9-x^{2}} \int_{0}^{2-x} d z d y d x
$$

Set up a triple integral that represents the volume of the region bounded by $x^{2}+z^{2}=4$ and the planes $y+z=6, x=0, y=0, z=0$.

Recitation 16
 Triple Integrals, Cylindrical Coordinates

Set up an integral that represents the volume of solid bounded by $z=x^{2}+y^{2}$, and $z=y$. Use cylindrical coordinates.

Graded Group Work

Structure:

- 3 to 5 students per group
- random grouping
- include a rough sketch that describes the region of integration
- technical issues? email me, we'll figure something out
- can't make it? email me, we'll figure something out

The question is from last year's Quiz 3.
Let V be the volume between the hyperboloid of two sheets
$-x^{2}-y^{2}+z^{2}=4$ above the plane $z=8$ and below the plane
$z=10$. Set up the volume as a triple integral. Do not Evaluate

You'll have about 15 minutes. Your group only needs one correct solution for full marks, but there are many ways to solve the problem. You can use Cartesian coordinates, you can use polar (cylindrical) coordinates
we need to first switch to the "Collaboration" layout

If $06 \leq N \leq 10$ students: 2 rooms
If $11 \leq N \leq 15$ students: 3 rooms
If $16 \leq N \leq 20$ students: 4 rooms

Let V be the volume between the hyperboloid of two sheets $-\mathrm{x}^{2}-\mathrm{y}^{2}+\mathrm{z}^{2}=4$ above the plane $\mathrm{z}=8$ and below the plane
$z=10$. Set up the volume as a triple integral. Do not Evaluate

Next HW due tonight: any questions?
Quiz 3 on Thurs Mar 27: two weeks from now

Set up an integral that represents the volume of the "ice cream cone" bounded by $x^{2}+y^{2}+z^{2}=1$, and $z^{2}=3\left(x^{2}+y^{2}\right)$. Use cylindrical coordinates.

Recitation 17

Triple Integrals in Spherical Coordinates

Fill in the blanks.

$$
\begin{aligned}
& x=\rho \cos \theta \\
& y=\rho \sin \theta \\
& z=\rho
\end{aligned}
$$

Provide a geometric interpretation of each expression.

a) $\rho \sin \phi=1$
b) $\rho \cos \phi=1$

Set-up an integral that represents the volume bounded by $z=0, x^{2}+y^{2}=4$, and $z=2\left(x^{2}+y^{2}\right)^{1 / 2}$. Use spherical coordinates.

Quiz 3

For your quiz:

- 2 pages of $81 / 2 \times 11$ inch notes (both sides) allowed
- Calculators allowed.

Also:

- Office hours: Wednesday, 7:30 pm to 9:30 pm
- If you can, during quiz connect to https://georgiatech.adobeconnect.com/distancecalculusquiz/
- What topics could be on the quiz?
- HW7: triple integrals in Cartesian and cylindrical coordinates
- Extra problems for Quiz 3: spherical coordinates
we need to first switch to the "Collaboration" layout

If $06 \leq N \leq 10$ students: 2 rooms
If $11 \leq N \leq 15$ students: 3 rooms
If $16 \leq N \leq 20$ students: 4 rooms

Use spherical coordinates to set-up an integral that represents the volume of the solid bounded by

$$
\begin{aligned}
& 0 \leq x \leq 1 \\
& 0 \leq y \leq \sqrt{1-x^{2}} \\
& \sqrt{x^{2}+y^{2}} \leq z \leq \sqrt{2-\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

Recitation 19
 Line Integrals and Work

Fill in the Blanks: Work is the \qquad transferred to or from an object by means of a \qquad acting on the \qquad .

Work Over a Straight Path

Force F is applied to an object as it moves from $x=a$ to $x=b$ along the x-axis.

	Applied Force	Work
Case 1	$F=4 \mathbf{i}$	$W=$
Case 2	$F=4 \mathbf{i}-2 \mathbf{j}$	$W=$

we need to extend this concept to curved paths in R^{3}

Work Over a Curved Path

Force \mathbf{F} applied to an object as it moves from $\mathbf{r}(\mathrm{u})$ to $\mathbf{r}(\mathrm{u}+\mathrm{h})$ along curve \mathbf{C}.

Work done by force \mathbf{F} from $\mathbf{r}(\mathbf{u})$ to $\mathbf{r}(\mathbf{u}+\mathrm{h})$ is $W(u+h)-W(u)$.

	Applied Force	Work
Case 3	$F=F(r(u))$	$W(u+h)-W(u) \approx$

Calculating Work

Set up an integral that represents the total work.
a) $F=(x+2 y) i+(2 x+y) j$, path is $y=x^{2}$ from $(0,0)$ to $(2,4)$.
b) $\mathbf{F}=(x-y) \mathbf{i}-x y \mathbf{j}$, along the line from $(2,3)$ to $(1,2)$.

Quiz 4: Tuesday April 15 (two weeks away) Homework 8: due Friday at 11:59 pm My prediction: one last pop quiz, this week or next

Recitation 20

Line Integrals: Circulation and Flux

circulation $=\Gamma=\int_{C} \vec{v}(\vec{r}) \cdot d \vec{r}$

Sketch the velocity field for \mathbf{v}, and calculate the circulation over curve C , where C is the circle of radius R.

$$
v=\left\{\begin{array}{l}
2 \mathrm{i}, R \leq y \leq R \\
0, \text { else }
\end{array}\right.
$$

Circulation Examples

Sketch the velocity field for \mathbf{v}, and calculate the circulation over curve \mathbf{C}, where \mathbf{C} is the circle of radius R.
b) $\mathbf{v}=-\mathbf{x i}-\mathrm{yj}$
c) $\mathbf{v}=-\mathbf{y i}+x \mathbf{j}$

Application of Circulation

The circulation of a vector field \mathbf{V} around a directed closed curve is defined as

$$
\text { circulation }=\Gamma=\int \stackrel{\rightharpoonup}{v}(\stackrel{\rightharpoonup}{r}) \cdot d \vec{r}
$$

take C to be a closed path around the wing on its surface

- Upward lift force is proportional to circulation, Г
- Note the cross-sectional profile of the wing in this photograph

Application of Circulation

circulation $=\Gamma=\int_{C} \vec{v}(\vec{r}) \cdot d \vec{r}$
take C to be a closed path around the wing on its surface

upper

- Write Γ as $\Gamma=\Gamma_{\text {upper }}+\Gamma_{\text {lower }}$
- $\Gamma_{\text {upper }}$ and $\Gamma_{\text {lower }}$ have opposite signs
- the magnitude of \mathbf{V} along the upper surface of the wing is greater than along the lower surface: net circulation is non-zero

Announcements

Quiz 4: Tuesday April 15
My prediction: one last pop quiz, next week?
Homework 8: due Friday Apr 4 at 11:59 pm. Questions?
Homework 9: due Friday Apr 11 at 11:59 pm. Questions?
Survey: please complete the brief technical issues survey, email sent yesterday

Circulation and Flux

$$
\begin{aligned}
\text { circulation } & =\int_{C} \vec{v} \cdot \vec{r}^{\prime} d t=\int_{C} \vec{v} \cdot \vec{T} d t \\
\text { flux } & =\int_{C} \vec{v} \cdot \vec{N} d t \quad \mathrm{~N} \text { is the outward pointing, unit, normal vector of curve } \mathrm{C}
\end{aligned}
$$

The textbook derives a computational formula for flux:

COUNTERCLOCKWISE MOTION IN XY PLANE
k is the unit vector parallel to the z-axis

$$
\text { flux }=\int_{C} M d y-N d x
$$

Calculate the flux over curve C, where C is the circle of radius R.

$$
\vec{v}=\left\{\begin{array}{l}
2 \overrightarrow{\mathrm{i}},-R \leq y \leq R \\
0, \text { else }
\end{array}\right.
$$

Announcements

Quiz 4: Tuesday April 15
My prediction: one last pop quiz, this week?
Homework 8: due Tues Apr 8 at 11:59 pm. Questions?
Homework 9: due Tues Apr 8 at 11:59 pm. Questions?
Survey: please complete the brief technical issues survey, email sent last Wed.

Graded group work activity on Thursday.

Problem 1 (10 points)

Let R be the region in the plane, inside the cardiod $\mathrm{r}=1+\cos (\theta)$, and C its boundary Consider the line integral

```
\int
and express this as a double integral in polar coordinates with limits.
```


Circulation Examples

Calculate the flux over curve C, where C is the circle of radius R.

Circulation Examples

Calculate the flux over curve C, where C is the circle of radius R.
c) $\mathbf{v}=-\mathbf{y i}+x \mathbf{j}$

Summary

Fill in the blanks:

a) Circulation measures flow \qquad path C.
b) Flux measures the flow of C .

velocity field equation
pelocity field equation
\qquad circulation fi for $-R \leq y \leq+R$, $v=0$ otherwise

drain
$v=-x i-y j$
vortex,
$\mathbf{v}=-y \mathbf{i}+x j$
whirlpool

Conservative Vector Fields

Recall the Pipe example.
a) Why was the circulation zero?
b) For any path that starts and ends at point A, and stays inside "the pipe", the circulation is \qquad .
c) For all paths that starts at A and ends at point B, the integral \qquad is the same.

Conservative Vector Fields

Is this vector field conservative?

Conservative Vector Fields

Is this vector field conservative?
c) $\mathbf{v}=-y \mathbf{i}+x \mathbf{j}$

Green's Theorem

If D is a region that is \qquad , and P and Q are scalar fields that are differentiable on D, and C is the boundary of D, then:

Below are five regions. For which regions can we apply Green's Theorem?
a)

b)

c)

d)

e)

Green's Theorem

a) Evaluate $\oint_{C} y^{2} d x+2 x y d y, C$ is one loop of $r=2 \sin 2 \theta$
b) Change the integral so that it represents the area of one loop.

Recitation 22

Green's Theorem

a) Evaluate $\oint_{C} y^{2} d x+2 x y d y, C$ is one loop of $r=2 \sin 2 \theta$
b) Change the integral so that it represents the area of one loop.

Announcements

Quiz 4: Tuesday April 15
Homework 8: due Tues Apr 15 at 11:59 pm. Questions?
Homework 9: due Tues Apr 15 at 11:59 pm. Questions?
Questions for Quiz 4 (not graded)
Office Hours: Monday 7:30 to 9:30
Survey: please complete the brief technical issues survey, email sent last Wed.
Graded group work activity. Solve the question below in groups of 3 to 5 students, you have about 10 minutes. I'll circulate from room to room.

Problem 1 (10 points)

```
Let R be the region in the plane, inside the cardiod r = 1+ cos ( }0)\mathrm{ ,
and C its boundary Consider the line integral
\int}\mp@subsup{\int}{C}{}xydx-x\mp@subsup{y}{}{2}dy. Use Green's theorem to convert to an double integral
and express this as a double integral in polar coordinates with limits.
```


Problem 1 (10 points)

Let R be the region in the plane, inside the cardiod $r=1+\cos (\theta)$, and C its boundary Consider the line integral
$\int_{C} x y d x-x y^{2} d y$. Use Green ' s theorem to convert to an double integral, and express this as a double integral in polar coordinates with limits.

Fundamental Theorem of Line Integrals

If \mathbf{F} is a conservative field, then:

Example

Calculate line integral of $\mathbf{F}=\left(x^{2}-y\right) \mathbf{i}+\left(y^{2}-x\right) \mathbf{j}$, over path $r=a \cos (t) i+b \sin (t) j, 0 \leq t \leq 2 \pi$

The Cycloid

The curve traced by a point on a rolling wheel is

$$
\begin{aligned}
& x(t)=t-\sin (t) \\
& y(t)=1-\cos (t)
\end{aligned}
$$

The Cycloid

Find the area under one arch of the cycloid:
$\mathrm{x}(\mathrm{t})=\mathrm{t}-\sin (\mathrm{t}), \mathrm{y}(\mathrm{t})=1-\cos (\mathrm{t})$

Recitation 24
 Today: Pop Quiz, Surface Integrals

- There's a pop quiz today! :D
- You have a few minutes to review your notes.
- Start time: 8:10
- Ends at: 8:30?
- Pop quiz grading
- 5 points: on the right track
- 4 points: something correct
- 3 points: name on the page
- 0 points: did not take pop quiz
- To submit your work, either
a) work on whiteboard in breakout room
- write in text chat that you'd like to work in breakout room,
- submit work by letting me know when done, or email me a screen capture of your work
b) work on paper and give work to facilitator
- leave 2 inch margin
- write your name and QH6 at the top
- facilitator can email quiz to cdlops@pe.gatech.edu
c) work on paper and take a photo of your work
- email your photo to me before 8:40
- write in text chat that you are emailing your work to me

Pop Quiz

Set up as a double integral, the surface integral of F dot n ds, where the surface is $z(x, y)=x^{2}-y^{2}, F=x i+z k$, and $0 \leq x \leq 1,-1 \leq y \leq 1$.

Announcements

Quiz 4: Marked on Friday? Monday? I'm not sure yet.
Last HW : due Sun Apr 27
Technical issues during lecture yesterday: fiber cut?

Engagement Survey

Please complete the brief engagement survey, email sent last Tuesday.

Technical Survey

Follow-up question: I often let students write on the board at any time. In what ways, if any, did this help your learning in recitations?

Parametric Representations

Find an equation in x, y, z, for the surface whose parametric representation is

$$
\mathbf{r}=A u \cos (v) \mathbf{i}+B u \sin (v) \mathbf{j}+u^{2} \mathbf{k}, u \geq 0,0 \leq v \leq \pi .
$$

Describe and sketch the surface.

Parametric Representations

Find parametric representations for the following surfaces.
a) the upper half of $4 x^{2}+9 y^{2}+z^{2}=36$
b) the part of the plane $z=x+2$ inside the cylinder of $x^{2}+y^{2}=1$

Recitation 25 Today: Surface Integrals

a) What properties does a parametric representation of a surface need to have?
b) Find a parametric representation for the part of the plane $z=x+2$ in the first octant and inside the cylinder $x^{2}+y^{2}=1$.

Announcements

Quiz 4: marked yesterday, grades should be entered today. HW grades: check in t-square that I entered grades correctly Last HW : due Sun Apr 27
Cut-off for final exam: I don't know if there is one, or what cut-off would be

Engagement Survey

Please complete the brief engagement survey, reminder email sent yesterday.

Technical Survey

Follow-up question: most students didn't communicate with microphones very often. Why do you think this was the case?

Surface Area

Calculate the surface area of $z=y^{2}$, for $0 \leq x \leq a, 0 \leq y \leq b$.

Flux Across A Surface

Flux is a measure of flow rate per unit length, or flow rate per unit area.
To calculate flux across a curve: flux $=\int_{C} \vec{v} \cdot \vec{n} d u=\int_{C} M d y-N d x$

To calculate flux across a surface:

The Pop Quiz (from last rectation)

Set up as a double integral, the surface integral of F dot n ds, where the surface is $z(x, y)=x^{2}-y^{2}, F=x i+z k$, and $0 \leq x \leq 1,-1 \leq y \leq 1$.

Divergence

In a two-dimensional, steady-state, incompressible fluid flow, the velocity, \mathbf{v}, of the flow is $\mathbf{v}=f(x, y) \mathbf{i}+g(x, y) \mathbf{j}$, where $f(x, y)$ and $g(x, y)$ must satisfy $\nabla \cdot \mathbf{v}=0$.

If $f(x, y)=x / 2$, and $v(0,0)=0 i+0 j$, find $g(x, y)$, and sketch v.

Archimedes Principle

Prove Archimedes Principle

Volume as a Surface Integral

Express the volume, V , of an object with a surface integral.

Electric Charge

$\mathbf{E}=$ electric field. Then, Gauss's Law states that:

$$
\text { charge } \left.=\varepsilon_{0} \text { (flux of } E \text { through closed surface }\right)
$$

Find the charge conained in a solid hemisphere if $\mathbf{E}=x \mathbf{i}+y \mathbf{j}+\mathbf{z} \mathbf{k}$.

Recitation 26
 Today: Divergence

Divergence measures a flow's tendancy to \qquad .

If $\mathbf{v}(x, y)=f(x, y) i+g(x, y) j$, then $\operatorname{div}(v)=$ \qquad .

velocity field equation	velocity field equation
pipe	$\mathbf{v}=2 \mathbf{i}$ for $-R \leq y \leq+R$,
$v=0$ otherwise	
drain	$\mathbf{v}=-x \mathbf{i}-\mathrm{yj}$
vortex, whirlpool	
	$\mathbf{v}=-y \mathbf{i}+x \mathbf{j}$ nozzle

Incompressible Fluids

If a fluid is incompressible, then its divergence is \qquad .

The field $\mathbf{v}=\mathbf{x i} \mathbf{- y j}$ could represent an incompressible flow.
As x increases, flow moves towards \qquad , and its speed \qquad .

Divergence

xis.

the speed of the water \qquad ,
\qquad .
If you place your thumb at the end of a hose,

Announcements

Quiz 4: grades entered Tuesday.
HW grades: check in t-square that I entered grades correctly
Last HW: due Sun Apr 27
Cut-off for final exam:
Pop-quiz adjustments: made Wednesday
Graded activities: l'll apply adjustments today, only to those writing final
Tablets and mics: please return to facilitator Final Exam
If attending Grady: May 2, on campus.
If not attending Grady: facilitator has instructions.

Engagement Survey

Follow-up question:
Is it important to get to know other students in recitation? Why/why not?

The Divergence Theorem

The divergence theorem states that:

Archimedes Principle
 Upward buoyant force =

Prove Archimedes Principle

Electric Charge

$\mathbf{E}=$ electric field. Then, Gauss's Law states that: total charge $=\left(\varepsilon_{0}\right)$ (flux of E through closed surface)

Find the total charge contained in a solid hemisphere if $\mathbf{E}=\mathbf{x i}+\mathbf{y} \mathbf{j}+\mathbf{z} \mathbf{k}$.

Office Hours for Quiz 2

- 2 pages of $81 / 2 \times 11$ inch notes (both sides) allowed
- Calculators allowed.
- Covers HW 4,5,6 and the "Questions for quiz 2" HW
- Office hours: Sunday and Monday, 7:30 pm to 9:30 pm
- If you can, during quiz connect to https://georgiatech.adobeconnect.com/distancecalculusquiz/
- What topics could be on the quiz?
- HW4: surfaces and optimization, Lagrange multipliers
- HW5: Taylor approximations and estimating their error (see last question)
- HW6: setting up and evaluating double integrals
- Questions for Quiz 2: polar integrals

Quadratic surface: a question from last year's quiz 2
Consider the surface
$-6 x+x^{2}+4 y+y^{2}+8 z-z^{2}=4$
This is a qudratic surface. Find out the center, and what kind it is. Draw a picture, labeling the center and the axes.

Quadratic surface: a question from last year's quiz 2

WolframAlpha

```
x^2-6x+4y+y^2 2 +8z-z^2=4

```

\equiv Examples
~G Random

```
```

Input:
x}\mp@subsup{x}{}{2}-6x+4y+\mp@subsup{y}{}{2}+8z-\mp@subsup{z}{}{2}=

```
Geometric figure:
one-sheeted hyperboloid

Surface plot:


\section*{An Optimization Problem}

Find the minimum value of the function \(f(x, y)=x^{2}+(y-2)^{2}\) subject to the constraint \(\mathrm{x}^{2}-\mathrm{y}^{2}=1\).

\section*{An Optimization Problem}

Find the minimum of the function \(f(x, y)=(x / a)^{2}+(y / b)^{2}\) subject to the constraint \(x+y=L\). The numbers \(a, b\), and \(L\) are positive constants.

\section*{An Optimization Problem}

A company produces widgets at \(N\) factories. The cost of producing \(x_{i}\) widgets at factory i is \(\mathrm{x}_{\mathrm{i}}^{2} / \mathrm{a}_{\mathrm{i}}\), where \(\mathrm{a}_{\mathrm{i}}>0\). Minimize the total cost of producing L widgets.

\section*{A Conceptual Lagrange Multipliers Question}

The diagram shows a contour plot of \(f(x, y)\), and the circle of radius 2 centered at \((0,0)\). How many local maximums and mins does \(f(x, y)\) have on the perimeter of the circle?

Assume the origin is a global max of \(f(x, y)\).


The electrostatic potential in the region \(0 \leq x \leq 1,0 \leq y \leq 1\), is given by \(V=48 x y-32 x^{3}-24 y^{2}\). Find the locations of the minimum and maximum values.
plot \(\quad\left(48 x y-32 x^{3}\right)-24 y^{2}\)


\section*{Contour plot:}


\section*{Setting Up a Polar Integral}

Set up, but do not evaluate, an integral representing the area the region enclosed by \(r=2-2 \cos \theta\). Sketch the region of integration.

\section*{Convert a Cartesian Integral to a Polar Integral}
a) Sketch the region of integration
b) Express the integral in polar coordinates
\[
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x
\]
2) Sketch the region of integration, change the order of integration, and then integrate
\(\int_{-1}^{0} \int_{-\sqrt{y+1}}^{\sqrt{y+1}} d x d y\)
1) Sketch and find the area of the region inside the curve \(r=5+\cos (\theta)\) (from last year's quiz).
3) Sketch the region of integration, change the order of integration, and then integrate
\(\int_{1}^{3} \int_{-x}^{x^{2}} d y d x\)
4) Find the quadratic approximation to \(f(x, y)=\exp \left(-x^{2}-y^{2}\right)\) near the origin.
\[
\begin{aligned}
& \text { Surface Plots } \\
& \qquad f(x, y)=\exp \left(-x^{2}-y^{2}\right)
\end{aligned}
\]
quadratic approximation
\[
1-x^{2}-y^{2}
\]



\section*{Quiz 3 Review}

\section*{For your quiz:}
- 2 pages of \(81 / 2 \times 11\) inch notes (both sides) allowed
- Calculators allowed.

\section*{Also:}
- Office hours: Wednesday, 7:30 pm to 9:30 pm
- If you can, during quiz connect to https://georgiatech.adobeconnect.com/distancecalculusquiz/

Set-up integrals that provide the centroid of the region bounded by \(r=1+\cos \theta\). The mass density at any point in the region is proportional to its distance to the origin.

A region, with constant density \(D\), is bounded by \(x^{2}+y^{2}=a^{2}\), and \(x^{2}+z^{2}=a^{2}\). Find the moment of inertia about the \(x\)-axis. Use Cartesian coordinates.

A region above the \(x y\) plane, with constant density D , is bounded above by \(\mathrm{z}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}\), and below by \(z=x^{2}+y^{2}\). Find the moment of inertia about the \(z\)-axis. Use cylindrical coordinates.

Set-up an integral that represents the volume of the solid bounded by \(x^{2}+y^{2}+(z-R)^{2}=R^{2}\). Use spherical coordinates.

Set up an integral that represents the volume of solid bounded by \(2 x=x^{2}+y^{2}\), and \(2 z=4+x\). Use cylindrical coordinates.

Change the order of integration.
\[
V=\int_{0}^{2} \int_{0}^{9-x^{2}} \int_{0}^{2-x} d z d y d x
\]

Set up a triple integral that represents the volume of the region bounded by \(x^{2}+z^{2}=4\) and the planes \(y+z=6, x=0, y=0, z=0\).

Set-up an integral that represents the volume bounded by \(z=0, x^{2}+y^{2}=4\), and \(z=2\left(x^{2}+y^{2}\right)^{1 / 2}\). Use spherical coordinates.

\section*{Welcome Back!}
1. Announcements
2. Vector Derivatives (14.1)

\section*{Surveys}
- Teaching assistant survey
- it focused on evaluating your TA
- closed in December
- results sent by email
- Engagement survey
- made available yesterday
- closes next week Monday
- we'll discuss its results next week
- it focuses on how we can improve recitations
- PLEASE complete this survey

\section*{Research Contact}

If you have any questions about the research we are conducting, contact information has changed to:

\section*{Technologies: same as last semester}

Recitations run in Wimba (yay!)
- Wimba technical problems, can contact technical support http://www.wimba.com/services/support
- Recordings of our recitations on Tegrity gatech.tegrity.com
- Tablets, mics: please bring and use them
- All homework on MyMathLab
- Piazza: link in t-square

\section*{Adobe Connect}
- Made available to Georgia Tech
- I'm looking into what would be involved in switching from Wimba to Adobe Connect

\section*{Grading Weights: Same as Last Semester}
\begin{tabular}{|l|l|l|}
\hline & QH6 (\%) & \begin{tabular}{l} 
All other \\
sections (\%)
\end{tabular} \\
\hline Homework & 10 & 10 \\
\hline Final & 25 & 25 \\
\hline Quizzes & 60 & 65 \\
\hline Recitations & 5 & 0 \\
\hline Total & 100 & 100 \\
\hline
\end{tabular}
+ random pop quizzes

\section*{Questions, Office Hours}

Office Hours
Generally held on the night before quizzes (same as last semester)

Questions
email:
phone (office):
phone (cell):

\section*{Definition of Torque}


Torque, \(\tau\), is defined as
\(\tau=\)

Angular Momentum
If the position of a particle with constant mass \(m\) is \(r(t)\), its angular momentum is \(L(t)=m r(t) \times r^{\prime}(t)\).

Show that \(L^{\prime}(t)\) is equal to torque.
\[
\begin{aligned}
L^{\prime}=\frac{d}{d t}\left(m \vec{r} \times \vec{r}^{\prime}\right) & =m\left(\vec{r}^{\prime} \times \vec{r}^{\prime}+\vec{r} \times \vec{r}^{\prime}\right) \\
& =m \vec{r} \times \vec{r}^{\prime \prime} \\
& =\vec{r} \times m \vec{r}^{\prime \prime} \\
& =\vec{r} \times \vec{F}
\end{aligned}
\]

Zero Angular Momentum
Show that if the torque is a zero vector for all \(t\), then the angular momentum of the particle is constant for all t .
\[
\begin{aligned}
\eta=\overrightarrow{0}= & \vec{r} \times \vec{F} \\
= & \vec{r} \times\left(m \vec{r}^{\prime \prime}\right)= \\
& (\text { TOO EAST? })
\end{aligned}
\]

\section*{MRI Image}

applied magnetic field, \(\vec{B}=\left[\begin{array}{c}0 \\ 0 \\ \omega\end{array}\right], \omega=\) known constant
The applied field creates a measurable signal, \(\vec{M}(t)\).
\[
\begin{aligned}
& \text { The Bloch Equation }
\end{aligned}
\]

Solve the differential equation, plot the solution.
\[
\begin{aligned}
& {\left[\begin{array}{l}
M_{x}^{\prime} \\
M_{y}^{\prime} \\
M_{z}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
i & j & k \\
M_{x} & M_{y} & M_{z} \\
0 & j & \omega
\end{array}\right]=\left[\begin{array}{c}
\omega M_{y} \\
-\omega M_{x} \\
0
\end{array}\right]} \\
& M_{x}^{\prime}=M_{y} \Rightarrow M_{x}^{\prime \prime}=\omega M_{y}^{\prime}=-\omega^{2} M_{x} \Rightarrow M_{x} \Rightarrow y^{-i \omega t} \text {, } \\
& M_{y}^{\prime}=\omega M_{x} \quad M_{y}^{\prime \prime}=\omega M_{x}^{\prime}=-\omega^{2} M_{y} \Rightarrow M_{y}=M_{y}(0) e^{-i \omega t} \\
& M_{z}^{\prime}=0 \Rightarrow M_{z}=C=M_{z}(0) \\
& e^{i \omega t}=\cos \omega t+i \sin \omega t\left\{\begin{array}{l}
M_{x}=M_{x}(0) \operatorname{cis} \omega t \\
M_{y}=M_{y}(0) \text { cis } \omega t
\end{array}\right.
\end{aligned}
\]

Recitation 02
Today: Vector Functions \((13.1,13.2)\)
While we're waiting to start: describe situations where the following is true for all t .
\[
\vec{r}(t) \cdot \frac{d \vec{r}}{d t}=0
\]

This is a rice wapm-up activity.
LET STURENTS came up with answers, see if they understand, examples: (i )circular motion, (i )stationary object,
(1) Circular motion
\[
\text { cunT METAON } \vec{r}=\cos \hat{t}+\sin t \hat{j}, \vec{r}^{\prime}=-\sin t \hat{i}+\cos t \hat{j} \Rightarrow \vec{r} \cdot \vec{r}^{\prime}=0 \quad \forall t
\]
(3) STATannet abject
\[
C A N D E: \vec{r}=c_{1} \hat{i}+c_{2} \hat{j}, \vec{r}^{\prime}=\overrightarrow{0} \Rightarrow \vec{r} \cdot \vec{r}^{\prime}=0, \quad \forall t
\]

\section*{HW 1}
- HW1 is on MyMathLab
- due next Tuesday at 11:59 pm
- covers 13.1 and 13.2

Velocity, Acceleration
1) The position of particle is \(\mathbf{r}(\mathrm{t})=\sin (\mathrm{t}) \mathbf{i}+\cos (\mathrm{t}) \mathbf{j}\).
a) Show that position is perpendicular to its velocity
b) For what values of \(t\) do the position and acceleration have the same direction?
2) Provide another example of a vector function, \(\mathbf{s}(\mathrm{t})\) that satisfies \(\mathbf{s}^{\prime \prime}(\mathrm{t})=\mathbf{s}(\mathrm{t})\) for all \(t\).
1) a) shawn on previous sure.
b) we want to fino values of \(t\) that satisfy
\[
\vec{r}(t)=m \vec{r}^{\prime \prime}(t), \quad m=\text { constant }
\]
this equation is never satisfied.
2) see earlier slide.

Integration
A moving object starts at point \((1,0)\) and its velocity is given by the vector [ \(2,4 \mathrm{t}]\). Its position is given by:
\[
\begin{array}{r}
\vec{r}^{\prime}=\vec{r}^{\prime}(t)=\left[\begin{array}{l}
2 \\
4 t
\end{array}\right] \\
\vec{r}=\left[\begin{array}{l}
2 t \\
2 t^{2}
\end{array}\right.
\end{array}
\]
ask studatis: what else do we need?
\[
\stackrel{\rightharpoonup}{r}=\left[\begin{array}{l}
2 t+c_{1} \\
2 t^{2}+c_{2}
\end{array}\right]
\]
use initial condition:
\[
\vec{r}=\left[\begin{array}{l}
2 t+1 \\
2 t^{2}+0
\end{array}\right]
\]

\section*{Group Work}
1. Group size is 2 or 3 students
2. Someone is in your group when they write their initials on board
3. Students can create breakout rooms
4. Have 10 minutes
5. Reflect on the problem for a minute before moving into groups

Integration
Consider the conjecture: \(\int_{a}^{b} \vec{f}(t) \cdot \vec{g}(t) d t=\int_{a}^{b} \vec{f}(t) d t \cdot \int_{a}^{b} \vec{g}(t) d t\)
Provide an example to the other members of your group of an \(f(t)\) and a \(g(t)\) such that 1) the conjecture is not satisfied.
2) the conjecture is satisfied (for non-zero \(f\) and \(g\) ).
\[
\begin{gathered}
\text { 1) For example: } f=\left[\begin{array}{l}
0 \\
t
\end{array}\right], g=\left[\begin{array}{l}
t \\
0
\end{array}\right] \\
L H S=0 \\
\text { RHS } \neq 0 \\
\text { L) } f=\left[\begin{array}{l}
1 \\
0
\end{array}\right], g=\left[\begin{array}{l}
07 \\
1
\end{array}\right] \\
\text { LHJ }=0, \text { RHS }=0
\end{gathered}
\]

\section*{Recitation 03}

Consider the conjecture: \(\int_{a}^{b} \vec{f}(t) \cdot \vec{g}(t) d t=\int_{a}^{b} \vec{f}(t) d t \cdot \int_{a}^{b} \vec{g}(t) d t\)
Provide an example to the other members of your group of an \(f(t)\) and a \(g(t)\) such that
1) the conjecture is not satisfied.
2) the conjecture is satisfied (for non-zero \(f\) and \(g\) ).
\[
\begin{aligned}
& \text { 1) } f(t)=\left[\begin{array}{l}
t \\
0
\end{array}\right] \\
& g(t)=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
\end{aligned}
\]
\[
\begin{aligned}
& \text { LHS: } \int_{a}^{b} \vec{f}(t) \cdot \vec{g}(t) d t=\sigma \\
& \text { RHS : } \int_{a}^{b} \bar{f}(t) d t \cdot \int_{a}^{b} \vec{g}(t) d t=0
\end{aligned}
\]
- Survey: reminder sent last night, only 5 people responded as of yesterday ...
- HW2: due Tues Feb 21 at 11:59 pm, covers sections 13.1 to 13.5
- HW1: due tonight, any questions related to the HW?
- Thursday: Graded Group Work: Question 1 from last years Quiz 1, group size 2 or 3
```

At what point does the twisted cubic
rl}(t)=ti+\mp@subsup{t}{}{2}j+\mp@subsup{t}{}{3}k
intersect the plane x + 2y+3z=34?
Find their intersection and find the cosine of the angle between the tangent to the curve and the normal to this plane.

```

Sketching Vector Functions
Sketch \(r(t)=t^{3} \mathbf{i}+t^{2} \mathbf{j} \Rightarrow\) Let \(\vec{r}=x(t) \hat{i}+y(t) \hat{j}=t^{3} \hat{i}+t^{2} j\)
Ask students:

A bettor approach
\[
\begin{align*}
& \text { let } x=t^{3} \Rightarrow t=x^{1 / 3}  \tag{1}\\
& \text { let } y=t^{2} \Rightarrow t=y^{1 / 2} \tag{2}
\end{align*}
\]

equate (1) and (2): \(y^{1 / 2}=x^{1 / 3} \Rightarrow y=x^{2 / 3}\)
DOMAN/RANGE: can \(x\) be negative? can \(y\) be negative?
answer: \(\quad x \in \mathbb{R}, y \in[0, \infty)\)
ASk: WHAT is THE TANGENT VECTOR AT \(t=0\) ? is \(\vec{r}^{\prime}(0)=3 t^{2} \hat{i}+2 t \hat{j}\) ?
No! \(\vec{r}(0)\) is undefined.

\section*{Wolfram Alpha Syntax}

\section*{WolframAlpha}
\[
\operatorname{plot} x(t)=t \wedge 3, y(t)=t \wedge 2
\]
\(\square\)

EEvamples -r nancom

Input interpretation:
\[
\text { plot:} \begin{aligned}
& x(t)=t^{3} \\
& y(t)=t^{2}
\end{aligned}
\]

Parametric plot:

it from -1.285 to 1.2851

Projectile Motion (13.2)
A projectile is fired at angle \(\theta\) with speed \(v_{0}\). a) derive its horizontal distance as a function of time b) derive its maximum height


Tangent Vectors
Let \(\mathbf{r}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathbf{i}+\mathrm{y}(\mathrm{t}) \mathrm{j}+\mathrm{z}(\mathrm{t}) \mathbf{k}\).
a) How is the unit tangent vector, \(\mathbf{T}(\mathrm{t})\), defined mathematically?
b) Suppose \(x=t^{2}, y=t^{3}, z=t^{2}\), and \(t\) is any real number. Then what is the unit tangent vector when \(t=0\) ?
a) \(\vec{T}=\frac{d \vec{r} / d t}{\|\vec{r}\|}\)
b) when
\[
\begin{aligned}
& t \neq 0, \vec{T}=\frac{1}{\|\vec{r}\|}\left[\begin{array}{c}
2 t \\
3 t^{2} \\
2 t
\end{array}\right]=\frac{t}{\|r\|}\left[\begin{array}{c}
2 \\
3 t \\
2
\end{array}\right] \\
& =\frac{t}{\sqrt{8 t^{2}+9 t^{4}}}\left[\begin{array}{c}
2 \\
3 t \\
2
\end{array}\right] \\
& =\frac{1}{\sqrt{8+9 t^{2}}}\left[\begin{array}{l}
2 t \\
2
\end{array}\right] \\
& \stackrel{\rightharpoonup}{T}(0)=\lim _{t \rightarrow 0} \stackrel{\rightharpoonup}{T}(t)=\frac{1}{\sqrt{8}}\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right]
\end{aligned}
\]

Position Perpendicular to Tangent
\(\mathbf{r}(\mathrm{t})\) is the position of a moving particle. Show that \(\|\mathbf{r}(\mathrm{t})\|=\) constant ff \(\mathbf{r} \perp \mathbf{r}^{\prime}\)
if \(\|\vec{r}\|=C\),
then \(\|\vec{r}\|^{2}=c^{2}\)
\[
\begin{aligned}
& \Rightarrow \vec{r} \cdot \vec{r}=c^{2} \\
& \Rightarrow 2 \vec{r} \cdot \vec{r}=0 \quad \text { (took derivative) } \\
& \Rightarrow \vec{r} \perp \vec{r}
\end{aligned}
\]

For converse, start with \(\vec{r} \perp \vec{r}^{\prime}\) and work backwards.

QH6 Recitation 04 Today: Tangents, Arc Length (13.3)
Let \(\mathbf{r}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathbf{i}+\mathrm{y}(\mathrm{t}) \mathrm{j}+\mathrm{z}(\mathrm{t}) \mathbf{k}\).
a) How is the unit tangent vector, \(\mathbf{T}(\mathrm{t})\), defined mathematically?
b) Suppose \(\mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{3}, \mathrm{z}=\mathrm{t}^{2}\), and \(t\) is any real number. Then what is the unit tangent vector when \(t=0\) ?
\[
\begin{aligned}
& \vec{T}=\vec{r}^{\prime}(t) /\left\|\vec{r}^{\prime}(t)\right\| \\
& \vec{r}^{\prime}(t)=\left[\begin{array}{c}
2 t \\
3 t^{2} \\
2 t
\end{array}\right],\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{8 t^{2}+9 t^{4}}=t \sqrt{8+9 t^{2}} \\
& \vec{T}=O / 0 \text {, so simplify factopi } \\
& \overrightarrow{\vec{r}^{\prime}}=t\left[\begin{array}{c}
2 \\
3 t \\
2
\end{array}\right], \vec{T}=\left[\begin{array}{c}
2 \\
3 t \\
2
\end{array}\right] / \sqrt{8+9 t^{2}} \text { This is messy }
\end{aligned}
\]

\section*{Announcements}
- Quiz 1 is exactly 3 weeks away
- office hours, night before quiz
- HW2: Tue Feb 21 at 11:59 pm, sections 13.1-13.5 (hard?)
- Today: Graded Group Work: Question 1 from last years Quiz 1, group size 2 or 3
```

At what point does the twisted cubic
rl}(t)=ti+\mp@subsup{t}{}{2}j+\mp@subsup{t}{}{3}k
intersect the plane x + 2y+3z=34?
Find their intersection and find the cosine of the
angle between the tangent to the curve and the nornal to this plane.

```

\section*{Group Work}
1. Group size: 2 to 3 students
2. Someone is in your group when they write their initials on board
3. Students can create breakout rooms
4. Colors:
a) Every student uses a different color
b) Every student signs initials (or name) on board in their color
5. Only have 10 minutes
6. Press SAVE button to submit your work
7. What does the ERASE button do?

At what point does the twisted cubic
\(r_{1}(t)=t i+t^{2} j+t^{3} k, \quad \hat{r}!(t)=\hat{i}+2 t_{j}^{\hat{j}}+3 t^{2} \hat{k}, ~\) intersect the plane \(x+2 y+3 z=34\) ?
Find their intersection and find the cosine of the \(\left|\vec{r}^{\prime}(x)\right|=\sqrt{1+4^{2}+12^{2}}=\sqrt{161}\) angle between the tangent to the curve and the normal to this plane.
intersect at: \(t+2 t^{2}+3 t^{3}=34\)
plug-and-check: \(t=2\)
point is: \(\left(2,2^{2}, 2^{3}\right)\)
angle is: \(\theta=\arccos \left(\frac{\vec{P}^{\prime}(2)}{\| \vec{r}^{\prime}|x|} \cdot \vec{N} / \mid \vec{N} \|\right)\)
\[
\begin{aligned}
& \vec{r}^{\prime}(2) \cdot \vec{N}=\left[\begin{array}{l}
1 \\
4 \\
12
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=1+8+36=45 \\
& \theta=\cos ^{-1}\left(\frac{45}{\sqrt{161} \cdot \sqrt{14}}\right)
\end{aligned}
\]

Intersection Angle
\[
\begin{aligned}
& r_{1}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j} \\
& r_{2}(u)=\cos (u) \mathbf{j}+\sin (u) \mathbf{k}
\end{aligned}
\]


Find the point of intersection, and the angle between their tangent vectors at that point.
Intersect when \(\vec{r}(t)=\vec{r}(u)\) for some value (s)
\[
\begin{aligned}
& \text { of t, u, } \\
& \text { By inspection, } t=\pi / 2, \frac{3 \pi}{2}, \text { so } \vec{r}=\left[\begin{array}{c}
0 \\
\pm 1 \\
0
\end{array}\right] \\
& u=0, \pi, \text { so } \overrightarrow{r_{2}}=\left[\begin{array}{c}
0 \\
\pm 1 \\
0
\end{array}\right] \\
& \begin{array}{l}
\text { AT }(0,+1,0) \text { is }(0, \pm 1,0), ~(-1) \hat{i} \\
\left.\left.\begin{array}{l}
r_{1}^{\prime}\left(\frac{\pi}{2}\right) \\
\frac{r_{2}}{\prime}(0)=\hat{k}
\end{array}\right\} 90^{\circ} \quad \begin{array}{l}
A T(0,-1,0) \\
\vec{r}_{1}^{\prime}(3 \pi / 2)=-\hat{j} \\
\vec{r}_{2}^{\prime}(\pi)=\hat{k}
\end{array}\right\} 90^{0}
\end{array}
\end{aligned}
\]

A cable is suspended between two poles that are 10 m apart. Find the length of the cable, if the cable's shape is \(y(x)=k[\cosh (x / k)-1],-5 \leq x \leq 5\).
\[
\begin{aligned}
& y=k(\cosh (x / k)-1)=k\left[\left(e^{x \mid k}+e^{-x / k}\right)-1\right]\left[\begin{array}{c} 
\\
0
\end{array}\right] \\
& L=\int_{-5}^{+5} \sqrt{1+\left(y^{\prime}\right)^{2}} d x, y^{\prime}=k \sinh \left(\frac{x}{k}\right) \frac{1}{k}-0 \\
& =\int_{-5}^{5} \sqrt{1+\sinh ^{2} \frac{x}{k}} d x \\
& =\int_{-5}^{5} \sqrt{\cosh ^{2} x_{k}} d x \\
& =k \sinh \left(\left.\frac{x}{k}\right|_{-5} ^{+5}=2 k \sinh (5 / k)\right. \\
& \text { Interpreting result: } \\
& \text { 10 } \\
& \begin{array}{l}
\text { gl } \\
\text { HORIZ. MSMRTOTE AT } K=10 \\
\text { AS ONE WOULD EXPErT. }
\end{array} \\
& \begin{array}{l}
\text { HORsE MSYMTOTE AT } L=10 \\
\text { AS ONE WOULD EXPECT. } \\
k \text { relates to tho }
\end{array} \\
& \begin{array}{l}
\text { " relates to the } \\
\text { "stiffness" of cable } R O 5
\end{array}
\end{aligned}
\]

Find the arc length between 1 and \(t\) for the curve :
\[
x(s)=s i+\left(2-s^{2}\right) j+\left(s^{2}-4\right) k, \gamma^{\prime}=i-2 s j+2 s k
\]
(Don 't evaluate the integral)
\[
\begin{aligned}
L & =\int_{1}^{t}\left\|r^{\prime}\right\| d s \\
& =\int_{1}^{t} \sqrt{1+4 s^{2}+4 s^{2}} d s \\
L & =\int_{1}^{t} \sqrt{1+8 s^{2}} d s
\end{aligned}
\]

If we wonted to go further:

RO5, Quizi, Question 3
\[
|\vec{v}|=\sqrt{5+16 t^{2}}
\]
alternate formu'a
\[
a_{N}=\frac{\sqrt{80}}{5+16 t^{2}}
\]
\[
\begin{aligned}
a_{N} & =\sqrt{|a|^{2}-a_{T}^{2}} \\
& =\sqrt{\sqrt{0^{2}+0^{2}+4^{2}}-\frac{16^{2} t^{2}}{5+16 t^{2}}} \\
& =\sqrt{16-\frac{16 t^{2}}{5+16 t^{2}}} \\
& =\frac{1}{\sqrt{5+6 t^{2}}} \sqrt{16\left(5+16 t^{2}\right)-16^{2} t^{2}}=\frac{\sqrt{80}}{2 m n}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{aligned}
&\left.\vec{r}=\left[\begin{array}{c}
2 t \\
t \\
2 t^{2}
\end{array}\right], \vec{V}=\left[\begin{array}{l}
2 \\
1 \\
4 t
\end{array}\right],|\vec{v}|=\sqrt{5+16 t^{2}}, \quad \begin{array}{rl}
\frac{d}{d t} & =\frac{1}{2}\left(5+16 t^{2}\right.
\end{array}\right]^{-\frac{1}{2}} \cdot(32 t) \\
&=16 t
\end{aligned} \\
& =\frac{16 t}{\left(5+16 t^{2}\right)^{1 / 2}} \\
& a_{T}=\frac{d}{d t}|v|=\frac{16 t}{\left(5+16 t^{2}\right)^{-1 / 2}} \\
& a_{N}=K\left(\|\left. v\right|^{2}\right)=\frac{|\vec{v} \times \vec{a}|}{|v|} \\
& \left.\vec{a}=\left[\begin{array}{l}
0 \\
0 \\
4
\end{array}\right], \quad \vec{v} \times \vec{a}=\begin{array}{lll}
i & & t \\
2 & 4 t \\
0 & 0 & 4
\end{array}\right)=4 \hat{i}-8 \hat{j}, \quad(v \times a)=\sqrt{80}
\end{aligned}
\]

R05
a) \(r\left(-\frac{\pi}{2}\right)=[0,-1,-1]\)
b) \(T\left(-\frac{\pi}{2}\right)=\frac{v}{\|v\| \mid}\left(\left.-\frac{\pi}{2} \right\rvert\,\right)=\|[1,0,0]\left[\begin{array}{c}1, ~ \\ v=\left[\begin{array}{c}-\sin t \\ \cos t \\ 0\end{array}\right], v\left(-\frac{\pi}{2}\right)=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], V \mid=1\end{array}\right\} T=\left[\begin{array}{c}-\sin t \\ \cos t \\ 0\end{array}\right]\)
c) \(\begin{aligned} N=\frac{\alpha T}{2} t\end{aligned}\left(\left\lvert\, \frac{\sigma \pi}{2} t\right.\right)=\left[\begin{array}{c}-\cos ^{t} t \\ -\sin t \\ 0\end{array}\right] / 1=-\left[\begin{array}{l}c \\ 5 \\ 0\end{array}\right]\)
\[
N\left(-\frac{\pi}{2}\right)=-\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
\]
\[
d \left\lvert\, \begin{aligned}
& B=T \times N=\left|\begin{array}{ccc}
i & j & k \\
-5 & c \\
-c & s & 0
\end{array}\right|=\left[\begin{array}{c}
0 \\
0 \\
-s^{2}+c^{2}
\end{array}\right](?) \\
& B\left(-\frac{\pi}{2}\right)=\left[\begin{array}{l}
0 \\
0 \\
+1
\end{array}\right] \rightarrow-c-s o=\left[\begin{array}{c}
0 \\
0
\end{array}\right]
\end{aligned}\right.
\]

 \(\sqrt{z^{\prime}=-1}\)
\(\mathbf{r}(\mathrm{t})\) is the position of a moving particle. Show that \(\|\mathbf{r}(\mathrm{t})\|=\) constant for all t ff \(\mathbf{r} \perp \mathbf{r}\) for all t .
\[
\begin{aligned}
& \text { if }\|\vec{r}\|=\text { constant } \\
& \Rightarrow\|r\|^{2}=c^{2} \\
& \Rightarrow r \cdot r=c^{2} \\
& \Rightarrow r \cdot r+r \cdot r^{\prime}=0 \\
& \Rightarrow 2 \vec{r}^{\prime} \cdot \vec{r}^{\prime}=0 \\
& =r \perp r^{\prime}
\end{aligned}
\]

\[
\left.r(t)=\left(e^{t} \sqrt{2}\right) t+\left(e^{t} \cos t\right)\right)+\left(e^{t} \sin t\right) t, t=0
\]
\[
\begin{aligned}
& V=\sqrt{2} e^{t} i+\left(e^{t}(-s t-\sin t)\right) \hat{j}+e^{t}(c+s) \hat{k}, \quad c=\cos t \\
& a=\sqrt{2} e^{t} i+e^{t}((c-s)+(-s-c)) \hat{j}+e^{t}[(c+s)+(-s+c)] \hat{k} \\
& = \\
& =\sqrt{2} e^{t} \hat{i}+(-2 s) e^{t} \hat{j}+2 c e^{t} \hat{k} \\
& |v|=\left[2 e^{2 t}+e^{2 t}(1-\sin 2 t)+e^{2 t}(1+\sin 2 t)\right]^{1 / 2} \\
& \left.\frac{d}{d t}|v|=\frac{1}{2}[m]^{-1 / 2}\left(4 e^{2 t}+t-e^{2 t}\right)\right] \\
& \left.\frac{d}{d t}|v|(0)=\frac{1}{2}[2+1+1]^{-1 / 2}(8)=e^{2}(-2 \cos )\right) \\
& |a|^{2}(0)=2+4, \quad a_{N}(0)=\sqrt{6-2^{2}} \Rightarrow \vec{a}=2 \vec{T}+\sqrt{2} \vec{N} \text { ROO }
\end{aligned}
\]
1. The level curves of \(z=f(x, y)\) are the curves that satisfy the equation:
\[
z=f=\operatorname{CONSPANT}
\]
2. The level curves in a topographic map describe:
curves of conftart ELEVATION


Quadratic Surfaces
axcupbs: (1) \(-x^{2}+y^{2}=1\)
Consider \(z=A x^{2}+B y^{2}, A\) and \(B\) are constants. Describe all possible surfaces for the following cases.
i) \(A=B=0\)
ii) \(\mathrm{AB}>0\)
iii) \(A B<0\)
i) \(z=0, x y\)-plane
ii) \(A, B\) have samesiyn

A \(A x^{2}+B y^{2}=C\), ellipse
(il)
\(A, B\) have different signs


Case ii, \(A B>0\)

\section*{(WolframAlpha* =as.}

\section*{plot \(z=-2^{*} x^{\wedge} 2-3^{*} y^{\wedge} 2\)}

萬-田-5
포 Examples
\(=\approx\) Random

Input interpretation:
\[
\text { plot } z=-2 x^{2}-3 y^{2}
\]

Geometric figure:
elliptic paraboloid


Case iii, \(\mathrm{AB}<0\)

\section*{WolframAlpha \\ computational \\ knowladge engine}

\section*{plot \(z=x^{\wedge} 2-y^{\wedge} 2\)}

日
国- 0 -

Input interpretation:
\[
\text { plot } z=x^{2}-y^{2}
\]

\section*{Geometric figure:}

\section*{hyperbolic paraboloid}

\[
\begin{aligned}
& i^{n} \\
& \stackrel{y}{c} \\
& \frac{11}{\frac{3}{8}} \\
& 5
\end{aligned}
\]

\(=0\)
\(क=n\)
\(\& \quad 0^{n}\)

Having trouble with your audio?
- make sure speakers are not muted
- navigate to Meeting \(\gg\) Audio Setup Wizard

Other issues?
- navigate to Help >>Troubleshooting - see Quick Start Guide (PDF)

Let \(F=\nabla f=(x+\sin (y)) i+(x \cos (y)-2 y) j\). Find \(f(x, y)\).
We know that:
\[
\frac{\partial f}{\partial x}=\square \leftarrow(\text { get stents } \text { you whet tell }
\]

Therefore, by integration,
\[
f(x, y)=\frac{x^{2}}{2}+x \sin (y)+
\]

To find \(h(y)\), diff w.r.t. \(y\) :
\[
\begin{aligned}
& \frac{\partial f}{\partial y}=0+x \cos y+h^{\prime}(y) \Rightarrow \\
& h^{\prime}(y)=2 y \\
& h=y^{2} \\
\Rightarrow & f(x, y)=\underline{\frac{x^{2}}{2}+x \sin y+y^{2}}
\end{aligned}
\]

ASK STUDENTS:
- could constant of integration be a function \(y\) ?

Quiz 1

\section*{As announced on Friday}
- Covers HW1,2,3 + additional problems
- 2 sheet of \(81 / 2 \times 11\) motes (both sides)
- Calculators allowed

\section*{Office Hours}
- In Adobe Connect at

\section*{https://georgiatech.adobeconnect.com/distancecalculusofficehours/}
- Tuesday and Wednesday 8:00 pm to 9:30 pm

\section*{Prepare}
- Solve HWs on MyMathLab
- Practice Quiz

\section*{During Quiz}
- I'll be in Adobe Connect https://georgiatech.adobeconnect.com/distancecalculusquiz/
- Grady HS students: Klaus 2447

Do You Have Any Questions?

Gradient and Level Curves
At which point will the gradient vector have the largest magnitude?
a) \((0,2)\)
b) \((-4,-4)\)
c) \((0,0)\)
d) \((6,-2)\)

Explain why, and sketch the gradient at that point.
Because \(|\nabla f|=\sqrt{f_{x}^{2}+f_{y}^{2}}\) and (d) is whee lines are
 mort "dense"


Vector is in direction of steepest ascent and is perpendicular to level curve

Tangent Plane "the surface \(f\) is the set of all points that satisfy \(3 x y-x^{3}-y^{3}-x\)
For \(z=3 x y-x^{3}-y^{3}\), find an equation for the tangent planeaand determine where the tangent plane is horizontal. What do those points represent?
Tangent plane given by (normal Vector) \(\cdot\) (veto rem \(\rho_{\text {lane })}=0\)
The vector normal to the surface is in \(\mathbb{R}^{3}\).
\[
0=3 x y-x^{3}-y^{3}-z, \quad \text { E ET } \quad f(x, y, z)=3 x y-x^{3}-y^{3}-z \bar{y} 0
\]

The normal vector is parallel to \(\nabla f=f_{x} \hat{i}+f_{y} \hat{j}+f_{z} \hat{k}\).
\[
\Rightarrow \nabla f=\left[\begin{array}{c}
3 y-3 x^{2} \\
3 x-3 y^{2} \\
-1
\end{array}\right], \quad \nabla f(1,1,1)=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]
\]
\[
\text { At }(1,1), z=1 \text {, plane is } \nabla f(1,1,1) \cdot\left[\begin{array}{c}
x-1 \\
y-1 \\
z-1
\end{array}\right]=0 \Rightarrow \begin{aligned}
& \quad z=1 \text { is } \\
& \text { tangent plane. }
\end{aligned}
\]

Tangent plane is horizontal when \(f_{x}=f_{y}=0\) : \(\left.\begin{array}{l}f_{x}=3 y-3 x^{2}=0 \\ f_{y}=3 x-3 y^{2}=0\end{array}\right\} \begin{aligned} & y=x^{2} \\ & x=y^{2}\end{aligned}\), both satisfied at \((0,0),(1,1)\) There point can indicate local max/min
```

plot z(x,y) = 3xy-x^3 - y^3

```

EExampes \(=\sim\) Random

Ingut incerpretation:
plot \(z(x, y)=3 x y-x^{3}-y^{3}\)
Contour plot:
points wheve
\(\nabla f=\overrightarrow{0} \mathrm{ican}\)
indicate local
minima/maxima!


Directional Derivative
Find the directional derivative of \(f=z \ln (x / y)\) at \((1,1,2)\) toward the point \((2,2,1)\) and state what it represents.
\[
\begin{aligned}
& \overrightarrow{\nabla f}(x, y, z)= z \cdot\left(\frac{1}{x / y}\right) \frac{d}{d x}\left(\frac{x}{y}\right) \hat{i}+z\left(\frac{1}{x / y}\right) d / d y\left(\frac{x}{y}\right) \hat{j} \\
&+\ln \left(\frac{x}{y}\right) \hat{k} \\
&= \frac{z}{x} \hat{\imath}-\frac{z}{y} \hat{j}+\ln \left(\frac{x}{y}\right) \hat{k} \\
& \nabla f(1,1,2)=\left[\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right] \\
& \nabla f \cdot\left[\begin{array}{c}
1-2 \\
1-2-2 \\
2-1
\end{array}\right]=
\end{aligned}
\]

Rate at which function(surfoce) is increasing in that direction. \(\Rightarrow \vec{u}\) is in tangent plane!

Because \(7 f\) is \(f^{\text {normal to surface }}\) ROB

Mixed Partial Derivatives
\(f(x, y)\) is a function with continuous \(1^{\text {st }}\) and \(2^{\text {nd }}\) partial derivatives on \(D\), and \(f_{x y}(x, y)=0\) everywhere on \(D\).
a) What can we say about \(f(x, y)\) on D?
b) Provide two functions that have this property.
\[
\text { If } \frac{\partial^{2} f}{\partial x \partial y}=0 \text {, then, }
\]

Int wet \(y: \frac{\partial f}{\partial x}=F(x) \longleftarrow\) function of \(x\) only
Int wit: \(\quad f(x, y)=\widetilde{F}(x)+\tilde{G}(y)\)
a) functions of this form are expressed as a sum of univaciate function.
b) \(f=A x+B y\); or \(f=A x^{2}+B y^{2}\)

Gravitation
What is the formula that describes Newton's Law of Gravitation in \(\mathbb{R}^{3}\)
\[
\begin{aligned}
& F=G M M / r^{2}=G M M \\
& \text { a) Sketch the level surfaces } \\
& \text { b) State, in words, what the surfaces describe }
\end{aligned}
\]
b) State, in words, what the surfaces describe
a) \(x^{2}+y^{2}+z^{2}=K\)
SPHERES
b) regions of constant gie. force.

\section*{Tangent Plane}

Show that, for all tangent planes to the given surface, the sum of their intercepts is the same.
surface: \(\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{a}\)
(Solution on NEXT page)



Quadratic Surfaces
Circle the correct answer.
The set of all points whose distance from the \(z\)-axis is 4 is the:
a) sphere of radius 4 centered on the \(z\)-axis (origin)
b) line parallel to the \(z\)-axis 4 units away from the origin
c) cylinder of radius 4 centered on the \(z\)-axis
d) plane \(z=4\)

(c)

The equation that represents the distance between \(P\) and the \(z\)-axis is
\[
\begin{aligned}
& \text { between and the } t-a x 15 \text { is } \\
& D=\|P-(0,0, z)\|=\sqrt{\left(x_{0}-0\right)^{2}+\left(y_{0}-0\right)^{2}+(z-z)^{2}}
\end{aligned}
\]

But for the distance between \(P\) and the \(z\)-axis, \(z=z_{0}\)
\[
=4 \text {, so } \sqrt{x_{0}^{2}+y_{0}^{2}}=4 \text {, cylinder! }
\]

\section*{Announcements}
- Next HW should be posted today
- Quiz 1 marked on Friday or next Tuesday
- What did you think of Quiz 1?

The Gradient and Local Maxima
A) Image \(z=z(x, y)=\)
B) Surface Plot of \(z(x, y)\)
\(O\) =dark, \(1=\) bright

1) Place a dot on image \((\mathrm{A})\) that could correspond to a local maximum.
2) What characteristics does the gradient vector have at local maxima?
\[
f_{x}=f_{y}=0 \text {, vector points up/ / down }
\]

Stationary Points
Find and describe the stationary points of \(f(x, y)=y+x \sin (y)\).
To find stationary points, first calculate, \(\nabla f\), set to zero.

\[
x= \pm 1
\]


Second Partials Test
Let \(\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{kxy}+\mathrm{y}^{2}\)., \(\quad K\) is a constom 7
a) Where are the stationary points?
b) For what values of \(k\) will \(f\) have a saddle at the origin?
c) For what values of \(k\) will \(f\) have a local min at the origin?
d) For what values of \(k\) is the second partials test inconclusive?
a)
\[
\begin{aligned}
& \nabla f=\left[\begin{array}{l}
2 x+k y \\
2 y+k x
\end{array}\right]=0 \\
& \text { if } x=y=0, s p . \\
& \text { if } k=2 \text {, spa long } y=-x .
\end{aligned}
\]
\[
\Rightarrow \begin{cases}k y=-2 x, & x=-\frac{k}{2} y \\ k x=-2 y, & k\left(\frac{-k}{} y\right)=\end{cases}
\]
\[
\left\{\begin{array}{l}
k x=-2 y, k\left(\frac{-k}{2} y\right)=-2 y \Rightarrow k= \pm 2,2, ~
\end{array}\right.
\]
\(\Rightarrow\) statimary points along \(y= \pm x\) when \(k= \pm 2\).
\[
\text { Saddles when } D=f_{x x} f_{y y}-f_{x y}^{2}<0
\]
\[
f_{x x}=f_{y y}=2, f_{x y}=k \text {, so } D=4=k^{2} \text {, so saddle at }
\] origin if \(|k|>2\)
c) Local min if \(D>0\) and \(f_{x x}>0\), so \(|k|<2\)
d) inconclusive if \(D=0\), or \(k= \pm 2\)


\section*{Recitation 10}

\section*{Extreme Values, Lagrange Multipliers}

Let's try group work in Adobe Connect
- You'll solve the question that we started at the end of Tuesday's recitation
- Three breakout rooms
- Everyone randomly assigned to a room
- Not graded
- You'll have 10 to 15 minutes
- I'll circulate between rooms

I suggest starting by discussing a solution strategy with the other people in your group using a mic and/or text chat.

Second Partials Test
Let \(\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{kxy}+\mathrm{y}^{2}\), \(/ k\) is a constant
a) Where are the stationary points?
b) For what values of \(k\) will \(f\) have a saddle at the origin?
c) For what values of k will f have a local min at the origin?
d) For what values of \(k\) is the second partials test inconclusive?
a
\[
\begin{aligned}
& \nabla f=\left[\begin{array}{l}
2 x+k y \\
2 y+k x
\end{array}\right]=0 \\
& \text { if } x=y=0, s p . \\
& \text { if } k=2, \text { sp along } y=-x .
\end{aligned}
\]
\[
\Rightarrow\left\{\begin{array}{l}
k y=-2 x, x=-\frac{k}{2} y \\
k x=-2 y,(-k)=-
\end{array}\right.
\]
\[
\left\{\begin{array}{l}
k x=-2 y, \quad k\left(\frac{-k}{2} y\right)=-2 y \Rightarrow k= \pm 2,2, ~
\end{array}\right.
\]
\(\Rightarrow\) stationary points along \(y= \pm x\)
when \(k= \pm 2\).
b) Saddles when \(D=f_{x x} f_{y y}-f_{x y}^{2}<0\)
\[
f_{x x}=f_{y y}=2, f_{x y}=k \text {, so } D=4=k^{2} \text {, so saddle at }
\] origin if \(|k|>2\)
\[
\text { c) Local min if } D>0 \text { and } f_{x x}>0 \text {, so }|k|<2
\]
d) inconclusive if \(D=0\), or \(k= \pm 2\)

Part a）

\section*{次 WolframAlpha}

\section*{plot \(x^{\wedge} 2+y^{\wedge} 2+2 x y\)}

羊－ 0 田 Examples -6 Random－

Input incerpretation：
```

plot (\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2})+2xy

```

30 plot：

Part b）

\section*{WolframAlpha}
\[
\text { plot } x^{\wedge} 2+y^{\wedge} 2-8 x y
\]

畨－ 0 田 家
三 Examples \(\sim\) Random

Input interpretation：
plot \(\left(x^{2}+y^{2}\right)-8 x y\)



\section*{QH6 Recitation 11 Taylor Approximations, Integration}
- Pop quiz grading
- Correct 5 points
- Name on page 3 points
- Did not take: 0 points.
- Time: 15 minutes
- To submit your work, either
a) work on whiteboard in breakout room
- press the SAVE button
b) work on paper and give work to facilitator
- leave 2 inch margin
- write your name and QH6 at the top
- facilitator can email quiz to cdlops@pe.gatech.edu
c) work on paper and take a photo of your work
- email your photo to me before 8:30
- write in text chat that you are emailing your work to me

Pop Quiz LET \(C=\cos y, s=\sin y\)
Find the cubic approximation of \(f(x, y)=4 x \cos (y)\) near the origin.


\section*{Announcements}
- HW 5
- due tonight at 11:59 pm
- seven questions on Taylor approximations from Section 14.9
- HW 6
- fifteen questions on integration from Section 15.2 and 15.3
- due Thursday at 11:59 pm
- Quiz 2: Tuesday March 4

How would you like to spend the rest of the recitaiton? Text your preference.
a) A Taylor approximation example and some integration
b) Integration examples

Do you have questions about the homeworks and/or the quiz?

Set up an integral that represents the area of the triangular region with vertices \((1,1),(4,1),(3,2)\).


Intervals
\[
\begin{gathered}
y \in[1,2] \\
x \in[2 y-1,5-y] \\
\int_{1}^{2} \int_{2 y-1}^{5-y} d x d y
\end{gathered}
\]
\[
\begin{aligned}
& y=5-x \Rightarrow x=5-y \\
& y=\frac{1}{2}(x+1) \Rightarrow x=2 y-1
\end{aligned}
\]

Intervals
\[
x \in[1,3]
\]
\(R\)
\[
y \in\left[1, \frac{1}{2}(x+1)\right]
\]
\[
\begin{aligned}
& k_{2} x \in[3,4] \\
& y \in[1,5-x]
\end{aligned}
\]

Change the order of integration and integrate
\[
\begin{array}{ll}
\int_{1 / 2}^{1} \int_{x^{3}}^{x} d y d x & x \in\left[\frac{1}{2}, 1\right] \\
\text { Region if integration: } & y \in\left[x^{3}, x\right]
\end{array}
\]


REGiON 2
\(\begin{aligned} & y \in[1 / 2,1] \\ & x \in[y, \sqrt[3]{4}]\end{aligned}\)
\[
A=\int_{1 / 8}^{1 / 2} \int_{1}^{3 / 2} \sqrt[3]{4} d x d y+\int_{1}^{1} \int_{y}^{1} \int_{y}^{3} d x d y x
\]
REGION
\[
=\left(y^{4 / 3}-4 / 2\right)_{1 / 8}^{1 / 2}+y^{4 / 3}-4^{2} /\left.2\right|_{1 / 2} ^{1}=
\]

QH6 Recitation 12
Integration
Sketch the petal curve \(r=2 \cos (2 \theta)\) and find the area of one petal.


ALWAYS SKETCH YOUR IT HELPS You DETERMINE

LIMITS of Integration.


The bounds of integration for the "half "petal are"
\[
r \in[0,2 \cos (2 \theta)]
\]
\[
\begin{aligned}
& \Rightarrow \text { AREA }=2 \int_{0}^{\pi / 4} \int_{0}^{2 \cos (2 \theta)} r d r d \theta=2 \int_{0}^{\pi / 4}\left((2 \cos 2 \theta)^{2} / 2\right] d \theta \\
&\left.=4 \int_{0}^{(\text {why is there an } r} \begin{array}{rl}
\text { in the integrand? }
\end{array}\right) \\
&=2\left(\theta+\frac{1}{2} \cos 4 \theta\right) d \theta \\
&\left.\left(\theta+\frac{\sin 4 \theta}{4}\right)\right|_{0} ^{\pi / 4}=\pi / 2
\end{aligned}
\]


1) Sketch and find the area of the region inside the curve \(r=5+\cos (\theta)\) (from last year's quiz).


Area \(=\int_{0}^{\pi} \int_{0}^{5+\cos \theta} r d r d \theta\)

\[
\begin{aligned}
& =\frac{1}{2} \int_{0}^{\pi}(5+\cos \theta)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi}\left(25+10 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =\frac{1}{2}\left[25 \theta+10 \sin \theta+\int\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) d \theta\right] \\
& =\frac{25 \pi}{2}+0+\left.\frac{1}{2}\left[\frac{\theta}{2}+\frac{1}{4} \sin 2 \theta\right]\right|_{0} ^{\pi} \\
& =\frac{25 \pi}{2}+\frac{\pi}{4}=\frac{51 \frac{1}{4} \pi 40, \text { not very close to } 25 \pi, \sqrt{1 / 2}}{}
\end{aligned}
\]
2) Sketch the region of integration, change the order of integration, and then integrate
\[
\int_{-1}^{0} \int_{-\sqrt{y+1}}^{\sqrt{y+1}} d x d y
\]

The "anGer" integral uses \(x \in[-\sqrt{y+1}, \sqrt{y+1}]\)
OR \(-\sqrt{y+1} \leqslant x \leqslant \sqrt{y+1}\)
OR: \(\quad x^{2} \leqslant y+1\)
or: \(\quad y \geqslant x^{2}-1\)
OUR "OUTER" INTEGRAL GIVES US \(-1 \leqslant y \leqslant 0\).
THIS YIELD THE REGION BELOW,

in this region, \(x \in[-1,+1], y \in\left[x^{2}-1,0\right]\).
\[
\begin{aligned}
\Rightarrow A K E A & =\int_{0}^{1} \int_{x^{2}-1}^{0} d y d x \\
& =\int_{0}^{1} 1-x^{2} d x \\
& =\int_{0}^{11-x^{2} d x} \text { (even inter } \\
& =\left.2\left(x-x^{3} 3\right)\right|_{0} ^{1}=2=\mid 3
\end{aligned}
\]
3) Sketch the region of integration, change the order of integration, and then integrate
\[
\int_{1}^{3} \int_{-x}^{x^{2}} d y d x
\]
we are given \(\left\{\begin{array}{l}x \in[1,3] \\ y \in\left[-x, x^{2}\right] \Rightarrow-x \leqslant y \leqslant x^{2}\end{array}\right.\)
\[
\begin{aligned}
& A_{2}=\int_{-1}^{+1} \int_{1}^{3} d x d y \\
& =\int_{-3} 3+y d y \\
& =\left.\left(3 y+y^{2} / 2\right)\right|_{-3} ^{1} \\
& =\int_{-1}^{1}(3-1) d y \\
& =(3+1 / 2)-\left(-9+\frac{9}{2}\right) \\
& =2 \cdot(1+1)=4=12-4=8 \\
& A_{3}=\int_{1}^{9} \int_{\sqrt{y}}^{3} d x d y=\int_{1}^{9}(3-\sqrt{y}) d y=\left.\left(3 y-\frac{2}{3} y^{3 / 2}\right)\right|_{1} ^{9}=\ldots=\frac{20}{3} \\
& \Rightarrow \text { Area }=A_{1}+A_{2}+A_{3}=8+4+\frac{20}{3}=\frac{56}{3}
\end{aligned}
\]

Quadratic Approximation
Find the quadratic approximation to \(f(x, y)=\exp \left(-x^{2}-y^{2}\right)\) near the origin.
\begin{tabular}{l|l} 
DERIVATIVE & AT \((0,0)\) \\
\hline\(f_{x}=-2 x f\) & 0 \\
\(f_{y}=-2 y f\) & 0 \\
\(f_{x x}=-2 f+4 x^{2} f\) & -2 \\
\(f_{x y}=4 x y f\) & 0 \\
\(f_{y y}=-2 f+4 y^{2} f\) & -2 \\
\(f^{2} \approx 1+\frac{1}{2!}\left(-7 x^{2}-2 y^{2}\right)=1-x^{2}-y^{2}\)
\end{tabular}

QH6 Recitation 14 Triple Integrals
Set up a triple integral that represents the volume of the region bounded by \(y^{2}+z^{2}=1\) and the planes \(y=x, x=0, z=0\).
\(x=0\) is the \(y z\)-plane
\(z=0\) is the \(x y\) plane
\[
y^{2}+z^{2}=1 \text { is a cylider. }
\]
(1) Acwates TRY To SKETCH REGION/sOnD.
(2) SELECT CaDER OF INTEGAATDN, FiWD LMMIS

\[
\begin{aligned}
& x \in[0,1]\binom{\text { positiom of }}{\text { stcip }} \\
& \left.y \in[x, 1] \begin{array}{c}
\text { whope } \\
\text { strijs } \\
\text { staft } 1 \text { top }
\end{array}\right) \\
& z \in\left[0, \sqrt{1-y^{2}}\right]\left(\begin{array}{l}
\text { wherens } \\
\text { coluns } \\
\text { stact/stop }
\end{array}\right) \\
& \Rightarrow V=\int_{0}^{1} \int_{x}^{1} \int_{0}^{\sqrt{1-y^{2}}} d z d y d x
\end{aligned}
\]
projection of solid anto \(x y\) plane.
\[
\begin{cases}\int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{y} d x d y d z \\ \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{x}^{\sqrt{1-z^{2}}} d y d z d x \\ \int_{0}^{1} \int_{0}^{y} \int_{0}^{\sqrt{1-y^{2}}} d z d x d y & \text { RASY, } \\ & \\ & R 14\end{cases}
\]

Set up a triple integral that represents the volume of the region bounded by \(z^{2}=y, y+z=2, x=0, z=0, x=2\). Set up the integral in at least two different ways.


Set up a triple integral that represents the volume of the region bounded by \(x^{2}+y^{2}+z^{2}=2\), and by \(x^{2}+y^{2}=1\).
sphere cylinder

\[
\begin{aligned}
& x \in[0,1] \\
& \\
& y \in\left[0, \sqrt{1-x^{2}}\right] \\
& z \in\left[0, \sqrt{2-x^{2}-y^{2}}\right] \\
& V=8 \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{2-x^{2}-y^{2}}} d z d y d x
\end{aligned}
\]

PROJECT \({ }^{\text {SLD ONTO }} x\)-y PLANE

(every pout "pushes" down ito xy-plone)
\[
\begin{aligned}
& r \in[0,1] \\
& \theta \in[0, \pi / 2]
\end{aligned}
\]
\[
z \in\left[0, \sqrt{2-r^{2}}\right]
\]
\[
V=8 \int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{\sqrt{1-r^{2}}} r d z d r d \theta
\]

Triple Integrals
Set up an integral that represents the volume of solid bounded by \(x^{2}+y^{2}=1\), \(x^{2}+y^{2}=4\), above by \(x^{2}+y^{2}+4 z^{2}=36\), and below by \(z=1\).
(1) How should we stat? Sketch solid, sketch in \(x-y\) plane,
(2)

(5) Limits of integration
\[
x \in[0,2]
\]
\[
\begin{array}{ll}
x \in[0,2] & \text { "outer" } \\
y \in\left[0, \sqrt{4-x^{2}}\right] & \begin{array}{c}
\text { solid } \\
\text { sonly } \\
\text { only }
\end{array}
\end{array}
\]
\[
z \in\left[1, \sqrt{36 / 4-1 / 4\left(x^{2}+y^{2}\right)}\right]
\]
\(z \in\left[1, \sqrt{36 / 4-1 / 4\left(x^{2}+y^{2}\right)}\right]\)
(6) SET UP INTEGRRCS AS OUTER -MINUS INNER:
\[
\begin{aligned}
& \text { (6) SET }=4 \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{1}^{\sqrt{9-\frac{1}{4\left(x^{2}+y^{2}\right.}}} d z d y d x-4 \int_{0}^{2} \int_{0}^{\sqrt{1-x^{2}}} \int_{1}^{\sqrt{9-1 / 4\left(x^{2}+y^{2}\right)}} d \\
& \text { (7) ANOTHERE}
\end{aligned}
\]

QH6 Recitation 15 Triple Integrals
Set up an integral that represents the volume of solid bounded by \(x^{2}+y^{2}=1\), \(x^{2}+y^{2}=4\), above by \(x^{2}+y^{2}+4 z^{2}=36\), and below by \(z=1\).

\[
\begin{aligned}
& \theta \in[1,2] \\
& z \in\left[1, \sqrt{36 / 4-1 / 4\left(x^{2}+y^{2}\right)}\right]
\end{aligned}
\]
\[
\left.V=\int_{0}^{2 \pi} \int_{1}^{2} \int_{1}^{\sqrt{36 / 4-1 / 4\left(x^{2}+\eta^{2}\right)}} r d z d r d \theta\right]
\]

Think Abate:
TWINKLy do we reed the "r" in the integrand? 2 COULD WE USE \(\operatorname{drdzd} \theta\) ?

Set-up an integral that represents the volume of the solid bounded above by \(z=1\), and below by \(z^{2}=x^{2}+y^{2}\). Set this integral up in at least two different ways.

\[
\begin{aligned}
& x \in[0 ; 1] \\
& y \in\left[0, \sqrt{1-x^{2}}\right]
\end{aligned}
\]
\[
z \in\left[\sqrt{x^{2}+y^{2}}, 1\right]
\]


BE CAREFUL WHY Z-CORDINATES: WAVER POUT ON SOLID IS TH CONES SLIER SURFACE
\[
\begin{array}{ll}
\begin{array}{ll}
\text { POLAR } / C Y L \text { INDRLCAL }
\end{array} & \theta \in[0,2 \pi] \\
\theta \in[0,2 \pi] & \\
r \in[0,1] \\
z \in\left[\sqrt{x^{2}+y^{2}}, 1\right] \\
V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{x^{2}+y^{2}}}^{1} r d z d r d \theta, & \quad \text { OR } \quad V=[0, z]
\end{array}
\]

Set up an integral that represents the volume of solid bounded by \(z=x^{2}+y^{2}\), and \(z=y\). Use cylindrical coordinates.
\(z=x^{2}+y^{2}\) is an elliptic paraboloid, which intersects \(z=y\) when:
\[
z=y=x^{2}+y^{2}
\]

In polar/cylidrical:
\[
r \sin \theta=r^{2}
\]
or: \(r=\sin \theta\)

\[
\begin{aligned}
& p=\text { poijection of solid onto } x y \text { plane } \\
& \xrightarrow[0]{\text { y } r=\sin \theta} \\
& \theta \in[0, \pi] \\
& r \in[0, \sin \theta] \\
& \text { on a given, ray, } r \text { suns }
\end{aligned}
\]

Let \(V\) be the volume between the hyperboloid of two sheets \(-x^{2}-y^{2}+z^{2}=4\) above the plane \(z=8\) and below the plane \(z=10\). Set up the volume as a triple integral. Do not Evaluate


Set up an integral that represents the volume of the "ice cream cone" bounded by \(x^{2}+y^{2}+z^{2}=1\), and \(z^{2}=3\left(x^{2}+y^{2}\right)\). Use cylindrical coordinates.

The sphere and cone intersect on: \(\quad z^{2}=1-x^{2}-y^{2}=3\left(x^{2}+y^{2}\right)\)

\[
\begin{aligned}
1-r^{2} & =3 r^{2} \\
r & =1 / 2 .
\end{aligned}
\]
\(\Rightarrow\) surfaces intersect when \(r=1 / 2\), and when \(z^{2}=3\left((1 / 2)^{2}\right)=3 / 4\), or when \(z=\sqrt{3} / 2\).
(we don't really need \(z\)-coordinate)
Use \(d z d r d \theta\)
\(\theta \in[0,2 \pi]\)
\(r \in[0,1 / 2]\)
\(z \in\left[\sqrt{3} r, \sqrt{1-r^{2}}\right]\)


If interested \(V=\frac{\pi}{3}(2-\sqrt{3})\)

Fill in the blanks.
(1)
(2) \(y=\rho \sin \theta \quad \sin \phi\)

Cactesion in terms of spherical There are equ's for
(3) \(z=\rho\) \(\qquad\)
 expressing sherencict interns of Cactesion:

\[
y=\sqrt{x^{2}+y^{2}+z^{2}}, \tan \theta=y / x, \cos \phi=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}
\]

Provide a geometric interpretation of each expression.
a) \(\rho \sin \phi=1, \quad x^{2}+y^{2}=f^{2} \sin ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\) \(=\rho^{2} \sin ^{2} \phi\). But \(f\) cion \(\phi=1\), so \(x^{2}+y^{2}=1^{2} \Rightarrow\) cylinder caius 1
b) \(\rho \cos \phi=1 \Rightarrow\) the plane \(z=1\), from (3)

The \(x y\)-plane in spherical coord, is: \(\phi=\frac{\pi}{2}\), from (3) (because we need the value of \(\phi\) that sets \(z=0\) )

Set-up an integral that represents the volume bounded by \(z=0, x^{2}+y^{2}=4\), and \(z=2\left(x^{2}+y^{2}\right)^{1 / 2}\).
(1) Sketch solid: \(x^{2}+y^{2}=4\) is a cylinder. \(z^{2} / 2=\sqrt{x^{2}+\eta^{2}}\) is a cone
(1) Integration limits bounded above by cone, below by plane. \(\rho \in[0,2 \operatorname{cgc} \phi]\), f com (*)
\[
\phi \in\left[\arctan \left(\frac{1}{2}\right), \pi / 2\right], \begin{aligned}
& \text { the } x y-\text { plane is } \phi=\pi / 2, \text { and } \\
& \text { of tho surface: : } \phi=\arctan (1 / 2)
\end{aligned}
\]
\(\theta \in[0,2 \pi]\) (symmetric about \(z\)-axis)
\[
\begin{aligned}
& \text { (3) } \frac{\text { WRITE INTEGRALL}}{}=\int_{0}^{2 \pi} \int_{a \tan / 2}^{\pi / 2} \int_{0}^{2 \operatorname{cec} \phi}
\end{aligned}
\]
\[
y^{2} \sin \phi d y d \phi d \theta
\]

NoTE
we almost always use \(d f d \phi d \theta\), or \(d y d \theta d \phi\)

Sphaict Cosednates of (0):
\[
\begin{aligned}
& \hat{y}=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{4+16}=2 \sqrt{5} \\
& \phi=\tan ^{-1}\left(\frac{2}{4}\right) \\
& \theta=0 \\
& \text { OUTER } \\
& \text { SURFACE OF CyLINDER:? } \\
& \rho^{2} \sin ^{2} \phi=4 \text {, or } y \sin \phi=2
\end{aligned}
\]
or \(\rho=2 \csc \phi\).

Set-up an integral that represents the volume of the solid bounded by
\[
\begin{aligned}
& 0 \leq x \leq 1 \\
& 0 \leq y \leq \sqrt{1-x^{2}} \quad\{\text { cylino } \\
& \frac{\sqrt{x^{2}+y^{2}}}{\text { cone }} \leq z \leq \underbrace{\sqrt{2-\left(x^{2}+y^{2}\right)}}_{\text {sphere }}
\end{aligned}
\]
\[
\} \text { cylinder } x^{2}+y^{2} \leqslant 1
\]

(2) INTEGATIIN LMMITS
\[
\begin{aligned}
& y \in[0, \sqrt{2}] \\
& \phi \in[0, \pi / 4] \\
& \theta \in[0, \pi / 2]
\end{aligned}
\]

\[
V=\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}} y^{2} \sin y d y d \theta d \theta=\frac{\sqrt{2}}{6} \pi(2-\sqrt{2})
\]
(NOTE: solid is a "quarter" of an ice-credm cone)

Fill in the Blanks: Work is the \(\qquad\) ENERGY transferred to or from an object by
means of a \(\qquad\) Fare acting on the \(\qquad\) OBJECT


\section*{Work Over a Straight Path}

Force \(F\) is applied to an object as it moves from \(x=a\) to \(x=b\) along the \(x\)-axis.

\begin{tabular}{|l|l|l|}
\hline & Applied Force & Work \\
\hline Case 1 & \(F=4 i\) & \(W=\vec{F} \cdot \vec{r}=4_{i} \cdot(b-a) i=4(b-a)\) \\
\hline Case 2 & \(F=4 i-2 j\) & \(W=\vec{F} \cdot \vec{r}=4 i \cdot(b-a) i=4(b-a)\) \\
\hline
\end{tabular}
we need to extend this concept to curved paths in \(R^{3}\)
\[
\begin{aligned}
& \text { extend this concept to curved paths in }{ }^{\text {w }} \text {, cark is a } \operatorname{SCALAR} \text {, cat PRODUCT. }
\end{aligned}
\]

Work Over a Curved Path
Force \(F\) applied to an object as it moves from \(r(u)\) to \(r(u+h)\) along curve \(C\).


Work done by force \(\mathbf{F}\) from \(\mathbf{r}(\mathrm{u})\) to \(\mathbf{r}(\mathrm{u}+\mathrm{h})\) is \(W(u+h)-W(u)\).
\begin{tabular}{|l|l|l|}
\hline & Applied Force & Work \\
\hline Case 3 & \(F=F(r(u))\) & \(W(u+h)-W(u) \approx F(\vec{r}(u)) \cdot(\vec{r}(u+h)-\vec{r}(u))\) \\
\(h\)
\end{tabular}

DIVE BCTHSIDES BP G:
TAKE GMT AS \(K \rightarrow 0\), WTEGRATE:
\[
\begin{aligned}
& W^{\prime}=F(\vec{r}) \cdot \vec{r}^{\prime} \\
& W=\int_{a}^{b} F(\vec{r}) \cdot \vec{r}^{\prime} d u
\end{aligned}
\]

Set up an integral that represents the total work.
a) \(F=(x+2 y) \mathbf{i}+(2 x+y) \mathbf{j}\), path is \(y=x^{2}\) from \((0,0)\) to \((2,4)\).
b) \(F=x \cos (y) i-y \sin (x) j\), along polygon connecting \((0,0),(1,0),(1,1),(0,1)\),
in the indicated order \(\quad\) pownetric Representation \(\vec{f}, u \in[0,2]\)
a) Find \(\vec{r}\) : let \(x=u, \quad y=u^{2}, \quad F=\left[\begin{array}{l}u+2 u^{2} \\ 2 u+u^{2}\end{array}\right], \vec{r}=\left[\begin{array}{l}n \\ u^{2}\end{array}\right], r=\left[\begin{array}{l}1 \\ 2 u\end{array}\right]\)
\[
\begin{aligned}
& W=\int_{0}^{2}\left[\begin{array}{l}
u+2 u^{2} \\
2 u+u^{2}
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 u
\end{array}\right] d u=\int_{0}^{2}\left(u+2 u^{2}\right)+\left(2 u+u^{2}+4 u^{2}+2 u^{3}\right) \\
& \text { b) } \vec{F}=(x-y) \hat{i}-x y \hat{j} \text {, from }(2,3) \text { to }(1,2) \\
& \vec{r}=\left[\begin{array}{c}
2-u \\
3-u
\end{array}\right], \vec{r}^{\prime}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right], \vec{F}=\left[\begin{array}{l}
-1 \\
-6-5 u+u^{2}
\end{array}\right] \\
& \mathbb{N}=\int_{0}^{1}\left[\begin{array}{c}
-1 \\
+6-5 u+u^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] d u=\int_{0}^{1} 1-6+5 u-u^{2} d u=-17 / 6
\end{aligned}
\]

Quiz 4: Tuesday April 15 (two weeks away) Homework 8: due Friday at 11:59 pm
My prediction: one last pop quiz, this week or next

Recitation 20 Line Integrals: Circulation and Flux
\[
\text { circulation }=\Gamma=\int_{C} \stackrel{\rightharpoonup}{v}(\stackrel{\rightharpoonup}{r}) \cdot d \vec{r}
\]

Sketch the velocity field for \(\mathbf{v}\), and calculate the circulation over curve \(C\), where \(C\) is the circle of radius \(R\).
\[
\vec{v}=\left\{\begin{array}{l}
2 \hat{\mathrm{i}}, R \leq y \leq R \\
0, \text { else }
\end{array}\right.
\]
\[
\begin{aligned}
& \vec{r}=R \cos t \hat{i}+R \sin t \hat{j} \\
& \vec{r}=-R \sin t \hat{i}+R \cos t \hat{j} \\
& \vec{N}=2 \hat{i} \\
& \vec{r} \cdot \vec{r}=-2 R \sin t \\
& \Gamma=\int_{0}^{2 \pi}-2 R \sin t d t \\
&=S=\int_{0}^{\pi}+\int_{\pi}^{2 \pi}
\end{aligned}
\]

If \(y>0, \Gamma<0\) : 4 or ing again flow dhectind Nh? Net circulation cancellation.
a) Draw the velocity field
b) Calculate the circulation, when \(C\) is the circle:radius \(R\)
1) \(v=-x i \frac{\pi}{\text { 而 } y j}\)
2) \(v=-y i+x j\)

\[
\vec{r} \text { same. }
\]
\[
\Gamma=\int_{0}^{2 \pi}\left[\begin{array}{l}
+\sin \\
R-\cos
\end{array}\right] \cdot\left[\begin{array}{l}
-R S \\
R C
\end{array}\right] d t
\]
\[
\begin{aligned}
& =R R_{0}^{2 \pi} s^{2}+c^{2} d t \\
& =2 \pi R^{2} \Rightarrow \text { binge the circle, } \\
& =\text { big g the }
\end{aligned}
\]
\[
\begin{aligned}
& \vec{V}^{\prime}=-R S \hat{i}+C \hat{j}, \begin{array}{l}
x=R \cos t \\
y=R \sin t
\end{array} \\
& \Gamma=R \int_{0}^{2 \pi}\left[\begin{array}{c}
c \\
-s
\end{array}\right] \cdot\left[\begin{array}{c}
-s \\
c
\end{array}\right] d t
\end{aligned}
\]

\section*{Announcements}

Quiz 4: Tuesday April 15
My prediction: one last pop quiz, next week?
Homework 8: due Friday Apr 4 at 11:59 pm. Questions?
Homework 9: due Friday Apr 11 at 11:59 pm. Questions?
Survey: please complete the brief technical issues survey, email sent yesterday

\section*{Circulation and Flux}
\[
\begin{aligned}
\text { circulation } & =\int_{C} \vec{v} \cdot \vec{r}^{\prime} d t=\int_{C} \vec{v} \cdot \vec{T} d t \\
\text { flux } & =\int_{C} \vec{v} \cdot \vec{N} d t \quad \mathrm{~N} \text { is the outward pointing, unit, normal vector of curve } \mathrm{C}
\end{aligned}
\]

The textbook derives a computational formula for flux:
\[
\begin{aligned}
& \text { formula for flux: } \\
& f \ln x=\int_{0} \operatorname{man}_{0}+N+N x
\end{aligned}
\]
\[
\begin{gathered}
\left(\int_{C} \text { moans integral over curve } C\right. \text {. }
\end{gathered}
\]
\[
\frac{c}{v}=M_{i}+N \hat{j}=M(x, y) \hat{i}+N(x, y) \hat{j}
\]
\[
\text { flux }=\oiint_{C} M d y-N d x
\]

Calculate the flux over curve \(C\), where \(C\) is the circle of radius \(R\).
\[
\vec{v}=\left\{\begin{array}{l}
2 \overrightarrow{\mathrm{i}}, R \leq y \leq R \\
0, \text { else }
\end{array}\right.
\]

\(\vec{r}=\left[\begin{array}{l}R \cos t \\ R \sin t\end{array}\right], t \in[0,2 \pi]\)
flux \(=M d y+N d x\)
Need \(d y, d x\) in terms of \(t\) :
\[
\left.\begin{array}{l}
x=R \cos t \\
y=R \sin t
\end{array}\right\} \Rightarrow \begin{aligned}
d x & =-R \sin t d t \\
d y & =+R \cos t d t
\end{aligned}
\]

And: \(M=2, N=0\).
\[
\Rightarrow f l u x=\int_{0}^{2 \pi} 2 R \cos t d t=0
\]

Why? Flux is the net flow out of region enclosed by \(C\).

Circulation Examples
Calculate the flux over curve \(C\), where \(C\) is the circle of radius \(R\).


AJK: why is flux non-zero? why is flux negative?
\[
\begin{aligned}
& f_{\text {ix }}=G M d y-N x d x, \begin{array}{l}
M=R \cos t \\
N=-R \sin t
\end{array} \\
& =\int_{c}-R \cos t d y-(R \sin t) d x .
\end{aligned}
\]
\[
\begin{aligned}
& =-\int_{0}^{2 \pi} R^{2}\left(\cos ^{2} t+\sin ^{2} t\right) d t \\
& =-2 \pi R^{2}
\end{aligned}
\]

Circulation Examples
Calculate the flux over curve \(C\), where \(C\) is the circle of radius \(R\).
c) \(\mathbf{v}=-\mathbf{y i}+x \mathbf{j}\)

what will flux be?
\[
\begin{aligned}
M & =-R \sin t, N=R \cos t \\
f l u x & =\int_{0}^{2 \pi}(-R \sin t)(R \cos t d t)-(R \cos t)(-R \sin t d t) \\
& =\int_{0}^{2 \pi} 0 d t \\
& =0
\end{aligned}
\]

Ask: why is \(f \ln x=0\) ?
Answers: no flow in/ont of \(C\).

\section*{Conservative Vector Fields}

Recall the Pipe example.
a) Why was the circulation zero?
net comecellation
b) For any path that starts and ends at point A, and stays inside "the pipe", the circulation is \(\qquad\) .
c) For all paths that starts at \(A\) and ends at point \(B\), the integral \(\frac{\int_{C} \vec{V} \cdot d \vec{r}}{\text { is the same. }}\)

Conservative Vector Fields
Is this vector field conservative?
b) \(\mathbf{v}=-\mathbf{x i}-\mathrm{y} \mathbf{j}\)

\[
f(y)=-y^{2}, \quad g(x)=-x^{2} / 2
\]
conservative.

If conservative, \(\exists\) scalar field S st. \(\nabla S=\vec{v}\).
Assume Sexists. Then',
\[
\begin{aligned}
& \frac{\partial s}{\partial x}=-x \Rightarrow S=\frac{-x^{2}}{2}+f(y) \\
& \frac{\partial S}{\partial y}=-y \Rightarrow S=\frac{-y^{2}}{2}+g(x)
\end{aligned}
\]
, \(E=\underbrace{-x^{2} / 2-4^{2}} 2\), and \(\vec{v}\) is parapoloid opening downawnad "potential field"

Conservative Vector Fields

Is this vector field conservative?
\[
\begin{aligned}
& \text { c) } \mathbf{v}=-\mathrm{yi}+\mathrm{xj} \text { Assume exists. Then } \\
& \text { VORTE wirpRe } \\
& \frac{\partial S}{\partial x}=-y \Rightarrow S=-x y+f(y) \\
& \frac{\partial S}{\partial y}=x \Rightarrow S=+x y+g(x)
\end{aligned}
\]
\(\Rightarrow\) Pf er \(N_{0} f(y)\) and \(g(x)\) exist to make those equal.
\[
\Rightarrow S D N E
\]
\(\Rightarrow \vec{r}\) not conservative.

Summary

Fill in the blanks:
a) Circulation measurefflow \(\qquad\) (along)
b) Flux mot of
b) Flux measures the flow \(\qquad\) out of of C .
\begin{tabular}{|ccc|}
\hline \begin{tabular}{c} 
velocity field \\
equation
\end{tabular} & velocity field equation & circulation \\
\hline pipe & \(\mathbf{v}=2 \mathbf{i}\) for \(-R \leq y \leq+R\), \\
\(\mathbf{v}=\mathbf{0}\) otherwise
\end{tabular}

If \(D\) is a region that is \(\qquad\) closed, simple and \(P\) and \(Q\) are scalar fields that are differentiable on \(D\), and \(C\) is the boundary of \(D\), then:


Below are five regions. For which regions can we apply Green's Theorem?


ok
b)

ok


simple \(=\) no holes, boundary, non'self-intersecting. C divides plane into \(\begin{gathered}\text { one interion add one } \\ \text { exterior. }\end{gathered}\)
a) Evaluate \(\oiint_{C} y^{2} d x+2 x y d y, C\) is one loop of \(r=2 \sin 2 \theta\)
b) Change the integral so that it represents the area of one loop.
a) We need a formulation of Green's theorem. We can use
(some textbooks use a sightly different frimulla)
\[
\left.\Rightarrow \begin{array}{rl}
M & =2 x y, \\
N & =-y^{2}, \quad \partial N / \partial x=2 y \\
y & =-2 y
\end{array}\right\} \text { integrand is zero } 0, \text { so answer is zero. }
\]
b) For area, we need \(\frac{\partial m}{\partial x}+\frac{\partial N}{\partial y}=1\). We can choose:
\[
\left.\begin{array}{l}
\text { Ne can choose: } \\
M=+3 x y \Rightarrow M_{x}=3 y \\
N=-y^{2} \Rightarrow N_{y}=-2 y
\end{array}\right\} \quad \text { AREA }=\iint M_{x}+N_{y} d x d y=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \sin 2 \theta} r d r d \theta
\]

\section*{Announcements}

Quiz 4: Tuesday April 15
Homework 8: due Tues Apr 15 at 11:59 pm. Questions?
Homework 9: due Tues Apr 15 at 11:59 pm. Questions?
Questions for Quiz 4 (not graded)
Office Hours: Monday 7:30 to 9:30
Survey: please complete the brief technical issues survey, email sent last Wed.
Graded group work activity. Solve the question below in groups of 3 to 5 students, you have about 10 minutes. I'll circulate from room to room.

\section*{Problem 1 (10 points)}

Let \(R\) be the region in the plane, inside the cardiod \(r=1+\cos (\theta)\), and \(C\) its boundary Consider the line integral
\(\int_{c} x y d x-x y^{2} d y\). Use Green's theorem to convert to an double integral, and express this as a double integral in polar coordinates with limits.

Problem 1 (10 points)
Let \(R\) be the region in the plane, inside the cardiod \(r=1+\cos (\theta)\), and \(C\) its boundary Consider the line integral
\(\int_{c}^{L^{2}} \quad\) diff wit \(d x-x y^{2}\) dy. Use Green's theorem to convert to an double integral, and express this as a double integral in polar coordinates with limits.
\[
\left.\left.\begin{array}{rl}
M=-x y^{2}, \frac{\partial M}{\partial x}=-y^{2} \\
N=-x y, \frac{\partial N}{\partial y}=-x
\end{array}\right\} \text { Area }=\iint \frac{\partial M}{\partial x}+\frac{\partial N}{\partial y} d x d y\right]
\]

Fundamental Theorem of Line Integrals
If \(F\) is a conservative field, then: \(\left.\quad \int_{\vec{C}}^{\vec{F}} \cdot d \vec{r}=\int \nabla f \cdot d \underset{\vec{b}}{ }=\vec{r}=\vec{r}(b), \vec{a}=\vec{b}\right)-\vec{r}(a)\)
Example Calculate line integral of \(\mathbf{F}=\left(x^{2}-y\right) \mathbf{i}+\left(y^{2}-x\right) \mathbf{j}\), over path
\[
r=2 \neq \cos (t) i+t_{1}^{2} \sin (t) \mathbf{j}, 0 \leq t \leq 2 \pi
\]

Is conservative?
\[
\begin{aligned}
& \text { conservative. } \\
& \frac{\partial f}{\partial x}=x^{2}-y \Rightarrow f=\frac{x^{3}}{3}-4 x+\phi_{1}(y) \\
& \partial f / y=4^{2}-x \Rightarrow f=\frac{y^{3}}{3}-x y+\phi_{2}(x) \\
& \phi_{1}=4^{3} / 3, \phi_{2}=x^{3} / 3, f=\frac{1}{3}\left(x^{3}+y^{3}\right)-x y
\end{aligned}
\]
\(\Rightarrow\) conservative.
EAsier wat:
\(\left.\frac{\partial}{\partial y} \frac{\partial f}{\partial x} \sqrt{y} x^{2}-y\right)\)
shooed equal
\[
\partial y x^{\prime} \frac{\partial^{\prime}}{\partial y}=\frac{\partial}{\partial x}\left(y^{2}-x\right)
\]
it does.
\[
\begin{aligned}
\Rightarrow \int_{c} \stackrel{\rightharpoonup}{F} \cdot d \vec{r} & =f(2 \pi)-f(0) \\
& =0
\end{aligned}
\]

Because \(f(2 \pi)=f(0)\)
\[
\begin{aligned}
& \text { sometimes we are given } \\
& \text { a path in terms of a } \\
& \text { parameter, } t \text {. }
\end{aligned}
\]


The curve traced by a point on a rolling wheel is
\[
\begin{aligned}
& x(t)=t-\sin (t) \\
& y(t)=1-\cos (t)
\end{aligned}
\]

The Cycloid
Find the area under one arch of the cycloid:
\[
\begin{aligned}
& x(t)=t-\sin (t), y(t)=1-\cos (t) \\
& A=\iint_{D} d x d y d
\end{aligned}
\]

We don't have \(y=y(x)\) explicitly. What can we do?
call the area D


Introduce

Ok ci:
\[
\begin{aligned}
& x=t, \\
& y=0, \quad d y=0 \cdot d t
\end{aligned}
\]

On \(C_{2}: x=t-\sin t\),
\[
\begin{aligned}
& x=t-\sin c, \\
& y=1-\cos t, d y=-\sin t
\end{aligned}
\]

\section*{Recitation 24}

\section*{Today: Pop Quiz, Surface Integrals}
- There's a pop quiz today! :D
- You have a few minutes to review your notes.
- Start time: 8:10
- Ends at: 8:30?
- Pop quiz grading
- 5 points: on the right track
- 4 points: something correct
- 3 points: name on the page
- 0 points: did not take pop quiz
- To submit your work, either
a) work on whiteboard in breakout room
- write in text chat that you'd like to work in breakout room,
- submit work by letting me know when done, or email me a screen capture of your work
b) work on paper and give work to facilitator
- leave 2 inch margin
- write your name and QH6 at the top
- facilitator can email quiz to cdlops@pe.gatech.edu
c) work on paper and take a photo of your work
- email your photo to me before 8:40
- write in text chat that you are emailing your work to me

Pop Quiz
Set up as a double integral, the surface integral of \(F\) dot \(n\) ds, where the surface is
\[
z=x^{2}-y^{2}
\]
\[
\begin{aligned}
& F U X=S S F \cdot \vec{n} d \sigma \text {, heed pucanaterization: } \\
& \vec{r}=u \hat{i}+v \hat{j}+\left(u^{2}-v^{2}\right) \hat{k} \\
& \frac{\partial \vec{r}}{\partial u}=\left[\begin{array}{c}
1 \\
0 \\
2 u
\end{array}\right], \frac{\partial \vec{r}}{\partial v}=\left[\begin{array}{c}
0 \\
1 \\
-2 v
\end{array}\right] \\
& \begin{array}{l}
\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{k}}{\partial v}=\left|\begin{array}{ccc}
\hat{i} & \hat{i} & \hat{k} \\
1 & 1 & 2 u \\
0 & 1 & -2 v
\end{array}\right|=\left[\begin{array}{c}
-2 u \\
+2 v \\
1
\end{array}\right] \quad, \quad\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=\sqrt{4 u^{2}+4 v^{2}+1} \\
\Rightarrow \vec{A}_{c}=\frac{1}{\sqrt{\text { man }}}\left[\begin{array}{c}
-2 u \\
2 v \\
1
\end{array}\right]
\end{array} \\
& \stackrel{\rightharpoonup}{F}(x, y)=\left[\begin{array}{c}
u \\
0 \\
u^{2}-v^{2}
\end{array}\right] \\
& \vec{F} \cdot \vec{n}=\frac{-2 u^{2}+u^{2}-v^{2}}{\|\overrightarrow{\vec{n}}\|}=-\left(u^{2}+v^{2}\right) / \sqrt{m} \\
& \vec{F} \cdot \vec{n} d E=\frac{-\left(u^{2}+v^{2}\right)}{\sqrt{m}} \sqrt{4 u^{2}+4 v^{2}+1} d u d v \\
& =\left(-u^{2}-v^{2}\right) d u d v \\
& =-\int_{0}^{1} \int_{-1}^{+1} x^{2}+v^{2} d x d u
\end{aligned}
\]

\section*{Announcements}

Quiz 4: Marked on Friday? Monday? I'm not sure yet.
Last HW : due Sun Apr 27
Technical issues during lecture yesterday: fiber cut?

\section*{Engagement Survey}

Please complete the brief engagement survey, email sent last Tuesday.

\section*{Technical Survey}

Follow-up question: I often let students write on the board at any time. In what ways, if any, did this help your learning in recitations?

Parametric Representations
Find an equation in \(x, y, z\), for the surface whose parametric representation is
\[
\mathbf{r}=A u \cos (v) \mathbf{i}+B u \sin (v) \mathbf{j}+u^{2} \mathbf{k}, u \geq 0,0 \leq v \leq \pi .
\]

Describe and sketch the surface.
we must identify functions \(x(u, v), y(u, v), z(u, v)\).
We can use:
\[
\left.\begin{array}{l}
x=A u \cos v \\
y=B u \sin v \\
z=u^{2}
\end{array}\right\} \text { where } u \geqslant 0, v \in[0, \pi]
\]


We need an equation in \(x, y, z\) :
\[
\text { Try: }\left(\frac{X}{A}\right)^{2}+\left(\frac{y}{B}\right)^{2}=u^{2} \cos ^{2} v+k^{2} \sin ^{2} v=Z
\]

Parametric Representations
Find parametric representations for the following surfaces.
a) the upper half of \(4 x^{2}+9 y^{2}+z^{2}=36\)
b) the part of the plane \(z=x+2\) inside the cylinder of \(x^{2}+y^{2}=1\)
a) Divide by 36: \(\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}+\frac{z^{2}}{6^{2}}=1\)

Ellipsoid. Try a modification of uphencal:
\[
\left.\begin{array}{l}
\frac{x}{3} \geq \cos \theta \cos \phi \\
\frac{y}{2} \geq \sin \theta \cos \phi \\
\frac{z}{6}=\sin \phi
\end{array}\right\} \begin{gathered}
\text { satisfies (1) for all } \\
\theta \in[0,2 \pi] \\
\phi \in[0, \pi / 2]
\end{gathered}
\]


Nate: could also use \(z=6 \cos \phi, x=3 \cos 6 \sin \phi\), etc
b) Try: \(\left.\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta,\end{array}\right\} \quad x^{2}+y^{2} \leqslant 1\) on \(r^{2} \leqslant 1, \theta \in 2 \pi\)
\[
\left.\begin{array}{l}
y=r \sin \theta, \\
z=r c+2
\end{array}\right\}
\]
a) What properties does a parametric representation of a surface need to have?
(1) Continuous
(1) one-to-one
(3) satisfy a given equation
b) Find a parametric representation for the part of the plane \(z=x+2\) in the first octant and inside the cylinder \(x^{2}+y^{2}=1\).

Pacomotric cepcosentation is:
\[
\vec{r}=x(u, v) \hat{i}+y(u, v) \hat{j}+z(u, v) \hat{k}
\]
where
\[
\begin{aligned}
& x=u \cos v \\
& y=u \sin v \\
& z=u \cos v+2
\end{aligned}
\]
which is \(0,(2), 3)\), for \(u \in[0,1], v \in\left[0, \frac{\pi}{2}\right]\)

\section*{Announcements}

Quiz 4: marked yesterday, grades should be entered today.
HW grades: check in t-square that I entered grades correctly
Last HW : due Sun Apr 27
Cut-off for final exam: I don't know if there is one, or what cut-off would be

\section*{Engagement Survey}

Please complete the brief engagement survey, reminder email sent yesterday.

\section*{Technical Survey}

Follow-up question: most students didn't communicate with microphones very often. Why do you think this was the case?

Surface Area of \(z=f(x, y)\)
We want the surface area of \(z=y^{2}\), over \(0 \leq x \leq a, 0 \leq y \leq b\).
a) Find a parametric representation for the surface.
b) Find equation of normal at an arbitrary point on the surface.
c) Set-up an integral that represents the surface area
a)
\[
\begin{array}{ll}
x=u, & u \in[0, a] \\
y=v, & v \in[0, b]
\end{array}
\]


Flux Across A Surface

Flux is a measure of flow rate per unit length, or flow rate per unit area.
To calculate flux across a curve: flux \(=\int_{C} \bar{v} \cdot \vec{n} d u=\int_{C} M d y-N d x\)
\(C=\) amin curve (doesin't have to
\(\vec{V}=\) velocity
\(\vec{n}=u_{\substack{ \\\text { nocemid }}}\)
u = parameter

To calculate flux across a surface:
\[
F L u x=\iint_{S} \vec{v} \cdot \vec{n} d S=\iint_{S} \vec{v} \cdot \vec{n}\|\vec{N}\| d u d \vec{N}=\operatorname{det}\left(\vec{r}_{u^{y}} \overrightarrow{x_{u}}\right)
\]

Pop Quiz
Set up as a double integral, the surface integral of \(F\) dot \(n\) ds, where the surface is
\(F U K=S S F \cdot \vec{n} d \sigma\), heed puccanaterization:
\[
\vec{r}=u \hat{i}+v \hat{j}+\left(u^{2}-v^{2}\right) \hat{k}
\]
\[
\vec{F}(x, y)=\left[\begin{array}{c}
u \\
0 \\
u^{2}-v^{2}
\end{array}\right]
\]
\[
\vec{F} \cdot \vec{n}=\frac{-2 u^{2}+u^{2}-v^{2}}{\|\vec{x}\|}=-\left(u^{2}+v^{2}\right) / \sqrt{m}
\]
\[
\vec{F} \cdot \vec{n} d \xi=\frac{-\left(u^{2}+v^{2}\right)}{\sqrt{m}} \sqrt{4 u^{2}+4 v^{2}+1} d u d v
\]
\[
=\left(-u^{2}-v^{2}\right) d u d v
\]
\[
=-\int_{0}^{1} \int_{-1}^{+1} b^{2}+v^{2} d v d u
\]
\[
\begin{aligned}
& \frac{\partial \vec{r}}{\partial u}=\left[\begin{array}{c}
1 \\
0 \\
2 u
\end{array}\right], \frac{\partial \vec{r}}{\partial v}=\left[\begin{array}{c}
0 \\
-2 v
\end{array}\right] \\
& \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{v}}{\partial v}=\left|\begin{array}{ccc}
\hat{i} & \hat{\vdots} & \hat{k} \\
1 & 0 & 2 u \\
0 & 1 & -2 v
\end{array}\right|=\left[\begin{array}{c}
-2 u \\
+2 v \\
1
\end{array}\right] \quad, \quad\left\|\vec{r}_{x} \times \vec{r}\right\|=\sqrt{4 u^{2}+4 v^{2}+1}
\end{aligned}
\]

\section*{Recitation 26 \\ Today: Divergence}

Divergence measures a flow's tendancy to expand explode.
If \(\mathbf{v}(x, y)=f(x, y) i+g(x, y) j\), then \(\operatorname{div}(v)=\frac{\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}}{}\).
\begin{tabular}{|c|c|c|}
\hline velocity field equation & velocity field equation & divergence \\
\hline pipe & \[
\begin{gathered}
\mathbf{v}=2 \mathbf{i} \text { for }-R \leq y \leq+R, \\
\mathbf{v}=\mathbf{0} \text { otherwise }
\end{gathered}
\] & \begin{tabular}{l}
\[
\nabla \cdot \vec{v}=\frac{\partial}{\partial x}(2)+2 / \partial y(0)=0
\] \\
flow not expending
\end{tabular} \\
\hline drain & \(v=-x i-y j\) & \begin{tabular}{l}
\[
-2
\] \\
flow is "coupressing"
\end{tabular} \\
\hline vortex, whirlpool & \(\mathbf{v}=-\mathrm{yi}+\mathrm{x} \mathbf{j}\) & 0 \\
\hline nozzle & \[
\begin{gathered}
\mathbf{v}=x i-y \mathbf{j} \\
x \geq 1
\end{gathered}
\] & as \(x\) increases flowe is comprersing. and its speed acreasing \\
\hline
\end{tabular}


\section*{Incompressible Fluids}


If a fluid is incompressible, then its divergence is \(\qquad\) .
The field \(\mathbf{v}=\mathbf{x i} \mathbf{- y j}\) could represent an incompressible flow
As \(x\) increases, flow moves towards \(\qquad\) \(x\)-axis , and its speed increases.


Archimedes Principle
unwound force = weight of fluid the booth displaces
\[
=g V g \hat{k}
\]

Prove Archimedes Principle

Let \(S\) be surface of underwater portion of object. \(d S\) = area of small section.
\[
\begin{aligned}
\vec{P} & =\text { pressure }=\vec{F} / d S \\
\vec{F} & =\vec{P} d S \\
& =-|p| \vec{n} d S, \vec{n}=\text { unit inward normal } \\
& =-g \rho z \vec{n} d S, \text { because } P=-g g z
\end{aligned}
\]

Total force \(=\oint_{S}-g \rho z \underbrace{\vec{n}} \cdot \vec{k} d S\), because horizontal components cancel.
\[
\begin{aligned}
& \left.=\begin{array}{c}
S \\
= \\
= \\
=\iint_{V} \nabla \cdot\left(\left[\begin{array}{c}
0 \\
0 \\
g g z
\end{array}\right]\right) d V \text {, by div. theorem } \\
=g g V, V=\text { volume of object that is submerged }
\end{array} . \begin{array}{l}
0 \\
0 \\
g z z
\end{array}\right], \vec{n} \text { e unit inland normal }
\end{aligned}
\]

Electric Charge
\(\mathbf{E}=\) electric field. Then, Gauss's Law states that:
total charge \(=\left(\varepsilon_{0}\right)\) (flux of \(E\) through closed surface )
Find the total charge contained in a solid hemisphere if \(\mathbf{E}=\mathbf{x i}+\mathbf{y} \mathbf{j}+\mathbf{z} \mathbf{k}\).
easy way
chakge \(=\varepsilon_{0} \$ \oint \vec{E} \cdot \vec{n} d \sigma, \vec{n}\) unit out nad
\[
\begin{aligned}
& =\varepsilon_{0} \int S S \nabla \cdot \vec{E} d V \text {, by div, the. } \\
& =\varepsilon_{0} \int S S(1+1+1) d V \\
& \left.=3 \varepsilon_{0} \cdot \frac{2}{3} \pi R^{3}, R=\text { radius of hamasphas, } D t \mid P\right) \\
& =2 \varepsilon_{0} \pi R^{3}
\end{aligned}
\]


HARDER WAY
parameterize top surface: \(\vec{h}=\frac{1}{R}\left[\begin{array}{l}x \\ \vdots \\ \vdots\end{array}\right]\)
bottom surface: flux is sere.
\[
\begin{aligned}
& \vec{E} \cdot \vec{A}=\frac{1}{k}\left(x^{2}+y^{2}+x^{2}\right)=\frac{R^{2}}{R}=R \text { (on surface) } \\
& d \sigma=\|\vec{h}\| d u d v \\
& \vec{r}=\left[\begin{array}{l}
R \cos u \sin v \\
R \sin \sin v \\
R \cos v
\end{array}\right],\left|\frac{\partial r}{\partial n} x \frac{\partial r}{\partial v}\right|=R^{2} \sin v \text {, change }=\varepsilon_{0} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} R\left(\widetilde{R^{2}} \sin v\right) d v d u=2 \varepsilon_{0} \pi R^{3}
\end{aligned}
\]

Quadratic surface: a question from last year's quiz 2
Consider the surface
\[
-6 x+x^{2}+4 y+y^{2}+8 z-z^{2}=4
\]

This is a quadratic surface. Find out the center, and what kind it is. Draw a picture, labeling the center and the axes.
Express in a standard form by completing the square
\[
\begin{aligned}
& (x-6 x+9-9)+\left(y^{2}+4 y+4-4\right)-\left(z^{2}-8+16-16\right)=+4 \\
& (x-3)^{2}+(y+2)^{2}-(z-4)^{2}+16=4+9+4 \\
& (x-3)^{2}+(y+2)^{2}-(z-4)^{2}=1
\end{aligned}
\]
= LEVEL CURVES CAN: BE FOUND BY SETTING \(z=\) Constant \(=k\).
\[
(x-3)^{2}+(y+2)^{2}=1+(k-4)^{2}
\]
\(\Rightarrow\) LEVEL CURVES ARE CIRCLES , RADIUS \(1+(k-4)^{2}\). AT WHAT VALUE OF \(Z\) are circles the smallest? When \(k=4=z\)
 HYPERBOLIC, ONE SHEET, cENTER AT \((3,-2+4)\)

Quadratic surface: a question from last year's quiz 2

\section*{WolframAlpha:}
```

x^2-6x+4y+\mp@subsup{y}{}{\wedge}2+8z-\mp@subsup{z}{}{\wedge}2=4
B

```

Input:
    \(x^{2}-6 x+4 y+y^{2}+8 z-z^{2}=4\)
Geometric figure:
one-sheeted hyperboloid


An Optimization Problem
Find the minimum value of the function \(f(x, y)=x^{2}+(y-2)^{2}\) subject to the constraint \(x^{2}-y^{2}=1\).
observe that \(f(x, y)\) gives the square of the distance between THE POUT \((0,2)\) AND ANY OTHER pOINT ON THE PLANE, our constraint is a hyperbola, so we are looking for the Distance beween \((0, z)\) and the Hyperbola.


AT THE POINT WHERE \(f(x, y)\) is MNNMUX, \(\nabla f\) is PARALLEL TO \(\nabla\left(x^{2}-y^{2}\right)\) :
\[
\nabla f=\lambda \nabla\left(x^{2}-y^{2}\right) \Rightarrow\left[\begin{array}{c}
2 x \\
2 y^{2}-4 y
\end{array}\right]=\lambda\left[\begin{array}{l}
2 x \\
-2 y
\end{array}\right] \cdot \begin{aligned}
& \text { SOLVING THIS SYSTEM, WITH, } x^{2}-y^{2}=1, \\
& \text { YIELDS } \quad \lambda=1, y=1, x= \pm \sqrt{2}, f=3,
\end{aligned}
\]

An Optimization Problem
Find the minimum of the function \(f(x, y)=(x / a)^{2}+(y / b)^{2}\) subject to the constraint \(x+y=L\). The numbers \(a, b\), and \(L\) are positive constants.
Level curves of \(f(x, y)\) ARE ELLIPSES; OUR cONSTRAINT IS A
 STRAIGHT LINE \(y=L-x\).
THE CURVE THAT TOUCHES THE LINE ONLY ONCE DOES SO AT THE POINT WHERE \(\nabla f=\lambda \nabla\left(\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}\right)\).
\[
\nabla(x+y)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

SO \(\nabla f=\lambda \nabla(x+y)\) AND \(x+y=L\) YIELDS:
\[
\left.\begin{array}{l}
\nabla f=\lambda \nabla(x+y) \quad \text { AND } x+y=L \\
2 x=\lambda a^{2} \\
2 y=\lambda b^{2} \\
x+y=L a^{2} / 2 \\
y=\lambda b^{2} / 2 \\
\frac{\lambda a^{2}}{2}+\frac{\lambda b^{2}}{2}=L \\
\Rightarrow \lambda=L /\left(\frac{a^{2}}{2}+b^{2} / 2\right)
\end{array}\right\} \begin{aligned}
& x=\frac{a^{2}}{2} L /\left(\frac{a^{2}}{2}+b^{2} / 2\right) \\
& y=\frac{b^{2}}{2} L\left(\left(\frac{a^{2}}{2}+b^{2} / 2\right)\right. \\
& f_{\text {minimum }}=\frac{L^{2}}{4}\left(\frac{a^{2}}{2}+b^{2} / 2\right)^{2}+\frac{L^{2}}{4}\left(\frac{a^{2}}{2}+\frac{b^{2}}{2}\right)^{2}
\end{aligned}
\]

An Optimization Problem
A company produces widgets at \(N\) factories. The cost of producing \(x_{i}\) widgets at factory \(i\) is \(x_{i}^{2} / a_{i}\), where \(a_{i}>0\). Minimize the total cost of producing \(L\) widgets.

TOTAL COST is \(C=\sum_{i=1}^{N} x_{2}^{2} / a_{i}\), OUR CONSTRANT is \(\sum_{i=1}^{N} x_{i}=L\)
THIS 15 an \(N\) - diMENSIoNAL CATE OF TNI previous EXAMPLE EXLEPT OVR ELLIPSES
\[
\begin{gathered}
\nabla C=\lambda\left(\sum x_{i}\right) \\
\nabla C=\left[\begin{array}{c}
2 x_{1} / a_{1} \\
2 x_{2} / a_{2} \\
2 x_{3} / a_{3} \\
\vdots \\
2 x_{N} / a_{N}
\end{array}\right]=\lambda\left[\begin{array}{l}
1 \\
1 \\
1 \\
\vdots \\
\vdots \\
1
\end{array}\right]
\end{gathered}
\] have the form
\(\Rightarrow\) the isth equation is \(2 x_{i} / a_{i}=\lambda\), or \(x_{i}=\frac{a_{i} \lambda}{2}\). Subsitute into constant:
\[
\begin{aligned}
& L=\sum X_{i}=\sum \frac{a_{i} \lambda}{2}=\frac{\lambda}{2} \sum a_{i} \text {, so } \lambda=2 L / \sum a_{i} . \\
& \Rightarrow X_{i}=\frac{a_{i} \lambda}{2}=\frac{a_{i} L}{\sum a_{i}}, \text { and minimum cost is } C_{\text {minimum }}=\sum \frac{\left(\frac{a_{i} L}{\sum a_{i}}\right)^{2}}{a_{i}} \\
&=L^{2} / \sum a_{i}
\end{aligned}
\]

\section*{A Conceptual Lagrange Multipliers Question}

The diagram shows a contour plot of \(f(x, y)\), and the circle of radius 2 centered at \((0,0)\). How many local maximums and mins does \(f(x, y)\) have on the perimeter of the circle?

Assume the origin is a global max of \(f(x, y)\).


Max/Min Electrostatic Potential
The electrostatic potential in the region \(0 \leq x \leq 1,0 \leq y \leq 1\), is given by \(V=48 x y-32 x^{3}-24 y^{2}\). Find the locations of the minimum and maximum values.

FIND CRITICAL POINTS:
\[
\begin{aligned}
& \partial V / \partial x=0=48 y-96 x^{2} \\
& \partial V / \partial y=0=48 x-48 y
\end{aligned}
\]

SOLVING MELDS \((0,0),\left(\frac{1}{2}\right.\),
AT THESE CRITICAL POINTS,
\[
\begin{aligned}
& V(0,0)=0 \\
& V(1 / 2,1 / 2)=2
\end{aligned}
\]

NOW CHECK BOUNDARIES.
ALong \(C_{1}, y=0\), so
\[
v=-32 x^{3}, x \in[0,1]
\]
\(\Rightarrow\) minimum could be at \((\$ 00)\),
\[
V(1,0)=-32
\]
\[
\begin{aligned}
& \frac{A L O N G \quad c_{2}, V}{}=48 y-32-24 y^{2}, y \in[0,1] \\
& 0=d V / d y=48-48 y \Rightarrow y=1 \\
& \Rightarrow a+(1,1), V(1,1)=-8
\end{aligned}
\]

ALONG \(C_{3}: V=48 x-32 x^{3}-24, x \in[0,1]\)
\[
\begin{gathered}
O=\frac{\partial y}{\partial x}=48-96 x^{2}, x=\sqrt{2} / 2 \\
V\left(\frac{\sqrt{2}}{2}, 1\right)=8(2 \sqrt{2}-3)
\end{gathered}
\]


CHECK CORNERS:
comparing all values we found, maximum at \(\left(\frac{1}{2}, \frac{1}{2}\right)\)
minimum at \((1,0)\)

Max/Min Electrostatic Potential
plot \(\left(48 x y-32 x^{3}\right)-24 y^{2}\)


Contour plot:


Setting Up a Polar Integral
Set up, but do not evaluate, an integral representing the area the region enclosed by \(r=2-2 \cos \theta\). Sketch the region of integration.


\[
A R E A=\int_{0}^{2 \pi} \int_{0}^{2-2 \cos \theta} r d r d \theta
\]

Convert a Cartesian Integral to a Polar Integral
a) Sketch the region of integration
b) Express the integral in polar coordinates
\[
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x
\]
\[
\begin{aligned}
& \sqrt{x^{2}+y^{2}}=r \\
& x \in[0,2
\end{aligned}
\]
\(y\left[\left[0, \sqrt{4-x^{2}}\right]\right.\), or \(4^{2} \leqslant 4-x^{2}\), or \(x^{2}+y^{2} \leqslant 4\)
\[
\xrightarrow{\substack{2 \\
2}} \begin{array}{ll} 
& r \in[0,2] \\
& \theta \in[0, \pi / 2]
\end{array}
\]

\section*{Quiz 3 Review}

For your quiz:
- 2 pages of \(81 / 2 \times 11\) inch notes (both sides) allowed
- Calculators allowed.

\section*{Also:}
- Office hours: Wednesday, 7:30 pm to \(9: 30 \mathrm{pm}\)
- If you can, during quiz connect to https://georgiatech.adobeconnect.com/distancecalculusquiz/

Set-up integrals that provide the centroid of the region bounded by \(r=1+\cos \theta\). The mass density at any point in the region is proportional to its distance to the origin.
(1) PLOT REGION


\[
\binom{\text { Note: by symmetry, } y_{M} \text { should works }}{\text { out to be zero. }}
\]
(2) LIMITS of integration
\[
\begin{aligned}
& \theta \in[0,2 \pi] \\
& r \in[0,1+\cos \theta]
\end{aligned}
\]
(3) WRTTE NNTEGRAL FOR MASS
\[
\text { MASS }=M=\int_{0}^{2 \pi} \int_{0}^{1+\cos \theta} \lambda r d r d \theta, \lambda=k r \quad(k=\text { constant })
\]
(4) WRITE INTEGRALS FOR LoRDS OF CENTROID
\[
\begin{aligned}
& \text { RITE INTEGRALS FOR } \operatorname{cosRDS} \text { OF } \operatorname{ceNTROID} \\
& x_{M}=\frac{1}{M} \int_{0}^{2 \pi} \int_{0}^{1+\cos \theta} \pi(r \cos \theta)(r) d r d \theta=\frac{1}{M} \int_{0}^{2 \pi} \int_{0}^{1+\cos \theta} k r^{3} \cos \theta d r d \theta \\
& y_{M}=\frac{1}{M} \int_{0}^{2 \pi} \int_{0}^{1+\cos \theta} k r^{3} \sin \theta d r d \theta \quad \Rightarrow \operatorname{LENTROLD} \text { AT }\left(x_{M}, y_{M}\right)
\end{aligned}
\]

A region, with constant density \(D\), is bounded by \(x^{2}+y^{2}=a^{2}\), and \(x^{2}+z^{2}=a^{2}\). Find the moment of inertia about the \(x\)-axis. Use Cartesian coordinates.
(1) Plot/DRAW REGion.
\[
\begin{aligned}
& \text { (2) LIMITS OF NTEGMTINO } \\
& y \in\left[0, \sqrt{a^{2}-x^{2}}\right] \\
& z \in\left[0, \sqrt{a^{2}-x^{2}}\right] \\
& x \in[0, a]
\end{aligned}
\]
(3)
\[
I=8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left(y^{2}+z^{2}\right) D d y d z d x
\]

A region with constant density \(D\) is bounded above by \(z^{2}=x^{2}+y^{2}\), and below by \(z=x^{2}+y^{2}\). Find the moment of inertia about the \(z\)-axis. Use cylindrical coordinates.
(1) SKETCH REGION

(2) LIMITS Of INTEGKATION
\(z \in\left[r^{2}, r\right]\)
\(r \in[0,1]\)
\(\theta \in[0,2 \pi]\)
(3)
\[
\begin{aligned}
I_{z} & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{r} D r \cdot r d z d r d \theta \\
& =D \int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{r} r^{2} d z d r d \theta
\end{aligned}
\]

Set-up an integral that represents the volume of the solid bounded by
\[
x^{2}+y^{2}+(z-R)^{2}=R^{2}
\]
skeTch

sub: \(x=y \sin \phi \cos \theta\)
\[
y=y \sin \phi \sin \theta
\]
\[
z=f \cos \phi \text { into } *:
\]
\[
\rho^{2} \sin ^{2} \phi+(\varphi \cos \phi-R)^{2}=R^{2}
\]
\[
y^{2} \sin ^{2} \phi+y^{2} \cos ^{2} \phi+R^{2}+2 \rho R \cos \phi=R^{2}
\]
simplifies to: \(f=2 R \cos \phi\)
\[
\begin{aligned}
& y \in[0,2 R \cos \phi] \\
& \phi \in[0, \pi / 2] \\
& \theta \in[0,2 \pi]
\end{aligned}
\]

WHAT IF WE WERE ASKED
for just the volume of the verger half of THE SPHERE?
\[
\begin{aligned}
& f \in[R \sec \phi, 2 R \cos \phi] \\
& \phi \in[0, \pi / 4] \\
& \theta \in[0,2 \pi]
\end{aligned}
\]


Set up an integral that represents the volume of solid bounded by \(2 x=x^{2}+y^{2}\), and \(z=\partial\) \(2 z=4+x\). Use cylindrical coordinates.
\[
V=\int_{-\pi / 2}^{+\pi / 2} \int_{0}^{2 \cos \theta} \int_{0}^{2+1 / 2 \cos \theta} r d z d r d \theta=5 \pi / 2
\]
\[
2 x=x^{2}+y^{2}
\]
in polar: \(2 r \cos \theta=r^{2}\)
\[
\Rightarrow r=2 \cos \theta
\]

\[
27=4+x
\]

Becomes \(z=2+\frac{1}{2} r \cos \theta\)
\(\underbrace{(0,2,0)}_{(2,3)(-2,1,1)}\)

Change the order of integration.
\(V=\int_{0}^{2} \int_{0}^{9-x^{2}} \int_{0}^{2-x} d z d y d x\)
\[
\begin{aligned}
& x \in[0,2] \\
& y \in\left[0,9-x^{2}\right]
\end{aligned}
\]


Horizantich "STRIP" VERTICA "column"

Try \(d y d x d z:\)
\[
\begin{aligned}
& \text { [ry } d y d x d z \cdot \\
& y \in[0,5], y \in[5,9] \\
& x \in[0,2], x \in[0, \sqrt{9-y}] \\
& z \in[0,2-x]
\end{aligned}
\]


QH6 Recitation 14 Triple Integrals
Set up a triple integral that represents the volume of the region bounded by \(x^{2}+z^{2}=4\) and the planes \(y+z=6, ~ x=0, ~ y=0, ~ z=0\).

1 FR ST

2 CHOOSE
\[
\begin{aligned}
& \text { POE ORDER OF fOEEGRATION: } \\
& x \in[0,2] \text { (position of strips) } \\
& Z_{A} \in\left[0, \sqrt{4-x^{2}}\right. \text { (sterps stop at 6) } \\
& U \in[0,6-7]
\end{aligned}
\]

Set-up an integral that represents the volume bounded by \(z=0, x^{2}+y^{2}=4\), and \(z=2\left(x^{2}+y^{2}\right)^{1 / 2}\).
(1) Sketch solid: \(x^{2}+y^{2}=4\) is a cylinder \(z^{2} / 2=\sqrt{x^{2}+\eta^{2}}\) is a cone
(1) Integration limits bounded above by cone, below by plane. \(\rho \in[0,2 \csc \phi]\), \(f \mathrm{com}(*)\)
\[
\phi \in\left[\arctan \left(\frac{1}{2}\right), \frac{\pi}{2}\right], \begin{aligned}
& \text { the } x y \text {-plane is } \phi=\pi / 2, \text { and the "top" } \\
& \text { of the surface: : } \phi=\arctan (1 / 2) \quad
\end{aligned}
\]


Spherical Coordantes of (0):
\[
\hat{f}=\sqrt{x^{2}+4^{2}+z^{2}}=\sqrt{4+16}=2 \sqrt{5}
\]
(3) WRITE INTEGRAL

NOTE
we almost always use \(d f d \phi d \theta\), or \(d y d \theta d \phi\)```

