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1. Progress 

During this initial reporting period, organization of the project has 
occured in begun to be established. Because the start of the project 

the middle of an academic year, the level of effort will be relatively 
low until the summer, due to lack of availability of personnel. 

he project, Our efforts thus far have been concentrated on Task 1 of t 
Programming Techniques for Resilience and Availability. Our work on 
this task will be strongly related to other work involving the Principal 
Investigator within the Clouds Project at Georgia Tech. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel  

Dr. Richard LeBlanc is directing this project, as specified in the Key 
Personnel section of the contract. 

Mr. Tom Wilkes is employed by the project as a graduate research assis- 
tant. He is a PhD student in the School of Information and Computer 
Science at Georgia Tech. His recent research efforts have been concerned 

age (called 
he action and 

with the design and implementation of a programming langu 
Aeolus) which includes features which provide access to t 
object management features of the Clouds kernel. These language features 

niques for resil- are to provide the basis of our study of programming tech 
ience and availability. 

4. Summary of Trips and Meetings  

None during the reporting period. 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Towards Meeting Goals of the Contract  

The current level of effort is well below that needed to meet the goals 
of the contract. Our level of effort will increase substantially over 
the next four months, thereby reaching a sufficient level. 

7. Related Accomplishments  

There have been no related accomplishients during this 
period. 
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1. Progress  

Our work on Task 1 of the project, Programming Techniques for Resilience 
and Availability, has continued. A study of related research work is 
in progress. Work on Task 2 has not started yet; we plan to initiate 
that effort in June or July. 

2. Special Programs Developed and/or Equipment Purchased  

None. 

3. Key Personnel  

No new personnel have been added to the project. A graduate research 
assistant has been identified to work on Task 2 beginning in the summer 
quarter. He is Mr. Steve Ornburn. 

4. Summary of Trips and Meetings  

Dr. LeBlanc visited RADC to meet with relevant staff members to discuss 
this contract and the RADC research program in distributed systems. He 
presented an overview of the Clouds project and discussed the planned 
research and projected work schedule. The summary of RADC supported 
research presented by R. Metzger suggested several contacts that should 
be made with groups doing related research. 

5. Problems or Areas of Concern 

No problems are areas of concern are evident at the current time 

6. Sufficiency of Effort Toward Meeting Goals of the Contract  

The current level of effort is well below that needed to meet the goals 
of the contract. Our level of effort will increase substantially over 
the next three to four months, thereby reaching a sufficient level. 

7. Related Accomplishments  

There have been no related accomplishments during this period. 

8. Plans for Next Period 

The study of related work under Task 1 will continue. We will also begin 
designing example problems to be used in our methodology studies. 

1 
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1. Progress  

Our work on Task 1 of the project, Programming Techniques for Resilience 
and Availability, has continued. Our study of related research work has 
led us to conclude that most work with replicated objects has been con-
cerned with algorithms to control object interactions. Little has been 
done to explore state replication methods. We plan to make that area 
an initial focus for our study. Work on Task 2 has not started yet; we 
plan to initiate that effort in July. 

2. Special Programs Developed and/or. Equipment Purchased 

None. 

3. Key Personnel  

No new personnel have been added to the project. 

4. Summary of Trips and Meetings  

Dr. LeBlanc attended a NASA-sponsored workshop on Embedded Distributed 
Computer Systems in Tampa on May 8 and 9. The program of this workshop 
consisted of presentation and discussion research reports by a small group 
of NASA-funded researchers. A variety of interesting research topics 
were discussed. The most valuable result of this trip was the development 
of some ideas about how Clouds might be made interoperable with Unix, 
so as to quickly provide a powerful development environment for Clouds. 

Dr. LeBlanc also attended the Distributed Computing Systems conference 
in Boston on May 20-22. During this trip he heard two presentations on 
Chronus by BBN personnel and had opportunities for further discussions 
with them. On May 23, he gave a presentation about Clouds at Computer 
Corporation of America and discussed various research topics with David 
Reiner and Sunil Sarin. 

5. Problems or Areas of Concern 

No problems are areas of concern are evident at the current time 

6. Sufficiency of Effort Toward Meeting Goals of the Contract 

The current level of effort is well below that needed to meet the goals 
of the contract. Our level of effort will increase substantially over 
the next three to four months, thereby reaching a sufficient level. 

7. Related Accomplishments  

There have been no related accomplishments during this period. 

1 
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8. Plans for Next Period 

Methods of state replication, particularly for nested objects, will be 
the focus of our study under Task 1. Appropriate example problems for 
this study will be identified. 

9. Expenditure of Effort  

CATEGORY 	 HOURS EXPENDED IN THIS 
REPORTING PERIOD 

CUMULATIVE TOTAL OF 
EXPENDED HOURS 

Associate Professor 8.5 34 
Research Scientist II 0 0 
Grad. Research Asst. 87 304.5 
Secretary 60 120 
Clerk Typist 60 120 

2 
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1. Progress  

Our work on Task 1 of the project, Programming Techniques for Resilience 
and Availability, has continued. We have found that the generality of 
the abstract object structure supported by Clouds poses problems for repli-
cation methods which are not presented by a less general, flat object 
structure (for instance, files or queues). The problem lies in the possi-
bility of the arbitrarily complex logical  nesting of Clouds objects. Al-
though Clouds objects may not be physically  nested (that is, one object 
may not physically contain another object), an object may contain a capa-
bility to another object. If an object. A creates another object B, and 
retains sole access to B's capability (by refraining from passing the 
capability to other objects), we say that object B is internal to  object 
A. The internal object B may be regarded as being logically  nested in 
object A. If, on the other hand, object A passes B's capability to some 
object not internal to A, we say that B is an external  object; an external 
object is potentially accessible by objects not internal to the object 
which created the external object. 

Problems arise with replication schemes when internal and external objects 
are mixed together in the same structure, i.e., when an object may contain 
capabilities to both internal and external objects. These problems are 
associated with the method which is used to propagate the state of a repli-
cated object among its replicas. One such method is to execute the computa-
tion 'from which the desired state results on each replica; we refer to 
this scheme as idemexecution.  Another method is to execute the computa-
tion at one replica, and then copy the state of that replica to the other 
replicas; we refer to this scheme as cloning.  Note that the scheme which 
is used to ensure that the replicas maintain consistent states (e.g., 
quorum consensus) is not involved in these problems, and is considered 
separately in our investigation. 

Our current research includes an investigation of a tttaxonomy" of object 
structures on which the corresponding state-propagation methods may be 
safely used, as well as of how these state-propagation methods -- or the 
Clouds object-naming mechanism -- may be altered to safely handle more 
general cases. 

Work on Task 2 has not started yet; we plan to initiate that effort in 
July. 

2. Special Programs Developed and/or Equipment Purchased  

None. 

3. Key Personnel  

No new personnel have been added to the project. However, a Research 
Scientist has been selected to join the project in October. He is Win 
Strickland, who holds an M.S. from Georgia Tech. He has considerable 
expertise with operating systems, having worked in the ICS Laboratory 
while he was a student and for three years with a startup company in the 
Atlanta area. 

1 
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4. Summary of Trips and Meetings 

Dr. LeBlanc attended the SIGPLAN '86 Symposium on Compiler Construction 
in Palo Alto, California. There were several significant papers presented 
there concerning techniques for implementing attribute grammar-based pro-
gramming tools. This work is relevant to ongoing efforts within the 
Clouds project towards the implementation of tools for using Aeolus. 

5. Problems or Areas of Concern 

No problems are areas of concern are evident , at the current time 

6. Sufficiency of Effort Toward Meeting Goals of the Contract  

The current level of effort is below that needed to meet the goals of 
the contract. Our level of effort will increase substantially next month 
and again when more personnel are added in October, thereby reaching a 
sufficient level. 

7. Related Accomplishments  

There have been no related accomplishments during this period. 

8. Plans for Next Period 

A principal focus of our work will be exploring the concept of an object 
filing system that can serve as a repository and access mechanism for 
external objects (as defined in section 1 above). 

9. Expenditure of Effort  

CATEGORY 	 HOURS EXPENDED IN THIS 
REPORTING PERIOD 

CUMULATIVE TOTAL OF 
EXPENDED HOURS 

Associate Professor 36.5 70.5 
Research Scientist II 0 0 
Grad. Research A8st. 87 391.5 
Secretary 60 180 
Clerk Typist 60 180 
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1. Progress  

Under Task 1 of the project, Programming Techniques for Resilience and 
Availability, we have continued our development of a 	taxonomy of 
object structures on which the alternative state-propagation methods may 
be safely used. Additionally, we are considering how these state-propaga-
tion methods -- or the Clouds object-naming mechanism -- may be altered 
to safely handle more general cases. 

Work on Task 2, Action-Based Programming for Embedded Systems, has now 
started. We have identified the work of the ISIS project at Cornell as 
significant to our investigation and, are currently studying their results. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel  

A new graduate research assistant, Stephen Ornburn, joined the project 
this month. After he is currently familiarizing himself with our ongoing 
work and focussing on Task 2. 

4. Summary of Trips and Meetings  

None. 

5. Problems or Areas of Concern 

No problems are areas of concern are evident at the current time 

6. Sufficiency of Effort Toward Meeting Goals of the Contract  

The current level of effort is still below that needed to meet the goals 
of the contract. Our level of effort will increase substantially when 
more personnel are added in October, thereby reaching a sufficient level. 

7. Related Accomplishments  

There have been no related accomplishments during this period. 

8. Plans for Next Period 

We will continue the work described above for Task 1 and we will be ex-
ploring the concept of an object filing system that can serve as a reposi-
tory and access mechanism for external objects. For Task 2, we will be 
studying the ISIS work. 

1 
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9. Expenditure of Effort  

CATEGORY 	 HOURS EXPENDED IN THIS 
REPORTING PERIOD 

CUMULATIVE TOTAL OF 
EXPENDED HOURS 

Associate Professor 59 129.5 
Research Scientist II 0 0 
Grad. Research Asst. 174 565.5 
Secretary 10 190 
Clerk Typist 10 190 
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1. Progress  

Under Task 1 of the project, Programming Techniques for Resilience and 
Availability, we have been studying the work of Herlihy, presented in 
his PhD thesis, "Replication Methods for Abstract Data Types." We have 
discovered a correspondence between his quorum intersection graphs and 
the lock compatibility tables of Aeolus. This discovery is valuable 
because it should allow us to apply techniques developed by Herlihy to 
our problem of automatically generating replicated objects from a single 
object version and a replication specification. 

Work on Task 2, Action-Based Programming for Embedded Systems, has con-
tinued this month with an examination of the consequences of irreversible 
nested actions in action-based programs. Modelling dependency of other 
actions on irreversible actions will be a major concern. We intend to 
look at models from database dependency theory for application to this 
problem. We have also identified techniques for forward error recover 
(as opposed to the rollbacks normally used in action-based programs) as 
an important topic for study. 

2. Special Programs Developed and/or Equipment Purchased  

None. 

3. Key Personnel  

No changes. 

4. Summary of Trips and Meetings  

None. 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract  

The current level of effort is still below that needed to meet the goals 
of the contract. Our level of effort will increase substantially when 
more personnel are added in October, thereby reaching a sufficient level. 

7. Related Accomplishments  

There have been no related accomplishments during this period. 

1 
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8. Plans for Next Period  

We will continue the work described above for Task 1 and we will be ex-
ploring the concept of an object filing system that can serve as a reposi-
tory and access mechanism for external objects. For Task 2, we will be 
studying work on forward error recovery. 

9. Expenditure of Effort  

CATEGORY 
	

HOURS EXPENDED IN THIS 	CUMULATIVE TOTAL OF 
REPORTING PERIOD 	 EXPENDED HOURS 

Associate Professor 	 74.5 	 204 
Research Scientist II 	0 	 0 
Grad. Research Asst. 	 174 	 739.5 
Secretary 	 10 	 200 
Clerk Typist 	 10 	 200 

2 
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1. Progress  

Under Task 1 of the project, Programming Techniques for Resilience and 
Availability, we are currently investigating the design of the object 
filing system (OFS) for Clouds. The replication scheme which we are cur-
rently considering in support of availability will require heavy inter-
action between the manager for a replicated object, the job scheduler, and 
the OFS. The OFS should: 

- be resilient and highly available (through replication); 

- provide a mapping from object names (strings) to Clouds object capa-
bilities; 

- impose some familiar structure (e.g., a Unix-like hierarchical struc-
ture) on the flat, global system name space provided by the Clouds 
object manager; 

- provide efficient forms for the most common types of I/O (such as 
text I/O) without the necessity of the context switches which would 
be required if such I/O were modelled with Clouds objects. 

In the OFS, an object name may represent a group of objects (the set of 
replicas of a replicated object), rather than a single instance. We 
intend that this mechanism should be, in general, transparent to the user 
(although specialpurpose applications, such as DBMSs, may require that, in 
addition, finer control of replication be available than that provided by 
a general mechanism). 

We are currently considering two different capability-based naming schemes 
which may be used by the OFS in support of state cloning, as described in 
a previous report. The first scheme requires minimal changes to the 
kernel, but relies on facets of the Clouds object look-up mechanism which 
may not be applicable to other systems. In Clouds, the search for an 
object begins locally (that is, on the node which invoked the search), and 
-- if the object is not found locally -- proceeds to a broadcast search. 
If the internal objects belonging to a replica are constrained to reside 
on the same node as their parent object, then the local search will locate 
the local instance of the internal object. (We do not consider this 
constraint to be onerous, since the internal objects of each replica need 
to be highly available to that replica in any case, and thus should 
logically reside on the same node as the parent replica. This constraint 
may be enforced by the OFS.) Thus, each replica of an object (each of 
which resides on a separate node) may maintain its set of internal objects 
using the same capabilities as each other replica. 
Although we will thus have multiple instances (on separate nodes) of 
internal objects referenced by the same capability, there should be no 
problems caused by this, since -- by the definition of internal object --
only the parent object or its internal objects may possess the capability 
to an internal object, and the object search will always locate the 
correct (local) instance. 

Thus, state cloning may be used to copy the state of a replica to the 
other replicas without causing the problems with respect to internal 
objects mentioned in the June report (concerning references to internal 

1 
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objects contained in the replica's state), since under this scheme all 
replicas may use the same capabilities for referencing internal objects. 
This scheme is an extension of a facility already supported by the Clouds 
kernel for cloning read-only objects such as code. We call this scheme 
vertical replication,  since it maintains the grouping of internal objects 
with their parent object. 

The other naming scheme makes fewer assumptions about the object look-up 
mechanism than vertical replication, but requires more kernel modifica-
tions. In the second scheme, each instance of the replicas' internal 
objects is again named by the same capability, at least as far as the user 
is concerned; however, the kernel maintains several additional bits 
associated with each capability identifying a unique instance. (These 
additional bits may be derived from, for instance, the birth node of the 
instance.) When a (parent) replica invokes an operation on an internal 
object, the kernel selects one of the replicas of the internal object 
according to some scheme (e.g., iteration through the list of nodes con-
taining such objects until an available copy is located). Thus, a set of 
replicas of internal objects is maintained in a "pool" for access by all 
parent replicas. Again, each parent appears to use the same (user) 
capability to reference a given internal object, so the problems of state 
cloning disappear. Since this scheme maintains a logical grouping of the 
copies of an internal object, rather than grouping internal objects with 
their parent object, we refer to the scheme as horizontal replication. 

Our initial design of the OFS is concerned with an unreplicated version; 
when completed, the design will be extended to a replicated version by use 
of the "distributed lock" mechanism and an analysis of the desired 
replication properties of the OFS. 

Work on Task 2, Action-Based Programming for Embedded Systems, has con-
tinued this month with a study of recovery mechanisms. The goal of a 
recovery mechanism in a fault tolerant system is to return an erroneous 
computation to a state from which computation can continue. (We term such 
a state "consistent"). In principle, a programmer can achieve fault tol-
erance by explicitly saving state information and providing enough alter-
native paths for execution. The objective of research in fault tolerant 
computing is to design operating system and run time system support 
which, in conjunction with appropriate programming language constructs, 
will make recovery "invisible" to the main computation. In this way, we 
hope to realize many of the same advantages of "information hiding" 
frequently claimed for modular programming and the use of abstract data 
types. 

In software designed using nested atomic actions (and with at most trivial 
interactions with its environment) recovery can be achieved simply by 
restoring computation to an earlier state and applying a different action. 
If a software system has interacted with its environment in irreversible 
ways, then returning the computation to an earlier state is not appro-
priate. The recovery mechanism must restart the computation on a state 
which is both consistent and in which the irreversible actions are shown 
as having occured. We term a recovery mechanism with these capabilites as 
a "forward" recovery mechanism. Initially, we are modeling recovery in 
the face of irreversible actions as a four step process: 

2 
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1. identify the irreversible actions nested within the action to be 
aborted; 

2. save the results of the nested, irreversible actions; 
3. rollback the nested, reversible actions; 
4. apply forward recovery to the nested, irreversible actions so as to 

establish a consistent state. 

Step two raises some issues with respect to operating system and run-time 
system support. In particular the recoverable area techniques provided in 
Clouds will not be adequate. We will need to be able to selectively 
recover various combinations of actions. 

Recovery in the face of irreversible actions presupposes that the irrever-
sible actions can themselves be identified. Among the irreversible 
actions, we will of course have the action which interacted with the 
environment in an irreversible way. 	Labeling an action "irreversible" 
may, however, require that other actions be 	labeled "irreversible" as 
well. For example, consider three actions A, B, and C. 	A and B are 
nested within C. 	B is irreversible, and A provides data to B. In the 
event that C aborts, it will not be possible to undo the effects of A. 
Since B is irreversible and its effects will survive step three. Even if 
A itself is rolled back, that A had occured may still be evidenced by the 
results of B. Undoing A and not B produces an inconsistent state in which 
A has both occured and not occured. We choose to solve this problem by 
considering actions which have supplied data to irreversible actions as 
themselves irreversible. Thus, when action C is aborted, the forward 
recovery mechanism invoked in step four will be charged with handling 
both A and C. 

A programmer may wish to define other actions as irreversible as well. 
Suppose B and D are nested within C. Suppose D uses the results of B to 
calculate some necessary consequences of B. The programmer wants any 
state which includes B to also include D. If B is labeled irreversible 
then D should be as well. We have identified two ways in which actions 
may makes other actions irreversible. We write A -t B to indicate that if 
action A is irreversible then action B is as well. Determining which of a 
set of nested actions are irreversible is an inference problem similar to 
the problem in database design theory of infering functional depend-
encies. Depending on the combination of actions which have been labeled 
irreversible, different strategies for forward recovery may be indicated. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel  

No changes. 

4. Summary of Trips and Meetings  

3 
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None. 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract  

The current level of effort is still below that needed to meet the goals 
of the contract. Our level of effort will increase substantially when an 
additional 1/2-time Graduate Research Assistant and a 3/4-time Research 
Scientist begin working on the project in October, thereby reaching a 
sufficient level. A staffing projection for the rest of the project is 
attached to this report. 

7. Related Accomplishments  

Considerable progress has been made on debugging the Clouds kernel during 
the last three months. We expect to have all of the currently implemented 
functionality fully operational in October. This will include creation of 
object instances from templates created by the Aeolus compiler, invocation 
of object operations on remote machines using the standard Clouds 
location-transparent invocation protocol, and network communication fea-
tures allowing interaction with Unix machines. The implementation of the 
action manager is currently in progress, based on a detailed design 
completed earlier in the year. 

8. Plans for Next Period  

We will continue the work described above for Task 1, particularly concen-
trating on a distributed version of the object filing system. For Task 2, 
the next step in our research will be to develop specification mechanisms 
which support our strategy for identifying irreversible actions and for 
selecting appropriate forward recovery strategies. We will also look more 
closely at specific forward recovery strategies and develop some examples 
illustrating our approach. 

9. Expenditure of Effort  

CATEGORY 	 HOURS EXPENDED IN THIS 
REPORTING PERIOD 

CUMULATIVE TOTAL OF 
EXPENDED HOURS 

Associate Professor 74.5 278.5 
Research Scientist II 0 0 
Grad. Research Asst. 174 913.5 
Secretary 10 210 
Clerk Typist 10 210 
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Projected Level of Effort by Months 

Each monthly entry gives planned man-hour expenditure for 
and total expended though the end of that month. 

Expended 
as of 	10/86 	11/86 	12/86 	1/87 

the month 

2/87 	3/87 
9/30/86 

Associate Professor 38.5 38.5 38.5 38.5 38.5 38.5 
278.5 317 355.5 394 432.5 471 509.5 

Research Scientist 130.5 130.5 130.5 130.5 130.5 130.5 
0 130.5 261 391.5 522 652.5 783 

Grad Research Asst. 261 261 261 261 348 348 
914 1175 1436 1697 1958 2306 2654 

Secretary/Clerical 87 87 87 87 87 87 
420 507 594 681 768 855 942 

Expended 
as of 

3/31/87 
4/87 5/87 6/87 7/87 8/87 9/87 

Associate Professor 38.5 38.5 38.5 140 140 140 
509.5 548 586.5 625 765 905 1045 

Research Scientist 130.5 130.5 130.5 130.5 130.5 130.5 
783 913.5 1044 1174.5 1305 1435.5 1566 

Grad Research Asst. 348 348 348 348 348 348 
2654 3002 3350 3698 4046 4394 4742 

Secretary/Clerical 87 87 87 87 87 87 
942 1029 1116 1203 1290 1377 1464 

Expended Contract 
as of 10/87 11/87 12/87 1/88 2/88 Total 
9/30/87 

Associate Professor 35 35 35 35 35 1218 
1045 1080 1115 1150 1185 1220 

Research Scientist 130.5 130.5 130.5 130.5 0 2088 
1566 1696.5 1827 1957.5 2088 2088 

Grad Research Asst. 348 348 348 348 174 6264 
4742 5090 5438 5786 6134 6308 

Secretary/Clerical 87 87 87 87 87 1914 
1464 1551 1638 1725 1812 1899 
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1. Progress  

Task 1 (Programming Techniques for Resilience and Availability): 
In our last report, we described our study of the work of Herlihy concern-
ing the efficient support of replication for abstract data types. We also 
described a connection between the quorum-intersection graphs used in Her-
lihy's work and the specification of lock mode compatibilities supported 
by the Aeolus/Clouds lock construct. The graph derived (using Herlihy's 
conventions) from the mode compatibility specification for a lock which is 
used to enforce synchronization among an object's operations is approx-
imately the complement of the quorum-intersection graph for that object's 
operations. Thus, we should be able to use Herlihy's methods in conjunc-
tion with our lock specifications, which will be useful in light of Her-
lihy's optimality results for his scheme. 

To test this conjecture as well as the possibility of deriving replicated 
objects from single-copy versions, we have been occupied during the past 
month with the specification and implementation of a single-copy version 
of a prototype Object Filing System (OFS) for Clouds. (The functionality 
of the OFS has also been described in a previous report; a much-simplified 
version of an OFS supporting a flat name space has already been imple-
mented in the Clouds system, while the current OFS effort will support a 
hierarchical name space.) This effort involves the specification of the 
synchronization behavior of the single-copy OFS object via a lock compati-
bility matrix. We will compare the graph derived from this specification 
with the quorum-intersection graph appropriate to the same set of 
operations. Also, when the specification of the single-copy. OFS object is 
complete, we will test our idea of extending the single-copy version to a 
replicated version by allowing the locks specified for the single-copy 
version to act as "distributed locks" (where information about locks 
granted or released by a replica on one node is communicated to the other 
nodes where replicas exist by the Clouds object manager, as described in 
the previous report). A "distributed lock" may be viewed as a manager for 
gathering a quorum for a given operation; the synchronization behavior 
thus achieved should reflect that specified for the single-copy version, 
with no additional effort on the programmer's part. 

Another interesting question which will be investigated using the OFS 
example is the relation between Herlihy's quorum intersection graphs and 
Aeolus/Clouds lock compatibility matrices when multiple locks are used for 
specifying an object's synchronization behavior. We have found that in 
certain cases it is convenient to use more than one lock to specify 
synchronization among an object's operations; the different locks typi-
cally apply at differing levels of granularity as well as having compati-
bility matrices with disjoint meanings. For example, we have designed a 
symbol table object which uses two locks for synchronization purposes: one 
lock at the level of the individual buckets in the symbol hash table, with 
compatibilities expressing a multiple reader / single writer protocol; and 
another lock at the level of the entire symbol table, allowing multiple 
readers or multiple writers, but not readers concurrently with writers. 
The first lock is used with the typical operations such as insert, delete, 
and find, where there is no interaction between concurrent operations on 
different buckets; the second lock is used with an "exact-list" operation, 
where a "snapshot" of the exact state of the symbol table at a particular 
instant is desired, and thus all operations which modify the state of any 
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portion of the symbol table must be locked out. Our locks thus have an 
advantage of power of expression over Herlihy's quorum intersection 
graphs, which do not allow the expression of granularity lower than that 
of an entire abstract data type and its operations. Thus, we will be 
considering how Herlihy's results may be extended to the case of multiple 
levels of granularity for synchronization. 

Task 2 (Action-Based Programming for Embedded Systems): 
When a computation interacts with its external environment, the computa-
tion will perform operations not only on data objects belonging to the 
computation but also on objects belonging to the system in which the com-
putation is embedded. These operations may cause the external object to 
change state in an irreversible way. This is most easily understood when 
the external object is real. 	Even when the containing system is itself 
computational, however, it may be convenient 	to regard operations 
performed by the embedded system on objects in the containing system as 
irreversible from the perspective of the embedded system. 

Our proposed strategy for achieving fault-tolerance in the presence of 
irreversible operation involves aborting the action in which the fault 
occurred and restoring the object on which the action was begin performed 
to a consistent state. As the action is aborting we will save those por-
tions of the object's state associated with the irreversible operation and 
then recover the object's previous state. 	We will then modify the 
recovered state to reflect the nested irreversible actions. 	Control 
returns to the point just prior to the invocation of the failed action. 

We must be careful here: we want actions to be atomic, but when we modify 
the recovered state to reflect the irreversible operations performed by 
the failed action we appear to lose atomicity. From the perspective of 
the main computation, however, there is another interpretation -- the 
object appears to have undergone a spontaneous state change. 

If we allow these "spontaneous" state changes, we must do more as well. 
The correct execution of a program often depends on the state of the 
computation satisfying certain invariants at particular junctures. 
Programmers often use their knowledge of the invariants when writing a 
component of a program and thereby produce a simpler piece of code. The 
risk is that the "spontaneous" state changes may alter the state in a way 
that violates an invariant which a programmer had assumed to hold. 

We propose to solve this problem by extending the action/object model of 
computation used in Clouds by introducing the notion of "triggered 
actions." A triggered action may be executed when entering or exiting a 
standard action. The triggered action will only be executed when its 
trigger condition is satisfied. Among the trigger conditions which may be 
specified is the "spontaneous" state change of an object. As we have seen 
the spontaneous state change may be a side effect of recovery in the 
presence of irreversible operations. Spontaneous state changes may also 
occur in dynamic environments which are not entirely under the control of 
the computation. The triggered action construct may be of use when 
constructing software which must interact with an environment in which 
genuine spontaneous state changes occur. 

Our intention is to let the triggered action appear to the main computa- 

2 



Fault Tolerant Software Technology 	 Monthly Report 
for Distributed Computing Systems 

tion as the putative source of the updates to object states. The program-
mer using triggered actions can think of them as triggered by an events 
external to the software and causing spontaneous state changes to the data 
objects. The triggered action will be charged with the responsibility for 
carrying out any bookkeeping required in response to the spontaneous state 
change. The spontaneous state change in a sense provides an alternate path 
through a section of code and the triggered action can be used to ensure 
that the invariants are preserved. We also will allow the programmer to 
indicate that certain operations or sequences of operations should be re-
garded as irreversible. There should be programmer control over the 
activation and deactivation of triggered actions. There should also be a 
means for establish the order in which active triggered actions are 
executed when the triggers of several are satisfied simultaneously. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel  

Win Strickland has joined the project staff as a Research Scientist and 
Scott Vorthmann has begun working as a 1/2-time Graduate Research Assist-
ant. 

4. Summary of Trips and Meetings  

Dr. RIchard LeBlanc attended the RADC Technology Exchange during this 
month. This meeting provided valuable contacts with several other groups 
doing related work, particularly the Cronus group at BBN and the Honeywell 
fault-tolerance group. 

Dr. LeBlanc and Tom Wilkes also attended the IEEE International Conference 
on Computer Languages, where Wilkes presented a paper on the design of 
Aeolus and LeBlanc chaired a panel session on programming models for dis-
tributed computing. The principal benefits of this trip were wider ex-
posure for the Clouds project and our discussions with researchers working 
in the area of specification-based programming. 

5. Problems or Areas of Concern  

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract  

The current level of effort is now sufficient to meet the goals of the 
contract, according to the plan included with last month's report. 
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7. Related Accomplishments  

The Clouds kernel is now operational, with the exception of the action 
manager. A small amount of work remains to be done in the area of run-
time support for Aeolus. An interface to Unix has been constructed, 
allowing us to make effective use of the multiple window displays avail-
able on Sun workstations for debugging. 

8. Plans for Next Period  

We will continue the work described above for Task 1, expecting to com-
plete the implementation effort for the single-copy OFS object within a 
few weeks. We may thus be able to give preliminary results of our anal-
ysis of the behavior of this version as extended to a replicated version 
in our next report. For Task 2, our next step is to develop the language 
mechanims for specifying that operations are irreversible and for defining 
and controlling triggered actions. We will also consider in more detail 
the ways in which programmers exploit their knowledge of invariants when 
constructing sections of a program; from this study we will be able to 
suggest guidelines for using triggered actions. 

9. Expenditure of Effort  

CATEGORY 
	

HOURS EXPENDED IN THIS 	CUMULATIVE TOTAL OF 
REPORTING PERIOD 	 EXPENDED HOURS 

Associate Professor 	 38.5 	 317 

Research Scientist II 	130.5 	 130.5 

Grad. Research Asst. 	 261 	 1175 

Secretary 	 47 	 257 

Clerk Typist 	 40 	 250 
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1. Progress  

Task 1 (Programming Techniques for Resilience and Availability): 
In our last report, we described the implementation in Aeolus of a single-
copy version of a prototype Object Filing System (OFS) for Clouds. The 
idea is to use this unreplicated version to design the lock compatibility 
matrix necessary for its synchronization, and then to study the relation-
ship of the compatibility matrix with the quorum intersection graph de-
rived when the single-copy version is extended to a replicated version. 
The prototype OFS design involves a hierarchical nesting of OFS objects, 
each of which maintains knowledge of its immediate ancestor in the hier-
archy. (Here, by "nesting" we mean "logical nesting," that is, an object 
contains a capability to its child, as opposed to "physical nesting," 
where an object physically contains its child.) 	The children of an OFS 
are stored in and accessed through a symbol table object nested in the 
OFS. The design of the symbol table object has been described in one of 
our publications ("Systems Programming with Object and Actions," R.J. 
LeBlanc and C.T. Wilkes, Proceedings of the 5th International Conference 
on Distributed Computing Systems); the locking structure of the symbol 
table object was described briefly in our last report. 

The interpretation of user commands to the OFS is handled by a rudimentary 
"shell" process, which accepts Unix -like pathnames and translates them to 
operations on an OFS or invocations of Aeolus processes. 	The shell 
process maintains knowledge of the root of the OFS hierarchy, as well as 
the "current" OFS (corresponding to the "current working directory" in 
Unix), and (for efficiency purposes) the ancestor of the current OFS. 

Since our last report, we have done additional work on the prototype OFS 
design, though it is not yet complete. During this month, our efforts 
have also included work on the implementation and debugging of the Aeolus 
run-time support necessary for the support of Aeolus/Clouds objects and 
their interaction with the Clouds kernel; this effort, along with some 
additional compiler and language library implementation effort, should 
allow us to run the prototype OFS under Clouds shortly after the prototype 
is complete. Although the OFS design and implementation are nearly fin-
ished, we prefer to complete the implementation of all OFS operations 
before adding synchronization, since the design of the lock compatibility 
matrices often depends on subtle interactions among the object opera 
tions. However, our current feeling is that the synchronization mechanism 
already in place in the nested symbol table objects (as described in our 
previous report) may suffice for the synchronization of the OFS objects as 
well. This would simplify the analysis of the compatibility matrix/ 
quorum intersection graph relationships, since the symbol table object has 
only five operations, compared to ten for the OFS object, and thus fewer 
interactions among the object's operations, yielding simpler compatibility 
matrices. Since the symbol table object synchronization involves two 
locks at differing levels of granularity, we will be able to investigate 
how such locks relate to quorum intersection graphs when the latter are 
extended to multiple levels of granularity. 

Task 2 (Action-Based Programming for Embedded Systems): 
We have proposed a construct called a "triggered action" which will -- 
following the rollback of an action which failed after performing an irre- 
versible operation -- restore the computation to a consistent state which 
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recognizes that the irreversible operation occured. We have refined our 
notion of a "consistent state" and have explored some of the issues in 
using triggered actions to establish a consistent state. Actions, our 
computational units, can be coupled together in various ways so that the 
results of one action affect the results of the another. The constructs 
for coupling actions together are provided by the underlying programming 
language; in general though, two actions are coupled to permit the flow of 
data and control information across their boundary. For our purposes we 
will regard the flow as occuring in one direction. 

Researchers have described several forms of coupling including content, 
common, control, stamp and data coupling. For our purposes it is suffi-
cient to observe that we can develop an invariant characterizing the state 
of a computation at the boundary between two actions. More precisely, 
this invariant is a formal characterization of the state of the computa-
tion just after control passes the end of the first action. We may also 
use invariants to characterize the entry conditions of the second action. 
In a correctly constructed program, if the invariant at the boundary 
between two actions is satisfied, then the entry conditions of the second 
action are of necessity also satisfied. When implementing software, pro-
grammers often deliberately exploit their knowledge of program invariants 
in order to speed up or simplify their programs. The assumptions a pro- 
grammer makes about the state of a computation at a particular boundary 
constitute the constraints on the state of the computation and it is with 
respect to these constraints that we judge the consistency of a state of a 
computation. When recovering from a failed action, we must ensure that 
the state of the computation is consistent with the constraints 
associated with the point in the program at which execution is resumed. 
When recovering from a failed action which executed an irreversible opera-
tion, we must update the state of the computation to indicate that the 
irreversible operation occured. It is the responsibility of the triggered 
action to ensure that these updates are sufficient to satisfy the con-
straints associated with the point in the program at which execution will 
be resumed. 

Programmers often construct the first in a pair of actions so as to sim-
plify the invariant at the boundary between the two actions, thus making 
it easier to use. The tight coupling of a pair of actions is often la-
beled "tricky programming." The connotation is that while the tricks may 
make the program simpler to write or more efficient, the tricks also make 
the program harder to understand, debug and modify. The negative aspects 
of tightly coupled actions arise in part because there is no standard way 
of documenting them. There appears to be a need to consider a notation for 
documenting the constraints which must be preserved at the boundary 
between two actions. If the constraints were documented, then when 
programmers add new execution paths to the first action they would have a 
better guide as to the constraints which must be satsified when exiting 
the action. In particular, triggered actions can be viewed as providing 
alternative paths of execution. By documenting the constraints, 
programmers would have a better guide for constructing the triggered 
actions. For an illustration of the problem of preserving consistency and 
of the use of triggered actions, consider the following example. Suppose 
a program consists of two components Y and Z. These components will be 
executed sequentially (i.e., Y;Z). Among other activities Y searches a 
complex data structure and sets a flag to indicate whether the target was 
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found. Z also needs to know whether the target is in the data structure. 
One solution would be to search the data structure a second time. A second 
solution would be to exploit our knowledge about how Y operates to decide 
whether the target is in the data structure. We might observe that 
a. Y never resets the flag which indicates whether the target was found 
b. Y only takes the target out of the data structure if property P is 

true 
c. The variables used in evaluating property P are not subsequently 

changed. 
With this information, Z could be constructed to decide whether the target 
is in the data structure by checking the flag and testing whether proper-
ty P still holds. Suppose further that deleting the target from the data 
structure was an irreversible operation, while the assignments of values 
to the flag and to the variables referenced when property P is evaluated 
are reversible. Finally, suppose program component Y is a recoverable 
action. 

Recovery from a failure of action Y must be done so as to ensure Z will 
execute correctly. Our strategy is to construct a triggered action which 
makes it appear as though the target was deleted spontaneously from the 
data structure. The triggered action will ensure the flag and the varia-
bles used in evaluating P are consistent with the state of the data struc-
ture. Only then will execution resume. Simpler couplings between compon-
ents Y and Z are possible. Y could set a flag to indicate the results of 
evaluating property P and then Z could infer the results of evaluating P 
by examining the flag. The triggered action would have to be redesigned 
accordingly. The example illustrates some of the difficulties which can 
be encountered when attempting to recover actions which involve irrever-
sible operations. It also illustrates how our approach allows a program-
mer to deal with these difficulties in a way that is consistent with our 
action-based computational model. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel  

No changes. 

4. Summary of Trips and Meetings  

During November, we hosted a site visit by staff of the National Science 
Foundation and two outside reviewers as part of the evaluation of a propo-
sal by Georgia Tech to the NSF Coordinated Experimental Research Program. 
(One of the reviewers was Rick Schantz of BBN.) The main thrust of this 
proposal is a plan to make the Clouds testbed available to other experi-
menters within the School of Information and Computer Science. If the 
proposal is funded, major resources will be made available to us to fur-
ther develop the Clouds system. 

5. Problems or Areas of Concern 
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No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract  

The current level of effort is now sufficient to meet the goals of the 
contract. 

7. Related Accomplishments  

There have been no related accomplishments during this period. 

8. Plans for Next Period  

We will continue the work described above for Task 1, planning to complete 
the implementation effort for the single-copy OFS object within a few 
weeks. We will then be able to give preliminary results of our analysis 
of the behavior of this prototype as extended to include replication. For 
Task 2, our next step is to consider some of the issues associated with 
implementing our approach to acheiving fault-tolerance in the presence of 
irreversible operations. These issues include designing appropriate 
programming language syntax and the developing a notation for specifying 
constraints at the boundary between two actions. We will also consider in 
more detail some of the pragmatic issues associated with our use of 
triggered actions, such as failure of a triggered action, recovery in the 
face of multiple irreversible operations. 

9. Expenditure of Effort  

CATEGORY 
	

HOURS EXPENDED IN THIS 	CUMULATIVE TOTAL OF 
REPORTING PERIOD 	 EXPENDED HOURS 

Associate Professor 	 38.5 	 355.5 
Research Scientist II 	130.5 	 261 
Grad. Research Asst. 	 261 	 1436 
Secretary 	 40 	 297 
Clerk Typist 	 47 	 297 
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1. Progress  

Task 1 (Programming Techniques for Resilience and Availability): 

In previous reports, we have described the implementation in Aeolus 
of a prototype Object Filing System (OFS) for Clouds, as well as the 
implementation of a simple shell process to exercise the OFS. The proto-
type OFS design involves a hierarchical (logical) nesting of OFS objects. 
Thechildren of an OFS are stored in and accessed through a symbol table 
object nested in the OFS; since a child may be another OFS as well as any 
other type of Clouds object, we achieve a hierarchical filing system 
similar in user interface to the UNIX file system. 

Since our last report, we have completed testing of the run-time 
support needed by Aeolus to handle creation and invocation of Clouds 
objects. This support includes a very primitive version of the OFS, which 
allows Aeolus code to obtain capabilities to previously-created objects 
from the Clouds kernel nameserver using a flat name space. We are now 
integrating additional support required by the full prototype OFS imple-
mentation (primarily concerned with character-string handling) into the 
Aeolus runtime system. When this support is available, we will be able to 
test the full OFS implementation under Clouds. Concurrently, we are 

performing the replication analysis of the OFS as described in previous 
reports. 

The implementation of hierarchical directory structure using nested 
OFS objects requires at least one invocation of a different Clouds object 
for each nested directory in a pathname. Under the prototype implementa-
tion of the Clouds kernel, a Clouds object invocation involves mapping 
that object's virtual address space into user space. We have little exper-
ience yet with the effect of this implementation of object invocation on 
performance. In order to study its impact, we are also implementing an 
alternative design of the OFS which, rather than using explicit nesting of 
OFS objects to obtain a hierarchical directory structure, maintains a tree 
structure in a single Clouds object; a non-directory object at a node is 
represented by a capability (as in the nested implementation), while a 
nested directory is represented by a pointer to another tree node. Thus, 
in this implementation we avoid invocations of Clouds objects during 
traversal of the directory structure. However, this implementation is less 
straightforward and transparent than the nested implementation; we lose 
the nice abstraction properties yielded by the separation of function into 
separate Clouds objects (OFS and symbol table). We could use the non-Clouds 
object constructs provided by Aeolus to achieve a more structured design 
in the non-recoverable version of the non-nested implementation; however, 
such a design would not be practical when we add recoverability, since 
access to the recoverability features of Clouds is not available from the 
non-Clouds objects of Aeolus, even when these objects are nested within a 
recoverable Clouds object. This suggests a possible deficiency in the 
design of Aeolus non-Clouds objects, which we intend to study further. In 
any case, we feel that comparison of the two OFS designs will be a valuable 
study in the methodology of programming under Clouds. 

Task 2 (Action-Based Programming for Embedded Systems): 
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We have previously described the notion of triggered action. A trig-
gered action is activated if an action fails after it has performed an 
irreversible operation. When activated, a triggered action is supposed to 
restore the computation to a consistent state, thereby allowing subsequent 
actions to execute correctly. 

We are considering ways in which the idea of triggered actions can be 
integrated into action-based languages such as Aeolus. In particular, we 
are considering how to integrate the triggered action idea into Aeolus' 
event handler construct. To simplify the description, we assume Aeolus 
has been extended to support exception handlers. Event handlers are 
provided for five types of event: 	beginning of action, top level pre- 
commit, nested precommit, commit and abort. 	While default handlers are 
provided for each of these events, the programmer has the option, for any 
action, of overriding the default handler and writing his own. In 
particular, it is possible to override the default handler for an abort 
event with a handler which is sensitive to the semantics of the event. 
Triggered actions can be regarded as a generalization of the event handler 
construct. Specifically, they generalize on the event handlers for the 
abort event. To recognize this, what we have been calling triggered 
actions will now be refered to as event handlers for aborts in the pre-
sence of irreversible operations. Where context makes clear which event 
handlers we are refering to, we will simply refer to "the event handlers." 

We will descibe some of the most important considerations which will 
influence our choices as to syntax and semantics. Our work is being 
guided by our desire to provide abstractions which programmers will find 
useful when conceptualizing a programming problem involving irreversible 
operations. 

Actions cannot be rolled back once they have performed an irrever-
sible operation. Instead, failure must be accompanied by some form of 
forward recovery. If the code for an action includes an irreversible 
operation, the action is said to be potentially irreversible. If a 
potentially irreversible action is nested within a second action, the 
second action is also regarded as potentially irreversible. A potentially 
irreversible action becomes irreversible as soon as it performs an irre-
versible operation or action. All potentially irreversible operations 
must be accompanied by some means for continuing the action in the event 
of failure. Our requirement, simply stated, is that an action cannot be 
rolled back once it has performed an irreversible operation; it must run 
to completion. 

We believe a programmer would find it useful if he could distinguish 
between actions which completed normally from those which completed 
abnormally. An action completing abnormally would raise an exception 
visible in the calling environment. handlers for aborts in the presence 
of irreversible operations would cancel the abort and carry the action to 
completion. It would also determine whether the action should be regarded 
as terminating normally or abnormally. If the handler opts for abnormal 
termination, it will raise the appropriate exception. 

Normal and abnormal terminations provide the calling environment with 
different guarantees. 	The distinction between the two types of termina- 
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tion is one drawn at the programmer's discretion. 	From a programmer's 
point of view the distinction should be related to whether the invariants 
he expects to be satisfied by the results of the action are in fact satis-
fied. A normal termination should guarantee that the expected invariants 
hold. As we have mentioned, a handler for aborts in the presence of 
irreversible actions may result in a normal termination if it was able to 
find an appropriate continuation for the failed computation. 

An abnormal termination indicates possible inconsistencies in the 
results and causes control to pass to the appropriate exception handler. 
In order for the exception handler to perform any useful work, however, it 
must have some information about the state of the failed action. In this 
case, it is the role of the event handler for the abort to record that 
information in a location known to the calling environment's exception 
handler. At the very minimum, the exception handler must know which 
irreversible events occured before the action terminated abnormally. 

The problems of propogating this minimum information into the calling 
environment is closely related to the problem of activating the appro-
priate event handler when an action fails after it has performed an 
irreversible operation. 

The appropriate strategy for carrying a failed action on to comple-
tion depends on the point at which it failed. If an action contains 
several potentially irreversible actions or irreversible operations, we 
must know which in fact occured before the action failed. We believe it 
will be sufficient to associate a flag with each occurance of a 
potentially irreversible action or irreversible operation. The flag is 
clear if its associated action or operation has not begun execution. We 
want to be guaranteed the flag will be set when the action or operation is 
completed. If failure occurs in the event handler or no event handler is 
provided, the action should be regarded as terminating abnormally and 
control should be handed over to an exception handler in the calling 
environment. If an exception handler for an abnormally terminated, ir-
reversible event itself fails, then control should should pass to the 
appropriate event handler on the same level as the exception handler. 

Some of the conditions discussed above present an unfortunate com-
plication: it may become necessary for an event handler to deal with a 
partially completed, irreversible action, e.g., an irreversible action 
fails as does its event handler and the exception handler in the calling 
environment. We believe we can handle this by inspecting, perhaps recur-
sively, the flags for the irreversible operations and actions withing the 
hierarcy of nested actions -- this, however, requires further investi-
gation. The flags used to record the oc:curence, or non-occurence, or 
irreversible actions and operations may also be used to propogate that 
information into the calling environment. By this means, we can provide 
the minimum amount of information required by an exception handler dealing 
with an abnormally terminated action. 

Since we cannot guarantee that event and exception handlers will 
never fail, we believe that these flags must be able to propogate up 
through a hierarcy of nested actions. We have not yet analized the prob-
lems this strategy may present when designing appropriate runtime support. 
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2. Special Programs Developed and/or Equipment Purchased  

None. 

3. Key Personnel  

No changes. 

4. Summary of Trips and Meetings  

None. 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract  

The current level of effort is now sufficient to meet the goals of the 
contract. 

7. Related Accomplishments  

There have been no related accomplishments during this period. 

8. Plans for Next Period 

We will continue the work described above for Task 1, planning to test the 
single-copy OFS object during this month. We will also work further on 
our analysis of the behavior of this prototype as extended to include 
replication. For Task 2, we will continue to develop and evaluate the 
semantics of our proposed event handler construct. We also must design 
appropriate syntax. We plan to consider the problem of designing a simi-
lar construct which does not rely on the use of exception handlers. 
Finally, we will develop some examples illustrating the use of our con-
struct. 

9. Expenditure of Effort  

CATEGORY 	 HOURS EXPENDED IN THIS 
	

CUMULATIVE TOTAL OF 
REPORTING PERIOD 	 EXPENDED HOURS 

Associate Professor 	 38.5 	 394 
Research Scientist II 	130.5 	 391.5 
Grad. Research Asst. 	 261 	 1697 
Secretary 	 47 	 344 

Clerk Typist 	 40 	 341 
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1. Progress 

Work on both tasks is currently focused on the guidebooks that are the primary deliverables of 
this project. 

L. Special Programs Developed and/or Equipment Purchased 

None. 

8. Key Personnel 

No changes. 

4. Summary of Trips and Meetings 

None. 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract 

The current level of effort is sufficient to meet the goals of the contract. 

7. Related Accomplishments 

None. 

8. Plans for Next Period 

The remaining contractual effort will be applied to finishing the guidebooks. 

9. Expenditure of Effort 

CATEGORY 
	

HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF 
REPORTING PERIOD 	 EXPENDED HOURS 

Associate Professor 	 35 	 1180.5 
Research Scientist II 	 130.5 	 2083 
Grad. Research Asst. 	 174 	 5886 
Secretary/Clerical 	 87 	 1847 
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1. Progress  

Task 1 (Programming Techniques for Resilience and Availability): 

In previous reports, we have described work on the specification and 
implementation in Aeolus of a prototype Object Filing System (OFS) for 
Clouds. Both a nonrecoverable and a recoverable (thus resilient) version 
of the OFS have been completed. In the process of doing these 
implementations, we have discovered and characterized a variety of differ-
ent internal structures possible for each of these versions. 

Integration of the Aeolus runtime support with the Clouds kernel has 
proven to be more difficult than originally anticipated. Thus we have not 
been able to test our OFS objects on the Clouds system. It is anticipated 
that this integration will be completed in the next month. 

Task 2 (Action-Based Programming for Embedded Systems): 

We have continued the development and evaluation of the semantics of 
our proposed event handler construct for dealing with irreversible 
operations within atomic actions and have begun the development of some 
some examples illustrating the use of our construct. We believe their is 
a possibility that the techniques we are developing will be useful in more 
general circumstances than dealing with irreversible operations. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel  

Chu-Chung Lin has joined the project staff as a 1/2-time research assis-
tant, as previously discussed. 

4. Summary of Trips and Meetings  

None. 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract  

The current level of effort is sufficient to meet the goals of the 
contract. 

7. Related Accomplishments  
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There have been no related accomplishments during this period. 

8. Plans for Next Period 

Our efforts for the month of February will be focused on documenting our 
work to date in an interim technical report. 

9. Expenditure of Effort  

CATEGORY 	 HOURS EXPENDED IN THIS 
REPORTING PERIOD 

CUMULATIVE TOTAL OF 
EXPENDED HOURS 

Associate Professor 38.5 432.5 
Research Scientist II L30.5 522 
Grad. Research Asst. 348 2045 
Secretary 40 388 
Clerk Typist 47 388 
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1. Progress  

Our efforts in both tasks were concentrated on writing our interim tech-
nical report. This effort had the greatest inpact on task 2, where it 
spurred us to complete the formulation of several examples that illustrate 
the concepts we have been developing. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel  

No changes. 

4. Summary of Trips and Meetings  

Dr. Richard LeBlanc visited the University of Utah as an invited speaker. 
His presentation was on the Clouds Project and our programming methodology 
work. 

5. Problems.or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting  Goals of the Contract  

The current level of effort is sufficient to meet the goals of the 
contract. 

7. Related Accomplishments  

The Aeolus run-time system has now been integrated with the Clouds 
kernel, so we will now be able to begin testing our objects on Clouds 
rather than Unix. 

8. Plans for Next Period  

For Task 1, we plan to complete testing on the Clouds system of the single-
copy OFS object during this month. We will also work further on the 
extension of this prototype to include replication. For Task 2, we will 
continue to develop and evaluate the semantics of our proposed event 
handler construct. An immediate need is to design appropriate language 
syntax so that we can express our examples more precisely to facilitate 
further study. 

1 



Fault Tolerant Software Technology 	 Monthly Report 
for Distributed Computing Systems 

9. Expenditure of Effort  

CATEGORY 	 HOURS EXPENDED IN THIS 
REPORTING PERIOD 

CUMULATIVE TOTAL OF 
EXPENDED HOURS 

Associate Professor 38.5 471 
Research Scientist II 130.5 652.5 
Grad. Research Asst. 348 2393 
Secretary 47 435 
Clerk Typist 40 428 
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1. Progress 

Task 1 (Programming Techniques for Resilience and Availability): 

In our interim report and our last monthly report, we have summarized 
the non-replicated Object Filing System design and our plans for generat-
ing a replicated version from this single-copy version. During the past 
month, we have been developing the theoretical and technical framework to 
make this possible. 

In further investigation of Herlihy's work on replication of abstract 
data types, we have found confirmation of our conjecture that there is a 
close relationship between Herlihy's quorum intersection graphs and our 
lock compatibility matrices. In fact, in two methods he has developed for 
integrating concurrency control and recovery for abstract data types, 
called Consensus Locking and Consensus Scheduling, The differences between 
these models need not concern us at present; therefore, we will refer to 
their common basis using the term ±±Consensus Locking." 

Herlihy requires that the quorum intersection relation and the lock 
conflict relation (the complement of the lock compatibility relation) for 
an object satisfy a common serial dependency relation on that object; he 
notes that, in practice, the lock conflict and quorum dependency relations 
will be the same. 

The model of objects and actions which Herlihy adopts differs from 
ours in several significant details. We have developed a model of concur-
rency control and replication management (which we have called Distributed 
Locking) which we propose to implement with a modified version of lock 
management in the Clouds kernel. Despite these differences in models of 
replication, we believe it will be possible to adapt Herlihy's theoretical 
basis to our model. 

Another significant difference in Herlihy's work and our own is the 
model of locks. Locking is performed in Herlihy's model on an opera-
tion-by-operation basis; conflicts are defined among operations. Thus, in 
terms of Aeolus/Clouds Distributed Locking locks, one of Herlihy's 
Consensus Locking locks is defined with one locking mode per operation. 
There is no concept of the domain of a Consensus lock, as there is in 
Distributed Locking. Effectively, the domain of a Consensus lock is an 
entire object, i.e., only one request for such a lock for a given operation 
is granted at a time, conflicts permitting. Thus, a Consensus lock for an 
object may be modelled by an Distributed Locking lock with one mode per 
operation and no domain. However, by allowing specification of arbitrary 
modes and domains, Distributed locks allow more generality than Consensus 
locks. The programmer may decide to share some lock modes among operations 
based on semantic similarities between those operations (for instance, 
examine vs. modify operations), thus effectively defining classes of 
operations with similar concurrency and availability characteristics. It 
is also possible that the programmer may decide to have an operation 
obtain a lock in different modes depending on its parameters or other 
factors; this may occur, for instance, through consolidation of logically 
separate operations with a similar interface into a single operation (to 
avoid duplication of portions of their functionality). 

Thus, while it is reasonable in Consensus Locking to speak of the 
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differing availabilities of operations rather than of objects, it is also 
sensible to speak in Distributed Locking of the availability of lock 
modes. The ability to specify a domain for a lock may permit increased 
concurrency over locking on the object level; however (although this issue 
requires more scrutiny), we feel that this should not affect the 
availability characteristics of the lock's modes. 

As mentioned above, Herlihy's Consensus Locking model integrates 
concurrency control and replication management for abstract data types. 
The Aeolus/Clouds Distributed Locking model offers a similar integration; 
concurrency properties are given by the specification of lock domains and 
compatibility matrices. 

We now describe how availability properties are specified, how indi-
vidual replicas are managed via the naming scheme, and how updates are 
propagated among the replicas. We propose that the availability proper-
ties of a replicated object be specified in a separate compiland for that 
object type, which we call the replication specification part (or ±-±rep" 
part, for short). The properties specified in a ±i-rep" part include the 
number of replicas, the replication management algorithm desired (e.g., 
quorum assignment, available-copies, etc.), the name of each lock type 
declared by the implementation of that object along with the names of that 
lock's modes, and (optionally) the availability relationships among the 

modes of each lock type used by the implementation of that object. 	(All 
internal and/or non-Clouds objects used by a replicated object must also 
have a replication specification; this requirement is applied recursively 
to these objects. If no lock types are declared by such an object, the 
corresponding ±±rep" part is explicitly null. 

The availability information of a non-Clouds object is inherited by 
the object which imports it; thus, the effect is as if locks declared by 
non-Clouds objects were instead declared by the importing Clouds object.) 
This information is transformed by the Aeolus compiler into a table of 
replication management information which is stored in the TypeTemplate of 
the given Clouds object. This information is passed to the Clouds lock 
manager (in a manner yet to be determined), and is used by it to guide the 
selection of sets of replicas for Distributed locks. 

The naming of replicated objects in Clouds has been discussed in our 
interim report. Two schemes were described: vertical replication, which 
uses the current capability scheme, relying on the current invocation 
mechanism (search locally first, then broadcast the search globally) and 
thus requiring that all objects internal to a replicated object reside on 
the same node as that object (to which we will refer as the coresidence 
requirement); and horizontal replication, which requires the addition of 
several bits to the current Clouds user capability to allow the kernel to 
address a single replica, but which does not require all object internal 
to the replicated object to reside on the same node. 

The attractions of the vertical replication scheme are that it is 
conceptually simple, that it requires no modifications to the kernel 
capability-handling mechanisms, and that, by requiring coresidence, it 
enforces a property which enhances availability. To see this, recall that 
independent failure modes are desirable among different replicas of a 
replicated object, since the probability that the replicated object will 
be available is the probability that any one of the set of replicas will 
be available. On the other hand, dependent failure modes are desirable 
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among a given replica and its internal objects, since the probability that 
the given replica will be available is the probability that all of the set 
of internal objects will be available. Requiring coresidence of objects 
related by logical nesting introduces dependence of their failure modes. 

Unfortunately, the vertical replication scheme may not generally be 
viable, since the coresidence requirement is sometimes be unrealistic. It 
may sometimes be the case that it is impossible to satisfy coresidence, 
due to the size of nested objects (making it impossible to accommodate 
them on the same node), or due to insufficient space because of previous-
ly-existing objects on that node. Thus, we must abandon vertical replica-
tion as lacking sufficient generality in its applicability. Fortunately, 
the horizontal replication scheme does not share this drawback. 

Task 2 (Action-Based Programming for Embedded Systems): 

In developing programming examples which illustrate the various fault 
tolerant techniques available to the programmer employing an action based 
design in the construction of an embedded system, we have found it 
necessary to design an appropriate pseudo-code. Since the Aeolus 
programming language provides low level support for action based program-
ming, the pseudo—code is needed to achieve the desired level of clarity. 
We want to be able to process our pseudo-code mechanically: a preproces-
sor attached to the Aeolus compiler will convert our pseudo-code to stand-
ard Aeolus. This month's report summarizes our ideas regarding this 
pseudo-code. 

The Relationship between our Pseudo-code and Aeolus 

Clouds and the Aeolus programming language have been designed in a 
way which allows the programmer considerable contol over the efficiency of 
his software. For example, there are six different flavors of objects. 
Object operations may be invoked as actions in two different ways but need 
not be invoked as actions at all. A programmer, when invoking an operation 
on an object or designing an object interface, must be aware of at least 
eighteen different possibilities. When the various flavors of procedures 
are also considered this number is even greater. 

The intent, by those desiging Aeolus, was to enable a programmer to 
select from a number of alternative solutions to a programming problem. 
The programmer, it was hoped, would then be able to select the solution 
which would work most efficiently in his particular context. The under-
standing was that different solutions would be appropriate in different 
contexts. 

In developing an Aeolus program it is often desirable to proceed in 
two steps. First, a programmer should consider the effects he wishes to 
achieve and the general architecture of his program. Then he should refine 
that design by selecting particular program structures and flavors of 
language constructs. 

Our pseudo-code is intended to serve as a specification language in 
that it will allow the programmer to defer a number choices about the 
structure of his program and the specifics of the language constructs to 
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be used. 

Summary of the Pseudo-code 

Our pseudo-code will provide syntax which allows the programmer to 
delimit the boundaries of actions, to associate attributes with actions 
(e.g., attributes can be used to declare operations as irreversible or 
potentially irreversible), and to employ exception handlers. In this 
section we will summarize our current ideas for the design of our pseudo-
code and contrast them with the approaches taken in Aeolus. We will also 
explain some of the ways in which our pseudo-code may be implemented in 
terms of Aeolus. 

Actions.  Our pseudo-code will require the programmer to identify actions 
statically. An action may be declared as either top-level or nestable. As 
in Aeolus, a top-level action may be invoked from within another action. 
A nestable action performs as a nested action if it is invoked from within 
an action, otherwise it performs as a top-level action. If the programmer 
wishes to define event handlers, they will be bound to a particular action. 

The justification for our approach is that in providing error re- 
covery in the presence of irreversible operations, programmer-defined 
error recovery will predominate. Our work to date indicates programmer-
defined error recovery will be most effective if it sensitive to the 
semantics of the action in which the fault occured. In providing error 
recovery which is sensitive to the semantics of a particular action, we 
want to be able to force the programmer to alway invoke certain operations 
as an action. 

Within Aeolus, actions are created by invoking a procedure or object 
entry point in a particular way. Thus, an object entry point may various-
ly be invoked as an ordinary procedure, top level action, or nested 
action. Further, event handlers are bound to the object rather than to 
the particular action from whose effects recovery may be necessary. 

If in binding an event handler to operations we did not also force 
that operation to be called as an action, we would be making it possible 
for a programmer to forget to invoke the operation as an action. This 
error would not be detected except that event handlers for the parent 
action would be invoked for events within the operation and this could 
produce recovered states which are incorrect. 

Event handlers will be bound to actions even though Aeolus binds 
event handlers to objects. We will use the attribute mechanism to imple-
ment our approach in terms of Aeolus. When an operation is performed on 
an object a flag (attribute) will be set indicating which operation is in 
progress. If the action faults, Aeolus will pass control to the event 
handler for aborts. Since we are using programmer-defined event handlers, 
it will be constructed to determine first which operation was executing 
when the fault occured by examining the action in progress flags. Given 
this information, control will then pass to the portion of the event 
handler which is sensitive to the semantics of that particular action. 

Action Attributes. 	In the previous section on actions reference was made 
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to the attribute mechanism. 	This section describes that mechanism. 
Attributes are a set of variables which can be used to characterize a 
particular instance of an action. Attributes should be held in a data 
area which can be referenced by the action itself; the action's event 
handler; the action manager, run time system, etc.; and parent actions. 

An action's attributes will include any information needed to access 
the attributes of other actions which were nested within the one described 
by this particular set of attributes. 

We will incorporate the attribute mechanism into our pseudo-code by 
generalizing on the idea of action type. For an action to have a 
particular set of attributes, we must declare it to be of the appropriate 
type. Further more we want programmers to be able to define their own 
action types. 

We will require that an object defininition which is to serve as an 
action type provide certain standard attributes. This can be done in two 
ways. The interface between Aeolus programs and the action manager is 
implemented as a pseudo-object and each instance is already associated 
with a capability. 	The action manager is responsible for generating the 
information about some of the standard attributes. 	The object containing 
the attributes for an instance of an action may construct the values for 
the standard attributes on demand by making appropriate calls on the 
action mannager. As an alternative, we may construct the values for 
standard attributes by allowing the action manager to set the standard 
attribute values by making appropriate calls on the object. 

The pseudo-code will allow a programmer to set attributes in the same 
statement which invokes the action. 	This will expand to a sequence of 
Aeolus statements. 	First, an object corresponding to the appropriate 
action type will be created. Attributes will then be set appropriately by 
invoking appropriate operations on the object. Finally the action itself 
will be invoked. 

Exception Handlers and Event Handlers. 	There are roles for exception 
handlers and event handlers in our approach to action based programming 
for embedded systems. When a fault occurs within an action, an exception 
handler may be invoked to clear the problem and lead to a normal termina-
tion. If an action is aborted, (because it faulted and there was not an 
appropriate exception handler, it committed suicide because it or its 
exception handler executed an explicit abort statement, or it was aborted 
by the action manager because a parent action was also being aborted) then 
recovery is initiated and the abort event handler is invoked. The abort 
event handler does recovery in two steps. In the first step, some standard 
tasks are performed (the specifics may be determined by the attributes). 
In the second step control passes to an appropriate exception handler 
which has been hand crafted and is sensitive to the semantics of the 
action being aborted. Under certain conditions both forms of the exception 
handlers may raise an exception visible to the parent action. 

Aeolus provides neither exception handlers nor two stage event hand-
lers for aborts. We beleive we can build both using the programmer-
defined event handlers provided by Aeolus. We have already described how 
event handlers may be crafted so as to be bound to particular actions. We 
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can also exploit the attribute mechanism to craft these other structures. 

Information about whether a particular type of exception has occured 
will recorded among an action's attributes. The attributes will also 
indicate whether an explicit abort has been executed. When an exception 
occurs control must pass to the programmer-defined abort event handler. In 
Aeolus terms this transfer of control is achieved by aborting the action, 
though we choose to view it, in terms of our pseudo-code, merely as an 
exception. The Aeolus level event handler will examine the flags and 
transfer control to the approriate section of the event handler. The 
appropriate section may represent an exception handler defined in our 
pseudo-code. The pseudo-code allows the exception handler to initiate 
recovery by explicitly aborting the action. This can be implemented as a 
transfer of control internal to the Aeolus level event handler. 

If the flags indicate that the action is being aborted and recovery 
is required, then control will transfer to that portion of the Aeolus 
level event handler designated as performing the standard, first step of 
recovery (in term's of the pseudo-code this is system supplied code which 
is sensitive to the attributes of the action). While in terms of the 
pseudo-code the second step of recovery has control transfering to an 
exception handler. This is implemented via a transfer of control internal 
to the Aeolus level event handler. 

If we wish to raise an exception visible to the parent action, we 
will set the appropriate attributes. On returning from the nested action, 
the parent action will be required as a matter of course to examine some 
flags to determine whether an exception is being raised. If one is, 
control will pass to an exception handler in the parent action (using the 
mechanism just described). The code to check the flags and transfer 
control to the exception handler, if required, will be generated by the 
pseudo-code processor as part of the action invocation. 

2. S.ecial Pro rams Develo ed and/or E•ui•ment Purchased 

None. 

3. Key Personnel  

No changes. 

4. Summary of Trips and Meetings  

Andrew Tanenbaum of Free University, Amsterdam, and Graeme Dixon of the 
University of Newcastle-Upon-Tyne visited our department during March. 
They each discussed distributed operating systems research projects in 
progress within their research groups. Dr. Richard LeBlanc and Tom Wilkes 
attended the 6th Symposium on Reliability in Distributed Software and 
Database Systems, along with six other members of the Clouds group. Two 
papers based on Clouds work, including one co-authored by LeBlanc and 
Wilkes, were presented. 
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5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract  

The current level of effort is sufficient to meet the goals of the 
contract. 

7. Related Accomplishments  

None. 

8. Plans for Next Period  

For Task 1, we plan to do further work on replication techniques for 
objections and actions. For Task 2, we will continue to develop our ideas 
about program structures which can be used when implementing one or another 
of the various flavors of fault tolerance described in the interim report. 

9. Expenditure of Effort  

CATEGORY 
	

HOURS EXPENDED IN THIS 	CUMULATIVE TOTAL OF 
REPORTING PERIOD 	 EXPENDED HOURS 

Associate Professor 	 38.5 	 509.5 
Research Scientist II 	130.5 	 783 
Grad. Research Asst. 	 348 	 2741 
Secretary 	 40 	 475 
Clerk Typist 	 47 	 475 
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1. Progress 

Task 1 (Programming Techniques for Resilience and Availability): 

In our last monthly report, we described our preliminary work on the theoretical and 
technical framework of a method for deriving a replicated version of an object from its 
single-site implementation. In this report, we describe this framework, called Distributed 
Locking, in greater detail. 

The term Distributed Locking refers to a methodology for deriving a replicated 
implementation from its single-copy version, as well as to a mechanism to support this 
methodology. A powerful feature of Distributed Locking is that it does not assume any 
particular policy for replication control. Rather, it allows the user to specify policy in the 
areas of replica concurrency control (e.g., the quorum consensus or available-copy 
algorithms) and state copying (e.g., idemexecution or cloning). The motivation to provide 
this flexibility derives from study of the many proposals for replication control that have 
appeared in the literature in recent years. It has become clear from the wide diversity of 
these proposals that tradeoffs between availability and consistency of replicas are not only 
possible, but in some applications highly desirable. Thus, in order to provide support for 
replication in a general manner, it is essential that the user be allowed to take advantage of 
semantic knowledge to tailor the replication control in an application-specific manner. The 
mechanism provided by Distributed Locking for this purpose is described below. 

Distributed Locking, however, also allows the user to specify that one of several default 
(pre-programmed) strategies be used in each of the two areas of replication control (e.g., the 
combination of quorum consensus and cloning). Thus, in accord with the general philosophy 
of such mechanisms in Aeolus/Clouds—as demonstrated in its features for control of 
synchronization and recovery—provision is made both for automatic provision of replication 
control, and for "roll-your-own" specification of control by the user when desirable. 

Distributed Locking: Methodology 

The basis of the Distributed Locking methodology was described in our last monthly 
report. Essentially, derivation of a replicated object from its single-site implementation 
consists of two steps. 

1. The user writes a single-site definition and implementation of the object. This 
implementation includes specification of all lock types used by the object to ensure view 
atomicity in the presence of concurrently-executing actions. 

2. The user writes an availability specification (availspec) for the object. This specifies the 
number of replicas of each instance of the object to be generated, the replication control 
policies to be used, and (optionally) the relative availabilities of the modes of each lock 
type specified by the object. If no availspec is provided, the object is assumed to be 
nonreplicated. 

Note that, as discussed in our last monthly report, availabilities are expressed in terms of the 
modes of locks rather than in terms of operations. Together with the domain notion, with 
which lock granularities are expressed in Aeolus/Clouds, this gives the user more latitude in 
the expression of relative availabilities than is provided in related work. 

Policies for control of concurrency among replicas, and for control of the copying of state 
among replicas, are expressed in the lock object event handler and the copy action event 
handler, respectively. Preprogrammed default handlers for these events, which implement 
commonly-used schemes such as those mentioned above, may be requested by the user if 
appropriate. If the user wishes to provide application-specific handlers for these events, the 
same system-provided primitives used in the construction of the default handlers are available 
for use in programming user-specified handlers. These primitives, and their purposes, 
include those for such purposes as: 
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• acquisition at a specific replica of the currently-requested lock (with the same mode and 
value, if any), for implementing lock propagation; 

• invocation at a specific replica of the same operation (with the same parameters) 
requested at the current replica, for implementing idemexecution; 

• broadcast of state shadow sets to all replicas holding a specified lock (with a specified 
mode and value), for implementing cloning via shadows; and 

• invocation at a specific replica of an arbitrary operation, for implementing cloning via logs 
or state reconciliation strategies. 

The intention is to provide facilities at a level sufficiently low to accomodate all schemes of 
interest. Some other useful predefined objects, such as those implementing list abstractions, 
are available for such purposes as maintaining and traversing the list of replicas at which 
locks have been obtained (and to which the object: state must later be copied). 

Distributed Locking: Mechanism 

The mechanism required for support of Distributed Locking requires the modifications to 
the Clouds object and action naming schemes which have been proposed for the support of 
the Parallel Execution Thread (PET) scheme, as described in our last monthly report. The 
Distributed Locking mechanism also requires modification of the Aeolus/Clouds object and 
action management facilities in two areas. 

1. When an operation attempts to obtain a lock on an instance of a replicated object, locks 
are obtained at some appropriate subset of its replicas, by invoking the lock event 
handler on that object. (The replica at which the original invocation took place is called 
the primary cohort [p-cohort]; the other members of the locked subset of replicas are 
called secondary cohorts [s-cohorts].) 

2. During the handling of the precommit event of the controlling action, the state of each 
p-cohort touched by that action is copied to its s-cohorts, by invoking the copy event 
handler on each p-cohort. 

Note that, when a lock is obtained at an s-cohort, the s-cohort is automatically added to the 
touched list for the controlling action. Thus, when the controlling action commits at the p-
cohort, normal commit processing occurs at each of its s-cohorts as well. This is useful, for 
instance, when state cloning via copying of shadow sets is used; the shadows are committed at 
each of the s-cohorts as if the shadows had been produced by execution at that s-cohort. 

Task 2 (Action-Based Programming for Embedded Systems): 

We are developing several examples illustrating the recovery mechanism we have 
designed. Last month, we described the pseudo-code being used to develop these examples. 
This month we will outline the examples and explore some system architectures which 
depend directly on our recovery mechanism. The mechanism we have proposed allows for 
both forward and backward recovery, and integrates the handling of aborts with the handling 
of exceptions in general. 

As our work has progressed, we have developed a more generalized understanding of the 
applicability of our approach. Initially, we concentrated on the problem of recovering actions 
which had performed irreversible operations. More general versions of this problem arise 
when we consider the issues associated with recovery in systems where atomicity is not 
strictly enforced and in systems where the state of the physical system in which the software 
is embedded is not completely under software control. While we began our work believing 
that irreversible operations were a problem to be overcome, it now appears that software 
structure may actually be made more robust if a programmer is allowed to treat certain 
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operations as irreversible. Our examples will include one which considers a way in which the 
idea of an irreversible operation may be used to advantage. 

It is our belief that the judicious use of a recovery mechanism such as we are developing 
can simplify the structure of the software system by reducing the need to propagate control 
information among actions. Simply put, in our model an action is responsible for cleaning up 
after itself even if it fails. This makes actions more self contained. A mechanism is provided 
which allows a programmer to separate the mainline of the action from the various provisions 
for doing the clean up. This facilitates the process of constructing actions which are indeed 
self contained. 

The importance of actions being self contained is evident in a system such as Clouds in 
which a program's execution is expected to thread its way through many persistent objects 
which are shared among a number of different processes. An action may be invoked into a 
variety of different environments and in each the programmer must defend against 
incomplete or erroneous results. If an action is complex or contains a large number of points 
at which errors may occur, a programmer is likely to be ineffective in his use of defensive 
programming techniques. The use of a recovery mechanism to make the actions self 
contained makes it possible to push the burden of defensive programming on to the one who 
defines the action rather than the one who uses it. 

In this report, four examples are summarized. The first is a revised version of the 
Information Processing example introduced in the interim report. This example is developed 
to illustrate an architecture in which certain operations are designed to be irreversible even 
when this is not strictly necessary. 

The second example extends the first one in order to illustrate how the recovery 
mechanism can be used to support hardware and software maintenance. The example 
suggests it may be possible to maintain a system without interrupting its operation. 

The third considers how our recovery mechanism might facilitate the switch over to a 
backup system. 

The fourth example illustrates how our recovery mechanism might be used in an 
embedded system which periodically checks its assumptions about the state of the system it is 
controlling against sensor data. 

Example 1. A "server" is a rather generally employed software entity. It is a program which 
operates or manages some designated system resource. This example considers 
software designs in which the process using the server must have exclusive access 
to it, e.g., a printer. There are two rather commonly used strategies by which 
processes may share access to it: processes may block until they get their turn at 
the server; or requests for service may be queued, and process never blocks. In 
the case of the printer, this second strategy is frequently called "spooling." 

Because of the timing constraints which must often be satisfied by embedded 
systems, it is better to queue requests than to allow processes to block. The 
strategy of queuing requests for service and not allowing the process to block 
works if the request is guaranteed to be serviced. In terms of our work here, the 
strategy works as long as the request for service is irreversible. 

While we will develop our ideas in terms of a printer server, they should 
generalize easily to the construction of other servers for resources requiring 
exclusive access. 

This example will explore a software architecture which allows us to guarantee 
that print requests will be honored. We do this by constructing the print request so 
that it employs various recovery techniques to ensure that it is not destroyed. This 
allows actions to commit and processing to continue even if there is heavy backlog 
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of print requests. 

The material to printed will be encapsulated within an object we will call a print 
object. The capability for the print object will be placed in a queue known to the 
printer server. When a print object is to lbe granted access to the printer, the 
server invokes an appropriate entry point on the object. This entry point is an 
action. The print object then constructs the text to be printed and passes it on to 
the server by invoking server entry points. The print object can be thought of as 
containing a protocol for operating the printer. If there is a failure within the 
print action (in the print object), perhaps one of the operations in the protocol for 
operating the printer aborted, the recovery mechanism within the print action will 
attempt recovery, e.g, by sending itself to another printer. Under such a 
circumstance the print action may abort and raise an exception visible to the 
server. As part of handling the exception, the current instance of the server will 
terminate but should first start another instance of a server (based perhaps on a 
different version of its code.) 

If the action which placed the printer request in the first place should 
subsequently fail at least two courses of action are possible. Recovery within that 
action could merely set a flag indicating the report had already been printed. This 
would be done in anticipation that the action would be retried. We are working a 
a scheme by which an action can initiate its own retry as part of its recovery 
process. Even though the print action was irreversible, it may be possible to 
_prevent the report from being printed through the use of appropriate 
compensatory operations. 

Example 2. The second example will illustrate how the recovery mechanism can be - Used to 
facilitate software maintenance. 

If a printer fails and is replaced with a different device, it may be necessary to 
install a different device driver and this in turn may force adjustments in software 
throughout the system. With a recovery mechanism, it would be possible to make 
most of the adjustments automatically. When the device driver discovers that the 
printer has been changed (perhaps by reading a register containing a printer 
identification number), the device driver aborts, the recovery mechanism creates 
an object containing the correct driver, transfers state information from the old 
driver object, and then restarts the server process. 

This idea can be extended to problems deriving from incompatible versions of 
objects as well. Suppose the print action (in the print object) attempts to use an 
out of date protocol. It should abort. As part of recovery the print object should 
be recast using the current version. While this ensures that the report gets 
printed, some additional work might be required to track down the source of the 
old version of the print object . . There might be a copy of the create print object 
operation in a place unknown to software maintenance (perhaps some 
undocumented replication, or perhaps a loophole in the code which allowed 
programs to employ short cuts when creating print objects). 

Example 3. In this example we will consider the problem of achieving fault tolerance by 
cutting over to backup systems. The example we are developing will involve 
switches between automatic and manual control. 

The switch from automatic to manual control will be triggered because the 
physical system being controlled enters a state which was not anticipated by the 
software designers. An operator must be alerted and provided with information 
about the state of the system. The operator will use his controls to return the 
system to a state from which automatic control can be resumed. If the operator 
does not intervene effectively, there will be a second cutover to a system which 
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will shut the equipment down safely. 

The underlying idea is that the mechanism for cutting over to a back up system 
is essentially the same regardless of the particulars of the event triggering the cut 
over. The cut over involves creating an appropriate set of objects and 
establishing their states. There will be objects which are common to both the 
primary and backup mechanisms and it will be necessary to properly link them 
with the objects specific to the backup system. While there is an alternative 
approach which would have the back up mechanism always in a state of readiness, 
the dynamic relinking of objects would still be required. 

This example will be developed in terms of a software system which controls an 
electro-mechanical process. The principles illustrated will be appropriate for 
controlling manufacturing systems as well as weapons systems. 

Example 4. Some of the most difficult problems in constructing embedded systems are 
associated with feedback loops. In example four, we will several problems 
associated with validating and utilizing information obtained from sensors to adjust 
equipment. In particular we will focus on the problems associated with 
constructing systems where there is considerable delay in obtaining reliable 
feedback about the state of the system. Our example will explore a programming 
strategy which requires the software to makes its "best guess" about adjusting a 
system (employing mathematical models). If the feedback suggests the guesses 
were acceptable, the action will continue. If it turns out based on feedback that 
the guesses were not very good, the action will abort. As part of the recovery 
process, the parameters in the model will be adjusted. This is complicated because 
even if the action is restarted the initial conditions may have changed. We have 
not yet convinced ourselves that programs of this sort will be easier to 
conceptualize and write if we employ an explicit recovery mechanism. Our 
example will be developed in terms of a system in which there are several logically 
distinct levels of feedback. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel 

No changes. 

4. Summary of Trips and Meetings 

None 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 
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6. Sufficiency of Effort Toward Meeting Goals of the Contract 

The current level of effort is sufficient to meet the goals of the contract. 

7. Related Accomplishments 

None. 

8. Plans for Next Period 

For Task 1, we plan to do further work on availability specifications, developing syntax 
for incorporating them in Aeolus programs. For Task: 2, we will continue to develop the 
examples presented in this report. 

9. Expenditure of Effort 

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF 
REPORTING PERIOD 	EXPENDED HOURS 

Associate Professor 	 81 	 527.5 
Research Scientist II 	 130.5 	 913.5 
Grad. Research Asst. 	 348 	 3,089 
Secretary 	 47 	 522 
Clerk Typist 	 40 	 515 
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1. Progress 

Task 1 (Programming Techniques for Resilience and Availability): 

In our previous monthly report, we described the Distributed Locking scheme for deriving 
a replicated object implementation from a single-site specification. As outlined then, the 
scheme consists of a methodology for achieving this derivation together with a mechanism to 
support it. The mechanism consists in part of a set of primitives with which both system-
provided (default) and user-specified lock and copy event handlers may be programmed. 
Here, we will describe these primitives in greater detail. 

The interface to these primitives is provided as an Aeolus pseudo-object, called DistLock. 
This pseudo-object is imported automatically by every availability specification (availspec), 
but is not available for import by other compilands. This restriction is made to prevent use 
of the primitives outside of an availspec, because most of the primitives make the assumption 
that they are invoked within the environment of a lock or copy event handler. 

The pseudo-object defines a replica_number type which is used by most of the primitives: 

type replica_number Is new integer 

A replica_number is used to name an individual replica of a group. The naming scheme used 
here is the "horizontal" method as described in our interim report. The replica_number is 
concatenated by the system to the capability of the object to which the invoking availspec 
belongs to form an extended capability as defined by the horizontal scheme. 

The first primitive is used for propagation of a lock to one of a set of replicas of the 
invoking object: 

procedure lock_replica ( rep : replica_number ) modifies 

The lock_replica operation obtains the currently-requested lock at the replica denoted by rep. 
This operation should be invoked only within a lock event handler. The lock variable, 
domain value, and mode requested are obtained from the context of the lock event which 
caused the invocation of the handler. The replica denoted by rep is added to a list of the 
replicas touched by the current action. 

The invoke_replica primitive is used for implementing state copying by idemexecution: 

procedure invoke_replica ( rep : replica_number ) modifies 

This operation causes the current operation to be executed at the replica denoted by rep. 
This operation should be invoked only within a copy event handler. The operation number 
and other parameters are obtained from the context of the lock which caused the invocation 
of the handler. 

The broadcast_shadow primitive is used for implementing state copying by cloning using 
shadows: 

procedure broadcast_ehadowe ( ) modifies 

This operation causes the "shadow set" of the permanent state of the current action to be 
broadcast to all replicas at which locks were obtained by the current action via the 
lock_replica operation. This operation should be invoked only within a copy event handler. 

Finally, we define an additional object event, called the accept event, which is used by a 
given replica to transfer a user-specified portion of its state to another of the replica's group. 
This event must be explicitly signalled by the user via the invoke_acceptor primitive. This 
primitive may be used in a copy event handler to implement state copying by cloning using 
logs, or in a remit event handler to implement state reconciliation strategies: 

1 



Fault Tolerant Software Technology 	 Monthly Report 

procedure invoke_acceptor ( rep 	: replica_number , 
state : address 
len 	: longuns 	 ; modifies 

This operation causes the invocation of the accept event handler at the replica denoted by 
rep. The information the address of which is given by state and which is of length len bytes 
is copied to the environment of the accept handler at rep. 

These and other implementation details of the Distributed Locking scheme are currently 
being developed in a dissertation by one of the researchers on this grant. In our next report, 
we will describe the syntactical features of availspecs in greater detail, and will also present 
results of our attempts to derive higher-level linguistic features for specification of resilient 
objects from our experience with the lower-level features provided by Aeolus. 

Task 2 (Action-Based Programming for Embedded Systems): 

This status report begins a consideration of the problems related to using a forward 
recovery mechanism in a disciplined way. The examples we worked on suggest there are a 
variety of ways in which the forward recovery mechanism may be used to tolerate hardware 
and software faults. The software designer must make some choices early in the 
development of the system about which strategies will be used to achieve fault tolerance. 
These strategies in turn constrain the structure of the system and the ways in which objects 
may interact. Without such constraints guiding the design of the mechanisms for achieving 
fault tolerance within objects and actions, attempts at forward recovery are unlikely to correct 
or compensate for a fault effectively, and may, in the worst case, induce a cascade of faults 
throughout the system. 

The variety of strategies available is indicated in terms of a particular type of fault: 
dangling capabilities. We also outline some of the questions which must be resolved if we 
are to build well designed systems which incorporate effective fault tolerance mechanisms. 

In the Clouds environment, much of the code for systems and applications will be 
encapsulated within objects. An important class of irreversible operations involves the 
management of these objects. An object will, in general, be referenced by several others 
objects, i.e., it will be shared. As with any object it is possible to delete a shared object. 
The deletion of an object, as with other less severe state changes, may well be regarded as 
irreversible. The complication which arises when shared objects are deleted is that of 
dangling capabilities: it is necessary to reestablish consistency within the collection of objects 
by propagating information about the deletion throughout the collection. There are several 
ways in which information about the deletion may be propagated through out system. On 
one level, these techniques separate into two broad classes: those which can be employed at 
the time of the deletion or other state change and those which may be employed when an 
action attempts to use the dangling capability. On another level, however, these two classes 
of mechanisims use many of the same strategies and may actually be used in tandem. 

An object may attempt to keep a list of other objects which reference it. The objects 
named in this list may then be notified when the object is deleted. There are a number of 
alternatives as to the form this notification may take including that of invoking the recovery 
managers in the referencing objects. 

Not all objects may maintain a list of the objects referencing it. Furthermore, there is no 
practical way of guaranteeing that all objects in possession of the deleted object's capability 
will have been properly registered. Thus, there remains a need to cope with actions which 
attempt to use dangling capabilities. When an action attempts to use a capability left 
dangling by a delete operation an exception should be raised and the action may be aborted. 
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What strategies are available for reestablishing consistency? In some contexts, it may be 
reasonable to suppose that the deleted object has been replaced with a successor. In other 
contexts, it may be more reasonable for the action with the dangling capability to recognize 
the object it's attempting to access no longer exists and to redirect its computation down 
another path. 

If object 01 is to be deleted it may actually be more reasonable to redefine it instead. 
Suppose an action Al is executing in object 02 and while doing so executes one of 01's entry 
points. The redefined operation could raise an exception indicating that 01 is no longer a 
valid object an initiating appropriate recovery within Al. If 01's deletion was part of a 
system upgrade, then the redefined 01 may be even more sophisticated: it may include 
information about a temporary fix which allows Al to perform its task until it too is 
upgraded, or 01 may even include information about how Al may participate in its own 
upgrading. In this later approach, Al may dynamically rebind some of the operations in 02 
or may notify an operator that maintenance is required. 

Within Clouds, there are two ways operations may be dynamically rebound. First, 
operations which at a higher level may appear to be encapsulated within a single object may 
in fact be partioned among several objects and invoked indirectly. The rebinding of 
operations, then, may be accomplished by using a different capability when accessing the 
code which has been partioned off and encapsulated within a separate object. 

A second and more general approach to the rebinding of objects is made possible through 
the use of windows among objects' address spaces. While each Clouds object is thought of as 
existing within its own address space, the Clouds design allows for portions of one object's 
address space to be mapped into the address space of another object. While this feature has 
not been implemented within the current Clouds prototype, the appropriate hooks have been 
provided. 

There are three questions which must be followed up in the short term. First, how might 
the sharing and dynamic rebinding of operations and data areas be used to support the 
general task of maintaining consistency within a set of interdependent, persistent objects. 

Second, the forward recovery techniques we have described raise some new difficulties 
related to the coordination of actions executing concurrently within the same object. In 
particular, what are the implications of performing recovery on an object (either by invoking 
an actions abort handler or the recovery manager within the object) while a second action is 
executing within the object? We believe that if the second action holds locks on data areas to 
be accessed during recovery, the second action should be aborted before recovery proceeds. 
This requires some additional consideration, however. 

Third, the forward recovery mechanism may, if used in an undisciplined way, result in 
"sloshing." For example, suppose that Al aborts, recovers and restarts itself, though in the 
process sets up conditions causing A2 to abort. If A2 recoverys and restarts it may in turn 
set up conditions causing Al to abort. Unless precautions are taken, this cycle may continue 
without end. We must, then, look for a structured way in which to use forward recovery 
which allows us to avoid the "sloshing" effect or to at least stop it if it occurs. Our working 
conjecture is that the solution is to be found in structuring the connections among objects 
appropriately. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel 
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No changes. 

4. Summary of Trips and Meetings 

None 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract 

The current level of effort is sufficient to meet the goals of the contract. 

7. Related Accomplishments 

Notice has been received that we have been awarded a Coordinated Experimental 

Research grant from NSF. This grant will provide substantial hardware and personnel 
resources for further development of the Clouds testbed over the next five years. 

8. Plans for Next Period 

For Task 1, we plan to continue our work on availability specifications. For Task 2, we 
will continue our development of recovery techniques, concentrating on the problems listed in 
the progress report. 

9. Expenditure of Effort 

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF 
REPORTING PERIOD 	EXPENDED HOURS 

Associate Professor 	 81 	 608.5 
Research Scientist II 	 130.5 	 1044 
Grad. Research Asst. 	 348 	 3,437 
Secretary 	 40 	 562 
Clerk Typist 	 47 	 565 
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1. Progress 

Task 1 (Programming Techniques for Resilience and Availability): 

In our previous monthly report, we described primitives for use in implementing the 
lock and copy event handlers required by the Distributed Locking scheme. In this report, 
we present example event handlers demonstrating the use of these primitives, as well as an 
example availability specification (avail, spec) for the symtab object making use of the 
example event handlers. (The Aeolus source code for the recoverable symtab object was 
presented and described in our interim report.) 

implementation of pseudo object quorum is 

1 Here, we define handlers for the lock and copy events which 
1 implement quorum consensus. This pseudo object is imported 
I by any availapec wishing to use its predefined handlers. 

import DistLock 

procedure quorum_lock () is 
I A simple -minded lock event handler for quorum consensus. 
1 Locks are obtained on at least a minimum quorum assignment 
1 specified by the assignment matrix generated by the 
1 importing avallspec. 

num_locked 	:integer 
this_version, 
max_version : version_number 
good_replica : replica_number 

begin 
1 Find out how many replicas have been locked already by 
1 the current action. 
num_locked := DistLock (iP currently_locked() 

1 Initially, the latest version seen is set to this 
1 instance's version number. 
max_version := DistLock 114 my_version() 

1 Attempt to lock all available replicas. 
for r in replica_number[ 1 	DistLock @ degree() ] loop 

if DistLock 	lock_replica( r, this_version ) then 
num_locked += 1 
if this_version > max_version then 

max_version := this_version 
good_replica := r 

1 remember which replica has the latest version 
end if 

end if 
end loop 

1 At least a quorum of replicas must have been locked. If 
1 not, abort the invoking action. 
if num_locked < DistLock (1,  quorum_size() then 
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Abort_Myself() 
end if 

1 If there is a later version of the state than that of 
I this replica, copy it here. (This updates the local 
I version number.) 

if good_replica <> DistLock D my_:replica() then 
if not DistLock 	get_state( good_replica ) then 

Abort_Myself() I replica was unavailable 
end if 

end if 

I Copy the local state to all replicas which have version 
I number less than that of the local copy. 
for r in replica_number( 1 .. DistLock @ degree() ] loop 

if not DistLock @P send_state( r ) then 
Abort_Myself() I replica was unavailable 

end if 
end loop 

end procedure 1 quorum_lock 

procedure quorum_copy is 
I The copy event handler for quorum consensus. The shadow set 
1 is copied to the set of replicas locked in the lock event. 

begin 
if not DistLock 610  broadcast_shadows() then 

Abort_Myself() 1 copy was unsuccessful 
end if 

end procedure 1 quorum_copy 

end implementation. 1 quorum 

Figure 1. Lock and Copy Event Handlers for Quorum Consensus 

Examples of Event Handlers in Distributed Locking 

A sample implementation of lock and copy event handlers using the General Quorum 
Consensus algorithm are given in Figure 1. The treatment of these event handlers has been 
kept on a fairly naive level to avoid obscuring neither the general lines of the algorithm used 
nor the use of the Distributed Locking primitives. The handlers are encapsulated in a 
pseudo-object called quorum which may be imported by an availspec in order to use its 
handlers. 

As described in previous reports, a replica of an object at which an operation is invoked is 
called the primary cohort or p -cohort; a request for a lock at the p-cohort causes its lock event 
handler to be activated. The handler for the lock event, here called quorum_lock, 
attempts to lock each other available replica (called secondary cohort or s-cohort) by use of 
the lock_replica Distributed Locking primitive; if successful, this primitive returns the 
version number of the new s-cohort as an out parameter. The maximum version number 
over all s-cohorts is determined and compared with the version number of the p-cohort; if the 
latter is not the latest version, the state of the s-cohort having the latest version is copied to 
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the p-cohort. In any case, at this point the latest state is copied to all s-cohorts having earlier 
states. If the number of s-cohorts is not at least as great as the quorum assignment for the 
requested lock mode, the enclosing action is aborted. 

When the action enclosing the operation invocation prepares to commit, the copy event 
handler (here called quorum_copy) is activated. This handler uses the 
broadcast_shadows primitive to copy the shadow set (of changed pages) of the p-cohort 
to the s-cohorts locked in all activations of the lock event handler by the current action. If 
the copy is successful, the shadow sets are committed at the s-cohorts as well as the p-cohort 
to yield the updated state. 

There are obvious improvements which might be made to this simple version of 
quorum. For example, quorum_lock relies on the lock_replica primitive to "fall 
through" when an attempt is made to lock a replica which is already an s-cohort. A more 
sophisticated implementation could maintain a set of replica numbers representing the current 
set of s-cohorts in order to avoid the overhead of a remote invocation for each redundant 
lock_replica call. 

The use of the broadcast_shadows primitive in quorum_copy requires that the 
states of all s-cohorts be identical to that of the p-cohort when the lock event handling is 
complete, so that the shadow set broadcast during the copy event can be committed into a 
common permanent state at each replica; this is achieved by copying the state of the replica 
with the latest version number to those replicas with earlier versions of the state. This 
implementation assumes that it is uncommon for the version number of a replica to be "out 
of synch" with its fellow replicas, which is a reasonable assumption if most, if not all, 
replicas are available to become s-cohorts during each lock event. If this assumption is 
invalid, it may be more efficient to avoid copying of the latest state to the s-cohorts during 
the lock event and copying shadow sets during the copy event by copying the entire state 
of the p-cohort to the s-cohorts during the copy event. 

Example of an Availability Specification 

A sample availspec making use of the quorum event handlers is given in Figure 2. 
This availspec applies to the resilient symbol table object which was presented and 
described in our interim report. The degree of replication (i.e., the number of replicas for a 
given instance of symtab) is given as a formal parameter to the availspec; the actual 
parameter is supplied (in addition to any object parameters specified by the definition part of 
the object) to the create_instance operation of the TypeTemplate for this object. 

The availspec also specifies the relative availabilities of the modes of each lock 
declared by symtab. Here, the two modes of Hymt abl e_ lock are declared to have the 
same availability level; however, the read mode of name_lock is declared to be more 
available than the write mode. The relative availability declarations are used to determine 
the size of quorums for each mode. 

Finally, the alternate handlers for the lock and copy events are specified. Here, the 
quorum_lock and quorum_copy operations made accessible by importing the quorum 
pseudo-object are used. 

Task 2 (Action-Based Programming for Embedded Systems): 

In Clouds, software reuse is achieved by means of persistent, shared objects. It is 
important for pragmatic reasons that objects with similar purpose have similar interfaces and 
employ similar strategies to achieve fault tolerance. In this report we introduce the 
possibility of using class hierarchies and inheritance schemes to help ensure that faults are 
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availspec of object symtab ( d : unsigned ) is 

I Availability specification of the symbol table object using 
I the quorum consensus scheme. The DistLock pseudo object 
I definitions are imported automatically by all avallspecs, 
I but we must import the quorum definitions to use its 
I predefined handlers. 

import quorum 

I First, we specify the degree of replication (the number of 
I replicas). Here, the degree is taken from an additional 
I parameter, d, which is specified during creation of an 
I instance of this object. 

degree is d 

I The resilient symtab object defines two locks, each with two 
I modes. We define the relative availabilities for the modes 
I of each lock as follows. The relative availabilities are 
I used in the constraints of an integer program which is used 
I in turn to generate the quorum assignments for each lock 
I mode. 

lock symtable_lock with exact = nonexact 

lock name_lock with read > write 

I The definitions of the lock and copy events. Here, we just 
I use the predefined handlers for quorum consensus. 

availspec events 
quorum_lock overrides lock_event, 
quorum_copy overrides copy_event 

end availspec. I symtab 

Figure 2. Availability Specification for the Resilient Symbol Table 

handled in a consistent manner at various points within an application or class of objects. 

We have been studying the use of forward recovery mechanisms to achieve forward 
progress in the face of faults. We have associated forward recovery with actions. If an 
action is aborted or faults control is transferred to the recovery handler associated with the 
action. The recovery handler may be used to undo the effects of the action or, if not all of 
the action's effects can be undone, the recovery handler may be used to establish consistency 
among the objects and other data visible to the action. 

An action will generally modify several objects in the course of its execution. Some of 
these objects will have been modified directly by the action. Others will have been modified 
indirectly by means of nested actions. Suppose A is an action executing within an object 01. 
Suppose further that E is an action nested within A. E is an entry point to object 02. E 
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makes changes to the state of 02 and also invokes entry points on 03 and 04. The entry 
points modify the states of 03 and 04 but do not access any other objects. Action A has 
modified 01 directly and 02, 03 and 04 indirectly. Suppose now that action A subsequently 
is aborted and must recover. 

The simplest strategy would be to use backward recovery and return all the touched 
objects to their states as they were prior to the invocation of action A. If this is not possible, 
a forward recovery scheme will have been supplied for action A. There are at least three 
possible scenarios by which consistency can be established with respect to 01, 02, 03, an 
04. The recovery handler could modify the state of 01 directly and invoke additional entry 
points on 02 so as to return it to a consistent state. In this scenario the recovery handler 
would depend on the semantics of the entry points of 02 to make any necessary changes to 
the states of 03 and 04. The second scenario is similar. 02 could be equiped with a special 
entry point called RECOVERY. Recovery in this case the recovery handler could modify 
the state of 01 directly and then invoke 02@RECOVERYO. The states of 03 and 04 
would be recovered indirectly by means of the recovery operation invoked in 02. The third 
scenario arises if the designer of the recovery manager for A wishes to achieve more direct 
control over the recovery of objects indirectly modified by A. In this scenario the runtime 
system would provide the recovery handler with a list of objects touched by A. The recovery 
handler would then take steps appropriate for each object appearing in the touch list. 

Additional scenarios can arise if we consider the ways in which 01's state can be 
segmented into a number of recoverable data areas or if the semantics of A required that the 
recovery handler invoke entry points to objects not previously touched by A. Perhaps the 
most important scenarios arise by allowing the recovery handler to be sensitive to the history 
of operations performed on an object by the aborted action: for example, a sequence of 
operations could be undone by invoking the inverse for each of the operations in the 
sequence. 

The important point is that there are a number of strategies by which recovery can be 
attempted. If an action attempts to use one strategy on objects which were designed to be 
recovered by a different strategy, the attempt at recovery will fail. Since capabilities to 
objects can be passed around as arguments, it is important that consistency be maintained. 
Suppose an action A receives the capability to an object X as an argument. How should A 
attempt to recover X in the event A aborts? Whatever strategy is chosen, it must be 
appropriate for the entire class of objects which can be bound to X. We believe that we can 
develop a class hierarchy which allows us to associate recovery strategies with classes of 
objects. 

An object will inherit methods (e.g., entry points and recovery strategies) from its parent 
class. A programmer will have the option of extending, modifying or overriding any of the 
inherited methods when instantiating a particular object. The inheritance mechanism is not 
used to resolve the meaning of an operation invoked on a particular object. Instead, we are 
investigating the use of inheritance to generate a code template which the programmer is free 
to edit in any way he may regard as appropriate. 

When overriding an object's inherited interface (e.g., deleting an entry point or changing 
a parameter list) or when restructuring an inherited recovery strategy, the programmer is 
responsible for ensuring that the object is structured in a way that is compatible with the way 
other objects will be referencing it. The code template generated by the inheritance 
mechanism has a very special role to play: it indicates to the designer of an object (or object 
type) the structure that object is expected to have by other objects within the system. 

We also plan to explore the possibility of developing a multiple inheritance scheme to 
facilitate the editing of code templates. An object's definition can be regarded as a set of 
traits. Traits may themselves be defined in terms of a class hierarchy with inheritance. A 
designer should edit an object's definition by adding and deleting the appropriate traits. If no 
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mix of traits provides exactly the semantics required for the object, the designer should first 
define the appropriate trait within the trait hierarchy and then edit it into the object's 
definition. This ensures that information about the particulars as to how this new object must 
be manipulated are available to the designers of other objects which will be referencing it. 

In last month's report we discussed some of the difficulties which a programmer must 
confront if forward recovery techniques are to be used effectively. On reflection, the central 
problem appears to be one of ensuring that the programmer has detailed information about 
how his actions and objects will interact with the variety of persistent, shared objects 
available within his object space. In this month's report we have outlined an approach 
intended to provide the programmer with that detailed information. Indeed, we believe the 
approach we have outlined will provide consistency of structure across an object space. In 
particular, we belive the approach will help ensure that objects with similar purpose whave 
similar interfaces and employ similar strategies to achieve fault tolerance. Inconsistencies, 
when they occur, will be the result of a programmer's deliberate choice rather than a lack of 
information. The inconsistencies will themselves be documented so that the information will 
be available to other programmers. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel 

No changes. 

4. Summary of Trips and Meetings 

Richard LeBlanc travelled to RADC for an interim review of research progress. 

S. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract 

The current level of effort is sufficient to meet the goals of the contract. 

7. Related Accomplishments 

None. 

8. Plans for Next Period 
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For Task 1, we will be developing the concept of "resilient types," a declarative approach 
to efficient use of atomic actions. For Task 2, we will be formulating a strategy to develop 
examples illustrating the use of class hierarchies, inheritance, and traits to facilitate the 
definition of new objects. 

9. Expenditure of Effort 

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF 
REPORTING PERIOD 	EXPENDED HOURS 

Associate Professor 	 81 	 689.5 
Research Scientist II 	 130.5 	 1,1174.5 
Grad. Research Asst. 	 348 	 3,885 
Secretary 	 47 	 609 
Clerk Typist 	 40 	 609 
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1. Progress 

Task 1 (Programming Techniques for Resilience and Availability): 

In this report, we describe a proposal for a declarative language feature called the resilient 
type. This new feature embodies the paradigm we have developed from our experience with 
the more imperative features for resilience described in previous reports, i.e., per-action and 
permanent variables. 

The typical use of per-action variables is for "intention lists" of modifications which are 
to be applied to permanent variables during action commit. When using per-action and 
permanent variables to achieve resilience of permanent data, the programmer must specify 
the following characteristics: 

1. the representation of the permanent version of the data; 

2. the relationship of the modify operations of the object to the permanent 
representation; and 

3. the visibility of both the permanent version and uncommitted modifications made to it 
by actions. 

The first characteristic is achieved in the per-a.ction/permanent variable paradigm by the 
specification of a permanent variable. The second characteristic is implemented by use of 
per-action variables to maintain lists of changes to the permanent variables made by each 
modify operation; the programmer must specify in a top-level precommit action event 
handler how these modifications are to affect the permanent data. The third characteristic is 
realized typically by the use of a "lookup" function that takes into account both the 
permanent state and the uncommitted changes maintained in the per-action variables in some 
manner appropriate to the semantics of the object. 

The use of the per-action and permanent variable constructs in this paradigm has two 
undesirable consequences: not only must the programmer explicitly specify exactly how the 
paradigm is to be implemented, but the implementation is scattered among many parts of the 
object, i.e., the data and per-action variable declarations, modify operations, and action 
event handlers. Thus, there is motivation to abstract the experience with the imperative 
constructs into the design of a higher-level, declarative feature that allows the programmer to 
specify what the characteristics of the resilient data are, rather than how these characteristics 
are to be achieved. 

We have developed a preliminary design for a feature called the resilient type that 
expresses the three characteristics of the per-action/permanent variable paradigm in a 
declarative fashion. An example of a resilient object using this feature is presented in Figure 
1. This example is derived from the resilient symbol table object that was presented and 
described in our interim report. The syntax of the resilient type describes the characteristics 
of the type in the following order: representation of the permanent data; relationship of the 
modifies operations of the object to this data; and the visibility rule which applies to the 
permanent data and uncommitted modifications. The representation of the permanent data 
structure may be accessed within the resilient type specification by the name rep. The 
visibility rule for a variable of the resilient type may be accessed by using the variable name 
as an object instance name, and invoking operation visibility on it. Other details of the 
prototype syntax are given in the comments contained in the figure. 

A final aspect of the resilient type specification bears explanation. It was found necessary 
to provide some way of accessing elements not only of the permanent data, hut of the 
(visible) uncommitted results of modifies operations; such access is useful for displaying 
all visible elements of a resilient type, or for other operations requiring mapping-like 
functions. Thus, the final portion of the prototype syntax allows the programmer to specify 
an iterator function which can yield successive visible elements of the resilient type. The 
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Aeolus language does not support iterators; thus, we do not recommend that the resilient 
type construct be included in Aeolus itself, but rather in an application language for Clouds 
which should include such high-level features as iterators. 

implementation of object symtab 
I( name_type : type, value_type : type )I is 

1 Single-copy symbol table object using the declarative resilient 
1 type feature to replace the imperative combination of the 
1 permanent and per-action variable features. 

import keyed_list 

1 Each bucket of the hash table is a list of names and values, 
1 keyed by the name field. 

type bucket_list is new keyed_list( name_type, value_type ) 

MAXBUCKET : const integer :m 101 	1 or whatever 

type hash_range is new unsigned( 1 .. MAXBUCKET ] 

1 The symbol table structure itself is an array of bucket lists. 
1 Here, the structure type is declared to be resilient, with a 
1 representation in permanent storage which is modifiable only at 
1 top-level precommit. The resilient type specification also 
1 defines the relationship of the modifies operations of the 
1 object to the representation of the type. The syntax used 
1 here is: 
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<operation name> (<key parameter> [, <value parameter>]) 
[reverse <operation name>] : < rep modification> 

I The <rep modification> is a statement specifying the effect of 
I the given operation on the representation of (a variable of) 
I the resilient type. If the operation may reverse the effect of 
I another operation, this is indicated by use of the reverse 
I clause. The effect of the resilient type specification is, for 
I each modifies operation, to generate an list which is used to 
I maintain "intentions" of modifications caused by invocations 
I of that operation by an action. The "intentions" lists are 
I automatically initialized for a new action and propagated up 
I the action tree as in the symtab example using permanent and 
I per-action variables. Then, at top-level precommit, the 
I "intentions" are translated automatically into modifications 
I of the representation. A visibility rule governing both the 
I permanent representation and the modification "intentions" of 
I an action is specified in the with visibility clause. Finally, 
I an iterator may be defined which yields all visible elements of 
I the resilient type; thus, it may be specified to iterate over 
I the "intentions" of an action as well as the permanent 
I representation. 

type symtable_type is 
resilient array[ hash_range ] of bucket_list 
with modifies operations 

insert ( name, value ) : 
rep[ hash( name ) ] IP add( name, value ) , 

delete ( name ) reverse insert : 
rep[ hash( name ) ] • remove( name ) 

end operations 
visibility ( name : name_type, out value : value_type ) is 

insert( name, value ) 
or ( 	not delete( name ) 

and rep[ hash( name ) ] it+ find( name, value ) ) 
end visibility 

iterator ( out value : value_type ) returns name_type is insert : 
for i in bucket_range loop 

return rep[ i ] 	iterate( value ) 
end loop 

end iterator 
end resilient 

symtable : symtable_type 

I The symtable_lock allows the entire symbol table to be locked. 
I This lock is set (in exact mode) in the exactJlst operation for 
I purposes of getting an exact listing of the state of the symbol 
I table. Operations which change the state of the symbol table 
I must wait for completion of any outstanding exactjist 
1 operations and vice versa. 

symtable_lock : lock ( exact 	: [ exact 	] 
nonexact : [ nonexact ] ) 
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1 The NAME lock allows the user to lock the name which is to be 
1 used in one of the symbol table operations. The purpose of 
1 this lock is to assure the view atomicity of these operations, 
1 that is, to provide synchronization such that concurrent users 
1 of the symbol table do not view the results of other actions 
I before those actions are committed. 

name_lock : lock ( write : [] 
read : [read] ) domain is name_type 

procedure hash ( name : name_type ) returns hash_range is 
I This hash function is a local (nonpublic) procedure of the 
I symtab object. 

begin 
NULL 	1 the usual type of stuff 

end procedure I hash 

procedure insert (1 name : name_type 
1 value : value_type 
1 error : out boolean 1) is 

1 This operation invokes the Insert operation .of the resilient 
I symtable to add the given item to the insertion 
I "intentions" of the current action. 

dummy : value_type 

begin 
Await_Lock( name_lock, write, name ) 
error :• symtable O visibility( name, dummy ) 
if not error then 

Await_Lock( symtable_lock, none:xact ) 
symtable S insert( name, value ) 

end if 
end procedure 1 insert 

procedure delete (1 name : name_type 
1 error : out boolean 3) is 

1 This operation invokes the delete operation of the resilient 
1 symtable to add the given item to the deletion 
I "intentions" of the current action. 

dummy : value_type 
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begin 
error := FALSE 
Await_Lock( name_lock, write, name ) 
if symtable 0 visibility( name, dummy ) then 

Await_Lock( symtable_lock, nonexact ) 
symtable 0 delete( name ) 

else 
1 name not in the permanent symbol table or inserted by 
1 this action 
error := TRUE 

end if 
end procedure 1 delete 

procedure lookup (1 name : name_type 
1 error : out boolean 1) 1 returns value_type I is 

1 The lookup operation sets a read lock on the name entry, and 
1 then tries to locate that entry with name field is name and 
1 returns its value if it succeeds. 

value : value_type 

begin 
Await_Lock( name_lock, read, name ) 
Await_Lock( symtable_lock, nonexact ) 
error := not symtable 0 visibility( name, value ) 
return value 

end procedure I lookup 

procedure quick_list () is 
I The quIck_llst operation provides a quick (dirty) listing of 
I names currently in the symbol table by invoking the 
1 iterator of the resilient symtable. 

name : name_type 
value : value_type 

begin 
for name in symtable 0 iterate( value ) loop 

1 invoke display operations on name - value pair 
end loop 

end procedure 1 quick_list 
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procedure exact_list ( ) is 
I The exactJlst operation provides a listing of the exact 
I state of the symbol table at a given point in time. To do 
1 this, it locks the whole symbol table, thereby excluding any 
I changes during preparation of the listing. Thus, although 
I exactJlst, lookup, and quIck_llst operations may execute 
1 concurrently, and Insert and delete operations which access 
1 different hash buckets may also execute concurrently, Insert 

and delete operations must block on exactilst operations 
1 and vice versa. 

begin 
Await_Lock( name_lock, read, name ) 
Await_Lock( symtable_lock, exact ) 
quick_list() 

end procedure I exact_list 

end implementation. 

Figure 1. Symbol Table Example using Resilient Type 

Task 2 (Action-Based Programming for Embedded Systems): 

The approach to forward recovery we have been developing places the locus of control 
(for recovery) with the abort handler associated with the action being aborted. The abort 
handler will execute a protocol to recover (i.e., restore consistency to) the data areas and 
objects visible to the aborting action. The protocol must be compatible with the objects and 
other data areas being recovered. Since actions and objects are defined at different times by 
different programmers, we must take steps to ensure that recovery protocols are compatible 
with object definitions. Our idea is that the programmer who designs an object should make 
available to the user of the object code templates which illustrate proper recovery. The 
programmer defining an action can incorporate that template into his code after tailoring it to 
the particular context of the action he is developing. 

Additional constraints must be placed on the programmer designing an object: like objects 
should be recovered using similar protocols. Suppose there are two resources R and S. Both 
R and S are encapsulated within objects. Suppose further that an action A may use either R 
or S (and does not care which). The abort handler will be simpler if R and S can be 
recovered using the same protocol. To ensure that this is the case, the definitions of R and S 
must be coordinated in some fashion. As discussed last month, we are exploring the use of 
class hierarchies and inheritance schemes to provide the necessary coordination. Our 
proposal differs from others in that the class hierarchies and inheritance schemes are used to 
generate a code template which the programmer is free to edit--- in short, they are used to 
produce a "rough draft" of the code. The class hierarchies and inheritance schemes are not 
involved in the execution of the software; they are merely aids to help programmers 
coordinate the structure of the software system. 

To develop this idea further we return to the example of a resource manager discussed in 
a previous report. The resource manager M is an object which controls access to a pool of 
resources. Actions may check resources out of the pool as needed, but the resource must be 
returned when the action is finished with it. An action checks a resource out with the 
operation M@Request(X) and returns it with the operation M@Return(X). if an action 
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holding a resource aborts, it must, in general, return the resource before it terminates. Thus, 
the abort handler for an action which checks a resource out from M will usually contain the 
M@Return(X) operation. A programmer may sometimes wish to dispose of the resource in 
other ways: an orderly way of allowing for exceptions is discused later in this report. 

Classes and multiple inheritance can be used to construct appropriate code templates. 
One approach would be to have one class hierarchy for objects and another for actions. The 
resource manager M would be a member of a class of objects called "ResourceManager." 
The idea being that all 
resource managers will have similar interfaces for checking resources out and returning 

them. The programmer defining the class ResourceManager would also define an attribute 
for actions which access a ResourceManager called "ResourceUser." When an action is 
identified with the attribute ResourceUser, the appropriate code for returning a resource to 
the pool is incorporated into the code template for the action. 

More sophisticated schemes should be available for those occasions when a programmer 
does not wish a particular action to return a resource during recovery. We will mention three 
strategies here. 

1. The programmer may specify that the action recover and then be retried some number 
of times. It may be desirable as part of ensuring forward progress for the action to hold onto 
the resource between retries. 

2. The programmer may specify that the action recover by starting a new action and 
transferring control to it. 
In addition to transferring control, some state information may also be transferred including 

the identity of resources held by the aborting action. 

3. The programmer may specify that the action recover by passing the resources to its 
parent before terminating. 

These more sophisticated schemes should be defined as subclasses of the ResourceUser 
attribute. If a programmer is defining a class of actions A and if this class is using a resource 
whose manager's object type is ResourceManager, he will want the definition of A to contain 
an appropriate recovery protocol, i.e., an attribute in the ResourceUser family. This may be 
the ResourceUser attribute itself or one of its more sophisticated subclasses such as those 
mentioned above. 

Our approach to the construction of objects and actions asks a programmer to generate a 
code template for the program unit by selecting an appropriate mix of attributes. The correct 
choice of attributes depends on the purpose served by the program unit, and by the attributes 
of the other program units which it references or which reference it. This approach should 
facilitate the correct and consistent use of recovery protocols by providing the programmer 
with access to code fragments which solve his problems. In addition, the programmer will 
need some guidance as to the correct use of attributes. We propose that this guidance be 
provided by means of constraints. One constraint we have discussed is that of "an action 
which may obtain a resource from a ResourceManager must have an attribute in the 
ResourceUser family." Other constraints would be attributes in the ResourceUser family. 
For example, if an action passes a resource to its parent when it aborts (we'll call this the 
"LeaveToParent" attribute), the parent must be prepared to handle it; this can be expressed 
by placing constraints on the attributes assigned to the parent of an action with the 
LeaveToParent attribute. 

To summarize: We propose the use of object classes and action classes. A class is 
defined by combining a set of attributes. A class may have subclasses. A subclass initially 
inherits its parent's attributes, though a programmer may subsequently add and subtract 
attributes (to distinguish it from its parent). Attributes are associated with code fragments 
and are defined as a combination of other attributes. As with actions and object classes, 
attributes are organized hierarchically. Code templates are instances of classes. Once a code 
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template is generated from the definition of its class, the programmer is free to edit it as 
appropriate. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel 

No changes. 

4. Summary of Trips and Meetings 

Richard LeBlanc attended the Tenth Minnowbrook Workshop, the topic of which was 
software reuse. A number of the participants were involved with the development of real-
time software. Their presentations provided us with valuable insights concerning how the 
results of our research might be used. 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract 

The current level of effort is sufficient to meet the goals of the contract. 

7. Related Accomplishments 

None. 

8. Plans for Next Period 

For Task 1, we will be working on the organization of the hardbook to be delivered as the 
result of the task. For Task 2, we are considering the use of these ideas regarding class 
hierarchies and inheritance schemes as a vehicle for organizing the handbook which will be 
produced at the end of this task. We will consider the structure of the proposed hierarchies, 
the notation for representing code fragments, and the mechanism for generating code 
templates from the definition of a class. 

8 



Fault Tolerant Software Technology 	 Monthly Report 

9. Expenditure of Effort 

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF 
REPORTING PERIOD 	EXPENDED HOURS 

Associate Professor 	 117 	 806.5 
Research Scientist H 	 130.5 	 1,305 
Grad. Research Asst. 	 348 	 4,233 
Secretary/Clerical 	 87 	 1,305 
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I. Progress 

Task 1 (Programming Techniques for Resilience and Availability): 

Outline for Guidebook 1 

I. Taxonomy of Techniques for Programming Resilient and Available Services 
1. Resilience 

a) Autorecoverable 
b) Recoverable 
c) Per-action and permanent variables 
d) Resilient types 
3) K-resilient computations (ISIS) 
f) Mutex types (ARGUS) 

2. Availability 
a) Ad-hoc techniques 

1) Master/Slave 
b) Distributed Locking 

1) Primary copy 
2) Token passing scheme 
3) General quorum consensus 
4) Available copies 

II. OPERATING SYSTEM REQUIREMENTS 
1. Support for resilience 

a) Action Management 
b) Object Headers 

2. Distributed Locking Mechanism 
a) Distributed Locking Mechanism 

1) Naming Replicated Objects 
2) Invocation of Lock and Copy Events 
3) Primitives for Lock and Copy Event Handlers 

b) Object Filing System 

Task 2 (Action-Based Programming for Embedded Systems): 

The following material summarizes our work so far and is meant to provide a basis for 
the organization of the handbook resulting from this task. 

I. The stages of fault tolerance recovery 

(a) detect the presence of a fault: different types of faults require different strategies 
(b) confine the consequences of the fault 
(c) adjust the state and resume computation 

We have concentrated on the last stage. We have regarded the issue of confining the 
consequences of a fault in its simplest terms: preventing the failure of an action from 
shutting a software system down and ensuring that all actions have a consistent view of 
the state of the computation when recovery is complete. When framed in this way, the 
distinction between the last two stages blurs. We believe that the use of atomic actions is 
an important strategy in containing the consequences of a fault. Unfortunately, there are 
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many occasions when atomicity cannot be maintained. Our emphasis has been on 
studying the use of forward recovery in situations where atomicity has not been 
maintained. We have assumed that these "holes" in atomicity have been designed with 
the containment of faults in mind. We will not discuss recovery in situations where the 
fault has been allowed to contaminate the rest of the computation in arbitrary ways. 

Violations of atomicity may make an action irreversible. We regard as irreversible any 
action whose effects cannot be undone merely by rolling back the data areas and objects 
on which it has write locks. Irreversible actions may arise in two ways. An action which 
causes a state change in a physical system is termed irreversible. The effect of the state 
change is visible even before the action commits. The use of backward recovery (e.g., 
rollback) in this case risks the loss of information about the occurrence of the operation 
on the physical system. Violations of atomicity must also sometimes be allowed to 
provide the necessary level of availability (e.g., a resource manager). In this case, 
backward recovery will either trigger a cascade of aborts or result in actions having 
inconsistent views of the state of the object. 

These two types of irreversible action are closely related, and we have been studying 
how their recovery may be addressed using forward recovery techniques. Forward 
recovery can be used to ensure that information is preserved across the boundary of the 
aborting action and is available when computation is resumed. In particular, it can be 
used to preserve infprmation about the occurrence of operations on physical systems 
under software control and to preserve that portion of the state which has been seen by 
another action. In this later case, reestablishing consistency may require that some 
additional, selected actions be aborted and restarted on the adjusted state. 

IL Philosophy and Issues 

We believe an abort handler should not be flooded with information about the state 
of the computation as it was at the time of an abort. It should be given only the 
information it asks for and only in the level of detail it requires. To this end, we have 
developed a forward recovery mechanism which incorporates stages and diagnostic 
operations. 

We want to work with a level of granularity between that of the action as a whole and 
that of individual statements. The programmer is able to organize the action in terms of 
stages. A stage cannot contain part of statement: a stage boundary cannot be within the 
scope of a loop or conditional. 

The abort handler will use additional diagnostic operations if it needs more 
information about the conditions which existed at the time of the abort. Some diagnostic 
operations will be provided as system calls while other will be object entry points. 

Some of the diagnostic operations will tell the abort handler about the reasons the 
action aborted. Others will tell the abort handler the state of an object at the time of the 
abort. Yet others will tell the abort handler whether a particular operation was 
performed before the abort. 

DI The outcomes possible using forward recovery 
(a) the list from the interim report 

W. Some generic capabilities 
(a) adjusting environments and data areas 

i. Environments within a block may be partitioned into data areas. these data 
areas may be selectively committed or rolled back. The abort handler may 
make changes to -adata area before committing it. 

2 



Fault Tolerant Software Technology 	 Monthly Report 

ii. An environment may contain capabilities for other objects. If an action has 
modified an object and then aborts, the abort handler may have to initiate 
recovery in the object. The precise way recovery is to be handled for a 
particular object depends on the semantics of the object. We require that the 
object's entry points include the operations needed for recovery. This is 
especially important if operations on the object are irreversible or otherwise 
allow the action's atomicity to be violated. If an action has exclusive access to 
an object, then the object may be treated in the same way as data areas, i.e., 
rolled back and committed. We assume the programmer of an action knows the 
semantics of the objects and have correctly provided for their recovery. This is 
not a good assumption, and we are developing some concepts for tools which 
will help a programmer provide for recovery correctly. 

(b) transfers of control 

i. the abort handler terminates the action after propagating some of its local state 
into the global environment. The abort handler lets control pass to the parent 
action either by raising an exception or terminating normally. 

ii. the abort handler terminates the action after propagating some of its local state 
into the global environment and starting a new action to continue the 
computation. The new action has the same parent action as the one which was 
aborted. The new action executes in an environment defined by static scope 
rules. 

iii. the abort handler restarts the action after making some adjustments to both the 
action's local and global environment. 

iv. the abort handler restarts the action in an intermediate state after making some 
adjustments to both the action's local and global environment. 

v. the abort handler remaps the code windows (and perhaps data windows) of the 
action and then adjusts its local and global environment. The action is restarted 
either from the beginning or from an intermediate state. The new action 
executes in the same environment as the one which had aborted. 

vi. some recovery may be deferred until the action is restarted. 

vii. some actions may be given the right to abort selected other actions, thereby 
forcing them to begin (forward) recovery 

V. Some scenarios of interest utilizing the generic capabilities 

(a) some variations on the resource user 

(b) avoiding cascading aborts by restarting an action in an intermediate state 

(c) the fire control action 

(d) the parent of the fire control action 

(e) shutting down a machine tool using the remapping of code windows 

(f) robotics control example 
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(g) restarting an action on another machine 

(h) propagating information about physical systems across machines 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel 

No changes. 

4. Summary of Trips and Meetings 

None. 

S. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract 

The current level of effort is sufficient to meet the goals of the contract. 

7. Related Accomplishments 

Tom Wilkes completed his Ph.D. thesis, which included a substantial amount of material 
from Task 1 of this project. 

8. Plans for Next Period 

For Task 1, we will begin to draft the handbook to be delivered as the result of the task. 
For Task 2, we will be working on examples utilizing the capabilities discussed in this report. 

4 



Fault Tolerant Software Technology 	 Monthly Report 

9. Expenditure of Effort 

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF 
REPORTING PERIOD 	EXPENDED HOURS 

Associate Professor 	 117 	 923.5 
Research Scientist II 	 130.5 	 1,435.5 
Grad. Research Asst. 	 348 	 4,581 
Secretary/Clerical 	 87 	 1,392 
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1. Progress 

Task 1 (Programming Techniques for Resilience and Availability): 

Work has begun on a draft of the guidebook to be delivered as a result of this task. 

Task 2 (Action-Based Programming for Embedded Systems): 

We have been developing a set of skeletal examples to illustrate and study the 
effectiveness of the generic recovery capabilities listed in the last monthly report. Several of 
these examples are attached to this report as Appendix A. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel 

Tom Wilkes and Chu-Chung Lin departed from Georgia Tech and the project staff during 
this month. One new graduate student, Ray Chen has been added to our staff. 

4. Summary of Trips and Meetings 

None. 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract 

The current level of effort is sufficient to meet the goals of the contract. 

7. Related Accomplishments 

Chu-Chung Lin completed his Ph.D. thesis, on the design of debugging tools for 
object/action programs. 

8. Plans for Next Period 

For Task 1, we will continue our work on the handbook. For Task 2, more examples will 
be developed to complete our analysis of the capabilities described in the August monthly 
report. 
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9. Expenditure of Effort 

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF 
REPORTING PERIOD 	EXPENDED HOURS 

Associate Professor 	 117 	 1,040.5 
Research Scientist II 	 130.5 	 1,561 
Grad. Research Asst. 	 348 	 4,929 
Secretary/Clerical 	 87 	 1,479 
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Skeleton of an action illustrating the basic template 

!data areas global to the action 

begin data area 1 [<data area attributes>] 
!declarations go here 

end data area 1 

begin action 1 [<action attributes>] 
begin data area 2 [<data area attributes>] 

!declarations go here 

end data area 2 

stage 1: 

stage 2: 

on exception 

[ some code which is executed for all exceptions ] 

case exceptionType of 

<exception name>: 

<exception name>: 

others: 

end case 

[ some code which is executed after specific exceptions are handled ] 

on abort 

[ some code which is executed on all aborts ] 

case stageAborted of 

stage 1: 

stage 2: 

end case 

[ some code which is executed after handling the stage dependent issues] 

on restart 
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[ some code which is executed on all restarts ] 
case sourceOfRestart of 

internalRestart: [some code which is executed on all internal restarts] 
case stageReatarted of 

end case 
[some code which is executed on all internal restarts] 

externalRestart: [some code which :Ls executed on all internal restarts] 
case stageReatarted of 

end case 
[some code which is executed on all internal restarts] 

end case 

[ some code which is executed on all restarts] 
end action 1 
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Designing Fault Tolerant Resource Users 

Suppose an a pool of resources is encapsulated within an object called the ResourceManager. 
Actions may check resources out of the pool by invoking the appropriate entry point in the object. 
Access to the ResourceManager represents a violation of an action's atomicity. The checking out 
of a resource is, by our definition, an irreversible action. If an action holding a resource aborts, we 
must use forward recovery techniques to ensure the resource is returned to the pool or disposed of 
in some other reasonable way. 

Example 1: This example illustrates the use of our forward recovery constructs to declare an action 
which clean up its state and either retrys itself or terminates by raising an exception visible 
to its parent. 
begin data area 1 

server: capability 
end data area 1 

begin action 1 
begin data area 2 

X: capability 
Z: data of some kind 

end data area 2 

begin 
stage 1: X : ■■ serverCobtainResource() 

XOinitialize() 

stage 2: while <condition> do 
checkpoint data area 2 
Z 	<some expression> 
XOuseResource(Z) 
commit data area 2 

end while 

stage 3: XI/cleanup() 
serverOreturn(X) 

on exception 
abort 

on abort 
case stageAborted of 
stage 1: if serverOserviceFailure(server) then 

exception(serverFailuxe) 
else if serverOserviceFailure(X) then 

■erverCreturn(X) 
retry self 

else 
rollback data area 2 
retry self 

end if 
stage 2: if serverOserviceFailure(X) then 
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serverCreturn(X) 
exception(actionIncomplete) 

else if Z XClastValue() then 
commit data area 2 
resume stage 2 

else 
rollback data area 2 !to a state consistent with the begining of 

the loop 
resume stage 2 

end if 

stage 3: if servereserviceFailure(X) then 
serverCreturn(X) 

else 
Xecleanup() 
serverCreturn(X) 

endif 
terminate normally 

end action 1 

end action 1 
The serviceFailure call begins diagnostic routines and may result in corrective action within 
the server or resource. This ensures that continuity of service is maintained. 
Note that the XeuseResource(Z) is treated as a potentially irreversible action. The abort 
handler uses the operation X(IastValue() to determine whether it was invoked just before 
the the abort occured. the result of the IastValue operation will determine how recovery will 
proceed. 
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Example 2: This example illustrates the use of our forward recovery constructs to propogate in-
formation into the global environment. The parent action will then use that information to 
select an appropriate continuation. This example is a variation of the resource user presented 
in Example 1. A variation not shown would involve propogating the capability to the resource 
into the parent environment so that it could be used by the parent. 
begin data area 1 

server: capability 
finished: boolean :- false 
numberDone := 0 

end data area 1 

begin action 1 
begin data area 2 

X: capability 
Z: data of some kind 
c: integer := 0 

end data area 2 

begin 
stage 1: X := servereobtainftesource() 

Xeinitialize() 

stage 2: while <condition> do 
checkpoint data area 2 
c := c + 1 
Z := <some expression> 
XeuseResource(Z) 
commit data area 2 

end while 

stage 3: Xlcleanup() 
serverCreturn(X) 

on exception 
abort 

on abort 
begin data area 3 

reason: (serverFailure,resourceFailure, other) 
action: (raiseException, normalTermination) 

end data area 3 

if servereserviceFailure(server) then 
reason :- serverFailure 

else if serverlserviceFailure(X) 
reason := resourceFailure 
serverOreturn(X) 

else reason := other 
end if 

case stageAborted of 
stagel: action:- raiseException 
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stage 2: if Z <> nlastValue() then 
rollback data area 2 

end if; 
action := raiseException 

stage 3: action := terminateNormally 
end case 

numberDone := c 
if action - raiseException then 
finished := false 
exception(reason) 

else 
finished := true 
terminate normally 

end if 

end action 1 
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Example 3: This example illustrates how the abort handler may attempt to complete an action by 
starting a successor action. The abort handler copies data into the global environment. The 
restart handler will copy that data into the local environment of the successor action. This is 
an example of an external restart. 
In this case the successor action is defined within the parent action and has access to the data 
which is propogated into the global environment. 
This example also illustrates a different strategy for maintaining continuity of service from the 
server. 
begin data area 1 

server: capability 
finished: boolean :- false 
numberDone : 0 
resource: capability :- null 

end data area 1 

begin action 1 
begin data area 2 
X: capability 
Z: data of some kind 
c: integer := 0 

end data area 2 

begin 
stage 1: X :- serverCobtainResource() 

Xeinitialize() 

stage 2: while <condition> do 
checkpoint data area 2 
c := c + 1 
Z := <some expression> 
XCuseResource(Z) 
commit data area 2 

end while 

stage 3: Xecleanup() 
serverCreturn(X) 

on exception 
abort 

on abort 
begin data area 3 

stage: (stages, stage2, stage3) 
end data area 3 

if servereserviceFailure(server) then 
server := serverlsuccessorServer() 

else if serverCserviceFailure(X) then 
serverCreturn(X) 
X := serverCobtainResource() 

end if 

Georgia Tech 
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case stageAborted of 
stagel: stage := stagel 

stage 2: if Z <> XClastValue() then 
rollback data area 2 

end if; 
stage := stage2 

stage 3: stage := stage3 
end case 

if stage = stage3 then 
if not serverCconfirmReturn(X) then 

serverCreturn(X) 
end if 
terminate normally 

else 
!propagate state into the global environment 
resource := X 
numberDone := c 
if stage = stagei then 

restart using self0fparentealternative() 

else if stage = stage2 then 
restart using selfCfparentealternative() in stage 2 

endif 
endif 

end action 1 
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Example 4: This example illustrates how the abort handler may attempt to complete an action by 
mapping code for the successor action into the code window of the action which is aborting. 
The abort handler may also remap the window containing the restart handler. On restart, the 
local data areas and the abort handler may also be remapped. 
This is an example of an internal restart. The restarted action inherits the local environment 
of the action which it replaces. 
begin data area 

server: capability 
finished: boolean :- false 
numberDone : ■ 0 
resource: capability := null 

end data area 1 

begin action 1 
begin data area 2 
X: capability 
Z: data of some kind 
c: integer :- 0 

end data area 2 

begin 
stage 1: X 	serverGobtainResource() 

Xeinitialize() 

stage 2: while <condition> do 
checkpoint data area 2 
c 	c + 1 
Z 	<some expression> 
XeuseResource(Z) 
commit data area 2 

end while 

stage 3: Xecleanup() 
serverereturn(X) 

on exception 
abort 

on abort 
begin data area 3 

stage: (stagel, stage2, stage3) 

end data area 3 

if servereserviceFailure(server) then 
server := serveresuccessorServer() 

else if serverlserviceFailure(X) then 
serverereturn(X) 
X : servereobtainResource() 

end if 

case stageAborted of 
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stagel: stage := stagel 

stage 2: if Z <> XOlastValue() then 
rollback data area 2 

end if; 
stage := stage2 

stage 3: stage := stage3 
end case 

if stage - stage3 then 
if not servereconfirmReturn(X) then 

servertreturn(X) 
end if 
terminate normally 

else 
Ipropogate state into the global environment 
resource := X ' 
numberDone :- c 
if stage - stagel then 
remap codeWindow using <information needed to 
remap restartWindow using <information needed 

else if stage - stage2 then 
remap codeWindow using <information needed to 
remap restartWindow using <information needed 
restart in stage 2 

endif 
endif 

end action 1 

complete the remapping> 
to complete the remapping> 

complete the remapping> 
to complete the remapping> 

October 9, 1987 	 page 10 Georgia Tech 



Appendix A 	 draft examples 

Example 5: With careful use of locking and recoverable data areas of small granularity, it is often 
possible to maintain recoverability and availability without allowing actions to read uncom-
mitted data (or, more broadly, to view the effects of uncommitted actions). 
In some circumstances availability can be increased if actions are allowed to read uncommitted 
data. When roll back is the only available recovery technique, this entails a risk of cascading 
aborts. The risks are compounded if the victims of the cascade of aborts have performed 
irreversible operations. By regarding the uncommitted data as irreversible once it has been 
read (or other wise made visible) and by using forward recovery techniques to build a "firewall" 
against cascading aborts, we can provide a means for inhibiting the cascade. In this example, 
we assume that the runtime system maintains a record of actions which have been granted 
access to uncommitted data. If an action aborts and its abort handler performs recovery on a 
data area which has subsequently been accessed by other actions, then the other actions are 
aborted.' This initiates forward recovery within these other actions. A casecade of aborts may 
be avoided in either of two ways. First, the action which has been aborted because it accessed 
uncommitted data may not itself have permitted yet other actions to access its uncommitted 
results. Second, even if it had itself permitted access to its _uncommitted results, it may be 
able to recover without affecting the uncommitted results. 
The example illustrates how an action can avoid aborting other actions which may have seen 
its uncommitted results. 
begin data area 1 (shared access allowed, uncommitted access allowed) 

end data area 1 

begin data area 2 (shared access allowed, uncommitted access allowed) 

end data area 2 

begin data area 3 (shared access allowed„ access to committed data only) 

end data area 3 

begin action 1 (executes as a process, 
may access uncommitted data in data areas 1 and 2) 

stage 1: readLock(data area 1) 
writeLock(data area 2) 
writeLock(data area 3) 
read from data area 1 
unlock(data area 1) 

stage 2: read from and write to data area 2 
unlock(data area 2) 

stage 3: do some more stuff 
unlock(data area 3) 

on exception 
abort 

1 In the event that one of these other actions has aborted then its surviving ancestor will be aborted. 
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on abort 
stage 1: unlock(data area 3) 

unlock(data area 2) 
unlock(data area 1) 
if selfeexternalAbort() then 
restart stage 1 

else 
exception(internalError) !parent will handle it from here 

end if 
stage 2: if selfeexternalAbort() then 

rollback(data area 2) !or some other state correction 
abortSubsequentAcesses(data area 2) 
if wasRecovered(data area 1) then 

if <important changes to data area 1> then 
unlock(data areas 1,2, 3) 
restart stage 1 

else 
restart stage 2 

end if 
else if wasRecovered(data area 2) then 

. restart stage 2 
endif 

else 
exception(internalError) !parent will handle it from here 

end if 
stage 3: if selfeexternalAbort() then 

rollback(data area 3) tor some other state correction 
if wasRecovered(data area 1) then 

if <important changes to data area 1> then 
unlock(data area 3) 
rollback(data area 2) !or some other state correction 
abortSubsequentAcesses(data area 2) 
restart stage 1 

else 
restart stage 3 

end if 
else if wasRecovered(data area 2) then 
restart stage 2 

endif 
else 

exception(internalError) !parent will handle it from here 
end if 
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Example 6: Some resources may be used in ways which irreversibly change their state, e.g., a 
missle may be launched. We must insure that such irreversible state changes are adequately 
recorded, even if the action which caused the change is aborted. In this example, the action 
becomes irreversible in stage 3. If the action aborts in stages 1 or 2, its effects are undone. If 
the action aborts in stages 4 or 5, data area 2 is made consistent and permanent. Action 1 then 
aborts, and an exception is raised. Action l's parent is responsible for using the information 
in dataArea 2 when responding to the irreversible launching of the missle. If the action aborts 
in stage 3, the recovery strategy will depend on whether the launch has been completed. 
The when construct reinvokes the action it returns true, raises an exception, or aborts. 
The example also illustrates the use of diagnostic operations during recovery. Some of the 
operations used during recovery will undo effects of operations carried out during the main 
line of the action. The 'undo" operations will have no effect if they are invoked to undo an 
operation which was never performed. We find that the ability to invoke "undo" operations 
without knowing whether there is really something to undo simplifies the structure of the abort 
handler. 
I dataAreas are global to Action 1 

begin dataArea 1 
missleTracking, targetServer: capability !initialized elsewhere 

end dataArea 1 
begin dataArea 2 

missle: capability : ■ null 
targetData: a record of some sort 
missleState: (none,available,ready,aimed,inFlight, armed) :- none 
outCome: (undefined, notAtTarget, targetHit, targetNotHit, MissleLost) := 

undefined 
end dataArea 2 

begin Action 1 (potentially irreversible) 
stage 1: missle := magazine4obtainMissle() 

missleState := available 
if not missleesystemsOk() then 
abort 

else 
missleState := ready 

endif 

stage 2: targetData := targetServerlobtainData() 
missletaim(targetData) 
missleTrackingenotice0fIntentToLaunch(missle,targetData) 
missleState := aimed 

stage 3: potentiallyIrreversible(missle4launch()) 
2 

missleTrackingenotice0fLaunch(missle) 
missleState := inFlight 

stage 4: when missleTrackingOinPosition(missle) 

2the notation "potentially Irreversible" has no effect on execution. Its use provides checkable redundancy with 
respect to the way the lauch entry point in the missle object is declared 
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missleCarm() 
missleState 	armed 

stage S: when missleTrackineatTarget(missle) 
missleedetonate() 
outCome :•• missleTrackingCresult(missle) 

on exception 
abort 

on abort 
stage 1, 
stage 2: if failedNestedAction(missle) then 

magazineepossibleMissleFailure(missle) 
roll back data area 2 
raise exception(missleFailure) 

else if failedNestedAction(magazine) then 
magazineeparentepossibleServiceFailure(magazine) 
missleCstandDown() 
missleTrackingOstandDown(missle) 
magazineeparentereturn(missle,magazine) 

roll back data area 2 
raise exception(serverFailure) 

else if failedNestedAction(missleTracking) then 
magazineCparentepossibleServiceFailure(missleTracking) 
missleCstandDown() 
missleTrackingeparentestandDown(missle) 
magazineeparenteretura(misslemagazine) 
roll back data area 2 
raise exception(serverFailure) 

else if failedNestedAction(targetServer) then 
targetServereparentepossibleServiceFailure(targetServer) 
missleCstandDown() 
missleTrackingCstandDown(missle) 
magazineCreturn(missle) 
roll back data area 2 
raise exception(serverFailure) 

else if internalAbort(self) then 
missleCstandDown() 
missleTrackingCstandDown(missle) 
magazineCreturn(missle) 
roll back data area 2 
raise exception (internalError) 

else if externalAbort(self) then 
missleestandDown() 
missleTrackingestandDown(missle) 
magazineCreturn(missle) 
roll back data area 2 
restart stage 1 

end endif 
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Appendix A 	 draft examples 

stage 3: if failedNestedAction(missle) then 
if irreversible(missle,launch) then 
missleState := launched 
raise execption(launchedAndAborted) 

else 
missleestandDown() 
missleState :— available 
raise exception(launchFailure) 

end if 
else if failedNestedAction(missleTracking) then 
missleTrackingeparenteserviceFailure(missleTracking) 
raise exception(launchedAndAborted) 

end if 
stage 4, 
stage 6: missleState := missleestatusCheck() 

raise exception(launchedAndAborted) 
and action 

October 9, 1987 	 page 15 Georgia Tech 



Fault Tolerant Software Technology 	 Monthly Report 

MONTHLY 8.EPORT 

IFAIIET-1131.3ERANT SOFTWOLICEZEIC33NDIDIGY 
DISTRIBUTED COMPUTING SYSTEMS 

REPORTING PERIOD: October, 1987 

SUPPORTED BY 

ROME AIR DEVELOPMENT CENTER (RADC) 

CONTRACT NUMBER F30602-86-C-0032 

GIT PROJECT: G-36-645 

SCHOOL OF INFORMATION AND COMPUTER SCIENCE 
GEORGIA INSTITUTE OF TECHNOLOGY 

ATLANTA, GEORGIA 30332 



Fault Tolerant Software Technology 	 Monthly Report 

1. Progress 

Task "I (Progeminning Tschniepses for Resilience and Amailability 

Work has continued on a draft of the guidebook to be delivered as a =suit of this task. 

Zack 2 (Action-Rased Trogoemlning for•Embedded Systans)- 

Work is in progress on an extensive distributed calendar example intended to illustrate use 
of the concepts we have ben developing in a larger context than our previous examples. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel 

Graduate student Glenn Benson has been added to the project staff and is working on the 
example under Task 2. 

4. Summary of Trips and Meetings 

Richard LeBlanc attended the Second IEEE Workshop on Large Grained Parallelism in 
Pittsburg, PA. Tom Wilkes formerly of Georgia Tech and this project was also in 
attendance. The 50 researchers invited to this workshop spent two days discussing research 
in progress in distributed languages and environments, scheduling for parallel programs, 
real-time models, and operating systems support. 

5. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 

6. Sufficiency of Effort Toward Meeting Goals of the Contract 

The current level of effort is sufficient to meet the goals of the contract. 

7. Related Accomplishments 

None. 

8. Plans for Next Period 

For Task 1, we will continue our work on the handbook. For Task 2, we plan to complete 
the distributed calendar example. 
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9. Expenditure of Effort 

EgiamoDiry 	HOURS MENDED Brims rumulgarrE ?'rte, 
REPORTING PERIOD 	.t2crt,NDED HOURS 

Associate Professor 	 35 	 1075.5 
BraczchScienust.  31 	 130.5 	 1691_5 
Grad_ Research Asa. 	 261 	 5190 
Secretary/Clerical 	 87 	 1566 
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I. Progress 

TasklirProgramming-Tedimitines toeftzsrliesee -and kay  

Work has continued on a draft of the guidebook to be delivered as a result of this task. 

Task 2 (Acticm-Based Programming for Embedded Systems): 

We have completed the calendar example. The pseudocode is attached to this report. 

Our example illustrates a distributed consensus protocol implemented on a fully connected 
point-to-point network used in a highly available distributed calendar. At the applications 
level, a suer is presented with the following operations: insert, delete, and query. The 
consensus protocol is two phased and is managed by a central coordinator. The central 
coordinator requires universal consensus for any calendar update. Consensus is not required 
for the calendar read operation. 

The example illustrated two irreversable actions. An irreversable action is an action that 
cannot be rolled back after the action initiated. The two irreversable actions are multicast 
and consensus. Multicast sends an identical message to every machine in a group. 
Consensus is an applications level action that implements the calendar insert and delete 
operations. Multicast is irreversable because multicast may only be implemented by a set of 
point to point send operation succeeds The multicast operation succeeds if and only if every 
point-to-point send operation succeeds. The action is irreversable because each atomic send 
operation is irreversable. The second irreversable action, consensus, uses multicast as a 
nested action. Consensus succeeds if and only if every machine reaches agreement. 
Consensus is implemented as a two-phase consensus protocol. A central coordinator first 
multicasts a precommit message, and after receiving a positive reply from all machines, 
multicasts a commit message. The consensus action is irreversable because each multicast is 
an irreversable atomic action. 

The multicast action is implemented in three stages: initialization, processing, commit. 
Initialization is the recoverable stage of the action. The initialization stage allocates the data 
structures used by the action and may be recovered by rolling back. The second stage is the 
irreversable component of the action. After each transmission, the action checkpoints its 
progress. Recovery is implemented by multicasting an abort message to each to each 
destination indicated by a checkpointed list of destinations. The check-pointed list of 
destinations indicates the destinations to which a precommit message was sent. 

The consensus action succeeds if and only if all machines reach a consensus. Consensus is 
implemented in three stages: initialization, precommit, and commit. The initialization 
allocates the action's data structures, and may be recovered by rolling back. precommit 
broadcasts a message using the multicast action, and receives a reply from each machine. If 
consensus is not reached, the second stage exception handler is invoked. The exception 
handler multicasts an abort message. If consensus is reached, the third stage begins 
execution. The third stage commits the action. A third stage exception is raised on a disk 
error. 

In the example there is a situation in which it is convenient for an action to spawn several 
parallel threads of execution (coroutines). The block of code defining a set of coroutines is 
delimited by PARBEGIN and PAREND statements. 

The use of coroutines has not previously been considered within the Cloud's model. We 
believe the fact that an action has spawned several coroutines should not evidenced outside 
the scope of the action. The coroutines may interact through shared objects or shared data 
areas. It is the responsibility of the object or data area to provide proper concurrency 
control. The coroutines should not, in general, be treated as actions since they may interact 
in ways which are nonserializable. Each coroutine may, however, be partitioned into 
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sequences of -nested actions. We will require that it be possible to construct a serializable 
schedule which preserves Ate semantics s the zurimtimea. A =dramas anechankal will be 
IS111121101110 'that ibe programmer  -may -place -constraints -on the schedurmg of the actions. 

The use of coroutines raises two important issues with respect to fault tolerant computing. 
First, we must consider means for propagating abort signals in the presence of coroutines. 
Second, we can consider how to generalize aur understanding about how to abort and =over 
an action in the presence of coroutines to situations involving multiple, independent threads 
of execution. 

We have identified several patterns for propagating the abort signal. For example, 
support several coroutines have interacted by means of shared objects. If an action within 
one coroutine aborts and performs forward recovery, then actions within the other coroutines 
may be required to abort and recover as well. These other actions may be aborted because 
they have touched objects which were later recovered. In this case the abort signal 
propagates from the bottom up. We could also arrange for the abort signal to propagate 
from the original site up to an ancestor where recovery of other actions affected by the abort 
can be initiated. 

The different patterns for propagating the abort signal will give us some additional 
flexibility when dealing with irreversible and potentially irreversible actions. 

Irreversible actions can arise when atomicity is violated and independent threads of 
execution interact. We believe it is possible to model such interdependencies by regarding 

the interacting actions as coroutines nested within a common parent. Except for the 
possibility that an action may end up with multiple parents, this is anologous to the situation 
involving explicit coroutines. Thus, we believe we can use similar mechanisms for 
propagating the abort signal. There will be some additional problems related to the 
coordination of the abort handlers, but we believe these can be minimized by restricting the 
semantics of the operations which the recovery handlers may perform. Refer to Appendix B 
for more detail. 

2. Special Programs Developed and/or Equipment Purchased 

None. 

3. Key Personnel 

No changes. 

4. Summary of Trips and Meetings 

None. 

S. Problems or Areas of Concern 

No problems or areas of concern are evident at the current time. 
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6. Sarsciency of Effort Toward Meeting Goals of the COW17131:1 

Me =cat level of effort is seal= so meet the gods of lee =extract_ 

7. Related Accompildnuents 

None. 

8. Plans for Next Period 

For Task 1, we will continue our work on the handbook. For Task 2, effort will be 
focussed on beginning work on the handbook.. 

9. Expenditure of Effort 

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF 
REPORTING PERIOD 	EXPENDED HOURS 

Associate Professor 	 35 	 1110.5 
Research Scientist II 	 130.5 	 1822 
Grad. Research Asst. 	 348 	 5538 
Secretary/Clerical 	 87 	 1653 

3 



APPENDIX B 

The calendar is a list of records of type insg_type. The date and time fields of a mag_type 
record are used to compute a unique key. The key is used to lookup an individual record 

in the calendar. 

msg_type = record (export) 
date : pending 
time : pending 

key : key_type 
type : pending 
node : pending 
data : string 

end 
begin data area calendar_state 

log : log_object 
end data area calendar_state 

1.1 insert 

The insert procedure is the central coordinating procedure of the calendar. Insert imple-
ments the two phase consensus algorithm. insert is implemented as an action. 

1.1.1 stage 1 

Interact with the user through the user interface to obtain a calendar entry. Read the old 
entry from the calendar (section 1.13) into a log record data structure, and commit the old 

calendar entry to the log. Any exception raised by the commit action (section 3) is a fatal 
error. The log entry has the type "precommit". Any query (section 1.12) on a date/time 
slot marked by a log entry with the type "precommit" gets the value of the log entry as 
opposed to the value of the calendar entry. Therefore, the user view of the calendar does 
not change until after the precommit portion of the protocol completes. The new calendar 
entry is then written to the calendar (an exception is fatal). 
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If this nods zrasixes when aim entry has the value 4precounnit" , the -recovery object bi-
yokes the procedure recaver_precam (section 2.2). Recover_precom operates by broadcasting 
an abort message. 

1.1.2 stage 2 

Broadcast a precommit message to every node. We assume our network topology is point-
to-point and fully connected. The broadcast action is irreversable because some, but not 
all, of the nodes may receive the broadcasted message. In this case (a stage 2 exception) 
the exception handler invokes no_precommit (section 1.2) which sends an abort message. If 
stage 2 procedes normally, all receiving nodes execute the rec_insert_precommit (section 1.6) 
procedure. Otherwise, if an abort message is sent, all receiving nodes execute the ab_ins_pre 

procedure (section 1.8). 

1.1.3 stage 3 

Receive a message from every node. If all the messages have the value "yes" , then commit 
"precommit good" to the log. At this point, a query will reflect the updated calendar entry. 
Also, if this node crashes, the recovery object will invoke recover_ins_com (section 2.3). 
Recover_ins_com operates by rolling the action forward. 

1.1.4 stage 4 

Broadcast an "insert commit" message. Any exception is considered fatal. All receiving 
nodes execute the rec_insert_commit (section 1.7). If some node does not receive the "insert 
commit" message, then the receiving node will not clear the calendar entry from its log. 
This case will be noticed by the recovery procedure recov_badcommit (section 2.6). 

1.1.5 stage 5 

Receive a "yes" message from every node. Once stage 5 completes, this node is aware that 
every other node has committed the updated entry to its remote instance of the calendar 
object. 
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Clear the entry from the log. Any exception is fatal. 

1.1.7 code 

procedure insert 

begin data area ins 

log_rec : log_rec_type 

end data area ins 

begin action insert_action 

stage 1 : 

insertIO(logrec.logmsg) 

logrec.logmsg.key := compute_key(logrec.logmsg) 

read_logrec(logrec.logmsg.key,logrec) !read from calendar 

logrec.logtype := "precommit" 

log@computekey(logrec) 

logOlog_commit (logrec) 

write_cal(msg) 

stage 2 : 

logrec.logmsg.type := "insert precommit" 

communicateCisynch_bcast(myname,logreclogmsg) 

stage 3 : 

conununicateCisynch_recv_all_yes(myname) 

logOcommit_type (logrec logkey,"precommit good") 

stage 4 : 

msg.type := "insert commit" 

communicate@synch_bcast(myname,logrec.logmsg) 

stage 5 : 

comnunicateesynch_recv_all_yes(myname) 

stage 6 : 

logOclear(logrec.logkey) 

on abort 

CASE stage OF 



stage 'I : (excepfson = key...not...computed) 

then raiseException(invalid_date_or_time) 

else begin 

logoclearOogreclogkey) 

raiseException(fataldisk_error) 

end 

stage 2 : no_precommit (exception,logrec,msg) 

parm := exception !raised by no_precommit if except exists 

stage 3 : no_agreement(logrec.logkey,exception) 
raiseException(insert_unavailable(exception)) 

stage 4 : raiseException(fatal_cornrnit_comm_error) 

stage 5 : no_commit(logrec.logkey) 
if (exception=fatal_commit_error) raiseException(exception) 

raiseException(remote_state_undetermined) 

!If the exception is from no_conunit raise fatal_commit_error 

! else raise an exception (not necessarily an error) 

stage 6 : raiseException(fatal_disk_error) 

end action 

end 

1.2 no_precommit 

no_precommit is called by the stage 2 exception handler of insert (section 1.1). The purpose 

of no _p recommit is to abort a "precommit" message sent by insert in stage 2. If insert raised 

the exception "port_unavailable", then no_precommit raises a fatal exception. Otherwise, 

no_precommit broadcasts an "abort insert precommit" message, and clears the log. All 

receiving nodes invoke ab_ins_pre (section 1.8) when the abort message is received. 

1.2.1 code 

procedure no_precommit(exception : IN exception_type; 

logrec : IN log_rec_type; 

msg : IN msgtype) 
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tegin 
if (exception = port_nnavailable) 

then raiae-Exception(fataLporLunavailable) 
else begin  

logOcoonit_type(logreclogkey,Apreconmiit bade) 
msg.type := "abort insert precommit" 
communicateGsynch_bcast(myname,nisg) 
logGclear(logrec.logkey) 

on abort 
raiseException(fatalcomm_error) 

end 

1.3 no_agreement 

No_agreement is called by the stage 3 exception handler of the insert procedure. No_agreement 
operates by first writing a "precommit bad" message to the log. This message indicates 

that the the insert operation should be rolled back, but for some reason th roll back was 
unsuccsessful. The roll back is retried at some later time by the abort_pre procedure in the 
recover object (section 2.5). 

No_agreement handles disk and transmission exceptions as fatal errors. All other excep-
tions cause no_agreement to roll back the insert operation. The roll back is implemented by 
broadcasting an "abort insert action" and waiting for a reply. All receiving nodes invoke 
ab_ins_act which clears its local log and transmits an acknowledgement. 

1.3.1 code 

procedure no_agreement(logkey :key_type; except : exception_type) begin 
logOcommit_type(logkey,"precommit bad") 
CASE exception OF 

fatal_disk_error : raiseException(fatal_disk_error) 
fatal_xmit_error : raiseException(fatal_xmit_error) 



nntastonntrarlable -raintlitrceptionfmcnoLlrozszamble) 

no_agreement : 

begin 

raeg.type `abort insert action' 

communicateasynch_bcast(myname,msg) 

communicateOsynch_recv_all_yes(myname,msg) 

if no exception then log@clear(logkey) 

else raiseException(fatal_recovery_error(logkey) 

no exception : !do nothing 

end 

end CASE 

on abort raiseException(fatal_recovery_error(logkey)) 
end no_agreement 

1.4 no_commit 

The no_commit procedure is called by the stage 5 exception handler of insert. No_commit 

writes the message "bad commit" to the log and exits. Any exception is a fatal exception. 

The "bad commit" message indicates that the local node has proceded by committing a 

calendar entry, but some remote node may not have been notified. The recovery object will 

retry all remote nodes at some later time in the recov_badcommit (section 2.6) procedure. 

1.4.1 code 

procedure no_commit(key : key_type) begin 

begin action nocom 

logOcommit_type(key,"bad commit") 

on abort raiseException(fataLcommit_error) 

end action nocom 
end 
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Receive is the central processing receive handler used by the calendar object. Receive invokes 

the =nett rode segment depending mg= a -received -message's type. 

1.5.1 code 

procedure receive !blocking receive used by high level server process 

begin 

communicateOsy nch_recv _any (src ,rnsg) 

CASE msg.type OF 

"abort insert precommit" : ab_ins_pre(src,rnsg) 

"abort insert action" : abins_act(src,msg) 

"insert precommit" : rec_insert_precommit(src,rnsg) 

"insert commit" : rec_insert_commit(src,msg) 

"status commit" : rec_stat_com(src,msg) 

"delete" : !not implemented 

end 

1.6 rec insert _precommit 

rec_inaert_precommit is invoked when the node receives a "precommit" message. If the 

receiving node cannot insert the data into the calendar, the node returns "no", otherwise 
the node returns "yes" and commits the received entry to the log. 

1.6.1 code 

procedure rec_in,sert_precornmit(src : IN name; meg : IN msg_type) 

begin 
begin action rec_precom 

stat := oktorecv(msg) !oktorecv not documented 
if (stat = TRUE) then begin 

msg.type := "received precommit" 
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insg.ditts, 
logOcommit(msg) 
end 

Ase mag_dats s mod' 
I0Oxmit(myname,src,msg) 

on abort 
CASE exception OF 

fatal_disk_error : raiseException(fatal_disk_error(msg.key)) 
fatal_xmit_error : raiseException(fataLxmit_error(msg.key)) 

end CASE 
end action 
end procedure 

1.7 recinsert_commit 

Rec_insert_commit is invoked when an "insert commit" message is received. The "insert 
commit" message indicates the completion of the second phase of the commit protocol. 
Insert commit writes the received message to the calendar, returns and acknowledgement, 
and clears the log record. Clearing the log record relinquishes the recovery object from 
querying for the status of the calendar entry in the event that the node recovers from a 
crash (see section 2.4). 

1.7.1 code 

procedure recinsert_commit(src : IN name; msg : IN msg_type) 
begin data area recin 

logrec : log_rec_type 
end data area rec_in 
begin 
begin action rec_ins_com 

logOread(msg.key,logmsg) 
write_cal(msg) 
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losecempuieileytiovec) 
mag.data := 'yes" 

I0Oxmit(mynameterc,meg) 
logOciearOogrec) 

on abort 
CASE exception OF 

fatal_disk_error : raiseException(fatal_disk_error(rnsg.key)) 
fatal_xmit_error : raiseException(fatal_xmit_error(msg.key)) 

end CASE 
end action 
end procedure 

1.8 ab__ins_pre 

ab_ina_pre is invoked when an abort precomrnit message is received (see section 1.2). This 
procedure clears the log entry if the entry exists. If the entry does not exist, the read 
operation returns an exception that is not an error. 

1.8.1 code 

procedured ab_ins_pre(src : pending; msg : msg_type) 
begin 
begin action abins_pre 

stage 1: logOread(msg.key,msg) 
stage 2: log©clear(msg.key) 

on abort 
CASE exception OF 

stage 1: !no error: do nothing precomrnit msg never received 
stage 2: raiseException(fatal_badlog(fatal_disk_error,msg.key)) 

end action 
end procedure 
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aLiss_pre is called whenever an 'abort insert action" message is received. The 'abort insert 

action" message is sent in the no_agreement procedure (section 1.3) which is called by the 

exception handler of stage 3 of the exception handler of insert (section 1.1). 

1.9.1 code 

procedure abins_act(src : IN name, msg : msg_type) 

begin data area ab_in 

logrec : log_rec_typ 
end data area ab_in 

begin 
begin action ab_ins_act 

stage 1: 

logare ad (msg.key,logrec) 
msg.data := "yes" 

stage 2: I0@xmit(myname,src,rnsg) 

logOclear(date,time,rnsg) 

on abort 

CASE stage OF 

stage 1: raiseException(abortincompete(fatal_disk_error)) 

stage 2: CASE exception OF 

fatal_disk_error : raiseException(abortincomplete(fatal_disk_error)) 
transmit_error : raiseException(abortincomplete(transmit_error)) 

end CASE 

end action 

end procedure 
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rec_stat_conz is invoked whenever a 'status commit" message is received. The status commit 
message is called by the recovery object ism oecticut 2A) !when a log ontry marked 'bad 
commit' is encountered. A "bad commit" entry is inserted into the log by the no_commit 
procedure (see section 1.4) whenever the insert procedure is unable to guarantee consensus 
among the nodes of a committed entry. 

1.10.1 code 

procedure rec_stat_com(src : IN name; msg : IN msg_type) 
begin 
begin action rec_st_com 

stage 1: log@read(logacompute_key(date,time),msg) 
stage 2: msg.data := "yes" 

I0@xmit(calendarOmynarne,src,msg) 
stage 3: logOclear(log@compute_key(date,time)) 

on abort 
CASE stage OF 
stage 1: if (exception = key_notiound) then begin 

msg.data := "yes" 
I0Oxmit(calendar@myname,src,msg) 
logaclear(date,time,msg) 
if not (exception = key_not_found) 

raiseException(fatal_receive_error) 
stage 2: raiseException(fataLreceive_error) 
stage 3: raiseException(fataLdisk_error) 

end action rec_st_com 
end 
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31-11 quer110 

pteryI0 prompts the user for a calendar entry to be queried. 

1.11.1 code 

procedure querylO(msg : OUT msg_type) 

begin 
I0@write("date: ") 

I0Oread(logrec.logmsg.date) 

IO©write("time: " ) 

I0Oread(logrec.logmsg.time) 
key = log@computekey(logmsg) 

end 

1.12 query 

Query prompts the user for an entry to be queried. If a log entry exists and the log entry 

has the value "precomrnit" (see sections 1.1.1 and 1.1.3), then query returns the value stored 

in the log, otherwise, query returns the value stored in the calendar. 

1.12.1 code 

procedure query 
begin 

begin data area query_dat 
logrec : log_rec_type 

end data area query_dat 

queryI0(date,time,key) 

if (logOexists_rec(key)) then begin 

logOread_log_rec(key,data) 

CASE data.type OF 
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aptecommir .10ewriteciogreckigniagalactls) 
otherwise : begin 

calendarareadjkey,logrec.logmag) 
100write(logrec.logmsg.dats) 

end 
end CASE 

else !no log record ! 
calendars read(key,logrec.logmsg) 
IOGwrite(logrec.logmsg.data) 

end !procedure query 

1.13 others 

The other procedures are lookup, write_cal, read, compute_key, and read_logrec (implemen-
tation details omitted). 

1.13.1 code 

procedure lookup(key : IN key_type)returns msg_type 
!Given a key, return the msg_type from the calendar 
!If no such key is available the procedure aborts and raises the 
!exception: `msg_key_unavailable' 

procedure write_cal(msg : IN msg_type) 
!Force an entry into the calendar stored in stable storage. The entry 
!can be looked up using the unique key. 

procedure read(key : IN key_type) returns msg_type 
!Given a key, return the corresponding value from the calendar. 
!Raise exception: key_unavailable if the key cannot be found in the calendar 
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procedure compute_key(rnsg : IN msgtype) returns key_type 
!Given msg.date and msg.time compute the unique key that names a calendar 

leutry. We assume no two entries have the same node/date/time stamp_ 

!RaiseException: key..not_computed if an exception occurs 

procedure read_logrec(key : IN key_type; logrec : OUT log_rec_type) 
!Read the entry named by key from the calendar stored in stable storage (using 
!the read operation) into a log record data structure 

procedure myname returns name 

!Return the unique name of the local node. 

2 recovery object 

The object recovery is invoked whenever a node recovers from a crash. 

2.1 recover 

recover rolls back the log. For each log entry, recover checks the type and dispatches to the 
appropriate procedure. Recover is called when the node recovers from a crash. 

2.1.1 code 

procedure recover 
begin data area rec 

logrec : log_rec_type 
end data area rec 
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for each logrec = logOread do begin 

CASE logrecJogtype OF 

'insert precommit' Tecover_prec:on4logrec) 

"precommit good' : recoverins_com(logrec) 

"received precommit" : recover_rec_precom(logrec) 

"precommit bad" : abort_pre(logrec) 

"bad commit" : recov_badcommit(logrec) 

end CASE 

end for 

end procedure 

2.2 recover_precom 

recover_precom is called when a node reaches stage 2 of insert (see section 1.1.2), writes 
the "insert precommit" message to the log, and then crashes. This procedure implements 

backward recovery. If a transaction is aborted during precommit stage, the transaction is 

simply aborted. An abort is implemented by sending an "abort insert action" message. 
The receiver invokes ab_ins_act (section 1.9) when the abort message is received. 

2.2.1 code 

procedure recover_precom(logrec) 

begin data area ins_precom 

msg : msg_type 
name : pending 

end data area ins_precom 

begin 

begin action rec_ins_pre 
logrec.logmsg.type := "abort insert action" 

communicateasynch_bcast(calendaramyname,logrec.lognisg) 

communicateOsynch_recv_all_yes(myname,logreclogmsg) 
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logecleir(logrerleskey) 

on abort raiseException(fmaJ recovery_error(kgreclogkey)) 

haste: on an exception the log is MDT cleared 

end action 

end procedure 

2.3 recover_ins_com 

Recover_in8_com is called if the insert procedure reaches stage 4 (see section 1.1.4) and then 
crashes. This procedure implements forward recovery by broadcasting a commit message. 

2.3.1 code 

procedure recoverins_com(logrec) 

begin 
begin action rec_com 

stage 1: 

msg.type := "insert commit" 
communicate0synch_bcast(calendarOmyname,"commit") 

stage 2: 
communicate0synch_recv_all_yes(calendaramyname,msg_array) 

stage 3: 
log clear(logrec.logseq) 

on abort 
CASE stage OF 

stage 1 : raiseException(commit_comm_error) 
stage 2 : raiseException(commit_comrn_error) 
stage 3 : raiseException(fatal_disk_error) 

end action 
end procedure 

17 



Recover_rec_precoes is called when the node receives a preconxmit message and then crashes. 

The node recovers by sending a query message message to see if the commit proceeded. 

This portion of the protocol is not included in this example. 

2.5 abort_pre 

abort_pre is invoked if the node crashes in the exception handlers of either stage 2 stage 3 

of insert (see sections 1.1.2 and 1.1.3). The exception handlers call no_precommit (sec- 

tion 1.2) and no_agreement (section 1.3). Abort_pre is invoked only if the node crashes in 

no_precommit or no_agreement. 

2.5.1 code 

procedure abort_pre(logrec : log_rec_type) 

begin 

begin action ab_pre 

stage 1: communicatettlsynch_bcast(calendarOmyna,me,msg) 

stage 2: logGclear(logrec.logkey) 

on abort 

CASE exception OF 

stage 1 : raiseException(fatal_recovery_error(bcast_unavailable)) 

stage 2 : raiseException(fatal_recovery_error(disk_error)) 

end !CASE 

end !action ab_pre 

end !procedure 
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Recov_badcommit is called if a "bad commit" message was placed in the log by no_comma 
(section LA). This message indicatas s -commit is unsuc cessfal. even though all nodes armed 

to commit the message. The recov_badcommit procedure retries the commit. 

2.6.1 code 

procedure recov_badcommit(logrec : log_rec_type) 
begin 
begin action ab_pre 

stage 1: logrec.logmsg.type := "status commit" 
cornmunicate@synch_bcast(calendarOmyname,logrec.logmsg) 

stage 2: conununicatellsynch_recv_alLyes(calendarOmyname) 

stage 3: logOclear(logrec.logkey) 

on abort 

CASE stage OF 
stage 1: raiseException(fatal_recovery_error) 
stage 2: raiseException(no_consensus) 
stage 3: raiseException(fatal_disk_error) 
end !case 

end action ab_pre 
end 

3 log object 

The following procedures are access the log. write, read, log_commit, commit_type, com-
pute_key and clear. The procedures are either self explanatory or documented below. 

log_rec_type (export) 
logrnsg : msg_type !import msg_type from the calendar object 
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legkey : keyiype the Tongue key df the %record 

logtype : log_type_type !the type of the log record 

end 

3..2 code 

!log is the logging object. 
implementation of object log_object 

write(logmsg : IN log_rec_type) 
!Force a log message and out to stable storage 

read(key : IN key_type; logrec : OUT log_rec_type) 

!Read the log record indicated by key into logrec 

log_commit(logval : INOUT log_rec_type) 
begin 

begin action putlog 
logOwrite(logval) 

on abort raiseException(fatallog_comrnit_error) 
end action putlog 
end logcommit 

procedure commit_type(logkey : IN key_type; Hype : log_type_type) 
!Update the type field of a log entry named by logkey to the value ltype 
!on abort raiseException(fatal_log_commit m_error) 

procedure compute_key(logval : INOUT log_rec_type) 
!Given the date and time compute the unique key for a log record 



%ad place the key in the la rrel-recard 

wocedure clear(ey 7N key_type) 

begin 
begin action logclear 

! remove the entry named by key from the log 

on abort raiseException(key_not_found) 

end action logclear 

end object log 

4 communicate object 

Implementation of object communicate 

!multicast a message to a group 

!Irreversable action 

procedure synch_mcast(EN src : name; dst : IN group_name; msg : msg_type) 

exceptions(port_disabled) 

begin action m_cast 

begin data area 1 

src_port : capability 

dst_portist : array of capabilities 

end 

stage 1 : src_port := portOobtain_port(src) 

dst_port_Ist := port(iobtain_group_port(dst) 

stage 2 : for i := listOfirst(dst_portIst) TO listOlast(dst_port_lst) 

I0 xmit(src_port,port translat(dst_port_lst,i),frame) 

end 



case staged abort of 

stage 1 taiseRsoeptio.  gport..mmaAlable) 

stage 2 : raiseException(multicastincomplete) 

end 

!Broadcast a message to every node on the network. Broadcast is 

!implemented through a multicast sub action. 

procedure synch_bcast(src : IN name;msg:msg_type); exceptions(port_disabled) 

synch_mcast(src,portGobtain_bcast_narne,msg) 

end 

procedure synch_recv_any(src : IN name; msg : IN msg_type) 

begin 

begin action 
10 Orecv _any (port Cobt n_port (src),msg)) 

on abort raiseExeption(comm_unavailable) 

end action 

end 

!Receive a message from every port in dst_portist 

procedure synch_recv(src : IN name; 

dst : dst_portist; 

msg : msg_type) 

begin 
begin action 

for i := list®first(dst) TO list©last(dst) 

parbegin 

10 Orecv (src_port ,portOtranslat (dst_port Ist,i) ,msg) 
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vatend 

end action 

as abort 

raiseException(fataLreci_error) 

end 

!Receive a message from every node. This procedure blocks until every 

!node sends a message. 

procedure synch_recv_all(src : IN name 
msg_arr : OUT frame) 

begin 

synch_recv (src ,p ort Cobt 	_p ort ,msg_arr) 

end 

procedure msg_validate(msg_arr :IN array of msg_type; 

val : IN string) returns(boolean) 

!Return true if and only if every entry in the array msg...arr 

!has the value "val" 

!Receive a message from every node. Return success if and only if 

!every node returns success 

procedure synch_recv_all_yes(src : IN name) 

begin data area yes 

msg_arr : array of msg_type 

end data area yes 

begin 

synch_recv _all (src,ms g_ar r) 

if not msg_validate@ACE:_check(msg_arr,"yes") 



ilben-Taisaxceptiontanmgrecarat) 

end 

end object 

5 shell object 

!Shell is the user interface object. 

implementation of object shell !() 

begin data area I0 

myname : name = pending ! my network name ! 

end data area I0 

!User is the user interace. User is implemented as an infinite loop. 

!The user may invoke a procedure (insert, query, or remove) by calling 
!the appropriate procedure. 
procedure user 

begin data area 1 
token 

done = false 

end data area 1 

begin 

begin action user 

REPEAT 
I0Oprompt 

I042get_token(token) 

CASE token OF 

insert : calendarOinsert 

query : calendarOquery 

remove : calendarGremove 

halt : done := true 



and 

UNTIL done 

on abort 

!Interact with neer to recover Mom Total errors 
end action 
end 

!Return the local name of the host. 
procedure local_name returns name 
begin 

return (myname) ; 
end; 
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Outline for Action Based Programming for Embedded Systems 

I. System level fault tolerance: Introduction 
A. Faults, Errors, and Failure: some definitions 
B. Overview or the special requirements or embedded systems 

Outline for Action Based Programming for Embedded Systems 

1. System level fault tolerance.: Introductio n 
A. Faults, Errors, and Failure: some definitions 
B. Overview of the special requirements of embedded systems 
B1/2. Design Process 

1. Architectural model 
2. Specification 
3. Implementation 

C. Regard language used in examples as a design language. 
Since compilers not widely available, constructs must be 
translated by hand. 

D. Importance of layered structure 
E. Designing lower layers to provide services to support fault tolerance 
F. Using the Handbook 
G. Types of Faults 

1. Transient faults 
2. Temporary faults 

3. Permanent faults 
H. The sources and inevitability of faults 
I. The limits of fault tolerance mechanisms 
J. Other uses for recovery mechanisms 

1. Simplfy systems management 
2. Change status of site without detailed 

coordination at other sites 
3. Software and Hardware maintenance and upgrades without 

interrupting system services 
K. The special role of redundancy in acheiving fault tolerance 

1. Try the computation again 
2. wait and try the computation again latter 
3. Try an alternative computation 

a. vary the code 
b. vary the hardware or site 
c. vary the data 

L. Degrees of Fault tolerance 
1. What is the range of possibilities 
2. The degree of fault tolerance which is acceptable is 

requirements driven 
M. Aspects of Fault tolerance 

1. availability 
2. resiliency 
3. forward progress 
4. reliability 
5. there are trade offs among these aspects of fault tolerance 
6. the relative importance of these aspects of fault 

tolerance is requirements driven 
II. Requirements 

A. Atomicity 



1. size of atomicity 
2. criticality 

B. Functional characterisation 
1. Time preservation 
2_ Frequency 
3. Criticality 

C. Synchronization 
1. Criticality 

.2_ Number of functions 
3. Interface with architecture 

D. Time 
1. Normal Operations 
2. Switchover Time 

E. Processing Requirements 
1. Operating System 
2. ALU 
3. Mass Memory Organization 

III. System Architecture (Design choices supporting Faul tolerant 
system design) 

A.Switchover Characteristics 
1. Location 
2. Processor State 
3. Processor Load 

B. Redundancy Approach 
1. embedded 
2. Dedicated 
3. shared 
4. distributed 

C. Processor Characteristics 
1.memory size 
2. mass storage size 
3. processor speed 
4. bus architecture 
5. other 

IV. Selection of Redundancy Approach Function (the choice 
of architecture is requirements driven) 

A. Atomicity 
B.Functional Characterization 
C.Synchronization 
D. Processing requrirements 

V.Software Architectures 
A. The choice of Software Architecture is driven both by 

requirements and System Architecture 
B. The Basic Software Models 

1. Process Models (message passing) 
2. Object/Action Model 

a. actions for concurrency 
b. actions for fault tolerance 
c. nested actions 
d. actions which terminate before they commit 
e. actions which terminate after they commit 

(irreversible actions) 
i. explicit commit 
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n. implicit commit 
1). communication with actions in other scopes 
.2). interaction with the external environement 

f. irreversible actions have the effect of weakening 
failure and eoncurrency atomicity 

3. Hybrid models (needed for embedded systems) 
a. interleaving actions embedded within processes 
b. constraining how actions may be interleaved 
t. the problem of message passing in an enviroment 

structured in terms of nested actions 
d. interleaving the actions nested within other 

"weakened" actions 
e. "weakened" atomicity must be accompanied by 

strengthened requirements for consistency 
VI. Choices in the design of fault tolerance mechanisms 

A. choices are driven by requirements, system architecture, 
and software model 

B. The basic mechanisms 
1. Backward recovery 
2. Forward recovery 
3. How context sensitive should the semantics of recovery be? 

C. Constructing a consistent state 
1. in anticipation of failure 

a. logging 
b. shadows 
c. replicating the current copy 

2. after failure 
a. deriving values from other data 
b. deriving values by merging replicas 
c. deriving values from the environment 
d. deriving values from archival data 

3. mixing strategies 
D. Dealing with data missing following recovery 

1. how data related to the occurence of an irreversible 
operation may be lost 

2. after recovery (data of low criticality may not be 
available until after computation has resumed) 

3. Re-execute the operation 
4. Inquire as to the state of other physical or data 

objects to determine whether the operation occured 
5. Specialized hardware to ensure the event is logged 

and not lost 
6. cutting over to reduced level of service 

a. permanent cut over 
b. temporary cut over 

E. Dealing with hardware failures 
1. backup hardware available 
2. partial failure of hardware, no backup 
3. failure correctable with software intervention 
4. failure not correctable except with human intervention 
5. returning hardware to service following repair 

F. Dealing with processes which have read data invalidated by recovery 
1. finding them 
2. deciding which should live and which should die 



3. coordinating recovery among independent threads of control 
G Resuming computation 

1. on the same machine 
2. on a different machine 

a. protocols for triggering resumption on a backup machine 
b. protocols for triggering resumption on a primary machine 

1. when there is a designated primary machine 
2. when several machines compete for backup responsibility 

H. Selecting the -code to he run after recovery 
1. retry the code which failed 
2.execute alternate code 
3. resume at some point subsequent to the failed code 
4. other possibilities 
5. making the new code a permanent replacement for the failed code 

I. responsibilities of the recovery handler and other code 
1. how much should be done during recovery by the recovery 

handler and how much by the resumed comutation? 
2. does the code in which computation resumes need an 

"on recovery" handler as a preamble? 
3. should recovery be bound to the actions which failed or 

to the objects which must be recovered? 
4. does forward recovery need both exception handlers and 

recovery handlers? 
J. Recovery in nested actions 

1. propogating recovery over several levels of nesting 
2. some guidelines for designing multilevel recovery 

K. Dealing with orphans 
L. Coordinating the design of an actions forward recovery and 

the design of objects 
M. Faults in the recovery handlers 

VII. Implementing these ideas 
A. providing system services 
B. translating constructs into a conventional programming language 
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1. Introduction 

This report documents the research results of the project entitled "Fault Tolerant 
Software Technology for Distributed Computing Systems" during the first year of its 
two year term. The report is divided into two major sections, corresponding to the 
two subtasks of the project. The first of these summarizes the research which has 
been performed for the task "Programming Techniques for Resilience and 
Availability." Separate subsections are devoted to each of the major facets of this 
research, including: 

• consideration of problems of replication endemic to object-oriented systems with 
general (i.e., non-flat) object structure; 

• investigation of naming schemes for support of replication which deal with these 
problems in object-oriented systems; 

• consideration of the relationships between our research on replication of objects 
and recent research by others on replication of abstract data types; 

• investigation of the role of the fault-tolerant job scheduling system in dealing 
with the problems descibed above; and 

• investigation of the design of the Object Filing System as a possible source of a 
paradigm for replication in action/object systems such as Clouds. 

Finally, this section concludes with a summary of the status of this research and the 
results to date, and a comparison of our research to the directions taken by the 
similar project on the topic "Fault Tolerant Distributed Systems" at Honeywell, 
Inc. [Hme86] 

The second major section describes our work on the task entitled "Action-Based 
Programming for Embedded Systems." Since our work on this task has only been in 
progress for about seven months, this section is more of a discussion of the issues 
that have been identified than it is a presentation of results. The major issue is the 
seeming incompatibility of the idea of atomic actions with the irreversible operations 
frequently preformed by the software of embedded systems. We consider the 
problem of preserving information about irreversible operations performed by an 
action when an action aborts, possible mechanisms for performing this task, and 
problems related to classifying various types of irreversible operations. Finally, 
plans for further work on this task are presented. 

2. Programming Techniques for Resilience and Availability 

The research reported in this section has been significantly influenced by a 
variety of related efforts that are part of the Clouds project. Our discussion 
frequently references Clouds, but it should be recognized that this work is relevant 
to any object-based system that supports some form of atomic actions. 
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2.1 Problems of Replication in Object-Based Systems 

In the course of our research on methods of achieving availability in object-based 
systems such as Clouds, we have found that the generality of the abstract object 
structure supported by Clouds poses problems for replication methods which are not 
presented by a less general, flat object structure (for instance, files or queues). 

(a) representation of (b) physical nesting (c) logical nesting 
an object 	of objects 	olobjects 

Figure 1. Graphical Representation of Object Nesting 

The problem lies in the possibility of the arbitrarily complex logical nesting of 
Clouds objects. Although Clouds objects may not be physically nested (that is, one 
object may not physically contain another object), an object may contain a capability 
to another object. If an object A creates another object B, and retains sole access to 
B's capability (by refraining from passing the capability to other objects and from 
registering the capability with the OFS), we say that object B is internal to object A. 
The internal object B may be regarded as being logically nested in object A. (A 
graphical representation of physical and logical nesting is shown in Figure 1.) If, on 
the other hand, object A passes B's capability to some object not internal to A, or if A 
registers B's capability with the OFS, we say that B is an external object; an external 
object is potentially accessible by objects not internal to the object which created the 
external object. 

Problems arise with replication schemes when internal and external objects are 
mixed together in the same structure, i.e., when an object may contain capabilities to 
both internal and external objects. (An example of such an object is represented in 
Figure 2.) These problems are associated with the method which is used to 
propagate the state of a replicated object among its replicas. One such method is to 
execute the computation from which the desired state results on each replica; we 
refer to this scheme as idemexecution. Another method is to execute the 
computation at one replica, and then copy the state of that replica to the other 
replicas; we refer to this scheme as cloning. (Representations of the idemexecution 



-3- 

  

  

 

♦ R epl i ca te d object 

4_ Internal object 

  

 

♦ External object 

Figure 2. Replicated Object with Internal and External Object References 

and the cloning methods are shown in Figure 3.) Note that the scheme which is used 
to ensure that the replicas maintain consistent states (e.g., quorum consensus) is not 
involved in these problems, and is considered separately in our investigation. 

External objects cause problems when idemexecution is used to propagate state 
among replicas. If the replicated object performs some operation on an external 
object (e.g., a print queue server), then—under idemexecution—that operation will 
be repeated by each replica. If the operation being performed on the external object 
is not idempotent, this can cause serious problems (e.g., multiple submissions of a 
job to the print queue). Also, trouble may arise due to idemexecution if the 
operation on the external object is non-deterministic (for instance, random number 
generation, or disk block allocation among multiple concurrent processes). 

On the other hand, internal objects cause problems when cloning is used to 
propagate state. For example, assume that each replica of an object creates a set of 
internal objects. Then, when an operation is performed on one of the replicas, its 
state—under cloning—is copied to each of the other replicas. However, the 
capabilities to the internal objects of the replicas are contained in their states; thus, 
each replica now contains capabilities to the internal objects of that replica on which 
the operation was actually performed, and the information about the internal objects 
of the other replicas is lost. (This problem is represented in Figure 4.) 

Our current research includes an investigation of a "taxonomy" of object 
structures on which the corresponding state-propagation methods may be safely 
used, as well as of how these state-propagation methods—or the Clouds object- 
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(a) single (unreplicated) 	(b) idemexecution on replicated object 
object operation 

4 	  

(c) clone (copy) state 	(d) cloning on replicated object 

Figure 3, Replicated State-Copying Methods 

naming mechanism—may be altered to safely handle more general cases. Our 
current feeling is that the latter may be achieved with minimal alterations to the 
kernel, via having the kernel interact with the Object Filing System and the fault-
tolerant job scheduler, two services of the Clouds system which are described in 
more detail in the following sections. We also discuss some schemes developed 
during the preceding year for replicating actions and for naming of replicated 
objects, which should aid in achieving these goals. 

2.2 Naming Schemes to Support Replication 

We are currently considering two different capability-based naming schemes 
which may be used in support of state cloning, as described in the previous section. 
The first scheme requires minimal changes to the kernel, but relies on facets of the 
Clouds object lookup mechanism which may not be applicable to other systems. In 
Clouds, the search for an object begins locally (that is, on the node which invoked 
the search), and—if the object is not found locally—proceeds to a broadcast search. 
If the internal objects belonging to a replica are constrained to reside on the same 
node as their parent object, then the local search will locate the local instance of the 
internal object. (We do not consider this constraint to be onerous, since the internal 
objects of each replica need to be highly available to that replica in any case, and 
thus should logically reside on the same node as the parent replica. This constraint 
may be enforced by the Object Filing System, which is described in a later section.) 
Thus, each replica of an object (each of which resides on a separate node) may 
maintain its set of internal objects using the same capabilities as each other replica. 
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(a) before cloning of state 
	(b) after cloning of state 

Figure 4. State Cloning with Internal Objects 

Although we will thus have multiple instances (on separate nodes) of internal objects 
referenced by the same capability, there should be no problems caused by this, 
since—by the definition of internal object--only the parent object or its internal 
objects may possess the capability to an internal object, and the object search will 
always locate the correct (local) instance. Thus, state cloning may be used to copy 
the state of a replica to the other replicas without causing the problems with respect 
to internal objects mentioned in the previous report (concerning references to 
internal objects contained in the replica's state), since under this scheme all replicas 
may use the same capabilities for referencing internal objects. This scheme is an 
extension of a facility already supported by the Clouds kernel for cloning read-only 
objects such as code. We call this scheme vertical replication, since it maintains the 
grouping of internal objects with their parent object. 

The other naming scheme makes fewer assumptions about the lookup mechanism 
than vertical replication, but requires more kernel modifications. In the second 
scheme, each instance of the replicas' internal objects is again named by the same 
capability, at least as far as the user is concerned; however, the kernel maintains 
several additional bits associated with each capability identifying a unique instance. 
(These additional bits may be derived from, for instance, the birth node of the 
instance.) When a (parent) replica invokes an operation on an internal object, the 
kernel selects one of the replicas of the internal object according to some scheme 
(e.g., iteration through the list of nodes containing such objects until an available 
copy is located). Thus, a set of replicas of internal objects is maintained in a "pool" 
for access by all parent replicas. Again, each parent appears to use the same (user) 
capability to reference a given internal object, so the problems of state cloning 
disappear. Since this scheme maintains a logical grouping of the copies of an 
internal object, rather than grouping internal objects with their parent object, we 
refer to the scheme as horizontal replication. One such naming scheme is described 
in a paper which we have co-authored with other Clouds researchers,[ r] which 
is included as an appendix to this report. 
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We are currently considering the merits of each of these naming schemes in the 
context of the replicated actions scheme, which is described later in this report. 

2.3 Related Research on Replication of Abstract Data Types 

As part of our work on achieving availability of resources in the Clouds system, 
we have been involved with study of the work of Herlihy, presented in his 
dissertation, "Replication Methods for Abstract Data TypeS,"[Her184] and with 
correspondences between Herlihy's techniques and the synchronization mechanisms 
used in Clouds, which should allow us to apply Herlihy's methods to our problem of 
generating replicated objects. 

Herlihy's work concerns the extension of quorum intersection methods to take 
advantage of the semantic properties of abstract data types. Previously, work on 
quorum methods—mostly in the database area—has been limited to a simple 
read/write model of operations. Herlihy's extensions allow the selection of optimal 
quorums for each operation of an abstract data type based on the semantics of that 
operation and its interaction with the other operations of the data type. 

Herlihy's method is based on the analysis of the algebraic structure of abstract 
data types. This entails the construction of a "quorum intersection graph," each 
node of which represents an operation of the data type, and each edge of which is 
directed from the node representing an operation 01 to the node representing 
operation 02, where each quorum of 02 is required to intersect each quorum of 01. 
From the quorum intersection graph, optimal quorums for each operation may be 
calculated, given the number of replicas of the data, and the desired availability of 
each operation in relation to the other operations of the data type. 

Herlihy shows that his method can enhance the concurrency of operations on 
replicated data over that obtained from a read/write model of operations. He also 
claims advantages for his methods in the support of on-the-fly reconfiguration of 
replicated data, and in enhancing the availability of the data in the presence of 
network partitions. 

There appears to be a close relationship between Herlihy's quorum intersection 
graphs and the lock compatibility matrices used in Aeolus and the Clouds system; a 
graph constructed from the lock compatibility matrices for an Aeolus/Clouds object 
is either the complement of the quorum intersection graph for the operations of that 
object, or a subset of the complement. This is not really surprising, since the 
specification of our lock compatibilities is based on the programmer's analysis of the 
compatibilities between the object operations, while Herlihy's quorum intersection 
graph may be viewed as being based on an analysis of the incompatibilities between 
operations. 

Thus, we should be able to apply Herlihy's techniques to our problem of 
generating replicated objects given an unreplicated object version and a specification 
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of the desired replication properties. This entails extending the notion of the 
Aeolus/Clouds lock to include the "distributed" lock; that is, the state of the lock is 
shared logically among all replicas of an object. This will, of course, require the 
transmission of lock state information among all replicas. However, the concurrency 
properties of the unreplicated version of the object will be retained by the replicated 
version generated from it. This is especially significant given the power of the 
Aeolus/Clouds lock mechanism in expressing arbitrary compatibilities and in 
allowing the expression of synchronization at arbitrary levels of granularity. 

Another interesting question—which is being be investigated using the Object 
Filing System example (described in a later section)—is the relation between 
Herlihy's quorum intersection graphs and Aeolus/Clouds lock compatibility matrices 
when multiple locks are used for specifying an object's synchronization behavior. 
We have found that in certain cases it is convenient to use more than one lock to 
specify synchronization among an object's operations; the different locks typically 
apply at differing levels of granularity as well as having compatibility matrices with 
disjoint meanings. For example, we have designed a symbol table object which uses 
two locks for synchronization purposes: one lock at the level of the individual 
buckets in the symbol hash table, with compatibilities expressing a multiple reader / 

single writer protocol; and another lock at the level of the entire symbol table, 
allowing multiple readers or multiple writers, but not readers concurrently with 
writers. The first lock is used with the typical operations such as insert, delete, and 
find, where there is no interaction between concurrent operations on different 
buckets; the second lock is used with an "exact-list" operation, where a "snapshot" 
of the exact state of the symbol table at a particular instant is desired, and thus all 
operations which modify the state of any portion of the symbol table must be locked 
out. (This symbol table object is described in more detail in the section on the 
Object Filing System, and the Aeolus code for this object is included in an 
appendix.) Our locks thus have an advantage of power of expression over Herlihy's 
quorum intersection graphs, which do not allow the expression of granularity lower 
than that of an entire abstract data type and its operations. Thus, we are considering 
how Herlihy's results may be extended to the case of multiple levels of granularity 
for synchronization. 

2.4 The Fault-Tolerant Job Scheduling System 

Our current work on the study of programming methodologies appropriate to 
distributed systems involves the study of various methods of achieving resilient, 
available objects through the use of replication. Similar WOrk[Birm85, Birm85al has 
recently been reported by researchers on the ISIS system at Cornell; however, that 
work (unlike ours) does not consider the problems introduced by network partitions, 
assuming rather that all failures are of the so-called fail-stop variety. In our work, 
we take into account the problems involved in reconciling the states of replicated 
objects which have run in independent partitions during a network failure. Thus, we 
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may achieve higher availability in situations in which temporary violations to 
consistency are tolerable. Our work, as well as recent work[Das5 86] by other 
researchers in the Clouds project, has also suggested some of the functionality which 
will be required of the fault-tolerant job scheduler for the support of availability in 
Clouds. It is in the job scheduler that we envision most, if not all, of the knowledge 
about individual machines in the system will be concentrated, such as whether a 
certain machine is available or what the current loads are on the individual 
machines. Thus, the job scheduler is the natural portion of the system to support 
functionality such as the creation of distributed replicas of an object class, the 
selection of the most appropriate individual replica from a class of such replicants to 
perform work requested of the class, or the support of forward progress (that is, 
moving work started on an object running on a system which subsequently failed to 
another system on which another replicant of the object exists). We anticipate that 
our work will provide a firmer design for the interface needed with the job 
scheduler. 

2.5 The Object Filing System 

We are currently investigating methodologies for resilience in action/object 
systems in the course of the design of the object filing system (OFS) for Clouds. 
The replication scheme which we are currently considering in support of availability 
will require heavy interaction between the manager for a replicated object, the job 
scheduler, and the OFS. The OFS should: 

• be resilient and highly available (through replication); 

• provide a mapping from object names (strings) to Clouds object capabilities; 

• impose some familiar structure (e.g., a Unix-like hierarchical structure) on the 
flat, global system name space provided by the Clouds object manager; 

• provide efficient forms for the most common types of I/O (such as text I/O) 
without the necessity of the context switches which would be required if such I/O 
were modelled with Clouds objects. 

In the OFS, an object name may represent a group of objects (the set of replicas 
of a replicated object), rather than a single instance. We intend that this mechanism 
should be, in general, transparent to the user (although special-purpose 
applications—such as DBMSs—may require that, in addition, finer control of 
replication be available than that provided by a general mechanism). 

To test this conjecture as well as the possibility of deriving replicated objects 
from single-copy versions, we have been occupied during the previous few months 
with the specification and implementation of a single-copy version of a prototype 
Object Filing System (OFS) for Clouds. (A much-simplified version of an OFS-
called the NameServer—supporting a flat name space has already been implemented 
in the Clouds system, while the current OFS effort will support a hierarchical name 
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space.) This effort involves the specification of the synchronization behavior of the 
single-copy OFS object via a lock compatibility matrix. We will compare the graph 
derived from this specification with the quorum-intersection graph appropriate to the 
same set of operations. Also, now that the specification of the single-copy OFS 
object is complete, we are testing our idea of extending the single-copy version to a 
replicated version by allowing the locks specified for the single-copy version to act as 
"distributed locks" (where information about locks granted or released by a replica 
on one node is communicated to the other nodes where replicas exist by the Clouds 
object manager). A "distributed lock" may be viewed as a manager for gathering a 
quorum for a given operation; the synchronization behavior thus achieved should 
reflect that specified for the single-copy version, with no additional effort on the 
programmer's part. 

2.5.1 Overview of the OFS Design The prototype OFS design involves a hierarchical 
nesting of "OFS" objects, each of which maintains knowledge of its immediate 
ancestor in the hierarchy. (Here, by "nesting" we mean "logical nesting," as 
described above.) The children of an OFS are stored in and accessed through a 
symbol table object nested in the OFS. The design of the symbol table object has 
been described in one of our publicationsjLemasl the locking structure of the symbol 

table object was described briefly in our last report. (We have already investigated 
the recoverability properties of the symbol table object; the recoverable version of 
the symbol table is described in the publication mentioned above. Also, we have 
developed a replicated version of the symbol table object using techniques somewhat 
different from those we are using on the OFS object. However, we will be 
ultimately using the recoverable, non-replicated version of the symbol table object in 
the OFS, leaving the implementation of replication at the level of the OFS object.) 

This logical structure of the OFS object is represented graphically in Figure 5 (a). 
Here, the internal structure of the OFS object is shown, with its nested symtab 
object, which may have capabilities (represented by arrows) to other OFS objects as 
well as non-OFS objects. In Figure 5 (b), an example hierarchy constructed with 
OFS objects is shown. Here, an OFS object is represented by a single object (hiding 
its internal structure). The OFS objects in the hierarchy are shown as icons with no 
pattern fill, while non-OFS objects are filled with a pattern. 

The interpretation of user commands to the OFS is handled by a rudimentary 
"shell" process, which accepts Unix-like pathnames and translates them to 
operations on an OFS or invocations of Aeolus processes. The "shell" process 
maintains knowledge of the root of the OFS hierarchy, as well as the "current" OFS 
(corresponding to the "current working directory" in Unix), and (for efficiency 
purposes) the ancestor of the "current" OFS. 

The synchronization mechanism already in place in the nested symbol table 
objects suffices for the synchronization of the OFS objects as well. This simplifies 
the analysis of the compatibility matrix/quorum intersection graph relationships, 
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Figure 5. OFS Structure 

since the symbol table object has fewer operations than the OFS object (five as 
opposed to elevens operations), and thus fewer interactions among the object's 
operations, yielding simpler compatibility matrices. Since the symbol table object 
synchronization involves two locks at differing levels of granularity, we are 
investigating how such locks relate to quorum intersection graphs when the latter are 
extended to multiple levels of granularity. 

2.5.2 Detailed Discussion of the OFS Object The Aeolus source code for the Object 
Filing System and supporting objects is given in Appendix B. For each object, both 
a definition part (with extension ".def") and an implementation part (with extension 
".imp") appear; the source code for an Aeolus process is given the extension 
".pro". These objects include the OFS object itself (OFS), the symbol table object 
mentioned above (symtab), the shelflike driver process (shell), and a supporting 
object which performs parsing of command lines (Names). 

1. The original interface of the OFS object had eleven separate operations. The OFS definition recently has been 
redesigned to consolidate six of these operations having a common interface into a single operation, called 
general op; this definition is included in Appendix B. However, if locking were taking place in the OFS object, 
each different function of general op might require a separate locking mode. Thus, the effect would still be of 
eleven separate operations on the OFS. 



All of the Aeolus objects in the versions mentioned above are defined to be local 
objects, that is, objects which do not use the Clouds object management facilities, 
but rather are supported by the Aeolus runtime system alone. A major difference 
between local objects and true Clouds objects is that each Clouds object exists in its 
own virtual address space, while a local object exists within the address space of the 
object or process which instantiates it. (Thus, a local object may be regarded as 
being physically nested within its instantiator, as well as being logically nested, as are 
Clouds objects.) As a result, although a local object may not be accessed outside of 
its instantiator, nor persist beyond the instantiator's lifetime (as may a Clouds 
object), there may be less overhead involved in access to a local object than there is 
with a Clouds object, which involves interaction with the kernel's object 
management system and the mapping of the invoked object's virtual address space. 

Although these objects are shown in their local object versions, the Aeolus 
language allows the programmer to convert such objects to true Clouds objects with 
relative ease. All that is involved to convert the objects shown to yield (non-
resilient) Clouds objects is to change the keywords local object to nonrecoverable 
object in the definition parts of the appropriate objects. Note that no changes to the 
implementation parts of these objects are required. 

It is sometimes more difficult to change a non-Clouds object or a non-resilient 
Clouds object to a resilient Clouds object. Again, this change is possible with the 
change of a single keyword, in this case from nonrecoverable object to 
autorecoverable object. However, an autorecoverable object may often be 
inefficient, since this involves making the entire persistent state of the object 
recoverable, and thus each action touching such an object will get a new version of 
the complete object state. Attempted use of automatic recovery (as well as 
recoverable areas in general) may also be unworkable if the object in question keeps 
some of its persistent state in the non-permanent heap. Placing pointers into the 
non-permanent heap into a recoverable area does not make the memory which these 
pointers reference recoverable; the effect would be analagous to attempting to make 
a book recoverable by making a spare copy of its index: if the book is destroyed, 
having a backup copy of the index does not suffice to reconstruct the book. What is 
needed is that the portion of the state which, in non-resilient objects, is kept in the 
non-permanent heap, must be kept in the permanent heap in resilient objects. This 
requires some recoding of non-resilient object versions, since such objects have no 
support for the permanent heap; only recoverable objects have permanent heap 
support available. 

The OFS object requires little reorganization to be made into a resilient object. 
Essentially, the only state which requires recovery are the OFS's knowledge of its 
current pathname and the capability to its nested symtab object. If the symtab object 
itself is to be made recoverable, on the other hand, extensive rewriting is necessary, 
since a major portion of its state is kept in the heap. Thus, in Appendix B we also 
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show a resilient version of the symtab object (called r_symtab) which makes 
extensive use of the per-action variable and permanent heap contructs of Aeolus to 
simulate the effects of recoverable areas at possibly significantly reduced overhead, 
as well to allow resilient structures to be allocated dynamically. 

Since the symtab object nested in an OFS may be of a different object 
classification than the OFS object in which it is nested, there are several useful 
combinations of differing OFS and symtab versions. 

TABLE 1. Feasible Internal Organizations of OFS 

OFS 	 symtab 
object classification 

non-resilient 

local local 

nonrecoverable local 

nonrecoverable nonrecoverable 

resilient 
recoverable (permanent) local 

recoverable recoverable 

Those combinations which are considered "reasonable" are shown in Table 1. 
These combinations are grouped into those which yield non-resilient objects, and 
those which yield resilient objects. For example, the first combination in this table is 
of the local object version of OFS with a nested local object version of symtab, 
yielding a non-resilient OFS object. Some theoretically possible combinations have 
been omitted from this table as not being useful. For instance, it would be possible 
to nest a recoverable version of symtab in a nonrecoverable or even local version of 
OFS, but the result would be non-resilient, since a crash of the OFS object could 
result in it losing its state, including its capability to the nested symtab object. This 
combination would thus be wasteful because of the overhead involved in the 
recoverable version of symtab. 

The combinations listed in the table have also been represented graphically. The 
combination of an OFS object and a symtab object, both of which have been 
generated as Clouds objects (either nonrecoverable or recoverable), has already 
been represented in Figure 5 (a). The combination of OFS and symtab where both 
are non-Clouds (local) objects is represented in Figure 6 (a); here, the local OFS 
object is shown physically nested within the shell process. The combination of a 
Clouds OFS object with a nested non-Clouds (local) symtab object is represented in 
Figure 6 (b); in this case, the shell process contains a capability to the OFS object, 
which is thus logically nested within the shell process. 

Of the non-resilient combinations, perhaps the most interesting are that 
combining local versions of both OFS and symtab, as well as that combining the 
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Figure 6. Alternate Internal Organizations of OFS 

nonrecoverable version of the OFS with the local version of symtab. At least for 
testing purposes, the use of a non-Clouds version of OFS is feasible (even though 
the filing system root would thus be a non-Clouds object) because Aeolus processes 
actually reside in "lightweight" Clouds objects called ProcessManagers. Thus, the 
shell process for such a combination would maintain the filing system in its persistent 
state. The combination of nonrecoverable versions of both OFS and symtab would 
probably have no advantages over the nonrecoverable OFS / local symtab 
combination; indeed, the overhead of the Clouds system involved in access to the 
nonrecoverable version of symtab would most likely be a disadvantage for the 
former combination. However, it should be useful to compare the actual 
performance of these two combinations to see if this is the case. 

In fact, the implementation of hierarchical directory structure using nested 
nonrecoverable OFS objects requires at least one invocation of a different Clouds 
object for each nested directory in a pathname. As mentioned above, under the 
prototype implementation of the Clouds kernel, a Clouds object invocation involves 
mapping that object's virtual address space into user space. We have little 
experience yet with the effect of this implementation of object invocation on 
performance. With the combination of the local versions of the OFS and symtab 
objects, however, we avoid invocations of Clouds objects during traversal of the 
directory structure. However, as presently designed, this version of the OFS is not 
practical except for testing purposes, since each instance of the shell process would 
get its own copy of the process state (and thus of the complete OFS); thus, changes 
made in the OFS in one instance of the process would not be available to other 
instances. (That is, one user would not see changes made by another user.) 
Removing this problem would require making at least the root of the OFS a Clouds 
object with a well-known capability, even if the rest of the OFS hierarchy consists of 
local objects; this dichotomy between the root OFS and the nested OFSs would 
introduce a new set of problems. However, we feel that comparison of the two OFS 
combinations will be a valuable study in the methodology of programming under 
Clouds. 

- 13- 
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The first of the two resilient combinations in the table bears some explanation. 
Here, a local version of symtab is nested in a recoverable version of OFS. 
However, in the recoverable version of OFS, the variable holding the capability to 
the instance of symtab is declared to be permanent; for a local object, this means that 
the state (data area) of that instance of the local object will be allocated in 
permanent storage. Invocation of the modify operations of such a local object is 
restricted to toplevel precommit time; however, examine operations may be invoked 
at any time. Such a combination would require some rewriting of the OFS object 
(not shown here) to avoid violation of this restriction. (The above restriction does 
not apply to a Clouds object instance, even if the variable holding its capability is 
declared to be permanent; in any case, such a declaration has no effect on the 
allocation of the state of a Clouds object, since that state is in a separate virtual 
address space.) 

2.6 Status and Comparison to HOPS 

In this section, we provide an overview of the status of our work on 
programming methodologies, and compare this work (in its context of the Clouds 
system) to the related project at Honeywell, Inc. 

2.6.1 Status of the Research Our understanding of the problems involved in 
replicating objects of arbitrary structure has increased during the past year, in part 
due to the research into naming schemes described earlier in this report, and also 
due to the development of the replicated action scheme, which is described below in 
relation to the work at Honeywell. Given one of the naming schemes which we 
have developed, we now understand how to use the cloning method of propagating 
state among replicas of an object without losing information about the internal 
objects of the replicas. The matter of which of these naming schemes is more 
appropriate for use in the Clouds system is now being considered in the context of 
the needs of the replicated action scheme. 

During the preceding few months, we have completed the design and 
implementation of both the nonrecoverable and the recoverable versions of the 
Object Filing System. We have also done extensive work to the Aeolus compiler 
and runtime system to allow testing of the OFS as a collection of Clouds objects 
under the control of the Clouds kernel. Testing of the nonrecoverable version of the 
OFS now awaits only the implementation of Clouds kernel support for locks by 
members of the kernel team, which should require relatively little effort. Then, we 
will be able to determine the performance penalty imposed by Clouds objects in this 
version of the OFS in comparison to the OFS version using (non-Clouds) local 
objects. Testing of the recoverable version of the OFS awaits the full 
implementation of action management by the kernel team. 

In the meantime, the OFS design is serving as a case study in the methodolgy of 
replicating both objects and actions in Clouds. We have investigated how Herlihy's 
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results for determining quorum intersections for the operations of an abstract data 
type may be applied to the compatibility matrices associated with Aeolus/Clouds 
locks, as described earlier in this report, and have developed the concept of a 
distributed lock which is conceptually shared among the replicas of an object. The 
extension of the single-copy version of the OFS to a replicated version is sharpening 
our intuition as to how the relation between Herlihy's quorum intersection graphs 
and our compatibility matrices may be extended to multiple locks in the same object. 
Also, during the preceding year a scheme has been developed for replicating actions 
to achieve fault tolerance (described below); the OFS is serving as a testbed to test 
these ideas. 

2.6.2 Comparison to the HOPS Project The Honeywell Object Programming System 
(110PS)[}1°ne86] under development at Honeywell, Inc., has research goals similar to 
those of our methodology research. The stated goals of the HOPS project are: 

• to alleviate what is seen as a lack of experience in the field of distributed systems 
in implementing mechanisms which perform failure detection, failure recovery, 
and resource reconfiguration; 

• to provide programming support for developing fault -tolerant distributed 

applications; and 

• to assess the actual benefits and costs of such mechanisms in terms of 
performance, reliability, and availability. 

Thus, it is clear that the research involved in the HOPS project closely parallels our 
research, in the course of which we hope to rectify what we feel is a dearth of 
experience in programming for fault-tolerance in object/action systems, yielding a 
framework in which fault-tolerant servers may be constructed in Clouds. 

HOPS consists of an implementation language derived from Modula-2 together 
with a distributed runtime support system. The language requires that HOPS objects 
(or HOPjects) be specified in three parts: an interface specification, a body (or 
implementation specification), and a fault-tolerance specification. In the latter, the 
programmer may specify attributes and policies relating to recovery, concurrency 
control, and replication which are to be used for that object, thus giving the 
programmer a choice among several mechanisms provided by HOPS in each of these 
areas. The distributed runtime system (together with the underlying host operating 
system) provides facilities for naming and addressing objects, communication, failure 
detection and recovery, local and distributed transaction management, concurrency 
control, recovery, and replication. HOPS is currently being implemented on a 
network of Sun-3 workstations under the Sun version of Unix 4.2. 

Mechanisms for achieving fault-tolerance in HOPS include the disti-ibuted 
recovery block (DRB) mechanism and distributed conversations. (The recovery block 
and conversation mechanisms are described in detail in a book by Anderson and 
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Lee[Ande81] as well as in the HOPS report cited above.) Basically, the combination of 
the DRB and conversation mechanisms provide fault tolerance by what is essentially 
"software modular redundancy." Processes at two or more nodes execute one of a 
set of differing sections of code (called try blocks) which implement the same 
specified function; the results of these try blocks must pass the same acceptance test 

(possibly with majority voting), or the participating processes are rolled back to a 
checkpoint (called a recovery line) and retry the computation with their alternate try 
blocks. Thus, both fail-stop and some Byzantine-style failures may be detected and 
tolerated by this scheme. 

In conjunction with other researchers in the Clouds project, we have been 
examining a new scheme for fault tolerance. In this scheme, we replicate not only 
objects (data) but also actions. Each of these replicated actions runs as a nested 
action and has its own thread of execution, each of which is referred to as a parallel 

execution thread (PET). An introduction to the PET scheme is given in a paper co-
written with the other Clouds researchers,[] which is attached as an appendix 
to this report. Briefly, the PET scheme sets up several parallel, independent actions, 
performing the same task, using a possibly different set of replicas of the objects in 
question. These actions follow different execution paths, on different sites, but only 

one of them is allowed to commit. The states of those objects touched by the 
committed action are then cloned to the other replicas of those objects. 

Together with other researchers in the Clouds project, we are currently involved 
with designing the lower level algorithms and modifying the Clouds action 
management scheme to implement the PET scheme. At a higher level, we are also 
considering other implications of the use of replicated actions for providing fault 
tolerance. We believe that our research on replicated actions complements the DRB 
/ distributed conversation approach taken in HOPS; for instance, it is not difficult to 
implement the recovery block mechanism in terms of the action facilities provided 
by Aeolus/Clouds. Comparisons of the results obtained by these two approaches 
should prove of interest. 

3. Action -Based Programming for Embedded Systems 

3.1 The Problem 

Programmers and programming teams frequently adopt conventions which 
constrain program structure and which standardize the strategies for coupling 
components and controlling execution. While such conventions are, in principle, 
unnecessary, well chosen conventions will help a programmer conceptualize his 
work. By following agreed upon conventions, furthermore, a programmer will 
produce a program text which can be read, understood, and checked by his 
colleagues. A study of the history of programming languages reveals programmers 
have developed pseudo-code for expressing some of the more useful conventions. In 
many cases it has been practical to process the pseudo-code algorithmicly; this may 
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be done by means of a pre-processor which checks the pseudo-code or translates it 
into a language for which a compiler is available. In a few cases the conventions 
have proved so useful constructs supporting them have been included in newly 
designed programming languages—this has been the case with subroutines, user 
defined data types, software modules, exception handlers, and more recently, with 
objects and actions. The handbook described herein will consider possible 
programming conventions, and supporting language constructs, for building fault 
tolerant software for applications in which some operations may be irreversible. 

Large systems, such as the command and control systems required for many 
military applications, are likely to perform complex missions; the overall system will 
be multifunction—some functions involving human/computer interaction and others 
the control of some mechanism or process. Such large systems are likely to be 
distributed and to incorporate as subsystems databases, operating systems, real-time 
control systems, graphics programs for data acquisition and display, and various 
tools for monitoring, maintaining, enhancing and tuning the system. A system of 
such complexity may involve millions of lines of code, with individual subsystems 
each accounting for as much as ten percent of the total. 

Systems this large cannot be expected to be without flaw. Inevitably there will be 
errors in the requirements analysis, systems architecture, and in the design and 
coding of components. These errors will, from time to time, manifest themselves in 
the operation of the system, and a fault is said to have occurred. When the chain of 
events stemming from the fault effects system functionality or performance as 
perceived by human users or client systems, a failure is said to have occurred. Often 
considerable time will have elapsed between the fault and a resulting failure. The 
failure may be the cumulative effect of a number of faults. 

In a fault tolerant system, it is possible to detect, sooner or later, the occurrence 
of a fault. On detecting the fault, a fault tolerant system will attempt to intercept 
the ensuing chain of events by: 

1. containing the consequences of the fault and preventing the fault from 
"infecting" other portions of the software; 

2. attempting to "repair" the damage done by the fault before it could be 
contained. This includes attempts to mitigate the effects of the fault on system 
function and performance; and 

3. addressing the fact that an error has been uncovered in the system. Depending 
on the nature of the error and the fault it has caused, any of a variety of 
corrective measures may be deemed appropriate. 
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The programming techniques, software designs, and operating philosophies 
which can be used to implement these measures will be described in the 
handbook. Several are illustrated in the last section of this report. 2  

Many large software systems run on dedicated computers or, as is likely, on a 
dedicated network of computers. In dedicated systems much of the support normally 
provided by a general purpose operating system is instead provided by the software 
system itself. This is often done in order to satisfy various standards related to 
system performance. A large software system can be thought of as having two 
layers. An external, applications layer consists of the software which provides 
services to the system's clients—perhaps human, perhaps not. An internal, systems 
layer provides the applications layer with an interface to the underlying 
computational resources and, in doing so, takes on much of the responsibility for 
managing those resources. The systems layer may provide such services as file 
handling, telecommunications, access control, and management of such resources as 
memory, processing units, and peripherals. It can be argued that it is most 
important to provide fault tolerance in the systems layer because failures there may 
not only compromise the system's ability to perform certain functions, but may cause 
the system to shut down entirely. 

Fault tolerance is most critical in the internal, systems layer. Since a systems 
routine may support all of the applications, a failure there can compromise many or 
all of the system's functions. Faults in the external applications layer will generally 
compromise one or at most a few functions. 

The Clouds system represents the results of several investigations into the 
problems of constructing reliable, distributed systems. Among the goals of the 
Clouds project is that of contributing some fundamental insights into the problem of 
structuring large, multifunction systems in a distributed computing environment. Of 
special interest are the problems of establishing fault tolerance in a system which is 
"open," i.e., programmers may readily enhance, extend, optimize, tailor and 
otherwise maintain applications and systems services. Clouds also allows a 
substantial amount of data and code to be shared among applications and among 
service routines. This sharing is accomplished by encapsulating the shared data and 
code within persistent objects. In contrast to most open systems, Clouds is a multi-
user/multi-application system, and this presents a number of problems in in 
extending and maintaining shared objects. Strategies must be developed which allow 
programmers to perform maintenance without interrupting service to clients and 

2. The examples found there emphasize recovery techniques which are appropriate for coping with actions which 
fault or abort after performing an irreversible operation. The last example illustrates how a programmer may 
actually simplify the structure of his software by declaring certain operations to be irreversible along with 
providing appropriate means of recovery. 
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which prevent errors in one application or systems level service routine from 
corrupting the data and code used by others. Maintenance within this environment 
will also present complex problems in version control; in particular, maintenance 
may result in various system components having different expectations regarding a 
shared object's interface and semantics. Fault tolerant designs are needed if clients 
are to be protected from programming errors in general and the problems of 
inconsistent versions in particular. In the absence of such fault tolerance, errors in 
the way objects are constructed or interfaced could result in a cascade of failures 
across the entire system. 

For many of the situations which can be expected to arise in a Clouds like 
environment the conventional techniques for achieving fault tolerance, such as roll 
back/retry, will be inadequate: the operation which faulted may have also caused 
irreversible changes in the state of certain non-recoverable objects or in the systems 
being controlled. The final results of the investigation will address the problem of of 
achieving fault-tolerance in the presence of such irreversible operations. 

The techniques related to this task can be divided into three fundamental classes: 

1. mechanisms for preserving information regarding irreversible operations which 
may have been performed within an otherwise atomic action; 

2. strategies for using the information so preserved to construct a consistent and 
correct state from which computation can be resumed; and 

3. new programming techniques, system designs, and operating philosophies 
made possible by the availability of an enriched set of means for achieving 
fault tolerance. 

3.2 Fault Tolerance and Atomic Actions 

The Clouds system and its programming language Aeolus incorporate the concept 
of atomic action in a fundamental way. An atomic action is one which executes 
completely or not at all; it is not visible in a partially executed state. In 
incorporating the concept of "irreversible operation" into this model of computation, 
the concept of an atomic action has required some revision. While the notion of 
"atomicity" has remained unchanged, that of "complete execution" has been 
modified. In the original model an action encountering a fault was required to abort 
and was regarded as having never occurred. This usually entailed rolling the state of 
the computation back to what it was before the action began executing. The revised 
model is as follows: now, if an action encounters a fault and attempts to abort it 
may either be rolled back or forced to completion. When forced to completion it 
has a choice of either terminating "normally" or "abnormally." In the revised 
model of computation, an exception handler has been posited for Aeolus. 

In figure 7 action B is nested within action A. The recovery mechanism may 
terminate B normally or abnormally. Normal termination of B permits either 
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Backward recovery 
returns control to 
this point 

Forward Recovery 
returns control to 
this point ----------------- 

Action B aborts 
- ----- here 

Recovery resulting 
in abnormal termination 	 BeginExceptionHandiers(A) 
of B, restarts A here 

EndExceptionHandlers(A)  

Figure 7. Resuming Computation Following Recovery 

forward or backward recovery. Abnormal termination of of B causes control to pass 
to one of A's exception handlers. 

B also may terminate either normally or abnormally even if it does not abort and 
then recover. 

Under the revised model of computation the appropriate recovery strategy 
depends, in large measure, on where the fault is detected. An action may: 

1. detect an error in its input. If art operation discovers error in its input data, it 
should be rolled back. The parent action, on being informed of the failure, 
should either attempt to fix the problem or otherwise compensate for the 
failure. If this is not possible it should fail itself; 

2. detect an error in its own computation, i.e., an internal error. Even if an 
action reports an internal error, the parent action may decide the problem was 
incorrect input. In this case the parent action should proceed as above. If, 
however, the parent action agrees the problem was indeed an internal error, it 
should find an alternative means of accomplishing the task or at least attempt 
to contain the error and to provide a reduced level of service; 

3. produce incorrect results. When the fault is discovered, there should be an 
attempt to prevent it from infecting the rest of the software and causing 
additional problems. This may involve setting some flags or otherwise making 
the fact of the failure visible in a consistent manner. 
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Backward error recovery returns control to the point just prior to the beginning 
of the action which failed, after constructing a state which satisfies the program 
invariant at that point. Forward error recover forces an action to complete in the 
sense that control passes to a point just following the end of the failed action. While 
forward error recovery may not provide an alternative means for carrying out the 
action, it should construct a state which permits the remander of the program to 
execute correctly. In some circumstances the recovery mechanism must not only 
construct a state which satisfies the invariant, it must also adjust that state to reflect 
changing conditions over which it has no control, e.g., the passing of time or the 
occurrence of an irreversible event. Irreversible events are usually understood to be 
physical events but may also refer to aspects of the state of the computation which 
cannot be modified by the recovery mechanism. 

These strategies may be used to contain the consequences of the fault, repair the 
damage it caused before detection, and attempt to prevent the error from causing 
faults in the future. There are several approaches available: 

1. "repairing" the data corrupted by the fault. The may involve restoring the old 
values, calculating new values, or setting flags which will tell other components 
not to trust the data and to do its calculations another way; 

2. altering control information so that other components will not use or propagate 
the corrupted data, to prevent subsequent operations from executing the code 
containing the error, to force execution down paths which will compensate for 
the fault and its consequences; 

3. in the extreme the recovery mechanism may calculate values and set control 
flags in preparation to cutting over to a backup system or a reduced level of 
service. In practice, this may be the most commonly used approach. 

3.3 Degrees of Fault Tolerance 

A large software system will almost certainly contain errors at the time it is 
placed into service. While software maintenance will remove those errors as they 
are uncovered, efforts to alter and enhance the software will inevitably introduce 
new errors. Software errors must be considered an inexhaustible source of faults 
and it is necessary to design large systems so as to tolerate a variety of software 
errors. This task is made difficult because the exact nature of the errors can not be 
anticipated by the programmer. 3  Often fault tolerant techniques cannot fully correct 
for the consequences of the error and must apply other strategies in an attempt to 

3. If the programmer had a complete and accurate understanding of the errors in his Program, he could fix them 
before the software is placed into service! 
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achieve less ambitious goals. 

There are other sources of faults besides errors in the architecture and coding of 
the software. Unlike software, hardware components do wear out, and as they fail, 
they will inevitably produce a second class of faults. 

A third class of faults will arise because of inadequacies in the models used to 
describe the systems which interact with the software—loads (e.g., transactions per 
second) may not be as expected, or a system may enter a state not anticipated by the 
software designers (e.g., a components in the physical system may interact in 
unexpected ways or may be forced to operated at or beyond designed capabilities). 

as 
specified 

system 
performance 
funagmaiity 

crashed 
before 	during 	 after 
the fault 	the fault 	 the fault 

time —0. 

Figure 8. Degrees of Software Fault Tolerance 

Figure 8 shows some of the possible fates which may await a software system 
following a fault. The numbers correspond to the degrees of fault tolerance listed 
below. Recovery may be complete (1 and 2), though 2 shows some temporary 
degradation in performance or functionality. Other times it may be necessary to 
allow some degree of long term degradation (3) in performance or functionality. 
While the fault may be detected, recovery may not be fully successful (4 and 5), and 
the resulting cascade of faults may result in progressive system failure. If the fault 
goes undetected (6), catastrophic failure may ensue. 

Several degrees of software fault tolerance can thus be distinguished: 

1. software fault is detected and corrected before system performance is impaired; 

2. software fault is detected and compensated for. While anomalies in system 
performance may be detected, mission objectives are not jeopardized; 
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3. software fault is detected but cannot be corrected or compensated for. 
Recovery operations result in reductions in system performance but in a way 
which does not cause faults in other elements of the system. Human 
intervention may be required if all mission objectives are to be achieved; 

4. software fault is detected and while it is contained and will not cause further 
software errors, elements of the associated physical systems may no longer be 
adequately controlled. Without human intervention, physical components may 
fail and this in turn may cause further software faults. Human intervention is 
required if primary mission objectives are to be achieved. Secondary mission 
objectives may be compromised; 

5. software fault is detected but cannot be contained. A cascade of software faults 
will result in system failure. Primary mission objectives will not be met unless 
alternative command and control procedures are available; 

6. software faults are not detected. Success of the mission depends on the 
correctness of the system and whether the structure of the software is such that 
the consequences of software faults will be adequately contained. 

When human intervention is required, that intervention may take any of several 
forms. The human may assume some of responsibilities previously assigned to the 
software: this may require the human to interface with lower level software modules 
directly. In such a case "recovery" is the process of making a graceful transition 
from automatic to semi-automatic control and may involve shutting down the failed 
software system in a graceful manner and the proper initialization of displays and 
other elements of the human/computer interface. 

Alternatively, the human may be responsible for "repairing" the faulting system. 
In this case the human must be presented with information about the fault and with 
the tools for carrying out the repair. A repair may involve reassigning the 
responsibilities of the faulty software component to other components capable of 
providing the necessary services, though perhaps in a less than optimal manner. The 
repair might also be a matter of adjusting some parameters or other state 
information and enabling the faulty component to resume operation. The ideal, but 
rather unlikely, repair would involve locating and fixing the software error during 
the mission. 

In all cases, the recovery mechanism should log information about the fault so 
programmers can, after the mission, locate and fix the underlying error. 

3.4 A Mechanism for Fault Tolerance 

In environments such as Clouds, data is shared among applications by means of 
persistent objects. An object encapsulates both the data desciibing its state and the 
operations which reference or alter that state. These operations may also invoke 
operations on other, distinct objects. 
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Within Clouds and Aeolus, the associated programming language, a distinction is 
made between recoverable and nonrecoverable objects. This distinction provides a 
means for to incorporating irreversible operations into the Clouds model of 
computation. Interactions with physical systems can be embedded within 
nonrecoverable objects. The data area within such an object will include sensor 
registers (read only) and command registers (write only). Object entry points which 
write to command registers will be regarded as irreversible. As a pragmatic issue, 
these lowest level, irreversible operations should be very simple in structure. If the 
entry point which performs the irreversible operation must be complex, then it 
should contain simpler, nested actions which actually perform the irreversible 
operation. 

Actually, not all writes to command registers should be regarded as irreversible. 
At the lowest level, irreversible operations cause a state change in a nonrecoverable 
object or, of interest here, in a physical system. 

3.4.1 Actions The fundamental unit of work is the action. The notion of action 

described here is only partially implemented within Clouds and represents an 
extension of the notions underlying that system's design. If an action notices a fault 
has occcurred, it may attempt to abort. If an action faults, i.e., it divides by zero, 
and this is noticed by the runtime system, an attempt should be made to locate an 
appropriate exception handler within the action. If none is found, the runtime 
system should abort the action. The exception handler may also force the action to 
abort. When an action aborts, recovery is initiated. The recovery mechanism 
employs event handlers and exception handlers. The event handlers guarantee that 
certain minimal recovery steps are taken. 'The exception handlers, while providing 
no such guarantees, give the programmer an opportunity to employ some additional 
and more specialized steps as part of the recovery process. A detailed description of 
the recovery mechanism provided in the next subsection. 

An action defines a sequence of operations on program data visible to it (in 
Aeolus static scoping rules are used) and on objects for which capabilities are known. 
An action should have simple, well defined semantics. By explicitly showing the 
boundaries of an action, the programmer makes it possible for the programming 
language's run time system, the operating system, and other sources of run time 
support to manage the action and its execution as a well defined unit. In particular, 
it provides a focus for such support activities as concurrency control and, of interest 
to the present discussion, fault tolerance. By adopting suitable programming 
conventions, it should be possible to mimic this extended notion of an action within 
the existing Clouds system. 

Actions should be well defined both semantically and textually: the former 
makes it possible to support the action as a unit during execution, and the latter is of 
use to programmers who must construct or maintain programs which incorporate 
actions as a design element. 
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1. Semantically well defined means the action performs a single task which is 
easily described within the overall design of the program; when an action is 
semantically well defined, a programmer should be able to construct invariants 
characterizing the states of the computation both before and after the execution 
of the action. Invariants may "admit" to the possibility faults may occur, i.e., 
they may be of the form "if the action has failed, X must be true; if the action 
has succeeded, then Y must be true." 

If an action faults, the role of the recovery mechanism is to construct a 
consistent state, i.e., a state which satisfies a program invariant, and resume 
the computation at the point associated with that invariant. Backward recovery 
constructs a state which satisfies the invariant preceding the action and re-
executes the action, perhaps using a different algorithm. Forward recovery 
constructs a state which satisfies the invariant following the action an resumes 
normal execution at that point in the code. 

2. Textually well defined means the block of code defining an action is clearly 
marked with BeginAction and EndAction statements. These statements are 
matched statically and must be visible at the same level. Procedures or 
functions may also be declared to be actions, but this is not required. An 
object's entry points, (i.e., operations which may be invoked on an object) may 
be declared to be actions as well. 

Actions, in our terminology, are instantiated each time they are executed. To 
facilitate action management in general and fault tolerance in particular each 
instance of an action is to have a unique name. A data area will be associated with 
each instance. This data area will be partitioned into attributes. Some of the 
attributes can be set by the programmer when defining the action and others can be 
set when an instance of the action is generated. The various routines involved in 
managing the execution of an instance of an action will use the attributes when 
deciding how to handle various situations arising at run time; additional attributes 
may be set to indicate certain situations were encountered during execution or 
certain decisions were made regarding the management of that instance of the 
action. The requirement that names be unique allows each instance of an action to 
be managed separately. There are, however, some technical details associated with 
this naming scheme. 

The programmer will supply a local name for each block of code defining an 
action; these names must be unique within a given name space. The names will be 
extended by prefixing the names of the actions within which it is nested. If several 
instances of an action are generated from the same program text (e.g., an action is 
embedded in a loop) then the names of the instances will be distinguished by 
suffixing an instance number. These naming conventions will make it possible to 
support the concurrent execution of several actions even when they were generated 
by the same piece of code. Associating attributes with the names provides a means 
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by which an executing program can interact with the run-time system an other 
routines supporting its execution. In particular this mechanism can be used by the 
programmer to indicate how an action should be handled if it aborts. The routines 
supporting execution will know, for example, whether forward or backward 
recovery should be used. By setting the appropriate attributes it will be possible to 
indicate that recovery occurred, the methods used during recovery, and any other 
information the program may need to resume proper execution. 

3.4.2 Event and Exception Handlers When an action aborts, it is important to 
preserve information about any irreversible operations it may have performed and to 
use that information in constructing an accurate and consistent state from which 
computation can be resumed. 
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Figure 9. Exception Handlers and Event Handlers Work Together to Recover from 
a Fault 

Some of this recovery can be done automatically but other aspects of it must be 
sensitive to the semantics of the action and the context in which it was executing. 
The process of initiating and carrying out recovery consists of four phases; this may 
be understood with reference to Figure 9. 

1. Recovery is initiated when an action aborts itself or is aborted by the runtime 
system. An action may abort itself when it determines that a fault has occured. 
An action may be aborted by the runtime system if an exception is raised 
during the action's execution and an appropriate exception handler has not 
been defined within the action. Even if an exception handler is invoked, it 
may decide to abort the action. 
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2. An automatic recovery mechanism called an event handler should begin the 
recovery process. The event handler should be sensitive to the attributes of the 
action and may set some of the attributes to indicate the circumstances under 
which the abort (and associated fault) occurred. The event handler should be 
responsible for recording which irreversible operations were executed by the 
action and any other information essential for recovery. 

3. The event handler has the option of passing control to an exception handler 
defined within the aborted action. This exception handler is provided by the 
programmer and should be designed to reconstruct the state of the 
computation. While this exception handler is responsible primarily for 
ensuring that the state of the computation reflects the occurrence of the 
irreversible operations in a consistent manner and terminating the action in a 
"clean" manner. 

4. If the event handler is not able to pass control to an exception handler defined 
within the aborted action or if the exception handler is not able to terminate 
the action in a way which allows computation to continue immediately before 
or after the action itself, it should raise an exception visible to the parent 
action. This gives the parrent action an opportunity to further repair the state 
of the computation and greater control over where computation resumes. If an 
appropriate exception handler is not found withing the parent action, the 
parent action is forced to abort and another round of recovery is attempted. 

Programmers often find it useful to separate alternative paths of execution into 
two groups: those which are available to normally executing programs and those 
which would be followed should various error conditions be detected. This 
distinction is made at a programmer's discretion and usually in an effort to clarify 
the structure of an algorithm. The three phases described above support a 
programmer in his effort to maintain this distinction in his work. 

If an action faults and then aborts, the event handlers would, in the presence of 
irreversible operations, cancel the abort and attempt to terminate the action cleanly. 
An aborted action may still terminate normally if the event and exception handlers 
defined within it were able to find an appropriate continuation. Otherwise, an 
exception signaling abnormal termination would be propagated into the parent 
environment. The action is regarded as terminating abnormally, if an appropriate 
exception handler cannot be successfully invoked. Depending on circumstances then, 
the recovery activities may be carried out either by event and exception handers 
defined for the action or by the parent environment. In this latter case, the event 
and exception handlers must at least propagate enough information into the parent 
environment, for it to recognize and execute the proper continuation. 

If an action contains several operations which are potentially irreversible, it is 
necessary to distinguish between those which have and have not occurred. An 
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attribute will be associated with each occurrence of a potentially irreversible 
operation. The attribute will serve as a flag indicating the execution state of the 
action. The flag is clear if its associated operation has been instantiated but has not 
become irreversible. The flag is set once the operation becomes irreversible. This is 
all done automatically by the event handler. 

Some of the conditions discussed above present an unfortunate complication: it 
may become necessary for the recovery mechanism to deal with a partially 
completed, irreversible action, e.g., an irreversible action fails along with its 
associated exception handler and the exception handler in the calling environment. 
The system of naming actions and associating attributes with them, will allow higher 
level event and exception handlers to perform recovery by inspecting, perhaps 
recursively, the flags for the irreversible operations and actions within the hierarchy 
of nested actions. 

The flags used to record the occurrence, or non-occurrence, of irreversible 
actions and operations may also be used to propagate that information into the 
calling environment. By this means, it is possible to provide the minimum amount 
of information required by an exception handler dealing with an abnormally 
terminated action. 

Within Aeolus an event handler is invoked when an action aborts. Default event 
handlers are provided by Aeolus, but it is also possible for programmers to supply 
their own. A programmer supplied event handler is intended to be sensitive to the 
semantics of the action to which it is attached. If a programmer makes an error in 
coding an event handler for aborts, it may not be possible to contain the 
consequence of the fault. The alternative proposed here is to augment the event 
handler with an exception handler: the event handler has only limited functionality 
but provides a guarantee that it will execute without faulting, whereas the exception 
handler provides the programmer with greater control over the recovery but offers 
no guarantees about immunity from faults. The event handler will carry out the 
initial stages of recovery and will insure that information about irreversible 
operations is propagated outside the boundaries of the failed action. The event 
handler will be sensitive to the attributes of the action; indeed, the programmer's 
only means of specifying the semantics of the event handler will be by means of 
those attributes. While the event handler will ensure the minimum necessary 
information will survive an action's abort, the associated exception handler will have 
the initial responsibility for using that information to construct an appropriate state 
from which to resume computation. 

3.4.3 Using the Mechanism We can distinguish a number of strategies for achieving 
fault tolerance simply by considering alternative mechanisms for constructing a state 
from which normal computation can be resumed. 
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I. Backward Recovery 

A. Roll back using 

1. recovery blocks 

2. logging (e.g., undo/redo logs) 

B. Roll back but exempting certain data areas 

1. require that the programmer declare which data areas are exempt 
from roll back 

2. let the decision as to which areas are exempt form roll back be made 
at the time recovery is attempted 

C. Roll back, exempting certain data areas from roll back and doing some 
additional computation (e.g., event handlers, exception handlers) to 
complete the reconstruction of the state. 

1. let the additional computation reference the rolled back state 

2. let the additional computation reference only state as it was before 

roll back 

3. let the additional computation reference both the states which 
preceded and following roll back. 

II. Forward Recovery 

A. Forward recovery by using event and exception handlers to complete the 
action's execution 

B. Forward recovery by using event and exception handlers but allowing 
certain data areas to be rolled back to the state they had before the action 
began 

1. controlling the decision as to what data areas will be rolled back 

a. require that the programmer declare which data areas must be 
rolled back 

b. let the decision as to which areas will be rolled back be made 
at the time recovery is attempted 

2. decision as to what data, may be referenced when computing 
recovered state 

a. let the additional computation reference the recovered state 

b. let the additional computation reference the state as it existed 
just prior to roll back. 
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c. let the additional computation reference both the states 
preceding and following roll back. 

III. Transferring control to some location other than immediately before or after 
the action. This may be of some use in cutting over to a backup system or to a 
reduced level of service. 

I.0 and ILB are similar. In both the state is reconstructed through a combination of 
roll back and additional computation. The differences lie in where the computation 
is restarted, either before or after the failed action. The choice should be governed 
by considerations such as which invariant will be easier to satisfy and which makes 
more sense given the way in which the failure fits into the conceptual structure of 
the program. If the action was to fire a weapon and the failure resulted in a misfire, 
there are circumstances in which the appropriate action is to re-execute the action 
and others in which the misfire should be accepted as an outcome of the action. 
Equivalent software can be constructed using either approach. The choice should be 
made by those constructing the software, and they should be guided by a desire to 
keep the conceptual structure of the software as simple as possible. 

For example, it is possible to let the main line of a program be aware that control 

reached a particular point following recovery; from a fault. In the case of the 
misfire example this is the proper course; the program invariants should be explicit 
about the handling of such events. 

The misfire may have occurred for many reasons and and at many points in the 
process of controlling the weapon. Regardless of the point at which the failure 
occurred or the reason, the procedures for coping with it are similar. Fault tolerant 
constructs give the programmer a means of handling the failure in a way which does 
not burden the main fire control algorithm. 

If we succeed in making fault tolerance inexpensive, a programmer can organize 
the software around his understandings of normal and abnormal execution. 

3.5 Irreversible Operations and Fault Tolerance 

Considerable thought must be directed towards the pragmatic issues related to 
using the mechanism described in the previous section. If recovery is to be done 
successfully, it is necessary to deal appropriately with any irreversible operations 
which may have occurred. This in turn requires the recovery mechanism recognize 
that an irreversible operation has occurred. 

3.5.1 Recognizing Irreversible Operations Determining whether an operation is 
irreversible and working out the accompanying implications may not be a simple 
task. Operations may be actions (including object entries), procedures or functions. 

1. At the lowest level, an irreversible operation is one which writes to a command 
register and thereby causes a physical system to change state or which changes 
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state information within a nonrecoverable object. These operations must be 
encapsulated within objects. 

2. If the code for an action includes an irreversible operation, the action is said to 
be potentially irreversible. 

3. If a potentially irreversible action is nested within a second action, the second 
action is also regarded as potentially irreversible. 

4. A potentially irreversible action becomes irreversible as soon as it performs an 
irreversible operation or action. 

All irreversible and potentially irreversible operations must be accompanied by some 
means for terminating the action in the event of failure. At the very least, it is 
necessary to preserve a record of which irreversible operations have occurred. This 
is provided by the mechanism described in the previous section. 

In addition to the algorithmic problem of determing when a potentially 
irreversible operation becomes, in fact, irreversible, there is also the problem of 
defining the primitive, irreversible operations. Primitive, irreversible operations 
may occur in two ways: 

1. operations may be performed on nonrecoverable objects; or 

2. operations may trigger events in unrelated software systems or, more 
importantly, in the physical systems being controlled. 

We can also distinguish several degrees of irreversibility: 

1. operations which cannot be "undone" in the sense that they cannot be rolled 
back but for which an inverse operation exists; 

2. operations which have no inverse but which are compensable; 

3. operations which are not compensable. 

An operation may become more irreversible as its consequences are realized. For 
example, the effects of raising the temperature in some chemical process may be 
reversed by lowering the temperature provided the temperature is reduced within a 
few seconds of being raised. If more time elapses, however, the calories needed to 
initiate the reaction will have been transferred, at which point the operation of 
raising the temperature has become irreversible. Even then it may be possible to 
stop, or reverse, the reaction by other means (e.g., removing the catalyst or adding 
other materials). As the reaction progresses, even such compensating actions may 
not be effective. 

3.5.2 Sources of Faults in Irreversible Operations A general programming strategy 
will be to defer invoking an irreversible operation until all the possible software 
failure points have been passed. Also desirable to put guards on the irreversible 
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operation; these guards will check that the conditions for invoking the operation are 
indeed satisfied. We don't want to unnecessarily invoke an irreversible operation 
just because an ordinary, garden variety software bug, led us down that path or will 
keep us from finishing the job. 

These precautions, however, may not be feasible. Even if they are, they may not 
be sufficient. The precautions may be inadequate because the fault was: 

1. in the computation leading to the invocation of the operation but the 
information needed to verify that computation was not available until after the 
irreversible operation was completed. Perhaps the needed information was 
among that returned by the operation itself; 

2. the result of a sensor error. the sensor error may not be detected until after 
the irreversible operation is completed; 

3. in the irreversible operation itself. The physical system being controlled may 
not respond to a command as expected. This may be because of influences on 
the physical system other than the control software; or 

4. in an operation which uses the results of the irreversible operation but faults 

for other, unrelated reasons. 

The choice of recovery strategy depends, in large measure, on the source and 
type of the fault. The next subsection presents some examples illustrating the range 
of alternative strategies available for different varieties of faults. The present 
subsection outlines many of the possible errors which may lead to faults as well as 
several ways in which faults may manifest themselves. 

Faults may be: 

1. transient or nontransient; or 

2. the cumulative effect of a number of small errors or the result of a single error. 

An error in the interface between control software and the system which in controls 
may be any of several types: 

1. tolerance: software cannot adjust the system finely enough or cannot 
distinguish between two states; 

2. timing: responses to changes in the physical system are not appropriate to the 
time at which they are applied—the response may be too soon or too late; 

3. limits: unexpected response or combination of responses from the physical 
system may drive the software beyond its limits—buffers may overflow, there 
may not be sufficient resources. 

These errors may arise because of errors in the requirements analysis. In particular 
the analytical models used to describe the systems with which the software interacts 
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may have been inadequate. 

Faults in resource management also may arise because of errors in the design of 
the software. Typical faults may include: the unavailability of the required 
resource, the use of the wrong resource, contention for a resource, a race condition 
in getting a resource, a resource not returned to right pool, improper recombination 
of fractionated resources, resources not returned, deadlock, resource use forbidden 
to the caller, resource linked to the wrong kind of queue. One of the purposes of 
internal layer to provide these services in a consistent manner to external level. 
Errors are possible, especially in open systems or where the rules are complex, and 
fault tolerance in this area is required. 

Faults may also arise because of errors in software architecture, especially errors 
that are load dependent. Possible errors include the assumption that interrupts will 
not occur, the failure to block or unblock on interrupts, the assumption that code is 
reentrant or not reentrant, the bypassing data interlocks, the failure to close or open 
an interlock, an assumption about the location of a calling or called routine, the 
assumption that data storage was, or was not, initialized, the -assumption that a 
variable did or did not change value, inconsistent conventions about the the layout 
and management of data or about the propagation of control information. 

Faults may also arise because of errors in a software system's internal interfaces:. 
there may be protocol design errors, format errors, inadequate protection against 
corrupted data, parameter layout errors, inconsistent conventions as to the meaning 
of input or return values. 

Faults may also be caused by errors in coding or in low level logic: a wrong 
operation may be used or missing all together; operations may be in the wrong 
order; cases presumed impossible may, in fact, be possible; loops may terminate an 
iteration too early or too late; cases presumed mutually exclusive may not be, special 
cases may have gone unrecognized; execution paths may be missing or unreachable; 
and loops or conditionals may be nested improperly. 

3.5.3 Recovering Irreversible Operations The purpose of fault tolerant computing is 
neither to fix nor even to precisely identify software errors. Rather, the objective is 
ensure the system continues to function, at a perhaps reduced level of service, in 
spite of any faults which may occur. While complete recovery may be possible in 
some or, perhaps, even in many cases, there will be many others in which there is 
no simple way around the code containing the software error. In such a case the 
recovery mechanism will be charged with cutting over, in a graceful manner, to a 
back-up system or to a reduced level of operation. 

Since it is unreasonable for a programmer to anticipate all the possible faults in a 
software system, he should, instead, provide a recovery mechanisms which is 
appropriate to a broad class of errors or which will cope with any error, regardless 
of its type, within a particular block of code. - 
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Once an action performs an irreversible operation, it must leave the computation 
in a state which reflects the occurrence of that operation. This can be assured 
through the proper use of the recovery mechanism. The recovery mechanism would 
also typically return control to a point just prior to or just following the action. It is 
also possible for the action to terminate "abnormally" and raise an exception in the 
calling environment. A taxonomy of programming techniques, software designs and 
operating philosophies associated with achieving fault tolerance in the presence of 
possibly irreversible operations is being developed. Several broad categories have 
been outlined: 

1. to fix incorrect or corrupted data, or set some control flags which will direct 
execution down alternative paths thereby avoiding the software error which 
caused the fault when the code is next executed; 

2. set up a "retry" using the same or an alternative block of code; 

3. permit computation to continue as it would have had the fault not occurred 
(after adjusting data structures to reflect any irreversible consequence of the 
failed action); 

4. perform the cutover to a backup system, to a reduced level of service or other, 
alternate mode of operation. Accomplishing this may require certain flags to 
be set and data structures modified. 

This class of techniques is a generalization of the smaller class of techniques for 
achieving fault tolerance in the presence of only reversible operations. The first 
example illustrates some of these ideas in terms of an embedded software system 
which controls the firing of several weapons. These weapons have partially 
overlapping fields of fire. A second example involves printing a report, a task 
performed by a wide range of applications both within the military and industry. 
The second example illustrates one way in which a programmer may use the ideas 
related to recover in the face of irreversible actions to simplify the structure of his 
program. 

3.5.4 Fire Control Example. One particular action, the fire control action, is 
responsible for aiming and firing the weapon. This action includes the code for 
operating the weapon and for recognizing any of several possible malfunctions. The 
action also has a means for tracking the particular target assigned to it. Under 
certain circumstances, the action is also responsible for producing a report describing 
the status of the weapon. 

Another portion of the system is responsible for assigning targets to particular 
weapons. Initial target identification and tracking is performed by this part of the 
system. It continues to track a target until a particular weapon accepts responsibility 
for it. The target identification system posts information to an object shared by all 
the weapons. When a weapon needs a new target, it queries this object and 
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identifies what from its perspective is the highest priority target. For example 
targets which are within range of two weapons are of lower priority than a target 
within range of one weapon and whose trajectory will soon carry it out of range of 
any weapon. 

Among the possible faults which might be encountered are a failure in a 
component or its associated driver, corruption of the object from which actions select 
their targets, and corruption of the data needed to determine target priorities. 

Within the fire control action there are a number of operations which are 
irreversible or which may be conveniently regarded as such. The operation of firing 
at the target clearly becomes irreversible at some point. The operations involved in 
aiming the weapon may also be properly regarded as irreversible. After aborting 
the fire control action it is, in principle, possible to return the weapon to the position 
it had before that action began. 4  This, however, is not usually desired, especially if, 
once its been restarted, the action will resume tracking the same target. It is likely 
to be more efficient to simply ensure the recovery mechanism retains the new 
position of the weapon so it may be used by the fire control action once it is 
restarted. 

This matter of retaining the position of the weapon across recovery is an 
important one. The fire control sequence may well involve a number of steps and 
invokes a number of operations on several different components of the weapon. 
Midway through a particular attempt at firing the weapon, one of the components 
may fail to respond. For simplicity, assume each operation on a component is 
encapsulated within an action which has the fire control action as its parent. When 
the component fails to respond to an operation, the nested action containing that 
operation aborts. The recovery mechanism for that nested action removes the 
component from service and cuts over to a backup system. For some components it 
may then simply be a matter of restarting the nested action which aborted and 
resuming the fire control sequence. For many important components with complex 
states and which are referenced a number of times during the fire control sequence, 
however, the simplest approach may be to abort the fire control action itself and 
restart the "count down." When the fire control action is restarted the current 
position of the weapon must be known. 

A variation of this might arise if the component which failed did so in a way 
which corrupted some of the data describing the the position of the weapon. In this 
case, the recovery mechanism could restore the data by reading the appropriate 

4. Clearly, the wrong approach would be to restore the data showing the old position while leaving the weapon in 
the new position. 
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sensors. Structuring recovery in this way means the main line of the fire control 
action need not know that it failed and need not concern itself with whether the 
position of the weapon has been correctly described. 

A second variation might arise if the component fails only partially and no 
backup is available. The result might be a weapon which is operational but whose 
field of fire is now restricted. One strategy for handling this would be to abort the 
fire control action and, as part of recovery, update the tables used by the target 
selection algorithm when determining the relative priority of candidate targets. In 
the extreme, it may also be desirable to update the tables used by other weapons 
when selecting priority targets and, perhaps, to force other weapons to select new 
targets by aborting and restarting their fire control actions. 

In the examples just considered, reference was made to an object shared by all of 
the weapons as well as the target identification system. A weapon needing a new 
target, consults this object and identifes what from the weapon's perspective is a 
high priority target. In order to meet timing constraints, it is possible that this object 
may have a somewhat complex structure. Suppose it contains a table candidate 
target table which shows most of the available targets, and perhaps a few invalid 
ones as well. A target is invalid if it has already been destroyed or has been selected 
by another weapon. It is also invalid if it cannot be found near the coordinates 
supplied by the target recognition process. 

On selecting a target from the candidate target table, a weapon performs a few 
computationally simple checks to validate its selection. These checks might involve 
examining, for weapons with overlapping or neighboring fields of fire, selected and 
destroyed lists. 5  If the candidate target table does not contain any valid targets, a 
priority request is made of the target identification system to locate one, i.e., the use 
of the candidate target table speeds the system up but is not essential. 

It is possible that from time to time the candidate target table becomes corrupted, 
or perhaps so full of invalid entries that it degrades rather than improves system 
performance. Suppose a fire control action aborts when it determines its selected 
target is invalid. As part of recovery, statistics are kept regarding the rate at which 
fire control actions abort because of invalid target selection. When this rate 
becomes excessive the runtime system has the option of aborting the target 
identification process (which is also an action, albeit a persistent one). As the target 
identification process recovers and restarts it should reinitalize the candidate target 
table, thereby lowering the rate at which fire control actions abort because of invalid 

5. A background process is responsible for examing the destroyed lists and removing those targets from the 
candidate target table. It is also responsible for removing from the candidate target table any targets which have 
moved out of range. 
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target selection at least for a while. If statistics are kept by the recovery mechanism 
associated with the target identification process, it may be possible to recognize the 
existence of a fault within that process. When a fault is recognized, it may be 
possible to fix the problem by cutting over to a backup system for some component. 

3.5.5 Information Processing Example. It may be desirable to regard some 
operations as irreversible even though they may, in principle be reversed if some 
tricky programming is employed. Suppose an action instatiated by an information 
processing system prints a status report just before it is aborted. The action is 
subsequently restarted. But what to do about the report? There are three ways of 
responding. 

1. Rescind the order to print the report and let the action resubmit the report once 
the action itself is restarted. This may require some tricky programming and, 
if a printer has begun producing the report, may waste resources. 

2. Restart the action and let it submit a duplicate report. This avoids the need for 
tricky programming but would still waste resources. 

3. Restart the action but in a state that lets it know the print job has already been 
submitted. In other words, treat the submission of the print job as irreversible 
and make sure the fact it was submitted persists across recovery. . 

The third option seems the most attractive of the three, but it may be necessary to 
design 'a mechanism which will, in fact, guarantee the job is actually printed. With 
this guarantee, the action becomes even easier to code: not only may the 
programmer avoid the tricky recovery problems, but he neither need he concern 
himself with the task of monitoring the progress of the print job and resubmitting it 
if it is lost. 

Ensuring that "print" is irreversible is a relatively simple task. When submitting 
the job, the material to be printed should be encapsulated within an object. The 
capability for that object should be sent to the appropriate printer. When the printer 
is ready for the job, an operation is invoked on the object and the material to be 
printed is returned. This is a fairly robust design and a good deal of fault tolerance 
may be incorporated into it. 

Suppose the printer becomes inoperative. The printer driver can continue to 
invoke operations on the "print object." Each time an operation is invoked, it 
quickly aborts because the printer is down. This invokes the recovery mechanism 
within the print object. Each print object may recover in a different way. Some may 
choose to wait until this printer becomes available, others may reassign themselves 
to other printers, and some may adopt yet different stratagies. 

If different printers require material be presented in different formats (e.g., as is 
the case with different brands of phototype setters) this can also be encorporated 
within the "print object" approach. 
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3.6 Summary and Directions for Future Work 

A number of issues have been considered regarding irreversible operations and 
their implications for the design of applications in fault tolerant, object oriented 
systems. The fundamental problem is that of preserving information about 
irreversible operations which have been perform by an action when that action 
aborts and is recovered. A mechanism for performing this task has been described. 
A number of variations on this basic mechanism have been outlined. These 
variations need to be developed in greater detail. A syntax for programming 
language constructs supporting the basic mechanism and its variations must be 
developed. More careful consideration of various implementation issues is also 
required. 

Problems related to recognizing the various types of irreversible operations have 
been considered. The reasons irreversible operations fault have also been discussed. 

It has been recognized that it may not be possible to prevent a fault from 
effecting system performance or functionality. Consequently, various degrees of 
fault tolerance have been described and classified. 

Deciding to achieve a desired degree of fault tolerance and then achieving it 
raises issues related to programming techniqes, software designs, and operating 
philosophy. These issues appear to be a rich area for further investigation. 
Additional work needs to be done in the area of developing paradigm examples 
illustrating how fault tolerance may be achieved and in developing a taxonomy of 
techniques. 

Of particular interest is the possibility that "irreversible operations" should be 
regarded not as an obstacle to be "gotten around" but as a programming construct of 
considerable use in the design of real time systems—especially when used in 
conjunction with a powerful recovery mechanism. It may be possible to generalize 
on the present notion of an irreversible action: if a nested action is allowed to 
commit and make its results visible outside 'the parent action before the parent action 
itself commits, this nested action may well be called "irreversible" and treated using 
the techniques being developed in conjunction with the present project. This 
approach allows a "loophole" in otherwise atomic actions and is in sharp contrast 
with the philosopy adopted in Clouds. We believe, however, that the new approach 
deserves some careful consideration: it opens up the possibility for long lived 
actions which interact with their environment in complex ways and for employing 
weaker notions of serializability than can be enforced using locks alone. The weaker 
notions of serializability would be enforced instead by recovery mechanisms which 
are more sensitive to the semantics of the various actions and objects from which a 
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software system is constructed. 
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Abstract 

Replication of data has been used for enhancing its availability in the presence of 
failures in distributed systems. Data can be replicated with greater ease than 
generalized objects. We review some of the techniques used to replicate objects for 
resilience in distributed operating systems. 

We discuss the problems associated with the replication of objects and present a 

scheme of replicated actions and replicated objects, using a paradigm we call PETs 
(parallel execution threads). The PET scheme not only exploits the high availability 
of replicated objects but also tolerates site failures that happen while an action is 
executing. We show how this scheme can be implemented in a distributed object 
based system, and use the Clouds operating system as an example testbed. 

1. Introduction 

A distributed system consists of many computers which are connected via 
communication links. The increased number of components (i.e., machines, devices 
and communication links) increases the chances of a failure in the system (or 
decreases the mean time between failures). Guarding against the effects of failures 
is one of the key issues in distributed computing. In this paper, we discuss 
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approaches that provide forward progress despite the failure of some components in 
a distributed computing system. 

Our model of the distributed system is a prototype under development at Georgia 
Tech named Clouds. Clouds is a decentralized operating system providing location 
transparency, transactions, and robustness in an object based environment. In this 
paper, we present a review of known techniques for fault tolerance using replication. 
Then we discuss the salient features and architecture of Clouds. Finally, we present 
mechanisms needed for replication, probes, and parallel action threads for providing 
fault tolerant computing in Clouds. We discuss the pitfalls and the solutions to the 
problem of providing replication of objects having a general structure, which is more 
complex to achieve than replication of flat data (data that is accessed through read 
and write operations, such as files). 

2. Replication Techniques for Database Systems 

The use of replication to enhance availability was first studied in the area of 
distributed database systems, and was later adopted in the area of distributed 
operating systems. 

2.1 Concurrency Control of Replicated Data 

One of the main issues in handling of replicated data in database systems is to 
maintain consistency. This is achieved by concurrency control protocols. The 
concurrency control and recovery techniques for replicated data are summarized by 
Wright.[wrig84] He classifies these methods as conservative (pessimistic, blocking) and 
optimistic (non-blocking). 

Conservative Concurrency Control Methods Examples of conservative methods are 
voting schemes,[Giff79,111"179] primary copy methods,[St°n79] and token-passing 
schemes.[LeLa78] These methods ensure consistency of the replicated data by requiring 
access to a special copy or a set of copies of the data. Primary copy methods allow 
access to a copy during a network partition only if the partition possesses the 
designated primary copy of the data. Token-passing schemes are an extension of 
primary copy methods. A token is passed among sites holding a copy of data, and 
the copy at the site currently holding the token is considered the primary copy. In 
the voting schemes, each copy of the data is assigned a (possibly different) number 
of votes and a partition possessing a majority of the votes for that object may access 
it. The conservative schemes are called blocking since the data is not available at a 
site in a partition which does not possess the primary copy (or token or majority of 
votes). Thus, the access must block until the partition is ended, even if a copy of the 
data is available in the partition. Indeed, under these schemes it is possible that no 
partition may have access to the data. 
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Optimistic Concurrency Control Methods The optimistic methods do not seek to 
ensure global consistency of replicated data during partitions. [Davi81, Davi82] Thus, 
accesses are not blocked if a replica of the data is available in the partition in 
question. Rather, inconsistencies in the replicas are resolved by use of backouts or 
compensatory actions during a merge process, once the partition is ended. It is 
assumed that the number of such inconsistencies will be small (hence, optimistic). 
However, tradeoffs may be made between consistency and availability. For 
example, the Data-Patch tool for designing replicated databases[Blau 82, Garc83] assumes 
that, rather than strict consistency, a reasonable view of the database should be 
maintained to enhance availability. 

3. Replication in Operating Systems 

Research in database systems has been limited to consideration of flat data, and 
as we show later, the generalization to replication of objects having arbitrary 
structure leads to many problems. These include the mechanisms used for the 
copying of state among replicas and having to deal with multiple instances of a single 
operation invocation (or a procedure call). The distributed operating systems that 
provide replication of objects or abstract data types include the Eden system 

developed at the University of Washington, the ISIS system at Cornell, and the 
Circus replicated call facility built on top of Unix. The replication of abstract data 
types has also been studied by Herlihy. 

Eden The Eden system[Alme831 has been operational at the University of Washington 
since April 1983. Support for replication in the Eden system has been studied at 
both the kernel level and the object level. The kernel level implementation of 
replication support is called the Replect approach (for replicated Ejects, or Eden 
objects), while the object level implementation is called R2D2 (for Replicated 
Resource Distributed Database). Both implementations use quorum consensus for 
concurrency control. 

ISIS The ISIS system developed at Cornell[ann 84, Birm85] supports k-resilient objects 
(operations on such an object survives up to k site failures) by means of checkpoints. 
This system provides both availability and forward progress; that is, even after up to 
k site failures, enough information is available at the remaining sites possessing the 
object replicas that work started at the failed sites can continue at these remaining 
sites. This is accomplished through a coordinator-cohort scheme, where a transaction 
executes at the coordinator site and the updates it performs on any objects are 
propagated to the cohort replicas. one replica acts as master during a transaction to 
coordinate updates at the other slave replicas (cohorts). The choice of which replica 
acts as coordinator may differ from transaction to transaction. The object state is 
copied from the coordinator to the cohorts. We call this method of state propagation 
cloning. This operation has been described, as propagating a checkpoint of the entire 
coordinatorPirm84] or, in a more recent paper, as propagating the most recent 
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version in a version stack. [BirmS5i 

In ISIS, a transaction is not aborted when a machine on which its coordinator is 
running fails (transactions are usually aborted only when a deadlock situation 
arises). Rather, the transaction is resumed at a cohort from the latest checkpoint. 
This cohort becomes the new coordinator. Operations which the coordinator had 
executed after the latest checkpoint took place must be re-executed at the new 
coordinator. 

Circus Cooper has investigated a replicated procedure call mechanism called Circus 
which was implemented in UNIX.P 30P851 In Cooper's scheme, although replicas of a 
module have no knowledge of each other, they are bound (via run-time support) 
into a server called a troupe which may be accessed by clients. (The client knows 
that the server is replicated.) A module in Circus may have arbitrary structure, 
containing references to other modules. However, the module is currently required 
to be deterministic. His scheme uses idemexecution (operation execution at each 
replica) for state propagation. When a troupe accesses an external troupe, results of 
operations on modules of the server troupe are retained by the callees. These results 
are associated with call sequence numbers, and are returned when subsequent calls 
by the replicas of the caller troupe with the same sequence numbers are 
encountered. This avoids the inconsistencies that can be caused by multiple 
executions of the same call. 

Herlihy's Work Herlihy[Her184] uses semantic knowledge of arbitrary abstract data 
types (objects) to enhance the quorum consensus concurrency control method. 
Analysis of the algebraic structure of data types is used in the choice of appropriate 
intersections of voting quorums. 

4. Basics of the Clouds Operating System 

Clouds is a distributed operating system that supports objects and actions. The rest 
of this paper deals with a set of techniques that implement generalized replicated 
objects in the framework of the Clouds operating system. We discuss the salient 
features of Clouds in this section. For a more detailed description, the reader is 
referred to [Dasg85]. 

Figure 1 shows the hardware configuration of the Clouds prototype. The Clouds 
operating system provides support for the following facilities: 

Distribution Clouds has been designed with loosely coupled distribution in mind. 
The hardware architecture consists of a set of general purpose machines connected 
by an Ethernet. The software architecture is a set of cooperating sub-kernels, which 
implement a monolithic view of the distributed system. 
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Figure 1. The Clouds Hardware Configuration 

Object Based All system components, services, user data, and code are 
encapsulated in objects. The object structure is shown in Figure 2. The Clouds 
universe is a set of objects (and nothing but objects). An object is a permanent 
entity, occupying its own virtual address space. Processes can weave in and out of 
objects through entry points defined in the object space. The only way to access data 
in an object is to use a process that executes the code in the object via an entry 
point. 

Location Independence The Clouds objects reside in a flat, system-wide name 
space (the system name space is flat, the user name space need not be). There are no 
machine boundaries. Any process that has access to an object can invoke an 
operation defined by the object. This creates a unified view of the system as one 
large computing environment consisting of objects, even though each site in the 
system maintains a high degree of autonomy. 

Synchronization Objects are sharable, that is several processes can invoke the 
object concurrently. This can pose synchronization problems. Clouds implements an 
automatic as well as custom synchronization support for concurrent access to objects. 
(Automatic synchronization uses two-phase locking, using read and write locks. 
Custom synchronization is the responsibility of the object programmer.) 
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Figure 2. The Clouds Object Structure 

Actions To prevent inconsistency in the data stored in objects, Clouds supports 
top-level and nested actions. Two-phase commit it used to ensure that all objects 
touched by an action are either updated successfully on a commit or are rolled back 
in case of explicit aborts or failures. The action management system tracks the 
progress of actions and maintains information about objects touched by the action 
and its subactions. The action management system uses the mechanisms provided by 
the recovery management component of the Clouds kernel, for performing the 
commit or abort operations when a action terminates or fails. Recovery management 
is implemented as part of the storage manager. 

Clouds is designed to support a high degree of fault-tolerance. The mechanisms 
that provide this support are the topic of discussion in the rest of this paper. The 
following section discusses the approaches. 

5. Fault Tolerance 

One of the basic goals that motivated the design of Clouds was achieving fault 
tolerance. Several of the mechanisms currently supported by Clouds are geared to 
this end. Thus, we believe it is an ideal environment for building a fault tolerant 
system. We review some of the low level details that provide such support. 

1. 	The object invocation strategy was designed for fault tolerant systems. 
When a process invokes an object (using its capability), and the object is not 
available locally, a global search-and-invoke is initiated.[sPaf 861 This will 
successfully invoke the object if it is reachable. Failure of any site not 
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containing the object will not affect the invocation. The invocation will also 
find the object, if reachable, irrespective of where it is located, even if it 
was moved around in the recent past. Migration, failure, creation and 
deletion of objects etc. do not adversely affect the invocation mechanism. 

2. All disk systems are dual-ported (or if possible, multi-ported). If a site 
fails, the disks belonging to the failed site are re-assigned to other working 
sites. Due to the location search-and-invoke mechanism, this switch can be 
done on the fly, and the objects that were made inaccessible due to the 
failure become accessible. 

3. Users are not hard-wired to the sites, but are attached to logical sites 

through a front-end Ethernet (multiple Ethernets may be used for higher 
reliability, without changing our algorithms or architecture). If the site the 
user is attached to fails, some other site takes over and the user still has 
access to the system. 

4. The system maintains consistency cif all data (objects) in the system by using 
the atomic properties of actions (or transactions). Clouds implements nested 
atomic actions. This is the function of the action management system, 

which uses the synchronization and recovery provided at the kernel level. 
The commit and abort primitives are implemented in the kernel gitt 86] and 
the action manager implements the policies. Nested actions have semantics 
similar to that defined in[moss 81 ] and are used to firewall failed subactions. 

All these mechanisms provide a certain degree of fault tolerance, that is, the 
system is not affected adversely by failures. Some actions are aborted, but the 
system as a whole continues functioning in spite of site failures. Though dual porting 
of disks does simulate some replication (that is, if a site fails, the data stored at the 
site is still available through an alternate path), this mechanism is not completely 
general because it can not tolerate media crashes. Also, actions executing on the 
failed site are forced to abort. 

The action management scheme provides backward recovery and ensures that all 
data in the system remain consistent in spite of failures. However, this does not 
guarantee forward progress, as failures cause actions to abort. Fault tolerance should 
imply some guarantee of forward progress, that is an action should be able to 
continue in spite of a certain number of failures. We now discuss strategies that 
guarantee forward progress despite failures. 

5.1 Primary/Backup Actions and Probes 

One of the methods that allows fault tolerant behavior is the use of the 
primary/backup paradigm for actions. This paradigm is also used for fault-tolerant 
scheduler, monitor, and other subsystems requiring some degree of 
reliability.[Mcice84, Dasg86] In this scheme, a fault-tolerant action is really two actions, 
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one being the primary, which does the work, and the other being a backup, which is 
a hot standby. The primary and backup use probes to ensure both are up. If the 
primary fails, the backup takes over (and creates a new backup). If the backup fails, 
the primary creates a new backup. 

The primary/backup system can be implemented using the Clouds probe 
management system. In Clouds, a probe can be sent from a process to another 
process or an object. The probe causes a quick return of status information of the 
recipient. Probes work synchronously, and use high priority messages and non-
blocking routines so that the response time is practically guaranteed. This allows use 
of timeouts to check for reachability or liveness. 

If a particular object is unavailable due to some failed component (even though 
we have dual ported disks), both the primary and the backup actions are doomed to 
fail. Thus the primary/backup scheme has to be augmented with increased 
availability of objects. Replication is the well known technique for achieving higher 
availability of data. 

5.2 Replication of Objects 

Maintaining consistency of replicated data (i.e., files) is simpler than maintaining 
consistency of replicated objects because only the read and write operations are 
provided to access data. Objects, on the other hand, are accessed through 
operations defined in the objects, which in turn can call operations defined in other 
objects. This gives rise to the following problems: 

1. Due to non-determinism, the same operation invoked on two identical 
copies of an object may produce different results. Thus non-determinism 
cannot be handled in the Circus system, because it uses idemexecution. 

2. Due to the nested nature of the objects, two copies of a replicated object 
may make a call to a non-replicated object, causing two calls where there 
should have been one. This can happen in the ISIS system when the 
coordinator crashes and some other site becomes the coordinator. In Circus 
this happens when the caller object is replicated. 

3. Maintaining varying degrees of replication of objects produces a fan-in fan-
out problem that is not easy to handle. Also, the naming scheme for 
replicated objects presents a non-trivial problem. 

The generality of the abstract object structure supported by Clouds poses 
problems for replication methods which are not presented by objects of lesser 
generality. The problem lies in the possibility of the arbitrarily complex logical 

nesting of Clouds objects. Although Clouds objects may not be physically nested 
(that is, one object may not physically contain another-object), an object may contain 
a capability to another object. If object A creates another object B, and retains sole 
access to B's capability (by refraining from passing the capability to other objects 
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and also not registering the capability with the object filing system [OFS]), we say 
that object B is internal to object A. The internal object B may be regarded as being 
logically nested in object A. If, on the other hand, object A passes B's capability to 
some object not internal to A, or if A registers B's capability with the OFS, we say 
that B is external to A. An external object is potentially accessible to objects that 
may not be internal to the object's creator. 

Problems arise with replication schemes when internal and external objects are 
mixed together in the same structure, i.e., when an object may contain capabilities to 
both internal and external objects. These problems are associated with the method 
which is used to propagate the state of a replicated object among its replicas. 
External objects cause problems when idemexecution is used to propagate state 
changes among replicas. If the replicated object invokes an operation on an external 
object (e.g., a print queue server), then under idemexecution, that operation will be 
executed by each replica. If the operation being performed on the external object is 
not idempotent, this can cause serious problems (e.g., multiple submissions of a job 
to the print queue). Also, trouble may arise when idemexecution is used if the 
operation on the external object is non-deterministic (for instance, random number 
generation, or disk block allocation among multiple concurrent processes). 

On the other hand, internal objects cause problems when cloning is used to 
propagate state. For example, assume that each replica of an object creates a set of 
internal objects. Then, when an operation is performed on one of the replicas, its 
state under cloning is copied to each of the other replicas. However, since the 
capabilities to the internal objects of the replicas are contained in their states, each 
replica now contains capabilities to the internal objects of the replica at which the 
operation was actually executed. Thus, the information about the internal objects of 
the other replicas is lost. 

6. Replication Mechanisms 

6.1 Replicated Actions 

We have developed a scheme called replicated actions. Each replicated action 
runs as a nested action and has its own thread of execution. Each thread of control is 
called a Parallel Execution Thread or PET. The degree of the replicated action is the 
number of PETs that comprise the action. The degree is determined statically at the 
the time the top level action is created. If all objects touched by the action are 
replicated k times and the degree of the replicated action is also k, we can have each 
PET executing on a different copy of the object. 

Briefly, the PET scheme sets up several parallel, independent actions, performing 
the same task, using a possibly different set of replicas of the objects in question. 
These actions follow different execution paths, on different sites, but only one of 
them is allowed to commit. The scheme is depicted in Figure 3, and its 
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Figure 3. Parallel Execution Threads of 3-degree 

implementation details are presented in Section 6.4. 

The PET scheme for replicated objects has several advantages. Firstly, up to k-1 
transient failures (in a PET scheme with k threads), are automatically handled 
because the remaining PETs will commit the action. This contrasts with the ISIS 
scheme in which one of the sites having a replica has to detect the failure of the 
coordinator and assume responsibility for the execution of the action. However it is 
possible for an action in ISIS to commit while all the PETs may abort in our scheme. 
The possibility of this happening is considerably reduced as the degree of the PETs 
are increased. Thus this scheme presents a trade off between computation and 
replication (overhead) and the degree of fault tolerance. 

A replica of an object that is replicated k times can receive multiple calls (as in 
ISIS and Circus) when the PET degree is more than k. Thus a replica has to retain 
results to avoid executing the same call operation again. However a caller will not 
receive multiple results as in Circus and we do not have to collate the returned 
results. Also since only a single PET is allowed to commit, cloning is used for state 
copying and non-deterministic operations do not cause inconsistent state in the 
replicas. The problem of internal (or nested) objects is solved by a modification of 
the capability (naming) scheme, which is described below. 

6.2 Naming Replicated Objects 

Replicated objects and actions provide support for guaranteeing forward progress 
when system components fail. This introduces the problem of naming replicated 
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objects. In Clouds, the system uses a capability based naming scheme. A capability 
is a system name which uniquely identifies one object in the distributed system. 
Under this scheme, a k-replicated object is named by k different capabilities. This 
makes naming considerably more difficult, and since capabilities are stored within an 
object, state copying via cloning causes the problems described earlier. 

To solve this we propose a minor modification to the capability scheme. When 
replication is supported by the kernel, at the user level, all copies of the replicated 
object have the same capability, and thus one capability refers to a set of objects. A 
flag in the capability tells the kernel that the capability points to a set of replicas of 
the object. 

The kernel can then append a copy number to generate unique references to the 
objects. The kernel uses the <capability:copy-number> pair to invoke operations. 
Thus the kernel can choose to invoke the appropriate copy (or several copies) 
depending upon the replication algorithms used to resolve an invocation on a 
replicated object. 

Replication Flag 
1 = Replicated Object 
0= non — Replicated. 

unique 	identifier access flags R Copy Number 

	 User Capability  	►  

	  System Capability 

Figure 4. Capability Scheme for Replicated Objects 

Since all references to the object, as far as the program is concerned, are still 
made through a unique capability, which points to all the copies, any naming 
problems at the user level disappear (when replication is supported by the kernel). 
Constructing the <capability:copy-number> pair can be effectively handled at the 
kernel level, using one of several techniques. (For example, the copy number 1 is 
always valid, and this copy, as well as other copies, contain information about the 
total number of copies, and thus all copies are accessed by the range 1..max.) This 
scheme is depicted in Figure 4. 

6.3 Invocation of Replicated Objects 

The invocation scheme for replicated objects has to follow the scheme outlined 
above. The kernel interface handles invocation as follows. For simplicity, in this 
section we will assume all the actions have only one thread of control (1-PET). We 
will generalize the scheme in the next section. 



Copying of State----- 

- A-12 - 

A process executing on behalf of an action requests the invocation of an 
operation defined by an object. The kernel examines the capability and detects 
whether the object is replicated or not. If it is not replicated, the invocation proceeds 
as a normal Clouds invocation. If the capability points to a replicated object, the 
kernel has to choose one of the replicas. If a local copy of the object is available, the 
kernel invokes the local copy, else it tries to invoke any one copy, by appending the 
copy number and sending out an invocation request on the broadcast medium. 
Typically, the kernel chooses copy number 1, and if that fails it tries subsequent 
copies. This sequential searching is not necessary, as the kernel can use previous 
history to decide which replica to use. 

PET #1 Commits 

Figure 5. State Copying on PET Commit 

Once a replica is used for an action, the kernel takes note of that, and stores it 
with the action id, and all later invocations are directed to that replica. Thus only a 
single replica of each replicated object is used to execute one action. The other 
replicas are not touched, until the action decides to commit. When an action 
commits, the replica it touched is copied to all other replicas. This is done by copy 
requests from the action management systems to all the replicas (using the copy 
number scheme). All accessible replicas are updated and their version numbers 
updated. (Note that if the source object has a copy number lower than a replica, the 
action has to be aborted.) The version copying strategy is shown in Figure 5. 

The version numbers are also used to bring failed sites up-to-date on startup. On 
startup, all replicas at the site having version numbers less than the highest version 
number on the network are reinstated. 

6.4 Handling PETs 

The above scheme using 1•PET execution is prone to failures in certain cases. 
These include cases where a replica becomes unavailable after it has been invoked, 
the replica invoked was not up-to-date and when the site coordinating the action 
fails. 

The N-PET (N> 1) case decreases the chances of transaction abort due to the 
transient failures described in the earlier paragraph. All the separate PETs have 
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different co-ordinating sites and execute independently. 

When the first thread invokes a replicated object, the invocation proceeds as 
above, that is a replica is chosen to service the action. The second thread also 
proceeds similarly, but a different replica is chosen. The replica choice does not have 
to be different, but the reliability increases if they are, so we use a random choice 
scheme. Note that the same object is chosen (as there is no choice) if the object is 
not replicated. Multiple invocations of the same object, due to multiple threads of 
control are handled by a collator. The commit phase is however different. 

In this scheme, ONLY one PET can be allowed to commit. If more than one 
PET reaches commit point, each PET issues a pre-commit, which checks if all the 
primary copies it touched are still available. If any thing is not reachable, the PET 
aborts. Of the remaining PETs any one has to be chosen to commit (In fact if all of 
them are allowed to proceed, they will overwrite each others results and may cause 
deadlocks during commit time.) The co-ordinating site with the highest site number 
wins the match and commits the PET that was associated with the site. The commit 
causes the replicas touched by this PET to be copied to all other replicas. The co-
ordinating sites that lost the commit war, do not abort the PETs, but wait for the 
commit of the winner to be over. If the commit fails the co-ordinator with the next 
highest site number attempts the commit. (Note that the previous commit could have 
attempted to overwrite the replicas touched by this PET, but the pre-commit causes 
a special copy of all the replicas to be retained, and this copy is used for the 
commit.) 

Transient failures cause failed PETs, but the chances of all PETs failing decreases 
as the number of PETs is increased. Also, failures during commit are taken care of, 
by the other PETs. Of course it is possible for all the PETs to abort, but the chances 
of this happening decrease as the replication degree and the PET degree is 
increased. 

7. Concluding Remarks 

There are two major contributions of this research. 

1. The object replication scheme is not as straightforward as data replication. The 
capability scheme allows reference to a set of objects and the cloning technique 
ensures correct execution in spite of generalized and nested objects, as well as 
non-deterministic objects. 

2. Replication enhances availability, that is, actions can be run on a system that 
has some sites or data missing due to failures. Handling transient failures are 
not possible in most replicated schemes, that is, if an action touches an object, 
and the object later becomes inaccessible, before the action commits, the action 
has to abort. Also, once an action has visited a site, the failure of that site 
before the action commits can lead to action failure. The PET scheme allows 
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the action to proceed, with high probability of success, in a unreliable 
environment, where sites fail and restart during the execution time of the 
action. 

We are currently involved with designing the lower level algorithms and 
modifying the Clouds action management scheme to implement the PET method of 
providing fault tolerance in the Clouds operating system. This involves the 
implementation of the collators, the kernel primitives to choose the appropriate 
replicas, the mechanisms that ensure distinct PETS choose distinct replicas and so 
on. Once the implementation is complete, we will be able to experimentally study 
the reliability of this approach. 
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APPENDIX B 

Feb 11 18:34 1987 Names.def Page 1 

definition of pseudo object Names is 

! handles parsing of user names and command lines for OFS, shell 

MAXARGS : const unsigned. := 32 

constraint argument_number is unsigned[ 0 	MAXARGS ] 

MAX_PATH_LENGTH : const unsigned := 128 

constraint pathname_length is unsigned[ 0 .. MAX_PATH_LENGTH ] 
• 

type pathname_type( length : pathname_length := 0 ) is new string( length ) 

type path_type is ( in_ancestor, is_ancestor, in_child, in_here, is_here, 
absolute_path, unknown_path ) 

operations 

procedure split 
( path : in pathname_type(), 

first, rest : out pathname_type() ) 

Separate the pathname given in parameter "path" into two 
! parts, "first" and "rest", based on the first occurence of 
1 the path separator "/" in "path". 

procedure scan_path 
( path : in pathname_type(), 

first, rest : out pathname_type() ) 
returns path_type 

! Performs the "split" operation (see above) on parameter 
! "path", placing the results in the out parameters "first" and 
I "rest", and returns the "path_type" of "path" 

procedure arg 
( number : argument_number ) 

returns pathname_type() 

! Returns the argument the position of which in the argument 
! string is given by "number". The numbering of arguments 
1 begins with zero, where argument zero is (usually) the name 
1 of a process being invoked. 

procedure nargs 0 
returns argument_number 

! Returns the number of arguments encountered in the current 
! argument string. 

procedure getLargs 
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! Reads an argument string from standard input and parses it 
! into separate arguments for later use. 

end definition. 
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Feb 19 13:38 1987 OFS.def Page 1 

definition of local object OFS 
( OFS_ROOT : OFS, 	initial_ancestor : OFS, 	initial_name : string() ) is 

! single-copy version of the Object Filing System 

import Names 

type OFS_op is ( mkdir_op, rmdir_op, mv_op, rm_op, ls_op, quick_ls_op ) 
! OFS operations which share essentially a common interface 

operations 

! In the operations below, the parameters first, rest, and ptype 
represent a pathname argument as processed by Names @ scan_path(). 

procedure get_cap 
( first, rest : in out pathname_type(), 

ptype : in out path_type, 
error : out boolean ) 
returns capability examines 

! Retrieves the capability for the object with the given 
! pathname from the OFS. If the pathname exists, sets error 
! to FALSE and returns the associated capability, otherwise 
! sets error to TRUE and returns NIL. 

procedure put_cap 
( cap : capability, 

first, rest : in out pathname_type(), 
want_ancestor : boolean, 
ancestor : OFS, 
ptype : in out path_type, 
error : out boolean ) modifies 

! Places a capability for an object into the OFS under the 
! given pathname. 	If the given pathname already exists, or if 
! the prefix of the pathname (if any) does not exist, cap is 
! not inserted into the OFS, and error is set to TRUE; 
! otherwise, cap is inserted into the OFS, and error is set to 
! FALSE. 

procedure general_op 
( op_name : OFS_command, 

first_arg, second_arg : in out pathname_type(), 
error : out boolean ) modifies 

! An interface for the operations enumerated by type OFS_op, 
I which share a common interface and similar semantics with 
! respect to pathnames. The actual operation to be performed 
! is specified by parameter op_name. Two pathname parameters 
I may be specified; the second is used only by the mmv" 
! operation. If the operation was successful (depending on the 
! existence of the specified pathnames and, in the case of the 
! rmdir command, on whether the first argument specified a 
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! directory), error is set to FALSE; otherwise, error is set to 
! TRUE. 

procedure my_pathname 0 
returns pathname_type0 examines 

! Returns the current pathname of this OFS instance. 

procedure reset_pathname 
ancestor_name, new_name : pathname_typeO, 
error : out boolean ) modifies 

! If parameter "ancestor_name" is the null string, sets the 
! instance's current pathname to "new_name" and sets "error" to 
! FALSE; else, if the concatenation of the ancestor's path and 
! the new instance name is within the maximum path length 
! contraint, sets the instance's current pathname to this 
! concatenation, and sets "error" to FALSE; otherwise, sets 
! "error" to TRUE. 

end definition. 
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Feb 19 15:18 1987 symtab.def Page 1 

definition of local object symtab 
( name_type : type, value_type : type ) is 

! Single-copy symbol table object using the Aeolus/Clouds lock 
mechanisms for synchronization. 

I The definition part contains specifications of public constants, 
! types, and operations defined by this object. 
! When compiled, it produces a symbol table file which may be imported 
! by other objects using this object in their implementations. 

operations 

procedure insert ( name : name_type 
value : value_type , 
error : out boolean ) modifies 

! The INSERT operation places an entry into the symbol 
! table. ERROR is set if an entry with the same name 
I already exists. 

procedure delete ( name : name_type 	, 
error : out boolean ) modifies 

! If the DELETE operation finds an entry with the given 
! name, it removes the entry from the symbol table and 
! frees its storage space. 

procedure find ( name : name_type 	, 
error : out boolean ) returns value_type examines 

1 The FIND operation tries to locate the entry with the 
1 given name and returns its value if it succeeds. ERROR 
1 is set if the entry is not in the table. 

procedure quick_list 0 examines 

! The QUICK_LIST operation provides a quick (dirty) 
! listing of all names currently in the symbol table. 

procedure exact_list 0 examines 

! The EXACT_LIST operation provides a listing of the exact 
1 state of the symbol table at a given point in time. To 
I do this, it locks the whole symbol table, thereby 
! excluding any changes during preparation of the listing. 
! Thus, although EXACT_LIST, FIND, and QUICK_LIST 
!_operations may execute concurrently, and INSERT and 
! DELETE operations which access different hash buckets 
! may also execute concurrently, INSERT and DELETE 
! operations must block on EXACT_LIST operations. 
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end definition. 
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implementation of object Names is 

! handles parsing of user names for OFS 

import strings 

procedure split 
(! path : in pathname_type, 
! first, rest : out pathname_type !) is 

sep_pos : integer 

begin 
sep_pos := strings @ str_pos( path_separator, string( path ) ) 
if sep_pos <= 0 ! no separator found ! then 

first := path 
rest := " 

else 
first := pathname_type( 

strings @ substr( string( path ), 1, sep_pos-1 ) 

rest := pathname_type( 
strings @ substr( string( path ), sep_pos+1, path.length ) 

end if 
end procedure ! split 

procedure scan_path 
(! path : in pathname_type, 
! first, rest : out pathname_type 
! returns path_type ! is 

temp : pathname_type 

begin 
split( path, first, rest ) 
if first = 1 /' ! a path relative to the root directory is desired ! then 

return absolute_path 
elsif first = I ..' then 

if rest = " ! the ancestor directory is desired ! then 
return is_ancestor 

else 
return in_ancestor 

end if 
elsif first = 1 . 1  then 

if rest = " ! the current directory is desired ! then 
return is_here 

else 
return in_here 

end if 
else 

return in_child 
end if 

end procedure ! scan_path 
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type arg_array( arg_length : pathname_length := 0 ) is 
array[ argument_number ] of pathname_type( arg_length ) 

current_arg : arg_array() 

procedure arg 
(! 	number : unsigned !) 
! returns pathname_type() ! is 

begin 
return current_arg[ number ] 

end procedure ! arg 

numargs : argument_number := 0 

procedure nargs() 
returns unsigned is 

begin 
return numargs 

end procedure ! nargs 

arg_string : pathname_type() 

cur_index : pathname_length := 1 

procedure eat_separators 
( done : out boolean ) is 

! Consume all separators (blanks or tabs) beginning at the current 
! position in the argument string. The parameter 'done' is set 
! to TRUE if the end of the argument string is encountered, 
! FALSE otherwise. 

begin 
loop 

using next_char for arg_string[ cur_index ] do 
if ( next_char = " ) or ( next_char = '\TAB\' ) 

! argument separator ! then 
cur_index += 1 

else 
done := next_char = '\NUL\' 
exit . 

end if 
end using 

end loop 
end procedure 1 eat_separators 

procedure store_argument 
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( arg_number : argument_number ) is 

! Parse an argument from the argument string and store it into 
! the appropriate position in the array of parsed arguments. 

arg_index : pathname_length := 1 

begin 
loop 

using next_char for arg_string[ cur_index ] do 
if ( next_char = " ) or ( next_char = '\TAB\' ) ! separator ! then 

exit . 
else 

current_arg[ arg_number ] [ arg_index ] := next_char 
arg_index, cur_index += 1 

end if 
end using 

end loop 
current_arg[ arg_number ] [ arg_index ] := '\NUL\' 

end procedure ! store_argument 

procedure get_args() is 

at_end_of_args : boolean 

begin 
InOut @ ReadStr( string( arg_string ) ) 
for i in argument_number loop 

eat_separators( at_end_of_args ) 
store_argument( i ) 
if at_end_of_args then 

numargs := i 
return . 

end if 
end loop 
numargs := MAXARGS 

end procedure ! get_args 

inithandler is 

begin 
null 

end inithandler 

end implementation. 
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implementation of object OFS 
!( OFS_ROOT : OFS, 	initial_ ancestor : OFS, 	initial_name : string() )! is 

! Single-copy version of Object Filing System. OFS uses the 
! symtab object type to manage all symbol table functions such 
! as insertion, deletion, etc. When an operation is invoked on 
! an OFS object by a user, it is because that instance of OFS is 
! the current working directory. When a relative path is passed 
1 to that instance of the OFS, it relays the operation to the 
1 appropriate instance by invoking operations on its children 
! (maintained in the symbol table) or its ancestor. Absolute 
1 paths (i.e., paths starting at the root OFS) are not handled, 
! except in put cap(); it is assumed that the driver process 
! (e.g., "shell") catches absolute paths and relays them to the 
! root OFS. 	(As an optimization, the driver should also catch 
! most references to the current working directory's direct 
! ancestor.) The user may also change the instance of OFS which 
1 is considered the current working directory by means of 
I relative or absolute paths. 

import symtab, InOut 

table : symtab( pathname_type(), capability ) := new symtab 

procedure get_cap 
(! first, rest : in out pathname_type, 
! ptype : in out path_type, 
! want_ancestor 	boolean, 
1 ancestor : out OFS, 
1 error : out boolean 

) ! returns capability ! is 

child : OFS 
temp : pathname_type() 

begin 
error := FALSE 
ancestor := NIL 
case ptype of 

in_child, in_ancestor : 
child := table @ find( first, error ) 
if error ! no child by this name exists ! then 

return NIL 
else 

temp := rest 
ptype := Names @ scan_path( temp, first, rest ) 
return child @ get_cap( first, rest, ptype, 

want_ancestor, ancestor, error ) 
end if 

in here,is ancestor, is here : _ 
if want_ancestor then 

ancestor := table @ find( '..', error ) 
end if 
return table @ find( first, error ) 

otherwise 
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error := TRUE 
return NIL 

end case 
end procedure ! get_cap 

current_pathname : pathname_type() 	! the current name of this OFS instance 

procedure put_cap 
(! 	cap : capability, 
! first, rest : in out pathname_type(), 
! ptype : in out pathname_type(), 
! error : out boolean 

) 	is 

child : capability 
child_OFS : OFS 
is_OFS : boolean 
temp : pathname_type() 

begin 
error := FALSE 
case ptype of 

in_child, in_ancestor : 
child := table @ find( first, error ) 
if error ! no child by this name exists ! then 

return . 
else 

error := not object_type( child, 'OFS' ) 
if error then 

InOut @ WriteStr( 'OFS: "' ) 
InOut @ WriteStr( string( first ) ) 
InOut @ WriteStr( '" is not a directory.' ) 
InOut @ WriteLn() 
return . 

else 
temp := rest 
ptype := Names @ scan_path( temp, first, rest ) 
OFS( child ) @ put_cap( cap, first, rest, ptype, error ) 

end if 
end if 

in-here : 
is_OFS := object_type( cap, 'OFS' ) 
if is_OFS then 

child_OFS := OFS( cap ) 
temp := ! save old pathname in case of error 

child_OFS @ reset_pathname( current_pathname, first, error ) 
end if 
if not error then 

table @ insert( first, cap, error ) 
if error and is_OFS then 	! restore old pathname 

Void( child_OFS @ reset_pathname( ", temp, error ) ) 
end if 

end if 
absolute_path : 
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OFS_ROOT @ put_cap( cap, first, rest, ptype, error ) 
otherwise 

error := TRUE 
return . 

end case 
end procedure ! put_cap 

procedure general_op 
op_name : OFS_op, 

! first_arg, second_arg : pathname_type(), 
! error : out boolean 

) 	is 

child : capability 
child_OFS : OFS 
first, rest, temp : pathname_type() 
ptype : path_type 

begin 
error := FALSE 
ptype := Names @ scan_path( first_arg, first, rest ) 
case ptype of 

in_child, in_ancestor : 
child := table @ find( first, error ) 

• 	 if error ! child not found ! then 
InOut @ WriteStr( 'OFS: "' ) 
InOut @ WriteStr( string( first ) ) 
InOut @ WriteStr( '", no such directory.' ) 
lnOut @ WriteLn() 
return . 

end if 
error := not object_type( child, 'OFS' ) 
if error then 

InOut @ WriteStr( 'OFS: "' ) 
InOut @ WriteStr( string( first ) ) 
InOut @'WriteStr( "' not a directory.' ) 
InOut @ WriteLn() 
return . 

end if 
temp := rest 
ptype := Names @ scan_path( temp, first, rest ) 
child @ general_op( op_name, first, rest, ptype, second, error ) 

II in here: 
case op_name of 

mkdir_op : 
child := new OFS( MySelf(), first ) 
table @ insert( first, child, error ) 

ii rmdir_op : 
child := table @ find( first, error ) 
if error then 

InOut @ WriteStr( I rmdir: "' ); 
InOut @ WriteStr( string( first ) ); 
InOut @ WriteStr( '", no such directory.' ) 
InOut @ WriteLn() 
return . 
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end 	if 
error 	:= object_type( 	child, 	'OFS' 	) 
if 	error 	then 

InOut @ WriteStr( 'rmdir: 	"' 	); 
InOut @ WriteStr( string( 	first 	) 	); 
InOut @ WriteStr( is 	not 	a 	directory.' 	) 
InOut 
return 

end 	if 

@ WriteLn0 
. 

table @ delete( first, error ) 
, mv_op : 
child := table @ find( first, error ) 
if not error then 

ptype := Names @ scan_path( second_arg, first, rest ) 
put_cap( child, first, rest, ptype, error ) 
if not error then 

table @ delete( first, error ) 
end if 

end if 
rm_op : 
child := table @ find( first, error ) 
if not error then 

if object type( child, 'OFS' ) then 
InOut @ WriteStr( 'rm: "' ); 
InOut @ WriteStr( string( first ) ); 
InOut @ WriteStr( '" is a directory.' ) 
InOut @ WriteLn() 
error := TRUE 

else 
table @ delete( first, error ) 

end if 
end if 

ii ls_op : 
table @ quick_list() 

ii quick_ls_op : 
table @ exact_listO 

end case 
otherwise 

error := TRUE 
return . 

end case 
end procedure ! general_op 

procedure my_pathname 0 
1 returns pathname_type() ! is 
begin 

return current_pathname 
end procedure ! my_pathname 

procedure reset_pathname 
ancestor_name, new_name : pathname_type(), 

! error : out boolean 
)! returns pathname_type() ! is 
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old_pathname : pathname_type() 

begin 
if ancestor_name = " then 

current_pathname := new_name 
error := FALSE 
return " 

end if 
ancestor_name := 

pathname_type( strings @ str_concat( string( ancestor name ), '/' ) ) 
error := ( strings @ str_len( string( ancestor_name ) ) ; 

strings. @ str_len( string( new_name 	) ) ) 
> MAX_PATH_LENGTH 

if error then 
InOut @ WriteStr( 'OFS: instance "' ) 
InOut @ WriteStr( string( new_name ) ) 
InOut @ WriteStr( '", pathname too long.' ) 
InOut @ WriteLn() 
return " 

else 
old_pathname := current_pathname 
current_pathname := pathname_type( 

strings @ str_concat( string( ancestor_name ), string( new_name ) ) 

return old_pathname 
end if 

end procedure 	reset_pathname 

inithandler is 
! initialize the symbol table to hold the current and ancestor OFSs 

error : boolean 

begin 
table @ insert ( '.', MySelf(), error ) 
if error then 

InOut @ WriteStr( 'OFS: instance "' ) 
InOut @ WriteStr( string( initial_name ) ) 
InOut @ WriteStr( I " cannot insert "." ) 
InOut @ WriteLn() 

end if 
if initial_name = '/' then 	! this is the root OFS 

current_pathname := initial lame 
table @ insert( '..', MySelT(), error ) 

else 
reset_pathname( initial_ancestor @ my_pathname(), initial_name, error ) 
table @ insert( '..', initial_ancestor, error ) 

end if 
if error then 

InOut @ WriteStr( 'OFS: instance "' ) 
InOut @ WriteStr( string( initial_name ) ) 
InOut @ WriteStr( '" cannot insert ".."' ) 
InOut @ WriteLn() 

end if 
end inithandler 
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end implementation. 
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implementation of object symtab 
!( name_type : type, value_type : type )! is 

! Single-copy symbol table object using the lock mechanisms of 
! Aeolus/Clouds for synchronization and the critical region and 
! shared constructs for mutual exclusion. Since this object is 
! not recoverable, we will explicitly release locks. 

import keyed_list 

! Each bucket of the hash table is a list of names and values, 
! keyed by the name field. 

type bucket_list is new keyed_list( name_type, value_type ) 

! The symbol table structure itself is an array of bucket lists. 
! Each bucket is shared, and thus must be modified only within a 
! critical region. 

MAXBUCKET : const integer := 101 	! or whatever 

type hash_range is new unsigned[ 1 	MAXBUCKET ] 

symtable : array[ hash_range ] of shared bucket_list 

! The SYMTABLE lock allows the entire symbol table to be locked. 
! This lock is set (in read mode) in the EXACT_LIST operation 
1 for purposes of getting an exact listing of the state of the 
! symbol table. Operations which change the state of the symbol 
! table must wait for completion of any outstanding EXACT_LIST 
! operations and vice versa. 

symtable_lock : lock ( write : [write] , 
read : [read] ) 

procedure hash ( name : name_type ) returns hash_range is 

! This HASH function is a local (nonpublic) procedure of the 
! SYMTAB object. 

begin 
NULL 	I the usual type of stuff 

end procedure 1 hash 

procedure insert (! name : name_type 
! value : value_type 
! error : out boolean 1) is 

! The INSERT operation adds an entry to the appropriate bucket 
! of the symbol table. 

dummy 	: value_type 
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bucket_num : hash_range 

begin 
bucket_num := hash( name ) 
Awiit_Lock( symtable_lock, write ) 
region symtable[ bucket_num ] do 

error := symtable[ bucket_num ] @ find( name, dummy ) 
if not error then 

symtable[ bucket_num ] @ add( name, value ) 
end if 

end region 
Release_Lock( symtable_lock, write ) 

end procedure ! insert 

procedure delete (! name : name_type 
! error : out boolean !) is 

! If the DELETE operation finds an entry with value field = NAME 
! in the appropriate bucket, it removes that entry. 

dummy : value_type 

begin 

Await_Lock( symtable_lock, write ) 
region symtable[ bucket_num ] do 

error := not symtable[ bucket_num ] @ find( name, dummy ) 
if not error then 

symtable[ bucket_num ] @ remove( name ) 
end if 

end region 
Release_Lock( symtable_lock, write ) 

end procedure ! delete 

procedure find (! name : name_type 
! error 	out boolean !) ! returns value_type ! is 

! The FIND operation sets a READ lock on the NAME entry, and 
! then tries to locate that entry with name field = NAME and 
! returns its value if it succeeds. 

value : value_type 

begin 
Await_Lock( symtable_lock, read ) 
error := not symtable[ bucket_num ] @ find( name, value ) 
Release_Lock( symtable_lock, read ) 
return value 

end procedure ! find 

procedure quick_list() is 

! The QUICK_LIST operation provides a quick (dirty) listing of 
! names currently in the symbol table. 
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begin 
for i in hash_range loop 

symtable[ i ] @ display() 
end loop 

end procedure ! quick_list 

procedure exact_list() is 

! The EXACT_LIST operation provides a listing of the exact state 
! of the symbol table at a given point in time. To do this, it 
! locks the whole symbol table, thereby excluding any changes 
! during preparation of the listing. Thus, although- EXACT_LIST, 
! FIND, and QUICK_LIST operations may execute concurrently, and 
! INSERT and DELETE operations which access different hash 
! buckets may also execute concurrently, INSERT and DELETE 
! operations must block on EXACT_LIST operations and vice versa. 

begin 
Await_Lock( symtable_lock, read ) 
quick_l ist() 
Release_Lock( symtable_lock, read ) 

end procedure ! exact_list 

I 

inithandler is 

I Here, we initialize the symbol table. 

begin 
for i in hash_range loop 	! each bucket is initially empty 

region symtable[ i ] do 
symtable[ i ] := new bucket list 

end region 
end loop 

end inithandler 

end implementation. 
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process shell is 

! simple shell prototype to demonstrate use of OFS 

import OFS, ProcessManager, Names, InOut 

type shell_command is ( activate, bye, mkdir, rmdir, mv, rm, pwd, Is, qls ) 

prompt : string( 80 ) := 'Clouds> 

OFS_ROOT : const OFS := new OFS( NIL, NIL, '/' ) 

! The root object of the Object Filing System. The above 
! initialization is used for the test version of the shell 
process, where OFS is declared as a local object. 	In the 

! "production" version, where OFS is a nonrecoverable 
! (Clouds) object, the initialization would take the form: 

OFS( capability{ sysname{ 0, 16#70f, 'B', 1 }, 
access_rights( 16#ffffffff ) 	) 

! that is, an explicit construction of a capability (which, 
1 in the case of the OFS root, must be well-known). 
! (Actually, the capability shown above is for the current 
! flat-name-space nameserver, but serves to show the format 
! for specification of a capability.) 

procedure get_cmd 
( cmd : out shell_command, 

first, rest : out pathname_type(), 
ptype : out path_type ) is 

1 Issues a prompt, then invokes the Names object to parse the 
1 next argument string from standard input. The zero-th 
! argument is examined to see if it matches one of the shell 

' 1 commands (this is done by linear search in this prototype). 
! If the argument is not a shell command, it is assumed to name 
! a process residing in the OFS. 

cmd_str : pathname_type() 

begin 
InOut @ WriteStr( prompt ) 
Names e get_args() 
cmd_str := Names @ arg( 0 ) 
Names e scan_path( cmd_str, first, rest, ptype ) 
if ptype = in_here ! possibly a shell command ! then 

for trial_cmd in shell_command[ bye .. qls ] loop 
if cmd_str = pathname_type( trial_cmd ) then 

cmd := trial_cmd 
return . 

end if 
end loop 

end if 

cmd := activate ! if cmd_str doesn't match any shell command 
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end procedure ! get_cmd 

ancestor, current : OFS := OFS_ROOT 

still_processing : boolean := TRUE 

procedure get_activatee 
( first, rest : in out pathname_type(), 

ptype : in out path_type ) 
returns ProcessManager is 

! If a ProcessManager with the given pathname (as processed by 
! Names @ scan_path()) is found, a capability to it is 
! returned; otherwise, NIL is returned. 

temp : pathname_type() 
error : boolean := FALSE 
dummy : OFS 

begin 
case ptype of 

in_ancestor : 

temp := rest 
ptype := Names @ scan_path( temp, first, rest ) 
cap := ancestor @ get_cap( first, rest, ptype, FALSE, dummy, error ) 

11 in child, in here : 
cap := current @ get_cap( first, rest, ptype, FALSE, dummy, error ) 

ii absolute_path : 
cap := OFS_ROOT @ get_cap( first, rest, ptype, FALSE, dummy, error ) 

otherwise 
error := TRUE 

end case 
if error then 

InOut @ WriteStr( 'shell: " I  ) 
InOut @ WriteStr( string( first ) ) 
InOut @ WriteStr( "' process not found.' ) 
InOut @ WriteLn() 
return NIL 

end if 
error := not object_type( cap, 'ProcessManager' ) 
if error then 

InOut @ WriteStr( 'shell: "' ) 
InOut @ WriteStr( string( first ) ) 
InOut @ WriteStr( '" is not a process.' ) 
InOut @ WriteLn() 
return NIL 

else 
return ProcessManager( cap ) 

end if 
end procedure ! get_activatee 

procedure get_invokee 
( ptype : path_type ) 
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returns OFS is 

! This procedure provides a bit of an optimization at the shell 
! process level by determining from the pathname type whether 
! to initially invoke the current OFS, its ancestor, or the 
! root OFS. The capability of the correct invokee is returned 
! (or NIL, if "ptype" has a bad value). 

begin 
case ptype of 

in_ancestor, is_ancestor 
return ancestor 

in-child 	in here 	is here : _ 	is_ here 
 current 

11 absolute_path : 
return OFS_ROOT 

otherwise 
return NIL 

end case 
end procedure ! get_invokee 

procedure get_dir 
( name•: pathname_type() ) is 

first, rest : pathname_type() 
temp_current, temp_ancestor : OFS 
error : boolean 

begin 
Names @ scan_path( name, first, rest, ptype ) 
temp_current := 

invokee @let_cap( first, rest, ptype, TRUE, temp_ancestor, error ) 
if error then 

InOut @ WriteStr( 'chdir: 	) 
InOut @ WriteStr( name ) 
InOut @ WriteStr( '" not found.' ) 
InOut @ WriteLn() 

elsif not object_type( temp_current, OFS ) then 
InOut @ WriteStr( 'chdir: "' ) 
InOut @ WriteStr( name ) 
InOut @ WriteStr( "' is not a directory.' ) 
InOut @ WriteLn() 

else 
current := temp_current 
ancestor := temp_ancestor 

end if 
end procedure ! get_dir 

procedure arg_number_ok 
( cmd : shell_command ) 

returns boolean is 

! Check the number of arguments provided with a command to see 
! if it is correct. This is a very simple-minded prototype, in 
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! that no option strings are allowed. 

arg_num : argument_ number 

begin 
arg_num := Names @ nargs() 
case cmd of 

activate : 
return TRUE 	! may have any number of arguments 

bye, pwd 
return arg_num = 1 

1: mkdir, rmdir, rm, ls, qls : 
return arg_num = 2 

I my : 
return arg_num = 3 

end case 
end procedure ! arg_number_ok 

• procedure process_cmd 
( cmd : shell_command, 

first, rest : in out pathname_type(), 
ptype : in out path_type ) is 

! Activate a process residing in the OFS, or process a shell 
! command by invoking an OFS operation, based on the value of 
.! the parameter "cmd". The parameters "first", "rest", and 
! "ptype" should initially contain the zero-th argument from 
! the argument string, as processed by Names @ scan_path(). 

activatee : ProcessManager 
invokee : OFS 
op : OFS_op 
second : pathname_type() := 
error : boolean 

begin 
if not arg_number_ok( cmd ) then 

InOut @ WriteStr( string( cmd ) ) 
InOut @ WriteStr( ': incorrect number of arguments.' ) 
InOut @ WriteLn() 
return . 

end if 
case cmd of 

activate : 
activatee := get_activatee( first, rest, ptype ) 
if activatee <> NIL then 

activatee @ activate() 
end if 

ii bye : 
still_processing := FALSE 

ii mkdir, rmdir, mv, rm, ls, qls : 
invokee := get_invokee( ptype ) 
if invokee <> NIL then 

case cmd of 
mkdir : op := mkdir_op 
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rmdir 	: 	op 	:= 	rmdir_op 
my 
rm 
is 
qls 

: 
: 
: 
: 

op 
op 
op 
op 

:= mv_op 
:= rm_op 
:= ls_op 
:= qls_op 

second := Names @ arg( 2 	) 

end case 
invokee @ general_op( op, Names @ arg( 1 ), second, error ) 

end if 
chdir : 

invokee := get_invokee( ptype ) 
if invokee <> NIL then 

get_dir( Names @ arg( 1 ) ) 
end if 

:1 pwd : 
InOut @ WriteStr( string( current @ my_pathname() ) ) 
InOut @ WriteLn() 

otherwise 
InOut @ WriteStr( 'shell: Invalid command "' ) 
InOut @ WriteStr( string( first ) ) 
InOut @ WriteStr( ' H .' ) 
InOut @ WriteLn() 

end case 
end procedure ! process_cmd 

begin 
while still_processing loop 

get_cmd( cmd, first, rest, ptype ) 
process_cmd( cmd, first, rest, ptype ) 

end loop 
end process. 
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definition of recoverable object symtab 
( name_type : type, value_type : type ) is 

! Single-copy symbol table object using the Aeolus/Clouds lock 
! mechanisms for synchronization. 	This Clouds object type provides 
! a resilient implementation of the symbol table. 

! The definition part contains specifications of public constants, 
! types, and operations defined by this object. 
! When compiled, it produces a symbol table file which may be imported 
! by other objects using this object in their implementations. 

operations 

procedure insert ( name : name_type 	, 
value : value_type , 
error : out boolean ) modifies 

! The INSERT operation places an entry into the symbol 
table. ERROR is set if an entry with the same name 

! already exists. 

procedure delete ( name : name_type 	, 
error : out boolean ) modifies 

! If the DELETE operation finds an entry with the given 
name, it removes the entry from the symbol table and 

! frees its storage space. 

procedure find ( name : name type 	, 
error : out Boolean ) returns value_type examines 

! The FIND operation tries to locate the entry with the 
given name and returns its value if it succeeds. ERROR 

! is set if the entry is not in the table. 

procedure quick_list 0 examines 

I The QUICK_LIST operation provides a quick (dirty) 
I listing of all names currently in the symbol table. 

procedure exact_list 0 examines 

! The EXACT_LIST operation provides a listing of the exact 
! state of the symbol table at a given point in time. To 
! do this, it locks the whole symbol table, thereby 
I excluding any changes during preparation of the listing. 
! Thus, although EXACT_LIST, FIND, and QUICK_LIST 
! operations may execute concurrently, and INSERT and 
! DELETE operations which access different hash buckets 
! may also execute concurrently, INSERT and DELETE 
! operations must block on EXACT_LIST operations. 
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end definition. 
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definition of recoverable object OFS 
( OFS_ROOT : OFS, 	initial_ancestor : OFS, 	initial_name : string() ) is 

! Single-copy version of the Object Filing System. This Clouds 
! object provides a resilient implementation of the OFS. 

import Names 

type OFS_op is ( mkdir_op, rmdir_op, mv_op, rm_op, ls_op, quick_ls_op ) 
! OFS operations which share essentially a common interface 

operations 

! In the operations below, the parameters first, rest, and ptype 
! represent a pathname argument as processed by Names @ scan_path(). 

procedure get_cap 
( first, rest : in out pathname_type(), 

ptype : in out path_type, 
error : out boolean ) 
returns capability examines 

! Retrieves the capability for the object with the given 
! pathname from the OFS. If the pathname exists, sets error 
! to FALSE and returns the associated capability, otherwise 
! sets error to TRUE and returns NIL. 

procedure put_cap 
( cap : capability, 

first, rest : in out pathname_type(), 
want_ancestor : boolean, 
ancestor : OFS, 
ptype : in out path_type, 
error : out boolean ) modifies 

! Places a capability for an object into the OFS under the 
! given pathname. 	If the given pathname already exists, or if 
! the prefix of the pathname (if any) does not exist, cap is 
! not inserted into the OFS, and error is set to TRUE; 
! otherwise, cap is inserted into the OFS, and error is set to 
! FALSE. 

procedure general_op 
( op_name : OFS_command, 

first_arg, second_arg : in out pathname_type(), 
error : out boolean ) modifies 

! An interface for the operations enumerated by type OFS_op, 
! which share a common interface and similar semantics with 
! respect to pathnames. The actual operation to be performed 
! is specified by parameter op_name. Two pathname parameters 
! may be specified; the second is used only by the "mv" 
! operation. 	If the operation was successful (depending on the 
! existence of the specified pathnames and, in the case of the 
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! rmdir command, on whether the first argument specified a 
! directory), error is set to FALSE; otherwise, error is set to 
! TRUE. 

procedure my_pathname 0 
returns pathname_type() examines 

! Returns the current pathname of this OFS instance. 

procedure reset_pathname 
( ancestor_name, new_name : pathname_type(), 

error : out boolean ) modifies 

! If parameter "ancestor_name" is the null string, sets the 
! instance's current pathname to "new_name" and sets "error" to 
! FALSE; else, if the concatenation of the ancestor's path and 
! the new instance name is within the maximum path length 
! contraint, sets the instance's current pathname to this 
concatenation, and sets "error" to FALSE; otherwise, sets 
"error" to TRUE. 

end definition. 
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implementation of object symtab 
l( name_type : type, value_type : type )! is 

! Single-copy symbol table object using the lock mechanisms of 
! Aeolus/Clouds for synchronization and to ensure view 
! atomicity. This implementation of the symbol table uses the 
1 recoverability features of Clouds to provide resiliency. The 
! use of per-action variables to maintain "intention lists" of 
! entries inserted or deleted during an action also helps ensure 
! view atomicity, since each action gets its own version of the 
1 per-action variables. Since this object is recoverable, we 
! will not explicitly release locks; rather, when a lock is 
! obtained by a nested action, it will be propagated to the 
! immediate ancestor when the nested action commits, and will be 
! released when the top-level ancestor commits. The symbol 
! table structure and its entries are kept in permanent storage. 
! Since permanent storage may be altered only at toplevel 
! precommit, we maintain two "intention lists" of non-permanent 
! entries which contain those entries which are inserted or 
! deleted by an action. The entries in these lists will be 
! transferred to the permanent symbol table during toplevel 
! precommit. 

import list, keyed_list 

Here, we give the names of alternate handlers for some of the 
1 action events. Note that we need not override the ABORT event. 

action events 
symtab_commit overrides commit, 

symtab_top_precommit overrides toplevel_precommit 

! The per-action variables for the symbol table are where we 
! maintain the "intention lists" of entries inserted and deleted by 
! an action. The "inserted" list entries are keyed on the name 
I field, but also include the value field. The "deleted" list 
! entries need merely give the name field. 

per action 
inserted : keyed_list( name type, value_type ) := new keyed_list 
deleted : list( name_type r := new list 

end per action 

! Each bucket of the hash table is a list of names and values, 
! keyed by the name field. The list objects are kept in permanent 
storage, and thus modify operations on them may be invoked only 

! during toplevel precommit. (However, examine operations may be 
! invoked at any time.) 

type bucket_list is permanent new keyed_list( name_type, value_type ) 

! The symbol table structure itself is an array of bucket lists. 
1 The array is also kept in permanent storage, and may be altered 
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! only at toplevel precommit. Since action management ensures that 
! only one action may be in the toplevel precommit handler at a 
! time, there is no need to explicitly enforce mutual exclusion on 
! the symbol table buckets, as is done in the nonrecoverable 
! version of the symtab object by means of critical regions. 

MAXBUCKET : const integer := 101 	! or whatever 

type hash_range is new unsigned[ 1 	MAXBUCKET ] 

symtable : permanent array[ hash_range ] of bucket_list 

symtable_lock : lock ( write : [write] , 
read : [read] ) 

! The SYMTABLE lock allows the entire symbol table to be locked. 
! This lock is set (in read mode) in the EXACT_LIST operation 
! for purposes of getting an exact listing of the state of the 
! symbol table. Operations which change the state of the symbol 
! table must wait for completion of any outstanding EXACT_LIST 
! operations and vice versa. 

name_lock : lock ( write : 
read : [read] ) domain is name_type 

! The NAME lock allows the user to lock the name which is to be 
! used in one of the symbol table operations. The purpose of 
! this lock is to assure the view atomicity of these operations, 
! that is, to provide synchronization such that concurrent users 
! of the symbol table do not view the results of other actions 
! before those actions are committed. 

procedure hash ( name : name_type ) returns hash_range is 

! This HASH function is a local (nonpublic) procedure of the 
! SYMTAB object. 

begin 
NULL 	! the usual type of stuff 

end procedure ! hash 

procedure sym_find ( name : name_type 
value : out value_type ) returns boolean is 

! The SYM_FIND routine is a local (nonpublic) procedure of the 
! SYMTAB object. It assumes that the caller has obtained the 
! necessary locks. 

begin 
return 	Self.inserted @ find( name, value 	) 

or ( 	not Self.deleted @ find( name ) 
and symtable[ hash( name ) ] @ find( name, value ) ) 
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end procedure ! sym_find 

procedure insert 0 name : name_type 
! value : value_type 	, 
! error : out boolean 0 is 

! The INSERT operation adds an entry to the INSERTED list for 
! this action, if the entry is not found; otherwise, ERROR is 
! set to TRUE. The entry will placed into the permanent symbol 
! table at toplevel precommit. 

dummy : value_type 

begin 
Await_Lock( name_lock, write, name ) 
error := sym_find( name, dummy ) 
if not error then 

Await_Lock( symtable_lock, write ) 
Self.inserted @ add( name, value ) 

end if 
end procedure ! insert 

procedure delete (! name : name_type 
! error : out boolean 	is 

! If the DELETE operation finds an entry with value field = 
! NAME, it adds the entry to the DELETED list; otherwise, ERROR 
! is set to TRUE. The entry will be deleted from the permanent 
symbol table at toplevel precommit. 

dummy : value_type 

begin 
error := FALSE 
Await_Lock( name_lock, write, name ) 
if Self.inserted @ find( name, dummy ) then 

! If this action has inserted the name, it must already 
! have a write lock on the symbol table. 	In this case, 
! Await_Lock() would just return immediately, since we 
! already have the lock. Therefore, we won't bother 
! invoking Await_Lock(). 
Self.inserted @ remove( name ) 

else if symtab[ hash( name ) ] @ find( name, dummy ) then 
Await_Lock( symtable_lock, write ) 
Self .deleted @ add( name ) 

else ! name not in the permanent symbol table or inserted by this action 
error := TRUE 

end if 

end procedure ! delete 

procedure find (! name : name_type 
! error : out boolean 	! returns value_type ! is 
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! The FIND operation sets a READ lock on the NAME entry, and 
! then tries to locate that entry with name field = NAME and 
! returns its value if it succeeds. 

value : value_type 

begin 
Await_Lock( name_lock, read, name ) 
Await_Lock( symtable_lock, read ) 
error := not sym_find( name, value ) 
return value 

end procedure ! find 

procedure quick_list() is 

! The QUICK_LIST operation provides a quick (dirty) listing of 
! names currently in the symbol table. 

begin 
! First, display the stuff in the permanent symbol table 
for i in hash range loop 

symtable[ i ] @ display() 
end loop 

! Now, display entries added by this action or its children, if any 
Self.inserted @ display() 

end procedure ! quick_list 

procedure exact_list() is 

! The EXACT_LIST operation provides a listing of the exact state 
! of the symbol table at a given point in time. To do this, it 
! locks the whole symbol table, thereby excluding any changes 
1 during preparation of the listing. Thus, although EXACT_LIST, 
! FIND, and QUICK_LIST operations may execute concurrently, and 
! INSERT and DELETE operations which access different hash 
1 buckets may also execute concurrently, INSERT and DELETE 
! operations must block on EXACT_LIST operations and vice versa. 

begin 
Await_Lock( name_lock, read, name ) 
Await_Lock( symtable_lock, read ) 
quick_list() 

end procedure ! exact_list 

procedure symtab_commit 0 is 

! The alternate handler for the commit action event. 	If this is 
! a nested action, we propagate the INSERTED and DELETED lists 
! of this action to its parent. 

status : action_status 
level 	: action level 
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begin 
! check whether we're in a nested action 
Void( ActionManager @ Tel 	status, level ) ) 
if level = nested_action then 

Parent.inserted @ append( Self.inserted ) 
Parent.deleted @ append( Self.deleted ) 

end if 
end procedure ! symtab_commit 

procedure symtab_top_precommit 0 is 

! The alternate handler for the toplevel precommit action event. 
We traverse the deleted and inserted lists for this action tree, 

! performing the actual changes to the permanent symbol table. 

name 	: name_type 
value 	: value_type 
not_there : boolean 

: unsigned 

begin 
! First, we will traverse the DELETED list, and delete the given 
! entries from the permanent symbol table 
n := 1 
loop 

name := Self.deleted @ nth( n, not_there ) 
if not_there then 

exit . 
end if 
symtable[ hash( name ) ] @ remove( name ) 
n += 1 

end loop 

! Similarly, we traverse the INSERTED list for this action 
n : = 1 
loop 

name := Self.inserted @ nth( n, value, not_there ) 
if not_there then 

exit . 
end if 
symtable[ hash( name ) ] @ add( name ) 
n += 1 

end loop 
end procedure ! symtab_top_precommit 

inithandler is 

! Here, we initialize the permanent symbol table. 
! (Initialization of permanent structures is possible because 
! the initialization handler of a recoverable object is 
! performed implicitly as a toplevel precommit handler.) 

begin 
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for i in hash range loop 	! each bucket is initially empty 
symtable[ i ] := new bucket_list 

end loop 
end inithandler 

end implementation. 
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implementation of object OFS 
!( OFS_ROOT : OFS, 	initial_ancestor : OFS, 	initial_name : string() )1 is 

! Single-copy version of Object Filing System. This 
! implementation of the OFS uses the recoverbility features of 
! Clouds to provide resiliency. OFS uses the symtab object type 
! (which is also recoverable) to manage all symbol table 
1 functions such as insertion, deletion, etc. When an operation 

is invoked on an OFS object by a user, it is because that 
! instance of OFS is the current working directory. When a 
! relative path is passed to that instance of the OFS, it relays 
! the operation to the appropriate instance by invoking 
! operations on its children (maintained in the symbol table) or 
! its ancestor. Absolute paths (i.e., paths starting at the 
! root OFS) are not handled, except in put_cap(); it is assumed 
! that the driver process (e.g., "shell") catches absolute paths 
! and relays them to the root OFS. 	(As an optimization, the 
! driver should also catch most references to the current 
1 working directory's direct ancestor.) The user may also change 
1 the instance of OFS which is considered the current working 
! directory by means of relative or absolute paths. 

import symtab, InOut 

recoverable 
current_pathname : pathname_type() 	1 current name of this OFS instance 

end recoverable 

table : permanent symtab( pathname_type(), capability ) := new symtab 

procedure get_cap 
0 first, rest : in out pathname_type, 
! ptype : in out path_type, 
! want_ancestor : boolean, 
! ancestor : out OFS, 
! error : out boolean 

) ! returns capability ! is 

child : OFS 
temp : pathname_type() 

begin 
error := FALSE 
ancestor := NIL 
case ptype of 

in_child, in_ancestor : 
child := table @ find( first, error ) 
if error ! no child by this name exists ! then 

return NIL 
else 

temp := rest 
ptype := Names @ scan_path( temp, first, rest ) 
return child @ get_cap( first, rest, ptype, 

want_ancestor, ancestor, error ) 
end if 



- B-35- 

Feb 19 15:28 1987 r_OFS.imp Page 2 

II in here,is ancestor, is here : , 	_ 	 _ 
if want_ancestor then 

ancestor := table @ find( '..', error ) 
end if 
return table @ find( first, error ) 

otherwise 
error := TRUE 
return NIL 

end case 
end procedure ! get_cap 

procedure put_cap 
0 cap : capability, 

! 	first, rest : in out pathname_type(), 
! ptype : in out pathname_type(), 
! error : out boolean 

) 	is 

child : capability 
child_OFS : OFS 
is_OFS : boolean 
temp : pathname_type() 

begin 
error := FALSE 
case ptype of 

in_child, in_ancestor : 
child := table @ find( first, error ) 
if error ! no child by this name exists ! then 

return . 
else 

error := not object_type( child, 'OFS' ) 
if error then 

InOut @ WriteStr( 'OFS: "' ) 
InOut @ WriteStr( string( first ) ) 
InOut @ WriteStr( '" is not a directory.' ) 
InOut @ WriteLn() 
return . 

else 
temp := rest 
ptype := Names @ scan_path( temp, first, rest ) 
OFS( child ) @ put_cap( cap, first, rest, ptype, error ) 

end if 
end if 

in_here : 
is_OFS := object_type( cap, 'OFS' ) 
if is_OFS then 

child_OFS := OFS( cap ) 
temp := ! save old pathname in case of error 

child_OFS @ reset_pathname( current_pathname, first, error ) 
end if 
if not error then 

table @ insert( first, cap, error ) 
if error and is_OFS then 	! restore old pathname 

Void( child_OFS @ reset_pathname( ", temp, error ) ) 
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end if 
end if 

11 absolute_path : 
OFS_ROOT @ put_cap( cap, first, rest, ptype, error ) 

otherwise 
error := TRUE 
return . 

end case 
end procedure ! put_cap 

procedure general_op 
op_name : OFS_op, 

! first_arg, second_arg : pathname_type(), 
! error : out boolean 

) 	is 

child : capability 
child_OFS : OFS 
first, rest, temp : pathname_type() 
ptype : path_type 

begin 
error 	FALSE 
ptype := Names @ scan_path( first_arg, first, rest ) 
case ptype of 

in_child, in_ancestor : 
child := table @ find( first, error ) 
if error ! child not found ! then 

InOut @ WriteStr( 'OFS: "' ) 
InOut @ WriteStr( string( first ) ) 
InOut @ WriteStr( '", no such directory.' ) 
InOut @ WriteLn() 
return . 

end if 
error := not object_type( child, 'OFS' ) 
if error then 

InOut @ WriteStr( 'OFS: "' ) 
InOut @ WriteStr( string( first ) ) 
InOut @ WriteStr( 1 " not a directory.' ) 
InOut @ WriteLn() 
return . 

end if 
temp := rest 
ptype := Names @ scan_path( temp, first, rest ) 
child @ general_op( op_name, first, rest, ptype, second, error ) 

II in here: 
case op_name of 

mkdir_op : 
child := new OFS( MySelf(), first ) 
table @ insert( first, child, error ) 

rmdir_op : 	 • 
child := table @ find( first, error ) 
if error then 

InOut @ WriteStr( 'rmdir: "' ); 
InOut @ WriteStr( string( first ) ); 
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1nOut @ WriteStr( '", no such directory.' ) 
InOut @ WriteLn0 
return . 

end if 
error := object_type( child, 'OFS' ) 
if error then 

InOut @ WriteStr( 'rmdir: " I  ); 
InOut @ WriteStr( string( first ) ); 
InOut @ WriteStr( '" is not a directory.' ) 
InOut @ WriteLn0 
return . 

end if 
table @ delete( first, error ) 

11  mv_op : 
child := table @ find( first, error ) 
if not error then 

ptype := Names @ scan_path( second_arg, first, rest ) 
put_cap( child, first, rest, ptype, error ) 
if not error then 

table @ delete( first, error ) 
end if 

end if 
rm_op : 
child := table @ find( first, error ) 
if not error then 

if object type( child, 'OFS' ) then 
InOut § WriteStr( 'rm: "' ); 
InOut @ WriteStr( string( first ) ); 
InOut @ WriteStr( '" is a directory.' ) 
InOut @ WriteLn0 
error := TRUE 

else 
table @ delete( first, error ) 

end if 
end if 

II ls_op : 
table @ quick_listO 

is quick_ls_op : 
table @ exact_list() 

end case 
otherwise 

error := TRUE 
return . 

end case 
end procedure ! general_op 

procedure my_pathname 0 
1 returns pathname_type() ! is 
begin 

return current_pathname 
end procedure ! my_pathname 

procedure reset_pathname 
ancestor_name, new_name : pathname_type(), 
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! error : out boolean 
)! returns pathname_type() ! is 

old_pathname : pathname_type() 

begin 
if ancestor_name = " then 

current_pathname := new_name 
error := FALSE 
return '' 

end if 
ancestor_name := 

pathname_type( strings @ str_concat( string( ancestor name ), '/' ) ) 
error := ( strings @ str_len( string( ancestor_name ) ) ; 

strings @ str_len( string( new_name 	) ) ) 
> MAX_PATH_LENGTH 

if error then 
InOut @ WriteStr( 'OFS: instance " I  ) 
InOut @ WriteStr( string( new_name ) ) 
InOut @ WriteStr( '", pathname too long.' ) 
InOut @ WriteLn() 
return " 

else 
old_pathname := current_pathname 
current_pathname := pathname_type( 

strings @ str_concat( string( ancestor_name ), string( new_name ) ) 

return old_pathname 
end if 

end procedure ! reset_pathname 

inithandler is 
! initialize the symbol table to hold the current and ancestor OFSs 

error : boolean 

begin 
table @ insert ( '.', MySelf(), error ) 
if error then 

InOut @ WriteStr( 'OFS: instance "' ) 
InOut @ WriteStr( string( initial_name ) ) 
InOut @ WriteStr( '" cannot insert "."' ) 
InOut @ WriteLn() 

end if 
if initial_name = '/' then 	! this is the root OFS 

current_pathname := initial_name 
table @ insert( '..', MySelf(), error ) 

else 
reset_pathname( initial_ancestor @ my_pathname(), initial_name, error ) 
table @ insert( '..', initial_ancestor, error ) 

end if 
if error then 

InOut @ WriteStr( 'OFS: instance "' ) 
InOut @ WriteStr( string( initial_name ) ) 
InOut @ WriteStr( '" cannot insert ".."' ) 
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InOut @ WriteLn() 
end if 

end inithandler 

end implementation. 
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