
3/17/88 	(Reports)

Type Aweement F30602-86—C-0032

Award Period: From 2/18/86 	To 	 S_2/ 17 /8 	(Performance)

Sponsor 'Amount: 	 This Change . 1

Estimated: $ 	389,856

Funded: $ 	146,196

Cost Sharing Amount: $ 	 N/A 	Cost Sharing No:

Title: Fault Tolerant Software Technology for Distributed Computing System.

E ORIGINAL Ej REVISION NO.

GTRC/Att 	DATE 3 / 11 / 86

School/ME 	ICS Project Director:' R. Le Blanc

'USAF/RADC

Total to Date
389,856

OCA Contact Ralph Grede 	 X-4820

2) Sponsor Admin/Contractual Matters:

,7!

;A INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

PROJECT ADMINISTRATION DATA SHEET

Griffiss AFB; 	13441-5700n:::

146,196

N/A

Office of Naval Research

Resident Representative

206 O'Keefe Building

Georgia Institute of Technology

Atlanta, Georgia 30332

Military Security Classification: 	U
N/A

" ADMINISTRATIVE DATA
1) Sponsor Technical Contact:

Mr. Richard Metzger

USAF/RADC/t441)

Griffiss AFB, N.Y. 13441-5700

Defense Priority Rating: 	DO :A7

(or) Company/Industrial Proprietary:

RESTRICTIONS

See Attached Government 	 Supplemental Information Sheet for Additional Requirements.

Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor

approval where total will exceed greater of $500 or 125% of approved proposal budget category.

Equipment: Title vests with Sponsor —

COMMENTS:
This is an advance Payment Pool Agreement. No Foreign Nationals are to be ass

Project No..G-36-645 (R-6100-0A0)

tothis'projact without sponsor approval.

OPI ES TO:

Oat Diraater
esearch Administrative Network
esearch Property Management

nting

SPONSOR'S I. D. NO. 02711547GRUM53—
Procurement/EES Supply Services
Research Security Services

rjleeLuCtordinali(OCA)
Research COmmunications (I)

GTRC
Library
Project File

Tri nl

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT. ADMINISTRATION

OFPROJECT CLOSEOUT

Date 	12/9/88

Pro Center No. R6100 -0A0

-Pro School/Lab ICS

S

Contract/Grant'No. F30602-86-C-0032

Prime Contract No. N/A

7,41e ault , Tolerant Software Technology for Distributed Computing System

Effective

Closeout Actions Required:

2/17/88 ompletion Date (Reports) (Performance) 	3/17/88

None
Final . Invoice or Copy of LastInvoice
Final Report of Inventionsland/or Subcontracts _ Patent
Government Property Inventory'& Related Certificate
Classified Material Certificate
Release and Assignment
Other,

to P Questionnaire sent

InCludes Subproject No(s).

Subproject Under Main Project N

ContinuesProject No. 	 Continued by Project No. 	

istribution
4,1041WWWWPV-1

RePOTIla
GTRC
Project File

x Contract Support Division (OCA)
Other

41•11•■•■

4Project 4 Director
-Administrative Network
Accounting , :

, Procurement/GTRI Supply Services
Research Property Management

'-ItesearchSecurity Services-

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: 18 Feb 86 - 30 Mar 86

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECNHOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology
	

Monthly Report
for Distributed Computing Systems

1. Progress

During this initial reporting period, organization of the project has
occured in begun to be established. Because the start of the project

the middle of an academic year, the level of effort will be relatively
low until the summer, due to lack of availability of personnel.

he project, Our efforts thus far have been concentrated on Task 1 of t
Programming Techniques for Resilience and Availability. Our work on
this task will be strongly related to other work involving the Principal
Investigator within the Clouds Project at Georgia Tech.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

Dr. Richard LeBlanc is directing this project, as specified in the Key
Personnel section of the contract.

Mr. Tom Wilkes is employed by the project as a graduate research assis-
tant. He is a PhD student in the School of Information and Computer
Science at Georgia Tech. His recent research efforts have been concerned

age (called
he action and

with the design and implementation of a programming langu
Aeolus) which includes features which provide access to t
object management features of the Clouds kernel. These language features

niques for resil- are to provide the basis of our study of programming tech
ience and availability.

4. Summary of Trips and Meetings

None during the reporting period.

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Towards Meeting Goals of the Contract

The current level of effort is well below that needed to meet the goals
of the contract. Our level of effort will increase substantially over
the next four months, thereby reaching a sufficient level.

7. Related Accomplishments

There have been no related accomplishients during this
period.

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: April, 1986

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G•36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. Progress

Our work on Task 1 of the project, Programming Techniques for Resilience
and Availability, has continued. A study of related research work is
in progress. Work on Task 2 has not started yet; we plan to initiate
that effort in June or July.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No new personnel have been added to the project. A graduate research
assistant has been identified to work on Task 2 beginning in the summer
quarter. He is Mr. Steve Ornburn.

4. Summary of Trips and Meetings

Dr. LeBlanc visited RADC to meet with relevant staff members to discuss
this contract and the RADC research program in distributed systems. He
presented an overview of the Clouds project and discussed the planned
research and projected work schedule. The summary of RADC supported
research presented by R. Metzger suggested several contacts that should
be made with groups doing related research.

5. Problems or Areas of Concern

No problems are areas of concern are evident at the current time

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is well below that needed to meet the goals
of the contract. Our level of effort will increase substantially over
the next three to four months, thereby reaching a sufficient level.

7. Related Accomplishments

There have been no related accomplishments during this period.

8. Plans for Next Period

The study of related work under Task 1 will continue. We will also begin
designing example problems to be used in our methodology studies.

1

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: May, 1986

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER. F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. Progress

Our work on Task 1 of the project, Programming Techniques for Resilience
and Availability, has continued. Our study of related research work has
led us to conclude that most work with replicated objects has been con-
cerned with algorithms to control object interactions. Little has been
done to explore state replication methods. We plan to make that area
an initial focus for our study. Work on Task 2 has not started yet; we
plan to initiate that effort in July.

2. Special Programs Developed and/or. Equipment Purchased

None.

3. Key Personnel

No new personnel have been added to the project.

4. Summary of Trips and Meetings

Dr. LeBlanc attended a NASA-sponsored workshop on Embedded Distributed
Computer Systems in Tampa on May 8 and 9. The program of this workshop
consisted of presentation and discussion research reports by a small group
of NASA-funded researchers. A variety of interesting research topics
were discussed. The most valuable result of this trip was the development
of some ideas about how Clouds might be made interoperable with Unix,
so as to quickly provide a powerful development environment for Clouds.

Dr. LeBlanc also attended the Distributed Computing Systems conference
in Boston on May 20-22. During this trip he heard two presentations on
Chronus by BBN personnel and had opportunities for further discussions
with them. On May 23, he gave a presentation about Clouds at Computer
Corporation of America and discussed various research topics with David
Reiner and Sunil Sarin.

5. Problems or Areas of Concern

No problems are areas of concern are evident at the current time

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is well below that needed to meet the goals
of the contract. Our level of effort will increase substantially over
the next three to four months, thereby reaching a sufficient level.

7. Related Accomplishments

There have been no related accomplishments during this period.

1

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

8. Plans for Next Period

Methods of state replication, particularly for nested objects, will be
the focus of our study under Task 1. Appropriate example problems for
this study will be identified.

9. Expenditure of Effort

CATEGORY 	 HOURS EXPENDED IN THIS
REPORTING PERIOD

CUMULATIVE TOTAL OF
EXPENDED HOURS

Associate Professor 8.5 34
Research Scientist II 0 0
Grad. Research Asst. 87 304.5
Secretary 60 120
Clerk Typist 60 120

2

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: „Tune, 1986

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. Progress

Our work on Task 1 of the project, Programming Techniques for Resilience
and Availability, has continued. We have found that the generality of
the abstract object structure supported by Clouds poses problems for repli-
cation methods which are not presented by a less general, flat object
structure (for instance, files or queues). The problem lies in the possi-
bility of the arbitrarily complex logical nesting of Clouds objects. Al-
though Clouds objects may not be physically nested (that is, one object
may not physically contain another object), an object may contain a capa-
bility to another object. If an object. A creates another object B, and
retains sole access to B's capability (by refraining from passing the
capability to other objects), we say that object B is internal to object
A. The internal object B may be regarded as being logically nested in
object A. If, on the other hand, object A passes B's capability to some
object not internal to A, we say that B is an external object; an external
object is potentially accessible by objects not internal to the object
which created the external object.

Problems arise with replication schemes when internal and external objects
are mixed together in the same structure, i.e., when an object may contain
capabilities to both internal and external objects. These problems are
associated with the method which is used to propagate the state of a repli-
cated object among its replicas. One such method is to execute the computa-
tion 'from which the desired state results on each replica; we refer to
this scheme as idemexecution. Another method is to execute the computa-
tion at one replica, and then copy the state of that replica to the other
replicas; we refer to this scheme as cloning. Note that the scheme which
is used to ensure that the replicas maintain consistent states (e.g.,
quorum consensus) is not involved in these problems, and is considered
separately in our investigation.

Our current research includes an investigation of a tttaxonomy" of object
structures on which the corresponding state-propagation methods may be
safely used, as well as of how these state-propagation methods -- or the
Clouds object-naming mechanism -- may be altered to safely handle more
general cases.

Work on Task 2 has not started yet; we plan to initiate that effort in
July.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No new personnel have been added to the project. However, a Research
Scientist has been selected to join the project in October. He is Win
Strickland, who holds an M.S. from Georgia Tech. He has considerable
expertise with operating systems, having worked in the ICS Laboratory
while he was a student and for three years with a startup company in the
Atlanta area.

1

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

4. Summary of Trips and Meetings

Dr. LeBlanc attended the SIGPLAN '86 Symposium on Compiler Construction
in Palo Alto, California. There were several significant papers presented
there concerning techniques for implementing attribute grammar-based pro-
gramming tools. This work is relevant to ongoing efforts within the
Clouds project towards the implementation of tools for using Aeolus.

5. Problems or Areas of Concern

No problems are areas of concern are evident , at the current time

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is below that needed to meet the goals of
the contract. Our level of effort will increase substantially next month
and again when more personnel are added in October, thereby reaching a
sufficient level.

7. Related Accomplishments

There have been no related accomplishments during this period.

8. Plans for Next Period

A principal focus of our work will be exploring the concept of an object
filing system that can serve as a repository and access mechanism for
external objects (as defined in section 1 above).

9. Expenditure of Effort

CATEGORY 	 HOURS EXPENDED IN THIS
REPORTING PERIOD

CUMULATIVE TOTAL OF
EXPENDED HOURS

Associate Professor 36.5 70.5
Research Scientist II 0 0
Grad. Research A8st. 87 391.5
Secretary 60 180
Clerk Typist 60 180

2

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: July, 1986

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. Progress

Under Task 1 of the project, Programming Techniques for Resilience and
Availability, we have continued our development of a 	taxonomy of
object structures on which the alternative state-propagation methods may
be safely used. Additionally, we are considering how these state-propaga-
tion methods -- or the Clouds object-naming mechanism -- may be altered
to safely handle more general cases.

Work on Task 2, Action-Based Programming for Embedded Systems, has now
started. We have identified the work of the ISIS project at Cornell as
significant to our investigation and, are currently studying their results.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

A new graduate research assistant, Stephen Ornburn, joined the project
this month. After he is currently familiarizing himself with our ongoing
work and focussing on Task 2.

4. Summary of Trips and Meetings

None.

5. Problems or Areas of Concern

No problems are areas of concern are evident at the current time

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is still below that needed to meet the goals
of the contract. Our level of effort will increase substantially when
more personnel are added in October, thereby reaching a sufficient level.

7. Related Accomplishments

There have been no related accomplishments during this period.

8. Plans for Next Period

We will continue the work described above for Task 1 and we will be ex-
ploring the concept of an object filing system that can serve as a reposi-
tory and access mechanism for external objects. For Task 2, we will be
studying the ISIS work.

1

• 	Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

9. Expenditure of Effort

CATEGORY 	 HOURS EXPENDED IN THIS
REPORTING PERIOD

CUMULATIVE TOTAL OF
EXPENDED HOURS

Associate Professor 59 129.5
Research Scientist II 0 0
Grad. Research Asst. 174 565.5
Secretary 10 190
Clerk Typist 10 190

2

MONTHLY RETORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: August, 1986

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. Progress

Under Task 1 of the project, Programming Techniques for Resilience and
Availability, we have been studying the work of Herlihy, presented in
his PhD thesis, "Replication Methods for Abstract Data Types." We have
discovered a correspondence between his quorum intersection graphs and
the lock compatibility tables of Aeolus. This discovery is valuable
because it should allow us to apply techniques developed by Herlihy to
our problem of automatically generating replicated objects from a single
object version and a replication specification.

Work on Task 2, Action-Based Programming for Embedded Systems, has con-
tinued this month with an examination of the consequences of irreversible
nested actions in action-based programs. Modelling dependency of other
actions on irreversible actions will be a major concern. We intend to
look at models from database dependency theory for application to this
problem. We have also identified techniques for forward error recover
(as opposed to the rollbacks normally used in action-based programs) as
an important topic for study.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

None.

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is still below that needed to meet the goals
of the contract. Our level of effort will increase substantially when
more personnel are added in October, thereby reaching a sufficient level.

7. Related Accomplishments

There have been no related accomplishments during this period.

1

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

8. Plans for Next Period

We will continue the work described above for Task 1 and we will be ex-
ploring the concept of an object filing system that can serve as a reposi-
tory and access mechanism for external objects. For Task 2, we will be
studying work on forward error recovery.

9. Expenditure of Effort

CATEGORY
	

HOURS EXPENDED IN THIS 	CUMULATIVE TOTAL OF
REPORTING PERIOD 	 EXPENDED HOURS

Associate Professor 	 74.5 	 204
Research Scientist II 	0 	 0
Grad. Research Asst. 	 174 	 739.5
Secretary 	 10 	 200
Clerk Typist 	 10 	 200

2

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: September, 1986

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
" for Distributed Computing Systems

1. Progress

Under Task 1 of the project, Programming Techniques for Resilience and
Availability, we are currently investigating the design of the object
filing system (OFS) for Clouds. The replication scheme which we are cur-
rently considering in support of availability will require heavy inter-
action between the manager for a replicated object, the job scheduler, and
the OFS. The OFS should:

- be resilient and highly available (through replication);

- provide a mapping from object names (strings) to Clouds object capa-
bilities;

- impose some familiar structure (e.g., a Unix-like hierarchical struc-
ture) on the flat, global system name space provided by the Clouds
object manager;

- provide efficient forms for the most common types of I/O (such as
text I/O) without the necessity of the context switches which would
be required if such I/O were modelled with Clouds objects.

In the OFS, an object name may represent a group of objects (the set of
replicas of a replicated object), rather than a single instance. We
intend that this mechanism should be, in general, transparent to the user
(although specialpurpose applications, such as DBMSs, may require that, in
addition, finer control of replication be available than that provided by
a general mechanism).

We are currently considering two different capability-based naming schemes
which may be used by the OFS in support of state cloning, as described in
a previous report. The first scheme requires minimal changes to the
kernel, but relies on facets of the Clouds object look-up mechanism which
may not be applicable to other systems. In Clouds, the search for an
object begins locally (that is, on the node which invoked the search), and
-- if the object is not found locally -- proceeds to a broadcast search.
If the internal objects belonging to a replica are constrained to reside
on the same node as their parent object, then the local search will locate
the local instance of the internal object. (We do not consider this
constraint to be onerous, since the internal objects of each replica need
to be highly available to that replica in any case, and thus should
logically reside on the same node as the parent replica. This constraint
may be enforced by the OFS.) Thus, each replica of an object (each of
which resides on a separate node) may maintain its set of internal objects
using the same capabilities as each other replica.
Although we will thus have multiple instances (on separate nodes) of
internal objects referenced by the same capability, there should be no
problems caused by this, since -- by the definition of internal object --
only the parent object or its internal objects may possess the capability
to an internal object, and the object search will always locate the
correct (local) instance.

Thus, state cloning may be used to copy the state of a replica to the
other replicas without causing the problems with respect to internal
objects mentioned in the June report (concerning references to internal

1

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

objects contained in the replica's state), since under this scheme all
replicas may use the same capabilities for referencing internal objects.
This scheme is an extension of a facility already supported by the Clouds
kernel for cloning read-only objects such as code. We call this scheme
vertical replication, since it maintains the grouping of internal objects
with their parent object.

The other naming scheme makes fewer assumptions about the object look-up
mechanism than vertical replication, but requires more kernel modifica-
tions. In the second scheme, each instance of the replicas' internal
objects is again named by the same capability, at least as far as the user
is concerned; however, the kernel maintains several additional bits
associated with each capability identifying a unique instance. (These
additional bits may be derived from, for instance, the birth node of the
instance.) When a (parent) replica invokes an operation on an internal
object, the kernel selects one of the replicas of the internal object
according to some scheme (e.g., iteration through the list of nodes con-
taining such objects until an available copy is located). Thus, a set of
replicas of internal objects is maintained in a "pool" for access by all
parent replicas. Again, each parent appears to use the same (user)
capability to reference a given internal object, so the problems of state
cloning disappear. Since this scheme maintains a logical grouping of the
copies of an internal object, rather than grouping internal objects with
their parent object, we refer to the scheme as horizontal replication.

Our initial design of the OFS is concerned with an unreplicated version;
when completed, the design will be extended to a replicated version by use
of the "distributed lock" mechanism and an analysis of the desired
replication properties of the OFS.

Work on Task 2, Action-Based Programming for Embedded Systems, has con-
tinued this month with a study of recovery mechanisms. The goal of a
recovery mechanism in a fault tolerant system is to return an erroneous
computation to a state from which computation can continue. (We term such
a state "consistent"). In principle, a programmer can achieve fault tol-
erance by explicitly saving state information and providing enough alter-
native paths for execution. The objective of research in fault tolerant
computing is to design operating system and run time system support
which, in conjunction with appropriate programming language constructs,
will make recovery "invisible" to the main computation. In this way, we
hope to realize many of the same advantages of "information hiding"
frequently claimed for modular programming and the use of abstract data
types.

In software designed using nested atomic actions (and with at most trivial
interactions with its environment) recovery can be achieved simply by
restoring computation to an earlier state and applying a different action.
If a software system has interacted with its environment in irreversible
ways, then returning the computation to an earlier state is not appro-
priate. The recovery mechanism must restart the computation on a state
which is both consistent and in which the irreversible actions are shown
as having occured. We term a recovery mechanism with these capabilites as
a "forward" recovery mechanism. Initially, we are modeling recovery in
the face of irreversible actions as a four step process:

2

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. identify the irreversible actions nested within the action to be
aborted;

2. save the results of the nested, irreversible actions;
3. rollback the nested, reversible actions;
4. apply forward recovery to the nested, irreversible actions so as to

establish a consistent state.

Step two raises some issues with respect to operating system and run-time
system support. In particular the recoverable area techniques provided in
Clouds will not be adequate. We will need to be able to selectively
recover various combinations of actions.

Recovery in the face of irreversible actions presupposes that the irrever-
sible actions can themselves be identified. Among the irreversible
actions, we will of course have the action which interacted with the
environment in an irreversible way. 	Labeling an action "irreversible"
may, however, require that other actions be 	labeled "irreversible" as
well. For example, consider three actions A, B, and C. 	A and B are
nested within C. 	B is irreversible, and A provides data to B. In the
event that C aborts, it will not be possible to undo the effects of A.
Since B is irreversible and its effects will survive step three. Even if
A itself is rolled back, that A had occured may still be evidenced by the
results of B. Undoing A and not B produces an inconsistent state in which
A has both occured and not occured. We choose to solve this problem by
considering actions which have supplied data to irreversible actions as
themselves irreversible. Thus, when action C is aborted, the forward
recovery mechanism invoked in step four will be charged with handling
both A and C.

A programmer may wish to define other actions as irreversible as well.
Suppose B and D are nested within C. Suppose D uses the results of B to
calculate some necessary consequences of B. The programmer wants any
state which includes B to also include D. If B is labeled irreversible
then D should be as well. We have identified two ways in which actions
may makes other actions irreversible. We write A -t B to indicate that if
action A is irreversible then action B is as well. Determining which of a
set of nested actions are irreversible is an inference problem similar to
the problem in database design theory of infering functional depend-
encies. Depending on the combination of actions which have been labeled
irreversible, different strategies for forward recovery may be indicated.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

3

Fault Tolerant Software Technology 	 Monthly Report
' for Distributed Computing Systems

None.

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is still below that needed to meet the goals
of the contract. Our level of effort will increase substantially when an
additional 1/2-time Graduate Research Assistant and a 3/4-time Research
Scientist begin working on the project in October, thereby reaching a
sufficient level. A staffing projection for the rest of the project is
attached to this report.

7. Related Accomplishments

Considerable progress has been made on debugging the Clouds kernel during
the last three months. We expect to have all of the currently implemented
functionality fully operational in October. This will include creation of
object instances from templates created by the Aeolus compiler, invocation
of object operations on remote machines using the standard Clouds
location-transparent invocation protocol, and network communication fea-
tures allowing interaction with Unix machines. The implementation of the
action manager is currently in progress, based on a detailed design
completed earlier in the year.

8. Plans for Next Period

We will continue the work described above for Task 1, particularly concen-
trating on a distributed version of the object filing system. For Task 2,
the next step in our research will be to develop specification mechanisms
which support our strategy for identifying irreversible actions and for
selecting appropriate forward recovery strategies. We will also look more
closely at specific forward recovery strategies and develop some examples
illustrating our approach.

9. Expenditure of Effort

CATEGORY 	 HOURS EXPENDED IN THIS
REPORTING PERIOD

CUMULATIVE TOTAL OF
EXPENDED HOURS

Associate Professor 74.5 278.5
Research Scientist II 0 0
Grad. Research Asst. 174 913.5
Secretary 10 210
Clerk Typist 10 210

4

Projected Level of Effort by Months

Each monthly entry gives planned man-hour expenditure for
and total expended though the end of that month.

Expended
as of 	10/86 	11/86 	12/86 	1/87

the month

2/87 	3/87
9/30/86

Associate Professor 38.5 38.5 38.5 38.5 38.5 38.5
278.5 317 355.5 394 432.5 471 509.5

Research Scientist 130.5 130.5 130.5 130.5 130.5 130.5
0 130.5 261 391.5 522 652.5 783

Grad Research Asst. 261 261 261 261 348 348
914 1175 1436 1697 1958 2306 2654

Secretary/Clerical 87 87 87 87 87 87
420 507 594 681 768 855 942

Expended
as of

3/31/87
4/87 5/87 6/87 7/87 8/87 9/87

Associate Professor 38.5 38.5 38.5 140 140 140
509.5 548 586.5 625 765 905 1045

Research Scientist 130.5 130.5 130.5 130.5 130.5 130.5
783 913.5 1044 1174.5 1305 1435.5 1566

Grad Research Asst. 348 348 348 348 348 348
2654 3002 3350 3698 4046 4394 4742

Secretary/Clerical 87 87 87 87 87 87
942 1029 1116 1203 1290 1377 1464

Expended Contract
as of 10/87 11/87 12/87 1/88 2/88 Total
9/30/87

Associate Professor 35 35 35 35 35 1218
1045 1080 1115 1150 1185 1220

Research Scientist 130.5 130.5 130.5 130.5 0 2088
1566 1696.5 1827 1957.5 2088 2088

Grad Research Asst. 348 348 348 348 174 6264
4742 5090 5438 5786 6134 6308

Secretary/Clerical 87 87 87 87 87 1914
1464 1551 1638 1725 1812 1899

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: October, 1986

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. Progress

Task 1 (Programming Techniques for Resilience and Availability):
In our last report, we described our study of the work of Herlihy concern-
ing the efficient support of replication for abstract data types. We also
described a connection between the quorum-intersection graphs used in Her-
lihy's work and the specification of lock mode compatibilities supported
by the Aeolus/Clouds lock construct. The graph derived (using Herlihy's
conventions) from the mode compatibility specification for a lock which is
used to enforce synchronization among an object's operations is approx-
imately the complement of the quorum-intersection graph for that object's
operations. Thus, we should be able to use Herlihy's methods in conjunc-
tion with our lock specifications, which will be useful in light of Her-
lihy's optimality results for his scheme.

To test this conjecture as well as the possibility of deriving replicated
objects from single-copy versions, we have been occupied during the past
month with the specification and implementation of a single-copy version
of a prototype Object Filing System (OFS) for Clouds. (The functionality
of the OFS has also been described in a previous report; a much-simplified
version of an OFS supporting a flat name space has already been imple-
mented in the Clouds system, while the current OFS effort will support a
hierarchical name space.) This effort involves the specification of the
synchronization behavior of the single-copy OFS object via a lock compati-
bility matrix. We will compare the graph derived from this specification
with the quorum-intersection graph appropriate to the same set of
operations. Also, when the specification of the single-copy. OFS object is
complete, we will test our idea of extending the single-copy version to a
replicated version by allowing the locks specified for the single-copy
version to act as "distributed locks" (where information about locks
granted or released by a replica on one node is communicated to the other
nodes where replicas exist by the Clouds object manager, as described in
the previous report). A "distributed lock" may be viewed as a manager for
gathering a quorum for a given operation; the synchronization behavior
thus achieved should reflect that specified for the single-copy version,
with no additional effort on the programmer's part.

Another interesting question which will be investigated using the OFS
example is the relation between Herlihy's quorum intersection graphs and
Aeolus/Clouds lock compatibility matrices when multiple locks are used for
specifying an object's synchronization behavior. We have found that in
certain cases it is convenient to use more than one lock to specify
synchronization among an object's operations; the different locks typi-
cally apply at differing levels of granularity as well as having compati-
bility matrices with disjoint meanings. For example, we have designed a
symbol table object which uses two locks for synchronization purposes: one
lock at the level of the individual buckets in the symbol hash table, with
compatibilities expressing a multiple reader / single writer protocol; and
another lock at the level of the entire symbol table, allowing multiple
readers or multiple writers, but not readers concurrently with writers.
The first lock is used with the typical operations such as insert, delete,
and find, where there is no interaction between concurrent operations on
different buckets; the second lock is used with an "exact-list" operation,
where a "snapshot" of the exact state of the symbol table at a particular
instant is desired, and thus all operations which modify the state of any

1

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

portion of the symbol table must be locked out. Our locks thus have an
advantage of power of expression over Herlihy's quorum intersection
graphs, which do not allow the expression of granularity lower than that
of an entire abstract data type and its operations. Thus, we will be
considering how Herlihy's results may be extended to the case of multiple
levels of granularity for synchronization.

Task 2 (Action-Based Programming for Embedded Systems):
When a computation interacts with its external environment, the computa-
tion will perform operations not only on data objects belonging to the
computation but also on objects belonging to the system in which the com-
putation is embedded. These operations may cause the external object to
change state in an irreversible way. This is most easily understood when
the external object is real. 	Even when the containing system is itself
computational, however, it may be convenient 	to regard operations
performed by the embedded system on objects in the containing system as
irreversible from the perspective of the embedded system.

Our proposed strategy for achieving fault-tolerance in the presence of
irreversible operation involves aborting the action in which the fault
occurred and restoring the object on which the action was begin performed
to a consistent state. As the action is aborting we will save those por-
tions of the object's state associated with the irreversible operation and
then recover the object's previous state. 	We will then modify the
recovered state to reflect the nested irreversible actions. 	Control
returns to the point just prior to the invocation of the failed action.

We must be careful here: we want actions to be atomic, but when we modify
the recovered state to reflect the irreversible operations performed by
the failed action we appear to lose atomicity. From the perspective of
the main computation, however, there is another interpretation -- the
object appears to have undergone a spontaneous state change.

If we allow these "spontaneous" state changes, we must do more as well.
The correct execution of a program often depends on the state of the
computation satisfying certain invariants at particular junctures.
Programmers often use their knowledge of the invariants when writing a
component of a program and thereby produce a simpler piece of code. The
risk is that the "spontaneous" state changes may alter the state in a way
that violates an invariant which a programmer had assumed to hold.

We propose to solve this problem by extending the action/object model of
computation used in Clouds by introducing the notion of "triggered
actions." A triggered action may be executed when entering or exiting a
standard action. The triggered action will only be executed when its
trigger condition is satisfied. Among the trigger conditions which may be
specified is the "spontaneous" state change of an object. As we have seen
the spontaneous state change may be a side effect of recovery in the
presence of irreversible operations. Spontaneous state changes may also
occur in dynamic environments which are not entirely under the control of
the computation. The triggered action construct may be of use when
constructing software which must interact with an environment in which
genuine spontaneous state changes occur.

Our intention is to let the triggered action appear to the main computa-

2

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

tion as the putative source of the updates to object states. The program-
mer using triggered actions can think of them as triggered by an events
external to the software and causing spontaneous state changes to the data
objects. The triggered action will be charged with the responsibility for
carrying out any bookkeeping required in response to the spontaneous state
change. The spontaneous state change in a sense provides an alternate path
through a section of code and the triggered action can be used to ensure
that the invariants are preserved. We also will allow the programmer to
indicate that certain operations or sequences of operations should be re-
garded as irreversible. There should be programmer control over the
activation and deactivation of triggered actions. There should also be a
means for establish the order in which active triggered actions are
executed when the triggers of several are satisfied simultaneously.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

Win Strickland has joined the project staff as a Research Scientist and
Scott Vorthmann has begun working as a 1/2-time Graduate Research Assist-
ant.

4. Summary of Trips and Meetings

Dr. RIchard LeBlanc attended the RADC Technology Exchange during this
month. This meeting provided valuable contacts with several other groups
doing related work, particularly the Cronus group at BBN and the Honeywell
fault-tolerance group.

Dr. LeBlanc and Tom Wilkes also attended the IEEE International Conference
on Computer Languages, where Wilkes presented a paper on the design of
Aeolus and LeBlanc chaired a panel session on programming models for dis-
tributed computing. The principal benefits of this trip were wider ex-
posure for the Clouds project and our discussions with researchers working
in the area of specification-based programming.

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is now sufficient to meet the goals of the
contract, according to the plan included with last month's report.

3

Fault Tolerant Software Technology 	 Monthly Report

for Distributed Computing Systems

7. Related Accomplishments

The Clouds kernel is now operational, with the exception of the action
manager. A small amount of work remains to be done in the area of run-
time support for Aeolus. An interface to Unix has been constructed,
allowing us to make effective use of the multiple window displays avail-
able on Sun workstations for debugging.

8. Plans for Next Period

We will continue the work described above for Task 1, expecting to com-
plete the implementation effort for the single-copy OFS object within a
few weeks. We may thus be able to give preliminary results of our anal-
ysis of the behavior of this version as extended to a replicated version
in our next report. For Task 2, our next step is to develop the language
mechanims for specifying that operations are irreversible and for defining
and controlling triggered actions. We will also consider in more detail
the ways in which programmers exploit their knowledge of invariants when
constructing sections of a program; from this study we will be able to
suggest guidelines for using triggered actions.

9. Expenditure of Effort

CATEGORY
	

HOURS EXPENDED IN THIS 	CUMULATIVE TOTAL OF
REPORTING PERIOD 	 EXPENDED HOURS

Associate Professor 	 38.5 	 317

Research Scientist II 	130.5 	 130.5

Grad. Research Asst. 	 261 	 1175

Secretary 	 47 	 257

Clerk Typist 	 40 	 250

4

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: November, 1986

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36--645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. Progress

Task 1 (Programming Techniques for Resilience and Availability):
In our last report, we described the implementation in Aeolus of a single-
copy version of a prototype Object Filing System (OFS) for Clouds. The
idea is to use this unreplicated version to design the lock compatibility
matrix necessary for its synchronization, and then to study the relation-
ship of the compatibility matrix with the quorum intersection graph de-
rived when the single-copy version is extended to a replicated version.
The prototype OFS design involves a hierarchical nesting of OFS objects,
each of which maintains knowledge of its immediate ancestor in the hier-
archy. (Here, by "nesting" we mean "logical nesting," that is, an object
contains a capability to its child, as opposed to "physical nesting,"
where an object physically contains its child.) 	The children of an OFS
are stored in and accessed through a symbol table object nested in the
OFS. The design of the symbol table object has been described in one of
our publications ("Systems Programming with Object and Actions," R.J.
LeBlanc and C.T. Wilkes, Proceedings of the 5th International Conference
on Distributed Computing Systems); the locking structure of the symbol
table object was described briefly in our last report.

The interpretation of user commands to the OFS is handled by a rudimentary
"shell" process, which accepts Unix -like pathnames and translates them to
operations on an OFS or invocations of Aeolus processes. 	The shell
process maintains knowledge of the root of the OFS hierarchy, as well as
the "current" OFS (corresponding to the "current working directory" in
Unix), and (for efficiency purposes) the ancestor of the current OFS.

Since our last report, we have done additional work on the prototype OFS
design, though it is not yet complete. During this month, our efforts
have also included work on the implementation and debugging of the Aeolus
run-time support necessary for the support of Aeolus/Clouds objects and
their interaction with the Clouds kernel; this effort, along with some
additional compiler and language library implementation effort, should
allow us to run the prototype OFS under Clouds shortly after the prototype
is complete. Although the OFS design and implementation are nearly fin-
ished, we prefer to complete the implementation of all OFS operations
before adding synchronization, since the design of the lock compatibility
matrices often depends on subtle interactions among the object opera
tions. However, our current feeling is that the synchronization mechanism
already in place in the nested symbol table objects (as described in our
previous report) may suffice for the synchronization of the OFS objects as
well. This would simplify the analysis of the compatibility matrix/
quorum intersection graph relationships, since the symbol table object has
only five operations, compared to ten for the OFS object, and thus fewer
interactions among the object's operations, yielding simpler compatibility
matrices. Since the symbol table object synchronization involves two
locks at differing levels of granularity, we will be able to investigate
how such locks relate to quorum intersection graphs when the latter are
extended to multiple levels of granularity.

Task 2 (Action-Based Programming for Embedded Systems):
We have proposed a construct called a "triggered action" which will --
following the rollback of an action which failed after performing an irre-
versible operation -- restore the computation to a consistent state which

1

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

recognizes that the irreversible operation occured. We have refined our
notion of a "consistent state" and have explored some of the issues in
using triggered actions to establish a consistent state. Actions, our
computational units, can be coupled together in various ways so that the
results of one action affect the results of the another. The constructs
for coupling actions together are provided by the underlying programming
language; in general though, two actions are coupled to permit the flow of
data and control information across their boundary. For our purposes we
will regard the flow as occuring in one direction.

Researchers have described several forms of coupling including content,
common, control, stamp and data coupling. For our purposes it is suffi-
cient to observe that we can develop an invariant characterizing the state
of a computation at the boundary between two actions. More precisely,
this invariant is a formal characterization of the state of the computa-
tion just after control passes the end of the first action. We may also
use invariants to characterize the entry conditions of the second action.
In a correctly constructed program, if the invariant at the boundary
between two actions is satisfied, then the entry conditions of the second
action are of necessity also satisfied. When implementing software, pro-
grammers often deliberately exploit their knowledge of program invariants
in order to speed up or simplify their programs. The assumptions a pro-
grammer makes about the state of a computation at a particular boundary
constitute the constraints on the state of the computation and it is with
respect to these constraints that we judge the consistency of a state of a
computation. When recovering from a failed action, we must ensure that
the state of the computation is consistent with the constraints
associated with the point in the program at which execution is resumed.
When recovering from a failed action which executed an irreversible opera-
tion, we must update the state of the computation to indicate that the
irreversible operation occured. It is the responsibility of the triggered
action to ensure that these updates are sufficient to satisfy the con-
straints associated with the point in the program at which execution will
be resumed.

Programmers often construct the first in a pair of actions so as to sim-
plify the invariant at the boundary between the two actions, thus making
it easier to use. The tight coupling of a pair of actions is often la-
beled "tricky programming." The connotation is that while the tricks may
make the program simpler to write or more efficient, the tricks also make
the program harder to understand, debug and modify. The negative aspects
of tightly coupled actions arise in part because there is no standard way
of documenting them. There appears to be a need to consider a notation for
documenting the constraints which must be preserved at the boundary
between two actions. If the constraints were documented, then when
programmers add new execution paths to the first action they would have a
better guide as to the constraints which must be satsified when exiting
the action. In particular, triggered actions can be viewed as providing
alternative paths of execution. By documenting the constraints,
programmers would have a better guide for constructing the triggered
actions. For an illustration of the problem of preserving consistency and
of the use of triggered actions, consider the following example. Suppose
a program consists of two components Y and Z. These components will be
executed sequentially (i.e., Y;Z). Among other activities Y searches a
complex data structure and sets a flag to indicate whether the target was

2

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

found. Z also needs to know whether the target is in the data structure.
One solution would be to search the data structure a second time. A second
solution would be to exploit our knowledge about how Y operates to decide
whether the target is in the data structure. We might observe that
a. Y never resets the flag which indicates whether the target was found
b. Y only takes the target out of the data structure if property P is

true
c. The variables used in evaluating property P are not subsequently

changed.
With this information, Z could be constructed to decide whether the target
is in the data structure by checking the flag and testing whether proper-
ty P still holds. Suppose further that deleting the target from the data
structure was an irreversible operation, while the assignments of values
to the flag and to the variables referenced when property P is evaluated
are reversible. Finally, suppose program component Y is a recoverable
action.

Recovery from a failure of action Y must be done so as to ensure Z will
execute correctly. Our strategy is to construct a triggered action which
makes it appear as though the target was deleted spontaneously from the
data structure. The triggered action will ensure the flag and the varia-
bles used in evaluating P are consistent with the state of the data struc-
ture. Only then will execution resume. Simpler couplings between compon-
ents Y and Z are possible. Y could set a flag to indicate the results of
evaluating property P and then Z could infer the results of evaluating P
by examining the flag. The triggered action would have to be redesigned
accordingly. The example illustrates some of the difficulties which can
be encountered when attempting to recover actions which involve irrever-
sible operations. It also illustrates how our approach allows a program-
mer to deal with these difficulties in a way that is consistent with our
action-based computational model.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

During November, we hosted a site visit by staff of the National Science
Foundation and two outside reviewers as part of the evaluation of a propo-
sal by Georgia Tech to the NSF Coordinated Experimental Research Program.
(One of the reviewers was Rick Schantz of BBN.) The main thrust of this
proposal is a plan to make the Clouds testbed available to other experi-
menters within the School of Information and Computer Science. If the
proposal is funded, major resources will be made available to us to fur-
ther develop the Clouds system.

5. Problems or Areas of Concern

3

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is now sufficient to meet the goals of the
contract.

7. Related Accomplishments

There have been no related accomplishments during this period.

8. Plans for Next Period

We will continue the work described above for Task 1, planning to complete
the implementation effort for the single-copy OFS object within a few
weeks. We will then be able to give preliminary results of our analysis
of the behavior of this prototype as extended to include replication. For
Task 2, our next step is to consider some of the issues associated with
implementing our approach to acheiving fault-tolerance in the presence of
irreversible operations. These issues include designing appropriate
programming language syntax and the developing a notation for specifying
constraints at the boundary between two actions. We will also consider in
more detail some of the pragmatic issues associated with our use of
triggered actions, such as failure of a triggered action, recovery in the
face of multiple irreversible operations.

9. Expenditure of Effort

CATEGORY
	

HOURS EXPENDED IN THIS 	CUMULATIVE TOTAL OF
REPORTING PERIOD 	 EXPENDED HOURS

Associate Professor 	 38.5 	 355.5
Research Scientist II 	130.5 	 261
Grad. Research Asst. 	 261 	 1436
Secretary 	 40 	 297
Clerk Typist 	 47 	 297

4

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: December, 1986

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. Progress

Task 1 (Programming Techniques for Resilience and Availability):

In previous reports, we have described the implementation in Aeolus
of a prototype Object Filing System (OFS) for Clouds, as well as the
implementation of a simple shell process to exercise the OFS. The proto-
type OFS design involves a hierarchical (logical) nesting of OFS objects.
Thechildren of an OFS are stored in and accessed through a symbol table
object nested in the OFS; since a child may be another OFS as well as any
other type of Clouds object, we achieve a hierarchical filing system
similar in user interface to the UNIX file system.

Since our last report, we have completed testing of the run-time
support needed by Aeolus to handle creation and invocation of Clouds
objects. This support includes a very primitive version of the OFS, which
allows Aeolus code to obtain capabilities to previously-created objects
from the Clouds kernel nameserver using a flat name space. We are now
integrating additional support required by the full prototype OFS imple-
mentation (primarily concerned with character-string handling) into the
Aeolus runtime system. When this support is available, we will be able to
test the full OFS implementation under Clouds. Concurrently, we are

performing the replication analysis of the OFS as described in previous
reports.

The implementation of hierarchical directory structure using nested
OFS objects requires at least one invocation of a different Clouds object
for each nested directory in a pathname. Under the prototype implementa-
tion of the Clouds kernel, a Clouds object invocation involves mapping
that object's virtual address space into user space. We have little exper-
ience yet with the effect of this implementation of object invocation on
performance. In order to study its impact, we are also implementing an
alternative design of the OFS which, rather than using explicit nesting of
OFS objects to obtain a hierarchical directory structure, maintains a tree
structure in a single Clouds object; a non-directory object at a node is
represented by a capability (as in the nested implementation), while a
nested directory is represented by a pointer to another tree node. Thus,
in this implementation we avoid invocations of Clouds objects during
traversal of the directory structure. However, this implementation is less
straightforward and transparent than the nested implementation; we lose
the nice abstraction properties yielded by the separation of function into
separate Clouds objects (OFS and symbol table). We could use the non-Clouds
object constructs provided by Aeolus to achieve a more structured design
in the non-recoverable version of the non-nested implementation; however,
such a design would not be practical when we add recoverability, since
access to the recoverability features of Clouds is not available from the
non-Clouds objects of Aeolus, even when these objects are nested within a
recoverable Clouds object. This suggests a possible deficiency in the
design of Aeolus non-Clouds objects, which we intend to study further. In
any case, we feel that comparison of the two OFS designs will be a valuable
study in the methodology of programming under Clouds.

Task 2 (Action-Based Programming for Embedded Systems):

1

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

We have previously described the notion of triggered action. A trig-
gered action is activated if an action fails after it has performed an
irreversible operation. When activated, a triggered action is supposed to
restore the computation to a consistent state, thereby allowing subsequent
actions to execute correctly.

We are considering ways in which the idea of triggered actions can be
integrated into action-based languages such as Aeolus. In particular, we
are considering how to integrate the triggered action idea into Aeolus'
event handler construct. To simplify the description, we assume Aeolus
has been extended to support exception handlers. Event handlers are
provided for five types of event: 	beginning of action, top level pre-
commit, nested precommit, commit and abort. 	While default handlers are
provided for each of these events, the programmer has the option, for any
action, of overriding the default handler and writing his own. In
particular, it is possible to override the default handler for an abort
event with a handler which is sensitive to the semantics of the event.
Triggered actions can be regarded as a generalization of the event handler
construct. Specifically, they generalize on the event handlers for the
abort event. To recognize this, what we have been calling triggered
actions will now be refered to as event handlers for aborts in the pre-
sence of irreversible operations. Where context makes clear which event
handlers we are refering to, we will simply refer to "the event handlers."

We will descibe some of the most important considerations which will
influence our choices as to syntax and semantics. Our work is being
guided by our desire to provide abstractions which programmers will find
useful when conceptualizing a programming problem involving irreversible
operations.

Actions cannot be rolled back once they have performed an irrever-
sible operation. Instead, failure must be accompanied by some form of
forward recovery. If the code for an action includes an irreversible
operation, the action is said to be potentially irreversible. If a
potentially irreversible action is nested within a second action, the
second action is also regarded as potentially irreversible. A potentially
irreversible action becomes irreversible as soon as it performs an irre-
versible operation or action. All potentially irreversible operations
must be accompanied by some means for continuing the action in the event
of failure. Our requirement, simply stated, is that an action cannot be
rolled back once it has performed an irreversible operation; it must run
to completion.

We believe a programmer would find it useful if he could distinguish
between actions which completed normally from those which completed
abnormally. An action completing abnormally would raise an exception
visible in the calling environment. handlers for aborts in the presence
of irreversible operations would cancel the abort and carry the action to
completion. It would also determine whether the action should be regarded
as terminating normally or abnormally. If the handler opts for abnormal
termination, it will raise the appropriate exception.

Normal and abnormal terminations provide the calling environment with
different guarantees. 	The distinction between the two types of termina-

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

tion is one drawn at the programmer's discretion. 	From a programmer's
point of view the distinction should be related to whether the invariants
he expects to be satisfied by the results of the action are in fact satis-
fied. A normal termination should guarantee that the expected invariants
hold. As we have mentioned, a handler for aborts in the presence of
irreversible actions may result in a normal termination if it was able to
find an appropriate continuation for the failed computation.

An abnormal termination indicates possible inconsistencies in the
results and causes control to pass to the appropriate exception handler.
In order for the exception handler to perform any useful work, however, it
must have some information about the state of the failed action. In this
case, it is the role of the event handler for the abort to record that
information in a location known to the calling environment's exception
handler. At the very minimum, the exception handler must know which
irreversible events occured before the action terminated abnormally.

The problems of propogating this minimum information into the calling
environment is closely related to the problem of activating the appro-
priate event handler when an action fails after it has performed an
irreversible operation.

The appropriate strategy for carrying a failed action on to comple-
tion depends on the point at which it failed. If an action contains
several potentially irreversible actions or irreversible operations, we
must know which in fact occured before the action failed. We believe it
will be sufficient to associate a flag with each occurance of a
potentially irreversible action or irreversible operation. The flag is
clear if its associated action or operation has not begun execution. We
want to be guaranteed the flag will be set when the action or operation is
completed. If failure occurs in the event handler or no event handler is
provided, the action should be regarded as terminating abnormally and
control should be handed over to an exception handler in the calling
environment. If an exception handler for an abnormally terminated, ir-
reversible event itself fails, then control should should pass to the
appropriate event handler on the same level as the exception handler.

Some of the conditions discussed above present an unfortunate com-
plication: it may become necessary for an event handler to deal with a
partially completed, irreversible action, e.g., an irreversible action
fails as does its event handler and the exception handler in the calling
environment. We believe we can handle this by inspecting, perhaps recur-
sively, the flags for the irreversible operations and actions withing the
hierarcy of nested actions -- this, however, requires further investi-
gation. The flags used to record the oc:curence, or non-occurence, or
irreversible actions and operations may also be used to propogate that
information into the calling environment. By this means, we can provide
the minimum amount of information required by an exception handler dealing
with an abnormally terminated action.

Since we cannot guarantee that event and exception handlers will
never fail, we believe that these flags must be able to propogate up
through a hierarcy of nested actions. We have not yet analized the prob-
lems this strategy may present when designing appropriate runtime support.

3

Fault Tolerant Software Technology
	

Monthly Report
for Distributed Computing Systems

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

None.

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is now sufficient to meet the goals of the
contract.

7. Related Accomplishments

There have been no related accomplishments during this period.

8. Plans for Next Period

We will continue the work described above for Task 1, planning to test the
single-copy OFS object during this month. We will also work further on
our analysis of the behavior of this prototype as extended to include
replication. For Task 2, we will continue to develop and evaluate the
semantics of our proposed event handler construct. We also must design
appropriate syntax. We plan to consider the problem of designing a simi-
lar construct which does not rely on the use of exception handlers.
Finally, we will develop some examples illustrating the use of our con-
struct.

9. Expenditure of Effort

CATEGORY 	 HOURS EXPENDED IN THIS
	

CUMULATIVE TOTAL OF
REPORTING PERIOD 	 EXPENDED HOURS

Associate Professor 	 38.5 	 394
Research Scientist II 	130.5 	 391.5
Grad. Research Asst. 	 261 	 1697
Secretary 	 47 	 344

Clerk Typist 	 40 	 341

4

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
D ISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: January, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RAD C)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA., GEORGIA 30332

1. Progress

Work on both tasks is currently focused on the guidebooks that are the primary deliverables of
this project.

L. Special Programs Developed and/or Equipment Purchased

None.

8. Key Personnel

No changes.

4. Summary of Trips and Meetings

None.

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the contract.

7. Related Accomplishments

None.

8. Plans for Next Period

The remaining contractual effort will be applied to finishing the guidebooks.

9. Expenditure of Effort

CATEGORY
	

HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF
REPORTING PERIOD 	 EXPENDED HOURS

Associate Professor 	 35 	 1180.5
Research Scientist II 	 130.5 	 2083
Grad. Research Asst. 	 174 	 5886
Secretary/Clerical 	 87 	 1847

•

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: January, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. Progress

Task 1 (Programming Techniques for Resilience and Availability):

In previous reports, we have described work on the specification and
implementation in Aeolus of a prototype Object Filing System (OFS) for
Clouds. Both a nonrecoverable and a recoverable (thus resilient) version
of the OFS have been completed. In the process of doing these
implementations, we have discovered and characterized a variety of differ-
ent internal structures possible for each of these versions.

Integration of the Aeolus runtime support with the Clouds kernel has
proven to be more difficult than originally anticipated. Thus we have not
been able to test our OFS objects on the Clouds system. It is anticipated
that this integration will be completed in the next month.

Task 2 (Action-Based Programming for Embedded Systems):

We have continued the development and evaluation of the semantics of
our proposed event handler construct for dealing with irreversible
operations within atomic actions and have begun the development of some
some examples illustrating the use of our construct. We believe their is
a possibility that the techniques we are developing will be useful in more
general circumstances than dealing with irreversible operations.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

Chu-Chung Lin has joined the project staff as a 1/2-time research assis-
tant, as previously discussed.

4. Summary of Trips and Meetings

None.

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the
contract.

7. Related Accomplishments

1

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

There have been no related accomplishments during this period.

8. Plans for Next Period

Our efforts for the month of February will be focused on documenting our
work to date in an interim technical report.

9. Expenditure of Effort

CATEGORY 	 HOURS EXPENDED IN THIS
REPORTING PERIOD

CUMULATIVE TOTAL OF
EXPENDED HOURS

Associate Professor 38.5 432.5
Research Scientist II L30.5 522
Grad. Research Asst. 348 2045
Secretary 40 388
Clerk Typist 47 388

2

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: February, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

1. Progress

Our efforts in both tasks were concentrated on writing our interim tech-
nical report. This effort had the greatest inpact on task 2, where it
spurred us to complete the formulation of several examples that illustrate
the concepts we have been developing.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

Dr. Richard LeBlanc visited the University of Utah as an invited speaker.
His presentation was on the Clouds Project and our programming methodology
work.

5. Problems.or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the
contract.

7. Related Accomplishments

The Aeolus run-time system has now been integrated with the Clouds
kernel, so we will now be able to begin testing our objects on Clouds
rather than Unix.

8. Plans for Next Period

For Task 1, we plan to complete testing on the Clouds system of the single-
copy OFS object during this month. We will also work further on the
extension of this prototype to include replication. For Task 2, we will
continue to develop and evaluate the semantics of our proposed event
handler construct. An immediate need is to design appropriate language
syntax so that we can express our examples more precisely to facilitate
further study.

1

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

9. Expenditure of Effort

CATEGORY 	 HOURS EXPENDED IN THIS
REPORTING PERIOD

CUMULATIVE TOTAL OF
EXPENDED HOURS

Associate Professor 38.5 471
Research Scientist II 130.5 652.5
Grad. Research Asst. 348 2393
Secretary 47 435
Clerk Typist 40 428

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: March, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report
for. Distributed Computing Systems

1. Progress

Task 1 (Programming Techniques for Resilience and Availability):

In our interim report and our last monthly report, we have summarized
the non-replicated Object Filing System design and our plans for generat-
ing a replicated version from this single-copy version. During the past
month, we have been developing the theoretical and technical framework to
make this possible.

In further investigation of Herlihy's work on replication of abstract
data types, we have found confirmation of our conjecture that there is a
close relationship between Herlihy's quorum intersection graphs and our
lock compatibility matrices. In fact, in two methods he has developed for
integrating concurrency control and recovery for abstract data types,
called Consensus Locking and Consensus Scheduling, The differences between
these models need not concern us at present; therefore, we will refer to
their common basis using the term ±±Consensus Locking."

Herlihy requires that the quorum intersection relation and the lock
conflict relation (the complement of the lock compatibility relation) for
an object satisfy a common serial dependency relation on that object; he
notes that, in practice, the lock conflict and quorum dependency relations
will be the same.

The model of objects and actions which Herlihy adopts differs from
ours in several significant details. We have developed a model of concur-
rency control and replication management (which we have called Distributed
Locking) which we propose to implement with a modified version of lock
management in the Clouds kernel. Despite these differences in models of
replication, we believe it will be possible to adapt Herlihy's theoretical
basis to our model.

Another significant difference in Herlihy's work and our own is the
model of locks. Locking is performed in Herlihy's model on an opera-
tion-by-operation basis; conflicts are defined among operations. Thus, in
terms of Aeolus/Clouds Distributed Locking locks, one of Herlihy's
Consensus Locking locks is defined with one locking mode per operation.
There is no concept of the domain of a Consensus lock, as there is in
Distributed Locking. Effectively, the domain of a Consensus lock is an
entire object, i.e., only one request for such a lock for a given operation
is granted at a time, conflicts permitting. Thus, a Consensus lock for an
object may be modelled by an Distributed Locking lock with one mode per
operation and no domain. However, by allowing specification of arbitrary
modes and domains, Distributed locks allow more generality than Consensus
locks. The programmer may decide to share some lock modes among operations
based on semantic similarities between those operations (for instance,
examine vs. modify operations), thus effectively defining classes of
operations with similar concurrency and availability characteristics. It
is also possible that the programmer may decide to have an operation
obtain a lock in different modes depending on its parameters or other
factors; this may occur, for instance, through consolidation of logically
separate operations with a similar interface into a single operation (to
avoid duplication of portions of their functionality).

Thus, while it is reasonable in Consensus Locking to speak of the

1

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

differing availabilities of operations rather than of objects, it is also
sensible to speak in Distributed Locking of the availability of lock
modes. The ability to specify a domain for a lock may permit increased
concurrency over locking on the object level; however (although this issue
requires more scrutiny), we feel that this should not affect the
availability characteristics of the lock's modes.

As mentioned above, Herlihy's Consensus Locking model integrates
concurrency control and replication management for abstract data types.
The Aeolus/Clouds Distributed Locking model offers a similar integration;
concurrency properties are given by the specification of lock domains and
compatibility matrices.

We now describe how availability properties are specified, how indi-
vidual replicas are managed via the naming scheme, and how updates are
propagated among the replicas. We propose that the availability proper-
ties of a replicated object be specified in a separate compiland for that
object type, which we call the replication specification part (or ±-±rep"
part, for short). The properties specified in a ±i-rep" part include the
number of replicas, the replication management algorithm desired (e.g.,
quorum assignment, available-copies, etc.), the name of each lock type
declared by the implementation of that object along with the names of that
lock's modes, and (optionally) the availability relationships among the

modes of each lock type used by the implementation of that object. 	(All
internal and/or non-Clouds objects used by a replicated object must also
have a replication specification; this requirement is applied recursively
to these objects. If no lock types are declared by such an object, the
corresponding ±±rep" part is explicitly null.

The availability information of a non-Clouds object is inherited by
the object which imports it; thus, the effect is as if locks declared by
non-Clouds objects were instead declared by the importing Clouds object.)
This information is transformed by the Aeolus compiler into a table of
replication management information which is stored in the TypeTemplate of
the given Clouds object. This information is passed to the Clouds lock
manager (in a manner yet to be determined), and is used by it to guide the
selection of sets of replicas for Distributed locks.

The naming of replicated objects in Clouds has been discussed in our
interim report. Two schemes were described: vertical replication, which
uses the current capability scheme, relying on the current invocation
mechanism (search locally first, then broadcast the search globally) and
thus requiring that all objects internal to a replicated object reside on
the same node as that object (to which we will refer as the coresidence
requirement); and horizontal replication, which requires the addition of
several bits to the current Clouds user capability to allow the kernel to
address a single replica, but which does not require all object internal
to the replicated object to reside on the same node.

The attractions of the vertical replication scheme are that it is
conceptually simple, that it requires no modifications to the kernel
capability-handling mechanisms, and that, by requiring coresidence, it
enforces a property which enhances availability. To see this, recall that
independent failure modes are desirable among different replicas of a
replicated object, since the probability that the replicated object will
be available is the probability that any one of the set of replicas will
be available. On the other hand, dependent failure modes are desirable

2

Fault Tolerant Software Tedhnology 	 Monthly Report
for Distributed Computing Systems

among a given replica and its internal objects, since the probability that
the given replica will be available is the probability that all of the set
of internal objects will be available. Requiring coresidence of objects
related by logical nesting introduces dependence of their failure modes.

Unfortunately, the vertical replication scheme may not generally be
viable, since the coresidence requirement is sometimes be unrealistic. It
may sometimes be the case that it is impossible to satisfy coresidence,
due to the size of nested objects (making it impossible to accommodate
them on the same node), or due to insufficient space because of previous-
ly-existing objects on that node. Thus, we must abandon vertical replica-
tion as lacking sufficient generality in its applicability. Fortunately,
the horizontal replication scheme does not share this drawback.

Task 2 (Action-Based Programming for Embedded Systems):

In developing programming examples which illustrate the various fault
tolerant techniques available to the programmer employing an action based
design in the construction of an embedded system, we have found it
necessary to design an appropriate pseudo-code. Since the Aeolus
programming language provides low level support for action based program-
ming, the pseudo—code is needed to achieve the desired level of clarity.
We want to be able to process our pseudo-code mechanically: a preproces-
sor attached to the Aeolus compiler will convert our pseudo-code to stand-
ard Aeolus. This month's report summarizes our ideas regarding this
pseudo-code.

The Relationship between our Pseudo-code and Aeolus

Clouds and the Aeolus programming language have been designed in a
way which allows the programmer considerable contol over the efficiency of
his software. For example, there are six different flavors of objects.
Object operations may be invoked as actions in two different ways but need
not be invoked as actions at all. A programmer, when invoking an operation
on an object or designing an object interface, must be aware of at least
eighteen different possibilities. When the various flavors of procedures
are also considered this number is even greater.

The intent, by those desiging Aeolus, was to enable a programmer to
select from a number of alternative solutions to a programming problem.
The programmer, it was hoped, would then be able to select the solution
which would work most efficiently in his particular context. The under-
standing was that different solutions would be appropriate in different
contexts.

In developing an Aeolus program it is often desirable to proceed in
two steps. First, a programmer should consider the effects he wishes to
achieve and the general architecture of his program. Then he should refine
that design by selecting particular program structures and flavors of
language constructs.

Our pseudo-code is intended to serve as a specification language in
that it will allow the programmer to defer a number choices about the
structure of his program and the specifics of the language constructs to

3

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

be used.

Summary of the Pseudo-code

Our pseudo-code will provide syntax which allows the programmer to
delimit the boundaries of actions, to associate attributes with actions
(e.g., attributes can be used to declare operations as irreversible or
potentially irreversible), and to employ exception handlers. In this
section we will summarize our current ideas for the design of our pseudo-
code and contrast them with the approaches taken in Aeolus. We will also
explain some of the ways in which our pseudo-code may be implemented in
terms of Aeolus.

Actions. Our pseudo-code will require the programmer to identify actions
statically. An action may be declared as either top-level or nestable. As
in Aeolus, a top-level action may be invoked from within another action.
A nestable action performs as a nested action if it is invoked from within
an action, otherwise it performs as a top-level action. If the programmer
wishes to define event handlers, they will be bound to a particular action.

The justification for our approach is that in providing error re-
covery in the presence of irreversible operations, programmer-defined
error recovery will predominate. Our work to date indicates programmer-
defined error recovery will be most effective if it sensitive to the
semantics of the action in which the fault occured. In providing error
recovery which is sensitive to the semantics of a particular action, we
want to be able to force the programmer to alway invoke certain operations
as an action.

Within Aeolus, actions are created by invoking a procedure or object
entry point in a particular way. Thus, an object entry point may various-
ly be invoked as an ordinary procedure, top level action, or nested
action. Further, event handlers are bound to the object rather than to
the particular action from whose effects recovery may be necessary.

If in binding an event handler to operations we did not also force
that operation to be called as an action, we would be making it possible
for a programmer to forget to invoke the operation as an action. This
error would not be detected except that event handlers for the parent
action would be invoked for events within the operation and this could
produce recovered states which are incorrect.

Event handlers will be bound to actions even though Aeolus binds
event handlers to objects. We will use the attribute mechanism to imple-
ment our approach in terms of Aeolus. When an operation is performed on
an object a flag (attribute) will be set indicating which operation is in
progress. If the action faults, Aeolus will pass control to the event
handler for aborts. Since we are using programmer-defined event handlers,
it will be constructed to determine first which operation was executing
when the fault occured by examining the action in progress flags. Given
this information, control will then pass to the portion of the event
handler which is sensitive to the semantics of that particular action.

Action Attributes. 	In the previous section on actions reference was made

4

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

to the attribute mechanism. 	This section describes that mechanism.
Attributes are a set of variables which can be used to characterize a
particular instance of an action. Attributes should be held in a data
area which can be referenced by the action itself; the action's event
handler; the action manager, run time system, etc.; and parent actions.

An action's attributes will include any information needed to access
the attributes of other actions which were nested within the one described
by this particular set of attributes.

We will incorporate the attribute mechanism into our pseudo-code by
generalizing on the idea of action type. For an action to have a
particular set of attributes, we must declare it to be of the appropriate
type. Further more we want programmers to be able to define their own
action types.

We will require that an object defininition which is to serve as an
action type provide certain standard attributes. This can be done in two
ways. The interface between Aeolus programs and the action manager is
implemented as a pseudo-object and each instance is already associated
with a capability. 	The action manager is responsible for generating the
information about some of the standard attributes. 	The object containing
the attributes for an instance of an action may construct the values for
the standard attributes on demand by making appropriate calls on the
action mannager. As an alternative, we may construct the values for
standard attributes by allowing the action manager to set the standard
attribute values by making appropriate calls on the object.

The pseudo-code will allow a programmer to set attributes in the same
statement which invokes the action. 	This will expand to a sequence of
Aeolus statements. 	First, an object corresponding to the appropriate
action type will be created. Attributes will then be set appropriately by
invoking appropriate operations on the object. Finally the action itself
will be invoked.

Exception Handlers and Event Handlers. 	There are roles for exception
handlers and event handlers in our approach to action based programming
for embedded systems. When a fault occurs within an action, an exception
handler may be invoked to clear the problem and lead to a normal termina-
tion. If an action is aborted, (because it faulted and there was not an
appropriate exception handler, it committed suicide because it or its
exception handler executed an explicit abort statement, or it was aborted
by the action manager because a parent action was also being aborted) then
recovery is initiated and the abort event handler is invoked. The abort
event handler does recovery in two steps. In the first step, some standard
tasks are performed (the specifics may be determined by the attributes).
In the second step control passes to an appropriate exception handler
which has been hand crafted and is sensitive to the semantics of the
action being aborted. Under certain conditions both forms of the exception
handlers may raise an exception visible to the parent action.

Aeolus provides neither exception handlers nor two stage event hand-
lers for aborts. We beleive we can build both using the programmer-
defined event handlers provided by Aeolus. We have already described how
event handlers may be crafted so as to be bound to particular actions. We

5

Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

can also exploit the attribute mechanism to craft these other structures.

Information about whether a particular type of exception has occured
will recorded among an action's attributes. The attributes will also
indicate whether an explicit abort has been executed. When an exception
occurs control must pass to the programmer-defined abort event handler. In
Aeolus terms this transfer of control is achieved by aborting the action,
though we choose to view it, in terms of our pseudo-code, merely as an
exception. The Aeolus level event handler will examine the flags and
transfer control to the approriate section of the event handler. The
appropriate section may represent an exception handler defined in our
pseudo-code. The pseudo-code allows the exception handler to initiate
recovery by explicitly aborting the action. This can be implemented as a
transfer of control internal to the Aeolus level event handler.

If the flags indicate that the action is being aborted and recovery
is required, then control will transfer to that portion of the Aeolus
level event handler designated as performing the standard, first step of
recovery (in term's of the pseudo-code this is system supplied code which
is sensitive to the attributes of the action). While in terms of the
pseudo-code the second step of recovery has control transfering to an
exception handler. This is implemented via a transfer of control internal
to the Aeolus level event handler.

If we wish to raise an exception visible to the parent action, we
will set the appropriate attributes. On returning from the nested action,
the parent action will be required as a matter of course to examine some
flags to determine whether an exception is being raised. If one is,
control will pass to an exception handler in the parent action (using the
mechanism just described). The code to check the flags and transfer
control to the exception handler, if required, will be generated by the
pseudo-code processor as part of the action invocation.

2. S.ecial Pro rams Develo ed and/or E•ui•ment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

Andrew Tanenbaum of Free University, Amsterdam, and Graeme Dixon of the
University of Newcastle-Upon-Tyne visited our department during March.
They each discussed distributed operating systems research projects in
progress within their research groups. Dr. Richard LeBlanc and Tom Wilkes
attended the 6th Symposium on Reliability in Distributed Software and
Database Systems, along with six other members of the Clouds group. Two
papers based on Clouds work, including one co-authored by LeBlanc and
Wilkes, were presented.

6

I
Fault Tolerant Software Technology 	 Monthly Report
for Distributed Computing Systems

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the
contract.

7. Related Accomplishments

None.

8. Plans for Next Period

For Task 1, we plan to do further work on replication techniques for
objections and actions. For Task 2, we will continue to develop our ideas
about program structures which can be used when implementing one or another
of the various flavors of fault tolerance described in the interim report.

9. Expenditure of Effort

CATEGORY
	

HOURS EXPENDED IN THIS 	CUMULATIVE TOTAL OF
REPORTING PERIOD 	 EXPENDED HOURS

Associate Professor 	 38.5 	 509.5
Research Scientist II 	130.5 	 783
Grad. Research Asst. 	 348 	 2741
Secretary 	 40 	 475
Clerk Typist 	 47 	 475

7

Fault Tolerant Software Technology 	 Monthly Report

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: April, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report

1. Progress

Task 1 (Programming Techniques for Resilience and Availability):

In our last monthly report, we described our preliminary work on the theoretical and
technical framework of a method for deriving a replicated version of an object from its
single-site implementation. In this report, we describe this framework, called Distributed
Locking, in greater detail.

The term Distributed Locking refers to a methodology for deriving a replicated
implementation from its single-copy version, as well as to a mechanism to support this
methodology. A powerful feature of Distributed Locking is that it does not assume any
particular policy for replication control. Rather, it allows the user to specify policy in the
areas of replica concurrency control (e.g., the quorum consensus or available-copy
algorithms) and state copying (e.g., idemexecution or cloning). The motivation to provide
this flexibility derives from study of the many proposals for replication control that have
appeared in the literature in recent years. It has become clear from the wide diversity of
these proposals that tradeoffs between availability and consistency of replicas are not only
possible, but in some applications highly desirable. Thus, in order to provide support for
replication in a general manner, it is essential that the user be allowed to take advantage of
semantic knowledge to tailor the replication control in an application-specific manner. The
mechanism provided by Distributed Locking for this purpose is described below.

Distributed Locking, however, also allows the user to specify that one of several default
(pre-programmed) strategies be used in each of the two areas of replication control (e.g., the
combination of quorum consensus and cloning). Thus, in accord with the general philosophy
of such mechanisms in Aeolus/Clouds—as demonstrated in its features for control of
synchronization and recovery—provision is made both for automatic provision of replication
control, and for "roll-your-own" specification of control by the user when desirable.

Distributed Locking: Methodology

The basis of the Distributed Locking methodology was described in our last monthly
report. Essentially, derivation of a replicated object from its single-site implementation
consists of two steps.

1. The user writes a single-site definition and implementation of the object. This
implementation includes specification of all lock types used by the object to ensure view
atomicity in the presence of concurrently-executing actions.

2. The user writes an availability specification (availspec) for the object. This specifies the
number of replicas of each instance of the object to be generated, the replication control
policies to be used, and (optionally) the relative availabilities of the modes of each lock
type specified by the object. If no availspec is provided, the object is assumed to be
nonreplicated.

Note that, as discussed in our last monthly report, availabilities are expressed in terms of the
modes of locks rather than in terms of operations. Together with the domain notion, with
which lock granularities are expressed in Aeolus/Clouds, this gives the user more latitude in
the expression of relative availabilities than is provided in related work.

Policies for control of concurrency among replicas, and for control of the copying of state
among replicas, are expressed in the lock object event handler and the copy action event
handler, respectively. Preprogrammed default handlers for these events, which implement
commonly-used schemes such as those mentioned above, may be requested by the user if
appropriate. If the user wishes to provide application-specific handlers for these events, the
same system-provided primitives used in the construction of the default handlers are available
for use in programming user-specified handlers. These primitives, and their purposes,
include those for such purposes as:

1

Fault Tolerant Software Technology 	 Monthly Report

• acquisition at a specific replica of the currently-requested lock (with the same mode and
value, if any), for implementing lock propagation;

• invocation at a specific replica of the same operation (with the same parameters)
requested at the current replica, for implementing idemexecution;

• broadcast of state shadow sets to all replicas holding a specified lock (with a specified
mode and value), for implementing cloning via shadows; and

• invocation at a specific replica of an arbitrary operation, for implementing cloning via logs
or state reconciliation strategies.

The intention is to provide facilities at a level sufficiently low to accomodate all schemes of
interest. Some other useful predefined objects, such as those implementing list abstractions,
are available for such purposes as maintaining and traversing the list of replicas at which
locks have been obtained (and to which the object: state must later be copied).

Distributed Locking: Mechanism

The mechanism required for support of Distributed Locking requires the modifications to
the Clouds object and action naming schemes which have been proposed for the support of
the Parallel Execution Thread (PET) scheme, as described in our last monthly report. The
Distributed Locking mechanism also requires modification of the Aeolus/Clouds object and
action management facilities in two areas.

1. When an operation attempts to obtain a lock on an instance of a replicated object, locks
are obtained at some appropriate subset of its replicas, by invoking the lock event
handler on that object. (The replica at which the original invocation took place is called
the primary cohort [p-cohort]; the other members of the locked subset of replicas are
called secondary cohorts [s-cohorts].)

2. During the handling of the precommit event of the controlling action, the state of each
p-cohort touched by that action is copied to its s-cohorts, by invoking the copy event
handler on each p-cohort.

Note that, when a lock is obtained at an s-cohort, the s-cohort is automatically added to the
touched list for the controlling action. Thus, when the controlling action commits at the p-
cohort, normal commit processing occurs at each of its s-cohorts as well. This is useful, for
instance, when state cloning via copying of shadow sets is used; the shadows are committed at
each of the s-cohorts as if the shadows had been produced by execution at that s-cohort.

Task 2 (Action-Based Programming for Embedded Systems):

We are developing several examples illustrating the recovery mechanism we have
designed. Last month, we described the pseudo-code being used to develop these examples.
This month we will outline the examples and explore some system architectures which
depend directly on our recovery mechanism. The mechanism we have proposed allows for
both forward and backward recovery, and integrates the handling of aborts with the handling
of exceptions in general.

As our work has progressed, we have developed a more generalized understanding of the
applicability of our approach. Initially, we concentrated on the problem of recovering actions
which had performed irreversible operations. More general versions of this problem arise
when we consider the issues associated with recovery in systems where atomicity is not
strictly enforced and in systems where the state of the physical system in which the software
is embedded is not completely under software control. While we began our work believing
that irreversible operations were a problem to be overcome, it now appears that software
structure may actually be made more robust if a programmer is allowed to treat certain

2

Fault Tolerant Software Technology 	 Monthly Report

operations as irreversible. Our examples will include one which considers a way in which the
idea of an irreversible operation may be used to advantage.

It is our belief that the judicious use of a recovery mechanism such as we are developing
can simplify the structure of the software system by reducing the need to propagate control
information among actions. Simply put, in our model an action is responsible for cleaning up
after itself even if it fails. This makes actions more self contained. A mechanism is provided
which allows a programmer to separate the mainline of the action from the various provisions
for doing the clean up. This facilitates the process of constructing actions which are indeed
self contained.

The importance of actions being self contained is evident in a system such as Clouds in
which a program's execution is expected to thread its way through many persistent objects
which are shared among a number of different processes. An action may be invoked into a
variety of different environments and in each the programmer must defend against
incomplete or erroneous results. If an action is complex or contains a large number of points
at which errors may occur, a programmer is likely to be ineffective in his use of defensive
programming techniques. The use of a recovery mechanism to make the actions self
contained makes it possible to push the burden of defensive programming on to the one who
defines the action rather than the one who uses it.

In this report, four examples are summarized. The first is a revised version of the
Information Processing example introduced in the interim report. This example is developed
to illustrate an architecture in which certain operations are designed to be irreversible even
when this is not strictly necessary.

The second example extends the first one in order to illustrate how the recovery
mechanism can be used to support hardware and software maintenance. The example
suggests it may be possible to maintain a system without interrupting its operation.

The third considers how our recovery mechanism might facilitate the switch over to a
backup system.

The fourth example illustrates how our recovery mechanism might be used in an
embedded system which periodically checks its assumptions about the state of the system it is
controlling against sensor data.

Example 1. A "server" is a rather generally employed software entity. It is a program which
operates or manages some designated system resource. This example considers
software designs in which the process using the server must have exclusive access
to it, e.g., a printer. There are two rather commonly used strategies by which
processes may share access to it: processes may block until they get their turn at
the server; or requests for service may be queued, and process never blocks. In
the case of the printer, this second strategy is frequently called "spooling."

Because of the timing constraints which must often be satisfied by embedded
systems, it is better to queue requests than to allow processes to block. The
strategy of queuing requests for service and not allowing the process to block
works if the request is guaranteed to be serviced. In terms of our work here, the
strategy works as long as the request for service is irreversible.

While we will develop our ideas in terms of a printer server, they should
generalize easily to the construction of other servers for resources requiring
exclusive access.

This example will explore a software architecture which allows us to guarantee
that print requests will be honored. We do this by constructing the print request so
that it employs various recovery techniques to ensure that it is not destroyed. This
allows actions to commit and processing to continue even if there is heavy backlog

3

Fault Tolerant Software Technology 	 Monthly Report

of print requests.

The material to printed will be encapsulated within an object we will call a print
object. The capability for the print object will be placed in a queue known to the
printer server. When a print object is to lbe granted access to the printer, the
server invokes an appropriate entry point on the object. This entry point is an
action. The print object then constructs the text to be printed and passes it on to
the server by invoking server entry points. The print object can be thought of as
containing a protocol for operating the printer. If there is a failure within the
print action (in the print object), perhaps one of the operations in the protocol for
operating the printer aborted, the recovery mechanism within the print action will
attempt recovery, e.g, by sending itself to another printer. Under such a
circumstance the print action may abort and raise an exception visible to the
server. As part of handling the exception, the current instance of the server will
terminate but should first start another instance of a server (based perhaps on a
different version of its code.)

If the action which placed the printer request in the first place should
subsequently fail at least two courses of action are possible. Recovery within that
action could merely set a flag indicating the report had already been printed. This
would be done in anticipation that the action would be retried. We are working a
a scheme by which an action can initiate its own retry as part of its recovery
process. Even though the print action was irreversible, it may be possible to
_prevent the report from being printed through the use of appropriate
compensatory operations.

Example 2. The second example will illustrate how the recovery mechanism can be - Used to
facilitate software maintenance.

If a printer fails and is replaced with a different device, it may be necessary to
install a different device driver and this in turn may force adjustments in software
throughout the system. With a recovery mechanism, it would be possible to make
most of the adjustments automatically. When the device driver discovers that the
printer has been changed (perhaps by reading a register containing a printer
identification number), the device driver aborts, the recovery mechanism creates
an object containing the correct driver, transfers state information from the old
driver object, and then restarts the server process.

This idea can be extended to problems deriving from incompatible versions of
objects as well. Suppose the print action (in the print object) attempts to use an
out of date protocol. It should abort. As part of recovery the print object should
be recast using the current version. While this ensures that the report gets
printed, some additional work might be required to track down the source of the
old version of the print object . . There might be a copy of the create print object
operation in a place unknown to software maintenance (perhaps some
undocumented replication, or perhaps a loophole in the code which allowed
programs to employ short cuts when creating print objects).

Example 3. In this example we will consider the problem of achieving fault tolerance by
cutting over to backup systems. The example we are developing will involve
switches between automatic and manual control.

The switch from automatic to manual control will be triggered because the
physical system being controlled enters a state which was not anticipated by the
software designers. An operator must be alerted and provided with information
about the state of the system. The operator will use his controls to return the
system to a state from which automatic control can be resumed. If the operator
does not intervene effectively, there will be a second cutover to a system which

4

Fault Tolerant Software Technology 	 Monthly Report

will shut the equipment down safely.

The underlying idea is that the mechanism for cutting over to a back up system
is essentially the same regardless of the particulars of the event triggering the cut
over. The cut over involves creating an appropriate set of objects and
establishing their states. There will be objects which are common to both the
primary and backup mechanisms and it will be necessary to properly link them
with the objects specific to the backup system. While there is an alternative
approach which would have the back up mechanism always in a state of readiness,
the dynamic relinking of objects would still be required.

This example will be developed in terms of a software system which controls an
electro-mechanical process. The principles illustrated will be appropriate for
controlling manufacturing systems as well as weapons systems.

Example 4. Some of the most difficult problems in constructing embedded systems are
associated with feedback loops. In example four, we will several problems
associated with validating and utilizing information obtained from sensors to adjust
equipment. In particular we will focus on the problems associated with
constructing systems where there is considerable delay in obtaining reliable
feedback about the state of the system. Our example will explore a programming
strategy which requires the software to makes its "best guess" about adjusting a
system (employing mathematical models). If the feedback suggests the guesses
were acceptable, the action will continue. If it turns out based on feedback that
the guesses were not very good, the action will abort. As part of the recovery
process, the parameters in the model will be adjusted. This is complicated because
even if the action is restarted the initial conditions may have changed. We have
not yet convinced ourselves that programs of this sort will be easier to
conceptualize and write if we employ an explicit recovery mechanism. Our
example will be developed in terms of a system in which there are several logically
distinct levels of feedback.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

None

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

5

Fault Tolerant Software Technology 	 Monthly Report

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the contract.

7. Related Accomplishments

None.

8. Plans for Next Period

For Task 1, we plan to do further work on availability specifications, developing syntax
for incorporating them in Aeolus programs. For Task: 2, we will continue to develop the
examples presented in this report.

9. Expenditure of Effort

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF
REPORTING PERIOD 	EXPENDED HOURS

Associate Professor 	 81 	 527.5
Research Scientist II 	 130.5 	 913.5
Grad. Research Asst. 	 348 	 3,089
Secretary 	 47 	 522
Clerk Typist 	 40 	 515

6

Fault Tolerant Software Technology 	 Monthly Report

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: May, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report

1. Progress

Task 1 (Programming Techniques for Resilience and Availability):

In our previous monthly report, we described the Distributed Locking scheme for deriving
a replicated object implementation from a single-site specification. As outlined then, the
scheme consists of a methodology for achieving this derivation together with a mechanism to
support it. The mechanism consists in part of a set of primitives with which both system-
provided (default) and user-specified lock and copy event handlers may be programmed.
Here, we will describe these primitives in greater detail.

The interface to these primitives is provided as an Aeolus pseudo-object, called DistLock.
This pseudo-object is imported automatically by every availability specification (availspec),
but is not available for import by other compilands. This restriction is made to prevent use
of the primitives outside of an availspec, because most of the primitives make the assumption
that they are invoked within the environment of a lock or copy event handler.

The pseudo-object defines a replica_number type which is used by most of the primitives:

type replica_number Is new integer

A replica_number is used to name an individual replica of a group. The naming scheme used
here is the "horizontal" method as described in our interim report. The replica_number is
concatenated by the system to the capability of the object to which the invoking availspec
belongs to form an extended capability as defined by the horizontal scheme.

The first primitive is used for propagation of a lock to one of a set of replicas of the
invoking object:

procedure lock_replica (rep : replica_number) modifies

The lock_replica operation obtains the currently-requested lock at the replica denoted by rep.
This operation should be invoked only within a lock event handler. The lock variable,
domain value, and mode requested are obtained from the context of the lock event which
caused the invocation of the handler. The replica denoted by rep is added to a list of the
replicas touched by the current action.

The invoke_replica primitive is used for implementing state copying by idemexecution:

procedure invoke_replica (rep : replica_number) modifies

This operation causes the current operation to be executed at the replica denoted by rep.
This operation should be invoked only within a copy event handler. The operation number
and other parameters are obtained from the context of the lock which caused the invocation
of the handler.

The broadcast_shadow primitive is used for implementing state copying by cloning using
shadows:

procedure broadcast_ehadowe () modifies

This operation causes the "shadow set" of the permanent state of the current action to be
broadcast to all replicas at which locks were obtained by the current action via the
lock_replica operation. This operation should be invoked only within a copy event handler.

Finally, we define an additional object event, called the accept event, which is used by a
given replica to transfer a user-specified portion of its state to another of the replica's group.
This event must be explicitly signalled by the user via the invoke_acceptor primitive. This
primitive may be used in a copy event handler to implement state copying by cloning using
logs, or in a remit event handler to implement state reconciliation strategies:

1

Fault Tolerant Software Technology 	 Monthly Report

procedure invoke_acceptor (rep 	: replica_number ,
state : address
len 	: longuns 	 ; modifies

This operation causes the invocation of the accept event handler at the replica denoted by
rep. The information the address of which is given by state and which is of length len bytes
is copied to the environment of the accept handler at rep.

These and other implementation details of the Distributed Locking scheme are currently
being developed in a dissertation by one of the researchers on this grant. In our next report,
we will describe the syntactical features of availspecs in greater detail, and will also present
results of our attempts to derive higher-level linguistic features for specification of resilient
objects from our experience with the lower-level features provided by Aeolus.

Task 2 (Action-Based Programming for Embedded Systems):

This status report begins a consideration of the problems related to using a forward
recovery mechanism in a disciplined way. The examples we worked on suggest there are a
variety of ways in which the forward recovery mechanism may be used to tolerate hardware
and software faults. The software designer must make some choices early in the
development of the system about which strategies will be used to achieve fault tolerance.
These strategies in turn constrain the structure of the system and the ways in which objects
may interact. Without such constraints guiding the design of the mechanisms for achieving
fault tolerance within objects and actions, attempts at forward recovery are unlikely to correct
or compensate for a fault effectively, and may, in the worst case, induce a cascade of faults
throughout the system.

The variety of strategies available is indicated in terms of a particular type of fault:
dangling capabilities. We also outline some of the questions which must be resolved if we
are to build well designed systems which incorporate effective fault tolerance mechanisms.

In the Clouds environment, much of the code for systems and applications will be
encapsulated within objects. An important class of irreversible operations involves the
management of these objects. An object will, in general, be referenced by several others
objects, i.e., it will be shared. As with any object it is possible to delete a shared object.
The deletion of an object, as with other less severe state changes, may well be regarded as
irreversible. The complication which arises when shared objects are deleted is that of
dangling capabilities: it is necessary to reestablish consistency within the collection of objects
by propagating information about the deletion throughout the collection. There are several
ways in which information about the deletion may be propagated through out system. On
one level, these techniques separate into two broad classes: those which can be employed at
the time of the deletion or other state change and those which may be employed when an
action attempts to use the dangling capability. On another level, however, these two classes
of mechanisims use many of the same strategies and may actually be used in tandem.

An object may attempt to keep a list of other objects which reference it. The objects
named in this list may then be notified when the object is deleted. There are a number of
alternatives as to the form this notification may take including that of invoking the recovery
managers in the referencing objects.

Not all objects may maintain a list of the objects referencing it. Furthermore, there is no
practical way of guaranteeing that all objects in possession of the deleted object's capability
will have been properly registered. Thus, there remains a need to cope with actions which
attempt to use dangling capabilities. When an action attempts to use a capability left
dangling by a delete operation an exception should be raised and the action may be aborted.

2

Fault Tolerant Software Technology 	 Monthly Report

What strategies are available for reestablishing consistency? In some contexts, it may be
reasonable to suppose that the deleted object has been replaced with a successor. In other
contexts, it may be more reasonable for the action with the dangling capability to recognize
the object it's attempting to access no longer exists and to redirect its computation down
another path.

If object 01 is to be deleted it may actually be more reasonable to redefine it instead.
Suppose an action Al is executing in object 02 and while doing so executes one of 01's entry
points. The redefined operation could raise an exception indicating that 01 is no longer a
valid object an initiating appropriate recovery within Al. If 01's deletion was part of a
system upgrade, then the redefined 01 may be even more sophisticated: it may include
information about a temporary fix which allows Al to perform its task until it too is
upgraded, or 01 may even include information about how Al may participate in its own
upgrading. In this later approach, Al may dynamically rebind some of the operations in 02
or may notify an operator that maintenance is required.

Within Clouds, there are two ways operations may be dynamically rebound. First,
operations which at a higher level may appear to be encapsulated within a single object may
in fact be partioned among several objects and invoked indirectly. The rebinding of
operations, then, may be accomplished by using a different capability when accessing the
code which has been partioned off and encapsulated within a separate object.

A second and more general approach to the rebinding of objects is made possible through
the use of windows among objects' address spaces. While each Clouds object is thought of as
existing within its own address space, the Clouds design allows for portions of one object's
address space to be mapped into the address space of another object. While this feature has
not been implemented within the current Clouds prototype, the appropriate hooks have been
provided.

There are three questions which must be followed up in the short term. First, how might
the sharing and dynamic rebinding of operations and data areas be used to support the
general task of maintaining consistency within a set of interdependent, persistent objects.

Second, the forward recovery techniques we have described raise some new difficulties
related to the coordination of actions executing concurrently within the same object. In
particular, what are the implications of performing recovery on an object (either by invoking
an actions abort handler or the recovery manager within the object) while a second action is
executing within the object? We believe that if the second action holds locks on data areas to
be accessed during recovery, the second action should be aborted before recovery proceeds.
This requires some additional consideration, however.

Third, the forward recovery mechanism may, if used in an undisciplined way, result in
"sloshing." For example, suppose that Al aborts, recovers and restarts itself, though in the
process sets up conditions causing A2 to abort. If A2 recoverys and restarts it may in turn
set up conditions causing Al to abort. Unless precautions are taken, this cycle may continue
without end. We must, then, look for a structured way in which to use forward recovery
which allows us to avoid the "sloshing" effect or to at least stop it if it occurs. Our working
conjecture is that the solution is to be found in structuring the connections among objects
appropriately.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

3

Fault Tolerant Software Technology 	 Monthly Report

No changes.

4. Summary of Trips and Meetings

None

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the contract.

7. Related Accomplishments

Notice has been received that we have been awarded a Coordinated Experimental

Research grant from NSF. This grant will provide substantial hardware and personnel
resources for further development of the Clouds testbed over the next five years.

8. Plans for Next Period

For Task 1, we plan to continue our work on availability specifications. For Task 2, we
will continue our development of recovery techniques, concentrating on the problems listed in
the progress report.

9. Expenditure of Effort

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF
REPORTING PERIOD 	EXPENDED HOURS

Associate Professor 	 81 	 608.5
Research Scientist II 	 130.5 	 1044
Grad. Research Asst. 	 348 	 3,437
Secretary 	 40 	 562
Clerk Typist 	 47 	 565

4

-

Fault Tolerant Software Technology 	 Monthly Report

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: June, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report

1. Progress

Task 1 (Programming Techniques for Resilience and Availability):

In our previous monthly report, we described primitives for use in implementing the
lock and copy event handlers required by the Distributed Locking scheme. In this report,
we present example event handlers demonstrating the use of these primitives, as well as an
example availability specification (avail, spec) for the symtab object making use of the
example event handlers. (The Aeolus source code for the recoverable symtab object was
presented and described in our interim report.)

implementation of pseudo object quorum is

1 Here, we define handlers for the lock and copy events which
1 implement quorum consensus. This pseudo object is imported
I by any availapec wishing to use its predefined handlers.

import DistLock

procedure quorum_lock () is
I A simple -minded lock event handler for quorum consensus.
1 Locks are obtained on at least a minimum quorum assignment
1 specified by the assignment matrix generated by the
1 importing avallspec.

num_locked 	:integer
this_version,
max_version : version_number
good_replica : replica_number

begin
1 Find out how many replicas have been locked already by
1 the current action.
num_locked := DistLock (iP currently_locked()

1 Initially, the latest version seen is set to this
1 instance's version number.
max_version := DistLock 114 my_version()

1 Attempt to lock all available replicas.
for r in replica_number[1 	DistLock @ degree()] loop

if DistLock 	lock_replica(r, this_version) then
num_locked += 1
if this_version > max_version then

max_version := this_version
good_replica := r

1 remember which replica has the latest version
end if

end if
end loop

1 At least a quorum of replicas must have been locked. If
1 not, abort the invoking action.
if num_locked < DistLock (1, quorum_size() then

1

Fault Tolerant Software Technology 	 Monthly Report

Abort_Myself()
end if

1 If there is a later version of the state than that of
I this replica, copy it here. (This updates the local
I version number.)

if good_replica <> DistLock D my_:replica() then
if not DistLock 	get_state(good_replica) then

Abort_Myself() I replica was unavailable
end if

end if

I Copy the local state to all replicas which have version
I number less than that of the local copy.
for r in replica_number(1 .. DistLock @ degree()] loop

if not DistLock @P send_state(r) then
Abort_Myself() I replica was unavailable

end if
end loop

end procedure 1 quorum_lock

procedure quorum_copy is
I The copy event handler for quorum consensus. The shadow set
1 is copied to the set of replicas locked in the lock event.

begin
if not DistLock 610 broadcast_shadows() then

Abort_Myself() 1 copy was unsuccessful
end if

end procedure 1 quorum_copy

end implementation. 1 quorum

Figure 1. Lock and Copy Event Handlers for Quorum Consensus

Examples of Event Handlers in Distributed Locking

A sample implementation of lock and copy event handlers using the General Quorum
Consensus algorithm are given in Figure 1. The treatment of these event handlers has been
kept on a fairly naive level to avoid obscuring neither the general lines of the algorithm used
nor the use of the Distributed Locking primitives. The handlers are encapsulated in a
pseudo-object called quorum which may be imported by an availspec in order to use its
handlers.

As described in previous reports, a replica of an object at which an operation is invoked is
called the primary cohort or p -cohort; a request for a lock at the p-cohort causes its lock event
handler to be activated. The handler for the lock event, here called quorum_lock,
attempts to lock each other available replica (called secondary cohort or s-cohort) by use of
the lock_replica Distributed Locking primitive; if successful, this primitive returns the
version number of the new s-cohort as an out parameter. The maximum version number
over all s-cohorts is determined and compared with the version number of the p-cohort; if the
latter is not the latest version, the state of the s-cohort having the latest version is copied to

2

Fault Tolerant Software Technology 	 Monthly Report

the p-cohort. In any case, at this point the latest state is copied to all s-cohorts having earlier
states. If the number of s-cohorts is not at least as great as the quorum assignment for the
requested lock mode, the enclosing action is aborted.

When the action enclosing the operation invocation prepares to commit, the copy event
handler (here called quorum_copy) is activated. This handler uses the
broadcast_shadows primitive to copy the shadow set (of changed pages) of the p-cohort
to the s-cohorts locked in all activations of the lock event handler by the current action. If
the copy is successful, the shadow sets are committed at the s-cohorts as well as the p-cohort
to yield the updated state.

There are obvious improvements which might be made to this simple version of
quorum. For example, quorum_lock relies on the lock_replica primitive to "fall
through" when an attempt is made to lock a replica which is already an s-cohort. A more
sophisticated implementation could maintain a set of replica numbers representing the current
set of s-cohorts in order to avoid the overhead of a remote invocation for each redundant
lock_replica call.

The use of the broadcast_shadows primitive in quorum_copy requires that the
states of all s-cohorts be identical to that of the p-cohort when the lock event handling is
complete, so that the shadow set broadcast during the copy event can be committed into a
common permanent state at each replica; this is achieved by copying the state of the replica
with the latest version number to those replicas with earlier versions of the state. This
implementation assumes that it is uncommon for the version number of a replica to be "out
of synch" with its fellow replicas, which is a reasonable assumption if most, if not all,
replicas are available to become s-cohorts during each lock event. If this assumption is
invalid, it may be more efficient to avoid copying of the latest state to the s-cohorts during
the lock event and copying shadow sets during the copy event by copying the entire state
of the p-cohort to the s-cohorts during the copy event.

Example of an Availability Specification

A sample availspec making use of the quorum event handlers is given in Figure 2.
This availspec applies to the resilient symbol table object which was presented and
described in our interim report. The degree of replication (i.e., the number of replicas for a
given instance of symtab) is given as a formal parameter to the availspec; the actual
parameter is supplied (in addition to any object parameters specified by the definition part of
the object) to the create_instance operation of the TypeTemplate for this object.

The availspec also specifies the relative availabilities of the modes of each lock
declared by symtab. Here, the two modes of Hymt abl e_ lock are declared to have the
same availability level; however, the read mode of name_lock is declared to be more
available than the write mode. The relative availability declarations are used to determine
the size of quorums for each mode.

Finally, the alternate handlers for the lock and copy events are specified. Here, the
quorum_lock and quorum_copy operations made accessible by importing the quorum
pseudo-object are used.

Task 2 (Action-Based Programming for Embedded Systems):

In Clouds, software reuse is achieved by means of persistent, shared objects. It is
important for pragmatic reasons that objects with similar purpose have similar interfaces and
employ similar strategies to achieve fault tolerance. In this report we introduce the
possibility of using class hierarchies and inheritance schemes to help ensure that faults are

3

Fault Tolerant Software Technology 	 Monthly Report

availspec of object symtab (d : unsigned) is

I Availability specification of the symbol table object using
I the quorum consensus scheme. The DistLock pseudo object
I definitions are imported automatically by all avallspecs,
I but we must import the quorum definitions to use its
I predefined handlers.

import quorum

I First, we specify the degree of replication (the number of
I replicas). Here, the degree is taken from an additional
I parameter, d, which is specified during creation of an
I instance of this object.

degree is d

I The resilient symtab object defines two locks, each with two
I modes. We define the relative availabilities for the modes
I of each lock as follows. The relative availabilities are
I used in the constraints of an integer program which is used
I in turn to generate the quorum assignments for each lock
I mode.

lock symtable_lock with exact = nonexact

lock name_lock with read > write

I The definitions of the lock and copy events. Here, we just
I use the predefined handlers for quorum consensus.

availspec events
quorum_lock overrides lock_event,
quorum_copy overrides copy_event

end availspec. I symtab

Figure 2. Availability Specification for the Resilient Symbol Table

handled in a consistent manner at various points within an application or class of objects.

We have been studying the use of forward recovery mechanisms to achieve forward
progress in the face of faults. We have associated forward recovery with actions. If an
action is aborted or faults control is transferred to the recovery handler associated with the
action. The recovery handler may be used to undo the effects of the action or, if not all of
the action's effects can be undone, the recovery handler may be used to establish consistency
among the objects and other data visible to the action.

An action will generally modify several objects in the course of its execution. Some of
these objects will have been modified directly by the action. Others will have been modified
indirectly by means of nested actions. Suppose A is an action executing within an object 01.
Suppose further that E is an action nested within A. E is an entry point to object 02. E

4

Fault Tolerant Software Technology 	 Monthly Report

makes changes to the state of 02 and also invokes entry points on 03 and 04. The entry
points modify the states of 03 and 04 but do not access any other objects. Action A has
modified 01 directly and 02, 03 and 04 indirectly. Suppose now that action A subsequently
is aborted and must recover.

The simplest strategy would be to use backward recovery and return all the touched
objects to their states as they were prior to the invocation of action A. If this is not possible,
a forward recovery scheme will have been supplied for action A. There are at least three
possible scenarios by which consistency can be established with respect to 01, 02, 03, an
04. The recovery handler could modify the state of 01 directly and invoke additional entry
points on 02 so as to return it to a consistent state. In this scenario the recovery handler
would depend on the semantics of the entry points of 02 to make any necessary changes to
the states of 03 and 04. The second scenario is similar. 02 could be equiped with a special
entry point called RECOVERY. Recovery in this case the recovery handler could modify
the state of 01 directly and then invoke 02@RECOVERYO. The states of 03 and 04
would be recovered indirectly by means of the recovery operation invoked in 02. The third
scenario arises if the designer of the recovery manager for A wishes to achieve more direct
control over the recovery of objects indirectly modified by A. In this scenario the runtime
system would provide the recovery handler with a list of objects touched by A. The recovery
handler would then take steps appropriate for each object appearing in the touch list.

Additional scenarios can arise if we consider the ways in which 01's state can be
segmented into a number of recoverable data areas or if the semantics of A required that the
recovery handler invoke entry points to objects not previously touched by A. Perhaps the
most important scenarios arise by allowing the recovery handler to be sensitive to the history
of operations performed on an object by the aborted action: for example, a sequence of
operations could be undone by invoking the inverse for each of the operations in the
sequence.

The important point is that there are a number of strategies by which recovery can be
attempted. If an action attempts to use one strategy on objects which were designed to be
recovered by a different strategy, the attempt at recovery will fail. Since capabilities to
objects can be passed around as arguments, it is important that consistency be maintained.
Suppose an action A receives the capability to an object X as an argument. How should A
attempt to recover X in the event A aborts? Whatever strategy is chosen, it must be
appropriate for the entire class of objects which can be bound to X. We believe that we can
develop a class hierarchy which allows us to associate recovery strategies with classes of
objects.

An object will inherit methods (e.g., entry points and recovery strategies) from its parent
class. A programmer will have the option of extending, modifying or overriding any of the
inherited methods when instantiating a particular object. The inheritance mechanism is not
used to resolve the meaning of an operation invoked on a particular object. Instead, we are
investigating the use of inheritance to generate a code template which the programmer is free
to edit in any way he may regard as appropriate.

When overriding an object's inherited interface (e.g., deleting an entry point or changing
a parameter list) or when restructuring an inherited recovery strategy, the programmer is
responsible for ensuring that the object is structured in a way that is compatible with the way
other objects will be referencing it. The code template generated by the inheritance
mechanism has a very special role to play: it indicates to the designer of an object (or object
type) the structure that object is expected to have by other objects within the system.

We also plan to explore the possibility of developing a multiple inheritance scheme to
facilitate the editing of code templates. An object's definition can be regarded as a set of
traits. Traits may themselves be defined in terms of a class hierarchy with inheritance. A
designer should edit an object's definition by adding and deleting the appropriate traits. If no

5

Fault Tolerant Software Technology 	 Monthly Report

mix of traits provides exactly the semantics required for the object, the designer should first
define the appropriate trait within the trait hierarchy and then edit it into the object's
definition. This ensures that information about the particulars as to how this new object must
be manipulated are available to the designers of other objects which will be referencing it.

In last month's report we discussed some of the difficulties which a programmer must
confront if forward recovery techniques are to be used effectively. On reflection, the central
problem appears to be one of ensuring that the programmer has detailed information about
how his actions and objects will interact with the variety of persistent, shared objects
available within his object space. In this month's report we have outlined an approach
intended to provide the programmer with that detailed information. Indeed, we believe the
approach we have outlined will provide consistency of structure across an object space. In
particular, we belive the approach will help ensure that objects with similar purpose whave
similar interfaces and employ similar strategies to achieve fault tolerance. Inconsistencies,
when they occur, will be the result of a programmer's deliberate choice rather than a lack of
information. The inconsistencies will themselves be documented so that the information will
be available to other programmers.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

Richard LeBlanc travelled to RADC for an interim review of research progress.

S. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the contract.

7. Related Accomplishments

None.

8. Plans for Next Period

6

Fault Tolerant Software Technology 	 Monthly Report

For Task 1, we will be developing the concept of "resilient types," a declarative approach
to efficient use of atomic actions. For Task 2, we will be formulating a strategy to develop
examples illustrating the use of class hierarchies, inheritance, and traits to facilitate the
definition of new objects.

9. Expenditure of Effort

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF
REPORTING PERIOD 	EXPENDED HOURS

Associate Professor 	 81 	 689.5
Research Scientist II 	 130.5 	 1,1174.5
Grad. Research Asst. 	 348 	 3,885
Secretary 	 47 	 609
Clerk Typist 	 40 	 609

7

Fault Tolerant Software Technology 	 Monthly Report

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: July, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report

1. Progress

Task 1 (Programming Techniques for Resilience and Availability):

In this report, we describe a proposal for a declarative language feature called the resilient
type. This new feature embodies the paradigm we have developed from our experience with
the more imperative features for resilience described in previous reports, i.e., per-action and
permanent variables.

The typical use of per-action variables is for "intention lists" of modifications which are
to be applied to permanent variables during action commit. When using per-action and
permanent variables to achieve resilience of permanent data, the programmer must specify
the following characteristics:

1. the representation of the permanent version of the data;

2. the relationship of the modify operations of the object to the permanent
representation; and

3. the visibility of both the permanent version and uncommitted modifications made to it
by actions.

The first characteristic is achieved in the per-a.ction/permanent variable paradigm by the
specification of a permanent variable. The second characteristic is implemented by use of
per-action variables to maintain lists of changes to the permanent variables made by each
modify operation; the programmer must specify in a top-level precommit action event
handler how these modifications are to affect the permanent data. The third characteristic is
realized typically by the use of a "lookup" function that takes into account both the
permanent state and the uncommitted changes maintained in the per-action variables in some
manner appropriate to the semantics of the object.

The use of the per-action and permanent variable constructs in this paradigm has two
undesirable consequences: not only must the programmer explicitly specify exactly how the
paradigm is to be implemented, but the implementation is scattered among many parts of the
object, i.e., the data and per-action variable declarations, modify operations, and action
event handlers. Thus, there is motivation to abstract the experience with the imperative
constructs into the design of a higher-level, declarative feature that allows the programmer to
specify what the characteristics of the resilient data are, rather than how these characteristics
are to be achieved.

We have developed a preliminary design for a feature called the resilient type that
expresses the three characteristics of the per-action/permanent variable paradigm in a
declarative fashion. An example of a resilient object using this feature is presented in Figure
1. This example is derived from the resilient symbol table object that was presented and
described in our interim report. The syntax of the resilient type describes the characteristics
of the type in the following order: representation of the permanent data; relationship of the
modifies operations of the object to this data; and the visibility rule which applies to the
permanent data and uncommitted modifications. The representation of the permanent data
structure may be accessed within the resilient type specification by the name rep. The
visibility rule for a variable of the resilient type may be accessed by using the variable name
as an object instance name, and invoking operation visibility on it. Other details of the
prototype syntax are given in the comments contained in the figure.

A final aspect of the resilient type specification bears explanation. It was found necessary
to provide some way of accessing elements not only of the permanent data, hut of the
(visible) uncommitted results of modifies operations; such access is useful for displaying
all visible elements of a resilient type, or for other operations requiring mapping-like
functions. Thus, the final portion of the prototype syntax allows the programmer to specify
an iterator function which can yield successive visible elements of the resilient type. The

1

Fault Tolerant Software Technology 	 Monthly Report

Aeolus language does not support iterators; thus, we do not recommend that the resilient
type construct be included in Aeolus itself, but rather in an application language for Clouds
which should include such high-level features as iterators.

implementation of object symtab
I(name_type : type, value_type : type)I is

1 Single-copy symbol table object using the declarative resilient
1 type feature to replace the imperative combination of the
1 permanent and per-action variable features.

import keyed_list

1 Each bucket of the hash table is a list of names and values,
1 keyed by the name field.

type bucket_list is new keyed_list(name_type, value_type)

MAXBUCKET : const integer :m 101 	1 or whatever

type hash_range is new unsigned(1 .. MAXBUCKET]

1 The symbol table structure itself is an array of bucket lists.
1 Here, the structure type is declared to be resilient, with a
1 representation in permanent storage which is modifiable only at
1 top-level precommit. The resilient type specification also
1 defines the relationship of the modifies operations of the
1 object to the representation of the type. The syntax used
1 here is:

2

Fault Tolerant Software Technology 	 Monthly Report

<operation name> (<key parameter> [, <value parameter>])
[reverse <operation name>] : < rep modification>

I The <rep modification> is a statement specifying the effect of
I the given operation on the representation of (a variable of)
I the resilient type. If the operation may reverse the effect of
I another operation, this is indicated by use of the reverse
I clause. The effect of the resilient type specification is, for
I each modifies operation, to generate an list which is used to
I maintain "intentions" of modifications caused by invocations
I of that operation by an action. The "intentions" lists are
I automatically initialized for a new action and propagated up
I the action tree as in the symtab example using permanent and
I per-action variables. Then, at top-level precommit, the
I "intentions" are translated automatically into modifications
I of the representation. A visibility rule governing both the
I permanent representation and the modification "intentions" of
I an action is specified in the with visibility clause. Finally,
I an iterator may be defined which yields all visible elements of
I the resilient type; thus, it may be specified to iterate over
I the "intentions" of an action as well as the permanent
I representation.

type symtable_type is
resilient array[hash_range] of bucket_list
with modifies operations

insert (name, value) :
rep[hash(name)] IP add(name, value) ,

delete (name) reverse insert :
rep[hash(name)] • remove(name)

end operations
visibility (name : name_type, out value : value_type) is

insert(name, value)
or (not delete(name)

and rep[hash(name)] it+ find(name, value))
end visibility

iterator (out value : value_type) returns name_type is insert :
for i in bucket_range loop

return rep[i] 	iterate(value)
end loop

end iterator
end resilient

symtable : symtable_type

I The symtable_lock allows the entire symbol table to be locked.
I This lock is set (in exact mode) in the exactJlst operation for
I purposes of getting an exact listing of the state of the symbol
I table. Operations which change the state of the symbol table
I must wait for completion of any outstanding exactjist
1 operations and vice versa.

symtable_lock : lock (exact 	: [exact]
nonexact : [nonexact])

3

Fault Tolerant Software Technology 	 Monthly Report

1 The NAME lock allows the user to lock the name which is to be
1 used in one of the symbol table operations. The purpose of
1 this lock is to assure the view atomicity of these operations,
1 that is, to provide synchronization such that concurrent users
1 of the symbol table do not view the results of other actions
I before those actions are committed.

name_lock : lock (write : []
read : [read]) domain is name_type

procedure hash (name : name_type) returns hash_range is
I This hash function is a local (nonpublic) procedure of the
I symtab object.

begin
NULL 	1 the usual type of stuff

end procedure I hash

procedure insert (1 name : name_type
1 value : value_type
1 error : out boolean 1) is

1 This operation invokes the Insert operation .of the resilient
I symtable to add the given item to the insertion
I "intentions" of the current action.

dummy : value_type

begin
Await_Lock(name_lock, write, name)
error :• symtable O visibility(name, dummy)
if not error then

Await_Lock(symtable_lock, none:xact)
symtable S insert(name, value)

end if
end procedure 1 insert

procedure delete (1 name : name_type
1 error : out boolean 3) is

1 This operation invokes the delete operation of the resilient
1 symtable to add the given item to the deletion
I "intentions" of the current action.

dummy : value_type

4

Fault Tolerant Software Technology 	 Monthly Report

begin
error := FALSE
Await_Lock(name_lock, write, name)
if symtable 0 visibility(name, dummy) then

Await_Lock(symtable_lock, nonexact)
symtable 0 delete(name)

else
1 name not in the permanent symbol table or inserted by
1 this action
error := TRUE

end if
end procedure 1 delete

procedure lookup (1 name : name_type
1 error : out boolean 1) 1 returns value_type I is

1 The lookup operation sets a read lock on the name entry, and
1 then tries to locate that entry with name field is name and
1 returns its value if it succeeds.

value : value_type

begin
Await_Lock(name_lock, read, name)
Await_Lock(symtable_lock, nonexact)
error := not symtable 0 visibility(name, value)
return value

end procedure I lookup

procedure quick_list () is
I The quIck_llst operation provides a quick (dirty) listing of
I names currently in the symbol table by invoking the
1 iterator of the resilient symtable.

name : name_type
value : value_type

begin
for name in symtable 0 iterate(value) loop

1 invoke display operations on name - value pair
end loop

end procedure 1 quick_list

5

Fault Tolerant Software Technology 	 Monthly Report

procedure exact_list () is
I The exactJlst operation provides a listing of the exact
I state of the symbol table at a given point in time. To do
1 this, it locks the whole symbol table, thereby excluding any
I changes during preparation of the listing. Thus, although
I exactJlst, lookup, and quIck_llst operations may execute
1 concurrently, and Insert and delete operations which access
1 different hash buckets may also execute concurrently, Insert

and delete operations must block on exactilst operations
1 and vice versa.

begin
Await_Lock(name_lock, read, name)
Await_Lock(symtable_lock, exact)
quick_list()

end procedure I exact_list

end implementation.

Figure 1. Symbol Table Example using Resilient Type

Task 2 (Action-Based Programming for Embedded Systems):

The approach to forward recovery we have been developing places the locus of control
(for recovery) with the abort handler associated with the action being aborted. The abort
handler will execute a protocol to recover (i.e., restore consistency to) the data areas and
objects visible to the aborting action. The protocol must be compatible with the objects and
other data areas being recovered. Since actions and objects are defined at different times by
different programmers, we must take steps to ensure that recovery protocols are compatible
with object definitions. Our idea is that the programmer who designs an object should make
available to the user of the object code templates which illustrate proper recovery. The
programmer defining an action can incorporate that template into his code after tailoring it to
the particular context of the action he is developing.

Additional constraints must be placed on the programmer designing an object: like objects
should be recovered using similar protocols. Suppose there are two resources R and S. Both
R and S are encapsulated within objects. Suppose further that an action A may use either R
or S (and does not care which). The abort handler will be simpler if R and S can be
recovered using the same protocol. To ensure that this is the case, the definitions of R and S
must be coordinated in some fashion. As discussed last month, we are exploring the use of
class hierarchies and inheritance schemes to provide the necessary coordination. Our
proposal differs from others in that the class hierarchies and inheritance schemes are used to
generate a code template which the programmer is free to edit--- in short, they are used to
produce a "rough draft" of the code. The class hierarchies and inheritance schemes are not
involved in the execution of the software; they are merely aids to help programmers
coordinate the structure of the software system.

To develop this idea further we return to the example of a resource manager discussed in
a previous report. The resource manager M is an object which controls access to a pool of
resources. Actions may check resources out of the pool as needed, but the resource must be
returned when the action is finished with it. An action checks a resource out with the
operation M@Request(X) and returns it with the operation M@Return(X). if an action

6

Fault Tolerant Software Technology 	 Monthly Report

holding a resource aborts, it must, in general, return the resource before it terminates. Thus,
the abort handler for an action which checks a resource out from M will usually contain the
M@Return(X) operation. A programmer may sometimes wish to dispose of the resource in
other ways: an orderly way of allowing for exceptions is discused later in this report.

Classes and multiple inheritance can be used to construct appropriate code templates.
One approach would be to have one class hierarchy for objects and another for actions. The
resource manager M would be a member of a class of objects called "ResourceManager."
The idea being that all
resource managers will have similar interfaces for checking resources out and returning

them. The programmer defining the class ResourceManager would also define an attribute
for actions which access a ResourceManager called "ResourceUser." When an action is
identified with the attribute ResourceUser, the appropriate code for returning a resource to
the pool is incorporated into the code template for the action.

More sophisticated schemes should be available for those occasions when a programmer
does not wish a particular action to return a resource during recovery. We will mention three
strategies here.

1. The programmer may specify that the action recover and then be retried some number
of times. It may be desirable as part of ensuring forward progress for the action to hold onto
the resource between retries.

2. The programmer may specify that the action recover by starting a new action and
transferring control to it.
In addition to transferring control, some state information may also be transferred including

the identity of resources held by the aborting action.

3. The programmer may specify that the action recover by passing the resources to its
parent before terminating.

These more sophisticated schemes should be defined as subclasses of the ResourceUser
attribute. If a programmer is defining a class of actions A and if this class is using a resource
whose manager's object type is ResourceManager, he will want the definition of A to contain
an appropriate recovery protocol, i.e., an attribute in the ResourceUser family. This may be
the ResourceUser attribute itself or one of its more sophisticated subclasses such as those
mentioned above.

Our approach to the construction of objects and actions asks a programmer to generate a
code template for the program unit by selecting an appropriate mix of attributes. The correct
choice of attributes depends on the purpose served by the program unit, and by the attributes
of the other program units which it references or which reference it. This approach should
facilitate the correct and consistent use of recovery protocols by providing the programmer
with access to code fragments which solve his problems. In addition, the programmer will
need some guidance as to the correct use of attributes. We propose that this guidance be
provided by means of constraints. One constraint we have discussed is that of "an action
which may obtain a resource from a ResourceManager must have an attribute in the
ResourceUser family." Other constraints would be attributes in the ResourceUser family.
For example, if an action passes a resource to its parent when it aborts (we'll call this the
"LeaveToParent" attribute), the parent must be prepared to handle it; this can be expressed
by placing constraints on the attributes assigned to the parent of an action with the
LeaveToParent attribute.

To summarize: We propose the use of object classes and action classes. A class is
defined by combining a set of attributes. A class may have subclasses. A subclass initially
inherits its parent's attributes, though a programmer may subsequently add and subtract
attributes (to distinguish it from its parent). Attributes are associated with code fragments
and are defined as a combination of other attributes. As with actions and object classes,
attributes are organized hierarchically. Code templates are instances of classes. Once a code

7

Fault Tolerant Software Technology 	 Monthly Report

template is generated from the definition of its class, the programmer is free to edit it as
appropriate.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

Richard LeBlanc attended the Tenth Minnowbrook Workshop, the topic of which was
software reuse. A number of the participants were involved with the development of real-
time software. Their presentations provided us with valuable insights concerning how the
results of our research might be used.

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the contract.

7. Related Accomplishments

None.

8. Plans for Next Period

For Task 1, we will be working on the organization of the hardbook to be delivered as the
result of the task. For Task 2, we are considering the use of these ideas regarding class
hierarchies and inheritance schemes as a vehicle for organizing the handbook which will be
produced at the end of this task. We will consider the structure of the proposed hierarchies,
the notation for representing code fragments, and the mechanism for generating code
templates from the definition of a class.

8

Fault Tolerant Software Technology 	 Monthly Report

9. Expenditure of Effort

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF
REPORTING PERIOD 	EXPENDED HOURS

Associate Professor 	 117 	 806.5
Research Scientist H 	 130.5 	 1,305
Grad. Research Asst. 	 348 	 4,233
Secretary/Clerical 	 87 	 1,305

9

Fault Tolerant Software Technology 	 Monthly Report

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: August, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report

I. Progress

Task 1 (Programming Techniques for Resilience and Availability):

Outline for Guidebook 1

I. Taxonomy of Techniques for Programming Resilient and Available Services
1. Resilience

a) Autorecoverable
b) Recoverable
c) Per-action and permanent variables
d) Resilient types
3) K-resilient computations (ISIS)
f) Mutex types (ARGUS)

2. Availability
a) Ad-hoc techniques

1) Master/Slave
b) Distributed Locking

1) Primary copy
2) Token passing scheme
3) General quorum consensus
4) Available copies

II. OPERATING SYSTEM REQUIREMENTS
1. Support for resilience

a) Action Management
b) Object Headers

2. Distributed Locking Mechanism
a) Distributed Locking Mechanism

1) Naming Replicated Objects
2) Invocation of Lock and Copy Events
3) Primitives for Lock and Copy Event Handlers

b) Object Filing System

Task 2 (Action-Based Programming for Embedded Systems):

The following material summarizes our work so far and is meant to provide a basis for
the organization of the handbook resulting from this task.

I. The stages of fault tolerance recovery

(a) detect the presence of a fault: different types of faults require different strategies
(b) confine the consequences of the fault
(c) adjust the state and resume computation

We have concentrated on the last stage. We have regarded the issue of confining the
consequences of a fault in its simplest terms: preventing the failure of an action from
shutting a software system down and ensuring that all actions have a consistent view of
the state of the computation when recovery is complete. When framed in this way, the
distinction between the last two stages blurs. We believe that the use of atomic actions is
an important strategy in containing the consequences of a fault. Unfortunately, there are

1

Fault Tolerant Software Technology 	 Monthly Report

many occasions when atomicity cannot be maintained. Our emphasis has been on
studying the use of forward recovery in situations where atomicity has not been
maintained. We have assumed that these "holes" in atomicity have been designed with
the containment of faults in mind. We will not discuss recovery in situations where the
fault has been allowed to contaminate the rest of the computation in arbitrary ways.

Violations of atomicity may make an action irreversible. We regard as irreversible any
action whose effects cannot be undone merely by rolling back the data areas and objects
on which it has write locks. Irreversible actions may arise in two ways. An action which
causes a state change in a physical system is termed irreversible. The effect of the state
change is visible even before the action commits. The use of backward recovery (e.g.,
rollback) in this case risks the loss of information about the occurrence of the operation
on the physical system. Violations of atomicity must also sometimes be allowed to
provide the necessary level of availability (e.g., a resource manager). In this case,
backward recovery will either trigger a cascade of aborts or result in actions having
inconsistent views of the state of the object.

These two types of irreversible action are closely related, and we have been studying
how their recovery may be addressed using forward recovery techniques. Forward
recovery can be used to ensure that information is preserved across the boundary of the
aborting action and is available when computation is resumed. In particular, it can be
used to preserve infprmation about the occurrence of operations on physical systems
under software control and to preserve that portion of the state which has been seen by
another action. In this later case, reestablishing consistency may require that some
additional, selected actions be aborted and restarted on the adjusted state.

IL Philosophy and Issues

We believe an abort handler should not be flooded with information about the state
of the computation as it was at the time of an abort. It should be given only the
information it asks for and only in the level of detail it requires. To this end, we have
developed a forward recovery mechanism which incorporates stages and diagnostic
operations.

We want to work with a level of granularity between that of the action as a whole and
that of individual statements. The programmer is able to organize the action in terms of
stages. A stage cannot contain part of statement: a stage boundary cannot be within the
scope of a loop or conditional.

The abort handler will use additional diagnostic operations if it needs more
information about the conditions which existed at the time of the abort. Some diagnostic
operations will be provided as system calls while other will be object entry points.

Some of the diagnostic operations will tell the abort handler about the reasons the
action aborted. Others will tell the abort handler the state of an object at the time of the
abort. Yet others will tell the abort handler whether a particular operation was
performed before the abort.

DI The outcomes possible using forward recovery
(a) the list from the interim report

W. Some generic capabilities
(a) adjusting environments and data areas

i. Environments within a block may be partitioned into data areas. these data
areas may be selectively committed or rolled back. The abort handler may
make changes to -adata area before committing it.

2

Fault Tolerant Software Technology 	 Monthly Report

ii. An environment may contain capabilities for other objects. If an action has
modified an object and then aborts, the abort handler may have to initiate
recovery in the object. The precise way recovery is to be handled for a
particular object depends on the semantics of the object. We require that the
object's entry points include the operations needed for recovery. This is
especially important if operations on the object are irreversible or otherwise
allow the action's atomicity to be violated. If an action has exclusive access to
an object, then the object may be treated in the same way as data areas, i.e.,
rolled back and committed. We assume the programmer of an action knows the
semantics of the objects and have correctly provided for their recovery. This is
not a good assumption, and we are developing some concepts for tools which
will help a programmer provide for recovery correctly.

(b) transfers of control

i. the abort handler terminates the action after propagating some of its local state
into the global environment. The abort handler lets control pass to the parent
action either by raising an exception or terminating normally.

ii. the abort handler terminates the action after propagating some of its local state
into the global environment and starting a new action to continue the
computation. The new action has the same parent action as the one which was
aborted. The new action executes in an environment defined by static scope
rules.

iii. the abort handler restarts the action after making some adjustments to both the
action's local and global environment.

iv. the abort handler restarts the action in an intermediate state after making some
adjustments to both the action's local and global environment.

v. the abort handler remaps the code windows (and perhaps data windows) of the
action and then adjusts its local and global environment. The action is restarted
either from the beginning or from an intermediate state. The new action
executes in the same environment as the one which had aborted.

vi. some recovery may be deferred until the action is restarted.

vii. some actions may be given the right to abort selected other actions, thereby
forcing them to begin (forward) recovery

V. Some scenarios of interest utilizing the generic capabilities

(a) some variations on the resource user

(b) avoiding cascading aborts by restarting an action in an intermediate state

(c) the fire control action

(d) the parent of the fire control action

(e) shutting down a machine tool using the remapping of code windows

(f) robotics control example

3

Fault Tolerant Software Technology 	 Monthly Report

(g) restarting an action on another machine

(h) propagating information about physical systems across machines

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

None.

S. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the contract.

7. Related Accomplishments

Tom Wilkes completed his Ph.D. thesis, which included a substantial amount of material
from Task 1 of this project.

8. Plans for Next Period

For Task 1, we will begin to draft the handbook to be delivered as the result of the task.
For Task 2, we will be working on examples utilizing the capabilities discussed in this report.

4

Fault Tolerant Software Technology 	 Monthly Report

9. Expenditure of Effort

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF
REPORTING PERIOD 	EXPENDED HOURS

Associate Professor 	 117 	 923.5
Research Scientist II 	 130.5 	 1,435.5
Grad. Research Asst. 	 348 	 4,581
Secretary/Clerical 	 87 	 1,392

5

Fault Tolerant Software Technology
	

Monthly Report

MONTHLY REPORT

FAULT TOLERANT SOFTWARE TECHNOLOGY FOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: September, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: 0-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report

1. Progress

Task 1 (Programming Techniques for Resilience and Availability):

Work has begun on a draft of the guidebook to be delivered as a result of this task.

Task 2 (Action-Based Programming for Embedded Systems):

We have been developing a set of skeletal examples to illustrate and study the
effectiveness of the generic recovery capabilities listed in the last monthly report. Several of
these examples are attached to this report as Appendix A.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

Tom Wilkes and Chu-Chung Lin departed from Georgia Tech and the project staff during
this month. One new graduate student, Ray Chen has been added to our staff.

4. Summary of Trips and Meetings

None.

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the contract.

7. Related Accomplishments

Chu-Chung Lin completed his Ph.D. thesis, on the design of debugging tools for
object/action programs.

8. Plans for Next Period

For Task 1, we will continue our work on the handbook. For Task 2, more examples will
be developed to complete our analysis of the capabilities described in the August monthly
report.

1

Fault Tolerant Software Technology 	 Monthly Report

9. Expenditure of Effort

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF
REPORTING PERIOD 	EXPENDED HOURS

Associate Professor 	 117 	 1,040.5
Research Scientist II 	 130.5 	 1,561
Grad. Research Asst. 	 348 	 4,929
Secretary/Clerical 	 87 	 1,479

2

Appendix A 	 draft examples

Skeleton of an action illustrating the basic template

!data areas global to the action

begin data area 1 [<data area attributes>]
!declarations go here

end data area 1

begin action 1 [<action attributes>]
begin data area 2 [<data area attributes>]

!declarations go here

end data area 2

stage 1:

stage 2:

on exception

[some code which is executed for all exceptions]

case exceptionType of

<exception name>:

<exception name>:

others:

end case

[some code which is executed after specific exceptions are handled]

on abort

[some code which is executed on all aborts]

case stageAborted of

stage 1:

stage 2:

end case

[some code which is executed after handling the stage dependent issues]

on restart

October 9, 1987 	 page 1 Georgia Tech

Appendix A 	 draft examples

[some code which is executed on all restarts]
case sourceOfRestart of

internalRestart: [some code which is executed on all internal restarts]
case stageReatarted of

end case
[some code which is executed on all internal restarts]

externalRestart: [some code which :Ls executed on all internal restarts]
case stageReatarted of

end case
[some code which is executed on all internal restarts]

end case

[some code which is executed on all restarts]
end action 1

October 9, 1987 	 page 2 Georgia Tech

Appendix A 	 draft examples

Designing Fault Tolerant Resource Users

Suppose an a pool of resources is encapsulated within an object called the ResourceManager.
Actions may check resources out of the pool by invoking the appropriate entry point in the object.
Access to the ResourceManager represents a violation of an action's atomicity. The checking out
of a resource is, by our definition, an irreversible action. If an action holding a resource aborts, we
must use forward recovery techniques to ensure the resource is returned to the pool or disposed of
in some other reasonable way.

Example 1: This example illustrates the use of our forward recovery constructs to declare an action
which clean up its state and either retrys itself or terminates by raising an exception visible
to its parent.
begin data area 1

server: capability
end data area 1

begin action 1
begin data area 2

X: capability
Z: data of some kind

end data area 2

begin
stage 1: X : ■■ serverCobtainResource()

XOinitialize()

stage 2: while <condition> do
checkpoint data area 2
Z 	<some expression>
XOuseResource(Z)
commit data area 2

end while

stage 3: XI/cleanup()
serverOreturn(X)

on exception
abort

on abort
case stageAborted of
stage 1: if serverOserviceFailure(server) then

exception(serverFailuxe)
else if serverOserviceFailure(X) then

■erverCreturn(X)
retry self

else
rollback data area 2
retry self

end if
stage 2: if serverOserviceFailure(X) then

October 9, 1987 	 page 3 Georgia Tech

Appendix A 	 draft examples

serverCreturn(X)
exception(actionIncomplete)

else if Z XClastValue() then
commit data area 2
resume stage 2

else
rollback data area 2 !to a state consistent with the begining of

the loop
resume stage 2

end if

stage 3: if servereserviceFailure(X) then
serverCreturn(X)

else
Xecleanup()
serverCreturn(X)

endif
terminate normally

end action 1

end action 1
The serviceFailure call begins diagnostic routines and may result in corrective action within
the server or resource. This ensures that continuity of service is maintained.
Note that the XeuseResource(Z) is treated as a potentially irreversible action. The abort
handler uses the operation X(IastValue() to determine whether it was invoked just before
the the abort occured. the result of the IastValue operation will determine how recovery will
proceed.

October 9, 1937 	 page 4 Georgia Tech

Appendix A 	 draft examples

Example 2: This example illustrates the use of our forward recovery constructs to propogate in-
formation into the global environment. The parent action will then use that information to
select an appropriate continuation. This example is a variation of the resource user presented
in Example 1. A variation not shown would involve propogating the capability to the resource
into the parent environment so that it could be used by the parent.
begin data area 1

server: capability
finished: boolean :- false
numberDone := 0

end data area 1

begin action 1
begin data area 2

X: capability
Z: data of some kind
c: integer := 0

end data area 2

begin
stage 1: X := servereobtainftesource()

Xeinitialize()

stage 2: while <condition> do
checkpoint data area 2
c := c + 1
Z := <some expression>
XeuseResource(Z)
commit data area 2

end while

stage 3: Xlcleanup()
serverCreturn(X)

on exception
abort

on abort
begin data area 3

reason: (serverFailure,resourceFailure, other)
action: (raiseException, normalTermination)

end data area 3

if servereserviceFailure(server) then
reason :- serverFailure

else if serverlserviceFailure(X)
reason := resourceFailure
serverOreturn(X)

else reason := other
end if

case stageAborted of
stagel: action:- raiseException

October 9, 1987 	 page 5 Georgia Tech

Appendix A 	 draft examples

stage 2: if Z <> nlastValue() then
rollback data area 2

end if;
action := raiseException

stage 3: action := terminateNormally
end case

numberDone := c
if action - raiseException then
finished := false
exception(reason)

else
finished := true
terminate normally

end if

end action 1

October 9, 1987 	 page 6 Georgia Tech

Appendix A 	 draft examples

Example 3: This example illustrates how the abort handler may attempt to complete an action by
starting a successor action. The abort handler copies data into the global environment. The
restart handler will copy that data into the local environment of the successor action. This is
an example of an external restart.
In this case the successor action is defined within the parent action and has access to the data
which is propogated into the global environment.
This example also illustrates a different strategy for maintaining continuity of service from the
server.
begin data area 1

server: capability
finished: boolean :- false
numberDone : 0
resource: capability :- null

end data area 1

begin action 1
begin data area 2
X: capability
Z: data of some kind
c: integer := 0

end data area 2

begin
stage 1: X :- serverCobtainResource()

Xeinitialize()

stage 2: while <condition> do
checkpoint data area 2
c := c + 1
Z := <some expression>
XCuseResource(Z)
commit data area 2

end while

stage 3: Xecleanup()
serverCreturn(X)

on exception
abort

on abort
begin data area 3

stage: (stages, stage2, stage3)
end data area 3

if servereserviceFailure(server) then
server := serverlsuccessorServer()

else if serverCserviceFailure(X) then
serverCreturn(X)
X := serverCobtainResource()

end if

Georgia Tech
	

October 9, 1987 	 page 7

Appendix A 	 draft examples

case stageAborted of
stagel: stage := stagel

stage 2: if Z <> XClastValue() then
rollback data area 2

end if;
stage := stage2

stage 3: stage := stage3
end case

if stage = stage3 then
if not serverCconfirmReturn(X) then

serverCreturn(X)
end if
terminate normally

else
!propagate state into the global environment
resource := X
numberDone := c
if stage = stagei then

restart using self0fparentealternative()

else if stage = stage2 then
restart using selfCfparentealternative() in stage 2

endif
endif

end action 1

October 9, 1987 	 page 8 Georgia Tech

Appendix A 	 draft examples

Example 4: This example illustrates how the abort handler may attempt to complete an action by
mapping code for the successor action into the code window of the action which is aborting.
The abort handler may also remap the window containing the restart handler. On restart, the
local data areas and the abort handler may also be remapped.
This is an example of an internal restart. The restarted action inherits the local environment
of the action which it replaces.
begin data area

server: capability
finished: boolean :- false
numberDone : ■ 0
resource: capability := null

end data area 1

begin action 1
begin data area 2
X: capability
Z: data of some kind
c: integer :- 0

end data area 2

begin
stage 1: X 	serverGobtainResource()

Xeinitialize()

stage 2: while <condition> do
checkpoint data area 2
c 	c + 1
Z 	<some expression>
XeuseResource(Z)
commit data area 2

end while

stage 3: Xecleanup()
serverereturn(X)

on exception
abort

on abort
begin data area 3

stage: (stagel, stage2, stage3)

end data area 3

if servereserviceFailure(server) then
server := serveresuccessorServer()

else if serverlserviceFailure(X) then
serverereturn(X)
X : servereobtainResource()

end if

case stageAborted of

October 9, 1987 	 page 9 Georgia Tech

Appendix A 	 draft examples

stagel: stage := stagel

stage 2: if Z <> XOlastValue() then
rollback data area 2

end if;
stage := stage2

stage 3: stage := stage3
end case

if stage - stage3 then
if not servereconfirmReturn(X) then

servertreturn(X)
end if
terminate normally

else
Ipropogate state into the global environment
resource := X '
numberDone :- c
if stage - stagel then
remap codeWindow using <information needed to
remap restartWindow using <information needed

else if stage - stage2 then
remap codeWindow using <information needed to
remap restartWindow using <information needed
restart in stage 2

endif
endif

end action 1

complete the remapping>
to complete the remapping>

complete the remapping>
to complete the remapping>

October 9, 1987 	 page 10 Georgia Tech

Appendix A 	 draft examples

Example 5: With careful use of locking and recoverable data areas of small granularity, it is often
possible to maintain recoverability and availability without allowing actions to read uncom-
mitted data (or, more broadly, to view the effects of uncommitted actions).
In some circumstances availability can be increased if actions are allowed to read uncommitted
data. When roll back is the only available recovery technique, this entails a risk of cascading
aborts. The risks are compounded if the victims of the cascade of aborts have performed
irreversible operations. By regarding the uncommitted data as irreversible once it has been
read (or other wise made visible) and by using forward recovery techniques to build a "firewall"
against cascading aborts, we can provide a means for inhibiting the cascade. In this example,
we assume that the runtime system maintains a record of actions which have been granted
access to uncommitted data. If an action aborts and its abort handler performs recovery on a
data area which has subsequently been accessed by other actions, then the other actions are
aborted.' This initiates forward recovery within these other actions. A casecade of aborts may
be avoided in either of two ways. First, the action which has been aborted because it accessed
uncommitted data may not itself have permitted yet other actions to access its uncommitted
results. Second, even if it had itself permitted access to its _uncommitted results, it may be
able to recover without affecting the uncommitted results.
The example illustrates how an action can avoid aborting other actions which may have seen
its uncommitted results.
begin data area 1 (shared access allowed, uncommitted access allowed)

end data area 1

begin data area 2 (shared access allowed, uncommitted access allowed)

end data area 2

begin data area 3 (shared access allowed„ access to committed data only)

end data area 3

begin action 1 (executes as a process,
may access uncommitted data in data areas 1 and 2)

stage 1: readLock(data area 1)
writeLock(data area 2)
writeLock(data area 3)
read from data area 1
unlock(data area 1)

stage 2: read from and write to data area 2
unlock(data area 2)

stage 3: do some more stuff
unlock(data area 3)

on exception
abort

1 In the event that one of these other actions has aborted then its surviving ancestor will be aborted.

October 9, 1987 	 page 11 Georgia Tech

Appendix A 	 draft examples

on abort
stage 1: unlock(data area 3)

unlock(data area 2)
unlock(data area 1)
if selfeexternalAbort() then
restart stage 1

else
exception(internalError) !parent will handle it from here

end if
stage 2: if selfeexternalAbort() then

rollback(data area 2) !or some other state correction
abortSubsequentAcesses(data area 2)
if wasRecovered(data area 1) then

if <important changes to data area 1> then
unlock(data areas 1,2, 3)
restart stage 1

else
restart stage 2

end if
else if wasRecovered(data area 2) then

. restart stage 2
endif

else
exception(internalError) !parent will handle it from here

end if
stage 3: if selfeexternalAbort() then

rollback(data area 3) tor some other state correction
if wasRecovered(data area 1) then

if <important changes to data area 1> then
unlock(data area 3)
rollback(data area 2) !or some other state correction
abortSubsequentAcesses(data area 2)
restart stage 1

else
restart stage 3

end if
else if wasRecovered(data area 2) then
restart stage 2

endif
else

exception(internalError) !parent will handle it from here
end if

October 9, 1987 	 page 12 Georgia Tech

Appendix A 	 draft examples

Example 6: Some resources may be used in ways which irreversibly change their state, e.g., a
missle may be launched. We must insure that such irreversible state changes are adequately
recorded, even if the action which caused the change is aborted. In this example, the action
becomes irreversible in stage 3. If the action aborts in stages 1 or 2, its effects are undone. If
the action aborts in stages 4 or 5, data area 2 is made consistent and permanent. Action 1 then
aborts, and an exception is raised. Action l's parent is responsible for using the information
in dataArea 2 when responding to the irreversible launching of the missle. If the action aborts
in stage 3, the recovery strategy will depend on whether the launch has been completed.
The when construct reinvokes the action it returns true, raises an exception, or aborts.
The example also illustrates the use of diagnostic operations during recovery. Some of the
operations used during recovery will undo effects of operations carried out during the main
line of the action. The 'undo" operations will have no effect if they are invoked to undo an
operation which was never performed. We find that the ability to invoke "undo" operations
without knowing whether there is really something to undo simplifies the structure of the abort
handler.
I dataAreas are global to Action 1

begin dataArea 1
missleTracking, targetServer: capability !initialized elsewhere

end dataArea 1
begin dataArea 2

missle: capability : ■ null
targetData: a record of some sort
missleState: (none,available,ready,aimed,inFlight, armed) :- none
outCome: (undefined, notAtTarget, targetHit, targetNotHit, MissleLost) :=

undefined
end dataArea 2

begin Action 1 (potentially irreversible)
stage 1: missle := magazine4obtainMissle()

missleState := available
if not missleesystemsOk() then
abort

else
missleState := ready

endif

stage 2: targetData := targetServerlobtainData()
missletaim(targetData)
missleTrackingenotice0fIntentToLaunch(missle,targetData)
missleState := aimed

stage 3: potentiallyIrreversible(missle4launch())
2

missleTrackingenotice0fLaunch(missle)
missleState := inFlight

stage 4: when missleTrackingOinPosition(missle)

2the notation "potentially Irreversible" has no effect on execution. Its use provides checkable redundancy with
respect to the way the lauch entry point in the missle object is declared

October 9, 1987 	 page 13 Georgia Tech

Appendix A 	 draft examples

missleCarm()
missleState 	armed

stage S: when missleTrackineatTarget(missle)
missleedetonate()
outCome :•• missleTrackingCresult(missle)

on exception
abort

on abort
stage 1,
stage 2: if failedNestedAction(missle) then

magazineepossibleMissleFailure(missle)
roll back data area 2
raise exception(missleFailure)

else if failedNestedAction(magazine) then
magazineeparentepossibleServiceFailure(magazine)
missleCstandDown()
missleTrackingOstandDown(missle)
magazineeparentereturn(missle,magazine)

roll back data area 2
raise exception(serverFailure)

else if failedNestedAction(missleTracking) then
magazineCparentepossibleServiceFailure(missleTracking)
missleCstandDown()
missleTrackingeparentestandDown(missle)
magazineeparenteretura(misslemagazine)
roll back data area 2
raise exception(serverFailure)

else if failedNestedAction(targetServer) then
targetServereparentepossibleServiceFailure(targetServer)
missleCstandDown()
missleTrackingCstandDown(missle)
magazineCreturn(missle)
roll back data area 2
raise exception(serverFailure)

else if internalAbort(self) then
missleCstandDown()
missleTrackingCstandDown(missle)
magazineCreturn(missle)
roll back data area 2
raise exception (internalError)

else if externalAbort(self) then
missleestandDown()
missleTrackingestandDown(missle)
magazineCreturn(missle)
roll back data area 2
restart stage 1

end endif

October 9, 1987 	 page 14 Georgia Tech

Appendix A 	 draft examples

stage 3: if failedNestedAction(missle) then
if irreversible(missle,launch) then
missleState := launched
raise execption(launchedAndAborted)

else
missleestandDown()
missleState :— available
raise exception(launchFailure)

end if
else if failedNestedAction(missleTracking) then
missleTrackingeparenteserviceFailure(missleTracking)
raise exception(launchedAndAborted)

end if
stage 4,
stage 6: missleState := missleestatusCheck()

raise exception(launchedAndAborted)
and action

October 9, 1987 	 page 15 Georgia Tech

Fault Tolerant Software Technology 	 Monthly Report

MONTHLY 8.EPORT

IFAIIET-1131.3ERANT SOFTWOLICEZEIC33NDIDIGY
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: October, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report

1. Progress

Task "I (Progeminning Tschniepses for Resilience and Amailability

Work has continued on a draft of the guidebook to be delivered as a =suit of this task.

Zack 2 (Action-Rased Trogoemlning for•Embedded Systans)-

Work is in progress on an extensive distributed calendar example intended to illustrate use
of the concepts we have ben developing in a larger context than our previous examples.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

Graduate student Glenn Benson has been added to the project staff and is working on the
example under Task 2.

4. Summary of Trips and Meetings

Richard LeBlanc attended the Second IEEE Workshop on Large Grained Parallelism in
Pittsburg, PA. Tom Wilkes formerly of Georgia Tech and this project was also in
attendance. The 50 researchers invited to this workshop spent two days discussing research
in progress in distributed languages and environments, scheduling for parallel programs,
real-time models, and operating systems support.

5. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the contract.

7. Related Accomplishments

None.

8. Plans for Next Period

For Task 1, we will continue our work on the handbook. For Task 2, we plan to complete
the distributed calendar example.

1

Fault Tolerant Software Technology 	 Monthly Report

9. Expenditure of Effort

EgiamoDiry 	HOURS MENDED Brims rumulgarrE ?'rte,
REPORTING PERIOD 	.t2crt,NDED HOURS

Associate Professor 	 35 	 1075.5
BraczchScienust. 31 	 130.5 	 1691_5
Grad_ Research Asa. 	 261 	 5190
Secretary/Clerical 	 87 	 1566

2

Fault Tolerant Software Technology 	 Monthly Report

MONTHLY REPORT

3FAULT-1DLIERANT SOFTWAVE"TECHT4OLOGYVOR
DISTRIBUTED COMPUTING SYSTEMS

REPORTING PERIOD: November, 1987

SUPPORTED BY

ROME AIR DEVELOPMENT CENTER (RADC)

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report

I. Progress

TasklirProgramming-Tedimitines toeftzsrliesee -and kay

Work has continued on a draft of the guidebook to be delivered as a result of this task.

Task 2 (Acticm-Based Programming for Embedded Systems):

We have completed the calendar example. The pseudocode is attached to this report.

Our example illustrates a distributed consensus protocol implemented on a fully connected
point-to-point network used in a highly available distributed calendar. At the applications
level, a suer is presented with the following operations: insert, delete, and query. The
consensus protocol is two phased and is managed by a central coordinator. The central
coordinator requires universal consensus for any calendar update. Consensus is not required
for the calendar read operation.

The example illustrated two irreversable actions. An irreversable action is an action that
cannot be rolled back after the action initiated. The two irreversable actions are multicast
and consensus. Multicast sends an identical message to every machine in a group.
Consensus is an applications level action that implements the calendar insert and delete
operations. Multicast is irreversable because multicast may only be implemented by a set of
point to point send operation succeeds The multicast operation succeeds if and only if every
point-to-point send operation succeeds. The action is irreversable because each atomic send
operation is irreversable. The second irreversable action, consensus, uses multicast as a
nested action. Consensus succeeds if and only if every machine reaches agreement.
Consensus is implemented as a two-phase consensus protocol. A central coordinator first
multicasts a precommit message, and after receiving a positive reply from all machines,
multicasts a commit message. The consensus action is irreversable because each multicast is
an irreversable atomic action.

The multicast action is implemented in three stages: initialization, processing, commit.
Initialization is the recoverable stage of the action. The initialization stage allocates the data
structures used by the action and may be recovered by rolling back. The second stage is the
irreversable component of the action. After each transmission, the action checkpoints its
progress. Recovery is implemented by multicasting an abort message to each to each
destination indicated by a checkpointed list of destinations. The check-pointed list of
destinations indicates the destinations to which a precommit message was sent.

The consensus action succeeds if and only if all machines reach a consensus. Consensus is
implemented in three stages: initialization, precommit, and commit. The initialization
allocates the action's data structures, and may be recovered by rolling back. precommit
broadcasts a message using the multicast action, and receives a reply from each machine. If
consensus is not reached, the second stage exception handler is invoked. The exception
handler multicasts an abort message. If consensus is reached, the third stage begins
execution. The third stage commits the action. A third stage exception is raised on a disk
error.

In the example there is a situation in which it is convenient for an action to spawn several
parallel threads of execution (coroutines). The block of code defining a set of coroutines is
delimited by PARBEGIN and PAREND statements.

The use of coroutines has not previously been considered within the Cloud's model. We
believe the fact that an action has spawned several coroutines should not evidenced outside
the scope of the action. The coroutines may interact through shared objects or shared data
areas. It is the responsibility of the object or data area to provide proper concurrency
control. The coroutines should not, in general, be treated as actions since they may interact
in ways which are nonserializable. Each coroutine may, however, be partitioned into

1

Fault Tolerant Software Technology 	 Monthly Report

sequences of -nested actions. We will require that it be possible to construct a serializable
schedule which preserves Ate semantics s the zurimtimea. A =dramas anechankal will be
IS111121101110 'that ibe programmer -may -place -constraints -on the schedurmg of the actions.

The use of coroutines raises two important issues with respect to fault tolerant computing.
First, we must consider means for propagating abort signals in the presence of coroutines.
Second, we can consider how to generalize aur understanding about how to abort and =over
an action in the presence of coroutines to situations involving multiple, independent threads
of execution.

We have identified several patterns for propagating the abort signal. For example,
support several coroutines have interacted by means of shared objects. If an action within
one coroutine aborts and performs forward recovery, then actions within the other coroutines
may be required to abort and recover as well. These other actions may be aborted because
they have touched objects which were later recovered. In this case the abort signal
propagates from the bottom up. We could also arrange for the abort signal to propagate
from the original site up to an ancestor where recovery of other actions affected by the abort
can be initiated.

The different patterns for propagating the abort signal will give us some additional
flexibility when dealing with irreversible and potentially irreversible actions.

Irreversible actions can arise when atomicity is violated and independent threads of
execution interact. We believe it is possible to model such interdependencies by regarding

the interacting actions as coroutines nested within a common parent. Except for the
possibility that an action may end up with multiple parents, this is anologous to the situation
involving explicit coroutines. Thus, we believe we can use similar mechanisms for
propagating the abort signal. There will be some additional problems related to the
coordination of the abort handlers, but we believe these can be minimized by restricting the
semantics of the operations which the recovery handlers may perform. Refer to Appendix B
for more detail.

2. Special Programs Developed and/or Equipment Purchased

None.

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

None.

S. Problems or Areas of Concern

No problems or areas of concern are evident at the current time.

2

Fault Tolerant Software Technology 	 Monthly Report

6. Sarsciency of Effort Toward Meeting Goals of the COW17131:1

Me =cat level of effort is seal= so meet the gods of lee =extract_

7. Related Accompildnuents

None.

8. Plans for Next Period

For Task 1, we will continue our work on the handbook. For Task 2, effort will be
focussed on beginning work on the handbook..

9. Expenditure of Effort

CATEGORY 	HOURS EXPENDED IN THIS CUMULATIVE TOTAL OF
REPORTING PERIOD 	EXPENDED HOURS

Associate Professor 	 35 	 1110.5
Research Scientist II 	 130.5 	 1822
Grad. Research Asst. 	 348 	 5538
Secretary/Clerical 	 87 	 1653

3

APPENDIX B

The calendar is a list of records of type insg_type. The date and time fields of a mag_type
record are used to compute a unique key. The key is used to lookup an individual record

in the calendar.

msg_type = record (export)
date : pending
time : pending

key : key_type
type : pending
node : pending
data : string

end
begin data area calendar_state

log : log_object
end data area calendar_state

1.1 insert

The insert procedure is the central coordinating procedure of the calendar. Insert imple-
ments the two phase consensus algorithm. insert is implemented as an action.

1.1.1 stage 1

Interact with the user through the user interface to obtain a calendar entry. Read the old
entry from the calendar (section 1.13) into a log record data structure, and commit the old

calendar entry to the log. Any exception raised by the commit action (section 3) is a fatal
error. The log entry has the type "precommit". Any query (section 1.12) on a date/time
slot marked by a log entry with the type "precommit" gets the value of the log entry as
opposed to the value of the calendar entry. Therefore, the user view of the calendar does
not change until after the precommit portion of the protocol completes. The new calendar
entry is then written to the calendar (an exception is fatal).

2

If this nods zrasixes when aim entry has the value 4precounnit" , the -recovery object bi-
yokes the procedure recaver_precam (section 2.2). Recover_precom operates by broadcasting
an abort message.

1.1.2 stage 2

Broadcast a precommit message to every node. We assume our network topology is point-
to-point and fully connected. The broadcast action is irreversable because some, but not
all, of the nodes may receive the broadcasted message. In this case (a stage 2 exception)
the exception handler invokes no_precommit (section 1.2) which sends an abort message. If
stage 2 procedes normally, all receiving nodes execute the rec_insert_precommit (section 1.6)
procedure. Otherwise, if an abort message is sent, all receiving nodes execute the ab_ins_pre

procedure (section 1.8).

1.1.3 stage 3

Receive a message from every node. If all the messages have the value "yes" , then commit
"precommit good" to the log. At this point, a query will reflect the updated calendar entry.
Also, if this node crashes, the recovery object will invoke recover_ins_com (section 2.3).
Recover_ins_com operates by rolling the action forward.

1.1.4 stage 4

Broadcast an "insert commit" message. Any exception is considered fatal. All receiving
nodes execute the rec_insert_commit (section 1.7). If some node does not receive the "insert
commit" message, then the receiving node will not clear the calendar entry from its log.
This case will be noticed by the recovery procedure recov_badcommit (section 2.6).

1.1.5 stage 5

Receive a "yes" message from every node. Once stage 5 completes, this node is aware that
every other node has committed the updated entry to its remote instance of the calendar
object.

3

Clear the entry from the log. Any exception is fatal.

1.1.7 code

procedure insert

begin data area ins

log_rec : log_rec_type

end data area ins

begin action insert_action

stage 1 :

insertIO(logrec.logmsg)

logrec.logmsg.key := compute_key(logrec.logmsg)

read_logrec(logrec.logmsg.key,logrec) !read from calendar

logrec.logtype := "precommit"

log@computekey(logrec)

logOlog_commit (logrec)

write_cal(msg)

stage 2 :

logrec.logmsg.type := "insert precommit"

communicateCisynch_bcast(myname,logreclogmsg)

stage 3 :

conununicateCisynch_recv_all_yes(myname)

logOcommit_type (logrec logkey,"precommit good")

stage 4 :

msg.type := "insert commit"

communicate@synch_bcast(myname,logrec.logmsg)

stage 5 :

comnunicateesynch_recv_all_yes(myname)

stage 6 :

logOclear(logrec.logkey)

on abort

CASE stage OF

stage 'I : (excepfson = key...not...computed)

then raiseException(invalid_date_or_time)

else begin

logoclearOogreclogkey)

raiseException(fataldisk_error)

end

stage 2 : no_precommit (exception,logrec,msg)

parm := exception !raised by no_precommit if except exists

stage 3 : no_agreement(logrec.logkey,exception)
raiseException(insert_unavailable(exception))

stage 4 : raiseException(fatal_cornrnit_comm_error)

stage 5 : no_commit(logrec.logkey)
if (exception=fatal_commit_error) raiseException(exception)

raiseException(remote_state_undetermined)

!If the exception is from no_conunit raise fatal_commit_error

! else raise an exception (not necessarily an error)

stage 6 : raiseException(fatal_disk_error)

end action

end

1.2 no_precommit

no_precommit is called by the stage 2 exception handler of insert (section 1.1). The purpose

of no _p recommit is to abort a "precommit" message sent by insert in stage 2. If insert raised

the exception "port_unavailable", then no_precommit raises a fatal exception. Otherwise,

no_precommit broadcasts an "abort insert precommit" message, and clears the log. All

receiving nodes invoke ab_ins_pre (section 1.8) when the abort message is received.

1.2.1 code

procedure no_precommit(exception : IN exception_type;

logrec : IN log_rec_type;

msg : IN msgtype)

5

tegin
if (exception = port_nnavailable)

then raiae-Exception(fataLporLunavailable)
else begin

logOcoonit_type(logreclogkey,Apreconmiit bade)
msg.type := "abort insert precommit"
communicateGsynch_bcast(myname,nisg)
logGclear(logrec.logkey)

on abort
raiseException(fatalcomm_error)

end

1.3 no_agreement

No_agreement is called by the stage 3 exception handler of the insert procedure. No_agreement
operates by first writing a "precommit bad" message to the log. This message indicates

that the the insert operation should be rolled back, but for some reason th roll back was
unsuccsessful. The roll back is retried at some later time by the abort_pre procedure in the
recover object (section 2.5).

No_agreement handles disk and transmission exceptions as fatal errors. All other excep-
tions cause no_agreement to roll back the insert operation. The roll back is implemented by
broadcasting an "abort insert action" and waiting for a reply. All receiving nodes invoke
ab_ins_act which clears its local log and transmits an acknowledgement.

1.3.1 code

procedure no_agreement(logkey :key_type; except : exception_type) begin
logOcommit_type(logkey,"precommit bad")
CASE exception OF

fatal_disk_error : raiseException(fatal_disk_error)
fatal_xmit_error : raiseException(fatal_xmit_error)

nntastonntrarlable -raintlitrceptionfmcnoLlrozszamble)

no_agreement :

begin

raeg.type `abort insert action'

communicateasynch_bcast(myname,msg)

communicateOsynch_recv_all_yes(myname,msg)

if no exception then log@clear(logkey)

else raiseException(fatal_recovery_error(logkey)

no exception : !do nothing

end

end CASE

on abort raiseException(fatal_recovery_error(logkey))
end no_agreement

1.4 no_commit

The no_commit procedure is called by the stage 5 exception handler of insert. No_commit

writes the message "bad commit" to the log and exits. Any exception is a fatal exception.

The "bad commit" message indicates that the local node has proceded by committing a

calendar entry, but some remote node may not have been notified. The recovery object will

retry all remote nodes at some later time in the recov_badcommit (section 2.6) procedure.

1.4.1 code

procedure no_commit(key : key_type) begin

begin action nocom

logOcommit_type(key,"bad commit")

on abort raiseException(fataLcommit_error)

end action nocom
end

7

Receive is the central processing receive handler used by the calendar object. Receive invokes

the =nett rode segment depending mg= a -received -message's type.

1.5.1 code

procedure receive !blocking receive used by high level server process

begin

communicateOsy nch_recv _any (src ,rnsg)

CASE msg.type OF

"abort insert precommit" : ab_ins_pre(src,rnsg)

"abort insert action" : abins_act(src,msg)

"insert precommit" : rec_insert_precommit(src,rnsg)

"insert commit" : rec_insert_commit(src,msg)

"status commit" : rec_stat_com(src,msg)

"delete" : !not implemented

end

1.6 rec insert _precommit

rec_inaert_precommit is invoked when the node receives a "precommit" message. If the

receiving node cannot insert the data into the calendar, the node returns "no", otherwise
the node returns "yes" and commits the received entry to the log.

1.6.1 code

procedure rec_in,sert_precornmit(src : IN name; meg : IN msg_type)

begin
begin action rec_precom

stat := oktorecv(msg) !oktorecv not documented
if (stat = TRUE) then begin

msg.type := "received precommit"

8

insg.ditts,
logOcommit(msg)
end

Ase mag_dats s mod'
I0Oxmit(myname,src,msg)

on abort
CASE exception OF

fatal_disk_error : raiseException(fatal_disk_error(msg.key))
fatal_xmit_error : raiseException(fataLxmit_error(msg.key))

end CASE
end action
end procedure

1.7 recinsert_commit

Rec_insert_commit is invoked when an "insert commit" message is received. The "insert
commit" message indicates the completion of the second phase of the commit protocol.
Insert commit writes the received message to the calendar, returns and acknowledgement,
and clears the log record. Clearing the log record relinquishes the recovery object from
querying for the status of the calendar entry in the event that the node recovers from a
crash (see section 2.4).

1.7.1 code

procedure recinsert_commit(src : IN name; msg : IN msg_type)
begin data area recin

logrec : log_rec_type
end data area rec_in
begin
begin action rec_ins_com

logOread(msg.key,logmsg)
write_cal(msg)

9

losecempuieileytiovec)
mag.data := 'yes"

I0Oxmit(mynameterc,meg)
logOciearOogrec)

on abort
CASE exception OF

fatal_disk_error : raiseException(fatal_disk_error(rnsg.key))
fatal_xmit_error : raiseException(fatal_xmit_error(msg.key))

end CASE
end action
end procedure

1.8 ab__ins_pre

ab_ina_pre is invoked when an abort precomrnit message is received (see section 1.2). This
procedure clears the log entry if the entry exists. If the entry does not exist, the read
operation returns an exception that is not an error.

1.8.1 code

procedured ab_ins_pre(src : pending; msg : msg_type)
begin
begin action abins_pre

stage 1: logOread(msg.key,msg)
stage 2: log©clear(msg.key)

on abort
CASE exception OF

stage 1: !no error: do nothing precomrnit msg never received
stage 2: raiseException(fatal_badlog(fatal_disk_error,msg.key))

end action
end procedure

10

aLiss_pre is called whenever an 'abort insert action" message is received. The 'abort insert

action" message is sent in the no_agreement procedure (section 1.3) which is called by the

exception handler of stage 3 of the exception handler of insert (section 1.1).

1.9.1 code

procedure abins_act(src : IN name, msg : msg_type)

begin data area ab_in

logrec : log_rec_typ
end data area ab_in

begin
begin action ab_ins_act

stage 1:

logare ad (msg.key,logrec)
msg.data := "yes"

stage 2: I0@xmit(myname,src,rnsg)

logOclear(date,time,rnsg)

on abort

CASE stage OF

stage 1: raiseException(abortincompete(fatal_disk_error))

stage 2: CASE exception OF

fatal_disk_error : raiseException(abortincomplete(fatal_disk_error))
transmit_error : raiseException(abortincomplete(transmit_error))

end CASE

end action

end procedure

11

rec_stat_conz is invoked whenever a 'status commit" message is received. The status commit
message is called by the recovery object ism oecticut 2A) !when a log ontry marked 'bad
commit' is encountered. A "bad commit" entry is inserted into the log by the no_commit
procedure (see section 1.4) whenever the insert procedure is unable to guarantee consensus
among the nodes of a committed entry.

1.10.1 code

procedure rec_stat_com(src : IN name; msg : IN msg_type)
begin
begin action rec_st_com

stage 1: log@read(logacompute_key(date,time),msg)
stage 2: msg.data := "yes"

I0@xmit(calendarOmynarne,src,msg)
stage 3: logOclear(log@compute_key(date,time))

on abort
CASE stage OF
stage 1: if (exception = key_notiound) then begin

msg.data := "yes"
I0Oxmit(calendar@myname,src,msg)
logaclear(date,time,msg)
if not (exception = key_not_found)

raiseException(fatal_receive_error)
stage 2: raiseException(fataLreceive_error)
stage 3: raiseException(fataLdisk_error)

end action rec_st_com
end

12

31-11 quer110

pteryI0 prompts the user for a calendar entry to be queried.

1.11.1 code

procedure querylO(msg : OUT msg_type)

begin
I0@write("date: ")

I0Oread(logrec.logmsg.date)

IO©write("time: ")

I0Oread(logrec.logmsg.time)
key = log@computekey(logmsg)

end

1.12 query

Query prompts the user for an entry to be queried. If a log entry exists and the log entry

has the value "precomrnit" (see sections 1.1.1 and 1.1.3), then query returns the value stored

in the log, otherwise, query returns the value stored in the calendar.

1.12.1 code

procedure query
begin

begin data area query_dat
logrec : log_rec_type

end data area query_dat

queryI0(date,time,key)

if (logOexists_rec(key)) then begin

logOread_log_rec(key,data)

CASE data.type OF

13

aptecommir .10ewriteciogreckigniagalactls)
otherwise : begin

calendarareadjkey,logrec.logmag)
100write(logrec.logmsg.dats)

end
end CASE

else !no log record !
calendars read(key,logrec.logmsg)
IOGwrite(logrec.logmsg.data)

end !procedure query

1.13 others

The other procedures are lookup, write_cal, read, compute_key, and read_logrec (implemen-
tation details omitted).

1.13.1 code

procedure lookup(key : IN key_type)returns msg_type
!Given a key, return the msg_type from the calendar
!If no such key is available the procedure aborts and raises the
!exception: `msg_key_unavailable'

procedure write_cal(msg : IN msg_type)
!Force an entry into the calendar stored in stable storage. The entry
!can be looked up using the unique key.

procedure read(key : IN key_type) returns msg_type
!Given a key, return the corresponding value from the calendar.
!Raise exception: key_unavailable if the key cannot be found in the calendar

14

procedure compute_key(rnsg : IN msgtype) returns key_type
!Given msg.date and msg.time compute the unique key that names a calendar

leutry. We assume no two entries have the same node/date/time stamp_

!RaiseException: key..not_computed if an exception occurs

procedure read_logrec(key : IN key_type; logrec : OUT log_rec_type)
!Read the entry named by key from the calendar stored in stable storage (using
!the read operation) into a log record data structure

procedure myname returns name

!Return the unique name of the local node.

2 recovery object

The object recovery is invoked whenever a node recovers from a crash.

2.1 recover

recover rolls back the log. For each log entry, recover checks the type and dispatches to the
appropriate procedure. Recover is called when the node recovers from a crash.

2.1.1 code

procedure recover
begin data area rec

logrec : log_rec_type
end data area rec

15

for each logrec = logOread do begin

CASE logrecJogtype OF

'insert precommit' Tecover_prec:on4logrec)

"precommit good' : recoverins_com(logrec)

"received precommit" : recover_rec_precom(logrec)

"precommit bad" : abort_pre(logrec)

"bad commit" : recov_badcommit(logrec)

end CASE

end for

end procedure

2.2 recover_precom

recover_precom is called when a node reaches stage 2 of insert (see section 1.1.2), writes
the "insert precommit" message to the log, and then crashes. This procedure implements

backward recovery. If a transaction is aborted during precommit stage, the transaction is

simply aborted. An abort is implemented by sending an "abort insert action" message.
The receiver invokes ab_ins_act (section 1.9) when the abort message is received.

2.2.1 code

procedure recover_precom(logrec)

begin data area ins_precom

msg : msg_type
name : pending

end data area ins_precom

begin

begin action rec_ins_pre
logrec.logmsg.type := "abort insert action"

communicateasynch_bcast(calendaramyname,logrec.lognisg)

communicateOsynch_recv_all_yes(myname,logreclogmsg)

16

logecleir(logrerleskey)

on abort raiseException(fmaJ recovery_error(kgreclogkey))

haste: on an exception the log is MDT cleared

end action

end procedure

2.3 recover_ins_com

Recover_in8_com is called if the insert procedure reaches stage 4 (see section 1.1.4) and then
crashes. This procedure implements forward recovery by broadcasting a commit message.

2.3.1 code

procedure recoverins_com(logrec)

begin
begin action rec_com

stage 1:

msg.type := "insert commit"
communicate0synch_bcast(calendarOmyname,"commit")

stage 2:
communicate0synch_recv_all_yes(calendaramyname,msg_array)

stage 3:
log clear(logrec.logseq)

on abort
CASE stage OF

stage 1 : raiseException(commit_comm_error)
stage 2 : raiseException(commit_comrn_error)
stage 3 : raiseException(fatal_disk_error)

end action
end procedure

17

Recover_rec_precoes is called when the node receives a preconxmit message and then crashes.

The node recovers by sending a query message message to see if the commit proceeded.

This portion of the protocol is not included in this example.

2.5 abort_pre

abort_pre is invoked if the node crashes in the exception handlers of either stage 2 stage 3

of insert (see sections 1.1.2 and 1.1.3). The exception handlers call no_precommit (sec-

tion 1.2) and no_agreement (section 1.3). Abort_pre is invoked only if the node crashes in

no_precommit or no_agreement.

2.5.1 code

procedure abort_pre(logrec : log_rec_type)

begin

begin action ab_pre

stage 1: communicatettlsynch_bcast(calendarOmyna,me,msg)

stage 2: logGclear(logrec.logkey)

on abort

CASE exception OF

stage 1 : raiseException(fatal_recovery_error(bcast_unavailable))

stage 2 : raiseException(fatal_recovery_error(disk_error))

end !CASE

end !action ab_pre

end !procedure

18

Recov_badcommit is called if a "bad commit" message was placed in the log by no_comma
(section LA). This message indicatas s -commit is unsuc cessfal. even though all nodes armed

to commit the message. The recov_badcommit procedure retries the commit.

2.6.1 code

procedure recov_badcommit(logrec : log_rec_type)
begin
begin action ab_pre

stage 1: logrec.logmsg.type := "status commit"
cornmunicate@synch_bcast(calendarOmyname,logrec.logmsg)

stage 2: conununicatellsynch_recv_alLyes(calendarOmyname)

stage 3: logOclear(logrec.logkey)

on abort

CASE stage OF
stage 1: raiseException(fatal_recovery_error)
stage 2: raiseException(no_consensus)
stage 3: raiseException(fatal_disk_error)
end !case

end action ab_pre
end

3 log object

The following procedures are access the log. write, read, log_commit, commit_type, com-
pute_key and clear. The procedures are either self explanatory or documented below.

log_rec_type (export)
logrnsg : msg_type !import msg_type from the calendar object

19

legkey : keyiype the Tongue key df the %record

logtype : log_type_type !the type of the log record

end

3..2 code

!log is the logging object.
implementation of object log_object

write(logmsg : IN log_rec_type)
!Force a log message and out to stable storage

read(key : IN key_type; logrec : OUT log_rec_type)

!Read the log record indicated by key into logrec

log_commit(logval : INOUT log_rec_type)
begin

begin action putlog
logOwrite(logval)

on abort raiseException(fatallog_comrnit_error)
end action putlog
end logcommit

procedure commit_type(logkey : IN key_type; Hype : log_type_type)
!Update the type field of a log entry named by logkey to the value ltype
!on abort raiseException(fatal_log_commit m_error)

procedure compute_key(logval : INOUT log_rec_type)
!Given the date and time compute the unique key for a log record

%ad place the key in the la rrel-recard

wocedure clear(ey 7N key_type)

begin
begin action logclear

! remove the entry named by key from the log

on abort raiseException(key_not_found)

end action logclear

end object log

4 communicate object

Implementation of object communicate

!multicast a message to a group

!Irreversable action

procedure synch_mcast(EN src : name; dst : IN group_name; msg : msg_type)

exceptions(port_disabled)

begin action m_cast

begin data area 1

src_port : capability

dst_portist : array of capabilities

end

stage 1 : src_port := portOobtain_port(src)

dst_port_Ist := port(iobtain_group_port(dst)

stage 2 : for i := listOfirst(dst_portIst) TO listOlast(dst_port_lst)

I0 xmit(src_port,port translat(dst_port_lst,i),frame)

end

case staged abort of

stage 1 taiseRsoeptio. gport..mmaAlable)

stage 2 : raiseException(multicastincomplete)

end

!Broadcast a message to every node on the network. Broadcast is

!implemented through a multicast sub action.

procedure synch_bcast(src : IN name;msg:msg_type); exceptions(port_disabled)

synch_mcast(src,portGobtain_bcast_narne,msg)

end

procedure synch_recv_any(src : IN name; msg : IN msg_type)

begin

begin action
10 Orecv _any (port Cobt n_port (src),msg))

on abort raiseExeption(comm_unavailable)

end action

end

!Receive a message from every port in dst_portist

procedure synch_recv(src : IN name;

dst : dst_portist;

msg : msg_type)

begin
begin action

for i := list®first(dst) TO list©last(dst)

parbegin

10 Orecv (src_port ,portOtranslat (dst_port Ist,i) ,msg)

22

vatend

end action

as abort

raiseException(fataLreci_error)

end

!Receive a message from every node. This procedure blocks until every

!node sends a message.

procedure synch_recv_all(src : IN name
msg_arr : OUT frame)

begin

synch_recv (src ,p ort Cobt 	_p ort ,msg_arr)

end

procedure msg_validate(msg_arr :IN array of msg_type;

val : IN string) returns(boolean)

!Return true if and only if every entry in the array msg...arr

!has the value "val"

!Receive a message from every node. Return success if and only if

!every node returns success

procedure synch_recv_all_yes(src : IN name)

begin data area yes

msg_arr : array of msg_type

end data area yes

begin

synch_recv _all (src,ms g_ar r)

if not msg_validate@ACE:_check(msg_arr,"yes")

ilben-Taisaxceptiontanmgrecarat)

end

end object

5 shell object

!Shell is the user interface object.

implementation of object shell !()

begin data area I0

myname : name = pending ! my network name !

end data area I0

!User is the user interace. User is implemented as an infinite loop.

!The user may invoke a procedure (insert, query, or remove) by calling
!the appropriate procedure.
procedure user

begin data area 1
token

done = false

end data area 1

begin

begin action user

REPEAT
I0Oprompt

I042get_token(token)

CASE token OF

insert : calendarOinsert

query : calendarOquery

remove : calendarGremove

halt : done := true

and

UNTIL done

on abort

!Interact with neer to recover Mom Total errors
end action
end

!Return the local name of the host.
procedure local_name returns name
begin

return (myname) ;
end;

25

ROME AIR DEVELOPMENT CENTER (RADC)

REPORTING me OD: .Decranber, 1987

DISTRIBUTED COMPUTING SYSTEMS

CONTRACT NUMBER F30602-86-C-0032

GIT PROJECT: G-36-645

SUPPORTED BY

Fault Tolerant Software Technology 	 Monthly Report

MONTHLY REPORT

'FAULT TOLERANT SOFTWARE 'TECHNOLOGY TOR

SCHOOL OF INFORMATION AND COMPUTER SCIENCE
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

Fault Tolerant Software Technology 	 Monthly Report

1_ Progress Wark an both tasks is focussed on the guidebooks that are the primary
&Humbles of this project_ A preliminary antrum of the Task 2 &uklebook is Attached-

2. Special Programs Developed and/or Equipment Purchased

None_

3. Key Personnel

No changes.

4. Summary of Trips and Meetings

Richard LeBlanc and Win Strickland attended the COTD Technology Exchange.

5. Problems or Areas of Concern

Progress was limited this month by substantial leave time taken by project personnel.

6. Sufficiency of Effort Toward Meeting Goals of the Contract

The current level of effort is sufficient to meet the goals of the contract.

7. Related Accomplishments

None.

8. Plans for Next Period

Work will continue on the guidebooks.

9. Expenditure of Effort

CATEGORY 	HOURS EXPENDED IN TIES CUMULATIVE TOTAL OF
REPORTING PERIOD 	EXPENDED HOURS

Associate Professor 	 35 	 1145.5
Research Scientist II 	 130.5 	 1952.5
Grad. Research Asst. 	 174 	 5712
Secretary/Clerical 	 87 	 1740

1

Outline for Action Based Programming for Embedded Systems

I. System level fault tolerance: Introduction
A. Faults, Errors, and Failure: some definitions
B. Overview or the special requirements or embedded systems

Outline for Action Based Programming for Embedded Systems

1. System level fault tolerance.: Introductio n
A. Faults, Errors, and Failure: some definitions
B. Overview of the special requirements of embedded systems
B1/2. Design Process

1. Architectural model
2. Specification
3. Implementation

C. Regard language used in examples as a design language.
Since compilers not widely available, constructs must be
translated by hand.

D. Importance of layered structure
E. Designing lower layers to provide services to support fault tolerance
F. Using the Handbook
G. Types of Faults

1. Transient faults
2. Temporary faults

3. Permanent faults
H. The sources and inevitability of faults
I. The limits of fault tolerance mechanisms
J. Other uses for recovery mechanisms

1. Simplfy systems management
2. Change status of site without detailed

coordination at other sites
3. Software and Hardware maintenance and upgrades without

interrupting system services
K. The special role of redundancy in acheiving fault tolerance

1. Try the computation again
2. wait and try the computation again latter
3. Try an alternative computation

a. vary the code
b. vary the hardware or site
c. vary the data

L. Degrees of Fault tolerance
1. What is the range of possibilities
2. The degree of fault tolerance which is acceptable is

requirements driven
M. Aspects of Fault tolerance

1. availability
2. resiliency
3. forward progress
4. reliability
5. there are trade offs among these aspects of fault tolerance
6. the relative importance of these aspects of fault

tolerance is requirements driven
II. Requirements

A. Atomicity

1. size of atomicity
2. criticality

B. Functional characterisation
1. Time preservation
2_ Frequency
3. Criticality

C. Synchronization
1. Criticality

.2_ Number of functions
3. Interface with architecture

D. Time
1. Normal Operations
2. Switchover Time

E. Processing Requirements
1. Operating System
2. ALU
3. Mass Memory Organization

III. System Architecture (Design choices supporting Faul tolerant
system design)

A.Switchover Characteristics
1. Location
2. Processor State
3. Processor Load

B. Redundancy Approach
1. embedded
2. Dedicated
3. shared
4. distributed

C. Processor Characteristics
1.memory size
2. mass storage size
3. processor speed
4. bus architecture
5. other

IV. Selection of Redundancy Approach Function (the choice
of architecture is requirements driven)

A. Atomicity
B.Functional Characterization
C.Synchronization
D. Processing requrirements

V.Software Architectures
A. The choice of Software Architecture is driven both by

requirements and System Architecture
B. The Basic Software Models

1. Process Models (message passing)
2. Object/Action Model

a. actions for concurrency
b. actions for fault tolerance
c. nested actions
d. actions which terminate before they commit
e. actions which terminate after they commit

(irreversible actions)
i. explicit commit

-3-

n. implicit commit
1). communication with actions in other scopes
.2). interaction with the external environement

f. irreversible actions have the effect of weakening
failure and eoncurrency atomicity

3. Hybrid models (needed for embedded systems)
a. interleaving actions embedded within processes
b. constraining how actions may be interleaved
t. the problem of message passing in an enviroment

structured in terms of nested actions
d. interleaving the actions nested within other

"weakened" actions
e. "weakened" atomicity must be accompanied by

strengthened requirements for consistency
VI. Choices in the design of fault tolerance mechanisms

A. choices are driven by requirements, system architecture,
and software model

B. The basic mechanisms
1. Backward recovery
2. Forward recovery
3. How context sensitive should the semantics of recovery be?

C. Constructing a consistent state
1. in anticipation of failure

a. logging
b. shadows
c. replicating the current copy

2. after failure
a. deriving values from other data
b. deriving values by merging replicas
c. deriving values from the environment
d. deriving values from archival data

3. mixing strategies
D. Dealing with data missing following recovery

1. how data related to the occurence of an irreversible
operation may be lost

2. after recovery (data of low criticality may not be
available until after computation has resumed)

3. Re-execute the operation
4. Inquire as to the state of other physical or data

objects to determine whether the operation occured
5. Specialized hardware to ensure the event is logged

and not lost
6. cutting over to reduced level of service

a. permanent cut over
b. temporary cut over

E. Dealing with hardware failures
1. backup hardware available
2. partial failure of hardware, no backup
3. failure correctable with software intervention
4. failure not correctable except with human intervention
5. returning hardware to service following repair

F. Dealing with processes which have read data invalidated by recovery
1. finding them
2. deciding which should live and which should die

3. coordinating recovery among independent threads of control
G Resuming computation

1. on the same machine
2. on a different machine

a. protocols for triggering resumption on a backup machine
b. protocols for triggering resumption on a primary machine

1. when there is a designated primary machine
2. when several machines compete for backup responsibility

H. Selecting the -code to he run after recovery
1. retry the code which failed
2.execute alternate code
3. resume at some point subsequent to the failed code
4. other possibilities
5. making the new code a permanent replacement for the failed code

I. responsibilities of the recovery handler and other code
1. how much should be done during recovery by the recovery

handler and how much by the resumed comutation?
2. does the code in which computation resumes need an

"on recovery" handler as a preamble?
3. should recovery be bound to the actions which failed or

to the objects which must be recovered?
4. does forward recovery need both exception handlers and

recovery handlers?
J. Recovery in nested actions

1. propogating recovery over several levels of nesting
2. some guidelines for designing multilevel recovery

K. Dealing with orphans
L. Coordinating the design of an actions forward recovery and

the design of objects
M. Faults in the recovery handlers

VII. Implementing these ideas
A. providing system services
B. translating constructs into a conventional programming language

sr

Fault Tolerant Software Technology for

Distributed Computer Systems

Interim Technical Report

February 13, 1987

F30602-86-C-0032
G36-645

Richard J. leBLanc

C. Thomas Wilkes

Stephen Orburn

1. Introduction

This report documents the research results of the project entitled "Fault Tolerant
Software Technology for Distributed Computing Systems" during the first year of its
two year term. The report is divided into two major sections, corresponding to the
two subtasks of the project. The first of these summarizes the research which has
been performed for the task "Programming Techniques for Resilience and
Availability." Separate subsections are devoted to each of the major facets of this
research, including:

• consideration of problems of replication endemic to object-oriented systems with
general (i.e., non-flat) object structure;

• investigation of naming schemes for support of replication which deal with these
problems in object-oriented systems;

• consideration of the relationships between our research on replication of objects
and recent research by others on replication of abstract data types;

• investigation of the role of the fault-tolerant job scheduling system in dealing
with the problems descibed above; and

• investigation of the design of the Object Filing System as a possible source of a
paradigm for replication in action/object systems such as Clouds.

Finally, this section concludes with a summary of the status of this research and the
results to date, and a comparison of our research to the directions taken by the
similar project on the topic "Fault Tolerant Distributed Systems" at Honeywell,
Inc. [Hme86]

The second major section describes our work on the task entitled "Action-Based
Programming for Embedded Systems." Since our work on this task has only been in
progress for about seven months, this section is more of a discussion of the issues
that have been identified than it is a presentation of results. The major issue is the
seeming incompatibility of the idea of atomic actions with the irreversible operations
frequently preformed by the software of embedded systems. We consider the
problem of preserving information about irreversible operations performed by an
action when an action aborts, possible mechanisms for performing this task, and
problems related to classifying various types of irreversible operations. Finally,
plans for further work on this task are presented.

2. Programming Techniques for Resilience and Availability

The research reported in this section has been significantly influenced by a
variety of related efforts that are part of the Clouds project. Our discussion
frequently references Clouds, but it should be recognized that this work is relevant
to any object-based system that supports some form of atomic actions.

r

-2-

2.1 Problems of Replication in Object-Based Systems

In the course of our research on methods of achieving availability in object-based
systems such as Clouds, we have found that the generality of the abstract object
structure supported by Clouds poses problems for replication methods which are not
presented by a less general, flat object structure (for instance, files or queues).

(a) representation of (b) physical nesting (c) logical nesting
an object 	of objects 	olobjects

Figure 1. Graphical Representation of Object Nesting

The problem lies in the possibility of the arbitrarily complex logical nesting of
Clouds objects. Although Clouds objects may not be physically nested (that is, one
object may not physically contain another object), an object may contain a capability
to another object. If an object A creates another object B, and retains sole access to
B's capability (by refraining from passing the capability to other objects and from
registering the capability with the OFS), we say that object B is internal to object A.
The internal object B may be regarded as being logically nested in object A. (A
graphical representation of physical and logical nesting is shown in Figure 1.) If, on
the other hand, object A passes B's capability to some object not internal to A, or if A
registers B's capability with the OFS, we say that B is an external object; an external
object is potentially accessible by objects not internal to the object which created the
external object.

Problems arise with replication schemes when internal and external objects are
mixed together in the same structure, i.e., when an object may contain capabilities to
both internal and external objects. (An example of such an object is represented in
Figure 2.) These problems are associated with the method which is used to
propagate the state of a replicated object among its replicas. One such method is to
execute the computation from which the desired state results on each replica; we
refer to this scheme as idemexecution. Another method is to execute the
computation at one replica, and then copy the state of that replica to the other
replicas; we refer to this scheme as cloning. (Representations of the idemexecution

-3-

♦ R epl i ca te d object

4_ Internal object

♦ External object

Figure 2. Replicated Object with Internal and External Object References

and the cloning methods are shown in Figure 3.) Note that the scheme which is used
to ensure that the replicas maintain consistent states (e.g., quorum consensus) is not
involved in these problems, and is considered separately in our investigation.

External objects cause problems when idemexecution is used to propagate state
among replicas. If the replicated object performs some operation on an external
object (e.g., a print queue server), then—under idemexecution—that operation will
be repeated by each replica. If the operation being performed on the external object
is not idempotent, this can cause serious problems (e.g., multiple submissions of a
job to the print queue). Also, trouble may arise due to idemexecution if the
operation on the external object is non-deterministic (for instance, random number
generation, or disk block allocation among multiple concurrent processes).

On the other hand, internal objects cause problems when cloning is used to
propagate state. For example, assume that each replica of an object creates a set of
internal objects. Then, when an operation is performed on one of the replicas, its
state—under cloning—is copied to each of the other replicas. However, the
capabilities to the internal objects of the replicas are contained in their states; thus,
each replica now contains capabilities to the internal objects of that replica on which
the operation was actually performed, and the information about the internal objects
of the other replicas is lost. (This problem is represented in Figure 4.)

Our current research includes an investigation of a "taxonomy" of object
structures on which the corresponding state-propagation methods may be safely
used, as well as of how these state-propagation methods—or the Clouds object-

-4-

L

(a) single (unreplicated) 	(b) idemexecution on replicated object
object operation

4 	

(c) clone (copy) state 	(d) cloning on replicated object

Figure 3, Replicated State-Copying Methods

naming mechanism—may be altered to safely handle more general cases. Our
current feeling is that the latter may be achieved with minimal alterations to the
kernel, via having the kernel interact with the Object Filing System and the fault-
tolerant job scheduler, two services of the Clouds system which are described in
more detail in the following sections. We also discuss some schemes developed
during the preceding year for replicating actions and for naming of replicated
objects, which should aid in achieving these goals.

2.2 Naming Schemes to Support Replication

We are currently considering two different capability-based naming schemes
which may be used in support of state cloning, as described in the previous section.
The first scheme requires minimal changes to the kernel, but relies on facets of the
Clouds object lookup mechanism which may not be applicable to other systems. In
Clouds, the search for an object begins locally (that is, on the node which invoked
the search), and—if the object is not found locally—proceeds to a broadcast search.
If the internal objects belonging to a replica are constrained to reside on the same
node as their parent object, then the local search will locate the local instance of the
internal object. (We do not consider this constraint to be onerous, since the internal
objects of each replica need to be highly available to that replica in any case, and
thus should logically reside on the same node as the parent replica. This constraint
may be enforced by the Object Filing System, which is described in a later section.)
Thus, each replica of an object (each of which resides on a separate node) may
maintain its set of internal objects using the same capabilities as each other replica.

-5-

1=7

(a) before cloning of state
	(b) after cloning of state

Figure 4. State Cloning with Internal Objects

Although we will thus have multiple instances (on separate nodes) of internal objects
referenced by the same capability, there should be no problems caused by this,
since—by the definition of internal object--only the parent object or its internal
objects may possess the capability to an internal object, and the object search will
always locate the correct (local) instance. Thus, state cloning may be used to copy
the state of a replica to the other replicas without causing the problems with respect
to internal objects mentioned in the previous report (concerning references to
internal objects contained in the replica's state), since under this scheme all replicas
may use the same capabilities for referencing internal objects. This scheme is an
extension of a facility already supported by the Clouds kernel for cloning read-only
objects such as code. We call this scheme vertical replication, since it maintains the
grouping of internal objects with their parent object.

The other naming scheme makes fewer assumptions about the lookup mechanism
than vertical replication, but requires more kernel modifications. In the second
scheme, each instance of the replicas' internal objects is again named by the same
capability, at least as far as the user is concerned; however, the kernel maintains
several additional bits associated with each capability identifying a unique instance.
(These additional bits may be derived from, for instance, the birth node of the
instance.) When a (parent) replica invokes an operation on an internal object, the
kernel selects one of the replicas of the internal object according to some scheme
(e.g., iteration through the list of nodes containing such objects until an available
copy is located). Thus, a set of replicas of internal objects is maintained in a "pool"
for access by all parent replicas. Again, each parent appears to use the same (user)
capability to reference a given internal object, so the problems of state cloning
disappear. Since this scheme maintains a logical grouping of the copies of an
internal object, rather than grouping internal objects with their parent object, we
refer to the scheme as horizontal replication. One such naming scheme is described
in a paper which we have co-authored with other Clouds researchers,[r] which
is included as an appendix to this report.

-6-

We are currently considering the merits of each of these naming schemes in the
context of the replicated actions scheme, which is described later in this report.

2.3 Related Research on Replication of Abstract Data Types

As part of our work on achieving availability of resources in the Clouds system,
we have been involved with study of the work of Herlihy, presented in his
dissertation, "Replication Methods for Abstract Data TypeS,"[Her184] and with
correspondences between Herlihy's techniques and the synchronization mechanisms
used in Clouds, which should allow us to apply Herlihy's methods to our problem of
generating replicated objects.

Herlihy's work concerns the extension of quorum intersection methods to take
advantage of the semantic properties of abstract data types. Previously, work on
quorum methods—mostly in the database area—has been limited to a simple
read/write model of operations. Herlihy's extensions allow the selection of optimal
quorums for each operation of an abstract data type based on the semantics of that
operation and its interaction with the other operations of the data type.

Herlihy's method is based on the analysis of the algebraic structure of abstract
data types. This entails the construction of a "quorum intersection graph," each
node of which represents an operation of the data type, and each edge of which is
directed from the node representing an operation 01 to the node representing
operation 02, where each quorum of 02 is required to intersect each quorum of 01.
From the quorum intersection graph, optimal quorums for each operation may be
calculated, given the number of replicas of the data, and the desired availability of
each operation in relation to the other operations of the data type.

Herlihy shows that his method can enhance the concurrency of operations on
replicated data over that obtained from a read/write model of operations. He also
claims advantages for his methods in the support of on-the-fly reconfiguration of
replicated data, and in enhancing the availability of the data in the presence of
network partitions.

There appears to be a close relationship between Herlihy's quorum intersection
graphs and the lock compatibility matrices used in Aeolus and the Clouds system; a
graph constructed from the lock compatibility matrices for an Aeolus/Clouds object
is either the complement of the quorum intersection graph for the operations of that
object, or a subset of the complement. This is not really surprising, since the
specification of our lock compatibilities is based on the programmer's analysis of the
compatibilities between the object operations, while Herlihy's quorum intersection
graph may be viewed as being based on an analysis of the incompatibilities between
operations.

Thus, we should be able to apply Herlihy's techniques to our problem of
generating replicated objects given an unreplicated object version and a specification

-7-

of the desired replication properties. This entails extending the notion of the
Aeolus/Clouds lock to include the "distributed" lock; that is, the state of the lock is
shared logically among all replicas of an object. This will, of course, require the
transmission of lock state information among all replicas. However, the concurrency
properties of the unreplicated version of the object will be retained by the replicated
version generated from it. This is especially significant given the power of the
Aeolus/Clouds lock mechanism in expressing arbitrary compatibilities and in
allowing the expression of synchronization at arbitrary levels of granularity.

Another interesting question—which is being be investigated using the Object
Filing System example (described in a later section)—is the relation between
Herlihy's quorum intersection graphs and Aeolus/Clouds lock compatibility matrices
when multiple locks are used for specifying an object's synchronization behavior.
We have found that in certain cases it is convenient to use more than one lock to
specify synchronization among an object's operations; the different locks typically
apply at differing levels of granularity as well as having compatibility matrices with
disjoint meanings. For example, we have designed a symbol table object which uses
two locks for synchronization purposes: one lock at the level of the individual
buckets in the symbol hash table, with compatibilities expressing a multiple reader /

single writer protocol; and another lock at the level of the entire symbol table,
allowing multiple readers or multiple writers, but not readers concurrently with
writers. The first lock is used with the typical operations such as insert, delete, and
find, where there is no interaction between concurrent operations on different
buckets; the second lock is used with an "exact-list" operation, where a "snapshot"
of the exact state of the symbol table at a particular instant is desired, and thus all
operations which modify the state of any portion of the symbol table must be locked
out. (This symbol table object is described in more detail in the section on the
Object Filing System, and the Aeolus code for this object is included in an
appendix.) Our locks thus have an advantage of power of expression over Herlihy's
quorum intersection graphs, which do not allow the expression of granularity lower
than that of an entire abstract data type and its operations. Thus, we are considering
how Herlihy's results may be extended to the case of multiple levels of granularity
for synchronization.

2.4 The Fault-Tolerant Job Scheduling System

Our current work on the study of programming methodologies appropriate to
distributed systems involves the study of various methods of achieving resilient,
available objects through the use of replication. Similar WOrk[Birm85, Birm85al has
recently been reported by researchers on the ISIS system at Cornell; however, that
work (unlike ours) does not consider the problems introduced by network partitions,
assuming rather that all failures are of the so-called fail-stop variety. In our work,
we take into account the problems involved in reconciling the states of replicated
objects which have run in independent partitions during a network failure. Thus, we

-8-

may achieve higher availability in situations in which temporary violations to
consistency are tolerable. Our work, as well as recent work[Das5 86] by other
researchers in the Clouds project, has also suggested some of the functionality which
will be required of the fault-tolerant job scheduler for the support of availability in
Clouds. It is in the job scheduler that we envision most, if not all, of the knowledge
about individual machines in the system will be concentrated, such as whether a
certain machine is available or what the current loads are on the individual
machines. Thus, the job scheduler is the natural portion of the system to support
functionality such as the creation of distributed replicas of an object class, the
selection of the most appropriate individual replica from a class of such replicants to
perform work requested of the class, or the support of forward progress (that is,
moving work started on an object running on a system which subsequently failed to
another system on which another replicant of the object exists). We anticipate that
our work will provide a firmer design for the interface needed with the job
scheduler.

2.5 The Object Filing System

We are currently investigating methodologies for resilience in action/object
systems in the course of the design of the object filing system (OFS) for Clouds.
The replication scheme which we are currently considering in support of availability
will require heavy interaction between the manager for a replicated object, the job
scheduler, and the OFS. The OFS should:

• be resilient and highly available (through replication);

• provide a mapping from object names (strings) to Clouds object capabilities;

• impose some familiar structure (e.g., a Unix-like hierarchical structure) on the
flat, global system name space provided by the Clouds object manager;

• provide efficient forms for the most common types of I/O (such as text I/O)
without the necessity of the context switches which would be required if such I/O
were modelled with Clouds objects.

In the OFS, an object name may represent a group of objects (the set of replicas
of a replicated object), rather than a single instance. We intend that this mechanism
should be, in general, transparent to the user (although special-purpose
applications—such as DBMSs—may require that, in addition, finer control of
replication be available than that provided by a general mechanism).

To test this conjecture as well as the possibility of deriving replicated objects
from single-copy versions, we have been occupied during the previous few months
with the specification and implementation of a single-copy version of a prototype
Object Filing System (OFS) for Clouds. (A much-simplified version of an OFS-
called the NameServer—supporting a flat name space has already been implemented
in the Clouds system, while the current OFS effort will support a hierarchical name

-9-

space.) This effort involves the specification of the synchronization behavior of the
single-copy OFS object via a lock compatibility matrix. We will compare the graph
derived from this specification with the quorum-intersection graph appropriate to the
same set of operations. Also, now that the specification of the single-copy OFS
object is complete, we are testing our idea of extending the single-copy version to a
replicated version by allowing the locks specified for the single-copy version to act as
"distributed locks" (where information about locks granted or released by a replica
on one node is communicated to the other nodes where replicas exist by the Clouds
object manager). A "distributed lock" may be viewed as a manager for gathering a
quorum for a given operation; the synchronization behavior thus achieved should
reflect that specified for the single-copy version, with no additional effort on the
programmer's part.

2.5.1 Overview of the OFS Design The prototype OFS design involves a hierarchical
nesting of "OFS" objects, each of which maintains knowledge of its immediate
ancestor in the hierarchy. (Here, by "nesting" we mean "logical nesting," as
described above.) The children of an OFS are stored in and accessed through a
symbol table object nested in the OFS. The design of the symbol table object has
been described in one of our publicationsjLemasl the locking structure of the symbol

table object was described briefly in our last report. (We have already investigated
the recoverability properties of the symbol table object; the recoverable version of
the symbol table is described in the publication mentioned above. Also, we have
developed a replicated version of the symbol table object using techniques somewhat
different from those we are using on the OFS object. However, we will be
ultimately using the recoverable, non-replicated version of the symbol table object in
the OFS, leaving the implementation of replication at the level of the OFS object.)

This logical structure of the OFS object is represented graphically in Figure 5 (a).
Here, the internal structure of the OFS object is shown, with its nested symtab
object, which may have capabilities (represented by arrows) to other OFS objects as
well as non-OFS objects. In Figure 5 (b), an example hierarchy constructed with
OFS objects is shown. Here, an OFS object is represented by a single object (hiding
its internal structure). The OFS objects in the hierarchy are shown as icons with no
pattern fill, while non-OFS objects are filled with a pattern.

The interpretation of user commands to the OFS is handled by a rudimentary
"shell" process, which accepts Unix-like pathnames and translates them to
operations on an OFS or invocations of Aeolus processes. The "shell" process
maintains knowledge of the root of the OFS hierarchy, as well as the "current" OFS
(corresponding to the "current working directory" in Unix), and (for efficiency
purposes) the ancestor of the "current" OFS.

The synchronization mechanism already in place in the nested symbol table
objects suffices for the synchronization of the OFS objects as well. This simplifies
the analysis of the compatibility matrix/quorum intersection graph relationships,

(a) Logical structure
- of an OFS object

(b) Example OFS hierarchy

Figure 5. OFS Structure

since the symbol table object has fewer operations than the OFS object (five as
opposed to elevens operations), and thus fewer interactions among the object's
operations, yielding simpler compatibility matrices. Since the symbol table object
synchronization involves two locks at differing levels of granularity, we are
investigating how such locks relate to quorum intersection graphs when the latter are
extended to multiple levels of granularity.

2.5.2 Detailed Discussion of the OFS Object The Aeolus source code for the Object
Filing System and supporting objects is given in Appendix B. For each object, both
a definition part (with extension ".def") and an implementation part (with extension
".imp") appear; the source code for an Aeolus process is given the extension
".pro". These objects include the OFS object itself (OFS), the symbol table object
mentioned above (symtab), the shelflike driver process (shell), and a supporting
object which performs parsing of command lines (Names).

1. The original interface of the OFS object had eleven separate operations. The OFS definition recently has been
redesigned to consolidate six of these operations having a common interface into a single operation, called
general op; this definition is included in Appendix B. However, if locking were taking place in the OFS object,
each different function of general op might require a separate locking mode. Thus, the effect would still be of
eleven separate operations on the OFS.

All of the Aeolus objects in the versions mentioned above are defined to be local
objects, that is, objects which do not use the Clouds object management facilities,
but rather are supported by the Aeolus runtime system alone. A major difference
between local objects and true Clouds objects is that each Clouds object exists in its
own virtual address space, while a local object exists within the address space of the
object or process which instantiates it. (Thus, a local object may be regarded as
being physically nested within its instantiator, as well as being logically nested, as are
Clouds objects.) As a result, although a local object may not be accessed outside of
its instantiator, nor persist beyond the instantiator's lifetime (as may a Clouds
object), there may be less overhead involved in access to a local object than there is
with a Clouds object, which involves interaction with the kernel's object
management system and the mapping of the invoked object's virtual address space.

Although these objects are shown in their local object versions, the Aeolus
language allows the programmer to convert such objects to true Clouds objects with
relative ease. All that is involved to convert the objects shown to yield (non-
resilient) Clouds objects is to change the keywords local object to nonrecoverable
object in the definition parts of the appropriate objects. Note that no changes to the
implementation parts of these objects are required.

It is sometimes more difficult to change a non-Clouds object or a non-resilient
Clouds object to a resilient Clouds object. Again, this change is possible with the
change of a single keyword, in this case from nonrecoverable object to
autorecoverable object. However, an autorecoverable object may often be
inefficient, since this involves making the entire persistent state of the object
recoverable, and thus each action touching such an object will get a new version of
the complete object state. Attempted use of automatic recovery (as well as
recoverable areas in general) may also be unworkable if the object in question keeps
some of its persistent state in the non-permanent heap. Placing pointers into the
non-permanent heap into a recoverable area does not make the memory which these
pointers reference recoverable; the effect would be analagous to attempting to make
a book recoverable by making a spare copy of its index: if the book is destroyed,
having a backup copy of the index does not suffice to reconstruct the book. What is
needed is that the portion of the state which, in non-resilient objects, is kept in the
non-permanent heap, must be kept in the permanent heap in resilient objects. This
requires some recoding of non-resilient object versions, since such objects have no
support for the permanent heap; only recoverable objects have permanent heap
support available.

The OFS object requires little reorganization to be made into a resilient object.
Essentially, the only state which requires recovery are the OFS's knowledge of its
current pathname and the capability to its nested symtab object. If the symtab object
itself is to be made recoverable, on the other hand, extensive rewriting is necessary,
since a major portion of its state is kept in the heap. Thus, in Appendix B we also

-12-

show a resilient version of the symtab object (called r_symtab) which makes
extensive use of the per-action variable and permanent heap contructs of Aeolus to
simulate the effects of recoverable areas at possibly significantly reduced overhead,
as well to allow resilient structures to be allocated dynamically.

Since the symtab object nested in an OFS may be of a different object
classification than the OFS object in which it is nested, there are several useful
combinations of differing OFS and symtab versions.

TABLE 1. Feasible Internal Organizations of OFS

OFS 	 symtab
object classification

non-resilient

local local

nonrecoverable local

nonrecoverable nonrecoverable

resilient
recoverable (permanent) local

recoverable recoverable

Those combinations which are considered "reasonable" are shown in Table 1.
These combinations are grouped into those which yield non-resilient objects, and
those which yield resilient objects. For example, the first combination in this table is
of the local object version of OFS with a nested local object version of symtab,
yielding a non-resilient OFS object. Some theoretically possible combinations have
been omitted from this table as not being useful. For instance, it would be possible
to nest a recoverable version of symtab in a nonrecoverable or even local version of
OFS, but the result would be non-resilient, since a crash of the OFS object could
result in it losing its state, including its capability to the nested symtab object. This
combination would thus be wasteful because of the overhead involved in the
recoverable version of symtab.

The combinations listed in the table have also been represented graphically. The
combination of an OFS object and a symtab object, both of which have been
generated as Clouds objects (either nonrecoverable or recoverable), has already
been represented in Figure 5 (a). The combination of OFS and symtab where both
are non-Clouds (local) objects is represented in Figure 6 (a); here, the local OFS
object is shown physically nested within the shell process. The combination of a
Clouds OFS object with a nested non-Clouds (local) symtab object is represented in
Figure 6 (b); in this case, the shell process contains a capability to the OFS object,
which is thus logically nested within the shell process.

Of the non-resilient combinations, perhaps the most interesting are that
combining local versions of both OFS and symtab, as well as that combining the

shell process

rJ

	f.-OFS (Clouds)

, -.:7-symtab (local)

(b) Clouds/local case

Figure 6. Alternate Internal Organizations of OFS

nonrecoverable version of the OFS with the local version of symtab. At least for
testing purposes, the use of a non-Clouds version of OFS is feasible (even though
the filing system root would thus be a non-Clouds object) because Aeolus processes
actually reside in "lightweight" Clouds objects called ProcessManagers. Thus, the
shell process for such a combination would maintain the filing system in its persistent
state. The combination of nonrecoverable versions of both OFS and symtab would
probably have no advantages over the nonrecoverable OFS / local symtab
combination; indeed, the overhead of the Clouds system involved in access to the
nonrecoverable version of symtab would most likely be a disadvantage for the
former combination. However, it should be useful to compare the actual
performance of these two combinations to see if this is the case.

In fact, the implementation of hierarchical directory structure using nested
nonrecoverable OFS objects requires at least one invocation of a different Clouds
object for each nested directory in a pathname. As mentioned above, under the
prototype implementation of the Clouds kernel, a Clouds object invocation involves
mapping that object's virtual address space into user space. We have little
experience yet with the effect of this implementation of object invocation on
performance. With the combination of the local versions of the OFS and symtab
objects, however, we avoid invocations of Clouds objects during traversal of the
directory structure. However, as presently designed, this version of the OFS is not
practical except for testing purposes, since each instance of the shell process would
get its own copy of the process state (and thus of the complete OFS); thus, changes
made in the OFS in one instance of the process would not be available to other
instances. (That is, one user would not see changes made by another user.)
Removing this problem would require making at least the root of the OFS a Clouds
object with a well-known capability, even if the rest of the OFS hierarchy consists of
local objects; this dichotomy between the root OFS and the nested OFSs would
introduce a new set of problems. However, we feel that comparison of the two OFS
combinations will be a valuable study in the methodology of programming under
Clouds.

- 13-

4- shell process

-OFS (local)

symtab (local)

(a) locaVlocal case

-14--

The first of the two resilient combinations in the table bears some explanation.
Here, a local version of symtab is nested in a recoverable version of OFS.
However, in the recoverable version of OFS, the variable holding the capability to
the instance of symtab is declared to be permanent; for a local object, this means that
the state (data area) of that instance of the local object will be allocated in
permanent storage. Invocation of the modify operations of such a local object is
restricted to toplevel precommit time; however, examine operations may be invoked
at any time. Such a combination would require some rewriting of the OFS object
(not shown here) to avoid violation of this restriction. (The above restriction does
not apply to a Clouds object instance, even if the variable holding its capability is
declared to be permanent; in any case, such a declaration has no effect on the
allocation of the state of a Clouds object, since that state is in a separate virtual
address space.)

2.6 Status and Comparison to HOPS

In this section, we provide an overview of the status of our work on
programming methodologies, and compare this work (in its context of the Clouds
system) to the related project at Honeywell, Inc.

2.6.1 Status of the Research Our understanding of the problems involved in
replicating objects of arbitrary structure has increased during the past year, in part
due to the research into naming schemes described earlier in this report, and also
due to the development of the replicated action scheme, which is described below in
relation to the work at Honeywell. Given one of the naming schemes which we
have developed, we now understand how to use the cloning method of propagating
state among replicas of an object without losing information about the internal
objects of the replicas. The matter of which of these naming schemes is more
appropriate for use in the Clouds system is now being considered in the context of
the needs of the replicated action scheme.

During the preceding few months, we have completed the design and
implementation of both the nonrecoverable and the recoverable versions of the
Object Filing System. We have also done extensive work to the Aeolus compiler
and runtime system to allow testing of the OFS as a collection of Clouds objects
under the control of the Clouds kernel. Testing of the nonrecoverable version of the
OFS now awaits only the implementation of Clouds kernel support for locks by
members of the kernel team, which should require relatively little effort. Then, we
will be able to determine the performance penalty imposed by Clouds objects in this
version of the OFS in comparison to the OFS version using (non-Clouds) local
objects. Testing of the recoverable version of the OFS awaits the full
implementation of action management by the kernel team.

In the meantime, the OFS design is serving as a case study in the methodolgy of
replicating both objects and actions in Clouds. We have investigated how Herlihy's

-15-

results for determining quorum intersections for the operations of an abstract data
type may be applied to the compatibility matrices associated with Aeolus/Clouds
locks, as described earlier in this report, and have developed the concept of a
distributed lock which is conceptually shared among the replicas of an object. The
extension of the single-copy version of the OFS to a replicated version is sharpening
our intuition as to how the relation between Herlihy's quorum intersection graphs
and our compatibility matrices may be extended to multiple locks in the same object.
Also, during the preceding year a scheme has been developed for replicating actions
to achieve fault tolerance (described below); the OFS is serving as a testbed to test
these ideas.

2.6.2 Comparison to the HOPS Project The Honeywell Object Programming System
(110PS)[}1°ne86] under development at Honeywell, Inc., has research goals similar to
those of our methodology research. The stated goals of the HOPS project are:

• to alleviate what is seen as a lack of experience in the field of distributed systems
in implementing mechanisms which perform failure detection, failure recovery,
and resource reconfiguration;

• to provide programming support for developing fault -tolerant distributed

applications; and

• to assess the actual benefits and costs of such mechanisms in terms of
performance, reliability, and availability.

Thus, it is clear that the research involved in the HOPS project closely parallels our
research, in the course of which we hope to rectify what we feel is a dearth of
experience in programming for fault-tolerance in object/action systems, yielding a
framework in which fault-tolerant servers may be constructed in Clouds.

HOPS consists of an implementation language derived from Modula-2 together
with a distributed runtime support system. The language requires that HOPS objects
(or HOPjects) be specified in three parts: an interface specification, a body (or
implementation specification), and a fault-tolerance specification. In the latter, the
programmer may specify attributes and policies relating to recovery, concurrency
control, and replication which are to be used for that object, thus giving the
programmer a choice among several mechanisms provided by HOPS in each of these
areas. The distributed runtime system (together with the underlying host operating
system) provides facilities for naming and addressing objects, communication, failure
detection and recovery, local and distributed transaction management, concurrency
control, recovery, and replication. HOPS is currently being implemented on a
network of Sun-3 workstations under the Sun version of Unix 4.2.

Mechanisms for achieving fault-tolerance in HOPS include the disti-ibuted
recovery block (DRB) mechanism and distributed conversations. (The recovery block
and conversation mechanisms are described in detail in a book by Anderson and

-16-

Lee[Ande81] as well as in the HOPS report cited above.) Basically, the combination of
the DRB and conversation mechanisms provide fault tolerance by what is essentially
"software modular redundancy." Processes at two or more nodes execute one of a
set of differing sections of code (called try blocks) which implement the same
specified function; the results of these try blocks must pass the same acceptance test

(possibly with majority voting), or the participating processes are rolled back to a
checkpoint (called a recovery line) and retry the computation with their alternate try
blocks. Thus, both fail-stop and some Byzantine-style failures may be detected and
tolerated by this scheme.

In conjunction with other researchers in the Clouds project, we have been
examining a new scheme for fault tolerance. In this scheme, we replicate not only
objects (data) but also actions. Each of these replicated actions runs as a nested
action and has its own thread of execution, each of which is referred to as a parallel

execution thread (PET). An introduction to the PET scheme is given in a paper co-
written with the other Clouds researchers,[] which is attached as an appendix
to this report. Briefly, the PET scheme sets up several parallel, independent actions,
performing the same task, using a possibly different set of replicas of the objects in
question. These actions follow different execution paths, on different sites, but only

one of them is allowed to commit. The states of those objects touched by the
committed action are then cloned to the other replicas of those objects.

Together with other researchers in the Clouds project, we are currently involved
with designing the lower level algorithms and modifying the Clouds action
management scheme to implement the PET scheme. At a higher level, we are also
considering other implications of the use of replicated actions for providing fault
tolerance. We believe that our research on replicated actions complements the DRB
/ distributed conversation approach taken in HOPS; for instance, it is not difficult to
implement the recovery block mechanism in terms of the action facilities provided
by Aeolus/Clouds. Comparisons of the results obtained by these two approaches
should prove of interest.

3. Action -Based Programming for Embedded Systems

3.1 The Problem

Programmers and programming teams frequently adopt conventions which
constrain program structure and which standardize the strategies for coupling
components and controlling execution. While such conventions are, in principle,
unnecessary, well chosen conventions will help a programmer conceptualize his
work. By following agreed upon conventions, furthermore, a programmer will
produce a program text which can be read, understood, and checked by his
colleagues. A study of the history of programming languages reveals programmers
have developed pseudo-code for expressing some of the more useful conventions. In
many cases it has been practical to process the pseudo-code algorithmicly; this may

-17-

be done by means of a pre-processor which checks the pseudo-code or translates it
into a language for which a compiler is available. In a few cases the conventions
have proved so useful constructs supporting them have been included in newly
designed programming languages—this has been the case with subroutines, user
defined data types, software modules, exception handlers, and more recently, with
objects and actions. The handbook described herein will consider possible
programming conventions, and supporting language constructs, for building fault
tolerant software for applications in which some operations may be irreversible.

Large systems, such as the command and control systems required for many
military applications, are likely to perform complex missions; the overall system will
be multifunction—some functions involving human/computer interaction and others
the control of some mechanism or process. Such large systems are likely to be
distributed and to incorporate as subsystems databases, operating systems, real-time
control systems, graphics programs for data acquisition and display, and various
tools for monitoring, maintaining, enhancing and tuning the system. A system of
such complexity may involve millions of lines of code, with individual subsystems
each accounting for as much as ten percent of the total.

Systems this large cannot be expected to be without flaw. Inevitably there will be
errors in the requirements analysis, systems architecture, and in the design and
coding of components. These errors will, from time to time, manifest themselves in
the operation of the system, and a fault is said to have occurred. When the chain of
events stemming from the fault effects system functionality or performance as
perceived by human users or client systems, a failure is said to have occurred. Often
considerable time will have elapsed between the fault and a resulting failure. The
failure may be the cumulative effect of a number of faults.

In a fault tolerant system, it is possible to detect, sooner or later, the occurrence
of a fault. On detecting the fault, a fault tolerant system will attempt to intercept
the ensuing chain of events by:

1. containing the consequences of the fault and preventing the fault from
"infecting" other portions of the software;

2. attempting to "repair" the damage done by the fault before it could be
contained. This includes attempts to mitigate the effects of the fault on system
function and performance; and

3. addressing the fact that an error has been uncovered in the system. Depending
on the nature of the error and the fault it has caused, any of a variety of
corrective measures may be deemed appropriate.

-18-

The programming techniques, software designs, and operating philosophies
which can be used to implement these measures will be described in the
handbook. Several are illustrated in the last section of this report. 2

Many large software systems run on dedicated computers or, as is likely, on a
dedicated network of computers. In dedicated systems much of the support normally
provided by a general purpose operating system is instead provided by the software
system itself. This is often done in order to satisfy various standards related to
system performance. A large software system can be thought of as having two
layers. An external, applications layer consists of the software which provides
services to the system's clients—perhaps human, perhaps not. An internal, systems
layer provides the applications layer with an interface to the underlying
computational resources and, in doing so, takes on much of the responsibility for
managing those resources. The systems layer may provide such services as file
handling, telecommunications, access control, and management of such resources as
memory, processing units, and peripherals. It can be argued that it is most
important to provide fault tolerance in the systems layer because failures there may
not only compromise the system's ability to perform certain functions, but may cause
the system to shut down entirely.

Fault tolerance is most critical in the internal, systems layer. Since a systems
routine may support all of the applications, a failure there can compromise many or
all of the system's functions. Faults in the external applications layer will generally
compromise one or at most a few functions.

The Clouds system represents the results of several investigations into the
problems of constructing reliable, distributed systems. Among the goals of the
Clouds project is that of contributing some fundamental insights into the problem of
structuring large, multifunction systems in a distributed computing environment. Of
special interest are the problems of establishing fault tolerance in a system which is
"open," i.e., programmers may readily enhance, extend, optimize, tailor and
otherwise maintain applications and systems services. Clouds also allows a
substantial amount of data and code to be shared among applications and among
service routines. This sharing is accomplished by encapsulating the shared data and
code within persistent objects. In contrast to most open systems, Clouds is a multi-
user/multi-application system, and this presents a number of problems in in
extending and maintaining shared objects. Strategies must be developed which allow
programmers to perform maintenance without interrupting service to clients and

2. The examples found there emphasize recovery techniques which are appropriate for coping with actions which
fault or abort after performing an irreversible operation. The last example illustrates how a programmer may
actually simplify the structure of his software by declaring certain operations to be irreversible along with
providing appropriate means of recovery.

-19-

which prevent errors in one application or systems level service routine from
corrupting the data and code used by others. Maintenance within this environment
will also present complex problems in version control; in particular, maintenance
may result in various system components having different expectations regarding a
shared object's interface and semantics. Fault tolerant designs are needed if clients
are to be protected from programming errors in general and the problems of
inconsistent versions in particular. In the absence of such fault tolerance, errors in
the way objects are constructed or interfaced could result in a cascade of failures
across the entire system.

For many of the situations which can be expected to arise in a Clouds like
environment the conventional techniques for achieving fault tolerance, such as roll
back/retry, will be inadequate: the operation which faulted may have also caused
irreversible changes in the state of certain non-recoverable objects or in the systems
being controlled. The final results of the investigation will address the problem of of
achieving fault-tolerance in the presence of such irreversible operations.

The techniques related to this task can be divided into three fundamental classes:

1. mechanisms for preserving information regarding irreversible operations which
may have been performed within an otherwise atomic action;

2. strategies for using the information so preserved to construct a consistent and
correct state from which computation can be resumed; and

3. new programming techniques, system designs, and operating philosophies
made possible by the availability of an enriched set of means for achieving
fault tolerance.

3.2 Fault Tolerance and Atomic Actions

The Clouds system and its programming language Aeolus incorporate the concept
of atomic action in a fundamental way. An atomic action is one which executes
completely or not at all; it is not visible in a partially executed state. In
incorporating the concept of "irreversible operation" into this model of computation,
the concept of an atomic action has required some revision. While the notion of
"atomicity" has remained unchanged, that of "complete execution" has been
modified. In the original model an action encountering a fault was required to abort
and was regarded as having never occurred. This usually entailed rolling the state of
the computation back to what it was before the action began executing. The revised
model is as follows: now, if an action encounters a fault and attempts to abort it
may either be rolled back or forced to completion. When forced to completion it
has a choice of either terminating "normally" or "abnormally." In the revised
model of computation, an exception handler has been posited for Aeolus.

In figure 7 action B is nested within action A. The recovery mechanism may
terminate B normally or abnormally. Normal termination of B permits either

BL09174citweftiy

67414clerOy

BeginAction(A)

EndActIon(A)

-20-

Backward recovery
returns control to
this point

Forward Recovery
returns control to
this point -----------------

Action B aborts
- ----- here

Recovery resulting
in abnormal termination 	 BeginExceptionHandiers(A)
of B, restarts A here

EndExceptionHandlers(A)

Figure 7. Resuming Computation Following Recovery

forward or backward recovery. Abnormal termination of of B causes control to pass
to one of A's exception handlers.

B also may terminate either normally or abnormally even if it does not abort and
then recover.

Under the revised model of computation the appropriate recovery strategy
depends, in large measure, on where the fault is detected. An action may:

1. detect an error in its input. If art operation discovers error in its input data, it
should be rolled back. The parent action, on being informed of the failure,
should either attempt to fix the problem or otherwise compensate for the
failure. If this is not possible it should fail itself;

2. detect an error in its own computation, i.e., an internal error. Even if an
action reports an internal error, the parent action may decide the problem was
incorrect input. In this case the parent action should proceed as above. If,
however, the parent action agrees the problem was indeed an internal error, it
should find an alternative means of accomplishing the task or at least attempt
to contain the error and to provide a reduced level of service;

3. produce incorrect results. When the fault is discovered, there should be an
attempt to prevent it from infecting the rest of the software and causing
additional problems. This may involve setting some flags or otherwise making
the fact of the failure visible in a consistent manner.

-21-

Backward error recovery returns control to the point just prior to the beginning
of the action which failed, after constructing a state which satisfies the program
invariant at that point. Forward error recover forces an action to complete in the
sense that control passes to a point just following the end of the failed action. While
forward error recovery may not provide an alternative means for carrying out the
action, it should construct a state which permits the remander of the program to
execute correctly. In some circumstances the recovery mechanism must not only
construct a state which satisfies the invariant, it must also adjust that state to reflect
changing conditions over which it has no control, e.g., the passing of time or the
occurrence of an irreversible event. Irreversible events are usually understood to be
physical events but may also refer to aspects of the state of the computation which
cannot be modified by the recovery mechanism.

These strategies may be used to contain the consequences of the fault, repair the
damage it caused before detection, and attempt to prevent the error from causing
faults in the future. There are several approaches available:

1. "repairing" the data corrupted by the fault. The may involve restoring the old
values, calculating new values, or setting flags which will tell other components
not to trust the data and to do its calculations another way;

2. altering control information so that other components will not use or propagate
the corrupted data, to prevent subsequent operations from executing the code
containing the error, to force execution down paths which will compensate for
the fault and its consequences;

3. in the extreme the recovery mechanism may calculate values and set control
flags in preparation to cutting over to a backup system or a reduced level of
service. In practice, this may be the most commonly used approach.

3.3 Degrees of Fault Tolerance

A large software system will almost certainly contain errors at the time it is
placed into service. While software maintenance will remove those errors as they
are uncovered, efforts to alter and enhance the software will inevitably introduce
new errors. Software errors must be considered an inexhaustible source of faults
and it is necessary to design large systems so as to tolerate a variety of software
errors. This task is made difficult because the exact nature of the errors can not be
anticipated by the programmer. 3 Often fault tolerant techniques cannot fully correct
for the consequences of the error and must apply other strategies in an attempt to

3. If the programmer had a complete and accurate understanding of the errors in his Program, he could fix them
before the software is placed into service!

fault occurs
here

3

4 aria;

-22-

achieve less ambitious goals.

There are other sources of faults besides errors in the architecture and coding of
the software. Unlike software, hardware components do wear out, and as they fail,
they will inevitably produce a second class of faults.

A third class of faults will arise because of inadequacies in the models used to
describe the systems which interact with the software—loads (e.g., transactions per
second) may not be as expected, or a system may enter a state not anticipated by the
software designers (e.g., a components in the physical system may interact in
unexpected ways or may be forced to operated at or beyond designed capabilities).

as
specified

system
performance
funagmaiity

crashed
before 	during 	 after
the fault 	the fault 	 the fault

time —0.

Figure 8. Degrees of Software Fault Tolerance

Figure 8 shows some of the possible fates which may await a software system
following a fault. The numbers correspond to the degrees of fault tolerance listed
below. Recovery may be complete (1 and 2), though 2 shows some temporary
degradation in performance or functionality. Other times it may be necessary to
allow some degree of long term degradation (3) in performance or functionality.
While the fault may be detected, recovery may not be fully successful (4 and 5), and
the resulting cascade of faults may result in progressive system failure. If the fault
goes undetected (6), catastrophic failure may ensue.

Several degrees of software fault tolerance can thus be distinguished:

1. software fault is detected and corrected before system performance is impaired;

2. software fault is detected and compensated for. While anomalies in system
performance may be detected, mission objectives are not jeopardized;

-23-

3. software fault is detected but cannot be corrected or compensated for.
Recovery operations result in reductions in system performance but in a way
which does not cause faults in other elements of the system. Human
intervention may be required if all mission objectives are to be achieved;

4. software fault is detected and while it is contained and will not cause further
software errors, elements of the associated physical systems may no longer be
adequately controlled. Without human intervention, physical components may
fail and this in turn may cause further software faults. Human intervention is
required if primary mission objectives are to be achieved. Secondary mission
objectives may be compromised;

5. software fault is detected but cannot be contained. A cascade of software faults
will result in system failure. Primary mission objectives will not be met unless
alternative command and control procedures are available;

6. software faults are not detected. Success of the mission depends on the
correctness of the system and whether the structure of the software is such that
the consequences of software faults will be adequately contained.

When human intervention is required, that intervention may take any of several
forms. The human may assume some of responsibilities previously assigned to the
software: this may require the human to interface with lower level software modules
directly. In such a case "recovery" is the process of making a graceful transition
from automatic to semi-automatic control and may involve shutting down the failed
software system in a graceful manner and the proper initialization of displays and
other elements of the human/computer interface.

Alternatively, the human may be responsible for "repairing" the faulting system.
In this case the human must be presented with information about the fault and with
the tools for carrying out the repair. A repair may involve reassigning the
responsibilities of the faulty software component to other components capable of
providing the necessary services, though perhaps in a less than optimal manner. The
repair might also be a matter of adjusting some parameters or other state
information and enabling the faulty component to resume operation. The ideal, but
rather unlikely, repair would involve locating and fixing the software error during
the mission.

In all cases, the recovery mechanism should log information about the fault so
programmers can, after the mission, locate and fix the underlying error.

3.4 A Mechanism for Fault Tolerance

In environments such as Clouds, data is shared among applications by means of
persistent objects. An object encapsulates both the data desciibing its state and the
operations which reference or alter that state. These operations may also invoke
operations on other, distinct objects.

-24-

Within Clouds and Aeolus, the associated programming language, a distinction is
made between recoverable and nonrecoverable objects. This distinction provides a
means for to incorporating irreversible operations into the Clouds model of
computation. Interactions with physical systems can be embedded within
nonrecoverable objects. The data area within such an object will include sensor
registers (read only) and command registers (write only). Object entry points which
write to command registers will be regarded as irreversible. As a pragmatic issue,
these lowest level, irreversible operations should be very simple in structure. If the
entry point which performs the irreversible operation must be complex, then it
should contain simpler, nested actions which actually perform the irreversible
operation.

Actually, not all writes to command registers should be regarded as irreversible.
At the lowest level, irreversible operations cause a state change in a nonrecoverable
object or, of interest here, in a physical system.

3.4.1 Actions The fundamental unit of work is the action. The notion of action

described here is only partially implemented within Clouds and represents an
extension of the notions underlying that system's design. If an action notices a fault
has occcurred, it may attempt to abort. If an action faults, i.e., it divides by zero,
and this is noticed by the runtime system, an attempt should be made to locate an
appropriate exception handler within the action. If none is found, the runtime
system should abort the action. The exception handler may also force the action to
abort. When an action aborts, recovery is initiated. The recovery mechanism
employs event handlers and exception handlers. The event handlers guarantee that
certain minimal recovery steps are taken. 'The exception handlers, while providing
no such guarantees, give the programmer an opportunity to employ some additional
and more specialized steps as part of the recovery process. A detailed description of
the recovery mechanism provided in the next subsection.

An action defines a sequence of operations on program data visible to it (in
Aeolus static scoping rules are used) and on objects for which capabilities are known.
An action should have simple, well defined semantics. By explicitly showing the
boundaries of an action, the programmer makes it possible for the programming
language's run time system, the operating system, and other sources of run time
support to manage the action and its execution as a well defined unit. In particular,
it provides a focus for such support activities as concurrency control and, of interest
to the present discussion, fault tolerance. By adopting suitable programming
conventions, it should be possible to mimic this extended notion of an action within
the existing Clouds system.

Actions should be well defined both semantically and textually: the former
makes it possible to support the action as a unit during execution, and the latter is of
use to programmers who must construct or maintain programs which incorporate
actions as a design element.

-25-

1. Semantically well defined means the action performs a single task which is
easily described within the overall design of the program; when an action is
semantically well defined, a programmer should be able to construct invariants
characterizing the states of the computation both before and after the execution
of the action. Invariants may "admit" to the possibility faults may occur, i.e.,
they may be of the form "if the action has failed, X must be true; if the action
has succeeded, then Y must be true."

If an action faults, the role of the recovery mechanism is to construct a
consistent state, i.e., a state which satisfies a program invariant, and resume
the computation at the point associated with that invariant. Backward recovery
constructs a state which satisfies the invariant preceding the action and re-
executes the action, perhaps using a different algorithm. Forward recovery
constructs a state which satisfies the invariant following the action an resumes
normal execution at that point in the code.

2. Textually well defined means the block of code defining an action is clearly
marked with BeginAction and EndAction statements. These statements are
matched statically and must be visible at the same level. Procedures or
functions may also be declared to be actions, but this is not required. An
object's entry points, (i.e., operations which may be invoked on an object) may
be declared to be actions as well.

Actions, in our terminology, are instantiated each time they are executed. To
facilitate action management in general and fault tolerance in particular each
instance of an action is to have a unique name. A data area will be associated with
each instance. This data area will be partitioned into attributes. Some of the
attributes can be set by the programmer when defining the action and others can be
set when an instance of the action is generated. The various routines involved in
managing the execution of an instance of an action will use the attributes when
deciding how to handle various situations arising at run time; additional attributes
may be set to indicate certain situations were encountered during execution or
certain decisions were made regarding the management of that instance of the
action. The requirement that names be unique allows each instance of an action to
be managed separately. There are, however, some technical details associated with
this naming scheme.

The programmer will supply a local name for each block of code defining an
action; these names must be unique within a given name space. The names will be
extended by prefixing the names of the actions within which it is nested. If several
instances of an action are generated from the same program text (e.g., an action is
embedded in a loop) then the names of the instances will be distinguished by
suffixing an instance number. These naming conventions will make it possible to
support the concurrent execution of several actions even when they were generated
by the same piece of code. Associating attributes with the names provides a means

-26-

by which an executing program can interact with the run-time system an other
routines supporting its execution. In particular this mechanism can be used by the
programmer to indicate how an action should be handled if it aborts. The routines
supporting execution will know, for example, whether forward or backward
recovery should be used. By setting the appropriate attributes it will be possible to
indicate that recovery occurred, the methods used during recovery, and any other
information the program may need to resume proper execution.

3.4.2 Event and Exception Handlers When an action aborts, it is important to
preserve information about any irreversible operations it may have performed and to
use that information in constructing an accurate and consistent state from which
computation can be resumed.

BeginAction(A)

B may abort
itself from either
location

_ •

..6907.4aro/7(.62

B7(140048)
6:90451-moffonfhweersg?)

...for faults

These are invoked
when exceptions are

- - - - - - raised within B

- •

...for recovery
EncetrgokfiHanotrersiby

_ ._._._._._ These are invoked
by the event handler when
recovering B following an
abort

If B terminates
abnormally, A is
restarted
here 	-

EndAclion(A)

--RJ'inExTej5tron-F-ariaiirs(A)

...far&als

.....forrecowy

EndExceptionHandlers(A)

IfAaborts, one of these
exception handlers

will be invoked by the

event hander

Figure 9. Exception Handlers and Event Handlers Work Together to Recover from
a Fault

Some of this recovery can be done automatically but other aspects of it must be
sensitive to the semantics of the action and the context in which it was executing.
The process of initiating and carrying out recovery consists of four phases; this may
be understood with reference to Figure 9.

1. Recovery is initiated when an action aborts itself or is aborted by the runtime
system. An action may abort itself when it determines that a fault has occured.
An action may be aborted by the runtime system if an exception is raised
during the action's execution and an appropriate exception handler has not
been defined within the action. Even if an exception handler is invoked, it
may decide to abort the action.

-27-

2. An automatic recovery mechanism called an event handler should begin the
recovery process. The event handler should be sensitive to the attributes of the
action and may set some of the attributes to indicate the circumstances under
which the abort (and associated fault) occurred. The event handler should be
responsible for recording which irreversible operations were executed by the
action and any other information essential for recovery.

3. The event handler has the option of passing control to an exception handler
defined within the aborted action. This exception handler is provided by the
programmer and should be designed to reconstruct the state of the
computation. While this exception handler is responsible primarily for
ensuring that the state of the computation reflects the occurrence of the
irreversible operations in a consistent manner and terminating the action in a
"clean" manner.

4. If the event handler is not able to pass control to an exception handler defined
within the aborted action or if the exception handler is not able to terminate
the action in a way which allows computation to continue immediately before
or after the action itself, it should raise an exception visible to the parent
action. This gives the parrent action an opportunity to further repair the state
of the computation and greater control over where computation resumes. If an
appropriate exception handler is not found withing the parent action, the
parent action is forced to abort and another round of recovery is attempted.

Programmers often find it useful to separate alternative paths of execution into
two groups: those which are available to normally executing programs and those
which would be followed should various error conditions be detected. This
distinction is made at a programmer's discretion and usually in an effort to clarify
the structure of an algorithm. The three phases described above support a
programmer in his effort to maintain this distinction in his work.

If an action faults and then aborts, the event handlers would, in the presence of
irreversible operations, cancel the abort and attempt to terminate the action cleanly.
An aborted action may still terminate normally if the event and exception handlers
defined within it were able to find an appropriate continuation. Otherwise, an
exception signaling abnormal termination would be propagated into the parent
environment. The action is regarded as terminating abnormally, if an appropriate
exception handler cannot be successfully invoked. Depending on circumstances then,
the recovery activities may be carried out either by event and exception handers
defined for the action or by the parent environment. In this latter case, the event
and exception handlers must at least propagate enough information into the parent
environment, for it to recognize and execute the proper continuation.

If an action contains several operations which are potentially irreversible, it is
necessary to distinguish between those which have and have not occurred. An

-28-

attribute will be associated with each occurrence of a potentially irreversible
operation. The attribute will serve as a flag indicating the execution state of the
action. The flag is clear if its associated operation has been instantiated but has not
become irreversible. The flag is set once the operation becomes irreversible. This is
all done automatically by the event handler.

Some of the conditions discussed above present an unfortunate complication: it
may become necessary for the recovery mechanism to deal with a partially
completed, irreversible action, e.g., an irreversible action fails along with its
associated exception handler and the exception handler in the calling environment.
The system of naming actions and associating attributes with them, will allow higher
level event and exception handlers to perform recovery by inspecting, perhaps
recursively, the flags for the irreversible operations and actions within the hierarchy
of nested actions.

The flags used to record the occurrence, or non-occurrence, of irreversible
actions and operations may also be used to propagate that information into the
calling environment. By this means, it is possible to provide the minimum amount
of information required by an exception handler dealing with an abnormally
terminated action.

Within Aeolus an event handler is invoked when an action aborts. Default event
handlers are provided by Aeolus, but it is also possible for programmers to supply
their own. A programmer supplied event handler is intended to be sensitive to the
semantics of the action to which it is attached. If a programmer makes an error in
coding an event handler for aborts, it may not be possible to contain the
consequence of the fault. The alternative proposed here is to augment the event
handler with an exception handler: the event handler has only limited functionality
but provides a guarantee that it will execute without faulting, whereas the exception
handler provides the programmer with greater control over the recovery but offers
no guarantees about immunity from faults. The event handler will carry out the
initial stages of recovery and will insure that information about irreversible
operations is propagated outside the boundaries of the failed action. The event
handler will be sensitive to the attributes of the action; indeed, the programmer's
only means of specifying the semantics of the event handler will be by means of
those attributes. While the event handler will ensure the minimum necessary
information will survive an action's abort, the associated exception handler will have
the initial responsibility for using that information to construct an appropriate state
from which to resume computation.

3.4.3 Using the Mechanism We can distinguish a number of strategies for achieving
fault tolerance simply by considering alternative mechanisms for constructing a state
from which normal computation can be resumed.

-29-

I. Backward Recovery

A. Roll back using

1. recovery blocks

2. logging (e.g., undo/redo logs)

B. Roll back but exempting certain data areas

1. require that the programmer declare which data areas are exempt
from roll back

2. let the decision as to which areas are exempt form roll back be made
at the time recovery is attempted

C. Roll back, exempting certain data areas from roll back and doing some
additional computation (e.g., event handlers, exception handlers) to
complete the reconstruction of the state.

1. let the additional computation reference the rolled back state

2. let the additional computation reference only state as it was before

roll back

3. let the additional computation reference both the states which
preceded and following roll back.

II. Forward Recovery

A. Forward recovery by using event and exception handlers to complete the
action's execution

B. Forward recovery by using event and exception handlers but allowing
certain data areas to be rolled back to the state they had before the action
began

1. controlling the decision as to what data areas will be rolled back

a. require that the programmer declare which data areas must be
rolled back

b. let the decision as to which areas will be rolled back be made
at the time recovery is attempted

2. decision as to what data, may be referenced when computing
recovered state

a. let the additional computation reference the recovered state

b. let the additional computation reference the state as it existed
just prior to roll back.

-30-

c. let the additional computation reference both the states
preceding and following roll back.

III. Transferring control to some location other than immediately before or after
the action. This may be of some use in cutting over to a backup system or to a
reduced level of service.

I.0 and ILB are similar. In both the state is reconstructed through a combination of
roll back and additional computation. The differences lie in where the computation
is restarted, either before or after the failed action. The choice should be governed
by considerations such as which invariant will be easier to satisfy and which makes
more sense given the way in which the failure fits into the conceptual structure of
the program. If the action was to fire a weapon and the failure resulted in a misfire,
there are circumstances in which the appropriate action is to re-execute the action
and others in which the misfire should be accepted as an outcome of the action.
Equivalent software can be constructed using either approach. The choice should be
made by those constructing the software, and they should be guided by a desire to
keep the conceptual structure of the software as simple as possible.

For example, it is possible to let the main line of a program be aware that control

reached a particular point following recovery; from a fault. In the case of the
misfire example this is the proper course; the program invariants should be explicit
about the handling of such events.

The misfire may have occurred for many reasons and and at many points in the
process of controlling the weapon. Regardless of the point at which the failure
occurred or the reason, the procedures for coping with it are similar. Fault tolerant
constructs give the programmer a means of handling the failure in a way which does
not burden the main fire control algorithm.

If we succeed in making fault tolerance inexpensive, a programmer can organize
the software around his understandings of normal and abnormal execution.

3.5 Irreversible Operations and Fault Tolerance

Considerable thought must be directed towards the pragmatic issues related to
using the mechanism described in the previous section. If recovery is to be done
successfully, it is necessary to deal appropriately with any irreversible operations
which may have occurred. This in turn requires the recovery mechanism recognize
that an irreversible operation has occurred.

3.5.1 Recognizing Irreversible Operations Determining whether an operation is
irreversible and working out the accompanying implications may not be a simple
task. Operations may be actions (including object entries), procedures or functions.

1. At the lowest level, an irreversible operation is one which writes to a command
register and thereby causes a physical system to change state or which changes

-31-

state information within a nonrecoverable object. These operations must be
encapsulated within objects.

2. If the code for an action includes an irreversible operation, the action is said to
be potentially irreversible.

3. If a potentially irreversible action is nested within a second action, the second
action is also regarded as potentially irreversible.

4. A potentially irreversible action becomes irreversible as soon as it performs an
irreversible operation or action.

All irreversible and potentially irreversible operations must be accompanied by some
means for terminating the action in the event of failure. At the very least, it is
necessary to preserve a record of which irreversible operations have occurred. This
is provided by the mechanism described in the previous section.

In addition to the algorithmic problem of determing when a potentially
irreversible operation becomes, in fact, irreversible, there is also the problem of
defining the primitive, irreversible operations. Primitive, irreversible operations
may occur in two ways:

1. operations may be performed on nonrecoverable objects; or

2. operations may trigger events in unrelated software systems or, more
importantly, in the physical systems being controlled.

We can also distinguish several degrees of irreversibility:

1. operations which cannot be "undone" in the sense that they cannot be rolled
back but for which an inverse operation exists;

2. operations which have no inverse but which are compensable;

3. operations which are not compensable.

An operation may become more irreversible as its consequences are realized. For
example, the effects of raising the temperature in some chemical process may be
reversed by lowering the temperature provided the temperature is reduced within a
few seconds of being raised. If more time elapses, however, the calories needed to
initiate the reaction will have been transferred, at which point the operation of
raising the temperature has become irreversible. Even then it may be possible to
stop, or reverse, the reaction by other means (e.g., removing the catalyst or adding
other materials). As the reaction progresses, even such compensating actions may
not be effective.

3.5.2 Sources of Faults in Irreversible Operations A general programming strategy
will be to defer invoking an irreversible operation until all the possible software
failure points have been passed. Also desirable to put guards on the irreversible

-32-

operation; these guards will check that the conditions for invoking the operation are
indeed satisfied. We don't want to unnecessarily invoke an irreversible operation
just because an ordinary, garden variety software bug, led us down that path or will
keep us from finishing the job.

These precautions, however, may not be feasible. Even if they are, they may not
be sufficient. The precautions may be inadequate because the fault was:

1. in the computation leading to the invocation of the operation but the
information needed to verify that computation was not available until after the
irreversible operation was completed. Perhaps the needed information was
among that returned by the operation itself;

2. the result of a sensor error. the sensor error may not be detected until after
the irreversible operation is completed;

3. in the irreversible operation itself. The physical system being controlled may
not respond to a command as expected. This may be because of influences on
the physical system other than the control software; or

4. in an operation which uses the results of the irreversible operation but faults

for other, unrelated reasons.

The choice of recovery strategy depends, in large measure, on the source and
type of the fault. The next subsection presents some examples illustrating the range
of alternative strategies available for different varieties of faults. The present
subsection outlines many of the possible errors which may lead to faults as well as
several ways in which faults may manifest themselves.

Faults may be:

1. transient or nontransient; or

2. the cumulative effect of a number of small errors or the result of a single error.

An error in the interface between control software and the system which in controls
may be any of several types:

1. tolerance: software cannot adjust the system finely enough or cannot
distinguish between two states;

2. timing: responses to changes in the physical system are not appropriate to the
time at which they are applied—the response may be too soon or too late;

3. limits: unexpected response or combination of responses from the physical
system may drive the software beyond its limits—buffers may overflow, there
may not be sufficient resources.

These errors may arise because of errors in the requirements analysis. In particular
the analytical models used to describe the systems with which the software interacts

-33-

may have been inadequate.

Faults in resource management also may arise because of errors in the design of
the software. Typical faults may include: the unavailability of the required
resource, the use of the wrong resource, contention for a resource, a race condition
in getting a resource, a resource not returned to right pool, improper recombination
of fractionated resources, resources not returned, deadlock, resource use forbidden
to the caller, resource linked to the wrong kind of queue. One of the purposes of
internal layer to provide these services in a consistent manner to external level.
Errors are possible, especially in open systems or where the rules are complex, and
fault tolerance in this area is required.

Faults may also arise because of errors in software architecture, especially errors
that are load dependent. Possible errors include the assumption that interrupts will
not occur, the failure to block or unblock on interrupts, the assumption that code is
reentrant or not reentrant, the bypassing data interlocks, the failure to close or open
an interlock, an assumption about the location of a calling or called routine, the
assumption that data storage was, or was not, initialized, the -assumption that a
variable did or did not change value, inconsistent conventions about the the layout
and management of data or about the propagation of control information.

Faults may also arise because of errors in a software system's internal interfaces:.
there may be protocol design errors, format errors, inadequate protection against
corrupted data, parameter layout errors, inconsistent conventions as to the meaning
of input or return values.

Faults may also be caused by errors in coding or in low level logic: a wrong
operation may be used or missing all together; operations may be in the wrong
order; cases presumed impossible may, in fact, be possible; loops may terminate an
iteration too early or too late; cases presumed mutually exclusive may not be, special
cases may have gone unrecognized; execution paths may be missing or unreachable;
and loops or conditionals may be nested improperly.

3.5.3 Recovering Irreversible Operations The purpose of fault tolerant computing is
neither to fix nor even to precisely identify software errors. Rather, the objective is
ensure the system continues to function, at a perhaps reduced level of service, in
spite of any faults which may occur. While complete recovery may be possible in
some or, perhaps, even in many cases, there will be many others in which there is
no simple way around the code containing the software error. In such a case the
recovery mechanism will be charged with cutting over, in a graceful manner, to a
back-up system or to a reduced level of operation.

Since it is unreasonable for a programmer to anticipate all the possible faults in a
software system, he should, instead, provide a recovery mechanisms which is
appropriate to a broad class of errors or which will cope with any error, regardless
of its type, within a particular block of code. -

-34-

Once an action performs an irreversible operation, it must leave the computation
in a state which reflects the occurrence of that operation. This can be assured
through the proper use of the recovery mechanism. The recovery mechanism would
also typically return control to a point just prior to or just following the action. It is
also possible for the action to terminate "abnormally" and raise an exception in the
calling environment. A taxonomy of programming techniques, software designs and
operating philosophies associated with achieving fault tolerance in the presence of
possibly irreversible operations is being developed. Several broad categories have
been outlined:

1. to fix incorrect or corrupted data, or set some control flags which will direct
execution down alternative paths thereby avoiding the software error which
caused the fault when the code is next executed;

2. set up a "retry" using the same or an alternative block of code;

3. permit computation to continue as it would have had the fault not occurred
(after adjusting data structures to reflect any irreversible consequence of the
failed action);

4. perform the cutover to a backup system, to a reduced level of service or other,
alternate mode of operation. Accomplishing this may require certain flags to
be set and data structures modified.

This class of techniques is a generalization of the smaller class of techniques for
achieving fault tolerance in the presence of only reversible operations. The first
example illustrates some of these ideas in terms of an embedded software system
which controls the firing of several weapons. These weapons have partially
overlapping fields of fire. A second example involves printing a report, a task
performed by a wide range of applications both within the military and industry.
The second example illustrates one way in which a programmer may use the ideas
related to recover in the face of irreversible actions to simplify the structure of his
program.

3.5.4 Fire Control Example. One particular action, the fire control action, is
responsible for aiming and firing the weapon. This action includes the code for
operating the weapon and for recognizing any of several possible malfunctions. The
action also has a means for tracking the particular target assigned to it. Under
certain circumstances, the action is also responsible for producing a report describing
the status of the weapon.

Another portion of the system is responsible for assigning targets to particular
weapons. Initial target identification and tracking is performed by this part of the
system. It continues to track a target until a particular weapon accepts responsibility
for it. The target identification system posts information to an object shared by all
the weapons. When a weapon needs a new target, it queries this object and

-35-

identifies what from its perspective is the highest priority target. For example
targets which are within range of two weapons are of lower priority than a target
within range of one weapon and whose trajectory will soon carry it out of range of
any weapon.

Among the possible faults which might be encountered are a failure in a
component or its associated driver, corruption of the object from which actions select
their targets, and corruption of the data needed to determine target priorities.

Within the fire control action there are a number of operations which are
irreversible or which may be conveniently regarded as such. The operation of firing
at the target clearly becomes irreversible at some point. The operations involved in
aiming the weapon may also be properly regarded as irreversible. After aborting
the fire control action it is, in principle, possible to return the weapon to the position
it had before that action began. 4 This, however, is not usually desired, especially if,
once its been restarted, the action will resume tracking the same target. It is likely
to be more efficient to simply ensure the recovery mechanism retains the new
position of the weapon so it may be used by the fire control action once it is
restarted.

This matter of retaining the position of the weapon across recovery is an
important one. The fire control sequence may well involve a number of steps and
invokes a number of operations on several different components of the weapon.
Midway through a particular attempt at firing the weapon, one of the components
may fail to respond. For simplicity, assume each operation on a component is
encapsulated within an action which has the fire control action as its parent. When
the component fails to respond to an operation, the nested action containing that
operation aborts. The recovery mechanism for that nested action removes the
component from service and cuts over to a backup system. For some components it
may then simply be a matter of restarting the nested action which aborted and
resuming the fire control sequence. For many important components with complex
states and which are referenced a number of times during the fire control sequence,
however, the simplest approach may be to abort the fire control action itself and
restart the "count down." When the fire control action is restarted the current
position of the weapon must be known.

A variation of this might arise if the component which failed did so in a way
which corrupted some of the data describing the the position of the weapon. In this
case, the recovery mechanism could restore the data by reading the appropriate

4. Clearly, the wrong approach would be to restore the data showing the old position while leaving the weapon in
the new position.

-36-

sensors. Structuring recovery in this way means the main line of the fire control
action need not know that it failed and need not concern itself with whether the
position of the weapon has been correctly described.

A second variation might arise if the component fails only partially and no
backup is available. The result might be a weapon which is operational but whose
field of fire is now restricted. One strategy for handling this would be to abort the
fire control action and, as part of recovery, update the tables used by the target
selection algorithm when determining the relative priority of candidate targets. In
the extreme, it may also be desirable to update the tables used by other weapons
when selecting priority targets and, perhaps, to force other weapons to select new
targets by aborting and restarting their fire control actions.

In the examples just considered, reference was made to an object shared by all of
the weapons as well as the target identification system. A weapon needing a new
target, consults this object and identifes what from the weapon's perspective is a
high priority target. In order to meet timing constraints, it is possible that this object
may have a somewhat complex structure. Suppose it contains a table candidate
target table which shows most of the available targets, and perhaps a few invalid
ones as well. A target is invalid if it has already been destroyed or has been selected
by another weapon. It is also invalid if it cannot be found near the coordinates
supplied by the target recognition process.

On selecting a target from the candidate target table, a weapon performs a few
computationally simple checks to validate its selection. These checks might involve
examining, for weapons with overlapping or neighboring fields of fire, selected and
destroyed lists. 5 If the candidate target table does not contain any valid targets, a
priority request is made of the target identification system to locate one, i.e., the use
of the candidate target table speeds the system up but is not essential.

It is possible that from time to time the candidate target table becomes corrupted,
or perhaps so full of invalid entries that it degrades rather than improves system
performance. Suppose a fire control action aborts when it determines its selected
target is invalid. As part of recovery, statistics are kept regarding the rate at which
fire control actions abort because of invalid target selection. When this rate
becomes excessive the runtime system has the option of aborting the target
identification process (which is also an action, albeit a persistent one). As the target
identification process recovers and restarts it should reinitalize the candidate target
table, thereby lowering the rate at which fire control actions abort because of invalid

5. A background process is responsible for examing the destroyed lists and removing those targets from the
candidate target table. It is also responsible for removing from the candidate target table any targets which have
moved out of range.

-37-

target selection at least for a while. If statistics are kept by the recovery mechanism
associated with the target identification process, it may be possible to recognize the
existence of a fault within that process. When a fault is recognized, it may be
possible to fix the problem by cutting over to a backup system for some component.

3.5.5 Information Processing Example. It may be desirable to regard some
operations as irreversible even though they may, in principle be reversed if some
tricky programming is employed. Suppose an action instatiated by an information
processing system prints a status report just before it is aborted. The action is
subsequently restarted. But what to do about the report? There are three ways of
responding.

1. Rescind the order to print the report and let the action resubmit the report once
the action itself is restarted. This may require some tricky programming and,
if a printer has begun producing the report, may waste resources.

2. Restart the action and let it submit a duplicate report. This avoids the need for
tricky programming but would still waste resources.

3. Restart the action but in a state that lets it know the print job has already been
submitted. In other words, treat the submission of the print job as irreversible
and make sure the fact it was submitted persists across recovery. .

The third option seems the most attractive of the three, but it may be necessary to
design 'a mechanism which will, in fact, guarantee the job is actually printed. With
this guarantee, the action becomes even easier to code: not only may the
programmer avoid the tricky recovery problems, but he neither need he concern
himself with the task of monitoring the progress of the print job and resubmitting it
if it is lost.

Ensuring that "print" is irreversible is a relatively simple task. When submitting
the job, the material to be printed should be encapsulated within an object. The
capability for that object should be sent to the appropriate printer. When the printer
is ready for the job, an operation is invoked on the object and the material to be
printed is returned. This is a fairly robust design and a good deal of fault tolerance
may be incorporated into it.

Suppose the printer becomes inoperative. The printer driver can continue to
invoke operations on the "print object." Each time an operation is invoked, it
quickly aborts because the printer is down. This invokes the recovery mechanism
within the print object. Each print object may recover in a different way. Some may
choose to wait until this printer becomes available, others may reassign themselves
to other printers, and some may adopt yet different stratagies.

If different printers require material be presented in different formats (e.g., as is
the case with different brands of phototype setters) this can also be encorporated
within the "print object" approach.

-38-

3.6 Summary and Directions for Future Work

A number of issues have been considered regarding irreversible operations and
their implications for the design of applications in fault tolerant, object oriented
systems. The fundamental problem is that of preserving information about
irreversible operations which have been perform by an action when that action
aborts and is recovered. A mechanism for performing this task has been described.
A number of variations on this basic mechanism have been outlined. These
variations need to be developed in greater detail. A syntax for programming
language constructs supporting the basic mechanism and its variations must be
developed. More careful consideration of various implementation issues is also
required.

Problems related to recognizing the various types of irreversible operations have
been considered. The reasons irreversible operations fault have also been discussed.

It has been recognized that it may not be possible to prevent a fault from
effecting system performance or functionality. Consequently, various degrees of
fault tolerance have been described and classified.

Deciding to achieve a desired degree of fault tolerance and then achieving it
raises issues related to programming techniqes, software designs, and operating
philosophy. These issues appear to be a rich area for further investigation.
Additional work needs to be done in the area of developing paradigm examples
illustrating how fault tolerance may be achieved and in developing a taxonomy of
techniques.

Of particular interest is the possibility that "irreversible operations" should be
regarded not as an obstacle to be "gotten around" but as a programming construct of
considerable use in the design of real time systems—especially when used in
conjunction with a powerful recovery mechanism. It may be possible to generalize
on the present notion of an irreversible action: if a nested action is allowed to
commit and make its results visible outside 'the parent action before the parent action
itself commits, this nested action may well be called "irreversible" and treated using
the techniques being developed in conjunction with the present project. This
approach allows a "loophole" in otherwise atomic actions and is in sharp contrast
with the philosopy adopted in Clouds. We believe, however, that the new approach
deserves some careful consideration: it opens up the possibility for long lived
actions which interact with their environment in complex ways and for employing
weaker notions of serializability than can be enforced using locks alone. The weaker
notions of serializability would be enforced instead by recovery mechanisms which
are more sensitive to the semantics of the various actions and objects from which a

-39-

software system is constructed.

REFERENCES

[Aham87] Ahamad, M., P. Dasgupta, R. J. LeBlanc, and C. T. Wilkes. "Fault-
Tolerant Computing in Object Based Distributed Operating Systems."
PROCEEDINGS OF THE SIXTH SYMPOSIUM ON RELIABILITY IN DISTRIBUTED

SOFTWARE AND DATABASE SYSTEMS (IEEE Computer Society),
Williamsburg, VA (March 1987). (To appear.)

[Ande81] 	Anderson, T., and P. A. Lee. Fault Tolerance, Principles and Practice.

Englewood Cliffs, NJ: Prentice-Hall International, 1981.

[Birm85] 	Birman, K. P., and others. "An Overview of the ISIS Project."
DISTRIBUTED PROCESSING TECHNICAL COMMITTEE NEWSLETTER (IEEE
Computer Society) 7, no. 2 (October 1985). (Special issue on Reliable
Distributed Systems.)

[Birm85a] Birman, K. P. "Replication and Fault-Tolerance in the ISIS System."
PROCEEDINGS OF THE TENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES

(ACM SIGOPS), Orcas Island, Washington (December 1985). (Also
released as technical report TR. 85-668.)

[Dasg86] 	Dasgupta, P., and M. Morsi. "An Object-Based Distributed Database
System Supported on the Clouds Operating System." TEC:HNICAL

REPORT Grr-Ics-86/07, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA, 1986.

[Her184] 	Herlihy, M. "Replication Methods for Abstract Data Types." PH. D .
DIss., Laboratory for Computer Science, Massachussetts Institute of
Technology, Cambridge, MA, May 1984. (Also released as Technical
Report MIT/I.CS/TR-319.)

[Hone86] 	Honeywell, Inc. "Fault Tolerant Distributed Systems." INTERIM

SCIENTIFIC R EPORT, Computer Sciences Center, Honeywell Inc., Golden
Valley, MN, November 1986. (RADC Contract No. F30602-85-C-
0300.)

[LeB185] 	LeBlanc, R. J., and C. T. Wilkes. "Systems Programming with
Objects and Actions." PROCEEDINGS OF THE FIFTH INTERNATIONAL

CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, Denver (July 1985).
(Also released, in expanded form, as technical report GIT-ICS-85/03.)

Appendix A

Fault Tolerant Computing in
Object Based Distributed Operating Systems

Mustaque Ahamad, Partha Dasgupta,
Richard J. LeBlanc, & C. Thomas Wilkes 1*

School of Information and Computer Science
Georgia Institute of Technology, Atlanta, GA 30332-0280

Abstract

Replication of data has been used for enhancing its availability in the presence of
failures in distributed systems. Data can be replicated with greater ease than
generalized objects. We review some of the techniques used to replicate objects for
resilience in distributed operating systems.

We discuss the problems associated with the replication of objects and present a

scheme of replicated actions and replicated objects, using a paradigm we call PETs
(parallel execution threads). The PET scheme not only exploits the high availability
of replicated objects but also tolerates site failures that happen while an action is
executing. We show how this scheme can be implemented in a distributed object
based system, and use the Clouds operating system as an example testbed.

1. Introduction

A distributed system consists of many computers which are connected via
communication links. The increased number of components (i.e., machines, devices
and communication links) increases the chances of a failure in the system (or
decreases the mean time between failures). Guarding against the effects of failures
is one of the key issues in distributed computing. In this paper, we discuss

t This research was partially supported by NASA under contract number NAG-1-430 and by NSF under contract
number DCS-84-05020.

Authors' Address:
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

Phone:
(404) 894 2572

Electronic Address:
{mustaq,partha,rich,wilkes} 	Gatech.edu
{akgua, allegra ,hplabs,ihnp4}lgatech I {mustaq ,partha,rich ,wilkes}

- A-2

approaches that provide forward progress despite the failure of some components in
a distributed computing system.

Our model of the distributed system is a prototype under development at Georgia
Tech named Clouds. Clouds is a decentralized operating system providing location
transparency, transactions, and robustness in an object based environment. In this
paper, we present a review of known techniques for fault tolerance using replication.
Then we discuss the salient features and architecture of Clouds. Finally, we present
mechanisms needed for replication, probes, and parallel action threads for providing
fault tolerant computing in Clouds. We discuss the pitfalls and the solutions to the
problem of providing replication of objects having a general structure, which is more
complex to achieve than replication of flat data (data that is accessed through read
and write operations, such as files).

2. Replication Techniques for Database Systems

The use of replication to enhance availability was first studied in the area of
distributed database systems, and was later adopted in the area of distributed
operating systems.

2.1 Concurrency Control of Replicated Data

One of the main issues in handling of replicated data in database systems is to
maintain consistency. This is achieved by concurrency control protocols. The
concurrency control and recovery techniques for replicated data are summarized by
Wright.[wrig84] He classifies these methods as conservative (pessimistic, blocking) and
optimistic (non-blocking).

Conservative Concurrency Control Methods Examples of conservative methods are
voting schemes,[Giff79,111"179] primary copy methods,[St°n79] and token-passing
schemes.[LeLa78] These methods ensure consistency of the replicated data by requiring
access to a special copy or a set of copies of the data. Primary copy methods allow
access to a copy during a network partition only if the partition possesses the
designated primary copy of the data. Token-passing schemes are an extension of
primary copy methods. A token is passed among sites holding a copy of data, and
the copy at the site currently holding the token is considered the primary copy. In
the voting schemes, each copy of the data is assigned a (possibly different) number
of votes and a partition possessing a majority of the votes for that object may access
it. The conservative schemes are called blocking since the data is not available at a
site in a partition which does not possess the primary copy (or token or majority of
votes). Thus, the access must block until the partition is ended, even if a copy of the
data is available in the partition. Indeed, under these schemes it is possible that no
partition may have access to the data.

A-3 -

Optimistic Concurrency Control Methods The optimistic methods do not seek to
ensure global consistency of replicated data during partitions. [Davi81, Davi82] Thus,
accesses are not blocked if a replica of the data is available in the partition in
question. Rather, inconsistencies in the replicas are resolved by use of backouts or
compensatory actions during a merge process, once the partition is ended. It is
assumed that the number of such inconsistencies will be small (hence, optimistic).
However, tradeoffs may be made between consistency and availability. For
example, the Data-Patch tool for designing replicated databases[Blau 82, Garc83] assumes
that, rather than strict consistency, a reasonable view of the database should be
maintained to enhance availability.

3. Replication in Operating Systems

Research in database systems has been limited to consideration of flat data, and
as we show later, the generalization to replication of objects having arbitrary
structure leads to many problems. These include the mechanisms used for the
copying of state among replicas and having to deal with multiple instances of a single
operation invocation (or a procedure call). The distributed operating systems that
provide replication of objects or abstract data types include the Eden system

developed at the University of Washington, the ISIS system at Cornell, and the
Circus replicated call facility built on top of Unix. The replication of abstract data
types has also been studied by Herlihy.

Eden The Eden system[Alme831 has been operational at the University of Washington
since April 1983. Support for replication in the Eden system has been studied at
both the kernel level and the object level. The kernel level implementation of
replication support is called the Replect approach (for replicated Ejects, or Eden
objects), while the object level implementation is called R2D2 (for Replicated
Resource Distributed Database). Both implementations use quorum consensus for
concurrency control.

ISIS The ISIS system developed at Cornell[ann 84, Birm85] supports k-resilient objects
(operations on such an object survives up to k site failures) by means of checkpoints.
This system provides both availability and forward progress; that is, even after up to
k site failures, enough information is available at the remaining sites possessing the
object replicas that work started at the failed sites can continue at these remaining
sites. This is accomplished through a coordinator-cohort scheme, where a transaction
executes at the coordinator site and the updates it performs on any objects are
propagated to the cohort replicas. one replica acts as master during a transaction to
coordinate updates at the other slave replicas (cohorts). The choice of which replica
acts as coordinator may differ from transaction to transaction. The object state is
copied from the coordinator to the cohorts. We call this method of state propagation
cloning. This operation has been described, as propagating a checkpoint of the entire
coordinatorPirm84] or, in a more recent paper, as propagating the most recent

A-4 -

version in a version stack. [BirmS5i

In ISIS, a transaction is not aborted when a machine on which its coordinator is
running fails (transactions are usually aborted only when a deadlock situation
arises). Rather, the transaction is resumed at a cohort from the latest checkpoint.
This cohort becomes the new coordinator. Operations which the coordinator had
executed after the latest checkpoint took place must be re-executed at the new
coordinator.

Circus Cooper has investigated a replicated procedure call mechanism called Circus
which was implemented in UNIX.P 30P851 In Cooper's scheme, although replicas of a
module have no knowledge of each other, they are bound (via run-time support)
into a server called a troupe which may be accessed by clients. (The client knows
that the server is replicated.) A module in Circus may have arbitrary structure,
containing references to other modules. However, the module is currently required
to be deterministic. His scheme uses idemexecution (operation execution at each
replica) for state propagation. When a troupe accesses an external troupe, results of
operations on modules of the server troupe are retained by the callees. These results
are associated with call sequence numbers, and are returned when subsequent calls
by the replicas of the caller troupe with the same sequence numbers are
encountered. This avoids the inconsistencies that can be caused by multiple
executions of the same call.

Herlihy's Work Herlihy[Her184] uses semantic knowledge of arbitrary abstract data
types (objects) to enhance the quorum consensus concurrency control method.
Analysis of the algebraic structure of data types is used in the choice of appropriate
intersections of voting quorums.

4. Basics of the Clouds Operating System

Clouds is a distributed operating system that supports objects and actions. The rest
of this paper deals with a set of techniques that implement generalized replicated
objects in the framework of the Clouds operating system. We discuss the salient
features of Clouds in this section. For a more detailed description, the reader is
referred to [Dasg85].

Figure 1 shows the hardware configuration of the Clouds prototype. The Clouds
operating system provides support for the following facilities:

Distribution Clouds has been designed with loosely coupled distribution in mind.
The hardware architecture consists of a set of general purpose machines connected
by an Ethernet. The software architecture is a set of cooperating sub-kernels, which
implement a monolithic view of the distributed system.

11/750

- A-5 -

_ _ wcondary connection

.4.f 1 oTil7ytift--,,
-__

1 o Mbyte":::,

WO(
11/750

■ 	primary connection
/

—0. 	

- ported disks)

10Mbyte

Ethernet

it 	r

User Workstations.

Figure 1. The Clouds Hardware Configuration

Object Based All system components, services, user data, and code are
encapsulated in objects. The object structure is shown in Figure 2. The Clouds
universe is a set of objects (and nothing but objects). An object is a permanent
entity, occupying its own virtual address space. Processes can weave in and out of
objects through entry points defined in the object space. The only way to access data
in an object is to use a process that executes the code in the object via an entry
point.

Location Independence The Clouds objects reside in a flat, system-wide name
space (the system name space is flat, the user name space need not be). There are no
machine boundaries. Any process that has access to an object can invoke an
operation defined by the object. This creates a unified view of the system as one
large computing environment consisting of objects, even though each site in the
system maintains a high degree of autonomy.

Synchronization Objects are sharable, that is several processes can invoke the
object concurrently. This can pose synchronization problems. Clouds implements an
automatic as well as custom synchronization support for concurrent access to objects.
(Automatic synchronization uses two-phase locking, using read and write locks.
Custom synchronization is the responsibility of the object programmer.)

- A-6 -

aobal Data

permanent

data segment

Lochs

Capabilities 1 -1

permanent
heap 'EE

volatile,

per- process

data segment

heap (per process)

system services
(synch, commit etc.)

code segment

user - defined
operations

Figure 2. The Clouds Object Structure

Actions To prevent inconsistency in the data stored in objects, Clouds supports
top-level and nested actions. Two-phase commit it used to ensure that all objects
touched by an action are either updated successfully on a commit or are rolled back
in case of explicit aborts or failures. The action management system tracks the
progress of actions and maintains information about objects touched by the action
and its subactions. The action management system uses the mechanisms provided by
the recovery management component of the Clouds kernel, for performing the
commit or abort operations when a action terminates or fails. Recovery management
is implemented as part of the storage manager.

Clouds is designed to support a high degree of fault-tolerance. The mechanisms
that provide this support are the topic of discussion in the rest of this paper. The
following section discusses the approaches.

5. Fault Tolerance

One of the basic goals that motivated the design of Clouds was achieving fault
tolerance. Several of the mechanisms currently supported by Clouds are geared to
this end. Thus, we believe it is an ideal environment for building a fault tolerant
system. We review some of the low level details that provide such support.

1. 	The object invocation strategy was designed for fault tolerant systems.
When a process invokes an object (using its capability), and the object is not
available locally, a global search-and-invoke is initiated.[sPaf 861 This will
successfully invoke the object if it is reachable. Failure of any site not

- A-7 -

containing the object will not affect the invocation. The invocation will also
find the object, if reachable, irrespective of where it is located, even if it
was moved around in the recent past. Migration, failure, creation and
deletion of objects etc. do not adversely affect the invocation mechanism.

2. All disk systems are dual-ported (or if possible, multi-ported). If a site
fails, the disks belonging to the failed site are re-assigned to other working
sites. Due to the location search-and-invoke mechanism, this switch can be
done on the fly, and the objects that were made inaccessible due to the
failure become accessible.

3. Users are not hard-wired to the sites, but are attached to logical sites

through a front-end Ethernet (multiple Ethernets may be used for higher
reliability, without changing our algorithms or architecture). If the site the
user is attached to fails, some other site takes over and the user still has
access to the system.

4. The system maintains consistency cif all data (objects) in the system by using
the atomic properties of actions (or transactions). Clouds implements nested
atomic actions. This is the function of the action management system,

which uses the synchronization and recovery provided at the kernel level.
The commit and abort primitives are implemented in the kernel gitt 86] and
the action manager implements the policies. Nested actions have semantics
similar to that defined in[moss 81] and are used to firewall failed subactions.

All these mechanisms provide a certain degree of fault tolerance, that is, the
system is not affected adversely by failures. Some actions are aborted, but the
system as a whole continues functioning in spite of site failures. Though dual porting
of disks does simulate some replication (that is, if a site fails, the data stored at the
site is still available through an alternate path), this mechanism is not completely
general because it can not tolerate media crashes. Also, actions executing on the
failed site are forced to abort.

The action management scheme provides backward recovery and ensures that all
data in the system remain consistent in spite of failures. However, this does not
guarantee forward progress, as failures cause actions to abort. Fault tolerance should
imply some guarantee of forward progress, that is an action should be able to
continue in spite of a certain number of failures. We now discuss strategies that
guarantee forward progress despite failures.

5.1 Primary/Backup Actions and Probes

One of the methods that allows fault tolerant behavior is the use of the
primary/backup paradigm for actions. This paradigm is also used for fault-tolerant
scheduler, monitor, and other subsystems requiring some degree of
reliability.[Mcice84, Dasg86] In this scheme, a fault-tolerant action is really two actions,

- A-8 -

one being the primary, which does the work, and the other being a backup, which is
a hot standby. The primary and backup use probes to ensure both are up. If the
primary fails, the backup takes over (and creates a new backup). If the backup fails,
the primary creates a new backup.

The primary/backup system can be implemented using the Clouds probe
management system. In Clouds, a probe can be sent from a process to another
process or an object. The probe causes a quick return of status information of the
recipient. Probes work synchronously, and use high priority messages and non-
blocking routines so that the response time is practically guaranteed. This allows use
of timeouts to check for reachability or liveness.

If a particular object is unavailable due to some failed component (even though
we have dual ported disks), both the primary and the backup actions are doomed to
fail. Thus the primary/backup scheme has to be augmented with increased
availability of objects. Replication is the well known technique for achieving higher
availability of data.

5.2 Replication of Objects

Maintaining consistency of replicated data (i.e., files) is simpler than maintaining
consistency of replicated objects because only the read and write operations are
provided to access data. Objects, on the other hand, are accessed through
operations defined in the objects, which in turn can call operations defined in other
objects. This gives rise to the following problems:

1. Due to non-determinism, the same operation invoked on two identical
copies of an object may produce different results. Thus non-determinism
cannot be handled in the Circus system, because it uses idemexecution.

2. Due to the nested nature of the objects, two copies of a replicated object
may make a call to a non-replicated object, causing two calls where there
should have been one. This can happen in the ISIS system when the
coordinator crashes and some other site becomes the coordinator. In Circus
this happens when the caller object is replicated.

3. Maintaining varying degrees of replication of objects produces a fan-in fan-
out problem that is not easy to handle. Also, the naming scheme for
replicated objects presents a non-trivial problem.

The generality of the abstract object structure supported by Clouds poses
problems for replication methods which are not presented by objects of lesser
generality. The problem lies in the possibility of the arbitrarily complex logical

nesting of Clouds objects. Although Clouds objects may not be physically nested
(that is, one object may not physically contain another-object), an object may contain
a capability to another object. If object A creates another object B, and retains sole
access to B's capability (by refraining from passing the capability to other objects

A-9 -

and also not registering the capability with the object filing system [OFS]), we say
that object B is internal to object A. The internal object B may be regarded as being
logically nested in object A. If, on the other hand, object A passes B's capability to
some object not internal to A, or if A registers B's capability with the OFS, we say
that B is external to A. An external object is potentially accessible to objects that
may not be internal to the object's creator.

Problems arise with replication schemes when internal and external objects are
mixed together in the same structure, i.e., when an object may contain capabilities to
both internal and external objects. These problems are associated with the method
which is used to propagate the state of a replicated object among its replicas.
External objects cause problems when idemexecution is used to propagate state
changes among replicas. If the replicated object invokes an operation on an external
object (e.g., a print queue server), then under idemexecution, that operation will be
executed by each replica. If the operation being performed on the external object is
not idempotent, this can cause serious problems (e.g., multiple submissions of a job
to the print queue). Also, trouble may arise when idemexecution is used if the
operation on the external object is non-deterministic (for instance, random number
generation, or disk block allocation among multiple concurrent processes).

On the other hand, internal objects cause problems when cloning is used to
propagate state. For example, assume that each replica of an object creates a set of
internal objects. Then, when an operation is performed on one of the replicas, its
state under cloning is copied to each of the other replicas. However, since the
capabilities to the internal objects of the replicas are contained in their states, each
replica now contains capabilities to the internal objects of the replica at which the
operation was actually executed. Thus, the information about the internal objects of
the other replicas is lost.

6. Replication Mechanisms

6.1 Replicated Actions

We have developed a scheme called replicated actions. Each replicated action
runs as a nested action and has its own thread of execution. Each thread of control is
called a Parallel Execution Thread or PET. The degree of the replicated action is the
number of PETs that comprise the action. The degree is determined statically at the
the time the top level action is created. If all objects touched by the action are
replicated k times and the degree of the replicated action is also k, we can have each
PET executing on a different copy of the object.

Briefly, the PET scheme sets up several parallel, independent actions, performing
the same task, using a possibly different set of replicas of the objects in question.
These actions follow different execution paths, on different sites, but only one of
them is allowed to commit. The scheme is depicted in Figure 3, and its

- A-10 -

PET #1 	PET #2
	

PET #3

177L-Th;-.1 pdaU ted

I
II

data

/

Figure 3. Parallel Execution Threads of 3-degree

implementation details are presented in Section 6.4.

The PET scheme for replicated objects has several advantages. Firstly, up to k-1
transient failures (in a PET scheme with k threads), are automatically handled
because the remaining PETs will commit the action. This contrasts with the ISIS
scheme in which one of the sites having a replica has to detect the failure of the
coordinator and assume responsibility for the execution of the action. However it is
possible for an action in ISIS to commit while all the PETs may abort in our scheme.
The possibility of this happening is considerably reduced as the degree of the PETs
are increased. Thus this scheme presents a trade off between computation and
replication (overhead) and the degree of fault tolerance.

A replica of an object that is replicated k times can receive multiple calls (as in
ISIS and Circus) when the PET degree is more than k. Thus a replica has to retain
results to avoid executing the same call operation again. However a caller will not
receive multiple results as in Circus and we do not have to collate the returned
results. Also since only a single PET is allowed to commit, cloning is used for state
copying and non-deterministic operations do not cause inconsistent state in the
replicas. The problem of internal (or nested) objects is solved by a modification of
the capability (naming) scheme, which is described below.

6.2 Naming Replicated Objects

Replicated objects and actions provide support for guaranteeing forward progress
when system components fail. This introduces the problem of naming replicated

- A-11 -

objects. In Clouds, the system uses a capability based naming scheme. A capability
is a system name which uniquely identifies one object in the distributed system.
Under this scheme, a k-replicated object is named by k different capabilities. This
makes naming considerably more difficult, and since capabilities are stored within an
object, state copying via cloning causes the problems described earlier.

To solve this we propose a minor modification to the capability scheme. When
replication is supported by the kernel, at the user level, all copies of the replicated
object have the same capability, and thus one capability refers to a set of objects. A
flag in the capability tells the kernel that the capability points to a set of replicas of
the object.

The kernel can then append a copy number to generate unique references to the
objects. The kernel uses the <capability:copy-number> pair to invoke operations.
Thus the kernel can choose to invoke the appropriate copy (or several copies)
depending upon the replication algorithms used to resolve an invocation on a
replicated object.

Replication Flag
1 = Replicated Object
0= non — Replicated.

unique 	identifier access flags R Copy Number

	 User Capability 	►

	 System Capability

Figure 4. Capability Scheme for Replicated Objects

Since all references to the object, as far as the program is concerned, are still
made through a unique capability, which points to all the copies, any naming
problems at the user level disappear (when replication is supported by the kernel).
Constructing the <capability:copy-number> pair can be effectively handled at the
kernel level, using one of several techniques. (For example, the copy number 1 is
always valid, and this copy, as well as other copies, contain information about the
total number of copies, and thus all copies are accessed by the range 1..max.) This
scheme is depicted in Figure 4.

6.3 Invocation of Replicated Objects

The invocation scheme for replicated objects has to follow the scheme outlined
above. The kernel interface handles invocation as follows. For simplicity, in this
section we will assume all the actions have only one thread of control (1-PET). We
will generalize the scheme in the next section.

Copying of State-----

- A-12 -

A process executing on behalf of an action requests the invocation of an
operation defined by an object. The kernel examines the capability and detects
whether the object is replicated or not. If it is not replicated, the invocation proceeds
as a normal Clouds invocation. If the capability points to a replicated object, the
kernel has to choose one of the replicas. If a local copy of the object is available, the
kernel invokes the local copy, else it tries to invoke any one copy, by appending the
copy number and sending out an invocation request on the broadcast medium.
Typically, the kernel chooses copy number 1, and if that fails it tries subsequent
copies. This sequential searching is not necessary, as the kernel can use previous
history to decide which replica to use.

PET #1 Commits

Figure 5. State Copying on PET Commit

Once a replica is used for an action, the kernel takes note of that, and stores it
with the action id, and all later invocations are directed to that replica. Thus only a
single replica of each replicated object is used to execute one action. The other
replicas are not touched, until the action decides to commit. When an action
commits, the replica it touched is copied to all other replicas. This is done by copy
requests from the action management systems to all the replicas (using the copy
number scheme). All accessible replicas are updated and their version numbers
updated. (Note that if the source object has a copy number lower than a replica, the
action has to be aborted.) The version copying strategy is shown in Figure 5.

The version numbers are also used to bring failed sites up-to-date on startup. On
startup, all replicas at the site having version numbers less than the highest version
number on the network are reinstated.

6.4 Handling PETs

The above scheme using 1•PET execution is prone to failures in certain cases.
These include cases where a replica becomes unavailable after it has been invoked,
the replica invoked was not up-to-date and when the site coordinating the action
fails.

The N-PET (N> 1) case decreases the chances of transaction abort due to the
transient failures described in the earlier paragraph. All the separate PETs have

- A-13 -

different co-ordinating sites and execute independently.

When the first thread invokes a replicated object, the invocation proceeds as
above, that is a replica is chosen to service the action. The second thread also
proceeds similarly, but a different replica is chosen. The replica choice does not have
to be different, but the reliability increases if they are, so we use a random choice
scheme. Note that the same object is chosen (as there is no choice) if the object is
not replicated. Multiple invocations of the same object, due to multiple threads of
control are handled by a collator. The commit phase is however different.

In this scheme, ONLY one PET can be allowed to commit. If more than one
PET reaches commit point, each PET issues a pre-commit, which checks if all the
primary copies it touched are still available. If any thing is not reachable, the PET
aborts. Of the remaining PETs any one has to be chosen to commit (In fact if all of
them are allowed to proceed, they will overwrite each others results and may cause
deadlocks during commit time.) The co-ordinating site with the highest site number
wins the match and commits the PET that was associated with the site. The commit
causes the replicas touched by this PET to be copied to all other replicas. The co-
ordinating sites that lost the commit war, do not abort the PETs, but wait for the
commit of the winner to be over. If the commit fails the co-ordinator with the next
highest site number attempts the commit. (Note that the previous commit could have
attempted to overwrite the replicas touched by this PET, but the pre-commit causes
a special copy of all the replicas to be retained, and this copy is used for the
commit.)

Transient failures cause failed PETs, but the chances of all PETs failing decreases
as the number of PETs is increased. Also, failures during commit are taken care of,
by the other PETs. Of course it is possible for all the PETs to abort, but the chances
of this happening decrease as the replication degree and the PET degree is
increased.

7. Concluding Remarks

There are two major contributions of this research.

1. The object replication scheme is not as straightforward as data replication. The
capability scheme allows reference to a set of objects and the cloning technique
ensures correct execution in spite of generalized and nested objects, as well as
non-deterministic objects.

2. Replication enhances availability, that is, actions can be run on a system that
has some sites or data missing due to failures. Handling transient failures are
not possible in most replicated schemes, that is, if an action touches an object,
and the object later becomes inaccessible, before the action commits, the action
has to abort. Also, once an action has visited a site, the failure of that site
before the action commits can lead to action failure. The PET scheme allows

- A-14 -

the action to proceed, with high probability of success, in a unreliable
environment, where sites fail and restart during the execution time of the
action.

We are currently involved with designing the lower level algorithms and
modifying the Clouds action management scheme to implement the PET method of
providing fault tolerance in the Clouds operating system. This involves the
implementation of the collators, the kernel primitives to choose the appropriate
replicas, the mechanisms that ensure distinct PETS choose distinct replicas and so
on. Once the implementation is complete, we will be able to experimentally study
the reliability of this approach.

REFERENCES

[Alme83] 	Almes, G. T., A. P. Black, E. D. Lazowska, and J. D. Noe. "The
Eden System: A Technical Review." TECHNICAL REPORT 83-10-05,
University of Washington Department of Computer Science, October

1983

[Birm84] 	Birman, K. P., T. A. Joseph, T. Raeuchle, and A. El-Abbadi.
"Implementing Fault-Tolerant Distributed Objects." PROCEEDINGS OF

THE FOURTH SYMPOSIUM ON RELIABILITY IN DISTRIBUTED SOFTWARE AND

DATABASE SYSTEMS, Silver Spring, MD (October 1984): 124-133.

[Birm85] 	Birman, K. P. "Replication and Fault-Tolerance in the ISIS System."
PROCEEDINGS OF THE TENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES

(ACM SIGOPS), Orcas Island, Washington (December 1985). (Also
released as technical report TR 85-668.)

[Blau82] 	Blaustein, B., R. M. Chilenskas, H. Garcia-Molina, D. R. Ries, and T.
Allen. "Partition Recovery Using Semantic Knowledge." (TECHNICAL

REPORT), Computer Corporation of America, Cambridge, MA,
November 1982.

[Coop85] 	Cooper, E. "Replicated Distributed Programs." PROCEEDINGS OF THE

TENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (ACM SIGOPS),
Orcas Island, WA (December 1985): 63-78. (Available as Operating

Systems Review 19, no. 5.)

[Dasg85] 	Dasgupta, P., R. LeBlanc, and E. Spafford. "The Clouds Project:
Design and Implementation of a Fault-Tolerant Distributed Operating
System." TECHNICAL REPORT Grr-Ics-85/29, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA,
1985.

- A-15 -

[Dasg86] 	Dasgupta, P. "A Probe-Based Monitoring Scheme for an Object-
Oriented Distributed Operating System." PROCEEDINGS OF THE

CONFERENCE ON OBJECT ORIENTED PROGRAMMING SYSTEMS, LANGUAGES AND

APPLICATIONS (ACM SIGPLAN), Portland, OR (Sept. 1986): 57-66.
(Also available as Technical Report GIT-ICS-86/05.)

[Davi81] 	Davidson, S., and H. Garcia-Molina. "Protocols for Partitioned
Distributed Database Systems." PROCEEDINGS OF THE SYMPOSIUM ON

RELIABILITY IN DISTRIBUTED SOFTWARE AND DATABASE SYSTEMS, Pittsburgh,
PA (July 1981).

[Davi82] 	Davidson, S. "An Optimistic Protocol for Partitioned Distributed
Database Systems." PH.D. Diss., Department of Electrical Engineering
and Computer Science, Princeton University, 1982.

[Garc83] 	Garcia-Molina, H., T. Allen, B. Blaustein, R. M. Chilenskas, and D.
R. Ries. "Data-Patch: Integrating Inconsistent Copies of a Database
after a Partition." PROCEEDINGS OF THE THIRD SYMPOSIUM ON RELIABILITY

IN DISTRIBUTED SOFTWARE AND DATABASE SYSTEMS, Clearwater Beach, FL
(October 1983).

[Giff79] 	Gifford, D. K. "Weighted Voting for Replicated Data." PROCEEDINGS

OF THE SEVENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (ACM
SIGOPS), Pacific Grove, CA (December 1979).

[Her184] 	Herlihy, M. "Replication Methods for Abstract Data Types." PH.D.
Diss., Laboratory for Computer Science, Massachussetts Institute of
Technology, Cambridge, MA, May 1984. (Also released as Technical
Report MIT/LCS/TR-319.)

[LeLa78] 	LeLann, G. "Algorithms for Distributed Data-Sharing Systems Which
Use Tickets." PROCEEDINGS OF THE THIRD BERKELEY WORKSHOP ON

DISTRIBUTED DATA MANAGEMENT AND COMPUTER NETWORKS, Berkeley, CA
(August 1978).

[McKe84] McKendry, M. S. 	"Fault-Tolerant Scheduling Mechanisms."
(UNPUBLISHED TECHNICAL REPORT), School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, May
1984. (Draft only.)

[Moss81] 	Moss, J. "Nested Transactions: An Approach to Reliable Distributed
Computing." TECHNICAL REPORT MIT/LCS/TR-260, MIT Laboratory for
Computer Science, 1981.

[Pitt86] 	Pitts, D. V. "Storage Management for a Reliable Decentralized
Operating System." PH.D. DISS. , School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, GA, 1986. (Also

- A-16 -

released as Technical Report GIT-ICS-86/21.)

[Spaf86] 	Spafford, E. H. "Kernel Structures for a Distributed Operating
System." PH.D. DIss., School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA, 1986. (Also released as
technical report GIT-ICS-86/16.)

[Ston79] 	Stonebreaker, M. "Concurrency Control and Consistency of Multiple
Copies of Data in Distributed INGRES." TRANSACTIONS ON SOFTWARE

ENGINEERING (IEEE) 5, no. 3 (May 1979).

[Thom79] Thomas, R. H. "A Majority Consensus Approach to Concurrency
Control for Multiple-Copy Databases." TRANSACTIONS ON DATABASE

SYSTEMS (ACM) 4, no. 2 (June 1979).

[Wrig84] 	Wright, D. D. "Managing Distributed Databases in Partitioned
Networks." PH. D. Diss., Department of Computer Science, Cornell
University, Ithaca, NY, January 1984. (Also available as Cornell
University Technical Report 83-572.)

APPENDIX B

Feb 11 18:34 1987 Names.def Page 1

definition of pseudo object Names is

! handles parsing of user names and command lines for OFS, shell

MAXARGS : const unsigned. := 32

constraint argument_number is unsigned[0 	MAXARGS]

MAX_PATH_LENGTH : const unsigned := 128

constraint pathname_length is unsigned[0 .. MAX_PATH_LENGTH]
•

type pathname_type(length : pathname_length := 0) is new string(length)

type path_type is (in_ancestor, is_ancestor, in_child, in_here, is_here,
absolute_path, unknown_path)

operations

procedure split
(path : in pathname_type(),

first, rest : out pathname_type())

Separate the pathname given in parameter "path" into two
! parts, "first" and "rest", based on the first occurence of
1 the path separator "/" in "path".

procedure scan_path
(path : in pathname_type(),

first, rest : out pathname_type())
returns path_type

! Performs the "split" operation (see above) on parameter
! "path", placing the results in the out parameters "first" and
I "rest", and returns the "path_type" of "path"

procedure arg
(number : argument_number)

returns pathname_type()

! Returns the argument the position of which in the argument
! string is given by "number". The numbering of arguments
1 begins with zero, where argument zero is (usually) the name
1 of a process being invoked.

procedure nargs 0
returns argument_number

! Returns the number of arguments encountered in the current
! argument string.

procedure getLargs

- B- 2 -

Feb 11 18:34 1987 Names.def Page 2

! Reads an argument string from standard input and parses it
! into separate arguments for later use.

end definition.

- B- 3-

Feb 19 13:38 1987 OFS.def Page 1

definition of local object OFS
(OFS_ROOT : OFS, 	initial_ancestor : OFS, 	initial_name : string()) is

! single-copy version of the Object Filing System

import Names

type OFS_op is (mkdir_op, rmdir_op, mv_op, rm_op, ls_op, quick_ls_op)
! OFS operations which share essentially a common interface

operations

! In the operations below, the parameters first, rest, and ptype
represent a pathname argument as processed by Names @ scan_path().

procedure get_cap
(first, rest : in out pathname_type(),

ptype : in out path_type,
error : out boolean)
returns capability examines

! Retrieves the capability for the object with the given
! pathname from the OFS. If the pathname exists, sets error
! to FALSE and returns the associated capability, otherwise
! sets error to TRUE and returns NIL.

procedure put_cap
(cap : capability,

first, rest : in out pathname_type(),
want_ancestor : boolean,
ancestor : OFS,
ptype : in out path_type,
error : out boolean) modifies

! Places a capability for an object into the OFS under the
! given pathname. 	If the given pathname already exists, or if
! the prefix of the pathname (if any) does not exist, cap is
! not inserted into the OFS, and error is set to TRUE;
! otherwise, cap is inserted into the OFS, and error is set to
! FALSE.

procedure general_op
(op_name : OFS_command,

first_arg, second_arg : in out pathname_type(),
error : out boolean) modifies

! An interface for the operations enumerated by type OFS_op,
I which share a common interface and similar semantics with
! respect to pathnames. The actual operation to be performed
! is specified by parameter op_name. Two pathname parameters
I may be specified; the second is used only by the mmv"
! operation. If the operation was successful (depending on the
! existence of the specified pathnames and, in the case of the
! rmdir command, on whether the first argument specified a

- B-4-

Feb 19 13:38 1987 OFS.def Page 2

! directory), error is set to FALSE; otherwise, error is set to
! TRUE.

procedure my_pathname 0
returns pathname_type0 examines

! Returns the current pathname of this OFS instance.

procedure reset_pathname
ancestor_name, new_name : pathname_typeO,
error : out boolean) modifies

! If parameter "ancestor_name" is the null string, sets the
! instance's current pathname to "new_name" and sets "error" to
! FALSE; else, if the concatenation of the ancestor's path and
! the new instance name is within the maximum path length
! contraint, sets the instance's current pathname to this
! concatenation, and sets "error" to FALSE; otherwise, sets
! "error" to TRUE.

end definition.

- B- 5-

Feb 19 15:18 1987 symtab.def Page 1

definition of local object symtab
(name_type : type, value_type : type) is

! Single-copy symbol table object using the Aeolus/Clouds lock
mechanisms for synchronization.

I The definition part contains specifications of public constants,
! types, and operations defined by this object.
! When compiled, it produces a symbol table file which may be imported
! by other objects using this object in their implementations.

operations

procedure insert (name : name_type
value : value_type ,
error : out boolean) modifies

! The INSERT operation places an entry into the symbol
! table. ERROR is set if an entry with the same name
I already exists.

procedure delete (name : name_type 	,
error : out boolean) modifies

! If the DELETE operation finds an entry with the given
! name, it removes the entry from the symbol table and
! frees its storage space.

procedure find (name : name_type 	,
error : out boolean) returns value_type examines

1 The FIND operation tries to locate the entry with the
1 given name and returns its value if it succeeds. ERROR
1 is set if the entry is not in the table.

procedure quick_list 0 examines

! The QUICK_LIST operation provides a quick (dirty)
! listing of all names currently in the symbol table.

procedure exact_list 0 examines

! The EXACT_LIST operation provides a listing of the exact
1 state of the symbol table at a given point in time. To
I do this, it locks the whole symbol table, thereby
! excluding any changes during preparation of the listing.
! Thus, although EXACT_LIST, FIND, and QUICK_LIST
!_operations may execute concurrently, and INSERT and
! DELETE operations which access different hash buckets
! may also execute concurrently, INSERT and DELETE
! operations must block on EXACT_LIST operations.

Feb 19 15:18 1987 symtab.def Page 2

end definition.

- B-7-

Feb 13 13:28 1987 Names.imp Page 1

implementation of object Names is

! handles parsing of user names for OFS

import strings

procedure split
(! path : in pathname_type,
! first, rest : out pathname_type !) is

sep_pos : integer

begin
sep_pos := strings @ str_pos(path_separator, string(path))
if sep_pos <= 0 ! no separator found ! then

first := path
rest := "

else
first := pathname_type(

strings @ substr(string(path), 1, sep_pos-1)

rest := pathname_type(
strings @ substr(string(path), sep_pos+1, path.length)

end if
end procedure ! split

procedure scan_path
(! path : in pathname_type,
! first, rest : out pathname_type
! returns path_type ! is

temp : pathname_type

begin
split(path, first, rest)
if first = 1 /' ! a path relative to the root directory is desired ! then

return absolute_path
elsif first = I ..' then

if rest = " ! the ancestor directory is desired ! then
return is_ancestor

else
return in_ancestor

end if
elsif first = 1 . 1 then

if rest = " ! the current directory is desired ! then
return is_here

else
return in_here

end if
else

return in_child
end if

end procedure ! scan_path

- B-8-

Feb 13 13:28 1987 Names.imp Page 2

type arg_array(arg_length : pathname_length := 0) is
array[argument_number] of pathname_type(arg_length)

current_arg : arg_array()

procedure arg
(! 	number : unsigned !)
! returns pathname_type() ! is

begin
return current_arg[number]

end procedure ! arg

numargs : argument_number := 0

procedure nargs()
returns unsigned is

begin
return numargs

end procedure ! nargs

arg_string : pathname_type()

cur_index : pathname_length := 1

procedure eat_separators
(done : out boolean) is

! Consume all separators (blanks or tabs) beginning at the current
! position in the argument string. The parameter 'done' is set
! to TRUE if the end of the argument string is encountered,
! FALSE otherwise.

begin
loop

using next_char for arg_string[cur_index] do
if (next_char = ") or (next_char = '\TAB\')

! argument separator ! then
cur_index += 1

else
done := next_char = '\NUL\'
exit .

end if
end using

end loop
end procedure 1 eat_separators

procedure store_argument

- B-9-

Feb 13 13:28 1987 Names.imp Page 3

(arg_number : argument_number) is

! Parse an argument from the argument string and store it into
! the appropriate position in the array of parsed arguments.

arg_index : pathname_length := 1

begin
loop

using next_char for arg_string[cur_index] do
if (next_char = ") or (next_char = '\TAB\') ! separator ! then

exit .
else

current_arg[arg_number] [arg_index] := next_char
arg_index, cur_index += 1

end if
end using

end loop
current_arg[arg_number] [arg_index] := '\NUL\'

end procedure ! store_argument

procedure get_args() is

at_end_of_args : boolean

begin
InOut @ ReadStr(string(arg_string))
for i in argument_number loop

eat_separators(at_end_of_args)
store_argument(i)
if at_end_of_args then

numargs := i
return .

end if
end loop
numargs := MAXARGS

end procedure ! get_args

inithandler is

begin
null

end inithandler

end implementation.

- B-10-

Feb 19 13:36 1987 OFS.imp Page 1

implementation of object OFS
!(OFS_ROOT : OFS, 	initial_ ancestor : OFS, 	initial_name : string())! is

! Single-copy version of Object Filing System. OFS uses the
! symtab object type to manage all symbol table functions such
! as insertion, deletion, etc. When an operation is invoked on
! an OFS object by a user, it is because that instance of OFS is
! the current working directory. When a relative path is passed
1 to that instance of the OFS, it relays the operation to the
1 appropriate instance by invoking operations on its children
! (maintained in the symbol table) or its ancestor. Absolute
1 paths (i.e., paths starting at the root OFS) are not handled,
! except in put cap(); it is assumed that the driver process
! (e.g., "shell") catches absolute paths and relays them to the
! root OFS. 	(As an optimization, the driver should also catch
! most references to the current working directory's direct
! ancestor.) The user may also change the instance of OFS which
1 is considered the current working directory by means of
I relative or absolute paths.

import symtab, InOut

table : symtab(pathname_type(), capability) := new symtab

procedure get_cap
(! first, rest : in out pathname_type,
! ptype : in out path_type,
! want_ancestor 	boolean,
1 ancestor : out OFS,
1 error : out boolean

) ! returns capability ! is

child : OFS
temp : pathname_type()

begin
error := FALSE
ancestor := NIL
case ptype of

in_child, in_ancestor :
child := table @ find(first, error)
if error ! no child by this name exists ! then

return NIL
else

temp := rest
ptype := Names @ scan_path(temp, first, rest)
return child @ get_cap(first, rest, ptype,

want_ancestor, ancestor, error)
end if

in here,is ancestor, is here : _
if want_ancestor then

ancestor := table @ find('..', error)
end if
return table @ find(first, error)

otherwise

- B- 11 -

Feb 19 13:36 1987 OFS.imp Page 2

error := TRUE
return NIL

end case
end procedure ! get_cap

current_pathname : pathname_type() 	! the current name of this OFS instance

procedure put_cap
(! 	cap : capability,
! first, rest : in out pathname_type(),
! ptype : in out pathname_type(),
! error : out boolean

) 	is

child : capability
child_OFS : OFS
is_OFS : boolean
temp : pathname_type()

begin
error := FALSE
case ptype of

in_child, in_ancestor :
child := table @ find(first, error)
if error ! no child by this name exists ! then

return .
else

error := not object_type(child, 'OFS')
if error then

InOut @ WriteStr('OFS: "')
InOut @ WriteStr(string(first))
InOut @ WriteStr('" is not a directory.')
InOut @ WriteLn()
return .

else
temp := rest
ptype := Names @ scan_path(temp, first, rest)
OFS(child) @ put_cap(cap, first, rest, ptype, error)

end if
end if

in-here :
is_OFS := object_type(cap, 'OFS')
if is_OFS then

child_OFS := OFS(cap)
temp := ! save old pathname in case of error

child_OFS @ reset_pathname(current_pathname, first, error)
end if
if not error then

table @ insert(first, cap, error)
if error and is_OFS then 	! restore old pathname

Void(child_OFS @ reset_pathname(", temp, error))
end if

end if
absolute_path :

- B-12-

Feb 19 13:36 1987 OFS.imp Page 3

OFS_ROOT @ put_cap(cap, first, rest, ptype, error)
otherwise

error := TRUE
return .

end case
end procedure ! put_cap

procedure general_op
op_name : OFS_op,

! first_arg, second_arg : pathname_type(),
! error : out boolean

) 	is

child : capability
child_OFS : OFS
first, rest, temp : pathname_type()
ptype : path_type

begin
error := FALSE
ptype := Names @ scan_path(first_arg, first, rest)
case ptype of

in_child, in_ancestor :
child := table @ find(first, error)

• 	 if error ! child not found ! then
InOut @ WriteStr('OFS: "')
InOut @ WriteStr(string(first))
InOut @ WriteStr('", no such directory.')
lnOut @ WriteLn()
return .

end if
error := not object_type(child, 'OFS')
if error then

InOut @ WriteStr('OFS: "')
InOut @ WriteStr(string(first))
InOut @'WriteStr("' not a directory.')
InOut @ WriteLn()
return .

end if
temp := rest
ptype := Names @ scan_path(temp, first, rest)
child @ general_op(op_name, first, rest, ptype, second, error)

II in here:
case op_name of

mkdir_op :
child := new OFS(MySelf(), first)
table @ insert(first, child, error)

ii rmdir_op :
child := table @ find(first, error)
if error then

InOut @ WriteStr(I rmdir: "');
InOut @ WriteStr(string(first));
InOut @ WriteStr('", no such directory.')
InOut @ WriteLn()
return .

Feb

- B-13-

19 	13:36 	1987 	OFS.imp Page 4

end 	if
error 	:= object_type(child, 	'OFS')
if 	error 	then

InOut @ WriteStr('rmdir: 	"');
InOut @ WriteStr(string(first));
InOut @ WriteStr(is 	not 	a 	directory.')
InOut
return

end 	if

@ WriteLn0
.

table @ delete(first, error)
, mv_op :
child := table @ find(first, error)
if not error then

ptype := Names @ scan_path(second_arg, first, rest)
put_cap(child, first, rest, ptype, error)
if not error then

table @ delete(first, error)
end if

end if
rm_op :
child := table @ find(first, error)
if not error then

if object type(child, 'OFS') then
InOut @ WriteStr('rm: "');
InOut @ WriteStr(string(first));
InOut @ WriteStr('" is a directory.')
InOut @ WriteLn()
error := TRUE

else
table @ delete(first, error)

end if
end if

ii ls_op :
table @ quick_list()

ii quick_ls_op :
table @ exact_listO

end case
otherwise

error := TRUE
return .

end case
end procedure ! general_op

procedure my_pathname 0
1 returns pathname_type() ! is
begin

return current_pathname
end procedure ! my_pathname

procedure reset_pathname
ancestor_name, new_name : pathname_type(),

! error : out boolean
)! returns pathname_type() ! is

- B-14-

Feb 19 13:36 1987 OFS.imp Page 5

old_pathname : pathname_type()

begin
if ancestor_name = " then

current_pathname := new_name
error := FALSE
return "

end if
ancestor_name :=

pathname_type(strings @ str_concat(string(ancestor name), '/'))
error := (strings @ str_len(string(ancestor_name)) ;

strings. @ str_len(string(new_name)))
> MAX_PATH_LENGTH

if error then
InOut @ WriteStr('OFS: instance "')
InOut @ WriteStr(string(new_name))
InOut @ WriteStr('", pathname too long.')
InOut @ WriteLn()
return "

else
old_pathname := current_pathname
current_pathname := pathname_type(

strings @ str_concat(string(ancestor_name), string(new_name))

return old_pathname
end if

end procedure 	reset_pathname

inithandler is
! initialize the symbol table to hold the current and ancestor OFSs

error : boolean

begin
table @ insert ('.', MySelf(), error)
if error then

InOut @ WriteStr('OFS: instance "')
InOut @ WriteStr(string(initial_name))
InOut @ WriteStr(I " cannot insert ".")
InOut @ WriteLn()

end if
if initial_name = '/' then 	! this is the root OFS

current_pathname := initial lame
table @ insert('..', MySelT(), error)

else
reset_pathname(initial_ancestor @ my_pathname(), initial_name, error)
table @ insert('..', initial_ancestor, error)

end if
if error then

InOut @ WriteStr('OFS: instance "')
InOut @ WriteStr(string(initial_name))
InOut @ WriteStr('" cannot insert ".."')
InOut @ WriteLn()

end if
end inithandler

Feb 19 13:36 1987 OFS.imp Page 6

end implementation.

- B- 16-

Feb 21 14:50 1987 symtab.imp Page 1

implementation of object symtab
!(name_type : type, value_type : type)! is

! Single-copy symbol table object using the lock mechanisms of
! Aeolus/Clouds for synchronization and the critical region and
! shared constructs for mutual exclusion. Since this object is
! not recoverable, we will explicitly release locks.

import keyed_list

! Each bucket of the hash table is a list of names and values,
! keyed by the name field.

type bucket_list is new keyed_list(name_type, value_type)

! The symbol table structure itself is an array of bucket lists.
! Each bucket is shared, and thus must be modified only within a
! critical region.

MAXBUCKET : const integer := 101 	! or whatever

type hash_range is new unsigned[1 	MAXBUCKET]

symtable : array[hash_range] of shared bucket_list

! The SYMTABLE lock allows the entire symbol table to be locked.
! This lock is set (in read mode) in the EXACT_LIST operation
1 for purposes of getting an exact listing of the state of the
! symbol table. Operations which change the state of the symbol
! table must wait for completion of any outstanding EXACT_LIST
! operations and vice versa.

symtable_lock : lock (write : [write] ,
read : [read])

procedure hash (name : name_type) returns hash_range is

! This HASH function is a local (nonpublic) procedure of the
! SYMTAB object.

begin
NULL 	I the usual type of stuff

end procedure 1 hash

procedure insert (! name : name_type
! value : value_type
! error : out boolean 1) is

! The INSERT operation adds an entry to the appropriate bucket
! of the symbol table.

dummy 	: value_type

- B-17-

Feb 21 14:50 1987 symtab.imp Page 2

bucket_num : hash_range

begin
bucket_num := hash(name)
Awiit_Lock(symtable_lock, write)
region symtable[bucket_num] do

error := symtable[bucket_num] @ find(name, dummy)
if not error then

symtable[bucket_num] @ add(name, value)
end if

end region
Release_Lock(symtable_lock, write)

end procedure ! insert

procedure delete (! name : name_type
! error : out boolean !) is

! If the DELETE operation finds an entry with value field = NAME
! in the appropriate bucket, it removes that entry.

dummy : value_type

begin

Await_Lock(symtable_lock, write)
region symtable[bucket_num] do

error := not symtable[bucket_num] @ find(name, dummy)
if not error then

symtable[bucket_num] @ remove(name)
end if

end region
Release_Lock(symtable_lock, write)

end procedure ! delete

procedure find (! name : name_type
! error 	out boolean !) ! returns value_type ! is

! The FIND operation sets a READ lock on the NAME entry, and
! then tries to locate that entry with name field = NAME and
! returns its value if it succeeds.

value : value_type

begin
Await_Lock(symtable_lock, read)
error := not symtable[bucket_num] @ find(name, value)
Release_Lock(symtable_lock, read)
return value

end procedure ! find

procedure quick_list() is

! The QUICK_LIST operation provides a quick (dirty) listing of
! names currently in the symbol table.

— B-18—

Feb 21 14:50 1987 symtab.imp Page 3

begin
for i in hash_range loop

symtable[i] @ display()
end loop

end procedure ! quick_list

procedure exact_list() is

! The EXACT_LIST operation provides a listing of the exact state
! of the symbol table at a given point in time. To do this, it
! locks the whole symbol table, thereby excluding any changes
! during preparation of the listing. Thus, although- EXACT_LIST,
! FIND, and QUICK_LIST operations may execute concurrently, and
! INSERT and DELETE operations which access different hash
! buckets may also execute concurrently, INSERT and DELETE
! operations must block on EXACT_LIST operations and vice versa.

begin
Await_Lock(symtable_lock, read)
quick_l ist()
Release_Lock(symtable_lock, read)

end procedure ! exact_list

I

inithandler is

I Here, we initialize the symbol table.

begin
for i in hash_range loop 	! each bucket is initially empty

region symtable[i] do
symtable[i] := new bucket list

end region
end loop

end inithandler

end implementation.

- B-19-

Feb 19 13:55 1987 shell.pro Page 1

process shell is

! simple shell prototype to demonstrate use of OFS

import OFS, ProcessManager, Names, InOut

type shell_command is (activate, bye, mkdir, rmdir, mv, rm, pwd, Is, qls)

prompt : string(80) := 'Clouds>

OFS_ROOT : const OFS := new OFS(NIL, NIL, '/')

! The root object of the Object Filing System. The above
! initialization is used for the test version of the shell
process, where OFS is declared as a local object. 	In the

! "production" version, where OFS is a nonrecoverable
! (Clouds) object, the initialization would take the form:

OFS(capability{ sysname{ 0, 16#70f, 'B', 1 },
access_rights(16#ffffffff))

! that is, an explicit construction of a capability (which,
1 in the case of the OFS root, must be well-known).
! (Actually, the capability shown above is for the current
! flat-name-space nameserver, but serves to show the format
! for specification of a capability.)

procedure get_cmd
(cmd : out shell_command,

first, rest : out pathname_type(),
ptype : out path_type) is

1 Issues a prompt, then invokes the Names object to parse the
1 next argument string from standard input. The zero-th
! argument is examined to see if it matches one of the shell

' 1 commands (this is done by linear search in this prototype).
! If the argument is not a shell command, it is assumed to name
! a process residing in the OFS.

cmd_str : pathname_type()

begin
InOut @ WriteStr(prompt)
Names e get_args()
cmd_str := Names @ arg(0)
Names e scan_path(cmd_str, first, rest, ptype)
if ptype = in_here ! possibly a shell command ! then

for trial_cmd in shell_command[bye .. qls] loop
if cmd_str = pathname_type(trial_cmd) then

cmd := trial_cmd
return .

end if
end loop

end if

cmd := activate ! if cmd_str doesn't match any shell command

- B-20-

Feb 19 13:55 1987 shell.pro Page 2

end procedure ! get_cmd

ancestor, current : OFS := OFS_ROOT

still_processing : boolean := TRUE

procedure get_activatee
(first, rest : in out pathname_type(),

ptype : in out path_type)
returns ProcessManager is

! If a ProcessManager with the given pathname (as processed by
! Names @ scan_path()) is found, a capability to it is
! returned; otherwise, NIL is returned.

temp : pathname_type()
error : boolean := FALSE
dummy : OFS

begin
case ptype of

in_ancestor :

temp := rest
ptype := Names @ scan_path(temp, first, rest)
cap := ancestor @ get_cap(first, rest, ptype, FALSE, dummy, error)

11 in child, in here :
cap := current @ get_cap(first, rest, ptype, FALSE, dummy, error)

ii absolute_path :
cap := OFS_ROOT @ get_cap(first, rest, ptype, FALSE, dummy, error)

otherwise
error := TRUE

end case
if error then

InOut @ WriteStr('shell: " I)
InOut @ WriteStr(string(first))
InOut @ WriteStr("' process not found.')
InOut @ WriteLn()
return NIL

end if
error := not object_type(cap, 'ProcessManager')
if error then

InOut @ WriteStr('shell: "')
InOut @ WriteStr(string(first))
InOut @ WriteStr('" is not a process.')
InOut @ WriteLn()
return NIL

else
return ProcessManager(cap)

end if
end procedure ! get_activatee

procedure get_invokee
(ptype : path_type)

- B-21-

Feb 19 13:55 1987 shell.pro Page 3

returns OFS is

! This procedure provides a bit of an optimization at the shell
! process level by determining from the pathname type whether
! to initially invoke the current OFS, its ancestor, or the
! root OFS. The capability of the correct invokee is returned
! (or NIL, if "ptype" has a bad value).

begin
case ptype of

in_ancestor, is_ancestor
return ancestor

in-child 	in here 	is here : _ 	is_ here
 current

11 absolute_path :
return OFS_ROOT

otherwise
return NIL

end case
end procedure ! get_invokee

procedure get_dir
(name•: pathname_type()) is

first, rest : pathname_type()
temp_current, temp_ancestor : OFS
error : boolean

begin
Names @ scan_path(name, first, rest, ptype)
temp_current :=

invokee @let_cap(first, rest, ptype, TRUE, temp_ancestor, error)
if error then

InOut @ WriteStr('chdir:)
InOut @ WriteStr(name)
InOut @ WriteStr('" not found.')
InOut @ WriteLn()

elsif not object_type(temp_current, OFS) then
InOut @ WriteStr('chdir: "')
InOut @ WriteStr(name)
InOut @ WriteStr("' is not a directory.')
InOut @ WriteLn()

else
current := temp_current
ancestor := temp_ancestor

end if
end procedure ! get_dir

procedure arg_number_ok
(cmd : shell_command)

returns boolean is

! Check the number of arguments provided with a command to see
! if it is correct. This is a very simple-minded prototype, in

- B-22-

Feb 19 13:55 1987 shell.pro Page 4

! that no option strings are allowed.

arg_num : argument_ number

begin
arg_num := Names @ nargs()
case cmd of

activate :
return TRUE 	! may have any number of arguments

bye, pwd
return arg_num = 1

1: mkdir, rmdir, rm, ls, qls :
return arg_num = 2

I my :
return arg_num = 3

end case
end procedure ! arg_number_ok

• procedure process_cmd
(cmd : shell_command,

first, rest : in out pathname_type(),
ptype : in out path_type) is

! Activate a process residing in the OFS, or process a shell
! command by invoking an OFS operation, based on the value of
.! the parameter "cmd". The parameters "first", "rest", and
! "ptype" should initially contain the zero-th argument from
! the argument string, as processed by Names @ scan_path().

activatee : ProcessManager
invokee : OFS
op : OFS_op
second : pathname_type() :=
error : boolean

begin
if not arg_number_ok(cmd) then

InOut @ WriteStr(string(cmd))
InOut @ WriteStr(': incorrect number of arguments.')
InOut @ WriteLn()
return .

end if
case cmd of

activate :
activatee := get_activatee(first, rest, ptype)
if activatee <> NIL then

activatee @ activate()
end if

ii bye :
still_processing := FALSE

ii mkdir, rmdir, mv, rm, ls, qls :
invokee := get_invokee(ptype)
if invokee <> NIL then

case cmd of
mkdir : op := mkdir_op

- B-23-

Feb 	19 	13:55 	1987 shell.pro Page 5

rmdir 	: 	op 	:= 	rmdir_op
my
rm
is
qls

:
:
:
:

op
op
op
op

:= mv_op
:= rm_op
:= ls_op
:= qls_op

second := Names @ arg(2)

end case
invokee @ general_op(op, Names @ arg(1), second, error)

end if
chdir :

invokee := get_invokee(ptype)
if invokee <> NIL then

get_dir(Names @ arg(1))
end if

:1 pwd :
InOut @ WriteStr(string(current @ my_pathname()))
InOut @ WriteLn()

otherwise
InOut @ WriteStr('shell: Invalid command "')
InOut @ WriteStr(string(first))
InOut @ WriteStr(' H .')
InOut @ WriteLn()

end case
end procedure ! process_cmd

begin
while still_processing loop

get_cmd(cmd, first, rest, ptype)
process_cmd(cmd, first, rest, ptype)

end loop
end process.

- B-24-

Feb 19 15:17 1987 r_symtab.def Page 1

definition of recoverable object symtab
(name_type : type, value_type : type) is

! Single-copy symbol table object using the Aeolus/Clouds lock
! mechanisms for synchronization. 	This Clouds object type provides
! a resilient implementation of the symbol table.

! The definition part contains specifications of public constants,
! types, and operations defined by this object.
! When compiled, it produces a symbol table file which may be imported
! by other objects using this object in their implementations.

operations

procedure insert (name : name_type 	,
value : value_type ,
error : out boolean) modifies

! The INSERT operation places an entry into the symbol
table. ERROR is set if an entry with the same name

! already exists.

procedure delete (name : name_type 	,
error : out boolean) modifies

! If the DELETE operation finds an entry with the given
name, it removes the entry from the symbol table and

! frees its storage space.

procedure find (name : name type 	,
error : out Boolean) returns value_type examines

! The FIND operation tries to locate the entry with the
given name and returns its value if it succeeds. ERROR

! is set if the entry is not in the table.

procedure quick_list 0 examines

I The QUICK_LIST operation provides a quick (dirty)
I listing of all names currently in the symbol table.

procedure exact_list 0 examines

! The EXACT_LIST operation provides a listing of the exact
! state of the symbol table at a given point in time. To
! do this, it locks the whole symbol table, thereby
I excluding any changes during preparation of the listing.
! Thus, although EXACT_LIST, FIND, and QUICK_LIST
! operations may execute concurrently, and INSERT and
! DELETE operations which access different hash buckets
! may also execute concurrently, INSERT and DELETE
! operations must block on EXACT_LIST operations.

Feb 19 15:17 1987 r_symtab.def Page 2

end definition.

- B-26-

Feb 19 15:21 1987 r_OFS.def Page 1

definition of recoverable object OFS
(OFS_ROOT : OFS, 	initial_ancestor : OFS, 	initial_name : string()) is

! Single-copy version of the Object Filing System. This Clouds
! object provides a resilient implementation of the OFS.

import Names

type OFS_op is (mkdir_op, rmdir_op, mv_op, rm_op, ls_op, quick_ls_op)
! OFS operations which share essentially a common interface

operations

! In the operations below, the parameters first, rest, and ptype
! represent a pathname argument as processed by Names @ scan_path().

procedure get_cap
(first, rest : in out pathname_type(),

ptype : in out path_type,
error : out boolean)
returns capability examines

! Retrieves the capability for the object with the given
! pathname from the OFS. If the pathname exists, sets error
! to FALSE and returns the associated capability, otherwise
! sets error to TRUE and returns NIL.

procedure put_cap
(cap : capability,

first, rest : in out pathname_type(),
want_ancestor : boolean,
ancestor : OFS,
ptype : in out path_type,
error : out boolean) modifies

! Places a capability for an object into the OFS under the
! given pathname. 	If the given pathname already exists, or if
! the prefix of the pathname (if any) does not exist, cap is
! not inserted into the OFS, and error is set to TRUE;
! otherwise, cap is inserted into the OFS, and error is set to
! FALSE.

procedure general_op
(op_name : OFS_command,

first_arg, second_arg : in out pathname_type(),
error : out boolean) modifies

! An interface for the operations enumerated by type OFS_op,
! which share a common interface and similar semantics with
! respect to pathnames. The actual operation to be performed
! is specified by parameter op_name. Two pathname parameters
! may be specified; the second is used only by the "mv"
! operation. 	If the operation was successful (depending on the
! existence of the specified pathnames and, in the case of the

- B- 27 -

Feb 19 15:21 1987 r_OFS.def Page 2

! rmdir command, on whether the first argument specified a
! directory), error is set to FALSE; otherwise, error is set to
! TRUE.

procedure my_pathname 0
returns pathname_type() examines

! Returns the current pathname of this OFS instance.

procedure reset_pathname
(ancestor_name, new_name : pathname_type(),

error : out boolean) modifies

! If parameter "ancestor_name" is the null string, sets the
! instance's current pathname to "new_name" and sets "error" to
! FALSE; else, if the concatenation of the ancestor's path and
! the new instance name is within the maximum path length
! contraint, sets the instance's current pathname to this
concatenation, and sets "error" to FALSE; otherwise, sets
"error" to TRUE.

end definition.

- B-28-

Mar 	1 17:23 1987 r_symtab.imp Page 1

implementation of object symtab
l(name_type : type, value_type : type)! is

! Single-copy symbol table object using the lock mechanisms of
! Aeolus/Clouds for synchronization and to ensure view
! atomicity. This implementation of the symbol table uses the
1 recoverability features of Clouds to provide resiliency. The
! use of per-action variables to maintain "intention lists" of
! entries inserted or deleted during an action also helps ensure
! view atomicity, since each action gets its own version of the
1 per-action variables. Since this object is recoverable, we
! will not explicitly release locks; rather, when a lock is
! obtained by a nested action, it will be propagated to the
! immediate ancestor when the nested action commits, and will be
! released when the top-level ancestor commits. The symbol
! table structure and its entries are kept in permanent storage.
! Since permanent storage may be altered only at toplevel
! precommit, we maintain two "intention lists" of non-permanent
! entries which contain those entries which are inserted or
! deleted by an action. The entries in these lists will be
! transferred to the permanent symbol table during toplevel
! precommit.

import list, keyed_list

Here, we give the names of alternate handlers for some of the
1 action events. Note that we need not override the ABORT event.

action events
symtab_commit overrides commit,

symtab_top_precommit overrides toplevel_precommit

! The per-action variables for the symbol table are where we
! maintain the "intention lists" of entries inserted and deleted by
! an action. The "inserted" list entries are keyed on the name
I field, but also include the value field. The "deleted" list
! entries need merely give the name field.

per action
inserted : keyed_list(name type, value_type) := new keyed_list
deleted : list(name_type r := new list

end per action

! Each bucket of the hash table is a list of names and values,
! keyed by the name field. The list objects are kept in permanent
storage, and thus modify operations on them may be invoked only

! during toplevel precommit. (However, examine operations may be
! invoked at any time.)

type bucket_list is permanent new keyed_list(name_type, value_type)

! The symbol table structure itself is an array of bucket lists.
1 The array is also kept in permanent storage, and may be altered

— B-29—

Mar 1 17:23 1987 r_symtab.imp Page

! only at toplevel precommit. Since action management ensures that
! only one action may be in the toplevel precommit handler at a
! time, there is no need to explicitly enforce mutual exclusion on
! the symbol table buckets, as is done in the nonrecoverable
! version of the symtab object by means of critical regions.

MAXBUCKET : const integer := 101 	! or whatever

type hash_range is new unsigned[1 	MAXBUCKET]

symtable : permanent array[hash_range] of bucket_list

symtable_lock : lock (write : [write] ,
read : [read])

! The SYMTABLE lock allows the entire symbol table to be locked.
! This lock is set (in read mode) in the EXACT_LIST operation
! for purposes of getting an exact listing of the state of the
! symbol table. Operations which change the state of the symbol
! table must wait for completion of any outstanding EXACT_LIST
! operations and vice versa.

name_lock : lock (write :
read : [read]) domain is name_type

! The NAME lock allows the user to lock the name which is to be
! used in one of the symbol table operations. The purpose of
! this lock is to assure the view atomicity of these operations,
! that is, to provide synchronization such that concurrent users
! of the symbol table do not view the results of other actions
! before those actions are committed.

procedure hash (name : name_type) returns hash_range is

! This HASH function is a local (nonpublic) procedure of the
! SYMTAB object.

begin
NULL 	! the usual type of stuff

end procedure ! hash

procedure sym_find (name : name_type
value : out value_type) returns boolean is

! The SYM_FIND routine is a local (nonpublic) procedure of the
! SYMTAB object. It assumes that the caller has obtained the
! necessary locks.

begin
return 	Self.inserted @ find(name, value)

or (not Self.deleted @ find(name)
and symtable[hash(name)] @ find(name, value))

- B-30-

Mar 1 17:23 1987 r_symtab.imp Page 3

end procedure ! sym_find

procedure insert 0 name : name_type
! value : value_type 	,
! error : out boolean 0 is

! The INSERT operation adds an entry to the INSERTED list for
! this action, if the entry is not found; otherwise, ERROR is
! set to TRUE. The entry will placed into the permanent symbol
! table at toplevel precommit.

dummy : value_type

begin
Await_Lock(name_lock, write, name)
error := sym_find(name, dummy)
if not error then

Await_Lock(symtable_lock, write)
Self.inserted @ add(name, value)

end if
end procedure ! insert

procedure delete (! name : name_type
! error : out boolean 	is

! If the DELETE operation finds an entry with value field =
! NAME, it adds the entry to the DELETED list; otherwise, ERROR
! is set to TRUE. The entry will be deleted from the permanent
symbol table at toplevel precommit.

dummy : value_type

begin
error := FALSE
Await_Lock(name_lock, write, name)
if Self.inserted @ find(name, dummy) then

! If this action has inserted the name, it must already
! have a write lock on the symbol table. 	In this case,
! Await_Lock() would just return immediately, since we
! already have the lock. Therefore, we won't bother
! invoking Await_Lock().
Self.inserted @ remove(name)

else if symtab[hash(name)] @ find(name, dummy) then
Await_Lock(symtable_lock, write)
Self .deleted @ add(name)

else ! name not in the permanent symbol table or inserted by this action
error := TRUE

end if

end procedure ! delete

procedure find (! name : name_type
! error : out boolean 	! returns value_type ! is

- B-31-

Mar 1 17:23 1987 r_symtab.imp Page 4

! The FIND operation sets a READ lock on the NAME entry, and
! then tries to locate that entry with name field = NAME and
! returns its value if it succeeds.

value : value_type

begin
Await_Lock(name_lock, read, name)
Await_Lock(symtable_lock, read)
error := not sym_find(name, value)
return value

end procedure ! find

procedure quick_list() is

! The QUICK_LIST operation provides a quick (dirty) listing of
! names currently in the symbol table.

begin
! First, display the stuff in the permanent symbol table
for i in hash range loop

symtable[i] @ display()
end loop

! Now, display entries added by this action or its children, if any
Self.inserted @ display()

end procedure ! quick_list

procedure exact_list() is

! The EXACT_LIST operation provides a listing of the exact state
! of the symbol table at a given point in time. To do this, it
! locks the whole symbol table, thereby excluding any changes
1 during preparation of the listing. Thus, although EXACT_LIST,
! FIND, and QUICK_LIST operations may execute concurrently, and
! INSERT and DELETE operations which access different hash
1 buckets may also execute concurrently, INSERT and DELETE
! operations must block on EXACT_LIST operations and vice versa.

begin
Await_Lock(name_lock, read, name)
Await_Lock(symtable_lock, read)
quick_list()

end procedure ! exact_list

procedure symtab_commit 0 is

! The alternate handler for the commit action event. 	If this is
! a nested action, we propagate the INSERTED and DELETED lists
! of this action to its parent.

status : action_status
level 	: action level

- B-32-

Mar 1 17:23 1987 r_symtab.imp Page 5

begin
! check whether we're in a nested action
Void(ActionManager @ Tel 	status, level))
if level = nested_action then

Parent.inserted @ append(Self.inserted)
Parent.deleted @ append(Self.deleted)

end if
end procedure ! symtab_commit

procedure symtab_top_precommit 0 is

! The alternate handler for the toplevel precommit action event.
We traverse the deleted and inserted lists for this action tree,

! performing the actual changes to the permanent symbol table.

name 	: name_type
value 	: value_type
not_there : boolean

: unsigned

begin
! First, we will traverse the DELETED list, and delete the given
! entries from the permanent symbol table
n := 1
loop

name := Self.deleted @ nth(n, not_there)
if not_there then

exit .
end if
symtable[hash(name)] @ remove(name)
n += 1

end loop

! Similarly, we traverse the INSERTED list for this action
n : = 1
loop

name := Self.inserted @ nth(n, value, not_there)
if not_there then

exit .
end if
symtable[hash(name)] @ add(name)
n += 1

end loop
end procedure ! symtab_top_precommit

inithandler is

! Here, we initialize the permanent symbol table.
! (Initialization of permanent structures is possible because
! the initialization handler of a recoverable object is
! performed implicitly as a toplevel precommit handler.)

begin

- B-33-

Mar 1 17:23 1987 r_symtab.imp Page 6

for i in hash range loop 	! each bucket is initially empty
symtable[i] := new bucket_list

end loop
end inithandler

end implementation.

- B-34-

Feb 19 15:28 1987 r_OFS.imp Page 1

implementation of object OFS
!(OFS_ROOT : OFS, 	initial_ancestor : OFS, 	initial_name : string())1 is

! Single-copy version of Object Filing System. This
! implementation of the OFS uses the recoverbility features of
! Clouds to provide resiliency. OFS uses the symtab object type
! (which is also recoverable) to manage all symbol table
1 functions such as insertion, deletion, etc. When an operation

is invoked on an OFS object by a user, it is because that
! instance of OFS is the current working directory. When a
! relative path is passed to that instance of the OFS, it relays
! the operation to the appropriate instance by invoking
! operations on its children (maintained in the symbol table) or
! its ancestor. Absolute paths (i.e., paths starting at the
! root OFS) are not handled, except in put_cap(); it is assumed
! that the driver process (e.g., "shell") catches absolute paths
! and relays them to the root OFS. 	(As an optimization, the
! driver should also catch most references to the current
1 working directory's direct ancestor.) The user may also change
1 the instance of OFS which is considered the current working
! directory by means of relative or absolute paths.

import symtab, InOut

recoverable
current_pathname : pathname_type() 	1 current name of this OFS instance

end recoverable

table : permanent symtab(pathname_type(), capability) := new symtab

procedure get_cap
0 first, rest : in out pathname_type,
! ptype : in out path_type,
! want_ancestor : boolean,
! ancestor : out OFS,
! error : out boolean

) ! returns capability ! is

child : OFS
temp : pathname_type()

begin
error := FALSE
ancestor := NIL
case ptype of

in_child, in_ancestor :
child := table @ find(first, error)
if error ! no child by this name exists ! then

return NIL
else

temp := rest
ptype := Names @ scan_path(temp, first, rest)
return child @ get_cap(first, rest, ptype,

want_ancestor, ancestor, error)
end if

- B-35-

Feb 19 15:28 1987 r_OFS.imp Page 2

II in here,is ancestor, is here : , 	_ 	 _
if want_ancestor then

ancestor := table @ find('..', error)
end if
return table @ find(first, error)

otherwise
error := TRUE
return NIL

end case
end procedure ! get_cap

procedure put_cap
0 cap : capability,

! 	first, rest : in out pathname_type(),
! ptype : in out pathname_type(),
! error : out boolean

) 	is

child : capability
child_OFS : OFS
is_OFS : boolean
temp : pathname_type()

begin
error := FALSE
case ptype of

in_child, in_ancestor :
child := table @ find(first, error)
if error ! no child by this name exists ! then

return .
else

error := not object_type(child, 'OFS')
if error then

InOut @ WriteStr('OFS: "')
InOut @ WriteStr(string(first))
InOut @ WriteStr('" is not a directory.')
InOut @ WriteLn()
return .

else
temp := rest
ptype := Names @ scan_path(temp, first, rest)
OFS(child) @ put_cap(cap, first, rest, ptype, error)

end if
end if

in_here :
is_OFS := object_type(cap, 'OFS')
if is_OFS then

child_OFS := OFS(cap)
temp := ! save old pathname in case of error

child_OFS @ reset_pathname(current_pathname, first, error)
end if
if not error then

table @ insert(first, cap, error)
if error and is_OFS then 	! restore old pathname

Void(child_OFS @ reset_pathname(", temp, error))

- B-36-

Feb 19 15:28 1987 r_OFS.imp Page 3

end if
end if

11 absolute_path :
OFS_ROOT @ put_cap(cap, first, rest, ptype, error)

otherwise
error := TRUE
return .

end case
end procedure ! put_cap

procedure general_op
op_name : OFS_op,

! first_arg, second_arg : pathname_type(),
! error : out boolean

) 	is

child : capability
child_OFS : OFS
first, rest, temp : pathname_type()
ptype : path_type

begin
error 	FALSE
ptype := Names @ scan_path(first_arg, first, rest)
case ptype of

in_child, in_ancestor :
child := table @ find(first, error)
if error ! child not found ! then

InOut @ WriteStr('OFS: "')
InOut @ WriteStr(string(first))
InOut @ WriteStr('", no such directory.')
InOut @ WriteLn()
return .

end if
error := not object_type(child, 'OFS')
if error then

InOut @ WriteStr('OFS: "')
InOut @ WriteStr(string(first))
InOut @ WriteStr(1 " not a directory.')
InOut @ WriteLn()
return .

end if
temp := rest
ptype := Names @ scan_path(temp, first, rest)
child @ general_op(op_name, first, rest, ptype, second, error)

II in here:
case op_name of

mkdir_op :
child := new OFS(MySelf(), first)
table @ insert(first, child, error)

rmdir_op : 	 •
child := table @ find(first, error)
if error then

InOut @ WriteStr('rmdir: "');
InOut @ WriteStr(string(first));

- B-37-

Feb 19 15:28 1987 r_OFS.imp Page 4

1nOut @ WriteStr('", no such directory.')
InOut @ WriteLn0
return .

end if
error := object_type(child, 'OFS')
if error then

InOut @ WriteStr('rmdir: " I);
InOut @ WriteStr(string(first));
InOut @ WriteStr('" is not a directory.')
InOut @ WriteLn0
return .

end if
table @ delete(first, error)

11 mv_op :
child := table @ find(first, error)
if not error then

ptype := Names @ scan_path(second_arg, first, rest)
put_cap(child, first, rest, ptype, error)
if not error then

table @ delete(first, error)
end if

end if
rm_op :
child := table @ find(first, error)
if not error then

if object type(child, 'OFS') then
InOut § WriteStr('rm: "');
InOut @ WriteStr(string(first));
InOut @ WriteStr('" is a directory.')
InOut @ WriteLn0
error := TRUE

else
table @ delete(first, error)

end if
end if

II ls_op :
table @ quick_listO

is quick_ls_op :
table @ exact_list()

end case
otherwise

error := TRUE
return .

end case
end procedure ! general_op

procedure my_pathname 0
1 returns pathname_type() ! is
begin

return current_pathname
end procedure ! my_pathname

procedure reset_pathname
ancestor_name, new_name : pathname_type(),

- B-38-

Feb 19 15:28 1987 r_OFS.imp Page 5

! error : out boolean
)! returns pathname_type() ! is

old_pathname : pathname_type()

begin
if ancestor_name = " then

current_pathname := new_name
error := FALSE
return ''

end if
ancestor_name :=

pathname_type(strings @ str_concat(string(ancestor name), '/'))
error := (strings @ str_len(string(ancestor_name)) ;

strings @ str_len(string(new_name)))
> MAX_PATH_LENGTH

if error then
InOut @ WriteStr('OFS: instance " I)
InOut @ WriteStr(string(new_name))
InOut @ WriteStr('", pathname too long.')
InOut @ WriteLn()
return "

else
old_pathname := current_pathname
current_pathname := pathname_type(

strings @ str_concat(string(ancestor_name), string(new_name))

return old_pathname
end if

end procedure ! reset_pathname

inithandler is
! initialize the symbol table to hold the current and ancestor OFSs

error : boolean

begin
table @ insert ('.', MySelf(), error)
if error then

InOut @ WriteStr('OFS: instance "')
InOut @ WriteStr(string(initial_name))
InOut @ WriteStr('" cannot insert "."')
InOut @ WriteLn()

end if
if initial_name = '/' then 	! this is the root OFS

current_pathname := initial_name
table @ insert('..', MySelf(), error)

else
reset_pathname(initial_ancestor @ my_pathname(), initial_name, error)
table @ insert('..', initial_ancestor, error)

end if
if error then

InOut @ WriteStr('OFS: instance "')
InOut @ WriteStr(string(initial_name))
InOut @ WriteStr('" cannot insert ".."')

Feb 19 15:28 1987 r_OFS.imp Page 6

InOut @ WriteLn()
end if

end inithandler

end implementation.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242

