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SUMMARY

De-novo genome assembly is an important problem in the field of genomics.

Discovering and analyzing genomes of different species has numerous applications.

For humans, it can lead to early detection of disease traits and timely prevention

of diseases like cancer. In addition, it is useful in discovering genomes of unknown

species. Even though it has received enormous attention in the last couple of decades,

the problem remains unsolved to a satisfactory level, as shown in various scientific

studies [1, 2, 3]. Paired-end sequencing is a technology that sequences pairs of short

strands from a genome, called reads. The pairs of reads originate from nearby genomic

locations, and are commonly used to help more accurately determine the genomic

location of individual reads and resolve repeats in genome assembly. In this thesis, we

describe the genome assembly problem, and the key challenges involved in solving it.

We discuss related work where we describe the two most popular models to approach

the problem: de-Bruijn graphs and overlap graphs, along with their pros and cons.

We describe our proposed techniques to improve the quality of genome assembly.

Our main contribution in this work is designing a de-Bruijn graph based assembly

algorithm to effectively utilize paired reads to improve genome assembly quality. We

also discuss how our algorithm tackles some of the key challenges involved in genome

assembly. We adapt this algorithm to design a parallel strategy to obtain high quality

assembly for large datasets such as rice within reasonable time-frame. In addition,

we describe our work on probabilistically estimating overlap graphs for large short

reads datasets. We discuss the results obtained for our work, and conclude with some

future work.

xiii



CHAPTER 1

INTRODUCTION

Genome of an organism is an important entity that facilitates in governing its entire

functionality and contains information required to maintain the organism. The genome

comprises of all the genes, as well as other regions called non-coding regions. Given a

set of short DNA fragments derived from the genome of an organism, called reads,

the goal of genome assembly is to assemble the given set of reads and construct the

original genome. Reads are short pieces of the genome, and overlap between the reads

can be used to construct the genome back. Genome assembly can be thought of as

solving a jigsaw puzzle from pieces.

Two categories of approaches currently exist to perform genome assembly:

• Reference based genome assembly: This method uses a template reference genome

of an organism from a species to assemble the genome of a different organism

from the same species. Genomes of organisms within a species are highly similar

to each other ( 99.9% similarity in case of humans), and reads obtained from an

organism can be mapped to the genome of an organism from the same species

to conduct the assembly.

• De-novo genome assembly: In the absence of a template genome, reads are as-

sembled using overlaps between different reads. De-novo assembly is particularly

useful in discovering genomes of new species. This problem is considered much

harder than reference based assembly. The main focus of our work is on de-novo

genome assembly, and therefore in the following text, we use “genome assembly”

to mean de-novo genome assembly (unless stated otherwise).

The genome assembly problem is known to be NP-hard [4], which means that no
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provably efficient algorithm can be expected for solving it. In the following section, we

provide the motivation for solving this problem and discuss the work that currently

exists related to it.

1.1 Motivation

The importance of genome assembly in bioinformatics has been established more

than three decades ago [5]. There is huge interest in discovering genomes of different

organisms and study them. Applications include:

• Comparitive genomics: Genomes of various organisms can be compared and

classified taxonomically to discover closely related species and study evolutionary

changes among species. Discovery of genes that are common between humans

and other species can be useful in studying properties of those genes via studying

their behavior in other species.

• Detection of diseases: Information about diseases such as diabetes, cancer is

encoded in genes in the form of markers and mutations at specific locations.

High quality genome assembly can help early detection and prevention of such

diseases. Personalized medicine and treatments based on specific mutations can

be assigned to treat patients.

• Ancestral studies: Genomes of a human population can be studied to identify

their ancestral tree. This can be used for studies such as migration and diversity

of population in a given region.

Given such a wide interest, a number of assemblers have been developed in the last

decade to solve the assembly problem: ABySS [6], Velvet [7], AllPaths [8], Newbler

[9], to name a few. We will discuss these assemblers in detail in chapter 3.

In the following sections, we describe the genome assembly problem in detail and

discuss some of the key challenges in solving it.

2



1.2 Problem description

A genome can be thought of as a set of large strings (each string representing a

chromosome) over the alphabet ∑ = {A,C,G, T}. These represent four possible

nucleotides that a genome comprises of. DNA of an organism is broken into short

fragments using a chemical process. These fragments are then sequenced using a

sequencing machine (or sequencer) to produce reads. The reads then need to be

assembled back to infer the genome. Ideally we would like the sequencer to read the

genome from start to end as a single string, thereby eliminating the need for the

arduous task of assembling the reads back. However, we are currently limited by the

sequencer’s capabilities that significantly fall short of sequencing the complete genome

in one go. We elaborate more on this in section 1.4.

Note that any assembly algorithm will have to use overlaps between sequences

and merge them in order to produce longer sequences, which ideally would be the

entire genome. It can be inferred therefore that a single copy of DNA cannot give any

information on the relative ordering of reads in the genome. At least two copies of DNA

must be used to produce the reads to have some overlap information to deduce relative

ordering of reads. The number of reads spanning any given position in the genome is

known as the coverage at that position. Coverage of a read dataset is generally used

to imply the average coverage over all positions in the genome. A coverage of at least

2 (or 2X coverage) is needed to have any hope of a good assembly. Figure 1.1 shows

reads overlapping with each other, eventually forming a longer sequence.

Figure 1.1: Reads mapping to different areas in genome
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1.3 Key challenges

In this section, we discuss a few aspects of genome assembly that make the problem

challenging.

1.3.1 Double strandedness of the genome

Genomes are double stranded, which means that each position along the genome

consists of two nucleotides. For this reason, a position in a genome is represented by

basepair (bp). The pairing of nucleotides in a basepair is deterministic. A is always

paired with T and G paired with C. In addition, each strand has two directions

labeled as 5′ and 3′, directed opposite to each other in the two strands. Figure 1.2

shows the two strands of the genome along with directions for each strand.

Consequently, the fragments into which a DNA are broken are also double stranded.

Sequencer, while sequencing the fragment, can arbitrarily sequence it using either

strand to produce the read. The reading is done in the direction 5′ to 3′. Any section

of a double stranded genome contains two strands, and one strand is deterministic

given the other. Such strands are called reverse complements (complements in short) of

each other. The double stranded characteristics add to the complexity of the assembly

problem since it is unknown which strand a given read originates from.

Figure 1.2: Double stranded genome: sequencing takes place from 5’ direction to 3’
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1.3.2 Multiple copies of genome

Many organisms contain more than one genome in each cell, different genomes usually

inherited from different parents. Such organisms are referred to as polyploid. Humans,

for example, are diploid, containing two genomes in each cell, one inherited from each

parent. Bread wheat is hexaploid, containing six different genomes its cell.

When sequencing such organisms, the reads can originate from any genome present

in the cell. The read dataset thereby consists of reads from multiple genomes without

the knowledge of where any given read has come from. This increases the difficulty of

performing assembly as in principle, we are tasked with assembling multiple genomes

instead of a single genome.

1.3.3 Read lengths and errors

A low read coverage for a read dataset would be considered good if the reads were

perfect. That however is not the case. Sequencers occasionally make mistakes in

reading DNA fragments which lead to erroneous reads. The error percentage and

characteristics depend on the sequencing machine. Sequencers manufactured by

companies like Illumina mostly make substitution errors, where a base in the genome is

substituted by a different base in the read. Figure 1.3 shows an example of substitution

error. Here, the upper strand represents the genome and the lower strand represents

the sequenced read. It should be noted that the genome is unknown and therefore given

an isolated read, it is impossible to determine which position is erroneous (if at all).

Other forms of errors are insertion/deletion errors where a base is inserted/deleted

in/from the genome when producing the read.

The read length for Illumina sequencers is typically 150bp to 250bp, with less

than 1% error rate. To assemble genomes with lengths of the order of billions of bp,

such short reads contain overlaps that are too short in length to obtain a high quality

assembly. In addition, such short reads are limited in their use for resolving repeats

5



(explained further in subsection 1.3.5).

Other companies like Pacific Biosciences (PacBio) and Oxford Nanopore Tech-

nologies (ONT) manufacture sequencers that produce reads with mean lengths of

5kbp-20kbp (largest read being as long as 1 million bp), thereby providing larger

overlap information. Their error rate is however typically in the range 11% to 15%

[10, 11]. Error correction for such reads becomes extremely important for any reliable

downstream processing.

Figure 1.3: An example of a substitution error

High coverage data is needed to detect and correct errors in sequences while

performing assembly. Producing data with coverage of 40-60X for long genomes, and

above 200X for short genomes is typical for current short read sequencers. High

coverage gives (at least in principle) a way to correct errors by taking consensus of all

the reads aligning to a position, and taking the consensus of that position to be the

truth (two truths in case of diploid genome). Most assemblers today have a separate

phase to just perform error correction.

1.3.4 Computational scale

Genomes of different species have different lengths and characteristics. For example,

a human genome is about 3 billion basepairs long. On the other hand, some plant

genomes are generally tens of billions basepairs long.

Consider a read set sequenced from a human genome. Assuming each read to

be 150 bp long (typical for Illumina sequencers), to obtain an average read coverage

of about 40X, the read set would have to consist of 800 million reads. Any further

processing of such large dataset requires efficient parallel algorithms.
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As noted earlier, identifying overlaps between reads would form the core of any

assembly algorithm. Intuitively, it would help to identify overlaps between all pairs of

reads. However, this operation is expensive for the size of datasets under consideration.

Specifically, for assembling n reads, any algorithm with Ω(n2) or higher computational

cost is prohibitive. This poses a key challenge in designing a good genome assembler

where efficient algorithms are needed to identify overlaps between select pairs of reads

(since all pair comparison is computationally infeasible).

1.3.5 Long repeats

Many genomes consist of a large number of stretches that are nearly identical to

sequences present elsewhere in the genome. Such stretches are called repeats, shown

in figure 1.4. Repeats make the assembly problem harder, since given a read from a

repeat region, it is ambiguous as to where this read should belong to in the genome.

In figure 1.4, the reads marked in blue and red, though originating from different

regions, would be indistinguishable.

Figure 1.4: Long stretches of repeats in the genome

We will discuss in section 1.4.1 on how paired reads are helpful in resolving repeats

to a certain extent.

1.3.6 Non-uniform coverage

As mentioned in section 1.2, high coverage data is needed to have any hope of a

good assembly. The coverage reported for the sequencing datasets is typically the

average coverage over the entire genome. Coverage at specific positions can have huge

7



variations depending on the genomic region, as shown in figure 1.5. Some regions in

the genome are over-sampled, contributing large number of reads, while other regions

are under-sampled, contributing fewer number of reads. The maximum coverage at a

position in a genome can be as high as five times the minimum coverage. One reason

for such huge variation is that some genomic regions have biological challenges in

terms of sequencing them.

Given a dataset with read length l, many assemblers use frequency of k length

(k < l) substrings of reads (k-mers) observed within the dataset, along with the

average coverage, to estimate number of times that k-mer appears in the genome.

For uniform coverage, this estimate would be simply the k-mer frequency divided

by the coverage. However such large variations in the coverage make this estimation

challenging, adding to the difficulty of the problem.

Figure 1.5: Different genomic regions have different coverages

1.4 Sequencing technology

In this section, we take a close look at the sequencing process for producing reads using

a DNA sample from an organism. As a first step, the DNA sample is broken down

into small DNA fragments. A library, consisting of numerous such DNA fragments is

prepared. A sequencer then starts sequencing the fragments to produce substrings of

the genome, known as reads. Illumina sequencing technology has a limit on the length

of the fragment that it can read continuously, before the error rate goes very high. As

a result, irrespective of the fragment length, the sequencer can read the fragment only

up to a certain threshold of length. Sequencers produced by companies like Illumina
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are capable of performing paired end reading of fragments, which we will describe

later.

Until 2005, sequencing was mostly performed using a technology called Sanger

sequencing. Sanger reads are typically around 500-1000 bp long. One experiment on

a Sanger would typically yield a million reads.

Post 2005, a number of new sequencing technologies emerged with very different

read characteristics. They are together referred to as Next Generation Technology

(NGS) sequencers. The 454 Roche was the first NGS sequencer. Among the most

popular NGS sequencers today are Illumina, PacBio and ONT. Throughput of NGS

sequencers is orders of magnitude higher than Sanger. One experiment on Illumina,

for example, produces about 2 to 6 billion reads in an experiment lasting for about

8 days. This feature enables researchers to produce high coverage data, enhancing

the assembly process. This advantage however, comes at a price. The read length

for Illumina sequencers is much smaller than Sanger. Illumina typically produces 150

bp reads, at around 1% error rate. Though read lengths for PacBio and ONT are

quite long (> 10kb), their error rate is high as well (11-15%). Due to these varying

characteristics, different sequencing platforms are more suitable for some application.

1.4.1 Paired end reading

As mentioned earlier, a genome is double stranded. Sequencers from some companies

(eg. Illumina) have a way of reading genomic fragments that can provide distance

constraints between two reads. The sequencer reads all fragments from a collection,

called a library. The reading is done in paired manner, where the sequencer reads

from both strands simultaneously. As described in subsection 1.3.1, the two strands

are read in opposite directions. Figure 1.6 illustrates the reading mechanism. A and

B are sequenced starting from opposite ends. Approximate fragment length, known

as insert size, is known within a range. Depending on the method used to create the

9



library, this range can be in order of a few hundred bps to a few thousand bps. This

produces two reads that are d distance apart in the genome. A significant contribution

of this work is to use this information to improve genome assembly quality, and is

described in chapter 4.

Figure 1.6: Paired end reading

10



CHAPTER 2

MODELING THE PROBLEM

In this chapter, we describe how the genome assembly problem is modeled as a graph

theoretic problem. Input to the assembly problem is the set of reads sequenced with a

given coverage. Under ideal circumstances, the output of the assembly should be the

set of chromosomes, representing the genome from which the reads were sequenced.

However, due to the complex nature of the problem, most assemblers are only able to

produce a set of large substrings of the chromosomes, called contigs. These contigs are

later extended and ordered using paired read information, a stage known as scaffolding.

All current assemblers try to solve the problem using one of the two models:

• Overlap Layout Consensus (OLC approach)

• De-Bruijn graph (DB approach)

We discuss each approach in detail.

2.1 Overlap Layout Consensus approach

In this model, a directed graph is constructed using the set of reads as follows:

a. A vertex vi is constructed for every read ri in the read set.

b. An edge (vi → vj) is constructed if ri and rj have a good suffix-prefix overlap.

Specifically, if ri = x.y and rj = y′.z (dot (.) represents the concatanation

operator) and x, y, y′, z are strings over χ, then (vi → vj) if:

• y and y′ are sufficiently similar and

• |y| ≥ t, |y′| ≥ t, where t is the overlap threshold.
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Note that the criteria for introducing an edge is described assuming ri and rj

originate from the same strand in the genome. Similar check needs to be done

assuming the two reads originate from different strands (this is done by creating

the complementary strand for rj : r
′
j and checking for overlap between ri and r′

j).

Figure 2.1: OLC graph with edge between two vertices having suffix-prefix overlap

Such a graph captures the overlap between different reads and provides an oppor-

tunity to iteratively merge reads and produce long contigs. Specifically, if ri = x.y

and rj = y′.z, then the edge vi → vj gives an opportunity to extend ri = x.y to form

a longer substring of the genome x.y′′.z (y′′ is deduced from y and y′). Extending this

further with more edges would then result in larger contigs.

With this formulation, the genome representing the reads can be seen as a Hamil-

tonian cycle in the graph.

Similar to the OLC approach is the string graph approach [12] which also looks

at overlaps between reads. For each read ri, two vertices ri.b and ri.e are created

(b and e referring to beginning and end of overlap). If reads ri and rj have a good

suffix-prefix overlap, then an edge is created from ri.e to rj.b and from rj.e to ri.b.
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This way, ri and rj can both be extended to form longer contigs.

Before the arrival of NGS sequencing machines, OLC was the basis of most

assemblers. Examples of most popular OLC based assemblers are Celera [13], Arachne

[14], SSAKE [15], Edena [16] and CAP3 [17]. All these assemblers were designed for

Sanger reads. However, NGS machines increased the sequencing throughput to billions

of reads in a single experiment, making construction of OLC graphs for such large

datasets computationally challenging. Considering all-pairs of overlaps to construct

the graph would incur Ω(n2) cost. In addition, the size of the overlap graph grows

with the size of read dataset. Finally, short reads make overlaps between individual

pairs of reads less reliable. All these factors rule the OLC approach difficult to adopt.

Even though some clever heuristics were designed to greedily merge reads to form

longer contigs [14, 13], the assembly techniques for NGS sequencing drifted to a more

compact framework, called de-Bruijn graphs, discussed in next section. In chapter 7,

we will discuss how we address some of the challenges posed by the OLC approach.

2.2 De-Bruijn graph approach

Similar to OLC, the DB approach also involves construction of a graph based on the

read set. The method of construction however, is different. First, all the reads in

the read set are split into shorter substrings called k-mers. A k-mer is a k length

substring of a read. Thus a read of length l would yield l − k + 1 k-mers. We then

construct the DB graph as follows:

a. A vertex vi is constructed for every distinct k-mer ki obtained from the read set.

b. An edge vi → vj is added if the k-mer ki and kj are adjacent in some read in

the readset.

The concept of extending a k-mer by edge traversal is very similar to that in OLC

approach. An edge allows us to extend the current sequence by 1 base. Unlike in
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OLC however, it is allowed to traverse a vertex multiple times in a DB graph (since a

k-mer can appear in multiple places in the genome). Thus constructing a genome in

this graph is equivalent to a tour with each vertex appearing as many times as the

coverage of the region where the corresponding k-mer belongs.

The DB graph is more compact than the OLC graph discussed in the previous

section. While the number of vertices in the OLC graph is equal to the number of

reads, the number of vertices in a DB graph is bounded by the number of distinct

possible k-mers, which is 4k. Moreover, if error correction is perfect, that is, all the

errors are removed from the read set, the number of vertices is further bounded by

L− k + 1 = O(L), where L is the length of the genome.

Most current short read assemblers follow the de-Bruijn graph paradigm, first

introduced by Idury et al. [18], and further developed by Pevzner et al. [19]. At first

glance, such an approach of breaking reads into k-mers might appear counterintuitive,

since we are potentially throwing away precious overlap information between a series

of k-mers. This approach was however justified in [19] as it transposes a hard problem

into a more tractable one. Furthermore, our proposed approach of introducing distance

constraints in de-Bruijn graph (explained in chapter 4) further mitigates the negative

effects of this. In the next chapter, we briefly discuss some of these assemblers.
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CHAPTER 3

REVIEW OF RELATED LITERATURE

We discuss the current spectrum of assembly work in this chapter and lay out the

motivation behind our work.

Velvet [7] was the first assembler for NGS reads to use the de-Bruijn graph (DB

graph) framework for assembly. It also addressed in detail the issue of error detection

and correction in the de-Bruijn graph setting. After Velvet, many assemblers like

ABySS [6], ALLPATHS [8, 20], SOAPdenovo [21, 22], Meraculous [23], SWAP [24]

followed the de-Bruijn graph framework to generate assemblies. Of these, SWAP

assembler does not consider paired read information while performing assembly. With

minute differences, ABYSS, Meraculous and SOAPdenovo use the following pipeline

for assembly: they construct the de-Bruijn graph from reads, follow several subroutines

for graph cleaning, produce unambiguous chains as initial set of contigs and then

map the reads back to these contigs to extend and join them based on paired read

information.

IDBA [25, 26] extend the DB graph approach by iteratively building the DB

graph for different values of k-mer size. The DB graphs for different k values are

then merged in hope of producing an assembly that has the best of small k-mer and

large k-mer sizes. Few assemblers like SGA [27] and SAGE [28] use String graphs to

produce assemblies. SGA uses them to achieve memory efficiency and parallelizability

in genome assembly. SAGE on the other hand performs transitive reductions on edges

in the string graph. They couple this with maximum likelihood genome assembly

approach [29] to produce contigs.

MaSuRCA assembler [30] proposed a hybrid approach to get the best of two worlds,

computational feasibility of de-Bruijn graphs and inclusiveness of the OLC approach.
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This is done by converting the original set of reads into “super-reads” which are

unambiguous extensions of original reads using the overlap information, and then

applying an OLC like approach on these super-reads which are far fewer in number

than original reads. However it is unclear how insert size variations are taken into

account in this approach. DISCOVAR [31] assembler was designed specifically for

identifying varients in polyploid genomes (organisms in which cells contain multiple

copies of the genome with slight variations, often coming from different parents).

Given that the assembly problem is compute intensive, efforts have been devoted to

parallelization of existing methods to achieve assembly with smaller runtimes. ABySS

2.0 [32] redesigned the original ABySS implementation by replacing the MPI paral-

lelization framework with bloom filters, which is a probabilistic data structure. This

was done in order to reduce the memory footprint of the tool. HipMer [33] parallelized

several stages of the Meraculous assembler using UPC’s one sided communication

capabilities. While obtaining faster assembly is an important research area in its own

right, our focus in this project is to enhance the quality of genome assembly.

As described in section 1.3.3, there are two classes of read types with different

characteristics. One class of reads have short lengths (short reads: 100-300 bp) and are

highly accurate (less than 1% error rate), produced by sequencers from companies like

Illumina. The second class of reads have a much larger length (long reads: 5 kbp - 1000

kbp) and have much higher error rate (11-15% errors), produced by sequencers from

companies like PacBio and ONT. Due to such large varying characteristics, different

assembly algorithms are needed to address the challenges posed by different read

characteristics. Most assembly softwares are designed to assemble one specific kind of

read dataset. All the assembly software discussed so far in this chapter are designed to

work on Illumina style short reads. Separate softwares like Canu [34], Hinge [35], just

to name a few, have been designed for long reads. As our work is completely focussed

on short reads, we will not go into algorithmic details of long read assemblers.

16



Recent assembler evaluations like the Assemblathon [1, 2] and GAGE [3], have

shown that no single assembly software performs universally better than others.

As described earlier, paired end sequencing is a technology by which the two end

portions from complementary strands of a larger DNA fragment of approximate known

size are sequenced. This technology can be a key factor in improving assembly quality.

Paired reads are particularly helpful in resolving repeats that are longer than the read

length. When one read of a pair falls in a repeat region of the genome but the other

one does not, the read that is from the non-repetitive region can anchor the other

correctly. A common idea used in many assemblers is to compact all the linear chains

of nodes that have an in-degree and out-degree of exactly one, into one sequence per

chain. These sequences are produced as the first set of contigs. The reads are then

mapped back onto the graph or the contigs and the paired read information is used to

merge these contigs, whenever possible.

The above approach leads to the initial assemblies to be based solely on read

overlaps, relegating the valuable paired end information to a secondary status. This

approach causes crucial loss of information when performing graph traversals to pro-

duced contigs, and can lead to the paired read information not being used to its fullest

potential, resulting in inferior assembly. Directly incorporating distance information

from paired end reads in the assembly should lead to improved assemblies. Several

assembly approaches have advocated and pursued this approach. The ALLPATHS

assembler [8, 20] initially tracks all possible paths out of a node until a threshold length

is reached, followed by selection of one of these paths based on evidence from paired

end distance constraints. The process is repeated at the end node of the current path

until an ambiguity arises. Jackson et al. [36] overcome the combinatorial complexity

by developing a backward looking approach where a path is extended by choosing the

edge (from among the possible edges) that is connected by several distance constraints

to the path behind.
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Medvedev et al. introduced paired de-Bruijn graphs [37] (PDBG) that can represent

exact distances between pairs of k-mers. As the paired end distances are approximate,

they adapted this approach to handle approximate repeats using A-Bruijn graphs in

their SPAdes assembler [38]. Though A-Bruijn graphs are better suited for approximate

repeats, their complex structure makes it difficult to analyze them. SPAdes implements

Pathset graph data structure [39] to utilize paired read distance constraints to resolve

longer repeats. It maps the reads onto the assembly graph and creates a histogram

of distances between two given chains of nodes and adjusts it to one or few distance

value(s) based on the peak(s) of histogram. While this method is expected to work

well when a clear peak is identifiable, it is not clear what can be done when this is not

the case. Although these computational models have been proposed to utilize paired

read information into assembly, none of the methods have been shown to work on real

datasets that are large and complex.

We present a novel approach for utilizing paired read distance constraints for

genome assembly. We transform the distances between paired reads into distance

constraints between nodes of the de-Bruijn graph. We then generate paths from the

graph using these constraints as guide to resolve ambiguities. Each path produced

represents a contig. When faced with multiple node choices for extending the current

path, each node is scored based on the embedded distance constraints followed by the

selection of the highest scoring node. A correct traversal algorithm needs to ensure

that each node is visited the number of times it appears in the genome. We describe

a model to deduce when a node has been visited sufficient number of times and hence

should not be visited in any further traversal steps. The graph traversal terminates

when all the nodes have been visited sufficient number of times. This approach is

described in detail in chapter 4

In order to assemble large genomes in reasonable time, we adapt the above approach

and design a parallel algorithm that produces multiple paths in the DB graph (and
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hence multiple contigs) simultaneously. This algorithm is described in detail in chapter

5.
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CHAPTER 4

UTILIZING PAIRED READS TO IMPROVED ASSEMBLY QUALITY

In this chapter, we describe the first part of our contribution to improving genome

assembly. We describe our work in the context of the related work discussed in chapter

3.

4.1 Distance Constraint based de-Bruijn Graph Assembly

Our algorithm utilizes many of the typical steps used in de Bruijn graph based

assemblers. However, it differs in a few distinguishing characteristics. The first is

direct encoding of paired-end information in the form of distance constraints between

pairs of nodes in the de Bruijn graph. We also supplement this information by

adding additional distance constraints that connect the beginning of a read to the

corresponding end of the read. As the read is fragmented into its constituent k-mers,

these additional distance constraints help navigate the de Bruijn graph in a way

that preserves the sanctity of reads. The second is a novel algorithm that generates

long contigs by finding paths in the graph supported by evidence from distance

constraints. In contrast to many assemblers that merely produce compacted chains in

the graph as initial contigs, our algorithm continues graph traversal at junction nodes

by working to resolve ambiguity using distance constraints. The algorithm also avoids

the combinatorial complexity of assemblers such as ALLPATHS [8, 20] that track all

possible outgoing paths from a given node for a specified distance to determine which

path is supported by paired-end information. Thirdly, we do not assume any value for

the insert size estimate it from the read dataset itself. This is described in section

4.1.6. In what follows, we present comprehensive details of our algorithmic strategy.
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4.1.1 Bidirected de-Bruijn Graph Formulation

We use a variation of the de-Bruijn graph framework described earlier, called the

bidirected de Bruijn graph (BDBG) framework, used by Jackson et al. [36]. The

BDBG framework naturally captures the double stranded nature of DNA sequences,

allowing us to avoid the problem of switching strands while traversing the graph. In

this framework, nodes in the de Bruijn graph represent k-molecules, consisting of a

k length DNA sequence α and its complementary strand α′. The lexicographically

smaller of the two sequences is called the positive strand of the molecule, which is also

designated as the representative strand. The other strand is called the negative strand

of the molecule. Figure 4.1 shows a k-molecule as part of a double stranded sequence,

with positive and negative strands marked as blue and red respectively.

A positive extension of a k-molecule is achieved by adding a base at the end of the

positive strand, and the complementary base at the beginning of the negative strand. If

the positive extension is followed by removing a base from the beginning of the positive

strand, and the complementary base from the end of negative strand, the operation is

called a positive shift. The operations negative extension and negative shift are defined

in a similar manner towards the other side of the molecule. Figure 4.1 shows the

directions for positive and negative extensions/shifts for the k-molecule. Intuitively, a

shift of a molecule gives a potentially neighboring molecule in the reference genome.

Figure 4.1: k-molecule from a strand

A BDBG is constructed by extracting all the k-mers from reads and constructing

k-molecules corresponding to each k-mer. The nodes of the graph are all the unique

k-molecules so obtained. The frequency of a node is the number of times either the
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Figure 4.2: Respecting the opposite directionalities on each node while traversing

positive or the negative strand of the corresponding k-molecule is observed in the

readset. The edges in a bidirected graph are of the form (< u, du >,< v, dv >) where

du ∈ {out, in} is the direction of edge at node u. The edges in the BDBG represent

(k+1)-molecules obtained by (k+1)-mers present in the readset. The directions for

edges are determined as follows: if v is obtained by a positive shift of u, then du = out,

else du = in. The multiplicity of an edge (< u, du >,< v, dv >) is the number of

times the extension of u leading to v is observed in the readset. A valid traversal

through the graph must respect the directions at each node as follows: if a path enters

a node through out direction, it must exit the node through in direction, and vice

versa. Figure 4.2 shows a valid traversal through the graph. The direction out (in) of

an edge at a node is denoted by an arrow pointing out of (into) the node, illustrated

in the figure. Note that there is no constraint on the two directions of any edge that

is traversed.

4.1.2 Generating Distance Constraints

As discussed before, paired end sequencing protocols sequence pairs of reads from

opposite ends and complementary strands of a DNA fragment, typically called an

insert. The approximate length of the insert is either available along with the readset,

or can be deduced from the readset. The method of deducing insert size from readset

is described in the subsection 4.1.6. The insert size imposes a distance constraint (DC)

between the genomic positions of reads from the pair. To embed this information into

the BDBG, we transform the DCs between reads into DCs between k-molecules as

shown in Figure 4.3. We introduce a DC between k-molecules corresponding to the
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farthest k-mers in every read pair. This DC follows from the fact that the mean insert

size d is known, and hence the two k-molecules are at a distance of approximately d

from each other in some part of the genome. We refer to such a DC as an inter read

DC.

Figure 4.3: Inter and intra read distance constraints between k-molecules

In addition, we introduce a DC between k-molecules corresponding to the first

and last k-mer of every read. Since the read length l is known, this DC implies that

the two k-molecules are at an exact distance of l from each other in some part of the

genome (except for errors caused due to chimeric fragments). We refer to such a DC

as intra read DC.

4.1.3 Embedding Constraints into the de Bruijn Graph

The DCs between k-molecules are embedded into the de Bruijn graph as DCs between

corresponding nodes in the graph. For any DC, these nodes are referred to as DCnodes.

A DC of length s between nodes u and v requires that some path traversed should

visit nodes u and v (not necessarily in that order) with s (exact in case of intra read

or approximate in case of inter read) k-molecules in between them.

In addition to the two DCnodes and the distance, a DC has a few additional

components. As stated, the known insert size for paired end sequencing is imprecise,

and hence a good traversal algorithm must permit a corresponding error in the

DCs (the error depends on the variance in insert size observed using the method

described in subsection 4.1.6). Moreover, a DC should respect the directionality in
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which it was observed. For instance, suppose a read consists of m k-mers. Let they be

ordered by starting position as {k1, k2, . . . , km}, and let the corresponding k-molecules

be {K1, K2, . . . , Km}. Then the intra read DC between K1 and Km will have two

directionality components, one for each DCnode. The directionality at K1 is positive

(negative) if K2 is obtained using a positive (negative) shift of K1. Similarly, the

directionality at Km is positive (negative) if Km−1 is obtained by a positive (negative)

shift of Km. Similar principle applies for the directionality of inter read distance

constraints.

4.1.4 Displacing Distance Constraints

A majority of the nodes in the de-Bruijn graph have a degree of two with opposite

directions on the two edges. We call such nodes as unitig nodes, and a chain of such

nodes as a unitig chain. Such nodes have no ambiguity while traversing through them.

Thus compacting a chain of such nodes is beneficial in reducing the graph size and

subsequent traversal time. However, some of these nodes might be DCnodes involved

in DCs embedded earlier, and we would like to preserve them while compacting the

graph.

To achieve this, we displace such constraints to the end of the respective chains as

shown in figure 4.4. A DC with at least one DCnode in the middle of a unitig chain

is shortened by moving the ends of the constraint to the ends of the unitig chains

in which the constraint ends belong, and adjusting the distance accordingly. This

is performed for all the constraints in the graph. With this displacement, we can

compress the chains of unitig nodes and still maintain appropriate distance constraint

relationships between nodes.
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Figure 4.4: Displacing distance constraints to end of a unitig chain

Figure 4.5: Compacting a unitig chain into a single node

4.1.5 Compacting Unitig Nodes

After the DCs have been displaced, we compact every unitig chain into a single node

as shown in Figure 4.5.

Such nodes will no longer be k-molecules, since their strands would be formed by

combining the k-molecules of the chain, where consecutive k-molecules have a k − 1

length overlap. Their strands will have a length h ≥ k, and we refer to such nodes as

h-molecules, and their strands as h-mers. For ease of description, we define the length

of a node as the length of its strands.

4.1.6 Estimating insert size

To be able to use the paired read information, it is necessary to have an estimate

on the insert size. Most sequencing instruments do not provide such information.

Therefore, we estimate the size from the data itself. In order to do so, we first select

the subset of read pairs Ψ from the dataset such that both the reads in a pair map to

the same chain in the de-Bruijn graph. Since each pair p = 〈r1, r2〉 in Ψ maps to a
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single sequence, the insert size corresponding to p can be calculated. Using the insert

sizes corresponding to all pairs in Ψ, we calculate their mean and variance. Using

these values and the insert sizes for read pairs in Ψ, we try to fit various statistical

distribution models (e.g. Normal, Gamma, Binomial) on to the insert size data and

select the distribution model that gives the minimum error. For most datasets, the

set Ψ is large enough to obtain a statistically meaningful distribution on the insert

size values. We therefore use the calculated estimate as the insert size for performing

assembly. SAGE assembler has a similar method for estimating insert size on string

graphs.

4.2 Traversing de-Bruijn Graph to Generate Contigs

We present a graph traversal algorithm that operates on the above constructed graph,

and utilizes embedded and displaced DCs to produce a set of paths that are as long as

possible. Each path represents a contig of the genome, and is constructed incrementally.

The paths themselves are constructed successively, one after another. In what follows,

we first present our path extension algorithm that extends a partial path constructed

so far by finding the next node to include in the path. We refer to the last node in

the path as current node. The next node to visit is chosen from among the neighbors

of the current node that are connected by an edge which can be traversed (i.e., having

the opposite directionality to how path constructed so far entered the current node).

We use the embedded DCs to help resolve the ambiguity when presented with

multiple options for choosing the next node. This is achieved by using a supporting

queue data structure Q. The queue conceptually represents the contig corresponding

to the current path, with one base pair at each position. The de Bruijn graph nodes

are pushed into various queue positions based on where they align on the current

contig. Algorithm 1 describes the pseudocode for the graph traversal algorithm, which

is elaborated in the following subsections.
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Algorithm 1 Graph traversal algorithm.
1: while true do
2: select start node()
3: if no starting node then
4: break;
5: end if
6: while true do
7: select node direction()
8: update candidate nodes()
9: update distance constraints()

10: select next node()
11: if no node selected then
12: break;
13: end if
14: end while
15: end while=0

4.2.1 Selecting the Start Node

To initiate a path, we need to select the beginning node. We select the longest available

node to start the traversal and push it at the beginning of Q. Long nodes have a good

likelihood of having a unique occurrence in the genome, which helps in determining

the number of occurrence of other nodes in the path. Figure 4.6 shows the supporting

queue data structure Q, with the starting node S pushed at the beginning of queue.

Our algorithm also contains a method to estimate the number of times each node in

the graph should be visited during the entire traversal, detail of which are presented

in subsection 4.2.8. When all the nodes have been visited sufficient number of times,

no starting node is selected and the traversal is terminated.

4.2.2 Selecting Node Direction

To extend the current path, we need to select a direction for the current node in the

path in which traversal must continue. If the path consists of only the starting node,

the direction is chosen arbitrarily. Otherwise, the traversal must be consistent with

the edge direction used to enter the current node (discussed in subsection 4.1.1). If

27



the path entered the current node using the in direction, then it must exit using the

out direction and vice versa.

4.2.3 Updating Candidate Nodes

The current path is extended by choosing one node from the neighbors of the current

node in the selected direction. To achieve this, we push all the neighboring nodes as

candidate nodes in Q. The nodes are pushed at a position so that they align with the

current path, specifically with the current node. In other words, if the current node

has length h, then the candidate nodes are pushed at a distance h− (k − 1) from the

current node. Figure 4.6 shows candidate nodes A and B (neighboring nodes of S)

pushed into the queue, depicted as triangle shaped nodes.

4.2.4 Updating Distance Constraints

If the current node has any DCs to be satisfied, they are pushed into the queue as

well. These constraints are helpful in deciding the next node to traverse from the

list of candidate nodes. If the current node, with length h, has a DC of distance d

to a node A, then node A is pushed as an evidence node at a distance d + h from

the current node. This is because the DCs are measured from ends of the two nodes,

whereas position of a node in Q represents the beginning of that node. An evidence

node A at a position p implies that some node in the path already traversed expects

node A to align to the current path at position p. Evidence nodes are depicted using

square shaped nodes (Figure 4.6).

4.2.5 Selecting the Next Node

This part is responsible for selecting one node from the list of candidate nodes for

traversing and extending the current path. A good selection strategy is the key to

producing quality contigs, making this the most crucial part of the traversal algorithm.
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Figure 4.6: A snapshot of the queue data structure

For this section, we will assume that there are at least two candidate nodes to choose

from. The candidate node selected to extend the current path is referred to as winner.

Algorithm 2 describes the module for selecting the winner, and we elaborate on it as

follows.

Algorithm 2 Select next node.
1: for all candidate nodes {Ci} do
2:

−−→
EVi = gather evidence(Ci)

3: scorei = F(−−→EVi)
4: end for
5: Pick candidate with max score =0

Gathering Evidence

For each candidate node, we need to determine the extent of support it has in the

form of evidence nodes. The length of the current node determines the exact position

where we seek to begin the next node, for which we plan to choose from among the

candidate nodes (indicated by triangle nodes at that position). Since the inter read

DCs are not precise, we need to account for laxity in them. To accommodate this, we

look for support for each candidate node within a range around the position where it

should lie, as shown in Figure 4.7. The size of this range depends on the variance in

insert size calculated using the method described in subsection 4.1.6. Every evidence

node in support of a given candidate node increases its likelihood of being chosen as

the winner. We collect the evidence for a candidate node as a vector of pairs (d, n),
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Figure 4.7: Evidence searching range around candidates’ position

where d represents the distance from the candidate node position at which there are n

evidence nodes supporting this candidate node. We refer to this vector as evidence

vector.

Calculating Candidate Score

Once the evidence vector −−→EVi =< (d1, n1), (d2, n2), . . . (dm, nm) > is computed for all

the candidate nodes ci, we would like to compare them to choose a winner. To do

this, we score each candidate using a scoring function F . The scoring function takes

as input the evidence vector of a given candidate and gives as output the candidate

score. We discuss the design of scoring function in a later subsection.

Given the complex nature of the problem at hand, finding a scoring function that

leads to the correct choice every time is challenging. A number of reasonably good

scoring functions can be designed, and each one is expected to fail on a few occasions.

To avoid our results getting affected by arbitrarily choosing one reasonable scoring

function out of many, we define a parameter called minimum score difference, denoted

as δ. The parameter is used to avoid the bias of a specific scoring function as follows:

Let A and B be the two candidates having the best score SA and the second best

score SB respectively. We require that for A to be chosen as the winner, SA − SB ≥ δ.

The rationale for this is that in this case, we assume that the two scores have enough

difference that any good scoring function would have chosen A as the winner, though

with possibly different scores for various candidates. On the other hand, if SA−SB < δ,
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we consider the scores to be “too close”, and thus A might have been chosen as the

winner just due to a particular scoring function. In this case, we explore all the paths

emerging from the current node, as described in a later subsection.

Scoring function

Designing a reasonably accurate scoring function is perhaps the most important part

of this assembly pipeline. An accurate scoring function is crucial for a high quality

output. An intuitive observation for the scoring function is that it must reward high

values of n′s (number of items of evidence). This follows from the observation that

higher quantity of evidence for a node indicates more nodes in the constructed path

signaling pairing information with the node under consideration. Secondly, the scoring

function must be punitive towards high values of d′s (distance of the evidence from

the node under consideration). This follows from the observation that the farther

an evidence is from the node under consideration, the less probable it is to be an

evidence for that node in reality, suggesting the candidate node may be the wrong

choice. With these considerations, we use a scoring function of the following format

for our algorithm

F(−−→EV ) =
|−−→EV |∑
i=1

f (ni)× p (di) (4.1)

Here f (ni) represents the weight given to ni number of distance constraints. We

currently use f (ni) = α (ni)β where α and β are tunable parameters. p (di) is a

scaledown that we apply in accordance with the insert size distribution we observe as

described in section 4.1.6. If the distribution curve observed is denoted as G (origin at

the mean value), then we use p (di) = G(di)
G(0) , as shown in figure 4.8. The rationale for

this is that the distribution curve provides the probability distribution of deviation of

insert size from mean, and therefore we use this probability to scaledown the effect of

an evidence, depending on the deviation at which it is observed.
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Figure 4.8: Scaledown used for scoring function

One caveat with this scoring mechanism is that it is biased in favor of longer

candidate nodes. This is because a long node comprises of a chain of a large number

of k-molecules. Hence even if a shorter candidate node is the correct choice, it might

lose to a long candidate node just because a long node has more potential targets for

DCs, thus increasing the number of evidence nodes supporting it. To deal with this,

we normalize this score to the length of the candidate before comparison.

4.2.6 All paths exploration

Sometimes the decision process described above might not yield any node to extend

the path already constructed. This can happen under various circumstances:

a. There is no neighboring node to extend the current path.

b. All neighboring nodes are saturated (The term saturated is defined in section

4.2.8. To put it simplistically, they have been visited “enough” number of times

during previous traversals and are therefore unavailable to be used for path

extension)

c. Multiple candidates have strong evidence scores and none of them exceeds its

peers by the threshold δ, discussed in a previous section.
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Figure 4.9: All paths exploration

While nothing much can be done in cases a and b, we try to extend the path for

case c as follows: All forward paths emerging from candidate nodes are explored as

shown in figure 4.9. The exploration continues until a score difference of δ is obtained

between the best and second best paths till a certain depth. If no conclusion is reached

till all the paths have been explored until a maximum path length lmax, we terminate

the current contig at the current node.

4.2.7 Bubble detection

Detecting bubbles in the graph while traversing it is an important task. Bubbles in a

graph are defined as two paths that are identical except a few nodes differing in the

middle of the paths. For example, two paths 〈v1, v2, v3, v4, v5〉 and 〈v1, v2, v
′
3, v4, v5〉
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would form a bubble v1 − v2 −
〈v3

v′3

〉
− v4 − v5 in the de-Bruijn graph.

Several situations in the genome assembly problem can translate to forming bubbles

in the de-Bruijn graph

• Approximate repeat regions: Repeat regions in the genome that are identical

apart from a few bases would form a bubble in the de-Bruijn graph representing

the differing part. Identifying such bubbles enables traversal over them, thereby

elongating the length of the contig being produced.

• Read errors: Reads containing errors would differ from the genome as well as

other correct reads that span the erroneous position. This would result in a

bubble where the two branches would represent the correct reads (usually high

frequency) and the erroneous reads (usually low frequency). Identifying such

bubbles help removal of erroneous branch and increasing the quality of the contig

being produced.

• Biological mutations: Organisms that are diploid (e.g. humans) contain two

copies of the genome, one inherited from each of their parent. Both copies

participate in the sequencing process (i.e. reads are produced from both the

copies simultaneously). The two copies however, arising from two different

organisms (mother and father in case of humans) are not identical and have minor

differences. These differences are referred to as Single Nucleotide Polymorphism

(SNP) These differences appear as mutations in the reads. Specifically, the reads

sequencing a SNP position will be in disagreement at that position since the

reads are originating from two sources that have a different base present at the

SNP position.

In terms of de-Bruijn graph, the biological mutations are similar to read errors
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Figure 4.10: Detecting bubbles while exploring all paths

and form similar de-Bruijn graph structure as read errors, except that the

two branches in case of mutations will have similar frequency (since odds of

sequencing from two copies are similar) whereas in case if read errors will have

highly differing frequency (since error rates for the reads we use is low). On

identifying bubbles that correspond to mutations, we can traverse over one

branch and report the other as a mutant along with the assembly.

During traversal, we detect bubbles as part of the all paths exploration routine

(discussed earlier) as shown in figure 4.10. When exploring all paths, if we encounter

two identical nodes in the exploration tree, we check if their sequence lengths are

similar (that is, their lengths differ by less than a maximum threshold). If so, we

declare the structure as a bubble. We then categorize it into the appropriate kind of

bubble (approximate repeat, errors or mutations) and address it accordingly.

35



4.2.8 Estimating Node Visit count

A key challenge in traversing the de Bruijn graph is deducing the number of times

each node should be visited during graph traversal. An ideal traversal should visit a

node v as many times as its sequence appears in the genome (referred to as ηv). When

v has been visited ηv number of times, v is said to be saturated. This deduction is

particularly important to be able to terminate the traversal after all the nodes in the

graph have been saturated. Moreover, this is also useful in terminating the current

path when all the candidate nodes for extension have been saturated.

For uniform read coverage cov, ηv can be obtained as ηv ≈ fv

cov
, where fv is the

frequency of occurrence of the molecule in v in the readset. Since the read coverage in

practice is not perfectly uniform, determining ηv is far from trivial. We describe a

method to estimate ηv for a k-molecule v. It is straightforward to extend this to a

h-molecule for h > k.

Let {p1, p2, . . . pη} be the genomic positions where the strands of v occur in the

genome. Let {c1, c2, . . . cη} be the coverages at respective positions. Then we have the

following equation.

fv ≈
ηv∑
i=1

ci (4.2)

Assume we are at node v while traversing the graph, and let this visit to v

correspond to position pi for some i. If there is a mechanism to deduce the coverage

at current position pi (that is ci), then we can add ci to a variable (called usagev,

initiated to 0), and do this every time v is visited. When the condition usagev ≈ fv

is satisfied, we know that v has become saturated and that v should not be visited

anymore in our traversal. Therefore the problem of estimating ηv reduces to estimating

the coverage at the genomic part corresponding to current node of traversal, which we

describe in the following subsection.
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Figure 4.11: Coverage at a given position is the number of intra read DCs crossing it

Coverage estimation

In this section, we propose a method to estimate read coverage at a genomic position p

(referred to as covp) corresponding to a node v. Since the purpose of this estimation is

to eventually deduce ηv, a close estimate is expected to suffice. In addition to coverage

at a specific position, we also discuss coverage in a short genomic region X (referred to

as covX), which is expected to be roughly constant throughout the region, assuming

that the region is too short for any significant coverage variation.

Coverage at any given genomic position is the number of times the position is

sequenced in the reads. Since we have an intra read DC between two ends of every

read, the coverage at any given position, covp is nearly equal to the number of intra

read DCs that have the two ends on opposite sides of the position, as shown in figure

4.11. Such DCs are said to cross over p and the number of such DCs is referred to as

genome intra crossp. Therefore,

covp ≈ genome intra crossp (4.3)

During the de-Bruijn graph traversal, genome intra crossp for a given position p

can be estimated as follows: After traversing the graph to create a path containing v,

we can count the number of intra read DCs that have the two DCnodes on opposite

sides of v (DCs crossing over v). For a node v in path P , we refer to this number

as path intra crossv,P or simply path intra crossv when the path in the discussion is

implied. Thus path intra crossv will be the coverage at the current genomic point of

traversal corresponding to v, and thus will be equal to covp.
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Figure 4.12: Coverage at a given position is related to coverage in nearby regions

The method described will work if genomic position p is not part of a long repeat.

However, if it is part of a long repeat, most of the DCnodes of DCs crossing over v are

expected to come from the repeat region. In this case, the above method will give the

sum of coverages for all such repeat regions. Thus path intra crossv will not provide

a good estimate of genome intra crossp. It is unclear how to separate intra read DCs

from different repeat regions to get a good estimate of genome intra crossp.

To handle this, we use inter read DCs instead of intra read DCs. An advantage

of inter read DCs is that their distance is generally longer than that of intra read

DCs, and therefore their DCnodes are less likely to be part of a repeat region. Hence

the inter read DCs are more reliable than intra read DCs for coverage estimation.

We define genome inter cross and path inter cross for inter read DCs similar to

genome intra cross and path intra cross respectively for intra read DCs. We use

inter read DCs to estimate the coverage as follows.

Though the read coverage for the entire genome is non-uniform, sudden coverage

changes between nearby positions are rare. Therefore, to deduce covp at a position

p, we use the coverage of genomic regions in proximity of p. Figure 4.12 shows pairs

of reads with each pair having the two reads mapped in genomic regions Y and Z.

Since the position p is in proximity to regions Y and Z, covp is expected to increase

(decrease) as covY and covZ increase (decrease). Moreover, increase (decrease) of

coverage at covY and covZ also results in increase (decrease) of genome inter crossp.

Therefore, we use the following model for estimating coverage
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Figure 4.13: Synthetic example to calculate proportionality constant in coverage
calculation model

covp ∝ genome inter crossp

=⇒ covp = β × genome inter crossp

To calculate β, we use the scenario shown in figure 4.13. Each read pair has

two reads of length l each, and are obtained from an insert of size d. Therefore the

unknown gap between the two reads has length d− 2l. There is one read pair mapped

at every position in the genome. In this scenario, for any position q, the coverage at

that position is:

covq = 2l

And the number of inter read DCs crossing over q is:

genome inter crossq = d

Therefore, we have

β = covq
genome inter crossq

=⇒ β = 2l
d

We calculate genome inter crossp using path inter crossv in the same way we

calculated genome intra crossp using path intra crossv. For the current path, we

count the number of inter read DCs crossing over v. Since a repeat region is unlikely to
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span both DCnodes of an inter read distance constraint, path inter crossv is expected

to accurately estimate genome inter crossp in most cases. Therefore,

covp = β × path inter crossv

=⇒ covp = 2l
d
× path inter crossv

Therefore, every time our traversal visits a node v, we calculate the coverage using

the method described and add it to the usagev variable. When the usagev variable

becomes approximately equal to fv, we deduce that the node v is saturated and thus,

prevent our traversal algorithm from visiting it anymore.

While the model described above is expected to work reasonably well, given the

complex nature of the problem the model can fail to accurately predict the coverage

under certain situations. Predicting a value that is higher than the correct value

(over-prediction) in the coverage in a genomic region could result in traversing the

corresponding path less than ideal number of times (under-traversal). Predicting a

lower coverage value than the correct (under-prediction) on the other hand could

lead to more than ideal number of traversals through that path (over-traversal). To

accommodate for that, we err on the side of under-predicting the coverage, thereby

potentially over-traversing certain paths in the de-Bruijn graph. The reason for this is

that an over-traversal of de-Bruijn graph paths would result in overlapping contigs

that can be merged or removed from the assembly at a later stage (explained further

in section 4.3). An under-traversal on the other hand results in a loss of information

(in this case, potential loss of a contig representing a genomic region) that has no

hopes of being recovered.
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Figure 4.14: Merging forward and reverse contigs

4.2.9 Reverse traversal

Once a contig C is produced, we produce its reverse contig Ĉ in the manner we describe

below. For ease of discussion, we refer to C as forward contig.

We select a few beginning nodes of the forward contig, such that the sub-contig

formed by these nodes is longer than the expected length of the longest repeat. These

nodes are referred to as reverse seed nodes (RSnodes). The RSnodes are then again

set on to Q, but with their order and directions opposite to the one in which they

were set in forward contig. We also push the distance constraints for these nodes in

Q, and then begin the traversal.

The purpose of doing this is to extend the forward contig in reverse direction, and

then merge the forward and reverse contigs to produce one long contig, as illustrated

in figure 4.14.

4.2.10 Terminating graph traversal

We terminate the current path when one of the following situations occur:

a. When all the candidate nodes for further extension of current path are saturated.

b. When the traversal fails to achieve the necessary minimum score difference

between the best and the second best path scores, when extended up to a

maximum length of a threshold lmax.

After producing a forward contig and its reverse contig, we merge the two. We

start a new contig with the longest node that is not saturated, and continue producing
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Figure 4.15: Overlapping contigs produced by our assembly

contigs until all the nodes in the graph become saturated, at which point we terminate

the traversal.

4.3 Merging overlapping contigs

After the serial traversal algorithm described in section 4.2 (or parallel traversal

algorithm described in chapter 5) execute, the contigs produced can have long stretches

of overlapping regions, as shown in figure 4.15. This is due to the fact that we

underestimate our coverage during traversal leading to over-traversing of paths in the

de-Bruijn graph, as described in section 4.2.8.

These overlaps could be in form of suffix-prefix overlaps between contigs or smaller

contigs contained in larger ones. In order to produce long and non-redundant contigs,

we would like to identify pairs of contigs that share large overlapping regions. Using

this, we can remove the contigs contained in others and merge contigs with suffix-prefix

overlap into one.

Mashmap [40] is a tool that can be used to identify local alignment between long

DNA fragments, approximately and quickly. Given an overlapping length threshold l

and an identity cutoff t, is uses Jaccard similarity to identify all overlapping regions

between two sequences of length greater than l and identity greater than t. After

obtaining the contigs, we use Mashmap to identify all pairs of contigs sharing a good

overlap by running an all-pair Mashmap alignment (all-pair comparison in this case

is feasible as the number of contigs is small and mashmap is a fast and approximate

comparison tool).
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CHAPTER 5

PARALLEL GRAPH TRAVERSAL

In the previous chapter, we described a serial graph traversal algorithm to produce

long paths in the de-Bruijn graph representing contigs. The algorithm extends paths

iteratively, taking paired read distance constraints into consideration for adding a node

to currently produced path. Termination of any path was followed by beginning a

new path construction. The serial algorithm works well for assembling small genomes,

like those of bacteria and virus where the genome sizes are of the order of hundred

thousand basepairs to few million basepairs. The de-Bruijn graph for such datasets

have a few hundred thousand nodes and the runtime for the serial algorithm is of the

order of hours. However, for large genomes where the genome sizes are of the order of

billions of basepairs respectively, the de-Bruijn graph can contain hundreds of millions

of nodes. The serial traversal on such graphs would take days or weeks of runtime.

In this chapter, we describe a parallel graph traversal algorithm to produce contigs

from such large graphs. The algorithm is shared memory parallel and is adapted from

the serial algorithm described in previous chapter. The key challenge in designing

an efficient parallel algorithm is that the algorithm discussed in the previous chapter

is inherently sequential. Specifically, at any given decision point, the choice of next

node is dependent on nodes that precede it. Hence independent tasks that can be

executed in parallel are difficult to identify. In the following sections, we discuss how

we address this challenge.

5.1 Partitioning the graph

The basic idea of our parallel algorithm is to initiate multiple serial traversals in

the graph simultaneously. Each traversal can produce a contig independent of other
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traversals, thereby producing multiple contigs simultaneously. A major challenge in

executing this idea is to address conflicts where two or more traversals want to visit

the same node simultaneously. To prevent such conflicts, as a pre step to run our

parallel algorithm using p threads (denoted by {t0, t1, . . . , tp−1}), we partition the

nodes of the de-Bruijn graph into p parts while optimizing two criteria:

• Minimizing the number of edges crossing over partitions (i.e. minimizing the

edge-cut). The rationale for this criteria will become clear at a later stage.

• Balancing the number of nodes assigned to each partition.

There is a plethora of graph partitioners available that partition graph while

satisfying the above two criteria reasonably well. For our work, we use KaHIP

partitioner [41]. The set {P0, P1, . . . , Pp−1} represents the partitions thus obtained in

the de-Bruijn graph.

5.2 Parallel graph traversal

The parallel graph traversal algorithm is designed on the principle of assigning disjoint

sets of nodes to threads such that each thread operates only on the nodes assigned to

it. Therefore, we assign the nodes in partition Pi to thread ti. This leads to a clean

division of work between threads and avoids two threads operating on the same node

simultaneously.

To begin, each thread ti starts a serial graph traversal in the subgraph corresponding

to partition Pi as described in the previous chapter. Therefore p simultaneous traversals

are started in the graph. Balancing the number of nodes in different partitions leads

to balanced work loads amongst threads. KaHIP partitioner is consistently able to

achieve a load balance ratio (ratio of maximum partition size to average partition size)

of under 1.05 for all datasets in our experiments. Figure 5.1 shows four simultaneous

traversals starting in a graph with four partitions. Since all the traversals start in
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Figure 5.1: Four simultaneous traversals in the partitioned graph

separate partitions, they can proceed without conflicts as long as they do not cross

partition boundaries.

When a traversal is about to cross a partition boundary, it needs special handling

as described in the following subsection.

5.2.1 Contig Extension Jobs

To adhere to our design principle, a thread ti can keep extending a contig C only as

long as the traversal remains within the partition Pi. When a traversal crosses into a

different partition, say Pj , we prohibit ti to extend C. This is done in order to prevent

threads from interfering with each other. However, it would be incorrect to stop this

traversal here since this would lead to shortening of contigs when in principle they

could be extended further.

To handle this, threads create contig extension jobs for other threads when a contig

needs to be extended beyond a partition boundary. In the above example, ti will

create a job for tj . This job contains all the information that ti would have needed to
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Figure 5.2: ti pushing a job in JQj, later to be pulled by tj to extend the contig

extend C had we not prohibited it from crossing partition boundary of Pi. Instead,

now this information will be used by tj to extend this contig.

Each thread tr maintains a job-queue (abbreviated as JQr), a queue in which

other threads can push jobs and tr will serially pull jobs in first in first out order to

extend contigs (shown in figure 5.2). Note that this pushing of jobs can be done in

a cascading manner. Thus in the above example, thread ti can push a job into JQj

even if the contig C did not start in Pi and was instead extended by ti using a job

from JQi, pushed by another thread. With this design, simultanious traversals can

take place in the graph without traversals interfering with each other.

Note that transferring a traversal from one partition to another is an expensive

process, and although unavoidable, we would like to minimize it as much as possible.

This is the reason our graph partitioning strategy had minimizing the edge cut

(percentage of edges crossing partition boundaries) as one of the criteria. KaHIP

partitioner is consistently able to achieve edge cut of under 0.5% for all datasets we

used in our experiments.
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Algorithm 3 Parallel Graph traversal algorithm.
1: while true do
2: if no start node in any partition then
3: break;
4: end if
5: if no job in my queue then
6: select start node()
7: else
8: pull job()
9: end if

10: while true do
11: select node direction()
12: update candidate nodes()
13: update distance constraints()
14: select next node()
15: if no node selected then
16: break;
17: end if
18: if diff par node selected then
19: push job to diff queue
20: break;
21: end if
22: end while
23: end while=0

47



5.2.2 Termination of parallel algorithm

Analogous to the serial algorithm termination, the parallel traversal algorithm termi-

nates when all nodes in all partitions have been saturated and all ongoing traversals

have finished.
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CHAPTER 6

EVALUATION OF QUALITY AND PERFORMANCE OF OUR

ASSEMBLY ALGORITHM

We implemented our graph traversal algorithm in C++. The shared memory paral-

lelization was done using OpenMP threads. Our key contribution in this work is two

fold: 1) a novel algorithm to traverse the graph with embedded distance constraints

to recover a larger fraction of genome through high quality contigs than otherwise

possible, and 2) a parallelization via simultaneous serial traversal in the partitioned

de-Bruijn graph. The algorithm is intended to be used after constructing the de Bruijn

graph, performing error correction on the graph to mitigate the unwarranted effects of

read errors, and compressing chains in the graph to generate a more compact graph

before subjecting it to traversal. To accomplish these tasks, we use Bruno [42], a

fast de-Bruijn graph construction tool that performs error correction by filtering out

low frequency k-mers prior to constructing the de-Bruijn graph. In addition, it also

performs chain compaction, i.e. compressing a series of nodes in an unambiguous path

into a single node.

6.1 Datasets

Our goal is to test the performance of our graph traversal algorithm against the

traversal/contig generation algorithms developed by others. To conduct the testing,

we used real read datasets sequenced from yeast, arabidopsis thaliana (abbreviated as

A.Thaliana) and rice genomes. These datasets were downloaded from the SRA public

database [43]. In addition, we tested our algorithm on a single library (Library 1)

of the human chromosome 14 read dataset (abbreviated as H.Chr14) used in GAGE

assembly evaluation [3]. To keep the testing comprehensive, we used a variety of
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Table 6.1: Datasets used in our experiments.

Dy Dh Da Dr

Organism Yeast H.Chr14 A.Thaliana Rice
Reference length 12M 107M 135M 430M
No. Reads 2× 4.3M 2× 18.3M 2× 26.5M 2× 126.1M

Read len (bp) 126 101 300 150
Coverage 89X 34X 117X 88X
Sequencer HiSeq 2000 - MiSeq HiSeq X Ten
SRA accn SRR4244871 - SRR5499434 SRR5011847

datasets in terms of genome length, read length and sequencer. The datasets are

highlighted in table 6.1.

6.2 Evaluating quality

To assess the quality of the assembly, we compared our results with several other state

of the art assemblers – ABySS 2.0, SAGE, SOAPdenovo2, IDBA, HipMer and SPAdes.

As mentioned in the introduction, most assemblers use paired end information in a

secondary phase to extend or scaffold initial contigs. SPAdes and AllPaths-LG are the

only other currently available assemblers that directly use paired end information in

graph traversal while producing contigs, and both use approaches that are distinct and

different from ours. The AllPaths-LG assembler is targeted to sequencing protocols

used at the Broad Institute, and requires input generated by particular sequencing

protocols – for example, high coverage (>100 X), at least two paired-end libraries, the

shorter library having small insert sizes that will induce overlap between the paired

reads, etc. Due to these constraints, we were unable to include AllPaths-LG in our

comparison.

Many assemblers (including some in our comparison, namely ABySS 2.0, SOAP-

Denovo2 and HipMer) require k, the k-mer size as input. As described in chapter 3,

IDBA uses multiple values of k to build iterative de-Bruijn graph, and does not need

k as input. SPAdes uses multiple values of k based on k-mer frequency histogram for
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different k values. In the interest of a fair comparison, we used the same k value as

input for assemblers that require it. This value was selected by picking the largest

value of k that SPAdes uses to perform its assembly. The SAGE assembler is not a

de-Bruijn graph based assembler and instead uses string graphs. It therefore requires

an overlap length threshold between two reads that is considered “good” for reads to

be considered for merging. While it is unclear how to define an analogous of k in this

model, we keep this overlap threshold slightly above k for SAGE. If an assembler is

unable to produce the assembly within 72 hrs, we say that the assembler “timed out”

and we are unable to report any results for that run.

We used the QUAST assembly evaluation tool [44] to evaluate all assemblers

tested. QUAST evaluates assembled contigs by aligning each of them to the genome

and providing statistics on how much of the contig aligns to the genome, along with

affiliated statistics such as errors and the number of unreported nucleotides (designated

by N’s in the assembled contigs/scaffolds). We report the longest alignment found by

QUAST for all assemblers for each dataset. We also report NGA50, which measures the

maximum threshold length at which all aligned blocks extracted from raw contigs that

are longer span more than 50% of the genome. In addition, we report the percentage

length of contigs that is unaligned to the genome (UL), the number of mismatches

(MM), the number of indel errors and the number of N characters inserted in the

assembly. The mismatches, indels and N ′s are reported per 100 kbp of contig length.

Lastly we report the percentage of genome recovered (GR) by each assembly through

their assembly. Table 6.2 shows a comparison of the different assembly methods on

the yeast dataset. Due to miscellaneous factors, we were unable to obtain results for

HipMer for this dataset. The largest k selected by SPAdes was 55 bp, and we used

that for all assemblers that need k as input. For SAGE, we used an overlap threshold

of 60 bp.

SPAdes was able to generate the longest alignment and highest NGA50, underscor-
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Table 6.2: Comparison of various assemblers on yeast dataset

Assembler Longest
align NGA50 UL (%) MM Indels N’s GR (%)

ABySS 79.3K 23.5K 0.1 8.65 1.27 12.09 93.58
SAGE 87.6K 19.1K 0.2 11.08 2.03 220.06 95.0
SOAPdenovo2 138.1K 32.6K 0.2 4.06 11.83 130.37 93.99
SPAdes 153.2K 42.7K 0.1 6.29 2.63 16.69 93.98
IDBA 109.2K 27.4K 0.1 6.99 1.35 0 94.1
Our algorithm 81.5K 15.5K 0.1 20.53 2.06 0 93.87

Table 6.3: Comparison of various assemblers on H.Chr14 dataset

Assembler Longest
align NGA50 UL (%) MM Indels N’s GR (%)

ABySS 75.6K 4.2K 0.04 87.09 14.42 28.11 75.5
SAGE 45K 3K 0.07 93.97 12.64 468.5 74.82
SOAPdenovo2 112.9K 7.3K 1.08 93.83 60.82 498.79 77.28
SPAdes 108.9K 9.7K 0.07 111.1 21.42 15.2 78.1
IDBA 67.6K 7.4K 0.07 99.1 17.65 0 79.06
Our algorithm 17.7K 2.3K 0.6 220.56 20.55 0 75.6

ing the value that can be gained by direct inclusion of paired reads distance constraints

in assembly. While SOAPDenovo scores well in these measures as well, it does so at

the cost of a large number of N’s and high indel rate. While we had a high mismatch

rate, our algorithm measured comparably with other assemblers under most metrics.

The algorithm, along with IDBA were able to recover a competitive fraction of genome

without the aid of N characters in the assembly. Apart from a few measures, there is

little that separates different assemblers in this case. For the dataset Dh, we again

used k = 55 and the results are shown in table 6.3. IDBA was able to recover the

highest fraction of genome, demonstrating the merit of using multiple k values for

assembly. However, this comes at the cost of algorithm complexity, resulting in IDBA

being unable to finish on large datasets.

We perform similar evaluations for the datasets Da and Dr. The k values chosen

for these datasets are 127 bp and 77 bp respectively. Due to large sizes of these
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Table 6.4: Comparison of various assemblers on arabidopsis thaliana dataset

Assembler Longest
align NGA50 UL (%) MM Indels N’s GR (%)

ABySS 2.0 589K 78K 3.5 12.52 5.27 52.43 96.45
SPAdes 554K 110K 49 20.89 10.34 1.71 96.02
HipMer 352K 48.4K 0.9 9.83 3.55 115.79 94.7
Our algorithm 110K 12.4K 1.1 11.48 2.42 0 97.17

Table 6.5: Comparison of various assemblers on rice dataset

Assembler Longest
align NGA50 UL (%) MM Indels N’s GR (%)

ABySS 2.0 163K 16K 9.3 22.07 7.23 145.19 76.73
SOAPDenovo 292K 26K 28.3 63.22 42.65 6.7K 73.34
SPAdes 168K 16.6K 38.1 30.43 6.01 53.54 77.74
HipMer 263K 24.7K 4.3 17.52 7.30 98.90 89.01
Our algorithm 144K 22K 4.0 145.5 15.09 0 89.33

datasets, we were unable to run IDBA and SAGE on these datasets. The overlap

threshold chosen for SAGE in these cases were 130 and 80 respectively (though in

order to possibly reduce the runtime, we experimented with lower threshold lengths as

well). In addition, we were unable to run SOAPDenovo on Da as it does not accept

datasets with read length more than 256 bp. The QUAST evaluations of successful

runs are highlighted in tables 6.4 and 6.5.

For the dataset Da, although we fall short in terms of the longest alignment and

NGA50, we were able to recover the largest percentage of genome with no N’s in

the assembly. Along with HipMer, we made close to lowest errors (low values for

UL, MM , and indels). While SPAdes was able to achieve fairly long alignment and

NGA50, it does so at the cost of large percentage of unaligned length of contigs.

For dataset Dr, apart from higher mismatches, our algorithm is competitive on

other metrics. We are again able to recover the largest percentage of genome with no

N’s (with HipMer being close second). The other three assemblers are able to recover

far less percentage of genome. In addition, SPAdes and SOAPDenovo produce a large
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Figure 6.1: Scalability on rice

number of unaligned contigs, making it difficult for any further processing of their

output.

6.3 Evaluating scalability

While computing performance enhancement is not the main objective of this work,

we provide runtime evaluation of our algorithm for completeness. We do this to

demonstrate that our algorithm can run in reasonable runtime. We conducted all

our experiments on a shared memory compute node with 1 TB main memory, 4

sockets, 18 cores per socket, each core being an Intel(R) Xeon(R) CPU E7-8870 v3 @

2.10GHz. All except two of the assemblers in our comparison list (ABySS 2.0 and

HipMer) are either serial or shared memory parallel, incapable of taking any advantage

of a distributed memory platform. We note that while ABySS 2.0 and HipMer are

distributed memory parallel, running them on shared memory platform posed no

disadvantage as their execution did not terminate due to runtime shortage.

Figure 6.1 shows the scalability of our algorithm on rice dataset as we vary the

number of threads.
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Our algorithm achieves respectable runtime scalability up until 8 threads, at which

point it takes 19 mins to finish on rice dataset. Beyond 8 threads, the runtime flattens.

This is due to the memory intensive nature of our algorithm where different threads are

trying to access a shared resource (main memory) in order to extend their respective

paths in the de-Bruijn graph. As the number of such threads increase, it increases the

contention, thereby preventing the scaling beyond a point.

The main memory usage of our algorithm effectively stays constant (∼ 75 GB)

as we vary the number of threads, implying that memory usage for the algorithm

is scalable. This is a useful feature as it indicates that the threads need a minimal

thread specific bookkeeping. In addition, memory scalability makes this algorithm a

good candidate for a distributed memory implementation.

6.4 Discussion

In this work, we address the problem of producing a high quality genome assembly

using paired reads. With a research effort spanning over three decades, several

assembly tools have been developed to tackle this complex problem. A majority of

tools developed after the arrival of NGS machines use de-Bruijn graphs, a compact

graph structure, to capture overlaps between input reads. Most of these tools produce

an initial set of contigs corresponding to unambiguous sections of this graph. They use

the paired read information at a later stage to close gaps between initial contigs, or

fill the gaps with N characters indicative of a genome region that cannot be recovered

by the assembly. Through experimental results, we are able to demonstrate that

by traversing the de-Bruijn graph beyond the chain nodes, our algorithm is able to

recover higher fraction of genome compared to other assembly algorithms for large

and complex datasets. Our objective in this research is to extend contigs beyond the

linear chains in the de-Bruijn graphs. Instead of filling the assembly with unknown

N characters, we aim to discover these unknown regions by first embedding the
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paired read information directly onto the de-Bruijn graphs and then using them as

pointers to extend contigs when faced with an unclear forward path. Since we produce

contigs only corresponding to paths in the graph without filling N characters, on

several occasions our contigs are terminated due to disconnected regions in the graph.

This is reflected in relatively short contigs produced by our algorithm. However a

higher genome recovered without any N characters in our assembly indicates that our

algorithm can be useful in discovering regions in the genome that correspond to highly

bifurcated sections, requiring pointers to make decisions about extending contigs. We

experimentally show that our algorithm is able to run in a reasonable runtime for

large datasets, demonstrating its utility to assemble large genomes.
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CHAPTER 7

PROBABILISTIC ESTIMATION OF OVERLAP GRAPHS FOR

LARGE SEQUENCE DATASETS

In this chapter we describe a parallel algorithm to estimate overlap graphs. Sequence

overlap graphs, constructed based on suffix-prefix relationships between pairs of

sequences, are an important data structure in computational biology. As discussed

in chapter 1, high throughput sequencers can read several million to a few billion

DNA fragments in a single experiment. In chapter 2 we discussed that constructing

overlap graphs for such datasets is compute-intensive. In this chapter, we present

a Locality-Sensitive Hashing based parallel heuristic algorithm to construct overlap

graphs for large genomic datasets. With reasonable assumptions on the characteristics

of input sequences, we establish probabilistic bounds on the quality of the overlap

graphs so produced. We demonstrate the validity and efficiency of our approach by

comparing against true overlap graphs using datasets derived from small (E. coli) and

large (H. sapiens) genomes.

7.1 Introduction

As discussed in chapter 2, given a set of reads generated by a sequencer, a sequence

overlap graph consists of vertices corresponding to reads and edges corresponding to

suffix-prefix overlaps among them. This data structure plays a central role in overlap-

layout-consensus based genome assembly [45, 46, 13], and metagenomic assembly [47].

Widely used sequencers like Illumina HiSeq and TenX can sequence up to six billion

reads in a single experiment that costs only a few thousand dollars. Constructing

overlap graphs for such large datasets is compute-intensive and requires efficient

algorithms.
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Let n denote the number of reads and l denote the read length. In the absence of

sequencing errors, a read overlap would be an exact match. Due to errors, one must

contend with substitutions, insertions, and deletions, their types and frequency being a

characteristic of the sequencing technology. For any error model, a suffix-prefix overlap

can be determined by dynamic programming based alignment algorithms, which are

part of standard literature. These algorithms take quadratic O(l2) time. Thus, the

overlap graph can be accurately constructed by running the alignment algorithm on

every pair of reads for a total of O(n2l2) run-time. This is prohibitive for large n,

and such direct computation is rarely used even prior to the era of high throughput

sequencing. Besides, the number of edges in an overlap graph is typically significantly

smaller than the maximum possible, and is often linear or near linear in n.

To compute an overlap graph in practice, the typical approach is to design a

heuristic that first identifies a subset of all possible pairs of reads, termed candidate

pairs from hereon, for subjecting them to rigorous suffix-prefix alignment. Such a

heuristic algorithm cannot directly inspect each pair, as that would incur Ω(n2) time.

Instead, it must directly generate pairs of reads with potential for good suffix-prefix

overlap. Heuristics are typically based on a simpler relationship between a pair of

sequences that must be satisfied if a good suffix-prefix overlap exists. An overwhelming

favorite is the existence of a common k-mer [15, 48, 14, 46]. Another measure is the

existence of a maximal common substring of length ≥ k for a specified threshold k [16,

17]. We contend that the frequency of shared k-mers between a pair of reads is a

better indicator of the existence of long suffix-prefix overlaps. However, computing

the set of k-mers in each read, and comparing the corresponding sets for each pair, is

computationally infeasible.

Locality-Sensitive-Hashing (LSH) is a widely used technique for comparing high

dimensional data. Popular applications include cryptography and analyzing social

networks. Berlin et al. created assembly of human genome using PacBio reads based
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on LSH and MinHash technique [49]. We propose an LSH based parallel algorithm

to compute pairs of reads that have a high probability of sharing an edge in the

overlap graph. Our algorithm is based on the widely used minhash technique [50],

originally invented for document clustering. We provide probabilistic bounds on the

false negative rates for the edges missed by our algorithm, when compared to true

overlap graphs. Our algorithm can be viewed as a filtering technique to reduce the

number of pairs of reads to be considered for a rigorous evaluation of their suffix-prefix

overlap using quadratic dynamic programming based sequence alignment algorithms.

Thus, the false positives generated by our algorithm have implications on run-time

but pose no quality issues, as they can be successfully detected and removed using

alignment algorithms. We experimentally show that the number of false positives

increases the run-time only to within a small constant factor. More importantly,

we present a way to tune algorithmic parameters to achieve desired precision and

sensitivity. We demonstrate the quality, performance, and scalability of our parallel

algorithm using large short read datasets derived from E. coli and H. sapiens genomes.

7.2 The Proposed Algorithm

Let R = {r1, r2, . . . rn} be the set of input reads. Without loss of generality, we assume

all the reads have length l. For a given read r, we use r [p, q] to denote the substring

of r from position p to q, inclusive of both ends. A suffix-prefix overlap is a sufficiently

long match between the suffix of a read ri and the corresponding prefix of another

read rj . The length is important to avoid spurious overlaps that do not correspond to

genomic co-location. As the alphabet size is 4, for a genome of length m, there must

be repeated occurrences of sequences of length < log4 m, hence overlaps at this size or

smaller are not sufficient.

Our algorithm is based on computing signature representatives of reads. Similarity

between such signatures for two reads is a good proxy for similarity between the
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Algorithm 4 Finding candidate pairs.
0: Let Ψ = ∅
0: for i = 1 . . .B do
0: Compute Hij(r),∀r ∈ R,∀j ∈ {1, . . . , T}
0: Let V = 〈K = (Hi1(r), . . . HiT (r)) , r〉 , r ∈ R
0: Sort(V, key = K)
0: for each segment S of V that share the same K do
0: Ψ = Ψ ∪ {〈u.r, v.r〉 | u ∈ S, v ∈ S, u.r 6= v.r}
0: end for
0: end for=0

actual reads, shown by Broder et al. [51]. In section 7.4, we use properties of minhash

signatures to estimate the quality of our proposed algorithm. We use the following

notation.

• k-spectrum: The k-spectrum of a read r, denoted as κ(r), is the set of all k

length substrings of read r, for some constant k < l.

κ(r) = {r [i, i+ k − 1] | 1 ≤ i ≤ (l − k + 1)}

• Minhash: Given a read r and a hash function h, the minhash of the read r,

denoted as M(h, r) is the minimum hash value obtained when the h is applied

to each element in the κ(r).

M(h, r) = min {h(ki) | ki ∈ κ(r)}

To account for double stranded nature of DNA sequences, minhash for a read r

is calculated using k-mers in κ(r) and their reverse complements. Our algorithm is

aimed at finding pairs of reads that share a sufficient number of minhash signatures

for a family of hash functions. To compute such pairs, we propose an LSH based

technique for comparing minhash signatures of reads. Specifically, we use the banding

technique of LSH, as described below.
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Consider a family of hash functions Γ with N = B × T hash functions, divided

into B bands, each band containing T hash functions. Formally:

Γ = {hij | i ∈ [1, B] , j ∈ [1, T ]}

We use Γ to calculate the minhash signatures for all the reads. Given a read r and

a hash function hij, we define Hij as follows:

Hij(r) = M(hij, r)

i.e.,Hij(r) is the minhash signature of read r using the hash function hij . We compute

Hij(r) for all hij ∈ Γ and r ∈ R, resulting in B × T signatures for each read r.

We need an effective way to compare signatures for different reads such that

comparison between signatures closely emulates the comparison between the actual

reads. Let Ψ denote the set of all candidate pairs selected by our algorithm. A read

pair (ry, rz) is included in the set Ψ if the following holds true:

∃i ∈ [1, B] | ∀j ∈ [1, T ] , Hij(ry) = Hij(rz)

In other words, we consider the pair (ry, rz) as a candidate pair if there exists at

least one band such that all the minhash signatures for ry and rz within that band are

identical. We show the effectiveness of such comparison between minhash signatures

in section 7.4.

Algorithm 4 describes our approach to compute the set of candidate pairs Ψ. First,

within a band, minhash signatures are computed for all the reads using the functions

in Γ. Then, using sorting, buckets of reads that share identical minhash signature

tuples are identified. Each valid pair corresponding to a bucket is added to the set Ψ.

This is repeated for all the B bands.
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7.3 Parallelization strategy

Our algorithm permits easy parallelization that extends to multiple nodes and not

limited to cores of a shared memory system, useful when dealing with large-scale high

throughput sequencing data. For ease of presentation, we use the term processor to

refer to an independent unit executing a thread of the parallel algorithm, such as a

CPU core.

After loading n
p

reads into its memory, each processor generates for each read rx

assigned to it, a tuple of length T + 1, 〈x,Hi,1(rx), . . . , Hi,T (rx)〉 corresponding to a

band bi. We then use parallel sort to partition the generated tuples into buckets, such

that all the tuples assigned to a bucket share identical values for the T signatures.

If a bucket crosses a processor boundary, it is shifted to the lower ranked processor.

Finally, the candidate pairs are generated from each bucket within a processor. We

repeat these steps for all bands b1, . . . , bB. Hence, the total parallel runtime is

O
(
BTnl
p

)
+O(B × pSort(nT, p)), where pSort(m, p) is the time for parallel sorting of

m numbers using p processors.

We implemented our algorithm in C++ and using MPI for the collective com-

munication operations. In our implementation, we use the KmerInd library [52] to

load the file data in blocks of size ≈ |R|l/p and to generate all the k-mers. For

parallel sorting, we use the implementation of distributed sample sort described in [53].

For all the T × B hash functions, hij, we choose MurMurHash with different seed

values. MurMurHash functions are known to behave min-wise independently and this

property is useful in deriving probabilistic bounds discussed in the next section. We

use the implementation of SMHasher library [54] for computing MurMurHash values

for k-mers generated from the reads.
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7.4 Theoretical quality assessment

In this section, we derive a probabilistic bound on the false negative rate (FNR)

that our algorithm incurs. False negatives (FN) correspond to pairs of reads with

acceptable suffix-prefix overlap that our algorithm failed to identify, and thus will be

missing from our constructed graph. Therefore we would like to keep FNR as low as

possible. We derive this bound in two stages as follows. In the first stage, we evaluate

the set of pairs of reads emitted by our algorithm against reads with a high Jaccard

similarity coefficient between them, and estimate FNR for that comparison. In the

second stage, we relate the Jaccard similarity to suffix-prefix overlaps and use the

FNR estimated for Jaccard similarity to estimate errors with respect to suffix-prefix

overlaps.

7.4.1 Relating to Jaccard similarity

We estimate the quality of our algorithm in computing the set of pairs that have a

Jaccard similarity coefficient above a threshold Jmin. The quality assessment of the

algorithm relies on the assumption that the family of hash functions Γ is min-wise

independent [51]. Thus, the following holds true for any hash function h ∈ Γ and

reads r, s ∈ R

P (H(r) = H(s)) = Jac(r, s)

where P (E) denotes the probability of an event E occurring, and Jac(r, s) represents

the Jaccard similarity index between κ(r) and κ(s), denoted by Jrs from hereon.

Let χrs denote the event that read pair (r, s) is selected as a candidate pair by our

algorithm (recall B = number of bands and T = number of hash functions per band).

Therefore:

P (χrs) = 1−
(
1− JTrs

)B
Define the event πrs as true if Jrs ≥ Jmin, and false otherwise. Then, FNRJ =
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P (¬χrs/πrs). The subscript J denotes that these errors are defined with respect to

Jaccard similarity. Consider

FNRJ = P (¬χrs/πrs)

= P (¬χrs/Jrs ≥ Jmin)

= P (¬χrs ∩ (Jrs ≥ Jmin))
P (Jrs ≥ Jmin)

=
∑
Ji≥Jmin

P (¬χrs ∩ (Jrs = Ji))∑
Ji≥Jmin

P (Jrs = Ji)

=
∑
Ji≥Jmin

P (¬χrs/Jrs = Ji).P (Jrs = Ji)∑
Ji≥Jmin

P (Jrs = Ji)

=
∑
Ji≥Jmin

(
1− JTi

)B
.P (Jrs = Ji)∑

Ji≥Jmin
P (Jrs = Ji)

Let ηrs be the number of common k-mers between reads r and s. We define

function g that gives the Jaccard similarity coefficient corresponding to the number of

k-mers common between two reads.

Jrs = g (ηrs) = ηrs
2 (l − k + 1)− ηrs

and ηrs = g−1(Jrs)

Where ηrs ∈ [1, l − k + 1]. Hence we have l − k + 1 different values for Jrs. Assuming

all distinct values occur with uniform probability, and setting ηmin = g−1(Jmin), the

false negative rate is

FNRJ =
∑
Ji≥Jmin

(
1− JTi

)B
l − k + 1− g−1(Jmin) (7.1)

Therefore, FNRJ is framed as a function of parameters l, Jmin, k, B and T . Given

the length of the reads l and a threshold Jmin on Jaccard similarity coefficient, the

parameters k,B, T can be tuned to achieve a desirable bound for the false negative
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rate. This is a key advantage of our approach.

7.4.2 Suffix-prefix overlaps

We now adapt the FNRJ estimated in the previous subsection to the suffix-prefix

overlap scenario. Let lmin denote the minimum length of an acceptable suffix-prefix

overlap. For descriptive purposes, we assume the overlap to be an exact match. It

can be easily extended to non-exact matches for reads with low error rates (true for

our datasets) by estimating number of k-mer mismatches in a suffix-prefix overlap

due to errors.

Let lrs be the length of the longest suffix-prefix overlap that reads r and s have.

Assuming the overlap is the only commonality between the strings, r and s share

lrs − k + 1 common k-mers and therefore the Jaccard coefficient Jrs between r and s

is given by

Jrs = g(lrs − k + 1)

We relate lmin and Jmin as follows. Let lmin = g−1(Jmin)+k−1. That is, lmin is the

minimum length of suffix-prefix overlap between r and s so as to have Jaccard similarity

coefficient of Jmin between them. Also, let φrs denote the event that lrs ≥ lmin. Clearly,

φrs =⇒ πrs.

Figure 7.1 shows the set of all pairs of reads with subsets in which events χrs, πrs

and φrs are true.

The false negative rate in calculating the suffix-prefix overlap is given by

FNRO = P (¬χrs/φrs)

Given that the Jaccard similarity coefficient is independent of the position of
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φrs

χrs πrs

¬πrs

Figure 7.1: Set of all read pairs, partitioned by subsets corresponding to predicates
namely, πrs: Set of pairs (r, s) with Jrs ≥ Jmin, χrs: Set of pairs selected by our
algorithm, φrs: Set of pairs (r, s) with lrs ≥ lmin.

overlap within the reads, we assume:

P (χrs ∩ φrs/χrs ∩ πrs) = P (φrs/πrs)

That is, the pairs selected by our algorithm that have Jaccard similarity above

Jmin (χrs ∩ πrs) are uniformly distributed in the spectrum of πrs, and the likelihood of

any such pair having a suffix-prefix overlap above lmin is equal to P (φrs/πrs). Using

similar reasoning, we have the same assumption for the event ¬χrs:

P (¬χrs ∩ φrs/¬χrs ∩ πrs) = P (φrs/πrs)

Therefore conclude the following from Figure 1.

FNO = P (φrs/πrs)× FNJ

TPO = P (φrs/πrs)× TPJ

FPO = FPJ + TPJ − P (φrs/πrs)× TPJ

TNO = TNJ + FNJ − P (φrs/πrs)× FNJ
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The variables FN, TP, FP, TN denote False Negatives, True Positives, False Posi-

tives and True Negatives respectively, and subscripts O and J denote the parameters

are with respect to suffix-prefix overlap and Jaccard similarity index, respectively.

Therefore

FNRO = FNO

FNO + TPO

= P (φrs/πrs)× FNJ

P (φrs/πrs)× FNJ + P (φrs/πrs)× TPJ

= FNJ

FNJ + TPJ

= FNRJ (7.2)

Hence, FNRJ calculated with respect to Jaccard similarity computation is expected

to give an accurate estimate of the desired error estimate for FNRO.

7.5 Experimental Results

We ran our experiments on an Intel Xeon Infiniband cluster. Each node has two 2.0

GHz 8-core Intel E5-2650 processors and 128GB of main memory. Experiments were

conducted on up to 64 nodes, totaling 1,024 cores. We evaluated our algorithm on

three different datasets, shown in Table 7.1. Each dataset is a set of simulated Illumina

reads derived from a known genome using SimSeq [55], a read simulator designed to

simulate Illumina short reads while taking into account the sequencer specific error

models.The reason for using simulated reads instead of using a true Illumina dataset is

to be able to know true suffix-prefix overlaps without running an alignment algorithm

for every pair of reads, which would not be feasible computationally. We use D1

and D2 to demonstrate the quality and scalability of our algorithm. Using D3, we

demonstrate the ability of our algorithm to handle big genomic datasets. All the reads

are of length 100.
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To the best of our knowledge, no current software specifically targeting overlap

graphs can estimate the graph for datasets with billions of short reads. However, in

addition to standalone performance evaluation of our method, we also compared it

against Minimap [56], a method that uses the MinHash technique but designed for

the different problem of mapping and comparing long erroneous reads produced by

PacBio and Oxford Nanopore Technologies sequencers. A recent survey [57] showed

that among the currently available methods for finding the pairs of sequences with

sufficient suffix-prefix overlap, Minimap performs better compared to other methods.

7.5.1 Quality Assessment

Let Fe denote the estimated/predicted FNR using equations 7.1 and 7.2 described in

section 7.4. We compare this with the experimentally observed FNR value (called Fo).

In addition, we experimentally calculate the ratio FP
TP

, denoted by Ω. This ratio is a

measure of the number of incorrect candidate pairs selected by our filtering algorithm.

Note that Ω has no effect on the quality of the overlap graph produced, since the

incorrect pairs will be eliminated by running an alignment algorithm on the pairs

selected. The ratio Ω is the ratio of the time wasted by our algorithm to the ideal

run-time (when FP = 0). If for example Ω = 1, the total run-time is increased by a

factor of 2 when compared to the ideal.

To evaluate the quality of our algorithm for dataset D1, we used fixed values

of T = 3 and B = 334 while varying k (15, 13, 11) and lmin (60, 50, 40). Similar

procedure was used for D2. Table 7.2 shows the Fe, Fo and Ω values. We compute

Table 7.1: Datasets used in our experiments.

D1 D2 D3
Organism E. coli H. sapiens H. sapiens
Source Genome chr1 Genome
No. Reads 1.75× 106 87.5× 106 1.25× 109

Coverage 37.7X 35.4X 38.64X
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Table 7.2: Estimated FNR (Fe), observed FNR (Fo) and Ω values for datasets D1
and D2 with our proposed method. Observed FNR and Ω with Minimap are also
listed.

Dataset D1 Dataset D2

Param.
k, T,B

Overlap Threshold (lmin) Param.
k, T,B

Overlap Threshold (lmin)

60 50 40 60 50 40

Fe 0.0018 0.0401 0.1511 0.0558 0.1840 0.3146
Fo 15,3,334 0.0171 0.0392 0.0824 19,3,200 0.1482 0.1914 0.2549
Ω 0.7968 0.4668 0.2779 3.6302 2.8925 2.5146

Fe 0.0003 0.0173 0.1011 0.0028 0.0471 0.1609
Fo 13,3,334 0.0092 0.0248 0.0609 15,3,300 0.1049 0.1309 0.1769
Ω 0.8618 0.5097 0.3043 7.1090 5.6551 4.8542

Fe 0.0001 0.0006 0.0606 0.0001 0.0014 0.0410
Fo 11,3,334 0.0040 0.0139 0.0417 17,2,300 0.0909 0.1001 0.1185
Ω 1.1094 0.7002 0.4586 10.2986 8.1076 6.7351

Fo and Ω with Minimap
Fo k = 9 0.2295 0.1737 0.1377 k = 13 0.4313 0.3646 0.3141
Ω 0.1047 0.1129 0.1288 0.2340 0.3258 0.5078
Fo k = 11 0.2486 0.1882 0.1492 k = 15 0.4566 0.3888 0.3372
Ω 0.1003 0.1061 0.1120 0.1091 0.1289 0.1591

the true set of pairs that have a suffix-prefix overlap greater than lmin using SimSeq

metadata, and compare them against the set of pairs generated by our algorithm to

calculate Fo and Ω.

We observe that Fe and Fo are reasonably close in most of the cases for D1,

indicating that assumptions made while estimating the errors are reasonable. The

estimates are particularly accurate for (k, lmin) = (15, 50), (13, 50), (11, 40) indicating

a need for k and lmin to be proportional to each other for better estimates. For

reasonable estimates, the value k needs to be balanced between the two extremes. A

very small value of k could lead to too many spurious matches, whereas a large k can

cause a single error in the overlap region to miss any common representatives between

otherwise similar reads. For dataset D2, we typically underestimate the FNR by at
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most 0.1. In all the cases, Ω, which indicates the extra computing cost, is a small

constant, implying that our filter does not add enormous amount of extra overhead.

Minimap uses the minimum hash values of minimizers to compute the candidate

overlapping pairs of sequences, a lower k value in general tends to favor lower observed

FNR values. Therefore for Minimap experiments, we typically select the k-mer size

lower than that used for evaluation of our method. Results of these runs are listed in

Table 7.2. For both the datasets, our proposed method shows much lower FNR values

in all the cases compared to Minimap. While Minimap shows lower Ω values compared

to the proposed method, it does so at the cost of missing a significant percentage of

the true suffix-prefix overlapping pairs of sequences.

7.5.2 Evaluating Scalability

To measure the scalability of our implementation, we ran it on datasets D1 and D2,

while varying the number of cores. Table 7.3 shows the scalability results of our

implementation.

Table 7.3: Runtime and memory results for datasets D1 and D2

No. Total Relative Max. Mem.
of. Runtime Speedup per core

Cores (s) (MB)
Dataset D1

16 648.86 1.00X 183.45
32 328.56 1.97X 111.29
64 169.49 3.82X 69.56
128 121.31 5.34X 46.97

Dataset D2
64 2874.36 1.00X 2950.77
128 1810.17 1.59X 1525.93
256 908.33 3.16X 782.89
512 528.61 5.43X 433.62

Results show that the run-time and the maximum per core memory scale up
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to 128 cores for D1 and up to 512 cores for D2, in line with their relative sizes.

For any parallel algorithm, if the data size is fixed and the number of processors is

continually increased, diminishing returns set in at some juncture. In our algorithm,

this limit transpires due to two factors. First, the pair generation for a bucket takes

time proportional to the square of the size of the bucket, and therefore, there is an

imbalance in the amount of work done by the processors when the partitioning is

too fine-grained. Second, our algorithm relies on parallel sorting, and communication

costs dominate when the per processor data size becomes too small.

To test the applicability of our parallel algorithm for large datasets, we used dataset

D3 containing 1.25 billion reads. We were able to process D3 in ≈58 minutes using

1024 cores. This demonstrates that our implementation is able to process big genomic

datasets in reasonable time.

For running Minimap, we used a machine with four 2.1 GHz 18-core Intel Xeon E7-

8870 processors and 1TB of main memory. We used this large shared memory machine

for Minimap runs because Minimap cannot take advantage of distributed memory

but is only capable of utilizing cores available in a single machine via shared-memory

threads. Though runtimes on machines with different capabilities are not directly

comparable, we provide the runtimes for Minimap for the sake of completeness. Using

32 threads, Minimap took ∼0.9 and ∼37 minutes for datasets D1 and D2 respectively.

For D3, even after consuming 24 hours of its allocated job time, Minimap failed to

complete its run with 32 threads.

7.6 Discussion

We address the problem of computing overlap graphs for very large sequence datasets.

Prior works use a fixed substring or maximal longest common substring based heuristic

to restrict the number of pairs of reads which are subjected to suffix-prefix overlap tests

using alignment algorithms. However, they incur too many false positives as a single

71



substring match may not extend to a significant suffix-prefix overlap. Besides, none of

the earlier methods provide rigorous guarantees on the edges they miss. We propose

a more meaningful indicator of a potential suffix-prefix overlap by finding common

k-mers in the k-mer spectra of the corresponding reads. Our strategy uses minhash

based techniques to directly generate candidate pairs that share common signatures

without inspecting each potential pair. We established probabilistic bounds on the

False Negatives generated by our algorithm, with experimental results conforming to

theory. We experimentally demonstrate that the additional computational overhead

associated with the False Positives generated by the algorithm is within a small

constant factor. The proposed algorithm, and its parallelization, enable construction

of much larger overlap graphs than previously feasible.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

Genome assembly has been an important and challenging problem in the field of

computational biology for multiple decades. Its applications are manifold and sig-

nificant efforts have been dedicated to creating high quality assembly methods. In

this project, we presented a novel technique to improve de-novo genome assembly

quality. We used de-Bruijn graphs, a popular framework in the field, to develop our

method. The problem of producing long and accurate contigs is formulated as the

problem of traversing this graph accurately. Paired-end sequencing is a technology

in which sequencers from companies like Illumina produce reads in pairs such that

the two reads in each pair originate from nearby genomic locations with a known

approximate distance between them. This information can be useful in resolving

repeats and elongating contigs as one read in a pair can anchor the other to extend

contigs that would have been produced without this information. Most other assem-

blers, after creating the de-Bruijn graph, traverse the unambiguous sections of the

graph to produce initial set of contigs and use the paired end information at a later

stage by mapping the reads back to these initial contigs. We propose a technique to

perform graph traversal beyond the unambiguous sections of the graph. This is done

by using the paired read information at bifurcation points in the graph. Specifically,

we introduce inter read and intra read distance constraints between k-mers obtained

from the readset and embedded these constraints in the de-Bruijn graph. These

distance constraints are then used as cues to traverse through forks in the graph

by scoring all the options and picking the best one, resulting in extension of paths

beyond unambiguous regions and thereby recovering large fraction of genome. On

encountering two similarly strong paths to extend contigs, we explore all paths from
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the junction up to a certain distance to decide the correct path to take. In addition,

we present a technique to detect and traverse bubbles, a structure that can frequently

occur in assembly graphs. We present a model to estimate the coverage at the genomic

position in a non-uniform coverage read dataset. This helps us in determining the

termination point of the current path, and of the entire traversal. While most other

assemblers produce sequences corresponding to unitig nodes as initial contigs, and use

paired-end information in a separate stage for extending the contigs and scaffolding,

our approach embeds the paired-end information directly into the de-Bruijn graph,

thus collectively considering all the information present in the read set, and producing

contigs in light of this information.

In order to enable us assemble large genomes, we adapt this traversal algorithm

to develop a shared memory parallel strategy. This is done by first partitioning the

graph and initiating a serial traversal in each partition. Extension of contigs beyond

partition boundary is handled by developing a mechanism where threads can create

contig extension jobs for other threads to be processed later. The serial algorithm

is implemented using C++ and parallelization is achieved using OpenMP threads.

Preliminary results presented in this work demonstrate that our approach has the

potential to produce high quality contigs.

In addition, we propose and algorithm to estimate overlap graphs for large sequence

datasets. Constructing such graphs became computationally challenging after arrival of

high throughput sequencers. We propose a locality sensitive hashing based technique to

identify potential suffix-prefix overlaps between reads. Our strategy directly generates

candidate pairs that share common signatures without inspecting each potential pair.

We establish theoretical estimates on the False Negatives generated by our algorithm,

and experimentally show that computational overhead due to the False Positives

generated by the algorithm is within a small constant factor. The proposed algorithm

is parallelized on distributed memory architectures using MPI and enables construction
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of much larger overlap graphs than previously feasible.

This research can be extended in several directions:

• Scoring function: While we have experimented with several scoring functions,

the fact that this part (discussed in subsection 4.2.5) is the most important

factor in determining assembly quality makes it worthy of more effort for its

improvement and is an interesting direction for further research.

• Parallelization: While our current assembly algorithm is shared memory parallel

and runs in reasonable time on datasets with genomes sized a few hundred million

basepairs, shared memory parallel algorithms do not usually scale well. This will

especially be the case here since our algorithm is memory intensive. In order to

use it to assemble larger genomes like human (genome size: 3 billion bp) and Pine

(genome size: 22 billion bp), distributed memory parallelization would be needed

in order to achieve a reasonable runtime. Our current parallelization strategy

can be implemented as a distributed algorithm where different partitions can

be distributed across processors and contig extension jobs can be implemented

through messages in case of MPI implementation.

• Scaffolding: While our current algorithm traverses the de-Bruijn graph to

produce contigs, it is limited by the connectivity of the graph even when there

is paired read information present. Specifically, if there is a distance constraint

from the current node to a target, but a path between these two nodes is absent,

the traversal stops. The algorithm can be extended to “jump” from the current

node to target, filling the absent path with N characters. This can be thought

of as adapting the current traversal algorithm to perform contig generation and

scaffolding in a single stage.

• Assembly using overlap graphs: The overlap graph construction described in this

work enables construction of graphs for much larger datasets than previously
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feasible. This opens a new research direction in terms of extending this work to

create assembly for short reads using overlap graphs.
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