





800

800

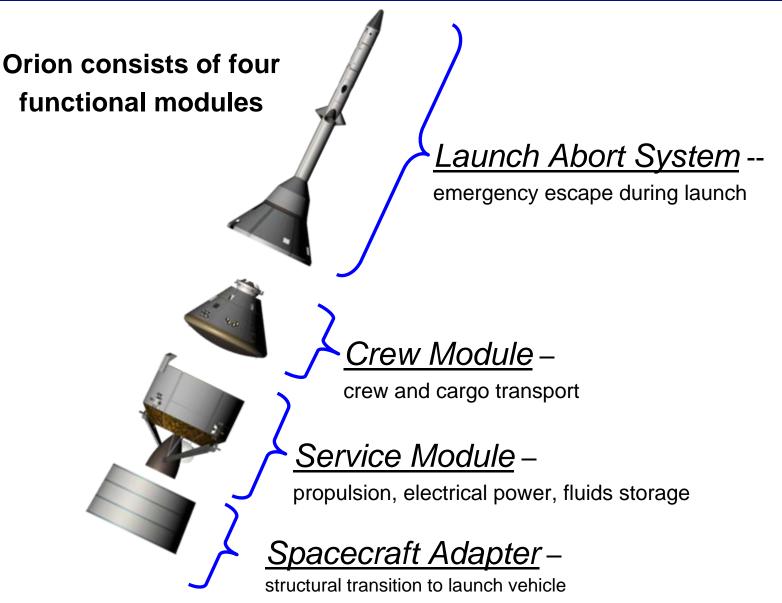
ATT.



CONSTELLATION



NASA Crew Exploration Vehicle, Thermal Protection System, Lessons Learned

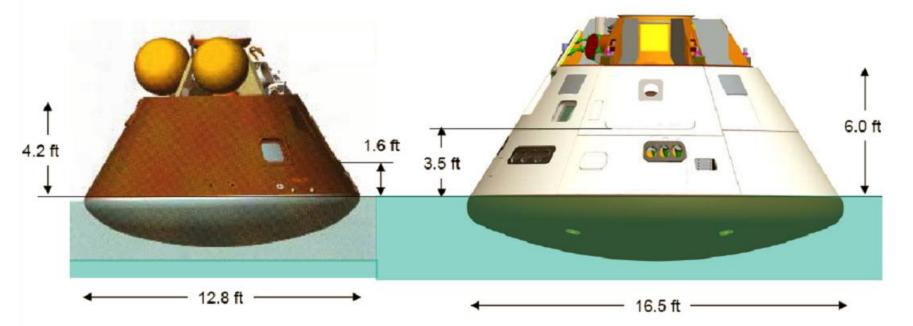

6<sup>th</sup> International Planetary Probe Workshop, June 26<sup>th</sup>, 2008

Ethiraj Venkatapathy & James Reuther National Aeronautics & Space Administration Ames Research Center



# **Orion System Elements**








# Orion vs. Apollo



- Orion shape is derived from Apollo, but approximately 30% larger
  - -Presents challenges to the TPS, including:
    - Increased heat loads
    - Manufacturing challenges



Comparison of Apollo to Orion floating in still water







neal Shielu -

### Orion Lunar direct return (LDR) conditions:

- 11 km/s atmospheric entry
- peak heat rate > 750 W/cm<sup>2</sup>

### **Orion Low Earth Orbit (LEO) return conditions:**

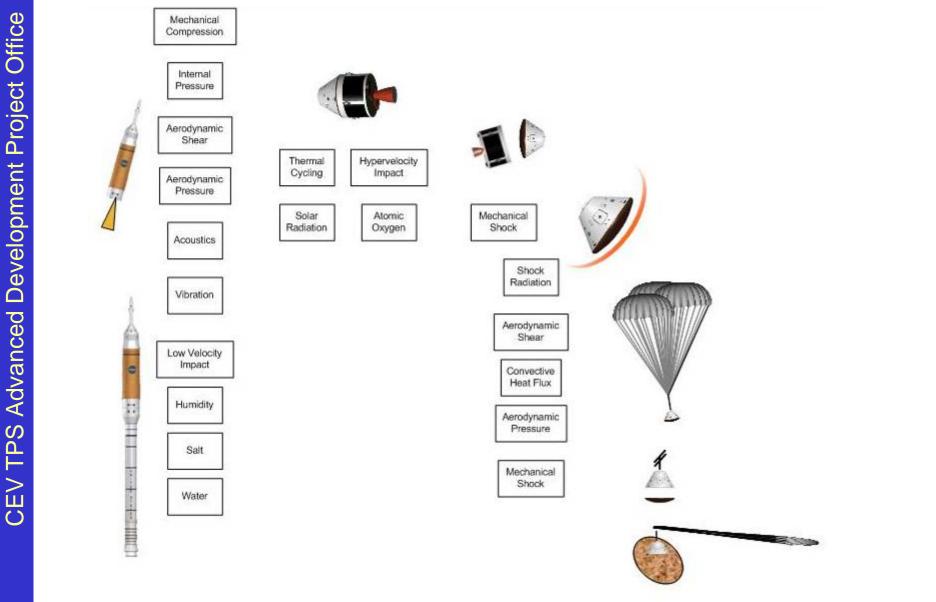
- 8 km/s atmospheric entry
- peak heat rate > 150 W/cm<sup>2</sup>

... by initiating a Advanced Development Project to raise the TRL and reduce the risk of a Lunar return capable ablative TPS materials and heat shield systems

**Back shell** 



# Background




- The Exploration Systems Architecture Study (ESAS) commissioned in the summer of 2005 settled on a new Constellation (Cx) human space transportation architecture.
- At the core of the ESAS recommended architecture was a new Crew Exploration Vehicle (CEV – Orion) that would serve as the US human transportation system for Low Earth Orbit (LEO) as well as lunar missions
  - A top risk identified by ESAS for CEV was the development of a heat shield and applicable Thermal Protection System (TPS) materials meeting both LEO and Lunar return requirements
    - Ablative TPS materials required to support LEO and Lunar missions
    - The US had focused little attention on ablative materials since Apollo era.
    - All applicable ablative TPS materials were at low technology readiness levels (TRL ~ 3-4)
- In Oct 2005, the CEV Project commissioned the CEV TPS Advanced Development Project to address the heat shield development risk



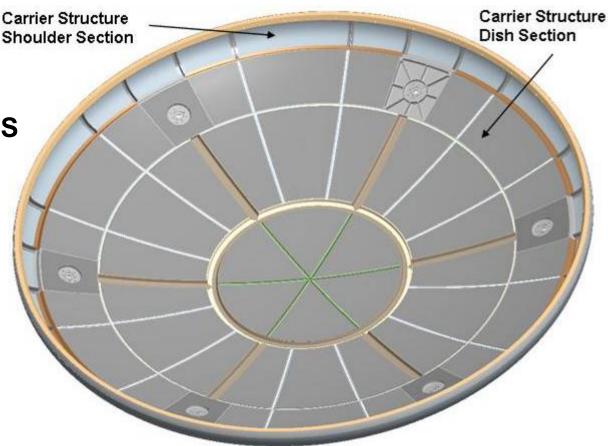
### Heat Shield Operating Environments

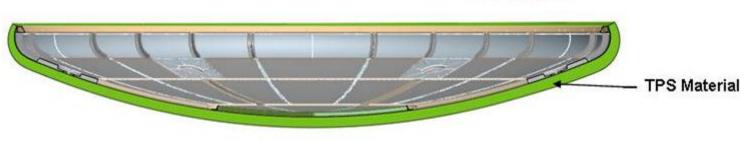




6




# **Orion Heat Shield Components**




Carrier structure Carrier Structure Shoulder Se - Dish section - Shoulder section

### Ablative acreage TPS

- Block layout
- TPS material thickness
- Compression pads
- Separation mechanism
- Main seal









### TPS materials fabrication and characterization

- Development of material constituent, processing and properties specifications
- Detailed mechanical and thermal material properties testing

### • TPS materials thermal performance capabilities for LEO & Lunar returns

- Nominal & emergency entry trajectories Aerothermal environments
- Screening and comprehensive TPS materials thermal performance testing
- TPS materials thermal response models
- TPS thermal performance margins policy

### TPS materials thermal-mechanical performance capabilities

- Ground, launch, on-orbit, nominal and emergency entry, descent & landing loads
- Thermal-structural integrated (carrier structure + TPS) testing
- FEM analysis and design of TPS materials

### Design for all heat shield components

 TPS acreage, carrier-structure, TPS bonding, compression pads, main seals, gap/seams, close-outs, repairs

### Integrated heat shield design and performance capabilities

- Integrated design of all components
- TPS material lofting and thermal, MMOD and integration sizing
- Integrated thermal-structural analysis and design of complete heat shield
- Manufacturing for an integrated 5 meter heat shield
  - Infrastructure and equipment for full-scale heat shield production (e.g. full scale oven)
  - Production staffing and resources to produce materials meeting spec. at volume
  - Demonstration of full-scale heat shield manufacturing procedures





### • Revitalize the ablative TPS industry: – For the past 25+ years, NASA-sponsore

- For the past 25+ years, NASA-sponsored R&D has focused mostly on reusable TPS materials
  - Ceramic tiles, coatings, blankets (e.g., Shuttle acreage)
  - Oxidation-resistant carbon-carbon (e.g., shuttle WLE)
  - Ultra High Temperature Ceramics (UHTCs)
- Little work completed on advanced ablative materials, as a consequence, the ablative TPS materials community in the U.S. (very robust in the 60s and 70s) has significantly diminished
- NASA is really the only customer for this industry thus it is vital for NASA to make investments not only internally but also in industry

### Train the next generation of NASA entry systems developers

- Prior to the CEV development NASA efforts were focused on either basic TPS materials R&D or performing TPS operational support
- Limited efforts were applied to perform end-to-end development of a new heat shield systems for flight vehicles
- -NASA in house staffing lacked training to perform flight hardware development





# Initial Materials Development & Selection

- Block 2 (lunar), Phase I, Materials

- Block 1 (LEO), Phase I, materials





### Block 2 TPS Materials

- Boeing / FMI: PICA (Baseline)
- Textron: Avcoat (Primary Alternate)
- Textron: 3DQP (Alternate)
- Boeing: BPA (Alternate)
- ARA: PhenCarb 28
- Lockheed Martin / CCAT: Advanced Carbon-Carbon / Calcarb
- Block 1 TPS Materials
  - Lockheed Martin: SLA-561V
  - Shuttle tile materials: LI-2200, BRI-18
- Carrier Structure
  - Titanium / Titanium honeycomb (Baseline)
  - GR-BMI Composite / Titanium honeycomb (Alternate)
- Compression Pads
  - Carbon phenolic
  - Fiberglass phenolic
  - Silica phenolic

Critical Path for CEV No longer considered for CEV





| Vender<br>Material            | Heritage<br>Mission &<br>Diameter | Local TPS<br>Approach<br>TTT              | System<br>Construction<br>IP            | TPS ADP<br>Contracts<br>Density                   | Image |
|-------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------------|---------------------------------------------------|-------|
| ARA<br>PhenCarb 28            | MDU, TRL = 4<br>(2007) 1 m        | Uniform TTT –<br>in Honeycomb             | Segmented with seams                    | Phase I<br>450 kg/m <sup>3</sup>                  |       |
| Boeing / FMI<br>PICA          | Stardust, TRL = 4<br>(2006) 0.9 m | Uniform TTT<br>bonded with<br>RTV/SIP/RTV | Blocks/Tiles w/<br>filled<br>gaps/seams | Phase I, Phase II<br>270 kg/m <sup>3</sup>        |       |
| LM / LCAT<br>ACC /<br>CalCarb | Genesis, TRL = 4<br>(2004) 1.35 m | Dual layer<br>system                      | Monolithic or segmented                 | Phase I<br>1500 / 180 kg/m <sup>3</sup>           |       |
| Textron<br>Avcoat             | AS-501, TRL = 4<br>(1967) 3.9 m   | Uniform TTT –<br>in Honeycomb             | Monolithic w/<br>honeycomb<br>seams     | Phase I, Phase II<br>540 kg/m <sup>3</sup>        |       |
| Textron<br>3DQP               | DoD ?, TRL = 3<br>(?) ?           | Dual layer with<br>integration<br>layer   | Segmented w/<br>tongue &<br>groove      | Phase I, Phase II<br>1600 / 220 kg/m <sup>3</sup> |       |
| Boeing<br>BPA                 | Coupons, TRL= 3<br>(2005) 1 m     | Uniform TTT –<br>in Honeycomb             | Monolithic or segmented                 | Phase II<br>540 kg /m <sup>3</sup>                |       |



### 5 Materials Selected for Block 2 Phase I Screening Tests Coupons





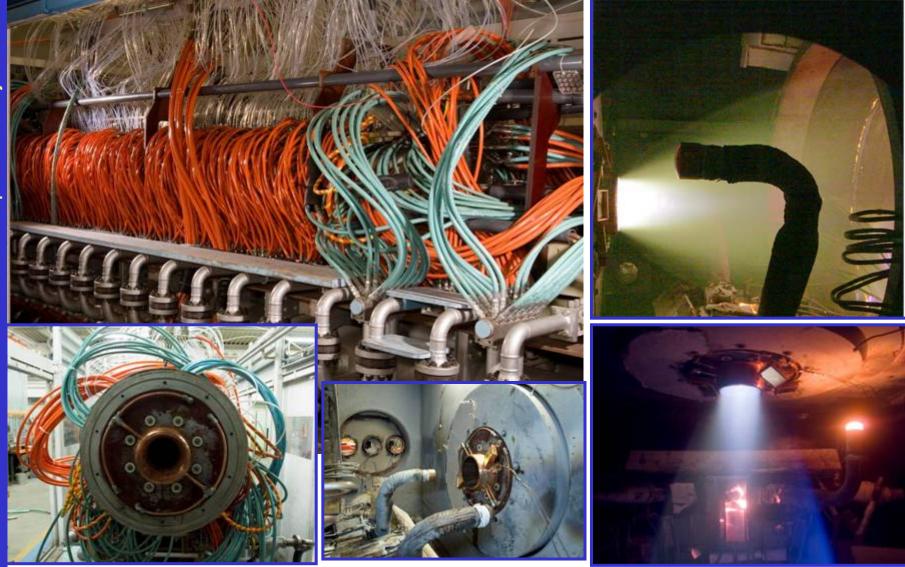
Boeing PICA

**ARA PhenCarb 28** 

**Textron Avcoat** 



**Textron 3DQP** 

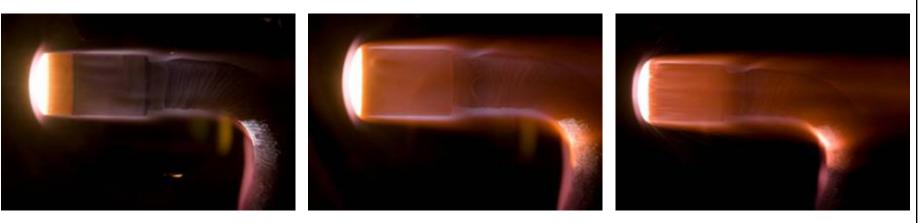


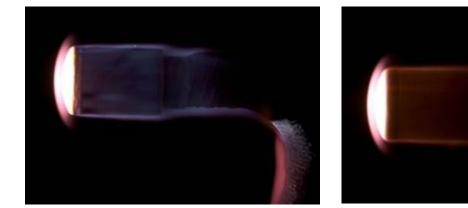

Lockheed Martin ACC/CalCarb

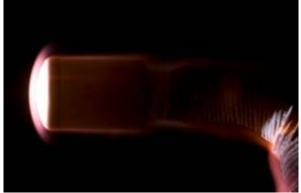


# Block 2, Phase I Testing in Arcjet







### Block 2 Phase I Stagnation Arcjet Testing



- Three arcjet test series were performed
- Block 2 peak heating 1000 W/cm<sup>2</sup> @ 30 sec --- Ames IHF
- Block 2 skip dual-pulse 400 / 150 W/cm<sup>2</sup> --- Ames AHF
- Block 1 nominal entry 130 W/cm<sup>2</sup> @ 200 sec --- Ames IHF











### SLA-561V TPS material performance issues

- MSL stagnation thermal ablation testing showed excellent stagnation heating performance up to 300 W/cm<sup>2</sup>
- However, arcjet tests at low heating (90 150 W/cm<sup>2</sup>), high shear and high pressure (medium enthalpy) conditions showed material failures
- Material was dropped from consideration for CEV (7/07)
- Mars Science Laboratory (MSL), which had baselined SLA-561V, switched their baseline material to PICA (11/07)
  - CEV testing of SLA-561V revealed the performance problems for MSL
  - If it were not for the PICA work by the TPS ADP, MSL would not have had an alternate material system, and would not be flying in 2009

### Shuttle tile material performance issues

- Initial coupon testing of Shuttle tiles indicated excellent performance for BRI-18 (coated), LI-2200 (coated & uncoated)
- Stagnation arcjet tests of gap/seam articles showed that at LEO heating and pressure conditions the material exhibits gap performance problems
- Material was dropped from consideration for CEV heat shield utilization
- Both candidate Block 1 materials have been eliminated from consideration for the heat shield

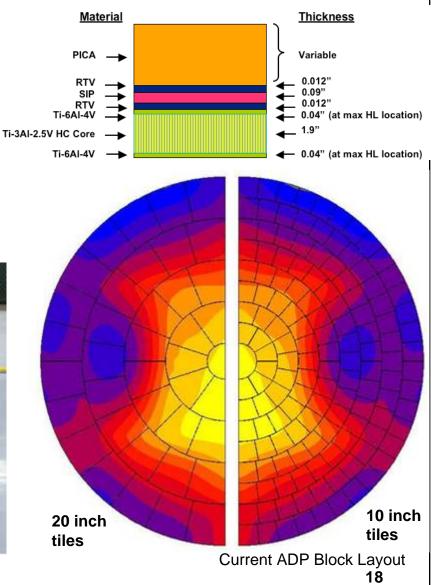




# Baseline PICA Development Status



# **PICA Heat Shield Overview**




# • PICA

- Local thickness tailored to heat load
  - 232 individual sizing points
  - PICA blocks mounted to axisymmetric carrier structure
    - Uses +/- 1" OML deviation
- Block layout design
  - RTV-SIP-RTV bond to carrier structure
  - Gap/Seam configuration not finalized
- 16 pcf



PICA HS MDU





# **Block 2 PICA Status**



### Boeing / FMI production of PICA materials

- All PICA coupons / panels for NASA testing completed on schedule and within specs
- Initially planned PICA material properties testing completed
- PICA full-scale MDU completed 1 month ahead of schedule

### Material properties & development of thermal-ablation model

- NASA V&V testing of PICA material properties and database complete
- Completed updated 1-D & multi-D PICA thermal response model
- Additional targeted materials properties testing in work (thermal and mechanical)

### PICA and integrated performance testing

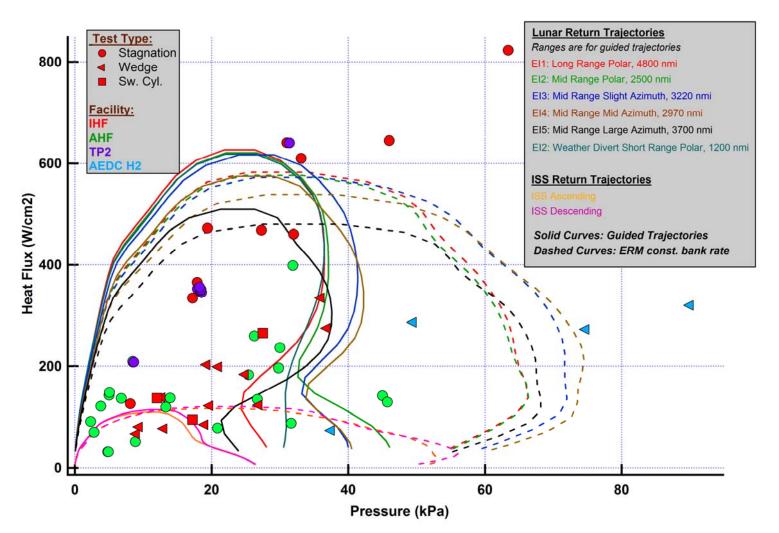
- Comprehensive acreage PICA stagnation and shear arcjet testing complete
- Initial PICA gap/seam configuration stagnation and shear arcjet testing complete
- Comprehensive thermal-structural testing of acreage PICA and initial gap/seam configurations attached to flight-like carrier structure completed
- Additional alternate gap/seam configuration testing underway (arcjet and thermal-structural)
- Additional bondline performance (arcjet), thermal gradient (solar tower), pyro-shock, compression pad (arcjet), main seal (arcjet), MMOD (arcjet) and integrated system (arcjet) testing in work

### PICA block layout and gap/seam design

- Current manufacturing limits of PICA is 42" x 24" x 10"
- Deflection limits and PICA strengths indicate PICA flight panels may be limited to a maximum dimension of < 20", with current limits set around 10"</li>
- Initial Boeing/FMI design features joined PICA panels --- however, NASA analysis indicates serious problems with resulting stresses in PICA
- NASA team has developed an alternate PICA block layout design
- NASA team has shifted to an uncoupled gap/seam design and is considering 4 options



# **PICA MDU Manufacturing**








### Flight Environments vs. Arcjet Test Environments: Heat Flux vs. Pressure



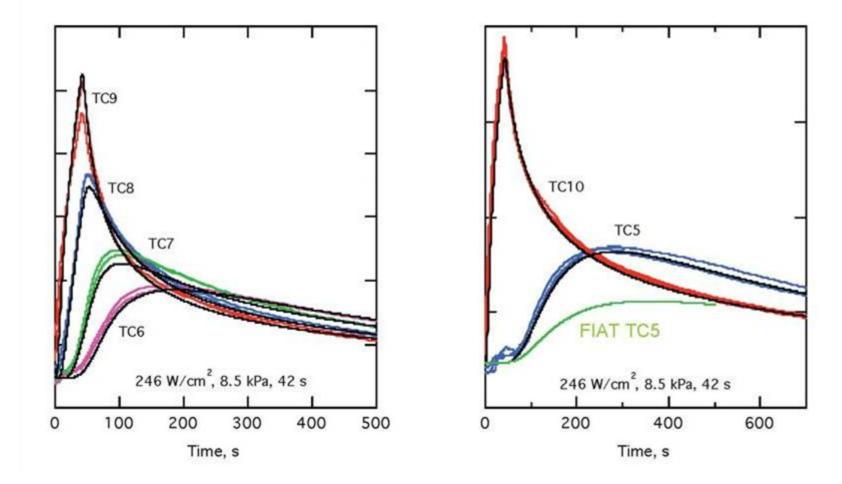


Does not include launch abort cases, one of which has stag pressures between 100–120 kPa, with corresponding heat fluxes between 80–200 W/cm<sup>2</sup>.



# Ames AHF Arcjet Testing of Gaps/Seams


















### Thermal Protection System Advanced Development Project - LaRC Testing



### Thermal Vacuum Testing



### Modal Testing of Bend Coupons



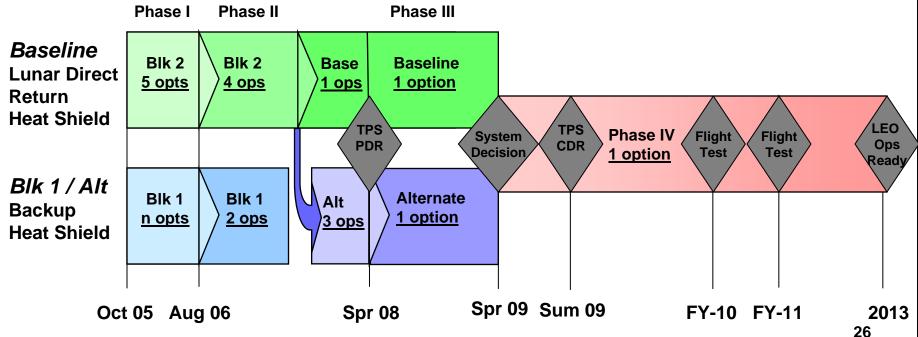
Acreage Panel (with seam) Vibration Test (X and Y-axis)



Acoustic Panel installed in TAFA Exposed Side (Flow is left-to-right)








# Alternate TPS Material Development Status



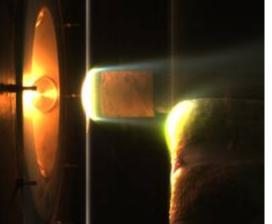


- Baseline Heat shield (Lunar and LEO return capable) by Orion IOC  $\rightarrow$  2014
- Alternate Heat shield (Lunar and LEO return capable) parallel development, maintained up through system decision (between Orion PDR and CDR)
- NASA develops Baseline & Alternate heat shield designs up to Orion PDR
- Prime takes over responsibility of heat shields after CEV PDR w/ NASA oversight
- Back shell TPS development controlled by Orion Prime w/ NASA oversight
- Possible flight test program beginning in 2014 to validate analysis and groundbased testing

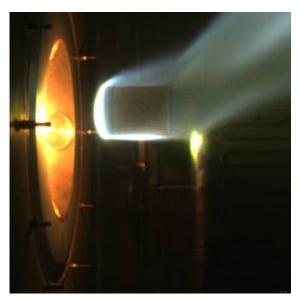







- Only one Block 2 contract was awarded Boeing/FMI Aug 2006
- Regrouped to develop Alternate Block 2 procurements
- Two Alternate Block 2 contracts were awarded May 2007
  - 2 Textron materials Avcoat & 3DQP
  - Boeing BPA
- Each Alt Block 2 contract was built with 120 day initial period
- Alternate Block 2 Decisions:
  - 1. Selection between Avcoat and 3DQP of the leading Textron material
    - Avcoat 10/1/07
  - 2. Continuation of Boeing BPA Contract
    - Decision postponed till 3/31/08
  - 3. Selection of the "Primary Alternate" TPS (between Avcoat & BPA)
    - Goal is to produce a PDR level heat shield design using the Primary Alternate material by TPS PDR
    - Avcoat selected as the Primary Alternate 11/30/07




# Alt Block 2 Material Performance



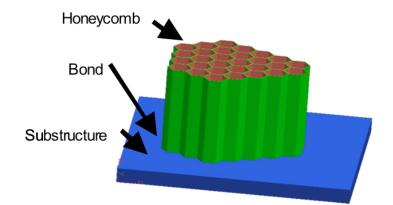
### **3DQP stagnation arcjet testing**



**BPA stagnation arcjet testing JSC** 



Avcoat stagnation arcjet testing JSC


RION





### AVCOAT 5026-39 HC/G Material

- Apollo heritage material
- Filled epoxy novalic in fiberglassphenolic honeycomb
- Large H/C gore sections bonded to substructure with HT424
- Hand gunning process to fill H/C cells with ablator
- 33 pcf virgin density







A.C.

Apollo H/C Installation





### Textron production of Avcoat materials

- Initial coupon fabrication showed poor material quality & very slow production
- Coupon quality & production rates are now at adequate and sustainable rates
- Avcoat coupons and panels for initial NASA development testing complete by July
- Avcoat full-scale (1/4) MDU completion set for Aug/Sep
- Phase 1 of an automated gunning study complete by Aug
- Material properties & development of thermal-ablation model
  - Initially planned Avcoat material properties testing complete
  - Resurrected the original 1-D Avcoat thermal ablation models (STAB, CMA)
  - Additional and NASA V&V testing of material properties for Avcoat in work
  - Updating thermal response models using new material property and arcjet data

### Avcoat performance testing

- Significant acreage Avcoat stagnation and shear arcjet testing completed
- Avcoat seam arcjet testing begins later this summer
- Comprehensive thermal-structural testing of acreage Avcoat and seam configurations attached to flight-like carrier structure set for later this summer
- Additional integrated thermal-structural, bondline performance (arcjet), thermal gradient (solar tower), pyro-shock, and integrated system (arcjet) testing in work

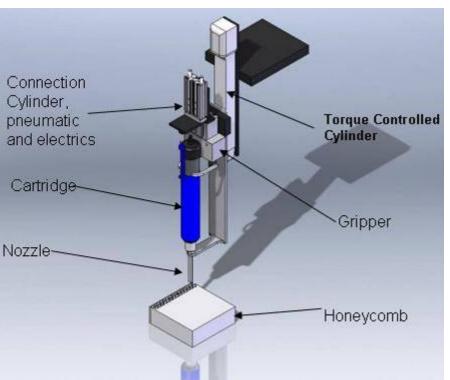
### Avcoat overall design and manufacturing

- Honeycomb gore sections limited to 40 inch
- Flight heat shield manufacturing equipment installed: gunning booths, full-sized oven, tile-rotate table, digital x-ray and paint booth
- Detailed thermal-structural analysis and design underway at Textron; NASA IV&V thermal-structural analysis to confirm Textron work
- Textron is studying different H/C concepts for shoulder regions (molded, flexcore)
- Textron is also examining different H/C splice approaches



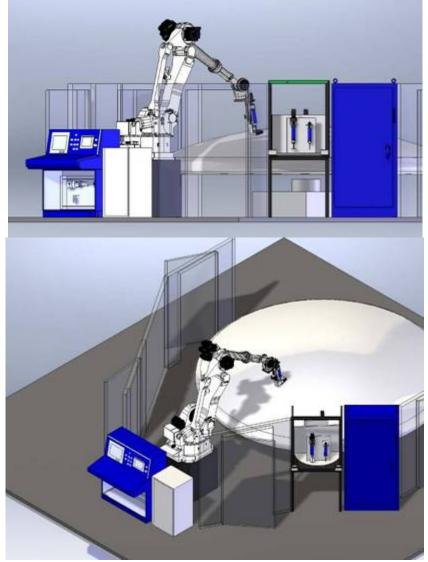
# **Avcoat MDU Manufacturing**








# **Avcoat Automated Gunning Study**

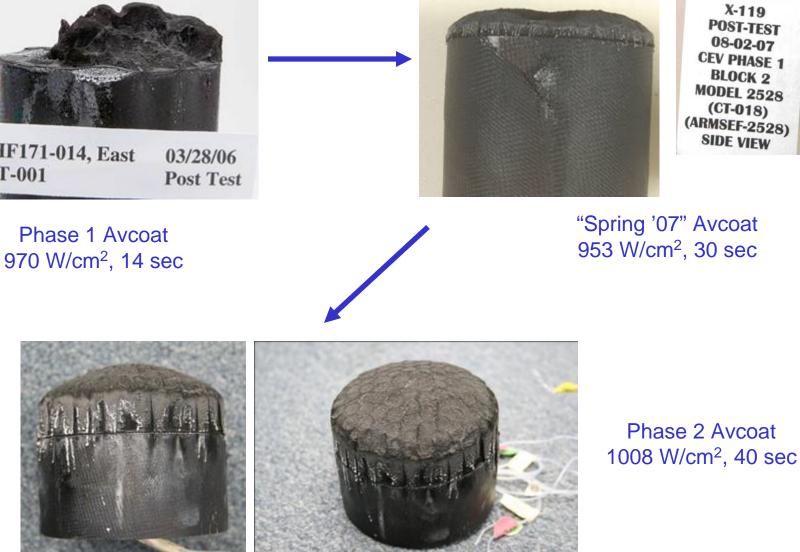



# **CEV TPS Advanced Development Project Office**



Phase 1 – started initial feasibility tests Complete Aug 2008

### Phase 2 starts after TPS material down select






### **Resurrected Avcoat Evolution**











# Lessons Learned





### • Detailed TPS thermal performance requirements are difficult to specify:

- The n-vector (convective heat-flux, radiative heat-flux, pressure, enthalpy, shear, boundary layer properties, chemistry, etc.) of environments is complex
- Environmental requirements change considerably during early vehicle design
- Sorting out safety margins for environmental parameters based upon baseline and emergency entry modes remains challenging
- Development of an adequate thermal response model is difficult and time consuming
- Thermal testing beyond margined environments is necessary:
  - The vehicle performance requirements tend to change during development
  - Need to test for material performance "cliffs"
  - Facility measurement capabilities has large uncertainties (+/-20 %)
  - Ground-to-flight traceability presents materials qualification challenges
  - The capability of current ground test facilities is limited:
    - There are only 3-4 applicable US arcjet test facilities today compared to 20-25 facilities during the Apollo era
    - The available facilities offer limited (incomplete coverage for CEV) and are prone to a high rate of down time
    - Even an ideal ground test facility will not fully replicate flight environments forcing difficult ground-to-flight traceability efforts
    - Flight test validation of material performance may be required





- The key thermal performance limits for a given TPS material are often not determined by considering the parameter maximums
  - Glass melt/flow/fail must be carefully characterized for silica based materials such as SLA-561V and Avcoat
    - The phenomenon is experienced at moderate heat fluxes (75 150 W/cm<sup>2</sup>), but due to glass vaporization, not experienced at higher heat fluxes
  - Lower enthalpy conditions resulted in SLA material failure compared to higher enthalpy conditions
  - Limited CEV testing has shown that some TPS materials experience differences in material response that are a function of environment history
- The development of TPS materials is a careful balance between thermal performance and thermal-structural integrity
  - Regardless of whether the heat shield design is a tiled system (PICA), or a monolithic system (Avcoat), thermal-structural capabilities are critical
  - Detailed thermal response must be understood for the integrated system not just for acreage TPS material
  - Penetrations and closeouts require significant work and are difficult manage prior to PDR due to changing requirements





- Thermal-structural analysis and design proved more challenging than expected:
  - Statistical (A-basis) material properties do not exist for most TPS materials
  - Obtaining mechanical properties across a wide temp. range is challenging and for TPS materials often produce large variations
  - TPS Mechanical failure modes are poorly understood & difficult to substantiate
  - Standard material property testing processes are problematic for TPS materials
  - Establishing an acceptable thermal-structural margins policy requires significant work
  - TPS materials are characterized by highly non-linear mechanical properties
  - Ablative TPS materials present additional challenges due to pyrolysis and ablation
  - Developing a credible and validated series of FEM models for an integrated heat shield to assess various load cases requires significant experience/time
  - Thermal-structural design and analysis based upon FEM is insufficient combined environment testing, with thermal gradients and mechanical loads is needed
- Restarting the manufacturing of previous TPS materials takes significant time and resources:
  - Constituents usually require some changes due to changes in safety or precursor material availability
  - Following a known recipe and process is often not enough, significant fabrication experience is required to produce quality and consistency





### • Manufacturing challenges occur at multiple levels:

- Producing consistency even at the coupon level proved challenging for some materials
- Every step in scale-up from coupon → panel → section → heat shield, can result in processing, consistency, thermal-structural, or integration difficulties
- Establishing necessary infrastructure requires significant time (~ 1.5 years)
- Creating a volume production capability requires significant resources

### Non Destructive Evaluation (NDE) and bond verification techniques remain problematic

- More time and effort are needed to develop digital x-ray based 3-dimensional scanning
- Alternate NDE methods need much more work
- The current success of CEV TPS materials and heat shield designs does not represent a long term TPS development strategy
  - Prior to the CEV TPS ADP effort, ablative TPS work was neglected for 40 years
  - The TPS ADP was an expensive, high risk, critical path approach to recover
  - Without the fortuitous timing of the CEV TPS ADP PICA heat shield effort, MSL would have had no TPS options to meet their Sep '09 launch window
  - While PICA & Avcoat are viable for CEV, neither system is ideal lower mass, increased robustness materials are possible (too low TRL for CEV IOC)
  - NASA / US are short of efficient, robust TPS materials for future exploration missions: high mass Mars entry, outer planets, Venus, extra-Lunar Earth return