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SUMMARY

We consider a decentralized, two-echelon supply chain where the upper echelon –

the supplier– bears the inventory risk. To service the retailers, the supplier either keeps

inventory reserved for each of her customers or else pools inventory to share among her

customers. The common insight regarding inventory pooling is that it reduces costs and so

increases profits for the supply chain party carrying inventory. However, it has recently been

shown that inventory pooling may indeed reduce the total supply chain profits. We further

show that inventory pooling may reduce supply chain profits even under traditional service

contracts based on the frequently invoked measure of service, probability of stock-out.

We model the inventory transactions among the retailers and the supplier as a coopera-

tive game. The players have the option of reserving inventory or forming inventory-pooling

coalitions. The total profit of the coalitions is allotted to the players using a profit-sharing

mechanism based on Shapley value. We analyze the properties of the proposed profit-

sharing scheme in two steps. We first consider a stylized model with two retailers who are

not necessarily identical. Then we extend the analysis to an arbitrary number of identical

retailers. In both cases, we assume the demand across retailers is independent.

We find that the Shapley value allocations coordinate the supply chain and are individ-

ually rational. However for more than two retailers, they may not be in the core. Even

when they satisfy all the stability properties, including membership in the core, they may be

perceived unfair since a player’s allocation can exceed his contribution to the total supply

chain profit. In addition to analyzing the stability properties of the proposed allocation

mechanism, we are also interested in the types of behavior the mechanism induces in the

players. We find that the retailers prefer pooling partners with either very high or low ser-

vice level requirements and the supplier prefers retailers with low service requirements since

this gives her the ability to maximize her profit allocation. Finally, we analyze the effects

of demand variance on the allocations and the profitability of strategic retailer coalitions.
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CHAPTER I

INTRODUCTION

1.1 Conflict of Interests in Supply Chains

Supply chains, whether in the service sector or the manufacturing industry, are usually

made up of players belonging to different companies. Even when one or more of the sup-

ply chain players belong to the same company, more often than not each player is a profit

center and acts as an independent decision maker. One positive outcome of this type of

decentralized management is that it allows each supply chain player to concentrate on his

core competencies. The downside of decentralization however is that the authority to decide

on supply-chain variables such as price, capacity and order quantity is also decentralized –

each is decided on by a different supply chain player who is trying to maximize his profits.

This individual profit maximization results in higher prices, lower capacity investments, and

lower order quantities and is referred to as double marginalization. Spengler [72] character-

izes double marginalization for the first time and shows that it leads to higher prices and

lower profits.

One of the reasons behind this form of channel conflict is that each party benefits

unilaterally from shifting the supply-chain risk to another party even though the overall

supply chain performance may suffer as a result. Risk is inherent in each of the supply

chain decisions such as capacity and inventory investments, wholesale and retail prices,

order quantities, and so on. For example, the party with the autonomy (or authority) to

make stocking level decisions can make those decisions in its own best interest, but must

usually also accept the burden of any excess inventory. The focus of this research is the

conflict of interests stemming from different inventory management policies in a two echelon

supply chain (issues related to capacity investment and allocation are similar and most of

the insights can be translated to that context). We restrict our attention to the transactions

among the retailers and a single supplier in the supply chain.
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Traditionally in multi-echelon supply chains, the echelon closest to the end consumer

(we call the lowest echelon the retailer) owns and carries inventory. This is most often the

case, for example, in the apparel industry where product life cycles are short and production

lead times are long since manufacturing facilities are mostly outside of the United States.

In this industry, retailers place orders prior to the selling season and bear the inventory risk.

For example, Cachon [18] discusses the case of O’Neill Inc., a company selling water-sports

apparel. However even in the apparel industry, retailers are increasingly forcing suppliers

to share the risk through buy back of excess inventories or sharing the costs of discounts.

On the other hand, supply chains in the electronics manufacturing service industry, supply

chains where vendor managed inventory is employed, or e-supply chains where drop-shipping

is the method of order fulfillment are examples where inventory is owned and managed by

the upper echelon (which we call the the supplier).

In the electronics industry, a manufacturing trend since the 1990s is for the origi-

nal equipment manufacturers (OEMs) to outsource production to contract manufacturers

(CMs). There are only a small number of contract manufacturers and they provide services

to OEMs in a wide range of industries such as telecommunications, personal computers, and

medical equipment. The products the CMs manufacture for different companies often have

common components. For example, the same cpu chip may be used to produce laptops

for two competing companies or even products in different industries may have common

components. An example is a Bluetooth module for wireless communication which can be

used on a range of hosts such as personal computers, cellular phones, and even mobile med-

ical equipment. In a recent survey Barnes et al. [6] discuss the supply chain management

trends in the electronics manufacturing service industry and compare the practices of three

major CMs – Flextronics, Solectron and JIT Holdings. Some of their observations are of

particular interest to us and motivate this research.

• The CMs encourage their suppliers to participate in vendor managed inventory (VMI)

programs. Suppliers who participate are required to stock a minimum level of inven-

tory at a warehouse close to the CM facility. The warehouse is usually owned and

managed by a third party logistics provider (3PL) and shared by a number of different
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suppliers. Under the VMI program, the suppliers retain ownership of the inventory

until CM sees end customer demand and pulls inventory from the warehouse. Not

all suppliers are willing to participate in VMI programs. For example, JIT Holdings

reports problems in engaging some of its suppliers in the VMI program.

• Inventory levels are set in an ad hoc manner under the VMI program. The industry

standard is to carry a minimum of two weeks’ inventory for all parts.

• Suppliers work with many different customers. Considering the fact that the supplier

needs to carry 2 weeks’ inventory across many customers, the supplier has an oppor-

tunity of saving on inventory costs by pooling inventory; however the supplier needs

to build a central distribution center rather than keep inventory separately at each of

the CMs’ warehouses.

• Since product life cycles are short (at the time the report was written the average

life cycle of a mobile phone was six months) none of the supply chain partners want

to own inventory. After shifting inventory ownership to the suppliers through VMI

agreements, the CMs have incentive to inflate the minimum inventory level.

The survey by Barnes et al. alludes to some of the inventory-management related

problems between the suppliers and the CMs. Our communications with a major CM

suggest that similar problems exist between the OEMs and the CMs as well. Consider a

contract manufacturer, who keeps inventory of cpu chips for two or more competing OEMs.

The current inventory policy dictated by the OEMs is to keep each company’s inventory

physically separated. Is this the most profitable inventory policy for the CM? Furthermore,

is the most profitable inventory policy for the CM also the most profitable for her customers?

Still another example where similar inventory-management concerns arise is e-supply

chains where end consumer orders are satisfied via drop-shipping. In this order fulfillment

strategy, the retailers (or rather e-tailers) create demand through their web sites and when

demand occurs they pass this information on to the supplier who satisfies it if enough stock

is available. The suppliers assume the inventory risk but since they carry the same item for

a number of retailers they have the flexibility to pool inventory. Anupindi et al. [4] mention
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that the order fulfillment company Ingram Entertainment Services, Inc. works with many

e-tailers including buy.com but the authors argue that the e-tailers may prefer to keep the

inventory of “hot” items physically separated rather than allow Ingram to pool inventory.

On the other hand, Netessine and Rudi [54] discuss the drop-shipping agreement between

spun.com and Alliance Entertainment Corp. and conjecture that when the supplier works

with more than one retailer, benefits of drop-shipping will be even higher (at least from the

point of the supplier) due to the risk pooling effect.

Common characteristics of the supply chains discussed in the above examples include

• High inventory risk due to short product life cycles.

• A particular item is procured from a single or at most two suppliers. For example,

for each sku, Flextronics tries to use only a single supplier as much as possible [6].

• The supplier works with multiple retailers and a subset of the skus in stock is common

to more than one retailer that the supplier works with.

• The supplier can either keep each retailer’s stock physically separated or pool the

stocks and replenish each of the retailers from this common stock.

• The retailers prefer to keep their stock physically separated as well as shift the inven-

tory risk to the supplier. They try to achieve both aims by engaging the supplier in

VMI programs where the retailers determine the minimum acceptable inventory levels

and require the supplier to keep the inventory at the retailer facilities which ensures

inventory is physically separated.

Among others, Eppen [26] shows that inventory pooling reduces costs for the supply

chain party owning the inventory. Therefore it is only natural for the suppliers, as the

bearer of inventory risk in all of the above examples, to prefer inventory-pooling. On

the other hand, the main reason retailers may object to inventory pooling is the concern

regarding inventory allocation in case of shortages. For example, the survey by Barnes et

al. already indicates component shortages as one of the biggest problems of the electronics

manufacturing service industry as of 2000. They report an incident where a supplier, due
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to limited product availability, placed its customers including Solectron on “allocation”,

limiting each customer to only a fixed percentage of the production capacity where the

allocation is typically less than the amount each customer needs. The retailers may feel

these types of allocation problems can only be elevated if inventory is pooled at the supplier.

Even without mathematical analysis, one observes that there is a misalignment of inter-

ests between the retailers and the supplier in the examples we discuss above. The retailers,

whose profits are increasing in the level of stock the supplier carries, want the supplier to

carry as much stock as possible. On the other hand, the supplier, as the bearer of inventory

risk, has incentive to understock and prefers to pool inventory across the retailers. Due

to double marginalization, the stock level the supplier prefers to carry is less than and the

stock level the retailers want the supplier to carry is greater than the supply-chain-optimal

inventory level. In this dissertation we aim to design channel coordinating profit-allocation

mechanisms which induce the supplier to carry the supply-chain-optimal inventory level.

An acceptable and implementable profit-allocation mechanism must be able to achieve this

without making the retailers any worse off. In general we are interested in knowing whether

a supplier should pool inventory held for her customers (the retailers). If so, what will be

the benefits and how should they be shared over the supply chain in order to give each

supply chain player incentive to participate in inventory pooling?

We explore such questions on a 2-echelon supply chain with a single supplier and multiple

retailers where only the supplier carries inventory. Inventory is transferred to the retailers

without significant transportation delay after the retailers receive end-customer demand.

The supplier either keeps reserved inventory for each of her customers or replenishes all

customers from a shared inventory. We assume unsatisfied demand is lost and analyze a

single period, newsvendor-based model. In the electronics industry, most of the revenue on

a product is made in a short selling period. Similarly in the drop-shipping supply chains the

retailers, for example those working with Ingram Entertainment, are more concerned about

the inventory management policies regarding “hot” products which are usually fashion items

with short life cycles. Therefore we believe a single period model with lost sales will capture

most of the managerial insights for the problems that motivated this research.
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Inventory pooling (or other related types of risk pooling such as substitution or trans-

shipment of stocks) has mostly been analyzed in a single echelon setting (see Section 2.1.2

for a review of the relevant literature). In this dissertation, we consider a two-echelon set-

ting and our focus is on the conflicts of interest between the two-echelons. We model the

interactions among the players in this supply chain as a cooperative game. As the name

implies cooperative games are games where cooperation among the players are possible

since they are assumed to negotiate effectively [53]. Cooperative game theory focuses on

the value created by coalitions rather than the specific actions taken by the players (which

is the focus in noncooperative game theory). A solution to a cooperative game is an al-

location mechanism that distributes the total worth of the coalition to the players. The

specific solution methodology we employ in this dissertation is called the Shapley value (see

Section 4.4 for a discussion on the choice of Shapley value as the solution concept). Our

aim is to assess the applicability of a profit-sharing mechanism based on Shapley value as a

way of coordinating the supply chain. We also would like to analyze the types of behavior

such a profit-sharing mechanism induces on the players.

1.2 Dissertation Outline and Research Contribution

The remainder of this dissertation is organized as follows. In Chapter 2 we review the

relevant literature and position our model. In Chapter 3 we compare two inventory man-

agement policies – the reserved and shared inventory management policies – in terms of the

total supply chain profit created and how this total pie is distributed to different players.

We show that even under a service contract the supplier following a shared inventory policy

may have incentive to understock which hurts the retailer profits. We find that the gap

between optimal supply chain profit and the supply chain profit when inventory level is

set to maximize supplier profit gets larger with increasing demand variance. On the other

hand, the gap between optimal supplier profit and the supplier profit when inventory is

set to maximize supply-chain profit also gets larger with increasing demand variance. This

identifies a growing conflict of interest between the supplier and the supply chain as demand

variance increases.
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Since we find that service contracts may be inadequate in aligning the incentives of the

supply chain members, we model the inventory transactions as a cooperative game between

the supplier and the retailers and propose a value-sharing scheme based on Shapley value. In

Chapter 4 we discuss some basic concepts from cooperative game theory and the properties

of the Shapley value solution concept. We also note several desirable properties of cost (or

profit) allocation mechanisms as suggested by previous work in this area and show that the

Shapley value satisfies most of these properties.

There exist a wide range of work on contract design and incentive alignment in the

context of supply chains. Most of this work is concerned with the equilibrium behavior

and the stability properties of the proposed contracts. In our analysis, in addition to

dwelling on stability properties, we also investigate the strategic behavior induced by our

proposed value-sharing scheme. We are interested in questions such as: With whom is it

more profitable to pool inventory? Even when theoretical stability conditions are satisfied,

are some players receiving an “unfairly” high allocation? Do the retailers have incentive to

form alliances against the supplier?

We carry out the analysis in two steps. In Chapter 5 we consider a stylized, two-retailer

supply chain where demand across retailers are independent but not necessarily identical.

We show that the retailers prefer pooling partners with either very high or low service

requirements. If the supplier is powerful enough to change the terms of the contract to

maximize her profits, the retailer with higher demand variance is more susceptible to losing

some of his profits. Then in Chapter 6 we allow an arbitrary number of retailers in the

supply chain but assume that they are identical. We find that while the supplier always

prefers to pool inventory over as many retailers as possible, retailer profit allocations may

drop as more retailers enter the pooling coalition. We show that increasing demand variance

has opposite effects on the retailers’ and the supplier’s profit allocations. Surprisingly, the

direction of change depends on the supply chain’s cost and revenue parameters, especially

the markup charged by the retailers. At high markup levels, the retailers’ allocations

decrease and the supplier’s allocation increases with increasing demand variance. Therefore

as demand variance increases, the supplier prefers to move to a higher markup environment
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while the retailers prefer to lower the markup. Additionally, we show that the retailers may

actually lose profits by forming alliances against the supplier. At least for a special case

where demand is normally distributed, whether the retailers will benefit from alliances or

not depends again on the cost and revenue parameters. Increasing markup, which may be

viewed as an indication of retailer bargaining power, increases the possibility that retailer

alliances will increase retailer profit allocations.

Finally, in Chapter 7 we discuss the limitations of our model and future research di-

rections. The main drawback of the proposed allocation mechanism is that it is a form of

revenue sharing. Researchers [22, 12] have argued that revenue-sharing contracts are not

prevalent in industry due to the high cost of monitoring revenues. One remedy offered in

the literature is to design equivalent contracts that do not require revenue monitoring (for

example [20] discusses an option contract). We plan to work on the design of an equivalent

contract – possibly based on options – as the first avenue of future research.
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CHAPTER II

LITERATURE REVIEW

The research problem we tackle in this dissertation is related to three different avenues of

research in the operations research literature.

• Inventory centralization or inventory pooling

• Contract and incentive design for decentralized supply chains

• Cooperative game theory

We review the literature in the first two areas in this chapter and position our model. We

discuss the related work in the cooperative game theory literature in Chapter 4 where we

talk about our modelling methodology and solution approach. It is worth noting that most

of the cost models analyzed up to now in the inventory centralization and supply chain

contracts literature are extensions of the classical news vendor problem [47], for which

Porteus [61] provides a review.

2.1 Inventory Centralization and Risk Pooling

Eppen [26] is the first to model and analyze the benefits of inventory centralization. He

assumes normally distributed demand at each location and proves that inventory costs are

reduced due to pooling. Recently Cherikh [21] shows that the same results hold when the

objective is profit maximization rather than cost minimization. Eppen and Schrage [27]

later extend [26] to the multi-echelon setting and derive optimal ordering policies for the

central location. Many streams of research followed from the two seminal papers, [26] and

[27], on inventory centralization; however the literature most relevant to our research can

be classified under three headings.

• Benefits of inventory centralization and how to share them
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• Inventory rationing/transshipment in single echelon supply chains

• Inventory and risk pooling in multi echelon supply chains

2.1.1 Benefits of Inventory Centralization and How to Share Them

An intriguing question within the inventory pooling context is the direction of change in the

physical size of inventory. Several researchers attack this question for inventory systems with

both common and product-specific components and where common-component inventories

are pooled. Baker, Magazine, and Nuttle [5] consider a two product system with service level

constraints in which the objective is to minimize total safety stock. They show that total

safety stock (common and specialized) drops after pooling; however total stock of product-

specific components increases. Gerchak, Magazine, and Gamble [33] extend these results

to a profit maximization setting. Finally, Gerchak and Henig [32] extend these models to

a multi-period setting and show that myopic policies are optimal for the infinite horizon

models. Most of the work on component commonality assumes independent demands. A

notable exception is Eynan [29].

The above papers suggest that the size of pooled inventory decreases even though pool-

ing may cause an increase in the non-pooled inventory levels of the complementary compo-

nents. However, Gerchak and Mossman [34], Pasternack and Drezner [58], and Yang and

Schrage [75] show that, contrary to intuition, physical size of pooled inventory does not

always decrease. These papers all present inventory increase as an undesired outcome of

pooling, but an increase in inventory also increases sales and we show that an increase in

inventory may be beneficial for the supply chain by increasing total profits. Conversely,

Tagaras [74] looks at a two retailer model and shows that if the total reserved safety stock

for the two retailers is pooled and used to replenish both of the retailers from a central

location, service levels at both of the retailers will increase.

Eppen [26] shows that the benefits of inventory pooling increase with increasing demand

variance and decrease with increasing positive demand correlation under the assumption

of normally distributed demand. Gerchak and He [31] relax the assumption of normal

demand and tackle the question of the effect of demand variance on the benefits of inventory
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pooling. They show by example that, counter to intuition, benefits of inventory pooling

may decrease with increasing demand variance. Raghunathan [62] is concerned with the

benefits of information rather than inventory sharing but his research is still relevant since he

analyzes the effect of demand correlation on the benefits of risk pooling. In a two echelon

supply chain, where the benefits of information sharing are allotted to different players

using Shapley value, Raghunathan finds that the demand correlation affects the allocations

of different players in different directions. Even though Raghunathan uses Shapley value

to allocate profits, he is not concerned with the types of behavior this mechanism induces

on the players which is one of the main focuses of our research. Finally, most of the work

on the benefits of inventory pooling considers benefits in terms of expected profits or costs.

One notable exception is Benjaafar et al. [7] who prove the benefits of pooling based on a

sample path argument.

Another question stemming from the centralization of inventory is how to allocate the

cost (or equivalently the benefit) of keeping this centralized inventory to the otherwise de-

centralized supply chain members. The work up-to-day in this area concentrates mostly on

allocation to members in the same echelon. The notable exception is the paper by Raghu-

nathan where the emphasis is on benefits of information rather than inventory sharing. The

problem of joint cost allocation has traditionally been viewed as a cost accounting problem

(see Biddle and Steinberg [8] for a thorough discussion). It has been introduced to the

operations research literature by Gerchak and Gupta [30] where the authors argue that

allocating joint costs in proportion to stand-alone costs is the “fair” way. Robinson [63]

proposes the analysis of the problem as a cooperative game and compares the allocations

based on the Shapley value and the Louderback method with those proposed by Gerchak

and Gupta. Hartman and Dror [41, 42] also approach the cost allocation in problem as a

cooperative game. They identify efficiency, justifiability and membership in the core as the

three properties of stable allocation rules and compare different cost allocation mechanisms

with respect to these criteria. With respect to core allocations, Hartman et al. [43] show

that the core of the inventory cost game is nonempty under some restricting assumptions

on the demand distributions and the cost parameters. Muller et al. [52] extend their results
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and show that the core is nonempty in general. However, [63], [41], and [42] do not analyze

the operational properties of the proposed allocation mechanisms. We point out several

shortcomings of the core as a measure of stability and show that even when theoretical

stability conditions are satisfied, some players may believe others are getting unfairly high

allocations which may make the coalitions unstable in implementation.

2.1.2 Inventory Rationing in Single Echelon Supply Chains

Inventory rationing defines the rules of how to allocate total inventory to n different mem-

bers of the same echelon of a supply chain in case of a shortage (shortage for all members

or shortage for some and overage for others). This can either be done through transship-

ments among supply chain members carrying decentralized inventory or by defining rules

to allocate inventory when it is centralized at a single location. This approach is different

from our work in that it concentrates on one of the echelons only. Even though some results

and insights extend to two-echelon systems, we show that optimizing a single echelon may

lead to inefficiency for the overall supply chain.

There are two different approaches to the rationing problem in the literature. One

approach is to consider a multi-period model and analyze the inventory replenishment and

rationing policies using dynamic programming. The other approach is to consider a single-

period model and analyze the transshipment problem in a game theoretic framework.

Jackson and Muckstadt [44] analyze a two-period model where the centralized inven-

tory can be allocated to the retailers either only at the beginning of the first period or in

installments over two periods. They propose approximation algorithms to find the policy

parameters (optimal reserve stock levels at the central location) in both cases. Robinson [64]

analyzes a similar multi-period, multi-location model and shows that significant savings can

be achieved through transshipments even when approximating heuristics, rather than opti-

mal policies, are used to find the order-up-to levels. Contrary to Robinson’s model where

each location carries its own inventory and transships stock when it has excess inventory

while another location faces a stockout, Diks and de Kok [24] consider a model where a

central depot carries the inventory and allocates it to the retailers using a rationing policy
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which they call consistent appropriate share. The aim of this rationing policy is to main-

tain target service levels at each of the retailers. Swaminathan and Srinivasan [73] take a

similar service-level-based approach to the allocation of centralized inventory. They derive

an optimal allocation policy which randomly allocates stock to the retailers such that the

retailers’ service level constraints are satisfied in the long run. However, as we show by

examples, the shortcoming of the service-level-based allocation mechanisms is that they do

not guarantee expected levels of profit for the retailers even when service constraints are

met.

Another area where the rationing problem arises is when different demand points dif-

ferentiated (or rather prioritized) by their service requirements are replenished from the

same central inventory. In a series of papers, Ha [38, 40, 39] analyzes a production system

modelled as a make-to-stock queue and derives optimal policies characterized by a mono-

tone sequence of rationing levels. Deshpande et al. [23] consider a logistics system with two

demand classes and compare the performance of a (Q, r,K) policy with the performance of

the optimal priority clearing policy. By a (Q, r,K) policy, they mean that an order of size

is Q is placed whenever inventory level drops to r and demand from both of the classes is

satisfied on a first come first serve basis until the inventory level reaches K; after which only

demand from the higher priority class is satisfied. Zhao et al. [77] prove that a base stock

policy is optimal for a similar model with service-differentiated demand where inventory is

transshipped between retailers rather than being kept at a central facility. They find that in

the optimal policy there is a threshold level of inventory below which a retailer will reject a

transshipment request and a second (lower) threshold level below which a retailer will prefer

to send the customer to another retailer rather than satisfy the demand in house. These

five papers share two common assumptions: 1. For analytical tractability in a multi-period

setting, analysis is restricted to Markovian models (except [40]). 2. The papers implicitly

assume inventory centralization or transshipment is optimal for the supply chain. They re-

strict themselves to a single echelon and ignore the possibility that the suppliers who supply

the product whose inventory is centralized or the customers who buy the product may pre-

fer decentralized inventories. Even more importantly, the overall supply chain performance
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may suffer if centralized inventory levels are optimized with respect to only a subset of the

supply chain players.

Another stream of papers analyzes the inventory-sharing problem as a single-period

transshipment problem among different players at the same echelon, possibly with posi-

tive transshipment costs. These papers are more closely related to our work in that they

consider decentralized systems, but they differ from our work in that they concentrate on

different players within the same echelon. Anupindi, Bassok, and Zemel analyze the prob-

lem in a cooperative game theoretic framework [4]. They propose a modified duality-based

allocation mechanism that achieves the profit level of the centralized system. Granot and

Sosic [36] extend their work by relaxing an assumption on the amount of residual inven-

tory available for transshipments among the retailers. Rudi, Kapur, and Pyke [65] analyze

a similar problem with only two retailers. Instead of fixing the transshipment prices like

Anupindi et al. do, they let the transshipment prices be variable and try to derive the prices

that would coordinate the supply chain. A related problem to the transshipment of stock

is the substitution of stock. In this context, the problem is to determine the optimal level

of inventory given that a predetermined percentage of the demand is substitutable. Netes-

sine and Rudi [55] settle a long-standing question in the operations literature and derive

the necessary (and sometimes sufficient) conditions for the optimal inventory levels for n

substitutable products. The conditions are tractable enough to facilitate the comparison of

centralized and decentralized inventory policies. The authors show the intuitive result that

the total profit of the centralized supply chain is decreasing in demand correlation when

demand is multivariate normal.

To our knowledge Parlar [56] provides the first game theoretic analysis of the inventory

substitution problem. He proves the existence and uniqueness of a Nash equilibrium for a

two-product game in addition to showing that both of the retailers are better off cooperating

when compared to their Nash solutions. This work is an extension of Parlar and Goyal [57]

where the authors derive the necessary conditions for the optimal levels of inventory for

the two substitutable products. Lippman and McCardle [49] and Cachon and Lariviere [19]

consider similar problems again in the game theoretic framework. Lippman and McCardle

14



analyze a newsvendor-based model where the retailers compete for the market demand; in

such a setting increasing inventory at one retailer stochastically reduces the sales at the

other retailers. They show that a Nash equilibrium exists and under at least one of the four

demand allocation rules they consider, it is also unique. In Cachon and Lariviere, retailers

compete for limited capacity rather than fixed market demand. Cachon and Lariviere

consider different capacity-allocation rules and compare them in terms of their equilibrium

and truth inducing behavior. They find that all the allocation mechanisms but the uniform

allocation rule (where all the retailers get equal capacity) induce the retailers to inflate their

orders.

In this study we focus on a single period-problem and use a game theoretic framework

to analyze it. Therefore our research is closer to the second set of papers reviewed in this

section. However, by optimizing the inventory policy at only a single echelon, all the above

work either ignores the effect of inventory centralization on the rest of the supply chain

or implicitly assumes it will be beneficial to the supply chain as a whole. Our focus in

this research will be to optimize the inventory management policies for the supply chain

as a whole and at the same time give adequate incentives to all the players such that they

will participate in the optimal inventory management policy. One important observation

from the last two papers reviewed is that different allocation mechanisms induce different

strategic behaviors – some more favorable than the others – on the supply chain players.

However in the operations research literature, the focus is usually to derive the optimal

policies ignoring the negative behavior they may induce. Our aim is, in addition to designing

profit-maximizing allocation mechanisms, to investigate the strategic behavior our proposed

mechanisms induce.

2.1.3 Inventory Pooling in Multi Echelon Supply Chains

Lee and Whang [48] provide one of the first analyses of inventory management in decen-

tralized, multi-echelon supply chains. They consider a two-echelon supply chain with one

player at each echelon and design a performance measurement scheme based on transfer

prices, consignment, reimbursement, and a backlog penalty to coordinate the supply chain.
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Cachon and Zipkin [15] consider a similar serial supply chain and show that when each

echelon makes the inventory decision to maximize his expected profit (the Nash equilibrium

solution), the total supply chain profit is less than optimal. They propose a linear payment

scheme based on on-hand inventory and each stage’s backorders to align the incentives of

the two echelons. Cachon [16] analyzes a similar model but instead of backordering he

assumes unsatisfied demand is lost. He finds that a contract based on lost sales transfer

payment and inventory holding cost sharing will coordinate the supply chain.

Cachon [17] extends [15] and [16] by allowing multiple retailers in the second echelon

who compete for the limited inventory at the supplier. He finds that competition in this

decentralized supply chain does not necessarily cause inefficiency but for the cases it does

proposes three coordination strategies. Of these three, the one Cachon calls “change control”

is of particular interest to us. Change control is a vendor managed inventory (VMI) strategy

where the inventory control is delegated to the supplier after all the players agree to fixed

transfer payments through which they share the benefits of VMI. This strategy of delegating

control to one member of the supply chain after a benefit-allocation mechanism is negotiated

is similar to the approach we take in this study. Finally, Cachon [18] classifies different

inventory management contracts with respect to their allocation of risk – in a push contract

the retailer bears the inventory risk whereas in a pull contract the supplier does. He shows

that whether a type of contract (for example a wholesale price contract) coordinates the

supply chain depends also on the mode (push or pull) the supply chain operates in.

Work on capacity allocation in the multi-echelon setting is also relevant to this study.

Cachon and Lariviere [10] are one of the first to tackle this problem. They analyze an al-

location mechanism called “turn-and-earn” which is used by automobile dealerships and

allocates capacity using past-sales information. Cachon and Lariviere show that turn-

and-earn does not coordinate the system in general and may lead to poor supply chain

performance depending on how tight the capacity is. Cachon and Lariviere [11] is a comple-

menting paper to [10] where the authors compare different allocation mechanisms for their

truth-inducing behavior. By truth-inducing, the authors refer to allocation mechanisms

under which the retailers do not inflate their orders in order to receive larger allocations.
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Surprisingly, they find that overall supply chain profits may be lower under truth-inducing

allocation mechanisms.

In a recent paper, Plambeck and Taylor [60] discuss the consequences of outsourcing

manufacturing to a contract manufacturer as a means of capacity pooling. They analyze

the cooperative game between the contract manufacturer and the two original equipment

manufacturers and find that the original equipment manufacturers benefit from outsourcing

if they have strong bargaining power when compared to the contract manufacturer. On the

other hand, another means of capacity pooling – through forming capacity-pooling joint

ventures – always increases supply chain profits. This latter capacity pooling arrangement

is similar to pooling inventory at a central location and similar to Plambeck and Taylor

we show that inventory pooling benefits all members of the supply chain under the right

contract.

Of the existing literature, the work that is closest to our work is that of Anupindi

and Bassok [2]. They consider a two level supply chain with a single manufacturer and

two retailers. Unlike our model, the inventory decision is made by the retailers without

constraining service levels and the retailers bear all the inventory risk. They model a supply

chain where only a fraction of the customers are willing to wait for a delivery from another

retailer. They show that under this setting, the manufacturer may not always benefit from

inventory pooling because total sales may drop. They discuss the possibility of optimizing

wholesale prices or introducing holding cost subsidies as methods for coordinating the supply

chain. Dong and Rudi [25] extend the model of Anupindi et al. [4] to a two echelon supply

chain. Similar to our objective, they explore whether transshipments, which are beneficial

for the retailers, are also beneficial for the upstream manufacturer. However, in their

model the manufacturer does not hold inventory and the retailers make the transshipment

decisions. As in our work, Netessine and Rudi [54] consider a model where the supplier

bears all the inventory risk. Although they also consider a two-echelon system, the second

echelon consists of a single retailer. In their model, the retailer is merely an intermediary

between the end customer and the supplier and functions only to expand the customer base

through marketing effort. The authors conjecture that the risk-pooling effect that will be
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observed in the case of multiple retailers will make this kind of business model even more

profitable. However, we will show that a supplier who carries out inventory pooling in order

to maximize her own profit may actually reduce the total supply chain profit.

2.2 Supply Chain Coordination and Revenue Sharing Con-
tracts

This study may also be considered to lie within the literature on supply chain coordinating

contracts, of which the chapter by Cachon [9] provides an excellent review (see especially

the second section). The idea of channel coordination was first introduced in the marketing

literature by Jeuland and Shugan [45]. In this section we will briefly review the literature on

revenue-sharing contracts since the allocation mechanism we propose is a form of revenue

sharing.

Dana and Spier [22] provide one of the first analyses of revenue-sharing contracts in the

operations research literature. They show that revenue-sharing contracts coordinate the

supply chain and are especially valuable when demand is stochastic and inventory levels are

chosen before demand is realized. Cachon and Lariviere [12] show in addition that revenue-

sharing contracts coordinate the supply chain in situations when other contracts such as buy-

back contracts and quantity-flexibility contracts cannot. They also discuss some limitations

and implementation costs of revenue-sharing contracts. Gerchak and Wang [35] discuss the

benefits of revenue sharing contracts in an assembly setting and show that revenue-sharing

contracts will not degrade performance of the supply chain unlike wholesale-price contracts

which may. All three of the papers point out that revenue-sharing contracts can coordinate

a wider range of supply chain situations when compared to other frequently used types of

contracts; however they require costly revenue monitoring and thus are not as prevalent in

industry.

Erkoc and Wu [28] and Jin and Wu [46] consider profit (or cost in the case of the former)

sharing contracts in the context of capacity expansion and supply auctions respectively.

Both papers show that profit-sharing contracts coordinate the respective supply chains.

Erkoc and Wu argue that an important drawback of cost-sharing contracts is that cost
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information at both echelons must be transparent to the complete supply chain. Finally,

Granot and Sosic [37] discuss a contract based on side payments which for their model on

Internet-based exchanges is equivalent to profit-sharing.

Due to these implementation problems regarding the otherwise desirable revenue-sharing

contracts, it is of interest to design equivalent contracts which will create the same share

of revenue among the players and thus coordinate the supply chain. Cheng et al. [20]

propose an options-based contract which is equivalent to a profit-sharing contract among

the supply chain partners and thus coordinates the supply chain. One desirable property of

tradeable option contracts as shown by Plambeck and Taylor [59] is that they are designed

to anticipate renegotiation and thus lead to higher supply chain profits.
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CHAPTER III

CENTRALIZED VS. DECENTRALIZED INVENTORY

MANAGEMENT IN MULTI-ECHELON SUPPLY CHAINS

In a multi-echelon supply chain both the total supply chain profit (sum of the individual

profits of the players) and the profits of the individual players depend on the inventory

management policies followed. Determining the inventory management policy that would

maximize the total supply chain profit is an easier task when all the players belong to the

same company (an integrated supply chain) than when all the players are profit maximizers

belonging to different companies. Due to double marginalization discussed in Chapter 1,

when each player makes decisions to maximize its own profit, total supply chain profit falls

short of the total profit of the integrated supply chain. We are interested in analyzing the

different inventory management policies and the corresponding inefficiencies for this type

of decentralized supply chain.

We identify four different inventory management policies for a supply chain with N

retailers. These four policies are depicted in Figure 1. In the first policy, which we call a

reserved inventory management policy, inventory is kept separate for each of the retailers

either at the supplier’s facility or at the retailers’ facilities. Under the shared or pooled

inventory management policy, all the retailers are replenished from a single, large pool of

inventory. Hybrid policies are also possible – two of which we characterize. In the first one

(case (c) in the figure), the retailers first draw from their physically separated inventories.

However when these run out they can draw from a shared inventory. In the second one

(case (d) in the figure) the retailers first draw from a shared inventory and in the case this

runs out they can draw from their emergency stocks which are physically separated. These

emergency stocks may even be virtual and represent the retailer’s option to buy additional

units from the supplier. In this chapter we will concentrate on the first two policies and

analyze how profits change depending on the inventory management policy followed and
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also on who makes the inventory-level decision. We first consider supply chain members
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Figure 1: Four different types of inventory policies for the decentralized supply chain

with varying degrees of power, where we take power to be the ability to dictate a strategy

of pooling or no pooling. We show that the supply-chain-optimal inventory level cannot be

attained under powerful retailers who preclude pooling or a powerful supplier who pools

inventory to maximize her profits. Furthermore, retailers may lose profits (compared to the

case without inventory pooling) when the supplier pools inventory subject to the retailers’

service constraints. We conclude that the frequently used service measure, probability of

no stock-out, does not induce supply-chain-optimal inventory levels in the system. We

show that another service measure, fill rate, will always coordinate the supply chain but

at the expense of increasing computational complexity as the number of retailers increases.

Furthermore we find that service contracts may create a conflict of interest among retailers

since one retailer may end up subsidizing the service of another.

We also analyze supply chains where the supplier is powerful enough to pool inventory
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across retailers and set the inventory level as is optimal for herself regardless of retailer

concern. We look at the gap between supply chain profit under this scenario and the

optimal supply chain profit. We find that the supplier hurts the supply chain more by

carrying suboptimal levels of stock when demand is more variable. The common insight

(one that is not true in general [31]) about pooling is that it is more valuable when demand

is more variable. Our result adds to this intuition that setting the level of pooled inventory

optimally is also more valuable when demand is more variable.

3.1 Inventory Pooling: Definitions and Preliminary Re-
sults

Consider a supply chain with a single supplier and N retailers (such a supply chain with

two retailers is depicted in Figure 2). The retailers require a minimum service level from the

supplier and the service level is defined as the probability of no stock-out. For this single

period model, probability of no stock-out is the probability that the supplier meets the

retailer’s demand. Each retailer observes local demand, places an order with the supplier,

pays a per-unit-price, and receives the inventory immediately (zero lead-time). The supplier

manufactures or buys the product and holds it in inventory at her expense until an order

is placed from the retailer(s). The objective of each is to maximize her single period profit.

Profit maximization for retailers is equivalent to maximizing their sales since they do not

hold inventory.

Let p be the wholesale price the supplier charges to the retailers, c be the procurement/

supplier
c, h

retailer 2

retailer 1

Demand 2 ∼ F2()

Demand 1 ∼ F1()

©©©©©©*

HHHHHHj -

-
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p + pM

p

p

wholesale
price

retail
price

Figure 2: A decentralized 2-echelon supply chain and relevant cost and revenue parameters

manufacturing cost per unit, h be the holding cost per unit (for the single period model
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we can think of h as the disposal cost), and pM be the markup on wholesale price the

retailers charge. End customer demand is independent at the retailers and we assume the

probability distributions of the demand functions are known. Let Di be the random variable

representing the demand at retailers i and Fi(·) denote the cumulative demand distribution

for retailer i (i = 1, 2, . . . , N). We assume Fi(·) is strictly increasing and differentiable (with

pdf fi(·) over the interval [0, β) where β = inf{y : F (y) = 1} (β can be ∞).

We look at the single period inventory holding problem among the supplier and the

retailers in two different perspectives: the supplier holds reserved inventory separately for

each of the retailers or inventory at the supplier is pooled and is shareable by the retailers.

The total supply chain profit and its allocation among supply chain partners depend on

who owns the supplier and the retailers and who makes the pooling decision. We consider

the following scenarios:

• When powerful retailers forbid pooling

• When a powerful supplier pools inventory

• When a centralized supply chain makes globally optimal pooling decisions

• When a weak supplier pools inventory subject to a service contract

3.1.1 Powerful Retailers – No Inventory Pooling

In this scenario the retailers are powerful enough to prevent inventory pooling at the sup-

plier. Retailers may insist on a reserved-inventory policy if the product in question is scarce

(like Intel chips) and there is ambiguity about how the scarce product would be allocated

or if they fear they may be underwriting the service level of a competitor. The objective

of the supplier is the maximization of expected profit, which is defined as expected revenue

less the expected holding (or disposal) cost and the procurement (or manufacturing) cost

subject to the service level constraints. Let xi be the stock level kept for retailer i, Si be

the expected sales at retailer i given the stock level is xi (i.e. Si = min[xi, Di]), and Hi

(Hi = max[xi−Di, 0]) be the corresponding excess stock in retailer i’s stock (for notational

ease we suppress this dependency on xi in writing Si and Hi). For each retailer, the supplier
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sets inventory levels to maximize profit by solving the problem as stated in Expression 1.

max pSi − hHi − cxi

s.t. Fi(xi) ≥ ρ
i

(1)

where ρ
i
= minimum acceptable probability of no-stockout for retailer i (or “service level”).

Since the retailers do not hold inventory, their expected revenue is the markup times

expected sales. Each retailer’s profit is as given in Expression 2.

pMSi (2)

Expression 1, without the service level constraint, is the news vendor problem [71]. It

is well-known that the profit-maximizing stocking level for the supplier facing demand with

distribution F (·) is F−1( p−c
p+h). The optimal stocking level corresponds to a service level of

( p−c
p+h), which we call the critical ratio. The critical ratio corresponds to the probability of no

stock-out, also known as Type-1 service measure. In this paper, unless otherwise specified,

service level always denotes Type-1 service level.

The optimal stocking level is F−1
(
max

(
ρ, p−c

p+h

))
when service level constraints are

present and the total stock supplier must hold is
∑

i F
−1
i

(
max

(
ρ

i
, p−c

p+h

))
. This means

that if the required service level is higher than the critical ratio then the inventory level is

found such that the service constraint is binding. Service level is an increasing function of

inventory and expected profit is a concave function of inventory. Therefore, whenever the

required service level is higher than the critical ratio, the supplier ends up with less than

optimum profit. If the service level requirements of the retailers are in the range
(
0, p−c

p+h

)

then it is optimal for the supplier to provide higher than required service. However, beyond

p−c
p+h , the supplier loses money if she provides higher service to the retailers.

Examining the structure of the optimal decision, one may observe the following:

• When the profit margin of the supplier (p − c) is small or when the holding cost h

is large relative to the price p, it is costlier for the supplier to provide higher-than-

required service to the retailers. Therefore, utilizing the “optimum” method of pooling

becomes more important.
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• Like service level, expected sales is an increasing function of total stock level. There-

fore, in the region, ρ ∈ (0, p−c
p+h), the retailers’ expected sales are greater than or equal

to what their service level guarantees them. Beyond p−c
p+h , however, they get exactly

what they ask for because higher stock levels are not optimal for the supplier.

3.1.2 Inventory Pooling by a Powerful Supplier

When the supplier pools inventory to be shared by the retailers, she effectively makes the

inventory decision based on the cumulative demand Fc(·) = F1(·) ∗ F2(·) ∗ · · · ∗ FN (·). Let

Sc be expected cumulative sales, Hc be the expected cumulative excess stock, and xc be the

stock level. The supplier’s problem is

max pSc − hHc − cxc (3)

which has the same news vendor structure as the no-pooling case. The optimum stock level

the supplier will carry is F−1
c ( p−c

p+h).

3.1.3 Centralized Supply Chain Makes Pooling Decision

If both the retailers and the supplier were owned by the same company, the resulting

centralized problem would be

max (pM + p)Sc − hHc − cxc (4)

The centralized system revenue on each unit sold is p + pM . Expression 4 has the form of a

news vendor problem and so the optimal stock level is F−1
c ( p+pM−c

p+pM+h). The following obser-

vation relates the total stock in the centralized system to the total stock in the decentralized

system where the supplier decides on the size of pooled inventory.

Observation 3.1.1 In a decentralized system, the supplier always stocks less than the

system-optimum stock level.

Comparison of the critical ratio for the centralized system, p+pM−c
p+pM+h , with the critical ratio

for the supplier, p−c
p+h , yields that p+pM−c

p+pM+h > p−c
p+h , which is equivalent to Observation 3.1.1.

This is not surprising since it is the supplier who incurs the procurement and holding costs
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and thus has incentive to understock. This observation also indicates that the decentralized

system will not reach its total sales capacity. On the other hand if the stock level is set to

that of the centralized system, the supplier will profit less than she would in a decentralized

system, where she can set inventory levels in order to maximize her expected profit.

Another important point is that F−1
c

(
p+pM−c
p+pM+h

)
maximizes total supply chain profit

profit but may not satisfy the service level requirements for the retailers. This means that

enforcement of service level requirements may decrease total system profit. We explore this

observation in the next section.

3.1.4 Weak Supplier, Weak Retailers: Inventory Pooling Subject to Service
Constraints

Consider a supply chain where the supplier is too weak to make the pooling decision by

herself and the retailers are too weak to preclude pooling. Instead, the retailers allow the

supplier to pool inventory subject to the service level constraints they set.

Because of competition, retailers may be willing to share some but not all inventory.

Thus we may consider the total stock to be broken up into four partitions. The supplier holds

two types of inventory for each retailer: shareable and reserved. Shareable inventory may

be used to satisfy the other retailers’ demands once the demand of the primary inventory

owner is satisfied; whereas reserved inventory cannot. For example, if the stock kept for

retailer 1 runs out and there is stock available only in the reserved section of the inventory

for retailer 2 then this cannot be used to satisfy the unsatisfied demand of retailer 1. Let

us define the notation:

xr
i = amount of reserved stock for retailer i

xs
i = amount of shareable stock for retailer i

Total expected sales after pooling and total expected left-over inventory are simply the

sum of the individual expected sales and expected left-over inventory figures. Let ρi be the

Type-1 service level observed at retailer i. The problem of maximizing total profit may be
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formalized as

max pSc − hHc − c

N∑

i=1

( xr
i + xs

i )

subject to

ρi ≥ ρ
i
, i ∈ {1, . . . , N}

If cost structures are symmetric and there are no extra incentives/costs regarding inventory

sharing, we can make the following observation.

Observation 3.1.2 To maximize total expected profit, one need never hold reserved inven-

tory.

This result is easy to see since the supplier’s profit when xr
1 = . . . = xr

N = 0 is at least

as much as her profit when xr
i > 0 for at least one i ∈ {1 . . . N}. A model similar to our

4-partition model allows only a fraction, f ≤ 1, of a retailer’s demand to be met at another

retailer (or in our case using his stocks). This restriction may be due to transshipment

delays or a fraction of customers not willing to wait. This differs from our model in that

if the total extra demand at the remaining retailers is large enough, regardless of how

small f is, the spill-over demand can deplete all extra inventory at retailer j with positive

probability. In our model if xr
i > 0 then whether it would be depleted or not depends only

on the magnitude of demand at retailer i.

We drop the superscript notation differentiating between reserved and shareable inven-

tory since by Observation 3.1.2 reserved inventory is zero in an optimal solution.

In the remainder of this section, we concentrate on calculating stocking levels after

pooling. We first analyze the supplier’s problem and ignore the effects on the retailers. It

is known that expected profit increases due to pooling. We would also expect total stock

level to decrease. However, Gerchak and Mossman [34] give a simple example in which

total inventory level after pooling is higher than the total inventory level before pooling.

When stocking levels increase, the expected service level provided to the retailers and

their expected sales also increase. If the required service level exceeds the critical ratio,

the supplier loses money by providing a higher service level. Therefore it is important to
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calculate the stock levels so that the service level constraints are binding whenever the

service level requirements exceed the critical ratio. When we calculate stock levels in this

way, we can show that stock levels after pooling do not exceed those before pooling as

formalized in Lemma 3.1.1. Under the complete pooling scheme, the probability of no

stock-out at retailer i is

ρi = P (Di ≤ xi) + P (xi ≤ Di ≤ xi + xj −Dj) (5)

Lemma 3.1.1 The after-pooling stock level does not exceed the total before-pooling stock

level if the probability of no-stockout after pooling is equal to the probability of no-stockout

before pooling for each retailer.

Proof We find the before-pooling inventory levels x1 and x2 as solutions to

ρi = Fi(xi) i = 1, 2 (6)

Then defining x′1 and x′2 as the after pooling inventory levels and using Equation 5, we

obtain the following two equations.

ρ1 = F1(x′1) + P (x′1 ≤ D1 ≤ x′1 + x′2 −D2 and D2 ≤ x′2)

= F1(x′1) +
∫ x′2

0

∫ x′1+x′2−y2

x′1
f1(y1) f2(y2) dy2 dy1

ρ2 = F2(x′2) + P (x′1 ≤ D2 ≤ x′1 + x′2 −D1 and D1 ≤ x′1)

= F2(x′2) +
∫ x′1

0

∫ x′2+x′1−y1

x′2
f2(y2) f1(y1) dy1 dy2

For each of these equations, the second term is clearly greater than or equal to zero. By

Expression 6 and the fact that F1(·) and F2(·) are non-decreasing functions of inventory

level x′1 ≤ x1 and x′2 ≤ x2, which proves the claim. 2

3.1.4.1 Supplier-Optimal Pooled Stock Size

To avoid excessive inventory costs the supplier should provide no more than the contracted

service level when service level requirements are higher than the critical ratio. We make use

of this fact to characterize the optimal solution for the supplier in case of pooling subject
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Table 1: Optimum pooled inventory level depending on service levels ρ1 and ρ2

ρ2 ≤ ρl
2 ρl

2 < ρ2 ≤ ρu
2 ρ1 > ρu

2

ρ1 ≤ ρl
1 x∗c x∗c F2(x∗2) = ρ2, x

∗
1 = 0

ρl
1 < ρ1 ≤ ρu

1 x∗c Requires analysis (1) Requires analysis (2)
ρ1 > ρu

1 F1(x∗1) = ρ1, x
∗
2 = 0 Requires analysis (2) Solve service level equations

to service constraints. Again we calculate the inventory levels for a 2-retailer supply chain

to demonstrate the solution methodology and point out some characteristics of the optimal

solution. The characterization also determines the sizes of x1 and x2, shareable stock over

which retailers 1 and 2 have priority respectively after pooling. The methodology extends

to the general N −retailer problem; however calculations become cumbersome as N grows.

Define x∗c = F−1
c ( p−c

p+h), the optimum pooled inventory in the absence of service level

constraints. Even though we assume complete sharing of available stock by the two retailers,

we still distinguish the levels, x1 and x2, over which retailers 1 and 2 have priority in case

of a stockout, because these levels determine the respective service levels observed at the

retailers. By letting x1 = x∗c or x2 = x∗c , we can obtain the boundary values on service level

at the two retailers. Further define for i, j ∈ {1, 2}

ρl
i = service level at retailer i when xi = 0 and xj = x∗c

ρu
i = service level at retailer i when xi = x∗c and xj = 0

With respect to these boundary values, the required service level pair (ρ1, ρ2) will fall in

one of the nine regions depicted in Table 1. For three of the nine combinations, x∗c is also

a feasible total stocking level given the service level requirements. For the two cases, in

which one requirement is below its corresponding lower bound and the other is above its

corresponding upper bound, the optimal stocking level is found by solving the service level

constraint for the higher service level and setting the other stocking level to zero. In this

case, the retailer with the lower service level has no stock over which he has priority. The

stock kept for the retailer with the higher service level is used to cover the other retailer.

This situation, although optimal for the supplier, may create a conflict of interest between

the retailers and therefore may be unacceptable because the retailer with the higher service
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level requirement is underwriting the service level of the other retailer. For the case where

both service level requirements exceed their corresponding upper bounds, the stocking level

is found by solving both of the service level constraints as equalities. The solution is optimal

because it provides the least stock to satisfy both of the equations.

If the service level pair falls in the region marked by (1) in Table 1, the situation is

more complicated: If F−1
c ( p−c

p+h) can be partitioned such that both of the constraints are

satisfied then it is obviously the optimal stock level. This can be checked simply by finding

the partition that would still satisfy the service level constraint at the retailer with the

higher requirement and then verifying whether the same partition satisfies the service level

constraint of the other retailer. If so, then F−1
c ( p−c

p+h) is the optimal stocking level. If not, the

second step is to set x∗i = 0 where i is the retailer with the lower service level requirement

and find x∗j that satisfies retailer j’s service level constraint. If x∗j also satisfies retailer i’s

constraint, then it is optimal, as established in Lemma 3.1.2. Otherwise, one needs to solve

for x∗i and x∗j by setting the two service level constraints as equalities. Clearly, providing

more service (higher stock levels) is suboptimal.

Lemma 3.1.2 When F−1
c ( p−c

p+h) is not feasible, x∗c = x∗j = F−1
j (ρj), where j is the retailer

with the higher service level, is optimal when it is feasible.

Proof Since the supplier profit is maximized beyond p−c
p+h for the smallest stock level that

satisfies the service level constraints, all we need to show is that x∗j = F−1
j (ρj), x∗i = 0 gives

a smaller inventory level than having both x∗j > 0, x∗i > 0. Consider two cases. In the

following proof, we use the additional 1 or 2 in the subscript to denote the inventory levels

under cases 1 and 2 respectively.

Case 1: Let xi1 = 0. The inventory level pair (xi1, xj1) are set so as to satisfy the service

level constraints. The service level expressions are:

Fj(xj1) = ρ2 (7)
∫ xj1

0
Fi(xj1 − yj) fj(yj) dyj ≥ ρ1

30



Case 2: Let xi2 > 0. The corresponding service level expressions are:

Fj(xj2) +
∫ xi2

0
Fj(xi2 + xj2 − yi) fi(yi) dyi − Fi(xi2)Fj(xj2) = ρ2 (8)

Fi(xi2) +
∫ xj2

0
Fi(xi2 + xj2 − yj) fj(yj) dyj − Fi(xi2)Fj(xj2) ≥ ρ1

The assumption xi2 ≥ 0 implies
∫ xi2

0 Fj(xi2 + xj2 − yi) fi(yi) dyi − Fi(xi2)Fj(xj2) ≥ 0.

Therefore xj1 ≥ xj2. Now let xi2 = xj1 − xj2 and compare the left hand sides of Equations

7 and 8.

Fj(xj2) +
∫ xj1−xj2

0
Fj(xj1 − yi) fi(yi) dyi − Fi(xj1 − xj2)Fj(xj2)

≤ Fj(xj2) + (Fj(xj1)− Fj(xj2))Fi(xj1 − xj2)

= Fj(xj1) Fi(xj1 − xj2) + Fj(xj2) (1− Fi(xj1 − xj2))

≤ Fj(xj1)

which implies that xi2 ≥ xj1 − xj2 and thus proves our claim. 2

If the the service level pair falls in the region marked by (2), then first find x∗j = F−1
j (ρj)

where j again is the retailer requiring the higher service level. If x∗j is also feasible for retailer

i, then x∗j = x∗c is the optimal stock level. If not, one needs to solve for x∗i and x∗j by setting

the two service level constraints as equalities as in the case of (1).

3.1.4.2 Retailer Profits under Pooling

Retailer profits may decrease due to pooling because the total inventory in the supply chain

decreases. This phenomenon was first observed by Anupindi and Bassok [2] in a different

setting, where the retailers pay the holding cost and it is their decision whether to pool

inventory or not. We show by example that this loss cannot be prevented even with the

introduction of Type-1 service measure constraints.

Example 3.1.1 Consider a supply chain with two retailers. Let both demand distributions

be U(0, 1) and the critical ratio be p−c
p+h = 0.9. Then the optimal before-pooling stocking

levels are x1 = x2 = 0.9 with total expected sales at 0.99. The before-pooling service levels

at the retailers are each 0.9. We set the Type I service level constraints to 0.9. The
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optimum after-pooling stock level corresponding to F−1
c ( p−c

p+h) is 1.55279. We can assume

each retailer has priority over half of the stock since the retailers are identical. This stock

level corresponds to a service level of approximately 0.92 (calculated using Equation 5) at

each of the retailers, which means service level constraints are more than satisfied. However,

the total expected sales is 0.985. The expected profits of the retailers drop even though the

service level constraints are satisfied.

Thus a simple contract between the retailers and the supplier, where the retailers only

enforce their expected Type I service levels, is not adequate to protect the retailers from

losing sales when the supplier has the power to pool inventory.

3.1.5 Service Contracts and Fill Rate as an Alternative Service Measure

A service contract based on probability of no stock-out does not always guarantee profits for

the retailers. Although a more sophisticated service contract based on fill rate can achieve

this, fill rate has weaknesses that render it less attractive as a basis for a service contract.

Fill rate β is defined as the fraction of demand routinely satisfied from shelf:

β = 1− E[shortage]
E[demand]

We also differentiate between fill rate observed at retailer i before and after pooling, βb
i

and βa
i respectively. Define E[xji], the expected size of retailer j’s shareable stock used by

retailer i. Expected before and after-pooling fill rates are

βb
i = 1−

R∞
xi

(yi−xi)fi(yi)dyi

µi

= Sb
i

µi

βa
i = 1−

R∞
xi

R∞
xj

(yi−xi)fi(yi)dyifj(yj)dyj+
R xj
0

R∞
xi+xj−yi

(yj−(xi+xj−yi))fi(yi)dyifj(yj)dyj

µi

= Sb
i +
R xj
0 (1−Fi(xi+xj−yi))Fj(yi)dyi

µi

= Sb
i +E[xji]

µi

= Sa
i

µi

Expected fill rate is a function of expected sales when unsatisfied demand is lost. Therefore

contracting to assure a minimum expected fill rate guarantees a minimum expected sales

level, and thus a minimum profit level, for the retailers. In addition, after pooling, fill rate
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at retailer i increases by the expected size of retailer j’s shareable stock used by retailer i

scaled by expected demand.

Fill rate, but not probability of no stock-out, ensures minimum expected sales because

fill rate takes into account the size of a shortage when it happens, whereas probability of

no stock-out does not. The size of shortages becomes important in evaluating expected

sales when sales are lost in case of a stock-out. In addition, the magnitude of probability of

stock-out is not a good estimate of the ratio of unsatisfied demand to expected demand [61].

Even though a service contract based on fill rate guarantees a minimum profit level for

the retailers in case the supplier pools inventory, it does not necessarily induce the supplier

to hold the supply-chain-optimal level of inventory. In addition, due to the dependencies

in service levels after pooling, calculations become complicated especially as the number of

retailers in the supply chain increases. Another problem with any service contract is you

may be underwriting the service of your competitor if he chooses to work at a significantly

lower service level. We discuss this problem and the approach we take to circumvent it in

the last section of this chapter.

3.2 Supply Chain and Supplier Profits – Inventory Deci-
sion by Powerful Supplier vs. Coordinated Inventory
Decision

In section 3.1.2 we show that it is optimal for the supplier to pool inventory across retailers

and set the total pooled-inventory level at F−1
c ( p−c

p+h). On the other hand, the optimal

inventory policy for the supply chain is also to pool inventory but the optimum inventory

level is F−1
c ( p+pM−c

p+pM+h). In supply chains we analyze where a single supplier sells the same

product to multiple retailers, the supplier may have monopolistic powers especially if the

product is a specialty item. In this case, due to the higher bargaining power of the supplier,

she may pool inventory and set the level at F−1
c ( p−c

p+h). The total supply chain profit falls

short of the optimum supply chain profit. We would like to answer the question “How large

is the gap between the optimum supply chain profit and the supply chain profit when the

supplier sets the pooled-inventory level at F−1
c ( p−c

p+h)?” Even more interesting would be to
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be able to identify the conditions under which the gap is larger or smaller. This would give

insights as to when supply-chain-coordination incentives are more valuable.

3.2.1 Supply Chain Profit as Demand Variance Changes

In this section we concentrate our analysis on the properties of the convolution of the cu-

mulative demand functions, namely Fc(·) since the pooled inventory level is determined

with respect to the sum of the demands across the retailers. We drop the c in the

subscript since all demand distributions we consider are convolutions. Let us first con-

sider an example where the cumulative demand follows a gamma(α, β) distribution where

(α, β) ∈ {(1, 16), (2, 8), (4, 4), (9, 16/9), (16, 1)}. In the five combinations we consider the

mean demand is always 16 and the standard deviation changes from 16 to 4. We keep the

mean constant to distinguish the effect of demand variance. We consider two scenarios. In

the first, we vary the ratio p+pM−c
p+pM+h (which is the supply chain service level across all retail-

ers) on the range [0.6, 0.9] and keep the ratio p−c
p+h (supplier’s critical ratio) constant at 0.59.

In the second scenario, we vary the ratio p+pM−c
p+pM+h on the same range and vary the ratio p−c

p+h

on the range [0.2, 0.8]. On Figure 3.2.1 we plot the size of the gap between the optimum

supply chain profit and the supply chain profit when the supplier sets the inventory level

as is optimal for herself under scenario 1. On Figure 3.2.1 we plot the corresponding gap

under scenario 2.

We make one common and one conflicting observation on these two graphs. In both

of the graphs, the gap increases as coefficient of variation increases for all service levels.

At high variability one may expect any sort of pooling (regardless of whether the stock

size is determined optimally or not) to benefit the supply chain. However this example

demonstrates that when demand is highly variable, the supply chain profit falls short of

optimal by a larger amount if inventory level is not set optimally. On the other hand,

when demand has low variability the profit loss for the supply chain is relatively smaller

even when the supplier sets the inventory level at what is optimal for herself. We establish

by Theorem 3.2.1 that this observation is always true under a mild condition regarding

the demand functions. The conflicting observation is that in Figure 3.2.1, the gap is the
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largest when p+pM−c
p+pM+h = 0.9 and in Figure 3.2.1 the gap is the largest when p+pM−c

p+pM+h = 0.6.

The reason behind this conflicting behavior is that not the absolute size of p+pM−c
p+pM+h but

rather how different it is from p−c
p+h affects the size of the gap. In both of the graphs the

highest curve (representing the largest gap) corresponds to the largest difference between

these two critical ratios. This is an intuitive result since two critical ratios that are close

together imply that the supplier-optimal inventory level is close to the supply-chain-optimal

inventory level.
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Figure 3: Gap Between Optimal Supply Chain Profit and Supply Chain Profit under
Powerful Supplier as Coefficient of Variation of Demand Increases: Case 1 – Supplier Critical
Ratio Fixed, Supply Chain Critical Ratio Changing
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Figure 4: Gap Between Optimal Supply Chain Profit and Supply Chain Profit under
Powerful Supplier as Coefficient of Variation of Demand Increases: Case 2 – Both Supplier
and Supply Chain Critical Ratio Changing

For two random variables X and Y with distribution functions F (·) and G(·), X is said
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to be larger than Y in dispersive order if F−1(β)− F−1(α) ≥ G−1(β)−G−1(α) whenever

0 < α ≤ β < 1 (denoted as X ≥disp Y ) (Shaked and Shanthikumar [67]). Dispersive order

requires the difference between two quantiles of Xi to be smaller than the difference between

the corresponding quantiles of Xj ; therefore dispersive order compares the variability of the

two distributions. Assuming there is dispersive order between the demand distributions, the

following theorem shows that the gap is always larger under the more dispersive demand.

Theorem 3.2.1 The gap between optimal supply chain profit and the supply chain profit

when the supplier sets the pooled inventory level as is optimal for herself is greater under

the more dispersive demand.

Proof Assume D1 ≤disp D2. Let Q
′
i = F−1

i ( p−c
p+h) = F−1

i (α) and Q
′′
i = F−1

i ( p+pM−c
p+pM+h) =

F−1
i (β) where i ∈ {1, 2}. We can write supply chain profit for demand Di as a function of

the total inventory in the system as follows:

πi(Qi) = ( p + pM + h )µi − ( c + h )Qi − ( p + pM + h )
∫ ∞

Qi

(1− Fi(x)) dx

Our aim is to show that π1(Q
′
1)− π1(Q

′′
1) ≥ π2(Q

′
2)− π2(Q

′′
2) where for i ∈ {1, 2}

πi(Q
′
i)− πi(Q

′′
i ) = (p + pM + h)

∫ F−1
i (β)

F−1
i (α)

(−1 + Fi(x)) dx + (h + c)(F−1
i (α)− F−1

i (β))

We need to show that the following holds

(p + pM + h)

(∫ F−1
2 (β)

F−1
2 (α)

(−1 + F2(x)) dx−
∫ F−1

1 (β)

F−1
1 (α)

(−1 + F1(x)) dx

)
(9)

≥ (h + c)
(
F−1

2 (β)− F−1
2 (β)− F−1

1 (β) + F−1
1 (α)

)

Because p ≥ c (otherwise the supplier would not be in business), p + pM + h ≥ c + h and

the following is equivalent to expression 9.

(p + pM − c)

(∫ F−1
2 (β)

F−1
2 (α)

(−1 + F2(x)) dx−
∫ F−1

1 (β)

F−1
1 (α)

(−1 + F1(x)) dx

)

+ (h + c)
(
F−1

2 (β)− F−1
2 (β)− F−1

1 (β) + F−1
1 (α)

)

+ (h + c)

(∫ F−1
2 (β)

F−1
2 (α)

(F2(x)) dx−
∫ F−1

1 (β)

F−1
1 (α)

(F1(x)) dx

)
(10)

≥ (h + c)
(
F−1

2 (β)− F−1
2 (β)− F−1

1 (β) + F−1
1 (α)

)
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where the second term on the left hand side cancels out with the term on the right hand side.

Dispersive order implies F2(F−1
2 (α) + δ) ≤ F1(F−1

1 (α) + δ) for δ ∈ [
0, F−1

1 (β)− F−1
1 (α)

]
.

Therefore the following inequality holds

∫ F−1
1 (β)

F−1
1 (α)

F1(x) dx ≥
∫ F−1

2 (α)+F−1
1 (β)−F−1

1 (α)

F−1
2 (α)

F2(x) dx (11)

In addition since β = p+pM−c
p+pM+h the following inequality holds

(p + pM − c)
(
F−1

2 (β)− F−1
2 (β)− F−1

1 (β) + F−1
1 (α)

)
(12)

≥ ( p + pM + h)
∫ F−1

2 (β)

F−1
2 (α)+F−1

1 (β)−F−1
1 (α)

F2(x) dx

Inequalities 11 and 12 together imply (10) which completes the proof. 2

The next result directly follows from Theorem 3.2.1 since for two random variables Y

and Z, Y ≤disp Z implies V ar(Y ) ≤ V ar(Z).

Corollary 3.2.1 Assume we can order the total demands in two different markets in the

dispersive sense. Then the gap between optimal supply chain profit and the supply chain

profit when the supplier sets the inventory level to maximize her expected profit is greater

under the more variable demand.

3.2.2 Supplier Profit as Demand Variance Changes

We go back to the example in Section 3.2.1 and analyze the gap between supplier profit

at supply-chain -optimal and supplier-optimal inventory levels. Again we consider two

different scenarios depending on whether p−c
p+h is kept constant and obtain Figures 3.2.2

and 3.2.2. We observe that for all of the service levels, the supplier profit is higher when

demand coefficient of variation (thus demand variance since means are kept constant) is

lower. This is intuitive since the supplier bears the inventory risk in this supply chain. We

also look at the gap between the supplier’s optimum profit level and her expected profit

when the inventory is set at the supply-chain-optimal level. Both of the figures reveal that

the gap is larger when demand coefficient of variation is higher. If the other supply chain

members force the supplier to carry the supply-chain-optimal level of inventory, she loses

more under more variable demand. However these observations are not always true as we

37



demonstrate with the following example. For a special case where the demand follows a

normal distribution, we show in Proposition 3.2.1 that the observations hold.

Example 3.2.1 Assume the supplier operates in two different markets where the demand

at market 1 follows a Weibull(1, 1
2) distribution and the demand at market 2 follows a

Weibull(1
3 , 1

3) distribution. The critical ratio for the supply chain is 0.9. The mean demand

at both markets is 2 and the demand variance at market 1 is 20 whereas it is 76 at market 2.

When the inventory level is set optimally for the supply chain, the supplier’s expected profit

in market 1 is −10.944 and her expected profit at market 2 is −9.2958 so the supplier profit

is higher in the more variable market. However as one would expect, if the supplier carries

the supplier-optimal level of inventory, her expected profit at market 1 is 0.024 and her

maximum profit at market 2 is 0.0017 – the supplier makes more money in the less variable

market. The profit gap is 10.968 and 9.297 respectively which means the supplier loses more

by carrying the supply-chain-optimal inventory level if the demand is less variable.
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Figure 5: Gap Between Optimal Supplier Profit and Supplier Profit when Supply Chain
Profit is Optimized as Coefficient of Variation of Demand Increases: Case 1 – Supplier
Critical Ratio Fixed, Supply Chain Critical Ratio Changing

Proposition 3.2.1 Let the demand in two non-overlapping markets be normally distributed

with mean µi and standard deviation σi where i ∈ {1, 2}. Assume µ1 = µ2 = µ and σ1 ≤ σ2.

a. Under the supply-chain-optimal inventory level, the supplier’s profit is higher in the

market with N(µ, σ1) demand.
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Figure 6: Gap Between Optimal Supplier Profit and Supplier Profit when Supply Chain
Profit is Optimized as Coefficient of Variation of Demand Increases: Case 2 – Both Supplier
and Supply Chain Critical Ratio Changing

b. The gap between supplier’s optimal profit and her profit when the inventory level is set

at the supply chain optimal level is larger in the market with N(µ, σ2) demand.

c. The gap between the optimal supply chain profit and the total supply chain profit when

the supplier sets the inventory level to maximize her expected profit is larger in the market

with N(µ, σ2) demand.

Proof For this proof we let u in the subscript denote the unit Normal distribution.

Part a. Using the unit Normal distribution we can write the expected profit in market i as

follows (see Appendix A for a detailed derivation)

πi = (p + h)µ− (c + h)(σik + µ)− (p + h)σiGu(k)

where

Gu(k) =
∫ ∞

k
(u0 − k)fu(u0) du0

and the inventory level is set at σik + µ where k = F−1
u

(
p+pM−c
p+pM+h

)
. The difference between

the expected profits of the two markets is

π1 − π2 = −(c + h)k(σ1 − σ2)− (p + h)Gu(k)(σ1 − σ2)

= (c + h)k(σ2 − σ1) + (p + h)Gu(k)(σ2 − σ1) ≥ 0
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which proves part a.

Part b. Let k′ = F−1
u

(
p+pM−c
p+pM+h

)
and k′′ = F−1

u

(
p−c
p+h

)
. Let π

′
i and π

′′
i be the expected

supplier profit at market i given the inventory level is set at σik
′+µ and σik

′′+µ respectively.

Then the difference between the expected profit levels can be written as follows for i ∈ {1, 2}.

π
′′
i − π

′
i = −(c + h)σi(k′′ − k′)− (p + h)σi

(
Gu(k′′)−Gu(k′)

)

= σi

(
(c + h)(k′ − k′′) + (p + h)

(
Gu(k′)−Gu(k′′)

))

and this difference is greater than or equal to zero by the definition of π
′
i and π

′′
i . Since

σ1 ≤ σ2, π
′′
1 − π

′
1 ≤ π

′′
2 − π

′
2 which concludes the proof.

Part c. Proof similar to part b. 2

Proposition 3.2.1 indicates a conflict of interest between the supplier and the supply

chain. As demand gets more variable, the supplier has less incentive to carry the supply-

chain-optimal level of inventory. At the same time, the supply chain is losing increasingly

more money due to this behavior. This proposition points out that, at least for normally

distributed demand, designing the right incentives to induce the supplier not just to pool

inventory but also carry the optimal level of stock becomes increasingly more important as

demand variance increases.

3.3 Concluding Remarks

Two common intuitions, both in industry and academia, regarding inventory pooling are

that inventory pooling is always beneficial (either reduces costs or increases profits) and

that inventory pooling is of greater value when demand is more variable. The academic

reasoning behind these intuitions is the fact that traditionally papers analyzing inventory

pooling assume normally distributed demand (for example [26], [27]) where both of the

intuitions are always correct.

In a multi-echelon supply chain however Anupindi and Bassok [2] were the first to

observe that members of one of the echelons or the whole supply chain may lose profits due

pooling. In the type of supply chain we consider, it is the retailers who may lose profits

if the supplier unilaterally pools inventory. We analyze the observation by Anupindi and
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Bassok further and find that even a service contract based on the probability of stock-

out does not necessarily guarantee profits for the retailers. A service contract based on

fill rate can guarantee profits for the retailers but is not frequently used since fill rate

is hard to measure. However even when a service contract is able to guarantee profits

such a contract may still be undesirable for a subset of the retailers. In Section 3.1.4

we identify two regions in the service level matrix where it is optimal for the supplier to

satisfy the service level constraint of the retailer requiring higher service as an equality.

Then without carrying any additional inventory, the supplier can still satisfy the demand

from the second retailer requiring a significantly low service level. The retailer requiring

the higher service is creating extra sales for the supplier and is in a way underwriting the

service of his competitor. However according to the terms of the contract he does not make

any additional money and thus may prefer to preclude pooling. We are aware of a similar

concern at Home Depot where they believe whenever the Home Depot shipments are less-

than-truckload, one of their suppliers fills up the extra space with shipments to a smaller

Home Depot competitor. Home Depot was concerned about this arrangement since they

suspected the supplier offered a transportation discount to their competitor. At the time of

our conversation, Home Depot was trying to preclude this practice. We believe Home Depot

may have acted differently had they been receiving benefits from this pooling practice. A

similar concern has been voiced by the U.S. Defense Contract Audit Agency. The agency

was concerned that the Department of Defense may be subsidizing the inventory costs of

the commercial customers of its suppliers. Commercial demand is generally more variable

and the suppliers benefit by pooling this demand with the less variable demand from the

Department of Defense [1].

We find that, in general, service contracts provide inadequate coordination incentives

for pooling since they do not necessarily distribute the total additional value in a manner

consistent with the contributions of the supply chain members. Instead we propose a profit

allocation mechanism that ensures expected profits of all parties involved in the contract

remain at before-pooling levels. The rest of the dissertation deals with the analysis of this

profit allocation mechanism.
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As for the second intuition regarding inventory pooling, Gerchak and He [31] show by

example that benefits of pooling may decrease in increasing demand variance. Similarly we

look at the gap between the profits when pooled inventory levels are determined optimally

and not. We find that even though loss may be greater under less variable demand, under

mild conditions on the demand distributions we are able to show that the gap gets larger

in demand variance. Therefore in markets characterized by high demand variance, utilizing

suboptimal coordination mechanisms such as service contracts is costlier for the supply

chain.
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CHAPTER IV

MODELLING METHODOLOGY: COOPERATIVE GAME

THEORY

4.1 Cooperative Game Theory and Solution Concepts

We analyze the inventory pooling problem among the retailers and the supplier as a co-

operative game, which allows for the possibility of coalitions among players. Coalitions

are possible because players are assumed to negotiate effectively with each other and this

assumption differentiates cooperative game theory from non-cooperative theory [53]. Non-

cooperative game theory is concerned with the specific actions and best responses players

take while cooperative game theory focuses on the value created by coalitions of players [14].

Let N = 1, 2, . . . , n be the set of players and J , J ⊆ N , be a coalition of the players.

The largest possible coalition, N , is called the grand coalition. What defines a cooperative

game (under the transferable utility assumption) is called a characteristic function which

we denote by v. We let v(J) be the value assigned to coalition J by the characteristic

function. For each coalition J , v(J) is the total worth players in J can create by themselves

without any help from players in N\J . By definition, v(∅) = 0.

A solution concept for cooperative games assigns a portion of the total worth of the

coalition to each of the players and we call the assignments allocations. An allocation φ(v)

is a vector, where each φi(v) is the payoff to player i for the game characterized by the

characteristic function v (we suppress the dependence on v whenever it is clear from the

context which characteristic function the allocation depends on). Here we briefly review

some of the many allocation rules proposed for cooperative games (for a more detailed

discussion we refer the reader to a game theory book such as Myerson [53]).

• Fractional rule: This rule allocates a fixed proportion of the grand coalition value

to members of the coalition. The fractions can be fixed exogenously or may be derived

43



based on some characteristics of the players. For example in allocating inventory costs,

the fractions can be derived as the proportion of demand each player generates (see

Gerchak and Gupta [30] for a discussion of this rule). Granot and Sosic [36], Cachon

and Netessine [14], and Anupindi et al. [3] also discuss this rule as a possible allocation

mechanism for cooperative games within the context of supply chain management.

• Louderback’s allocation rule: This mechanism allocates the grand coalition’s

worth such that the allocation to each player is a weighted average of that player’s

incremental and individual values. The Louderback’s allocation to player i is [50]

φi = v(N)− v(N\{i}) + α(v({i})− v(N)− v(N\{i}))

where α =
v(N)−∑

k∈N (v(N)− v(N\{k}))∑
k∈N v({k})−∑

k∈N (v(N)− v(N\{k}))

This allocation rule allocates the complete worth of the grand coalition to the players

due to the way α is defined. This allocation rule has been considered as a cost

allocation rule in the cost accounting literature [8] and is discussed by Robinson [63]

and Hartman and Dror [41] as a possible cost allocation rule in the context of inventory

centralization.

• Shapley value: Shapley [68] derives the expected payoff to player i under character-

istic function v, φi(v), as the unique solution to the following axioms. For the second

axiom, a carrier of v is any set U ⊆ N with v(S) = V (U ∩ S), ∀S ⊆ N .

– Symmetry For all permutations Π(N) of N , φπi(πv) = φi(v) for each permu-

tation π in Π(N).

– Efficiency For each carrier U of v
∑

U φi(v) = v(U).

– Law of aggregation φi(v + w) = φi(v) + φi(w).

The Shapley value as stated in Expression 13 may be interpreted as the expected

marginal contribution of player i to a coalition.

φi(v) =
∑

J⊆N−i

| J |!(| N | − | J | −1)!
| N |! (v(J ∪ {i})− v(J)) (13)
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Robinson [63], Hartman and Dror [41], and Granot and Sosic [36] discuss Shapley

value as an allocation rule in the supply chain management context.

There are other allocation rules such as nucleolus, stable sets, and kernel that are fre-

quently used in other disciplines. However we do not discuss them in this chapter since

they are yet to be used in the supply chain context.

4.2 Stability Properties of Allocation Rules

An allocation rule should satisfy certain properties such that under the allocation rule, the

players have incentive to participate in the coalition and no incentive to break away from

it. We call these the stability properties of the allocation rules. The first such property we

discuss is individual rationality.

Definition 4.2.1 An allocation rule is individually rational if

φi(v) ≥ v({i}), ∀i ∈ N (14)

Equation 14 means that when individual rationality is satisfied for the allocation rule, each

player’s allocation is at least as much as he or she would get without the coalition. Individual

rationality corresponds to the participation constraints of the players. When this condition

is not satisfied for one or more of the players, they do not have any incentive to participate

in the coalition.

The second major stability condition is the core which is defined in 4.2.2.

Definition 4.2.2 An allocation φ is said to be in the core of v if and only if

∑
iεN φi = v(N)

∑
iεJ φi ≥ v(J), ∀J ⊆ N

The first condition in the definition of the core guarantees that the allocation rule

distributes the total worth of the grand coalition to the players completely. This condition

by itself is known as the efficiency property. In terms of profit allocation, non-efficient rules

are clearly suboptimal since we would not expect money to be left on the table in an optimal

rule. The second condition in the definition of the core means that for any coalition, the
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total worth of the members under the grand coalition is at least as much as their worth

would be if they were to break away from the grand coalition and form a smaller coalition

themselves.

A core solution is desirable because it is stable; but the core of a cooperative game

may be empty or may not be unique. In addition, even when the core exists, an allocation

in the core may have other undesirable characteristics. For example, it may be extreme

and/or sensitive to system parameters [53, page 429]. In general, it is hard to determine

whether the core of a coalitional game exists or not. Even when it does, the more important

question is whether a proposed allocation scheme is actually in the core. We further discuss

the applicability of the core as a stability measure in Section 6.3.4.

Another measure, coalitional monotonicity, is mentioned by Granot and Sosic [36] and

we define it below.

Definition 4.2.3 An allocation rule is coalitionally monotonic if ∀ i ∈ N,∀ v, w

v(S) ≥ w(S), ∀ i ∈ S

v(S) = w(S), ∀ i /∈ S




⇒ φi(v) ≥ φi(w) .

If the worths of the coalitions containing player i increase while the worths of the coali-

tions not containing i remain the same, the allocation to player i will not decrease when the

underlying allocation rule satisfies coalitional monotonicity. This is an important and desir-

able property for a profit allocation rule because otherwise players have incentive to reduce

their profit contributions to the coalitions in order to increase their allocations [36, 70].

Finally Hartman and Dror [41] introduce the concept of justifiability. They originally

describe justifiability in the context of cost allocation rules and below we slightly modify

their definition and characterize it for profit allocation rules. We first define the benefit

game with characteristic function b such that for coalition S

b(S) = v(S)−
∑

j∈S

v({i})

By this definition b(S) corresponds to the increase in profit due to forming coalition S.

Definition 4.2.4 An allocation rule is justifiable if for each player i ∈ N

φi(b) = φi(v)− v({i})
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Therefore if the same justifiable allocation rule is used to allocate both the profit and the

benefit for the same player, the difference is equal to the profit that player can create on

his or her own.

4.3 Derivation of the Characteristic Function

In the inventory centralization context, coalitions are formed when a subset of players agree

to pool inventory. We denote such a coalition by J and use the subscript notation to

represent the elements of set J ; that is if J = {1, 2, S}, v(J) = v12S denotes the expected

profit of a coalition consisting of retailers 1 and 2 and the supplier, denoted by S.

For our problem, v(J) is the total expected profit of coalition J and to derive v(J) we

note the following key observations:

• Since there is only one supplier, the retailers who do not agree to pool inventory still

obtain their stock from the same supplier.

• Again since there is only one supplier, the retailers cannot unilaterally decide to pool

inventory without the supplier agreeing to pooling.

In defining v(J) if the supplier is in J , we have to take into account the supplier’s profit

due to the non-participating retailers as well; otherwise we would be double counting the

supplier both as part of the coalition and not. Therefore for each coalition J , v(J) consists

of two parts: the total expected profit of the retailers and the supplier in the coalition and

the total profit the supplier earns due to the retailers who are not in the coalition. By

definition, v(∅) = 0. We formalize this characterization in Definition 4.3.1

Definition 4.3.1 Let S denote the set of coalitions which include the supplier.

For J ⊂ S and | J |≥ 2,

v(J) = max
xJ

{(p + pM )SJ − hHJ − cxJ}+
∑

k∈N\J
max

xk

{pSk − hHk − cxk} (15)

For J ⊂ S and | J |< 2,

v(J) = pMSk +
∑

k∈N

max
xk

{pSk − hHk − cxk} (16)
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Otherwise,

v(J) =
|J |∑

k

pMSk (17)

where

xk = F−1
k

(
max

{
p− c

p + h
, ρk

})
.

The definition of the characteristic function reflects the fact that the worth of a coalition

exceeds the sum of the profits of the players in the coalition only if the players include the

supplier and at least two retailers. Equation 15 denotes the characteristic function for this

case. The first part of the equation denotes the expected profit of the pooling coalition and

the second part denotes the expected profit of the supplier due to the retailers who do not

participate in the pooling coalition. Equation 16 denotes the characteristic function when

the coalition consists of a single retailer and the supplier. In this case, there is no inventory

pooling and therefore the supplier’s profit equals to the sum of her profits due to each of the

retailers. The retailer gets the markup times expected sales. Finally, Equation 17 denotes

the characteristic function of a coalition consisting only of retailers. Following from the

second observation above, the retailers cannot pool inventory unless the supplier is in the

coalition. Therefore the total expected profit in this case is the sum of their individual

profits.

A characteristic function is called superadditive if and only if for every J and K, v(J ∪
K) ≥ v(J) + v(K) when J ∩K = ∅ [53]. We establish that our characteristic function is

superadditive with Proposition 4.3.1.

Proposition 4.3.1 The characteristic function for the inventory holding game as defined

in 4.3.1 is superadditive.

Proof We consider two cases:

Case a. Either J and K consist only of retailers or without loss of generality J consists of

the supplier and K consists of a single retailer. We have v(J ∪K) = v(J) + v(K) in both

cases since coalitions create additional value only when they consist of at least two retailers
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and the supplier.

Case b. Either J or K contains the supplier and the total number of retailers in J ∪K is at

least two. By definition, v(J ∪K) corresponds to expected profit when the inventory level

is set optimally. If the inventory level in J ∪K equals the sum of the inventory levels in J

and K, the coalition will achieve at least v(J) + v(K) and the result follows. 2

The economic implication of superadditivity is that adding one more player to the

coalition increases the total worth of the coalition by at least the stand-alone worth of that

player.

4.4 Choice of Shapley Value as the Solution Concept

Of the solution concepts we discussed in Section 4.1, we are going to use the Shapley value

as the solution concept for our inventory centralization game. This choice depends on both

the desirability of the Shapley value axioms for our problem and also the extent to which

Shapley value satisfies the stability properties discussed in Section 4.2.

The axioms on which Shapley value is based are meaningful and practical in terms of

our problem. We would, for example, expect players of equal power to receive the same

allocation and the first axiom ensures that the Shapley value allocation only depends on the

contribution of the player to the coalitions. The second axiom makes sure that the Shapley

value allocation mechanism allots the total worth of the coalition to the players and a player

who is not in the carrier receives zero allocation. Again, in our context we would expect any

reasonable allocation mechanism to exhaustively distribute the total profit of the system

to the players and to assign zero value to a player who does not increase the value of a

coalition. Finally, if the players play two different games with value functions v and w, then

the total Shapley value allocation to player i is the same as if the players were to play a

game with value function v + w. This axiom shows that Shapley value allocations are not

dependent on the time of bargaining between the players.

Individual rationality is the bare-minimum stability property that must hold for an al-

location rule to be applicable as a contract in the inventory centralization context. The
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Shapley value is individually rational if the underlying characteristic function is superad-

ditive. As we show with Proposition 4.3.1, superadditivity holds for our characteristic

function. Therefore the Shapley value allocations are individually rational and the players

have incentive to participate in the pooling coalitions.

The second stability condition is membership in the core. Without knowing the proper-

ties of the characteristic function, it is not possible to tell whether the Shapley value is in the

core of the game. We know, for example, that the Shapley value is always in the core when

the characteristic function is convex for a benefit game and concave for a cost game [69].

However for our inventory centralization game we cannot prove convexity in general. In

Chapters 5 and 6, we discuss the special conditions under which the Shapley value is always

in the core of the inventory game and some shortcomings of the core as a stability measure.

We would like to note here however that according to Myerson [53] the core is “derived to

avert coalitional objections” and he calls the core an unobjectionable solution concept. He

compares the core to a Nash equilibrium and argues that unobjectionable solution concepts

may require some knowledge about the strategic behavior of the players. However our aim

in this dissertation is not to model the strategic behavior of the players and check whether

they reach an equilibrium; rather we aim to design a contract such that each player will re-

ceive an allocation consistent with his contribution to the coalition. Myerson categorizes the

Shapley value as an equitable solution concept meaning the allocation rule distributes the

total worth of the coalition to ensure allocations are consistent with each player’s contribu-

tion. He also argues that equitable solutions are “arbitration guidelines taking into account

power structures represented by the characteristic function”. Hence the Shapley value is not

necessarily an equilibrium but it is an arbitration rule taking into account “equity” and

“fairness”; therefore is a suitable profit allocation mechanism to be built in a contract even

when it is not in the core.

The other two conditions we defined in Section 4.2 are coalitional monotonicity and

justifiability. Shubik [70] and Young [76] show independently that the Shapley value satisfies

coalitional monotonicity. In addition Young shows that no core allocation rule satisfies

coalitional monotonicity for five or more players. If one would have to choose between
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a core allocation rule and one that satisfies coalitional monotonicity, we believe that the

allocation rule that satisfies coalitional monotonicity would be a better choice to enforce

as a contract in the inventory centralization context. Since Shapley value allocations are

individually rational, there is incentive for all the players to sign the pooling contract.

Once the contract is signed, we may perceive the contract as the means of establishing

stability and the fact that the allocation rule is not in the core becomes irrelevant in terms

of the stability of the coalition. On the other hand, an allocation rule that does not satisfy

coalitional monotonicity may induce a player to increase his profit allocation by reducing

his profit contribution which may lead to falsifying profit information and gaming among

the players. These types of behavior are almost impossible to control through contracts and

may require costly monitoring of individual profits.

Justifiability was introduced by Hartman and Dror [41] since they believe that a cost

allocation mechanism must be consistent with a benefit allocation mechanism from an

accounting point of view. They prove that Shapley value is a justifiable allocation rule for

a characteristic function based on expected costs and it is straightforward to extend their

proof to a profit allocation setting. In the profit allocation case, the allocations based on

expected total profit and the allocations based on expected increase in profit due pooling

differ only by the individual profit the player would have obtained without the coalition.

This is consistent with the interpretation of Shapley value as the marginal contribution of

that player to the coalition. Justifiability is a desirable property of Shapley value since it

establishes the fact that each player’s allocation is his expected profit without the coalition

plus his contribution to the profit increase in the coalition.

4.5 Concluding Remarks

In an interesting recent survey on game theory as a tool in supply chain analysis, Cachon and

Netessine emphasize that cooperative game theory has not received much attention in the

supply chain literature in spite of its potential usefulness [14]. In the same chapter, Cachon

and Netessine also indicate that the Shapley value has not yet been employed in supply

chain research in spite of its desirable characteristics such as uniqueness. Robinson [63]
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and Hartman and Dror [41] consider Shapley value as a cost-allocation scheme but do not

analyze the operational implications of using it. Granot and Sosic [36] appear to have been

the first to mention Shapley value as a profit-allocation mechanism that may induce supply-

chain-optimal inventory decisions but, as far as we know, this idea has not been followed

up.

Shubik [70] is the first to propose using Shapley value as an incentive mechanism in the

management of decentralized systems. He argues that the axioms underlying Shapley value

coincide with the properties the incentive mechanism requires for the joint cost allocation

problem he is analyzing. The axioms of the Shapley value are meaningful and desirable

for our inventory centralization problem, too. In addition, we find that the Shapley value

allocations satisfy individual rationality, coalitional monotonicity, and justifiability. With

such desirable properties, we believe Shapley value is a strong incentive mechanism to

induce the players in the decentralized supply chain to take the system-optimal decisions.

We offer this research as one initial step in understanding the uses of Shapley value as a

value-sharing mechanism to affect the operational decisions of supply chain partners. We

analyze the operational characteristics of the Shapley value allocation mechanism in the

next two chapters – first for a stylized supply chain of two retailers, then for a general

N − retailer supply chain.
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CHAPTER V

SHAPLEY VALUE PROFIT ALLOCATIONS: CASE OF

2-RETAILER SUPPLY CHAINS

5.1 Introduction

Consider two retailers selling a single product procured form a single, common supplier.

The retailers face uncertain demand and do not carry inventory. When they observe de-

mand, they place an order at the supplier and receive shipments without significant delay.

Ownership passes from the supplier to a retailer after the retailer places the order and pays

for the product and so the supplier bears all the inventory risk. Sales are lost in case of a

stock-out at the supplier. To service the retailers, the supplier may either keep inventory

reserved for each of her customers or else pool inventory to share among all of her customers.

Inventory-pooling is known to reduce costs and so increases profits for the supply chain

party that owns the inventory, in this case, the supplier [26]. However, the retailers may

object to inventory-pooling because of two concerns. First is the concern of how inventory

will be allocated among the retailers when there are shortages and how this rationing

mechanism will affect their profits. With reserved inventory, the retailer can control his risk

of stock-out by specifying minimum-inventory levels to be held by the supplier. But if the

retailers draw on a common, pooled inventory, which of the competing retailers has priority

when requesting the last of the inventory? Any inventory-pooling contract will need to

address this issue either directly (by specifying a stock-rationing mechanism) or indirectly

(by specifying reservation profits to the parties such that their profits are at least as much

as their before-pooling profits).

The second concern is how much information should be shared in the supply chain

to facilitate inventory-pooling. In the case of reserved inventories, each company shares

demand information only with the supplier. However, in the case of inventory pooling, a
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company can, by observing his own service level, infer something about the demand faced

by the competitor with whom he is sharing inventory.

In Chapter 2, we considered supply chain members with varying degrees of power and

showed that the supply-chain-optimal inventory level cannot be attained under powerful

retailers who preclude pooling or a powerful supplier who pools inventory to maximize

her profits. In addition, we concluded that a service contract based on the frequently used

service measure, probability of no stock-out, does not induce supply-chain-optimal inventory

levels in the system.

Instead of a service contract, in this chapter, we propose a value-sharing method based

on Shapley value from cooperative game theory and derive closed-form expressions of the

Shapley values. We find that the Shapley value induces coordination and the allocations

under this mechanism satisfy individual rationality conditions for all players and belong to

the core of the game. Though stable, an allocation based on Shapley value may induce

envy among some players. In particular, we find that the allocation mechanism may be

interpreted as “unfair” by some players. We show that the mechanism favors retailers in

the sense that retailer allocations may exceed their contribution to total supply chain profit

at the expense of the supplier.

Under the proposed contract, the retailers prefer to form pooling coalitions with retailers

with either very high or very low service requirements. Up to a threshold service level a

retailer prefers to be the one requesting the higher service level because it ensures him

the greater share of total profits. Beyond the threshold level a coalition partner with very

high service requirements forces the supplier to overstock, increasing sales for both of the

retailers. We also show that when the supplier has the power to maximize her profits by

manipulating the service levels she provides for the retailers, the retailer with lower demand

variance has a better chance of increasing his profits. The Shapley value scheme rewards

the retailer introducing less risk into the supply chain and one can reasonably argue that

this is “fair”.

In this chapter, we explore the Shapley value allocations and their properties in Section

5.2. In Section 5.3, we discuss the possible instabilities that may be caused by the Shapley
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value allocation scheme. Finally, in Section 5.4, we analyze the question “With whom

to form a coalition” from the (different) perspectives of a retailer and the supplier given

the service level constraints of each of the retailers. We conclude with a discussion of our

findings and future research directions.

5.2 Shapley Value Allocations for Two-Retailer Games

For two retailers and one supplier, the value of the coalition increases only when all three

players agree to inventory pooling. Therefore, the value of a 2-player coalition is the sum of

the individual expected profits of the players before pooling. This simplifies the calculation

of the Shapley value for player i (i ∈ {1, 2, S}) to

φi(v) =
2
3

vi +
1
3


v12S −

∑

j∈{1,2,S},j 6=i

vj


 (18)

where v12S is the value of the coalition when all three players agree to pooling and v1,v2,

and vS are the individual expected profits of the players before pooling. Equation 18 tells

us that in the Shapley value allocation, for each player i, the weight of his contribution to

the coalition is half the weight of his before-coalition payoff. The Shapley value formalizes

the allocation rule for the total profit to the three players. However to fully characterize

the value-sharing mechanism we also need to define a rule for calculating the individual

expected profits of the players before pooling. Before pooling, the supply chain has the

structure described in Section 3.1.1. Therefore v1, v2, vS are calculated with respect to the

stock levels set at F−1
i

(
max

(
ρ

i
, p−c

p+h

))
for each retailer.

Writing Expression 18 in a different way, we obtain the equivalent expression

φi(v) = vi +
1
3

(v12S − v1 − v2 − vS) (19)

which shows that for two retailers, the three players share the extra revenue due to

pooling equally. Each player’s expected payoff is his expected payoff before pooling plus

one third of the increase in total expected system profit due to pooling.

We next establish some stability properties of the Shapley value allocations.

Proposition 5.2.1 The core of the inventory holding game among the supplier and the two

retailers is non-empty.
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Proof We use a theorem by Bondareva (1963) and Shapley (1967) that says that the core

of the coalitional game is non-empty if

v(N) ≥ ∑
J⊆N λ(J)v(J) (20)

where λ(J)’s are balanced maps such that λ : 2N → [0, 1] and
∑

j:i∈J λ(J) = 1, ∀i ∈ N . In

our case, using the subscript notation for v(S) we can write the right hand side of Equation

20 as follows:

∑

J⊆N

λ(J)v(J)

= λ1v1 + λ2v2 + λSvS + λ12v12 + λ1Sv1S + λ2Sv2S + λ12Sv12S

= λ1v1 + λ2v2 + λSvS + λ12(v1 + v2) + λ1S(v1 + vS) + λ2S(v2 + vS) + λ12Sv12S

= (1− λ12S)(v1 + v2 + vS) + λ12Sv12S

Since v12S ≥ v1 + v2 + vS , v(N) = v12S ≥ (1− λ12S)(v1 + v2 + vS) + λ12Sv12S 2

Theorem 5.2.1 The Shapley value allocation scheme induces coordination of the supply

chain.

Proof Using Expression 19, one can see that φi for i = 1, 2, S is maximized when v(N) =

v12S is maximized, which happens when the pooled-inventory level for the 2-retailer coalition

is set at the supply chain optimum level. 2

Even though the Shapley value profit allocation mechanism coordinates the supply chain,

it will not be implementable if the players do not have incentive to participate. Recall from

Chapter 4 that in the cooperative game theory context the participation constraints for the

players correspond to the individual rationality of the allocations. In Section 4.4, we state

that the Shapley value allocations are individually rational for our inventory problem. For

completeness, we state this result as Proposition 5.2.2.

Proposition 5.2.2 The Shapley value allocations for the inventory holding game are indi-

vidually rational for all of the players.
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Proposition 5.2.3 The Shapley value allocations are in the core of the inventory holding

game.

Proof By using Expression 19 we can easily verify that the allocations add up to v12S ,

the value of the grand coalition. In addition, by Theorem 6.2.2 and Proposition 5.2.2, the

second condition on the definition of core is satisfied. 2

Thus when the Shapley value is used as the profit allocation scheme in a 2-retailer supply

chain, the retailers and the supplier have incentive to form pooling coalitions. In addition,

the resulting coalition is stable (in the core) and the total joint profit is the maximum the

supply chain can attain.

5.3 Induced Instabilities

That the profit allocations under Shapley value allocation scheme are individually rational

may not be adequate to prevent what we call induced instabilities. These kinds of insta-

bilities may arise if one or more of the players believe there is asymmetric, unfair profit

allocation to some other player(s). In cooperative game theory, it is assumed that players

would not be willing to deviate from coalitions if individual rationality constraints are sat-

isfied and the allocations are in the core. However, players may hesitate to form coalitions

if they believe their competitor benefits more than he should from the coalition. They

may require further adjustments to the coalition contract, for example in the form of side

payments.

In the remainder of this paper we use the BP and AP notation in the superscript to

differentiate the values each variable (such as inventory level, expected sales) takes before

pooling and after pooling respectively.

5.3.1 Shapley Value Allocations Favor Retailers

Retailer profit is the product of sales by the mark-up per item and so we define effective

sales at retailer i as the Shapley value allocation to retailer i divided by the unit mark-up,
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and

E[effective sales at retailer i] =
φi

pM

Comparing total expected effective sales by total expected actual sales after pooling, we

can determine whether the retailers get more than their actual contribution to total after-

pooling profit, in which case the supplier gets less than her contribution. More specifically,

we are interested in knowing when the following inequality occurs:

E[total effective sales] =
φ1 + φ2

pM
> E[total sales after pooling] (21)

Theorem 5.3.1 Total retailer allocations are greater than actual retailer contribution to

after-pooling profit if and only if the expected change in supplier profit exceeds the expected

change in average retailer profit.

In other words, when the change in expected profit for the supplier after pooling is greater

than the average change for the retailers, the supplier is forced to give up a portion of

her extra profits to the retailers, the size of which is determined by the Shapley value

calculations.

Proof In terms of SAP
1 and SAP

2 Expression 21 is:

φ1 + φ2

pM
≥ SAP

1 + SAP
2

2
(22)

An equivalent expression to (22) is:

SBP
1 + SBP

2

3

(
1− 2p

pM

)
+

2c

3pM

[
xBP

1 + xBP
2 − xAP

1 − xAP
2

]
(23)

+ 2h
3pM

(
HBP

1 + HBP
2 −HAP

1 −HAP
2

) ≥ SAP
1 + SAP

2

3

[
1− 2p

pM

]

Change in expected supplier profit exceeding average change in total expected retailer profit

is represented as

∆E[supplier profit] ≥ ∆E[total retailer profit]
2

(24)

Using the definition of E[profit], we can rewrite inequality 24 as follows

2p(SAP
1 + SAP

2 − SBP
1 + SBP

2 )− 2c(xAP
1 + xAP

2 − xBP
1 − xBP

2 )

−2h(HAP
1 + HAP

2 −HBP
1 −HBP

2 ) ≥ pM (SAP
1 + SAP

2 − SBP
1 + SBP

2 ) (25)
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Algebraic manipulation reveals that inequality 25 is equivalent to Expression 22, which

proves the claim. 2

Even when Expression 21 holds, it is possible that only one of the retailers benefits from

the extra allocation:

Example 5.3.1 Consider two retailers with iid U(0, 1) demand. Service level is set at

0.9 by retailer 1 and at 0.65 by retailer 2. Let p = 4, pM = 4, c = 2, and h = 0.1. The

ex-post profit allocations are: φ1 = 2.367776 and φ2 = 1.911776. E[total sales after pooling]

= 0.980813 and E[total effective sales] is (2.367776 + 1.911776)/2 = 1.012138. Comparing

the two, 1.012138 > 0.980813 implies that the retailers’ total allocation is greater than their

total expected profit. In addition, the effective sales for retailer 2 is 1.911776/4 = 0.477944.

However, 0.980813−0.477944 > 0.5, which implies his effective sales is less than his expected

sales (because expected sales at retailer 1 cannot exceed 0.5). Therefore retailer 2’s allocation

under Shapley value scheme is less than his expected sales revenue after pooling.

In this example both retailer 2 and the supplier get allocations less than their individual

contributions to total after pooling profit, while retailer 1 gets a higher allocation. In this

example, this is a fair allocation because retailer 1 requests a higher service level before

pooling. Retailer 2, by forming a pooling coalition with retailer 1, gains access to a larger

stock but has to to give up some of his profits to retailer 1.

Define the following notation for ease of presentation. Let Λ be the change in the

supplier’s expected cost and ∆i be the change in expected sales at retailer i due to pooling.

Λ = c
(
xBP

1 + xBP
2 − xAP

1 − xAP
2

)
+ h

(
HBP

1 + HBP
2 −HAP

1 −HAP
2

)

∆i = SAP
i − SBP

i , i ∈ {1, 2}

Proposition 5.3.1 Given E[total effective sales] ≥ E[total sales after pooling], if the change

in expected sales at retailer i is greater than or equal to the change in expected sales at re-

tailer j then E[effective sales at retailer j] ≥ E[sales at retailer j after pooling].

Proof In the proof of Theorem 5.3.1 we have established the equivalency of φ1+φ2

pM
≥

SAP
1 + SAP

2 to Expression 25. Now rewriting Expression 25 using the Λ and ∆i notation,
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we obtain

φ1+φ2

pM
≥ SAP

1 + SAP
2 ⇔ 2Λ ≥ (pM − 2p)(∆1 + ∆2)

Similarly, we can write the following equivalent conditions.

φ1

pM
≥ SAP

1 ⇔ Λ ≥ (2pM − p)∆1 − (pM + p)∆2

φ2

pM
≥ SAP

2 ⇔ Λ ≥ (2pM − p)∆2 − (pM + p)∆1

Without loss of generality, assume ∆1 ≥ ∆2. The proposition states 2Λ ≥ (pM −
2p)(∆1 + ∆2). This inequality along with ∆1 ≥ ∆2 implies Λ ≥ (2pM − p)∆2− (pM + p)∆1

which proves the result. 2

Proposition 5.3.1 says that the expected change in retailer i’s sales after pooling is

greater than the change in retailer j’s sales ensures that retailer j’s final profit allocation

will correspond to an effective sales level higher than his expected sales. However the same

condition is not adequate to ensure the same for retailer i. This result is counterintuitive

because we would normally expect retailer i would be ensured a greater portion of the extra

profit due to pooling since he is making the more positive impact on expected sales.

5.4 With Whom to Form a Coalition?

In the previous section, we have shown that even though the Shapley value allocation

scheme ensures profit allocations higher than before-pooling profit levels for all players,

some players may get more favorable allocations. Therefore it is important for all players

to know with whom it is most advantageous to form pooling coalitions. In this section, we

analyze this question from the points of view of the retailers and the supplier separately.

We take required service level and the demand distribution as the defining characteristics

of the retailers. Cost and revenue parameters are still assumed to be identical for both of

the retailers.

5.4.1 The Retailer’s Perspective

The question we seek to answer is: “Given a fixed service level for retailer i, at what service

level for retailer j would retailer i form a coalition with retailer j?” Throughout this section

we make use of the following rule in the contract: before-pooling profit levels, vi, vj , and vS
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are calculated with respect to the stock levels set at F−1
i

(
max

(
ρ

i
, p−c

p+h

))
for each retailer.

Therefore, our region of interest is ρj ∈ ( p−c
p+h , 1) because in the region (0, p−c

p+h ] the stock

level is set at F−1
j ( p−c

p+h) regardless of the service level requirement. When the stock level

for retailer j is fixed at F−1
j ( p−c

p+h), the service level requirement of retailer j does not have

an impact on the ex-post profit allocation to retailer i.

Theorem 5.4.1 The Shapley value profit allocation to retailer i is a unimodal function of

service level ρj of retailer j. In addition, ρ∗j = p+pM−c
p+pM+h is the global minimizer.

Proof Let πAP
c be the expected supply chain profit after pooling and πBP

S be expected

supplier profit before pooling. Rewriting Expression 18, the Shapley value allocation to

retailer i is

φi = 2
3SBP

i + 1
3(πAP

c − πBP
S − pMSBP

j )

By definition, only the last two terms of the above equation depend on ρj . Let xj(ρj)

be the before-pooling stocking level for retailer j as a function of the service level. Then,

xj(ρj) = F−1
j (ρj). Let Ω =

∂F−1
j (ρj)

∂ρj
. Then,

∂φ1(ρj)
∂ρj

= −Ω
3 (−c− hρj + (p + pM )(1− ρj))

Due to the assumptions we made on F (·), Ω is always positive. When ρj < p+pM−c
p+pM+h , then

∂φi(ρj)
∂ρj

is negative which means the function is decreasing and when ρj > p+pM−c
p+pM+h , the

derivative is positive, which means the function is increasing. Therefore, the function is

unimodal and ρ∗j = p+pM−c
p+pM+h , is the global minimizer. 2

In all examples we studied, φi(ρj) has always been a convex function. However, we

could not prove this in general because ∂2φ1(ρj)

∂ρ2
j

is a function of ∂2F−1
2 (ρj)

∂ρ2
j

, which is difficult

to sign. However, proving unimodality is sufficient for our purposes because the interesting

point in this proposition is that the ex-post profit allocation to a retailer decreases if he

forms a coalition with a retailer with service level in the range ( p−c
p+h , p+pM−c

p+pM+h).

The next natural question is whether there is a threshold service level ρj in the region

( p+pM−c
p+pM+h , 1) beyond which φi(ρj) is greater than φi( p−c

p+h). The answer is “not necessarily”.
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Proposition 5.4.1 When the demand distribution for retailer j has infinite support, then

the ex-post profit allocation for retailer i goes to infinity as ρj goes to 1.

Proof The Shapley value allocation to retailer i as a function of the service level of retailer

j is

φi(ρj) =
2
3
SBP

i +
1
3
(πAP

c − πBP
S − pMSBP

j )

=
2
3
SBP

i +
1
3

(
πAP

c − (
p(SBP

i + SBP
j )− h(HBP

i + HBP
j )− c(xi + xj)

)− pMSBP
j

)

= K − 1
3

[
(p + pM − c)F−1

j (ρj)− (p + pM + h)
∫ F−1

j (ρj)

0
Fj(x)dx

]

where the term K represents the part of the φi(ρj) expression that does not depend on

ρj and K is a function of ρi, p, pM , h, and c. We can find the limit of the term in the

parenthesis when Fj(·) has infinite support as follows:

lim
ρj→1

[
(p + pM − c)F−1

j (ρj)− (p + pM + h)
∫ F−1

j (ρj)

0
Fj(x)dx

]

= lim
ρj→1

[
(p + pM + h)

∫ F−1
j (ρj)

0
(1− Fj(x)) dx− (h + c)F−1

j (ρj)

]

= (p + pM + h)E[x]− (h + c) lim
ρj→1

F−1
j (ρj)

= −∞

This implies limρj→1 φi(ρj) = ∞. 2

Thus when Fj(·) has infinite support there is a range of ρj beyond p+pM−c
p+pM+h , where

φi(ρj) is greater than φi( p−c
p+h), and retailer i always prefers to form a pooling coalition with

a retailer requiring high service level. However, when Fj(·) has finite support, whether

such a region exits or not depends on the system parameters as we demonstrate with the

following example.

Example 5.4.1 Let the demand function for retailer 2 be U(0,1). The demand function

for retailer 1 arbitrary but independent from that of retailer 2. Let ρ1 = 0.96, p = 5, c =

2, h = 0.1, pM = 5.5.

In Figure 7: Case 1, the highest value φ1(ρ2) attains beyond p+pM−c
p+pM+h is still lower

than φ1( p−c
p+h). However, if we change pM to 2, Figure 7: Case 2 shows that higher profit

allocations are possible for retailer 1 beyond p+pM−c
p+pM+h .
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Figure 7: Profit allocations to retailer 1 as retailer 2’s service changes (graphs not to scale)

If the demand distribution of retailer 2 is U(0,1), limρ2→1 φ1(ρ2) > φ1( p−c
p+h) when pM <

p + h. This condition does not depend on the value of c. We can interpret this result if we

consider pM to be the potential profit to the whole supply chain from the sale of a single

item and p + h to be the potential loss to the supplier when an item does not sell. When

the potential loss to the supplier is large, she will tend to under-stock and this hurts the

retailers. However, when the service level requirement of one or both of the retailers is very

high, the supplier will have to stock enough to cover the requirement even if it is suboptimal

for herself. Therefore, when the overage cost is very high, it is better for a retailer to form

a coalition with a retailer with high service level requirement since this would force the

supplier to stock more.

5.4.2 The Supplier’s Perspective

In section 3.1.1 we set the contract such that the before-pooling profits are calculated to

maximize the before-pooling supplier profit as long as the service level constraints set by the

retailers are satisfied. This means that the before-pooling inventory levels are calculated as

F−1
i (max(ρi,

p−c
p+h)) for each retailer i. Although this maximizes the supplier profit before

pooling and guarantees at least ρi level of service for each retailer, this calculation may

not maximize the supplier’s after-pooling profit according to the Shapley value allocation

scheme. The next theorem shows that the Shapley value allocation to the supplier is a

unimodal function of the service level requirements of the retailers. Figure ?? is an example

of how supplier profit changes as the service level requirement of one of the retailers changes.

63



0 0.2 0.4 0.6 0.8 1

service level at retailer i

pr
of

it

Supplier’s Profit Allocation

Figure 8: Supplier profit allocation as a function of service level

Theorem 5.4.2 The Shapley value allocation to the supplier is unimodal in the service level

requirements of the retailers and the global maximum occurs at

i. (ρ1, ρ2) =
(
max

(
0, 2(p−c)−pM

2(p+h)−pM

)
, max

(
0, 2(p−c)−pM

2(p+h)−pM

))
if 2(p−c)−pM

2(p+h)−pM
< 1,

ii. (ρ1, ρ2) = (0, 0) otherwise.

Proof Let Ωi = ∂F−1
i (ρi)
∂ρi

. Then

∂φS(ρi,ρj)
∂ρi

= Ωi
3 (2(p− c)− pM − (2(p + h)− pM )ρi)

Since Fi(·) is a cumulative distribution function Ωi > 0 for i ∈ {1, 2}. It is sufficient to

consider the following three cases.

• Case 1: 2(p− c)− pM ≥ 0 and 2(p + h)− pM ≥ 0

In this case both ∂φS(ρ1,ρ2)
∂ρ1

and ∂φS(ρ1,ρ2)
∂ρ2

are positive over the interval
(
0, 2(p−c)−pM

2(p+h)−pM

)

and negative over the interval
(

2(p−c)−pM

2(p+h)−pM
,∞

)
. Therefore both φS(ρ1) and φS(ρ2) are

increasing over the interval
(
0, 2(p−c)−pM

2(p+h)−pM

)
and decreasing over the interval

(
2(p−c)−pM

2(p+h)−pM
,∞

)
, which shows φS() is unimodal in both ρ1 and ρ2. For this region,

the global maximum is at (ρ1, ρ2) =
(

2(p−c)−pM

2(p+h)−pM
, 2(p−c)−pM

2(p+h)−pM

)
.

• Case 2: 2(p− c)− pM < 0 and 2(p + h)− pM ≥ 0

In this region, for ρ1 ≥ 0 ∂φS(ρ1,ρ2)
∂ρ1

is negative meaning φS(ρ1) is decreasing. The same
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argument is true for ∂φS(ρ1,ρ2)
∂ρ2

and φS(ρ2). Therefore in this region (ρ1, ρ2) = (0, 0) is

the global maximum.

• Case 3: 2(p− c)− pM < 0 and 2(p + h)− pM < 0

In this region 2(p−c)−pM

2(p+h)−pM
≥ 1 and beyond the meaningful service level region [0, 1).

For ρ1 ∈ [0, 1) ∂φS(ρ1,ρ2)
∂ρ1

is negative so φS(ρ1) is decreasing. The same argument is

true for ∂φS(ρ1,ρ2)
∂ρ2

and φS(ρ2). Therefore in this region (ρ1, ρ2) = (0, 0) is the global

maximum. 2

Theorem 5.4.2 states that the supplier has incentive to relax the terms of the contract.

The current contract calculates before-pooling profits using xi = F−1
i (max(ρi,

p−c
p+h)) for

each retailer. However, the supplier prefers a contract that calculates before-pooling profits

based on xi = F−1
i (ρi). Then she is allowed to maximize her after-pooling profits by setting

the contracted service level at
(

2(p−c)−pM

2(p+h)−pM

)
if at least one of the retailers requires a service

level that is smaller than
(

2(p−c)−pM

2(p+h)−pM

)
. Otherwise, the supplier does not have room for

manipulation since the contract still guarantees that the after-pooling profit allocations are

at least as much as the before-pooling profits (as set through the service level constraints).

5.4.3 Conflict Between Retailers and Supplier

In the previous two sections, we looked at how service level requirements can be used to

optimize profits by both the retailers and the supplier. However, we did not analyze the

effects of these decisions on the other parties in the coalition. The total supply chain

profit does not increase when the supplier maximizes her profits by varying the contracted

service level. Therefore the Shapley value allocation to one or both of the retailers must

be reduced. We would like to know “what happens to the profits of the retailers when the

supplier maximizes her profit?”.

We define the base case as the case where the stocking levels are determined by F−1( p−c
p+h).

From Theorem 5.4.2 we know that supplier profit is maximized at either (ρ1, ρ2) = (0, 0)

or (ρ1, ρ2) =
(
max

(
0, 2(p−c)−pM

2(p+h)−pM

)
,max

(
0, 2(p−c)−pM

2(p+h)−pM

))
. Clearly (ρ1, ρ2) = (0, 0) is not

implementable. Therefore the supplier wants to set (ρ1, ρ2) =
(

2(p−c)−pM

2(p+h)−pM
, 2(p−c)−pM

2(p+h)−pM

)
and
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this requires p−c ≥ pM/2. The supplier’s per-unit profit (p−c) needs to be at least as much

as half the retailers’ total per-unit profit (pM ) for the supplier to be able to maximize her

after-pooling profits. We can interpret this condition as a measure of the relative power of

the supplier. If the supplier is making a high per-unit margin on each item she sells, she has

the ability to manipulate the contracted service levels whenever the retailer requirements

allow it.

For two random variables X and Y with distribution functions F (·) and G(·), X is said

to be larger than Y in dispersive order if F−1(β)− F−1(α) ≥ G−1(β)−G−1(α) whenever

0 < α ≤ β < 1 (denoted as X ≥disp Y ) (Shaked and Shanthikumar [67]). Dispersive order

requires the difference between two quantiles of Xi to be smaller than the difference between

the corresponding quantiles of Xj ; therefore dispersive order compares the variability of the

two distributions. Assuming there is dispersive order between the demand distributions,

the following theorem identifies which one of the retailers (if either) will be better off when

compared to the base case.

Theorem 5.4.3 Assume Di ≥disp Dj. When the supplier maximizes her own after-pooling

profit allocation by changing (ρi, ρj), either the after-pooling profit allocations to both of the

retailers are reduced or the profit allocation to the one with smaller demand in dispersive

order is increased while the profit allocation to the other is reduced.

Proof Let φ′i and φ′j denote the profit allocations to retailer i and j after the supplier

maximizes her profit allocation. Define the following notation:

α =
2(p− c)− pM

2(p + h)− pM

β =
p− c

p + h

ν = F−1
i (α)

η = F−1
i (β)

ε = F−1
j (α)

γ = F−1
j (β)
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That the profit allocation to retailer i after the supplier maximizes her profit allocation

is greater than or equal to retailer i’s allocation under the base case, that is φ′i ≥ φi, is

equivalent to

3pM

(
ν − η +

∫ η

ν
Fi(x) dx

)

≥ (−p− pM + c)(γ − ε + η − ν) + (pM + p + h)
[∫ γ

ε
Fj(x)dx +

∫ η

ν
Fi(x) dx

]

and similarly φ′j ≥ φj is equivalent to

3pM

(
ε− γ +

∫ γ

ε
Fj(x) dx

)

≥ (−p− pM + c)(γ − ε + η − ν) + (pM + p + h)
[∫ γ

ε
Fj(x) dx +

∫ η

ν
Fi(x) dx

]

The total after-pooling profit of the supply chain does not increase when the supplier

maximizes her own after-pooling profit allocation. Then both of the inequalities cannot

hold at the same time. Either neither of the equalities will hold or only one of them

will hold. Therefore we need to compare ν − η +
∫ η
ν Fi(x)dx =

∫ η
ν (−1 + Fi(x)) dx and

ε− γ +
∫ γ
ε Fi(x)dx =

∫ γ
ε (−1 + Fj(x)) dx to find which retailer’s profit allocation increases,

if any. Since Di ≥disp Dj , we have η − ν ≥ γ − ε.

Since Di ≥disp Dj , we have

F−1
i (1− y)− F−1

j (1− y) ≥ F−1
i (1− x)− F−1

j (1− x) (26)

for y ≤ x and y, x ∈ [1−β, 1−α]. Expression 26 implies that 1−Fi(ν + δ) ≥ 1−Fj(ε + δ)

for δ ∈ [0, γ − ε] and that η − ν ≥ γ − ε. Then
∫ η
ν (−1 + Fi(x)) dx ≤ ∫ γ

ε (−1 + Fj(x)) dx,

which concludes the proof. 2

The next result directly follows from Theorem 5.4.3 since for two random variables Y

and Z, Y ≤disp Z implies V ar(Y ) ≤ V ar(Z).

Corollary 5.4.1 If the demand of one retailer is greater than the demand of the other re-

tailer in dispersive order and the supplier maximizes her own after-pooling profit allocation,

either the profit allocation to the retailer with the smaller demand variance will increase or

the profit allocations to both of the retailers will decrease.
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This result is intuitive in terms of the supply chain because when the supplier maximizes

her profits, if the Shapley value allocation to one of the retailers will increase then it will

be the one with smaller demand variance. This result is not surprising because the retailer

with the smaller demand variance brings less risk into the pooling coalition and we would

expect that retailer to receive a higher allocation.

The next theorem states that convolutions of random variables with logconcave densities

can be ordered in the dispersive sense. This result implies that assuming dispersive order

between the demand variables is not very restrictive.

Theorem 5.4.4 (Shaked and Shanthikumar [67], Theorem 2.B.3, p 71) The random

variable X satisfies X ≤disp X +Y for any random variable Y independent of X if and only

if X has a logconcave density.

Normal and gamma (with k ≥ 1) distributions are frequently invoked models of demand

distributions and they have logconcave densities. Therefore, by Theorem 5.4.4 normal and

gamma demands with different shape parameters can be ordered in the dispersive sense and

thus satisfy the condition on Theorem 5.4.3.

Another interesting property of the dispersive order is X ≤disp Y if and only if X +

c ≤disp Y for any real number c. This means that the dispersive order between two random

variables is preserved even if there is a shift in the mean(s). This property has an interesting

implication on our results: the retailer whose profits decrease due to the supplier maximizing

her profits cannot reverse the situation (become the retailer whose profits increase) even if

his mean demand increases and thus creates more sales. However he can reverse the situation

by changing the shape of his demand distribution by reducing the demand variance, because

the allocation mechanism favors the retailer with lower risk.

5.5 Concluding Remarks

As we discussed in the previous chapter, several authors suggested that Shapley value has

potential in supply chain analysis [14] and as an incentive mechanism to control decentral-

ized systems [70]. However, this solution concept has not yet been utilized in the supply
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chain management context as a means of aligning the interests of supply chain partners.

To our knowledge, ours is the first research attempt in understanding the uses of Shapley

value as an incentive scheme to affect operational decisions in a decentralized supply chain.

Our model shares some limitations with most work in this area. For example, like

others [4, 65, 74], we are limited by analytic tractability mostly to 2-retailers. Similarly,

to derive more particular results we have to make some simplifying assumptions about the

demand distributions experienced by the retailers. In the next chapter, we discuss the

results we were able to extend to arbitrary numbers.

In this chapter, in addition to proposing a supply-chain coordinating mechanism, we

analyzed the behaviors of the supply chain members under the proposed mechanism. It is

important to compare various mechanisms for coordinating the supply chain by studying

the strategic behavior that they might induce. For example, how will supply chain players

answer such questions as with whom to form a coalition or whether one can game the

system?

We are assuming a long-term relationship among the supply chain partners because

we model the pooling problem as an allocation game in expectation (AGE) [3]. Another

approach is a snapshot allocation game (SAG), which is used by Anupindi et al. [4]. In

SAG, the value of the game is calculated based on each realization of random demand.

While allocations in the core of SAG are renegotiation proof, allocations for AGE implicitly

assume the players will not break from the contract based on individual realizations of

demand [3].

The Shapley value allocations for the 2-retailer supply chain correspond to equal sharing

of extra revenue due to pooling. Cachon and Lariviere [12] analyze revenue-sharing contracts

and identify their limitations. They conclude that revenue sharing is not prevalent in

practice partly because of high administrative costs and difficulties in monitoring revenues

of retailers. Similar shortcomings apply to our value-sharing mechanism as well. We are

proposing a contract where the three players first pool their profits and then the total is

redistributed to them according to the Shapley values. We can think of this as a taxing

mechanism where some players pay their taxes (return some of their profit) and some
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players get refunds (receive payments). This framework would work best if the supply chain

members are in a long-term relationship, which is also the implicit assumption underlying

AGE. All members are better off pooling inventory and sharing it based on Shapley value;

however the mechanism will not work if there is doubt some player will break away from

the coalition after getting a refund and will not be there to pay his tax when it is his

turn. Cachon [17] discusses industry experience from the Duke University Medical Center

(DUMC) where DUMC outsourced its inventory management to Baxter International (now

Allegiance Healthcare) under the contract that any savings would be shared with respect to

a pre-negotiated percentage. This example provides evidence that revenue sharing is used

as a contract in practice under which supply chain members delegate control (in our case

control of inventory management) to one member of the supply chain to whom the contract

provides the incentive to make the supply-chain-optimal decisions.

As Cachon and Lariviere [12] emphasize, to share value, it must be possible to monitor

revenues of the retailers. The Shapley-value mechanism, in addition, requires visibility of

both the stocking level of the supplier and her costs. Our proposed value-sharing mechanism

also raises the issue of information guessing at the retailers: Can players infer information

about their coalition partners that might allow them to gain advantages?
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CHAPTER VI

SHAPLEY VALUE PROFIT ALLOCATIONS: CASE OF

N-RETAILER SUPPLY CHAINS

6.1 Introduction

In Chapter 5 we limited our analysis to 2-retailer supply chains. In this chapter, we extend

some of our results to arbitrary numbers of retailers. However this generalization comes

at the expense of an additional assumption – in addition to independence of retailers we

further assume they are identical. It is not difficult to calculate the Shapley value allocations

for non-identical retailers; however we need closed form expressions for some of the other

results of this chapter and we are able to obtain closed form expressions only when the

retailers are identical.

We are mainly interested in three types of questions:

• For two retailers, the Shapley value allocation rule is individually rational, induces

coordination, and is in the core. Can we extend these results to supply chains with

arbitrary numbers of retailers?

• The main motivation for pooling is to smooth demand variance across retailers. How

would the Shapley value allocations behave if demand variance changes? Would the

retailers and the supplier be affected in the same way?

• In the supply chain we consider, there is a single supplier who enjoys a higher bar-

gaining power. As a response, the retailers may want to collude and act as a single

retailer to increase their bargaining power and hence their allocations. Would this

type of strategic bargaining always benefit the colluding retailers?

We find that the Shapley value allocations, even though individually rational and co-

ordination inducing, are not necessarily in the core for N > 2. Counter to our intuition,
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increasing demand variance may increase the profit allocation to either the supplier or the

retailers. The direction of change depends on the cost and revenue parameters, particularly

on the markup the retailers charge to the end customer. Finally, we show that retailer

colluding will not increase the profit allocations of the retailers if they do not have sufficient

power in the supply chain which we measure by the level of markup they are able to charge

to the end customer.

6.2 N-Retailer Games and Shapley Value Allocations

One of the criticisms directed at the Shapley value is the number of calculations involved in

obtaining the allocations for all players. The number of calculations grow exponentially as

new players join the game because the Shapley value allocations require the calculation of

the value for each i− retailer coalition as i goes from 1 to N . However, because we assume

all our retailers are identical, we can show that the Shapley value calculations in our game

simplify and grow linearly in the number of players.

Proposition 6.2.1 For the N−retailer inventory holding game among N identical retailers

and a single supplier, the Shapley value allocations are as follows:

φi =
N2 + N + 2
2N(N + 1)

v1 +
N∑

j=2

j

N(N + 1)
(v1....j,S − v1....j−1,S) (27)

φS =
2

N + 1
vS +

N∑

j=2

1
N + 1

(v1....j,S − v1....j) (28)

Derivation

Recall the definition of the Shapley value

φi =
∑

J⊆N−i

| J |!(| N | − | J | −1)!
| N |! (v(J ∪ {i})− v(J))

We first derive the Shapley value for the retailers and then that for the supplier. For the

derivation of the Shapley value for the retailer, recall that since coalitions can only increase

value if the supplier is part of the coalition, the value of an i − retailer game without the

supplier is equal to the sum of the values of the retailers before pooling.
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To derive φi, we first obtain the coefficient of v1 and then the coefficients of v1...j,S −
v1...j−1,S for j ∈ {2, . . . , N}. The difference v(J∪{i})−v(J)) equals v1 under three different

conditions. The first one is if J = ∅. The first term in Expression 29 corresponds to the

coefficient of v1 under this condition. The second condition is if | J |= 1 and either a retailer

or the supplier is in J . Then the coefficient is 1!(N−1)!
((N+1)! multiplied by the number of different

times such a coalition J can be formed. Once the retailer i is fixed there are
(
N−1

1

)
different

ways we can choose a retailer to be in J and only one way we can choose the supplier.

Therefore the number of different ways such a coalition can be formed is
((

N−1
1

)
+ 1

)
as in

the second term of Expression 29. Finally v(J ∪{i})−v(J)) = v1 if J consists of j retailers.

Again after fixing i, there are
(
N−1

j

)
different ways to form such a coalition J and hence

the coefficient of v1 under this condition corresponds to the last term in Expression 29.

By considering all three conditions, we obtain the coefficient of v1 as

=
0!(N)!

(N + 1)!
+

1!(N − 1)!
((N + 1)!

((
N − 1

1

)
+ 1

)
+

N∑

j=2

j!(N − j)!
(N + 1)!

(
N − 1

j

)
(29)

=
1

N + 1
+

1
N + 1

+
N − 2

N(N + 1)
+

N − 3
N(N + 1)

+ · · ·+ 1
N(N + 1)

=
∑N−2

1 x

N(N + 1)
+

2
N + 1

=
N2 + N + 2
2N(N + 1)

Coefficient of v1...j,S − v1...j−1,S

=
j!(N − j)!

N !

(
N − 1
j − 1

)
(30)

=
j

N(N + 1)

The first term in Expression 30 is the number of different ways a coalition consisting of

j − 1 retailers and the supplier can be formed. Since the retailers are identical, to obtain

the coefficient of v1...j,S − v1...j−1,S we multiply this by the number of different ways we can

choose j − 1 retailers among N − 1 retailers.

Derivation of φS :

Again we consider the coefficients of vS and v1...j,S − v1...j for j ∈ {2, . . . , N} separately.

There are two conditions under which v(J ∪ {i})− v(J) equals vS . The first is when J = ∅
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and the corresponding coefficient is the first term of Expression 31. The second is when

J consists of a single retailer, which can happen in N different ways since there are N

retailers. The corresponding coefficient is the second term in Expression 31. Finally for

each coalition J such that J consists of j retailers, we multiply j!(N−j)!
(N+1)! by the number of

different ways we can choose j retailers among N retailers. By summing these terms over

feasible values of j we obtain the last term in Expression 31.

φS =
0!(N)!

(N + 1)!
vS +

1!(N − 1)!
(N + 1)!

N vS +
N∑

j=2

j!(N − j)!
(N + 1)!

(
N

j

)
(v1....j,S − v1....j) (31)

Simplification yields Expression 28. 2

By definition, the coefficients of v1 and v1...j,S − v1...j−1,S in Expression 27 and the

coefficients of vS and v1...j,S − v1...j in Expression 28 add up to 1. In addition, due to

the superadditivity of the characteristic function, which we show in Proposition 4.3.1, the

difference terms, v1...j,S − v1...j−1,S and v1...j,S − v1...j never attain negative values for j ∈
{2 . . . N}. Based on these two facts, we make Observation 6.2.1.

Observation 6.2.1 The Shapley value allocations to both the retailers and the supplier are

convex combinations of the value of that player before pooling and the contribution of the

player to coalitions of different sizes.

In addition, the coefficients of v1 and vS are decreasing functions of N in φi and φS

respectively. The coefficient of vS in φS decreases faster (and in the limit goes to zero)

than the coefficient of vi in φi. On the other hand limN→∞N2+N+2
2N(N+1) = 1

2 which means

the retailer’s before-pooling expected profit makes up at least 50% of his Shapley value

allocation after pooling. In terms of the size of the after-pooling allocation, it is more

important for the retailers to start with a higher before-pooling value.

Using Observation 6.2.1 we rewrite φi and φS as

φi = v1 +
N−1∑

j=2

j

N(N − 1)
(v1....j,S − v1....j−1,S − v1) (32)

φS = vS +
N−1∑

j=2

1
N

(v1....j,S − v1....j − vS) (33)
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We next establish some stability properties of the Shapley value allocation rule for the

N − retailer game.

Proposition 6.2.2 The Shapley value allocation mechanism induces the supplier to make

the optimal inventory decision for the pooling-coalition.

Proof We use the definition of φS as given in Expression 33. For a given N , that is for a

given coalition size, all the terms except v1...N,S are constants. Therefore the supplier wants

to set the inventory level so as to maximize v1...N,S in order to maximize her expected

profit allocation. The v1...N,S term is the total expected profit of the coalition consisting

of N retailers and the supplier and is maximized at a stock level of F−1
c

(
p+pM−c
p+pM+h

)
where

F−1
c (·) denotes the convolution of the demand functions of the N retailers. From Chapter

2 F−1
c

(
p+pM−c
p+pM+h

)
is the supply chain coordinating inventory level and this concludes the

proof. 2

In Chapter 2 we note that in a decentralized supply chain the supplier, as the bearer

of inventory risk, maximizes her profit by understocking. By Proposition 6.2.2, however,

we show that under the Shapley value allocation rule, the supplier carries the supply-

chain-optimal level of inventory. How does the Shapley value profit allocation mechanism

induce the supplier to carry the optimal level of inventory? Comparing Expressions 32

and 33, we find that for | j |= 2, (v1....j,S − v1....j−1,S − v1) equals (v1....j,S − v1....j − vS)

and the coefficients of these two terms are the same as well. Therefore for two retailers,

the retailers and the supplier share the additional value due to pooling equally. For all

j ∈ {3 . . . N}, (v1....j,S − v1....j − vS) is greater than (v1....j,S − v1....j−1,S − v1) and the

coefficient of (v1....j,S − v1....j − vS) is also greater than that of (v1....j,S − v1....j−1,S − v1).

This means that the supplier gets a larger portion of the extra profit due to pooling. We

argue this is a fair allocation because the value of coalitions increase only when the supplier

is part of the coalition. In other words, in our model the retailers cannot cooperate to

pool inventory at a central facility other than at the supplier site. This relative power of

the supplier is reflected in the Shapley value allocation to the supplier. We formalize this

observation as follows:
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Observation 6.2.2 Under the Shapley value profit allocation mechanism the supplier has

incentive to carry the supply-chain-optimal level of inventory since she reaps more of the

additional profit due to pooling.

Even though the supplier reaps more of the additional profit due to inventory pooling,

the retailers still have incentive to participate in pooling under the proposed allocation

mechanism as we show with the next result.

Proposition 6.2.3 The Shapley value allocations for any retailer i ∈ {1 . . . N − 1} and the

supplier are individually rational.

Proof Follows from the superadditivity of the characteristic function. 2

6.3 Individual Profits vs. Coalition Size

One would expect both the retailers’ and the supplier’s profit allocations to benefit from

larger coalitions since larger coalitions pool inventory risk over a larger number of retailers.

However as the following example demonstrates this is not always true and the retailers’

profit allocations may actually be larger under smaller coalitions.

Example 6.3.1 Consider a supply chain with three retailers. Let demand, Di, at each

retailer i be independent, identically distributed such that for i ∈ {1, 2, 3}

Di =





0 w.p. 1
2

1 w.p. 1
2

Let pM = p = 3.5, c = 2.5, and h = 0.5. In this case, when there is no pooling, the optimal

stock the supplier carries for each retailer is x∗ = 0 which corresponds to v∗i = v∗S = 0.

When two of the retailers decide to pool inventory, the optimal pooled-stock level is x∗2 = 1

(let the subscript denote the number of retailers in the pooling coalition). The Shapley value

profit allocation to each retailer is φ2
i = 7

8 . The supplier’s profit allocation is also 7
8 . When

all three of the retailers agree to pool inventory, the optimal stock level is x∗3 = 2 and the

Shapley value allocation to each retailer is φ3
i = 55

64 . In this case, the Shapley value profit

allocation of the supplier is 111
64 .
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In Example 6.3.1, a coalition consisting of two retailers and the supplier is the optimum

coalition size for the retailers. However, the supplier prefers the larger coalition consisting

of three retailers. We formalize our findings regarding the change in Shapley value profit

allocations as the coalition size changes in the following two theorems.

The first theorem concerns the behavior of Shapley value profit allocations to the retail-

ers as the number of retailers in the coalition increases from 2 to N , as the supply chain size

is kept fixed. We are interested in the behavior of the retailer’s Shapley value as an increas-

ing number of the retailers (who are already part of the supply chain) agree to pooling. We

find that, depending on the demand function, the retailer’s Shapley value is maximized at

either the smallest-size coalitions with 2 retailers or the largest N -retailer coalitions.

Before we state the theorem, we introduce new notation. Recall from Equation 15 that

v1...i,S consists of two terms. Let vc
i = maxx {(p + pM )S − hH − cx} and let (N − i)vSi =

∑
k3{1...i}maxxk

{pSk − hHk − cxk} where vSi = maxxk
{pSk − hHk − cxk}. With the new

notation, vc
i represents the part of v1...i,S that is due to the pooling coalition and vSi is the

profit the supplier makes due to a single retailer without pooling. We use φj
i to denote the

Shapley value allocation to retailer i when the number of retailers in the coalition is |j|.

Theorem 6.3.1 For given N, suppose vc
i

i+1 is bounded for all i. Then

a)if vi’s are concave and φ3
i − φ2

i ≤ 0 then φi is monotone decreasing in i and convergent.

b)if vi’s are convex and φ3
i − φ2

i ≥ 0 then φi is monotone increasing in i and convergent.

Proof We provide the proof for part a only since the proof for part b follows in the same

manner.

Assume φk+1
i − φk

i ≤ 0, where

φk+1
i − φk

i =
i(i + 1)(vc

i+1 − vc
i − vSi − v1)

i(i + 1)(i + 2)

− 2(2((n− 2)vSi + vc
2 − 2v1 − vS) + · · ·+ i(vc

i − vc
i−1 − vSi − v1))

i(i + 1)(i + 2)

Let Y = 2((n−2)vSi +vc
2−2v1−vS)+3(vc

3−vc
2−vSi−v1)+ · · ·+ i(vc

i −vc
i−1−vSi−v1).

Then φk+1
i − φk

i ≤ 0 implies

2Y ≥ i(i + 1)(vc
i+1 − vc

i − vSi − v1) (34)
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Now assume φk+2
i − φk+1

i > 0, where

φk+2
i − φk+1

i =
(i + 1)(i + 2)(vc

i+2 − vc
i+1 − vSi − v1)

(i + 1)(i + 2)(i + 3)

− 2(2((n− 2)vSi + vc
2 − 2v1 − vS) + · · ·+ (i + 1)(vc

i+1 − vc
i − vSi − v1))

(i + 1)(i + 2)(i + 3)

Again using the Y notation, φk+2
i − φk+1

i > 0 implies

(i + 1)(i + 2)(vc
i+2 − vc

i+1 − vSi − v1) > 2(Y + (i + 1)(vc
i+1 − vc

i − vSi − v1) (35)

Due to Expression 34, adding 2Y to the left hand side and i(i + 1)(vc
i+1 − vc

i − vSi − v1) to

the right hand side of Expression 35 does not change the direction of the inequality . We

get

(i + 2)vc
i+2 − 2(i + 1)vc

i+1 + ivc
i > 2(vc

i+1 − vc
i )

(i + 2)(vc
i+2 − vc

i+1)− i(vc
i+1 − vc

i ) > 2(vc
i+1 − vc

i )

vc
i+2 − vc

i+1 > vc
i+1 − vc

i

vc
i+2 + vc

i

2
> vc

i+1

which is a contradiction to the concavity assumption. Now given φ3
i − φ2

i ≤ 0, we can

show that φi is monotone decreasing. To show convergence, we also need to show that φi

is bounded. We rewrite φk
i as

φk
i =

v1

2
− v1 + 2vS

k(k + 1)
−

∑k−1
j=2 vc

j

k(k + 1)
+

vc
k

k + 1

Define φ̂k
i :

φ̂k
i =

v1

2
− v1 + 2vS

k(k + 1)
−

∑k−1
j=2 v1

k(k + 1)
+

vc
k

k + 1

=
v1

2
− v1 + 2vS

k(k + 1)
− (k − 2)v1

k(k + 1)
+

vc
k

k + 1

lim
i→∞

φ̂k
i =

v1

2
+ lim

i→∞
vc
k

k + 1

Since we assumed vc
i

i+1 is bounded, the last line implies φ̂k
i is bounded. Clearly, φ̂k

i > φk
i .

Therefore, φk
i is also bounded. Then by monotone convergence, φi is convergent. 2
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Theorem 6.3.2 The Shapley value profit allocation to the supplier is a non-decreasing

function of the number of retailers in the coalition.

Proof Recall that vS = NvSi. The change in the supplier’s profit allocation when a third

retailer joins a 2− retailer coalition is:

φ3
S − φ2

S = N · vSi +
1
4
vc
3 +

1
4
vc
4 −

5
4
(vSi + v1)−

[
N · vSi +

1
3
vc
3 −

2
3
(vSi + v1)

]
(36)

=
1
4
vc
4 −

1
12

vc
3 −

7
12

(vSi + v1) (37)

From Expression 37, φ3
S−φ2

S ≤ 0 is equivalent to 3vc
4 ≤ vc

3+7(vSi+v1). This last expression

implies 3vc
3 + 3(vSi + v1) ≤ vc

3 + 7(vSi + v1) (because 3vc
3 + 3(vSi + v1) is a lower bound for

vc
4) which is a contradiction since 2vc

3 ≥ 4(vSi + v1).

Assume φN
S − φN−1

S ≥ 0. In addition, φN+1
S − φN

S ≥ 0 is equivalent to

NvN+1 ≥ vN + vN−1 + . . . + v3 +
(N + 1)2 − (N + 1) + 2

2
(vSi + v1) (38)

= vN + vN−1 + . . . + v3 + 2N(vSi + v1) (39)

Since we assumed φN
S − φN−1

S ≥ 0, we know that

(N − 1)NvN ≥ vN−1 + vN−2 + . . . + v3 +
N2 −N + 2

2
(vSi + v1) (40)

Adding N(vSi + v1) + vN to both sides of Inequality 40, we obtain

N(vSi + v1) + NvN ≥ vN + vN−1 + . . . + v3 +
(N + 1)2 − (N + 1) + 2

2
(vSi + v1) (41)

Observe that the right hand side of Inequality 41 is the same as the right hand side of

Inequality 39. We also know that

NvN+1 ≥ N(vSi + v1) + NvN (42)

Together with (42), (41) implies Inequality 39 which concludes the proof. 2

6.3.1 Is the Shapley Value Profit allocation Mechanism in the Core?

In Section 4.2, we have defined the core as one of the stability criteria of the allocation

mechanisms for cooperative games. In Theorem 6.3.2, we show that the supplier’s allocation
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is always maximized under the grand coalition. In addition, if the conditions in Theorem

6.3.1 Part (a) are satisfied then the retailers also prefer the grand coalition and the Shapley

value allocations are in the core. However, Theorem 6.3.1 also shows that under some

conditions the retailer allocations are maximized when there are only two retailers in the

coalition. This, by itself, does not imply that the Shapley value allocations are not in the

core when the retailers prefer smaller coalitions. Nevertheless we can find examples, like

Example 6.3.2 below, where the Shapley value allocations are not in the core.

Example 6.3.2 Consider a 3-retailer supply chain. In terms of v1 and vSi, we get that

vc
2 = 2(vSi + v1). Let vc

3 = 2.5(vSi + v1) and vc
4 = 3.6(vSi + v1). When only two of the

retailers participate in inventory pooling, the corresponding Shapley value allocations are:

φ3
R = v1 +

1
3
(2.5− 2)(v1 + vSi) =

14
12

v1 +
2
12

vSi

φ3
S = vS +

1
3
(2.5− 2)(v1 + vSi) = 3vSi +

1
6
(v1 + vSi)

The total allocation to the supplier and two participating retailers is:

2φ3
R + φ3

S = 2
(

14
12

v1 +
2
12

vSi

)
+

38
12

vSi +
2
12

v1 =
30
12

v1 +
42
12

vSi (43)

When all three of the retailers participate in inventory pooling, the corresponding allocations

are:

φ4
R = v1 +

2
12

(2.5(v1 + vSi)− 2vSi − v1) +
3
12

(3.6(v1 + vSi)− 2.5(v1 + vSi)− vSi)

=
13.3
12

v1 +
1.3
12

vSi

φ4
S = vS +

1
4
(2.5− 2)(v1 + vSi) +

1
4
(3.6− 3)(v1 + vSi) = 3vSi +

1.1
4

(v1 + vSi)

The total allocation to the supplier and any two of the three retailers is:

2φ4
R + φ4

S = 2
(

13.3
12

v1 +
1.3
12

vSi

)
+

39.3
12

vSi +
2
12

v1 =
29.9
12

v1 +
41.9
12

vSi (44)

By comparison of Expressions 43 and 44, we find that the total profit is higher if one of the

retailers is out of the coalition. Therefore the grand coalition is not optimal, which means

the Shapley value allocation is not in the core for this example.
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We summarize our findings regarding the membership of the Shapley value allocations

in the core with the following theorem.

Theorem 6.3.3 The Shapley value allocation rule is

a. in the core when the Shapley value allocation to the retailers is non-decreasing in the

number of retailers in the coalition. One special case is when the expected profit function is

convex in the number of retailers.

b. may not be in the core when the Shapley value allocation to the retailers is decreasing in

the number of retailers in the coalition. One special case is when the expected function is

concave in the number of retailers.

Proof Theorems 6.3.1 and 6.3.2 together with Example 6.3.2 imply this result. 2

6.3.2 Shapley Value Allocations and Normally Distributed Demand

In addition to establishing the fact that the Shapley value allocations may not always be

in the core, Theorem 6.3.3 also provides a condition through which we can check whether

the Shapley value allocations are actually in the core – we need to check the convexity

of the profit function in the number of retailers. By Theorem 6.3.1 we establish that the

expected profit function is convex in the number of retailers in the coalition when demand is

normally distributed. Therefore the Shapley value allocations are in the core when demand

is normally distributed.

Lemma 6.3.1 When retailer demand is normally distributed, the expected profit of the

coalition is convex in the number of retailers.

Proof Let demand at each retailer be normally distributed with mean µ and standard devi-

ation σ. Then the total demand for a pooling coalition with N retailers will be distributed

normally with mean Nµ and standard deviation
√

Nσ. For normally distributed demand,

we know the optimal stock level to be mean demand plus k times the standard deviation,

where k is the safety factor whose size depends on the inventory management policy fol-

lowed (reserved versus pooled) as well as the system’s cost and revenue parameters. Let
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k1 be the safety factor under the reserved inventory management policy and determine k1

such that Equation 45 is satisfied.

pu<(k1) =
p− c

p + h
(45)

where pu<(k) = P (a unit normal variable is less than k)

Similarly let k2 be the safety factor under the pooled inventory management policy and

determine k2 such that Equation 46 is satisfied.

pu<(k2) =
p + pM − c

p + pM + h
(46)

Finally define Gu(k), a special function of the unit normal distribution which is used fre-

quently in inventory calculations.

Gu(k) =
∫ ∞

k
(u0 − k) fu(u0) du0 (47)

= fu(k)− kpu≥(k) (48)

Silver et al. [71, page 407] derive the objective function of the newsvendor problem as a

function of µ, σ, k, and Gu(k) when the demand follows a normal distribution and the

objective is to minimize expected cost. We do the same for the case the objective is profit

maximization instead of cost minimization. The expression for expected excess stock, H,

as a function of these variables is (see Appendix A for a detailed derivation):

H = kσ + σGu(k) (49)

The expression for expected sales, S, is:

S = µ− σGu(k) (50)

Using Expressions 49 and 50 we obtain πN , the expected total profit of a coalition with N

retailers (where N ≥ 2).

πN = N(p + pM − c)µ−
√

Nσ [(p + pM + h)Gu(k2) + (c + h)k2]

= N(p + pM − c)µ−
√

Nσ(p + pM + h)fu(k2)
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The difference between the expected profit of a coalition with N retailers and that of a

coalition with N − 1 retailers is:

πN − πN−1 = (p + pM − c)µ− (
√

N −
√

N − 1)σ(p + pM + h)fu(k2) (51)

Since
√

N −√N − 1 is a decreasing function of N , Expression 51 is an increasing function

of N which means πN is convex in N . 2

Theorem 6.3.4 When demand is normally distributed, allocations due to Shapley value

are always in the core.

Proof Result follows from Theorems 6.3.3 and 6.3.1 . 2

6.3.3 A Core Allocation Rule

A core allocation may not always exist for every cooperative game. For our inventory game,

however, we show that there exists a core allocation even when the Shapley value is not in

the core. Therefore we conclude that the core of the inventory pooling game is non-empty.

Theorem 6.3.5 The core of the inventory pooling game among the supplier and the retailers

is non-empty.

Proof We prove the result by constructing an allocation that is always in the core of

the game. Consider an allocation scheme where the retailer allocations are equal to their

expected profit before pooling and the supplier gets the remaining profit; that is expected

after pooling profit of the coalition minus the retailers’ allocations. Then the supplier’s and

the retailers’ allocations under the grand coalition are:

φN
i = v1, ∀ i ∈ {1 . . . N}

φN
S = vN −Nv1

Condition 1 of the core definition is satisfied since

N∑

i=1

φi + φS = vN
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Consider a smaller allocation with N − j retailers. Using the same allocation rule, the

allocations under this smaller coalition are

φN−j
i = v1, ∀ i ∈ {1 . . . N − j}

φN−j
S = vN−j − (N − j)v1

where j ∈ {1 . . . N − 2}. The total worth of the N − j retailers under this smaller coalition

is the same as the total worth of these retailers under the grand coalition. The total worth

of the N − j retailers and the supplier under the grand coalition is vN −Nv1 +(N − j)v1 =

vN − jv1. We know that vN − jv1 is at least as much as vN−j since the expected profit of a

supply chain with all N retailers agreeing to pooling is greater than or equal to the expected

profit of a supply chain where only N−j of the retailers agree to pooling and the remaining

j dictate a reserved inventory policy. Therefore the total worth of the coalition consisting

of N − j retailers and the supplier is less than or equal to the worth of the same coalition

under the grand coalition. By a similar argument we find that the supplier’s allocation

under the grand coalition is at least as much as her allocation under any smaller coalition.

Therefore the second condition in the definition of the core is also satisfied and the proposed

allocation mechanism is in the core. 2

We check the remaining two desired properties, individual rationality and ability to

induce coordination, in order to better compare the Shapley value allocation rule with the

mechanism proposed in Theorem 6.3.5. The second condition in the definition of the core

corresponds to the individual rationality conditions for each of the players when the subsets

considered are the singletons. Therefore the fact that the allocation mechanism is in the

core directly implies that the allocations are individually rational, which we formalize in

Corollary 6.3.1.

Corollary 6.3.1 The allocations due to the allocation scheme proposed in Theorem 6.3.5

are individually rational.

Proposition 6.3.1 The allocation mechanism proposed in Theorem 6.3.5 coordinates the

supply chain.
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Proof The supplier’s allocation under the proposed mechanism is vN − Nv1. In order

to maximize her profit allocation, the supplier maximizes vN (the other terms are fixed)

and vN is maximized when the inventory level in the supply chain equals to the optimal

inventory level for the centralized supply chain. 2

When compared to the Shapley value allocation mechanism, the proposed allocation

mechanism looks more favorable since it is in the core in addition to inducing coordination

and being individually rational. However even though the theoretical stability conditions

are satisfied, we argue that the proposed mechanism will be harder to implement than the

Shapley value. The proposed mechanism reflects the relative power of the supplier; however

at the same time gives zero incentive to the retailers to participate in the coalition. One

may argue that since the retailers are indifferent between participating or not, they may as

well agree to participate in pooling. On the other hand, the retailers also know that pooling

increases total supply chain profit and the benefit is solely awarded to the supplier. Thus

in a realistic negotiation setting, the retailers are more likely to preclude pooling than to

agree to it.

Even when it is not in the core, the appeal of the Shapley value allocation mechanism

is that the Shapley value is the unique expected payoff to the players which corresponds

to their marginal contribution to coalitions of different sizes. When a player is able to

calculate the size of her marginal contribution to the coalition under complete information

(when all the demand and revenue information is known to all the players as is the case

here), it will be extremely hard to make her participate in a coalition unless she is allocated

her contribution or more.

6.3.4 Shortcomings of the Core as a Stability Measure

Even though the core is considered the predominant measure of stability in cooperative

game theory since no player has incentive to break away from a core allocation, the core has

shortcomings as a stability measure. In light of these shortcomings, we discuss the Shapley

value as a practical profit allocation scheme even when the corresponding allocations are

not in the core.
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The first problem with the core is that it may be empty for a given cooperative game.

However as we have shown in Section 6.3.3 the core is not empty for our inventory problem.

Another problem is that the core may not be a unique allocation when it is nonempty

and there is no easy way to determine whether the core of a game is unique or not. The

obvious problem with multiple allocations which are all in the core is that it is not possible

to predict one of them as the likely outcome of the cooperative game. When the core is

not a singleton, it is most likely that different players will be better off under different core

allocations. This would make it difficult to employ one of the allocations as a contract to

induce supply chain optimality.

Even when the core exists and is unique, it may be extremely sensitive to system pa-

rameters, which may render it non-implementable. We demonstrate this with the following

example from Myerson [53, page 429].

Example 6.3.3 Consider a game with 2, 000, 001 players where 1, 000, 000 of the players

can supply a left glove and 1, 000, 001 of the players can supply a right glove. The worth

of a coalition corresponds to the number of matched pairs in the coalition. The unique core

allocation assigns 1 to the players who supply the left glove and 0 to the players who supply

the right glove.

The intuitive reasoning behind the core allocation in Example 6.3.3 which assigns an

allocation of 0 to the players who supply the right gloves is that the right gloves are in

excess supply. However, if we added just two left-glove suppliers to the game then the

right-glove suppliers would get an allocation of 1 and the left-glove suppliers would get an

allocation of 0. This property of being sensitive to game parameters and the tendency

to assign a zero allocation to the player with the excess resource is inherent in the core

since the characterization of the core derives from the duality idea in linear programming

(the interested reader can refer to Myerson [53] and the references therein for a detailed

discussion). Another example is the core allocations proposed by Anupindi et al. [4]. The

allocations based on the values of the dual variables exhibit the same property – the players

with the scarce resource divide the total worth of the coalition among themselves and the
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players with the excess resource get an allocation of zero. Even though we agree that the

allocation mechanism should recognize and reward the players with the scarce resource,

we believe assigning an allocation of 0 to the players with the excess resource will not be

acceptable in practice.

For the game discussed in Example 6.3.3, the Shapley value allocation to each of the

right-glove suppliers is 0.500443 and the Shapley value allocation to each of the left-glove

suppliers is 0.499557. The Shapley value allocation scheme recognizes the slightly higher

bargaining power of the right-glove suppliers because they have the scarce resource. In

addition, the Shapley value also recognizes the fact that without the left-glove suppliers

there will not be any coalitions and therefore the right-glove suppliers will not be able to

make any money either. As a result, the Shapley value allocation to each of the left-glove

suppliers is not only positive but also only slightly lower than the allocation to the right

glove suppliers to reflect the fact that the left gloves are in excess only by one glove given

the 2, 000, 001 gloves. Theoretically, in this example, allocations due to the Shapley value

would be considered unstable since they are not in the core. In practice, however, the unique

core allocation may be more unstable since the left-glove suppliers are indifferent between

participating or not.

6.4 Effect of Demand Variance on Allocations

One of the main reasons behind inventory pooling is to mitigate against negative effects

of demand variance. Therefore we analyze how changes in demand variance affect the

Shapley value allocations to both the supplier and the retailers. We are not able to prove

results analytically for general distributions; however we discuss some illustrative examples

and present our findings for a special case – where the demand at the retailers is normally

distributed. Figure 9 shows that both the retailer’s and the supplier’s profit allocations may

either increase or decrease in demand variance. We obtain Figure 9 based on an example

where demand is normally distributed with mean 10 and standard deviation varying on the

range [1 . . . 10]. We consider a supply chain with ten retailers and p = 4, c = 1.5, h = 0.1.

The markup, pM , is varied on the range [3 . . . 13]. Numerical experiments yield that the
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increasing markup

demand variance

$

increasing markup

demand variance

$

(a) Retailer’s profit allocation (b) Supplier’s profit allocation

Figure 9: Change in retailer and supplier profit allocations as demand variance increases
at different levels of markup

relative size of pM with respect to the values of the other cost and revenue parameters affects

the direction of change. Figure 9 shows that when markup increases, profit allocations to

both the retailers and the supplier increase; however as demand variance increases, the

direction of change in the profit allocations shifts as we increase the markup. As the

markup increases, the retailer allocations first increase then decrease with demand variance

whereas the supplier allocation first decreases then increases. We are able to derive a

sufficient condition on pM under which the supplier’s Shapley value allocation is decreasing

in standard deviation.

Proposition 6.4.1 When demand at each of the retailers is normally distributed with mean

µ and standard deviation σ, the Shapley value allocation to the supplier is a decreasing

function of σ if p + h > pM .
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Proof We need to represent the Shapley value allocation to the supplier in terms of σ.

φS = vS +
1

N + 1
(vc

2 − 2v1 + (N − 2)vSi + Nx) + · · ·+ 1
N + 1

(vc
N −Nv1 −Nx)

= vS +
1

N + 1
(vc

2 + · · ·+ vc
N )− 1

N + 1
(2 + · · ·N)v1 − 1

N + 1
(2 + · · ·N)vSi

= vS +
1

N + 1
(vc

2 + · · ·+ vc
N )− 1

N + 1

(
(N + 1)N

2
− 1

)
(v1 + vSi)

= Nx +
1

N + 1
(vc

2 + · · ·+ vc
N )−

(
N

2
− 1

N + 1

)
(v1 + vSi)

=
Nx

2
+

vSi

N + 1
− Nv1

2
+

v1

N + 1
+

1
N + 1

(
N(N + 1)

2
− 1

)
(p + pM − c)µ

− 1
N + 1

(√
N + · · ·+

√
2
)

σ ((p + pM + h)Gu(k2) + (c + h)k2)

The last line is obtained by plugging in the expected profit function for normally dis-

tributed demand as derived in Expression 51. We can write vSi and v1 in terms of µ and σ

in the same manner; however we need to use k1 instead of k2. By making use of the equality

Gu(k) = fu(k)− kpu≥(k), we obtain the complete representation of φS in terms of µ and σ

as

φS = N ((p− c)µ− (p + h)σfu(k1))− 1
N + 1

(√
N + · · ·+

√
2
)

σfu(k2)(p + pM + h)

+
N

2

(
σfu(k1)(p + pM + h)− pMσk1

(
h + c

p + h

))

+
1

N + 1

(
−σfu(k1)(p + pM + h) + pMσk1

(
h + c

p + h

))

Taking the derivative of φS with respect to σ we obtain

∂φS

∂σ
= −N(p + h)

2
fu(k1)− 1

N + 1

(√
N + . . . +

√
2
)

fu(k2)(p + pM + h)

−N

2

(
−fu(k1)pM + pMk1

(
c + h

p + h

))
(52)

+
1

N + 1

(
−fu(k1)(p + pM + h) + pMk1

(
c + h

p + h

))

From the definition of Gu(k1) we know that

1
N + 1

(
−fu(k1)(p + pM + h) + pMk1

(
c + h

p + h

))
≤ 0

In addition, when (p + h) > pM

N(p + h)
2

fu(k1) ≥ N

2

(
−fu(k1)pM + pMk1

(
c + h

p + h

))
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Therefore ∂φS
∂σ < 0 which proves the result. 2

The proof of Proposition 6.4.1 shows that surprisingly the direction of change does not

depend on the demand distribution’s parameters (mean and variance). The derivative of the

supplier’s Shapley value with respect to standard deviation (Expression 52) contains neither

µ nor σ. As long as the cost and revenue parameters are kept constant, the direction of

change for the supplier’s Shapley value allocation cannot be altered by changing the values

of the demand mean and variance.

We derive another sufficient condition on the relative size of pM with respect to the

other parameters under which the retailer’s Shapley value allocation is increasing in demand

variance. For the rest of the results in this section we require that p−c
p+h ≥ 0.5 which means

that the supplier guarantees at least a service level of 0.5 to the retailers before pooling,

which is usually the case in real life examples (for example [75] makes the same assumption).

Proposition 6.4.2 When demand is normally distributed with mean µ and standard de-

viation σ, the Shapley value allocation to each of the retailers is an increasing function of

σ if p + h ≥ N(N + 1)pM .
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Proof Writing φi in terms of σ we obtain

φi = v1 +
2

N(N + 1)
(vc

2 + (N − 2)vSi − 2v1 −Nx)

+ . . . +
N

N(N + 1)
(vc

N − vc
N−1 − vSi − v1)

= v1 +
Nvc

N

N(N + 1)
− vc

N−1

N(N + 1)
− . . .− vc

2

N(N + 1)
− vSi + v1

N(N + 1)
− vSi + v1

2

= pMµ− pMσfu(k1) + pMσk1
h + c

p + h

+
N

N(N + 1)

(
N(p + pM − c)µ−

√
N(p + pM + h)σfu(k2)

)

− · · · − 1
N(N + 1)

(
(2)(p + pM − c)µ−

√
2p + pM + h)σfu(k2)

)

−
(p + pM − c)µ− σfu(k1)(p + pM + h) + pMσk1

h+c
p+h

N(N + 1)

−
(p + pM − c)µ− σfu(k1)(p + pM + h) + pMσk1

h+c
p+h

2

= pMµ− pMσfu(k1) + pMσk1
h + c

p + h

+(p + pM − c)µ
(

N2

N(N + 1)
−

(
N(N − 1)

2
− 1

)
1

N(N + 1)
− 1

N(N + 1)
− 1

2

)

− 1
N(N + 1)

σfu(k2)
(
N
√

N −
√

N − 1− · · · −
√

2
)

+σfu(k1)(p + pM + h)
(

1
N(N + 1)

+
1
2

)
− pMσk1

h + c

p + h

(
1

N(N + 1)
+

1
2

)

= pMµ− pMσGu(k1)
(

1
2
− 1

N(N + 1)

)
− N

√
N − · · · − √2
N(N + 1)

σfu(k2)(p + pM + h)

+σfu(k1)(h + p)
(

1
2

+
1

N(N + 1)

)

The last step follows from the definition of Gu(k). Taking the derivative of φi with respect

to σ we obtain

∂φi

∂σ
= − pMGu(k1)

(
1
2
− 1

N(N + 1)

)
− N

√
N − · · · − √2
N(N + 1)

fu(k2)(p + pM + h)

+ fu(k1)(h + p)
(

1
2

+
1

N(N + 1)

)

At optimality we know that k1 ≤ k2 which implies fu(k1) ≥ fu(k2). Therefore we have

1
2
fu(k1)(p + pM + h) ≥

√
N

N + 1
fu(k2)(p + pM + h) (53)
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In addition when p + h ≥ N(N + 1)pM we have

(p + h)fu(k1)
N(N + 1)

≥ pMfu(k1) (54)

Expressions 53 and 54 imply that ∂φi

∂σ > 0 which proves the result. 2

The reason why the markup affects the change in retailer and supplier profit allocations

in different directions lies in the fact that both the retailer and supplier Shapley value

allocations consist of two parts – the part due to the respective player’s expected profit

before pooling and the part due to the player’s contribution to coalitions of different sizes

(recall Expressions 27 and 28). We find that depending on the level of markup either one of

these parts become dominant in determining the player’s final allocation. For the retailer, at

low levels of markup the contribution to the coalitions becomes the dominant factor and for

normally distributed demand, the value of forming pooling coalitions increases in increasing

demand variance. Therefore as the demand variance increases, the retailer’s Shapley value

allocation also increases. On the contrary, for high levels of markup, the retailer’s expected

profit before pooling becomes the dominant factor and that term decreases as demand

variance increases. As a result, for high levels of markup, the retailer’s Shapley value

allocation decreases as demand variance increases. The markup has the opposite effect on

the supplier’s profit allocation; that is for low levels of markup, the contribution to the

coalitions becomes the dominant factor for the supplier and for high levels of markup vice

versa.

By Theorem 6.4.1 below we also show that there exist two levels of markup, which we

denote by p1
M and p2

M , such that below p1
M the supplier’s profit allocation decreases and

the retailers’ profit allocations increase with demand variance and beyond p2
M we observe

the opposite behavior. We summarize this result in Table 2.

Theorem 6.4.1 There exist two levels of markup which we denote by p1
M and p2

M such that

(a) for markup levels less than or equal to p1
M , the supplier’s profit allocation is decreasing

and the retailer’s profit allocation is increasing in demand variance.

(b) for markup levels greater than or equal to p2
M , the retailer’s profit allocation is decreasing
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and the supplier’s profit allocation is increasing in demand variance.

(c) p1
M is not necessarily equal to p2

M .

Proof From Expression 51 we know that expected total profit of the coalition is a decreasing

function of demand variance. Therefore when demand variance increases, profit allocations

to at least one type of player will decrease. As a result, to prove parts (a) and (b), it suffices

to show that the profit allocation to one type of player increases in the given parameter

region.

(a) The existence of p1
M follows from Proposition 6.4.2.

(b) Rewriting Expression 52 by using the definition of Gu(k) we obtain

∂φS

∂σ
= − (p + h)fu(k1)

(
N

2
+

1
N + 1

)
−
√

N + · · ·+√
2

N + 1
fu(k2)(p + pM + h) (55)

+ Gu(k1)
(

N

2
− 1

N + 1

)
pM

The first term in Equation 55 is a constant in terms of pM and the last term is an increasing

function of pM . We take the derivative of the second term with respect to pM to obtain

∂

∂pM
[(p + pM + h)fu(k2)]

= fu(k2)

− (p + pM + h)fu(k2)Θ−1

(
p + pM − c

p + pM + h

)
∂

∂pM
Θ−1

(
p + pM − c

p + pM + h

)
h + c

(p + pM + h)2

= fu(k2)
[
1−Θ−1

(
p + pM − c

p + pM + h

)
∂

∂pM
Θ−1

(
p + pM − c

p + pM + h

)
h + c

p + pM + h

]

where Θ(·) is the cumulative distribution function of the unit normal distribution.

For p+pM−c
p+pM+h ≥ 0.5 (we can always satisfy this condition by increasing pM )

fu(k2)
[
1−Θ−1

(
p + pM − c

p + pM + h

)
∂

∂pM
Θ−1

(
p + pM − c

p + pM + h

)
h + c

p + pM + h

]
≤ fu(k2)

Taking the limit of both sides as pM goes to infinity we get

lim sup
pM→∞

fu(k2)
[
1−Θ−1

(
p + pM − c

p + pM + h

)
∂

∂pM
Θ−1

(
p + pM − c

p + pM + h

)
h + c

p + pM + h

]

≤ lim
pM→∞ fu(k2) = 0
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Table 2: Direction of change in retailer and supplier profit allocations as demand variance
increases at different levels of markup

pM ≤ p1
M p1

M < pM < p2
M pM ≥ p2

M

supplier’s profit allocation ↓ ↓ ↑
retailer’s profit allocation ↑ ↓ ↓

On the other hand

∂

∂pM

[
− (p + h)fu(k1)

(
N

2
+

1
N + 1

)
+ Gu(k1)

(
N

2
− 1

N + 1

)
pM

]

= Gu(k1)
(

N

2
− 1

N + 1

)

Because limit of the derivative of (p+ pM +h)fu(k2) is bounded above by zero, there exists

a finite p0
M such that the derivative of (p + pM + h)fu(k2) evaluated at p0

M is equal to

Gu(k1)
(

N
2 − 1

N+1

)
. This means there is a point p0

M + ε at which Gu(k1)
(

N
2 − 1

N+1

)
pM −

(p+h) fu(k1)
(

N
2 + 1

N+1

)
and

√
N+···+√2

N+1 (p+pM +h)fu(k2) intersect. Therefore the Shapley

value allocation to the supplier is an increasing function of demand variance beyond p2
M =

pM + ε which proves part (b).

(c) We prove by example. Let µ = 10, p = 4, c = 1.5, h = 0.1, and N = 10. For this

example p1
M = 3.92 and p2

M = 9.87. For any markup level between these numbers the profit

allocation to both the supplier and the retailers decreases. 2

The effects of the other parameters on the direction of change can be summarized as

below:

• For large N , the allocation to the supplier starts increasing at smaller pM .

• For given pM , there is a high enough h that causes the allocation to retailers to

decrease as demand variance increases.

• For high h allocation to the supplier increases over a larger range of pM . For high p,

the suppliers allocation increases only at very high pM .
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6.5 Strategic Bargaining and Colluding Retailers

Up to this point, we assumed that in the inventory centralization game the order of events

is such that the supplier announces a pooling contract in which she specifies the proportions

with which total supply chain profit will be divided. Then the retailers announce whether

they will participate in this pooling coalition. However once the supplier announces the

contract, the retailers may first want to form coalitions among themselves and act as a single

retailer with a demand function corresponding to the sum of their demands. We call this

behavior colluding of the retailers. This coalition of retailers acting as one retailer, which we

call a pseudo retailer and denote by the subscript p, accepts or rejects the supplier’s offer.

We assume that once two of the retailers collude to act as a single retailer in negotiating their

profit allocation within the pooling coalition, if they decide not to enter the coalition, the

supplier still treats them as a single retailer and determines the stock level accordingly. We

still assume that each of the individual retailers faces independent identically distributed

demand. The questions we are interested in are: Do the profit shares of the colluding

retailers always increase? Does the profit share of the supplier always decrease? What

happens to the profit shares of the non-participating retailers?

Due to the pooling effect, the demand from the pseudo retailer has a reduced variance

and one would expect the total profit allocation to the colluding retailers to increase. We

would also expect the collusion to adversely affect the profit allocations to the supplier and

the non-participating retailer. However we find that these intuitions do not always hold.

To address these questions, we analyze a three-retailer supply chain where two of the

retailers collude before they negotiate with the supplier. Let v1 denote the expected before-

pooling profit of the non-participating retailer and vp denote the expected before-pooling

profit of the single pseudo retailer. Recall that vSi denotes the profit of the supplier due to

a single, no-pooling retailer. We use vSp to denote the supplier’s profit due to the pseudo

retailer. When both the non-prticipating retailer and the pseudo retailer agree to pool

inventory, the resulting coalition will have two non-identical retailers. However without

the retailer collusion, the coalition will have three identical retailers. We compare the

profit allocation to the pseudo retailer under the two retailer coalition with the total profit
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allocation to two of the retailers under the three retailer coalition.

The pseudo retailer’s profit allocation, φ2
i (as before we use the superscript to denote

the number of retailers in the coalition), is

φ2
p = vp +

1
3

(
v3 − v1 − vp − vSi − vSp

)

The total profit allocation to two of the retailers if they do not collude is

2φ3
i = 2v1 +

1
3

(vc
2 − 2v1 − 2vSi) +

1
2

(v3 − vc
2 − v1 − vSi)

The difference between the profit allocation to the pseudo retailer and the total profit

allocation to the two non-colluding retailers is

φ2
p − 2φ3

i =
1
6

(
6vp − 12v1 + vc

2 − v3 + 5(v1 + vSi)− 2(vp + vSp)
)

(56)

For the non-participating retailer, the profit allocation without the retailer collusion is

φ3
i = v1 +

1
6

(vc
2 − 2v1 − 2vSi) +

1
4

(v3 − vc
2 − v1 − vSi)

The non-participating retailer’s profit allocation in case of a retailer collusion is

φ2
i = v1 +

1
3
(v3 − v1 − vp − vSi − vSp)

We obtain the difference between the two allocations to be

φ2
i − φ3

i =
1
12

(
v3 + vc

2 + 3(v1 + vSi)− 4(vp + vSp)
)

(57)

Our first result concerns the comparison of the signs of Expressions 56 and 57.

Proposition 6.5.1 When vp ≥ 2v1, an increase in the profit allocation of the pseudo retailer

due to retailer collusion implies an increase in the profit allocation of the non-participating

retailer.

Proof When φ2
p ≥ 2φ3

i , from Expression 56 we have

12v1 + v3 + 2(vp + vSp) ≤ 6vp + vc
2 + 5(v1 + vSi) (58)
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Since v3 ≥ vp + vSp + v1 + vSi, replacing v3 on the left hand side of Expression 58 by

vp + vSp + v1 + vSi and adding v3 − (vp + vSp) to the right hand side will not change the

direction of the inequality. Simplifying after these changes we obtain

12v1 + 4(vp + vSp) ≤ 6vp + vc
2 + v3 + 3(v1 + vSi) (59)

When vp ≥ 2v1, Expression 59 implies 4(vp + vSp) ≤ v3 + 3(v1 + vSi) which concludes the

proof. 2

The condition in Proposition 6.5.1, vp ≥ 2v1, means that the expected sales when the

supplier sets the stock level with respect to the total demand of two retailers is at least as

much as the expected sales when the supplier sets stock levels separately for each of the

retailers. Intuition suggests that this condition is a trivial one and would always be true.

However as we show in Example 3.1.1 expected sales may decrease as a result of pooling.

The implication of Proposition 6.5.1 is that if the profit allocation to the pseudo retailer

increases and the expected sales increases as a result of pooling then the profit allocation

to the supplier decreases (since total supply chain profit does not increase, allocation to

at least one player must decrease). When vp ≥ 2v1, retailer collusion does not hurt the

non-participating retailer but hurts the supplier. We formalize this observation as follows.

Observation 6.5.1 Proposition 6.5.1 implies that an increase in the profit allocation to the

colluding retailers implies a decrease in the profit allocation to the supplier and an increase

in the profit allocation to the non-participating retailer whenever expected sales increases

due to inventory pooling.

One case where vp ≥ 2v1 is always satisfied is when demand at each of the retailers is

normally distributed. We can see this by calculating expected sales in both cases by using

Equation 50.

We are also able to derive some conditions under which the profit allocations to the

pseudo retailer and the non-participating retailer increase when demand is normally dis-

tributed. Again for the next two results we assume that p−c
p+h ≥ 0 as we did in the previous

section.
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Proposition 6.5.2 When demand at each of the retailers is normally distributed with

mean µ and standard deviation σ, a necessary condition for the profit allocation to the

non-participating retailer to increase is

k2
2

2
− k2

1

2
≥ 0.169

Proof Using Equation 51 we can write (57) as below

φ2
i − φ3

i = (p + pM + h)
[
−(
√

2 +
√

3)fu(k2) + (4
√

2− 3)fu(k1)
]
− (4

√
2− 3)pM (c + h)k1

p + h

When φ2
i ≥ φ3

i

(p + pM + h)
[
−(
√

2 +
√

3)fu(k2) + (4
√

2− 3)fu(k1)
]
≥ (4

√
2− 3)pM (c + h)k1

p + h

By definition (4
√

2−3)pM (c+h)k1

p+h ≥ 0. Therefore one necessary condition for φ
(2)
i ≥ φ

(3)
i to

hold is −(
√

2 +
√

3)fu(k2) + (4
√

2− 3)fu(k1) ≥ 0 which is equivalent to

fu(k1)
fu(k2)

≥
√

2 +
√

3
4
√

2− 3

1√
2π

e−
k2
1
2

1√
2π

e−
k2
2
2

≥
√

2 +
√

3
4
√

2− 3

k2
2

2
− k2

1

2
≥ 0.169

and this concludes the proof. 2

Similarly, we are able to derive a sufficient condition under which the profit allocation

to the pseudo retailer always increases.

Proposition 6.5.3 When demand at each of the retailers is normally distributed and

pM > p+h, a sufficient condition under which the pseudo retailer’s profit allocation increases

is

k2
2

2
− k2

1

2
≥ 1.922
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For normally distributed demand φ2
p − φ3

p ≥ 0 is equivalent to

(12− 6
√

2)Gu(k1)pM + (
√

3−
√

2)(p + pM + h)fu(k2)

≥ (5− 2
√

2)Gu(k1)pM + (5− 2
√

2)fu(k1)(p + h) ⇐⇒

(7− 4
√

2)Gu(k1)pM + (
√

3−
√

2)(p + pM + h)fu(k2)

≥ (5− 2
√

2)fu(k1)(p + h) ⇐⇒

(2− 2
√

2)Gu(k1)pM + (5− 2
√

2)fu(k1)pM + (
√

3−
√

2)(p + pM + h)fu(k2)

≥ (5− 2
√

2)fu(k1)(p + h)− (5− 2
√

2k1(h + c)pM

p + h

Since pM > p + h, (5 − 2
√

2)fu(k1)pM ≥ (5 − 2
√

2)fu(k1)(p + h). An upper bound on

(5−2
√

2)k1(h+c)pM

p+h is (5− 2
√

2)fu(k1)pM . Therefore if (
√

3−√2)(p + pM + h)fu(k2) ≥ (5−
2
√

2)fu(k1)pM then we are done. Equivalently we need

fu(k2)
fu(k1)

≥ (5− 2
√

2)pM

(
√

3−√2)(p + pM + h)

Taking the natural logarithm of both sides we obtain

k2
2

2
− k2

1

2
≥ 1.922 + ln pM − ln(p + pM + h)

Since ln pM − ln(p+pM +h) ≤ 0, k2
2
2 −

k2
1
2 ≥ 1.922 is a sufficient condition for φ

(2)
p −φ

(3)
p ≥ 0

to hold which concludes the proof. 2

The conditions in both Proposition 6.5.2 and 6.5.3 will be satisfied when k2 and k1 are

sufficiently apart. One way in which the gap between these two critical ratios grows apart

is increasing the retailer markup, pM . One can interpret a high pM as an indication of

high retailer bargaining power. When retailers are powerful enough, colluding before they

negotiate will increase their profit allocations. However, if the supplier is the powerful one,

they cannot increase their allocations even through colluding.

6.6 Concluding Remarks

Our analysis of supply chains with an arbitrary number of retailers reveals the higher

bargaining power of the supplier – a fact that was not apparent in the analysis of 2-retailer

supply chains. The expected profit of a pooling coalition only increases if it contains the
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supplier and at least two retailers. Therefore, as long as the supplier has the freedom to

pick any two retailers among N , she has a higher bargaining power reflected by the fact

that she reaps more of the profit due to pooling. In addition, the supplier may increase

her profit allocation at the expense of decreasing that of the retailers by including more

retailers in the pooling coalition. If the retailers do not have the bare minimum bargaining

power, which we measure by the markup they charge, they will not be able to increase their

profit allocations even though they collude against the supplier and the supplier may end

up benefiting from the collusion.

Our results are dependent on our single-supplier assumption; however they still provide

important insights about the electronics supply chain which provided the motivation for

this research. In supply chains characterized by strong suppliers (consider the electronics

supply chain and a supplier like Intel) which enjoy some monopolistic powers, depending

on the profit allocation rule utilized, the supplier may maximize her profits at the expense

of the retailers by bringing in more retailers to pool inventory. However we recognize the

importance of extending our analysis to arbitrary number of suppliers and research in this

direction is under way.

Another insight we obtain from this chapter is regarding the relationship between de-

mand variance and the retailer markup as they affect the participants’ profit allocations. We

know that both the retailer and supplier profit allocations increase with increasing markup.

However when coupled with the effect of the demand variance on the allocations, the sup-

plier may prefer a low markup - low demand variance environment to a high markup - high

demand variance environment. On the other hand, the retailer may be better off charging

a low markup under high demand variance than she would be if she were charging a higher

markup at a lower demand variance environment. Assuming the markup is market driven

and exogenous to the model (as we do in this chapter) but that the players have freedom

to choose which market to operate in where the markets are characterized by their demand

variance and markup levels, these insights help determine which player will choose which

type of market. On the other hand, if the retailers have some control over the markup they

charge, our results indicate the possibility of conflict of interest between the retailers and
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the supplier, especially at extreme values of demand variance.
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CHAPTER VII

CONCLUSIONS

As also observed by Anupindi and Bassok [2], the common intuition regarding inventory

pooling is that it is always beneficial since it reduces inventory costs. However this intuition

is flawed in the sense that it is true only for the supply-chain party (or parties) holding

inventory. As in Anupindi and Bassok, we also consider a multi-echelon supply chain where

only one of the echelons carries inventory and find that the party whose revenues depend

only on sales (in our case the retailers) may lose profits due to pooling. We further analyze

the applicability of service contracts in this context as a means of ensuring reservation

profits for the retailers. Surprisingly, in addition to sometimes failing to guarantee profits,

service contracts may lead to some unintended consequences such as causing one retailer

to subsidize the service of another, which make them undesirable from the point of view of

the retailers.

The profit-sharing mechanism we propose is based on a cooperative game theoretic

model of the inventory transactions among the retailers and the supplier. As we discussed

in Chapter 4, cooperative game theory has not received much attention in the operations

research literature. Shapley value has been used in the supply chain context before [63, 41]

but only as a cost allocation rule not as a means of affecting the operational decisions of

the supply chain partners. This dissertation, in addition to being an initial step in un-

derstanding the uses of Shapley value as a supply-chain-coordinating incentive mechanism,

also investigates the type of behavior the proposed profit-allocation mechanism induces in

the supply-chain partners.

7.1 Discussion of Assumptions and Model Limitations

In order to examine the strategic behavior induced by the proposed profit-allocation mech-

anism, we require closed-form expressions for the retailer and the supplier Shapley values.
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For analytical tractability we are limited to either 2-retailer supply chains where the re-

tailers are not necessarily identical or supply chains with an arbitrary number of identical

retailers. We also assume independent demand across the retailers. These assumptions are

common to most work in the inventory centralization literature. For example, Anupindi

and Bassok [2], Rudi et al. [65] and Tagaras [74] also restrict analysis to two retailers. On

the other hand, Cachon [17], Schwarz et al. [66], and the first part of McGavin et al. [51]

among others assume N independent, identical retailers. One of the important results re-

garding the supply chain with N identical retailers is that the retailers do not always prefer

the grand coalition. For the 2-retailer supply chain we find that the retailers prefer to

form pooling coalitions with retailers requiring either very high or low service levels. In a

supply chain with N non-identical retailers (and when the grand coalition is not optimal

for the retailers), it would be interesting to analyze whether retailers with similar service

requirements or retailers with sufficiently different service requirements group together to

form coalitions.

Since the motivation of this research comes from the electronics industry where product

life cycles are short, we assume a single period model. Under the single period model with

independent demands across the retailers, complete sharing is always optimal. However in a

multi-period model where sharing inventory today may result in a costly stockout tomorrow

or in the case of competitive retailers, one of the hybrid policies discussed in Chapter 3,

where the retailers carry some reserved inventory, may be optimal. Anupindi et al. [4] indeed

point out that in one of the examples they discuss they would expect the e-tailers working

with Ingram Entertainment to carry some reserved stock to hedge against stockouts at the

supplier.

We assume that the wholesale price is exogenous to the model and is market-driven

rather than being a contract parameter among the supplier and the retailers. Supporting

this assumption, Flextronics does not try to keep suppliers in a price competition because

they believe the market is competitive enough and determines the price. However this

assumption becomes more questionable in the analysis of strategic retailer coalitions. For the

retailers, the main motivation behind forming such coalitions is to increase their bargaining
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power against the supplier. Therefore it may be less reasonable to assume that a coalition

of N − 1 retailers will get the same wholesale price as a single retailer out of N retailers.

We use the allocation game in expectation approach in the analysis of the pooling prob-

lem. The analysis is based on the expected value of the game rather than on individual

realizations of demand. Theoretically allocations for games in expectation are not negotia-

tion proof. This approach implicitly assumes a long-term relationship among the players;

if the players have the tendency to break away based on individual demand realizations,

the allocations will not be stable. In addition, the Shapley value allocation mechanism is a

form of revenue-sharing among the players, which we can view as a taxing mechanism. We

know that the total supply chain performance is optimized when inventory is pooled; how-

ever some players may indeed be worse off. The value-sharing mechanism taxes the players

whose profits increase due to pooling and gives refunds to players whose profits decrease.

Again, this mechanism works best when the players are in a long-term relationship.

We assume complete demand-information sharing between the supplier and each of the

retailers – the demand distribution of the retailer is transparent to the supplier. This is a

common assumption in many game theoretic supply chain models; however it is worthwhile

to consider the truth-inducing properties of the proposed allocation mechanism (see [13] for

such an analysis in a different context). If the retailers were to pass on demand forecasts to

the supplier, are there any incentives for the retailers to inflate the forecasts? Complete and

truthful sharing of information regarding supplier and retailer revenues is also required for

a revenue-sharing contract to work. Ensuring transparency of revenue information usually

entails information technology investments and high monitoring costs, which may be one of

the reasons why revenue-sharing contracts are not prevalent in the industry.

Finally, revenue-sharing among supply chain players belonging to different companies

may raise some legal questions. First of all, the legal aspects of this problem are beyond the

scope of this research. We offer the present analysis as a series of insights for supply chains

where revenue-sharing may be implementable and as a benchmark of optimal performance

for others where revenue-sharing is not possible due to reasons such as legal concerns. For
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example, the agreements between major studios and Blockbuster is one successful imple-

mentation of revenue-sharing contracts [12].

7.2 Research Directions

One of the main limitations of the proposed allocation mechanism is that it is a form of

revenue sharing. The drawbacks of implementing revenue-sharing contracts have been dis-

cussed extensively in the literature. On the other hand, revenue-sharing contracts are strong

contracts in the sense that they coordinate a wider range of supply chain situations when

compared to other more frequently invoked contracts. One remedy the researchers offer

for this dilemma is to design equivalent contracts such that the percentage of revenue each

player will get is not explicitly the contract parameter but rather another decision vari-

able (or set of variables) such as wholesale price coupled with a side payment is. Cachon

and Lariviere [12] prove the equivalence of buy-back and revenue-sharing contracts for a

newsvendor-based model with a single retailer and a single supplier. However the equiva-

lence fails to hold if the underlying model is a price-dependent newsvendor. Cheng et al. [20]

design an options contract which achieves the same share of revenues as the supply-chain

coordinating revenue sharing contract. However in both of these papers, there is only a

single player at both of the echelons. Designing an equivalent contract where there are mul-

tiple players in one of the echelons is a more challenging task; however we conjecture that

designing an options contract that is equivalent to our Shapley value allocation mechanism

is possible and this is one area in which we would like to pursue further research.

Another limitation of the present work is that we assume there is no competition at either

of the echelons. We would like to extend our results in two directions. First, we would like

to relax the independent demands assumption and incorporate retailer competition. This

can be done in several different ways. For example, we can assume total market demand is

fixed and all the retailers compete for their market share. In this scenario, increasing sales

at one location implies decreasing sales at all the other locations. In this case, the retailers

may be more reluctant towards shared inventory management policies. Another approach

would be to assume a predetermined percentage of the customers are willing to search for
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the product or wait for it to be delivered from another retailer. In this scenario, rather than

letting the supplier pool inventory, the retailers may prefer to reserve their own inventories

and whenever they have excess supply, sell at a higher price to another retailer with excess

demand.

For the electronics industry that motivated this research, single or dual sourcing is the

industry norm for most products. Therefore we believe extending our analysis to include

two suppliers will significantly enhance the insights of our model. One question that is of

particular interest to us is: Given two suppliers and the Shapley value allocation mechanism,

will the retailers form two mutually exclusive coalitions where each coalition works with a

single supplier or will the retailers continue to dual source?

Finally, as discussed before, one concern the retailers have against inventory pooling is

the fear that their pooling-partners may infer strategic information regarding their demand

distributions. In relation to information sharing, we would like to extend our research in two

directions. First we would like to analyze the truth-inducing properties (or lack there of)

of the proposed profit-allocation mechanism. For example, in Chapter 5 we show that the

retailer and supplier profit allocations are maximized at different service-level requirement

pairs. The natural question that arises is whether the allocation mechanism gives incentive

to the retailers to falsify their service level requirements. The second area of research is

the investigation of possible information guessing under the allocation mechanism. Under

reserved inventory management, the retailers share their demand information only with

the supplier. However when they pool inventory and allot the benefits using a form of

revenue-sharing, can the retailers infer information about their coalition partners and even

more importantly can they use this information to gain advantages? If they can, this gives

them incentive to falsify their demand information and/or service level requirements. This

would require remedies to the Shapley value allocation mechanism to ensure truth-inducing

behavior.
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APPENDIX A

DERIVATION OF SUPPLY CHAIN PROFIT WHEN

DEMAND IS NORMALLY DISTRIBUTED

Here we give the details of the derivation of the expected profit function when demand is

normally distributed. Silver et al. [71, page 407] derive the expected total cost expression

when there is a stock-out cost.

Recall that the optimal stock level is x∗ = µ+k∗σ when demand is normally distributed

where the value of the safety factor, k∗, depends on who makes the inventory decision [71].

For the case of a powerful supplier, k∗ = k1 satisfies

pu<(k1) =
p− c

p + h

For the case of a centralized supply chain, k∗ = k2 satisfies

pu<(k2) =
p + pM − c

p + pM + h

We use k∗ to denote the safety factor in the derivation; whether k1 or k2 should be used

will be apparent from the context. We first derive the expression for expected left-over

inventory, H. Let u0 = x∗−µ
σ .

H =
∫ x∗

−∞
(x∗ − y)f(y)dy

=
∫ µ+k∗σ

−∞
(µ + k∗σ − y)f(y)dy

= σ

∫ k∗

−∞
(k∗ − u0)

1√
2π

e−
u2
0
2 du0

= − σ

∫ k∗

−∞
(u0 − k∗)

1√
2π

e−
u2
0
2 du0

= − σ

(∫ ∞

−∞
(u0 − k∗)

1√
2π

e−
u2
0
2 du0 −

∫ ∞

k∗
(u0 − k∗)

1√
2π

e−
u2
0
2 du0

)

= − σ(0− k∗ −Gu(k∗))

= σk∗ + σGu(k∗)
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where we invoke the definition of Gu(k) =
∫∞
k (u0 − k)fu(u0) du0.

Similarly we derive the expression for expected sales, S.

S =
∫

−∞
µ + k∗σyf(y)dy +

∫

µ+k∗σ
∞(µ + k∗σ)f(y)dy

=
∫ ∞

−∞
yf(y)dy −

∫ ∞

µ+k∗σ
yf(y)dy +

∫ ∞

µ+k∗σ
(µ + k∗σ)f(y)dy

= µ +
∫

µ+k∗σ
∞(µ + k∗σ − y)f(y)dy

= µ +
∫ ∞

k∗
(u0σ + k∗σ)fu(u0)du0

= µ− σGu(k∗)

Using the expressions for expected left-over inventory and expected sales, we obtain the

expected profit function, π as

π = (p + pM )(µ− σGu(k∗))− h(σk∗ + σGu(k∗))− c(µ + k∗σ)

= (p + pM − c)µ− σfu(k∗)(p + pM + h)

where the last step follows from the second definition of Gu(k) as given below.

Gu(k) =
∫ ∞

k
(u0 − k)fu(u0) du0

= fu(k∗)− k∗pu≥(k∗)
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