A Lower Bound for Noncommutative
Monotone Arithmetic Circuits *
(Extended Abstract)

Rimli Sengupta
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
e-mail : rimli@cc.gatech.edu

GIT-ICS-94/05
November, 1993

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract

We consider arithmetic circuits over the semiring (X*, min, concat) and show that

such circuits require super-polynomial size to compute the lexicographically min-

imum perfect matching of a bipartite graph. By defining monotone analogues of
optimization classes such as OptP, OptL and OptSAC! using the monotone ana-
logues of their arithmetic circuit characterizations [13, 1], our lower bound implies
that this problem is not in monotone OptSAC!. But we show that this problem is

in monotone OptP, leading to a separation between these two classes.

*This work was supported by NSF grant CCR-9200878.

1 Introduction

We consider arithmetic circuits over the semiring (X*, min, concat) and show that such circuits
require super-polynomial size to compute the lexicographically minimum perfect matching of a
bipartite graph. By defining monotone analogues of optimization classes such as OptP, OptL
and OptSAC! using the monotone analogues of their arithmetic circuit characterizations [13, 1],
our lower bound implies that this problem is not in monotone OptSAC!. But we show that
this problem is in monotone OptP, leading to a separation between these two classes.

Krentel [5] introduced OptP to be the class of functions f, such that f(z) is the lexicographi-
cally optimum amongst all the strings produced along computation paths of a non-deterministic
polynomial time transducer, on input z. Subsequently, Alvarez and Jenner [2] studied OptL,
the class defined analogously for a logspace bounded non-deterministic transducer. The corre-
sponding class for logspace, polynomial time non-deterministic auxilliary pushdown automata
was called OptSAC! and studied by Vinay in [13].

In [1], Allender and Jiao observe that using the techniques developed in [2, 12], OptL (OptP)
can be characterized as all those functions computable within polynomial size (depth, resp.),
by uniform families of arithmetic circuits, in which each concat gate has at most one non-leaf
input. They also give a characterization of OptSAC! as the class of functions computable by
uniform families of arithmetic circuits, within polynomial size and polynomial degree. The
circuits in all these characterizations are equipped with certain special leaf nodes, that are
capable of comparing a given input to any symbol in the alphabet 3. These special leaf nodes
are at least syntactically analogous to the negated inputs of a Boolean circuit that makes it
non-monotone. In this paper, we define “monotone” arithmetic circuits to be those without
the special leaf nodes and consider the “monotone” versions of Opt classes defined using such
circuits. We define mOptSAC! to be the monotone analogue of OptSAC!. mOptL and mOptP
are defined similarly. Our main result is that a natural function, namely lexicographically
minimum bipartite perfect matching, is not in mOptSAC?, but is in mOptP. We show this by
proving a super-polynomial size lower bound for monotone arithmetic circuits that compute
this function. Our result uses Razborov’s [9] lower bound for monotone Boolean circuits that
decide whether a bipartite graph has a perfect matching.

The following are some of the interesting aspects of the results in this paper :

e To our knowledge, this is the first non-trivial circuil size lower bound for computation
in a non-commutative semiring. In [8], Nisan proved an exponential formula size lower
bound, or equivalently, a linear depth lower bound for computing the determinant in a
non-commutative ring.

e There is considerable interest in studying monotone analogues of complexity classes due
to the success in obtaining separations between these classes, such as, the separation
of monotone P from monotone NP [9] and monotone L from monotone NC! [4]. Our
separation of mOptSAC! from mOptP has a similar flavor. We note that many of these
monotone classes may not have natural Turing machine analogues.

o We provide a natural circuit setting for studying lexicographically optimum versions of
monotone Boolean functions. Given a monotone Boolean function f : {0,1}* — {0,1},
consider the function that on input z € {0,1}* outputs a string that encodes the lexico-
graphically minimum minterm of f that evaluates to 1 on z. Such a function is computable
in a natural fashion by arithmetic circuits over (¥*, min, concat). Similarly, lexicograph-

ically maximum versions of monotone Boolean functions are computable naturally with
circuits over (X*, maz, concat).

o Lexicographically optimum versions of natural problems have attracted significant atten-
tion in the past [5, 6, 3, 7, 11]. Our lower bound helps determine the circuit complexity
of one such problem.

2 Preliminaries

A semiring is an algebra with two operations 4+ and X, satisfying the usual ring axioms, but
not necessarily having additive inverses. We consider the semiring (¥* U {L},+, x), where ¥
is any alphabet, x denotes concatenation (L x 2 = z x L = L, for all) and + denotes
lexicographic minimum (z + L = L + 2 = z, for all). We denote this semiring as MIN and
define the semiring MAX analogously, with 4+ denoting lexicographic maximum.

An arithmetic circuil over MAX or MIN is a rooted directed acyclic graph with interior
nodes labeled with + or x. The leaf nodes of the circuit are labeled either with an input
variable z; or with some element of ¥ U {L}. The root node is the output of the circuit. A
circuil family is a set of circuits {Cy| n > 1}, where C,, has n input variables. An arithmetic
circuit is said to be skew if each X gate has at most one non-leaf input.

An arithmetic circuit is said to be non-monotone, if in addition to the leaf nodes described
above, it has special leaf nodes that return A if z; = a, for @ € YU{ L}, and return L otherwise.
If an arithmetic circuit is not non-monotone, we shall say it is monotone.

The size of an arithmetic circuit is the number of gates (non-leaf nodes) in it, and its depth
is the length of the longest path from the output to any input. The degree of an arithmetic
circuit is defined inductively : a leaf node has degree 1; the degree of a + node is the maximum
of the degree of its inputs; the degree of a X node is the sum of the degree of its inputs; the
degree of the circuit is the degree of the output node.

The circuit families we consider are uniform with respect to Up-uniformity, defined by
Ruzzo [10]. That is, the direct connection language of an arithmetic circuit is recognizable by
a deterministic Turing machine within time logarithmic in the size of the circuit.

As was observed in [1], the techniques in [12] can be used to prove the following characteri-
zations:

Proposition 2.1 OptL (OptP) is the class of function families {f,| n > 1}, computable by
uniform families of skew non-monotone arithmetic circuits {Cy|n > 1} over MAX or MIN, such
that for all n > 1, C,, computes f, within size (depth, resp.) O,

A circuit characterization of OptSAC! was given in [1], also using the techniques of [12].

Proposition 2.2 OptSAC! is the class of function families { f,|n > 1}, computable by uniform
families of non-monotone arithmetic circuits {C,,| n > 1} over MAX or MIN, such that for all

o) o)

n > 1, C,, computes f, within size n and degree n®\%).

By the above definitions, OptL C OptSAC! C OptP. In this paper, we focus on the subclasses
of the above that are computable without access to the special leaf nodes.

Definition 2.1 mOptL (mOptP) is the class of function families {f,| n > 1}, computable by
uniform families of skew monotone arithmetic circuits {C,|n > 1} over MAX or MIN, such
that for all n > 1, C,, computes f,, within size (depth, resp.) nPMW . mOptSAC! is the class of
function families {f,|n > 1}, computable by uniform families of monotone arithmetic circuits
{Cp|n > 1} over MAX or MIN, such that for all n > 1, C,, computes f, within size n91) and

degree n©(1),

As before, mOptL C mOptSAC! C mOptP.

3 Main Result

In this section we exhibit a natural problem in mOptP that is not in mOptSAC!. Let LMBPM
= {LMBPM,,| m > 1} be a function family with LMBPM,,, : {¥ U L} — ¥" U {L} defined
as follows, where m = n? :

Input: n X n matrix X = [z;;] with entries from the alphabet ¥ U{L}, encoding a bipartite
graph G with total order on its edges.

Output: the lexicographically minimum perfect matching, if G has one, 1 otherwise.

LMBPM is a natural variant of the familiar monotone Boolean function family BPM =
{BPM,,| m > 1}, with BPM,, : {0,1}"™ — {0, 1} defined as :

Input: n x n matrix Y = [y;;] with entries from {0, 1}, encoding a bipartite graph G.
Output: 1, if G has a perfect matching, 0 otherwise.

Let C = {C),| m > 1} be a uniform family of monotone arithmetic circuits that computes
LMBPM. Let B = {B,,| m > 1} be a uniform family of monotone Boolean circuits in which
each B, is obtained from C,, by replacing each + gate with an V gate and each x gate with a
A gate. Moreover, if C), has the matrix X = [z;;] as input, then Y = [y;;], the input to B,,, is
derived as follows : if z;; € ¥, then y;; = 1, otherwise y;; = 0.

The following theorem relates the computations of C',, and B,,.

Theorem 3.1 If C), computes LMBPM,, on input X, then B,, computes BPM,, on input Y.

Proof : The bipartite graph G encoded by X is simply the one encoded by Y, with a total
order on its edges. Let P(C,,) and P(B,,) be the formal polynomials associated with C,, and
B, respectively. There is clearly a bijection between the monomials of P(C,,) and those of
P(B,,). Now, if G has a perfect matching, then there is at least one monomial in P(C,) all of
whose variables receive values from 3. By construction, all the variables in the corresponding
monomial in P(B,,) receive the value 1 on input Y. Therefore, B,, evaluates to 1. Conversely,
if G doesn’t have a perfect matching, then for every monomial in P(C,,), there is at least one
variable that receives the value L. Therefore, for every monomial in P(B,,), there is at least
one variable that gets a 0 value on input Y, causing B,, to evaluate to 0. O
This leads directly to our lower bound.

Corollary 3.1 If C), is a monotone arithmetic circuit computing LMBPM,,, then C,, must
have size Q(m/!°9™).

Proof: Suppose there is a monotone arithmetic circuit €, that computes LMBPM,,, within
size s = o(mlogm). Then, by the theorem above, there exists a monotone Boolean circuit B,,
that computes BPM,, within size s. But by [9], B,, must have size Q(m'9™), giving the desired
contradiction. O

The above corollary implies that LMBPM does not belong to the class defined by polynomial
size monotone arithmetic circuits. Therefore, LMBPM ¢ mOptSAC!. However, we show that
it does belong to mOptP.

Theorem 3.2 LMBPM € mOptP.

Proof: The following polynomial represents the function LMBPM,,,, when 4 denotes lexico-
graphic minimum and [z;;] is the matrix X defined above.

2. 2 o

TESn 0EPR

where 5, is the set of all permutations of {1,2,...,n} and P, is the set of all strings of
length n over the set {z; ;|1 <@ < n}.

This polynomial can be easily implemented by a skew monotone arithmetic circuit over
MIN, within linear depth. O

But by definition, mOptSAC! C mOptP. Therefore, we have,

Corollary 3.2 mOptSAC' ¢ mOptP.

4 Concluding Remarks

It is natural to enquire about the relative power of non-monotone arithmetic circuits over
those that are monotone. It seems clear that there are functions that a monotone arithmetic
circuit cannot compute, for instance, the function that computes the lexicographically minimum
satisfying assignment of an input CNF formula [5]. But even in the context of computing only
the lexicographically optimum versions of monotone Boolean functions, it is meaningful to ask

whether non-monotone circuits can perform the computation within less resources. This would
require an understanding of how the special leal nodes in a non-monotone circuit help the
computation.

Improving our lower bound to hold for non-monotone arithmetic circuits would lead to
a separation between OptSAC! and OptP. We would also like to improve this bound from
super-polynomial to exponential.

Finally, we note that using an approach very similar to the one in this paper, we can obtain
a separation between the monotone analogues of the counting classes fLOGCFL and §P. Such
classes are defined using arithmetic circuits over (+, x), with the inputs being 0 or 1 [13, 12].

Acknowledgements The author would like to thank Eric Allender for clarifying several
points and H. Venkateswaran for numerous discussions that led to this paper.

References

[1] E. Allender and J. Jiao, Depth reduction for non-commutative arithmetic circuits, Proc.
25th annual ACM Symposium on Theory of Computing, 1993, 515-522.

[2] A. Alvarez and B. Jenner, A very hard logspace counting class, Proc. 5th annual IEEE
Conference on Structure in Complexity Theory, 1990, 154-168.

[3] R. Greenlaw, Ordered vertex removal and subgraph problems, JCSS, 39-3 (1989), 323-341.

[4] M. Grigni and M. Sipser, Monotone separation of Logspace from NC', Proc. 6th annual
IEEE Conference on Structure in Complexity Theory, 1991, 294-298.

[5] M. Krentel, The complexity of optimization problems, JCSS, 36 (1988), 490-509.

[6] S. Miyano, AL-complete lexicographically first mazimal subgraph problems, Mathematical
Foundations of Computer Science, LNCS (1988), 454-462.

[7] S. Miyano, The lexicographically first mazimal subgraph problems: P-completeness and NC
algorithms, Math. Systems Theory, 22 (1989), 47-73.

[8] N. Nisan, Lower bounds for non-commutative computation, Proc. 23rd annual ACM Sym-
posium on Theory of Computing, 1991, 410-418.

[9] A. A. Razborov, A lower bound on the monotone network complexity of the logical perma-
nent, Mathematischi Zametki, 37 (1985), pp. 887-900.

[10] W. L. Ruzzo, On uniform circuit complezity, JCSS, 22 (1981), 365-383.

[11] S. Toda, The complezxity of finding medians, Proc. 30th annual IEEE Symposium on Foun-
dation of Computer Science, 1990, 778-787.

[12] H. Venkateswaran, Circuil definilions of non-deterministic complezity classes, SIAM J.
Comput. 21 (1992), 655-670.

[13] V. Vinay, Counting auzilliary pushdown automata and semi-unbounded arithmetic circuils,
Proc. 6th annual IEEE Conference on Structure in Complexity Theory, 1991, 270-284.

