
LEARNING DYNAMIC PROCESSES OVER GRAPHS

A Dissertation
Presented to

The Academic Faculty

By

Rakshit S. Trivedi

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Computer Science

Georgia Institute of Technology

August 2020

Copyright c© Rakshit Trivedi 2020

LEARNING DYNAMIC PROCESSES OVER GRAPHS

Approved by:

Dr. Hongyuan Zha, Advisor
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Duen Horng Chau
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Umit Catalyurek
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. Peter Battaglia
DeepMind

Dr. Xin Luna Dong
Amazon

Date Approved: June 25, 2020

I was born not knowing and have had only a little time to change that here and there.

Richard P. Feynman

To my lovely spouse Hazel and my beloved parents.

ACKNOWLEDGEMENTS

I wish to express my sincerest appreciation and gratitude to my advisor, Professor

Hongyuan Zha, for his immense support, motivation and patience that made this long jour-

ney, both enjoyable and fruitful for me and set the course of what has been achieved through

my PhD study. Professor Zha’s breadth and depth of knowledge in mathematics and ma-

chine learning and visionary insights in formulating problems and tackling them with inno-

vative solution approaches never ceases to amaze me. I still remember the first time I met

him to discuss my PhD journey when I was a bit lost and he provided me with invaluable

guidance and considerate advising to help me choose the path and topics that were both

interesting and challenging for me. His mentorship directed towards making high standard

contributions has greatly inspired me to become an independent and productive researcher.

I would like to thank Duen Horng (Polo) Chau and Umit Catalyurek for being on my

Ph.D. dissertation committee and for their their time to attend my thesis and proposal de-

fense. Their insightful suggestions and comments on my research and guidance related

to various processes throughout my PhD has certainly helped to make it a smooth ride. I

would like to express my deepest appreciation to Peter Battaglia for being on my Ph.D.

dissertation committee and for his time and patience in providing me with invaluable feed-

back on my research. His work has greatly inspired my research directions and I have

thoroughly cherished participating with him in hours long discussions on variety of tech-

nical topics during the conferences and otherwise. I am very grateful to Xin Luna Dong

for being on my Ph.D. dissertation committee and more importantly providing me with a

platform to gain experience in industrial-scale research during my internship at Amazon.

I really enjoy my close collaboration with her as she has been a great mentor who helped

me to develop skills in approaching and disseminating complex technical materials in a

simplified manner so as to make it easily understandable and consumable.

My collaboration with Le Song inspired me to strive for state-of-the-art research with

v

perseverance and I am grateful for his time and support towards my research pursuit. I also

wish to express special thanks to Christos Faloutsos for helping me to refine my problem

solving skills and providing me with invaluable feedback on various aspects of my research

including this dissertation. I would like to thank H. Venkateswaran for providing me with

much needed academic advising and serving as a guiding light during my tough times.

Last but not the least, I am forever indebted to Jayant Harista, my research mentor at IISC

(before my time at Georgia Tech), who instilled the seeds of pursuing research as a career

in me and played a major role in kickstarting my journey to where I have reached today.

This journey would not have been possible without the strong support and camaraderie

of marvelous groups of friends, colleagues and collaborators that I had the privilege and

honor to be involved with. At start of my PhD, Mehrdad Farajtabar introduced me to vari-

ous topics and guided me through the research process. I highly enjoyed various technical

conversations and every day collaboration with him which eventually turned into wonderful

friendship over time. Elias Khalil and I have become best friends as we navigated various

ebbs and tides of PhD life together, whether it is sprinting through sleepless nights to catch

conference deadlines or just hanging out and contemplating the world around us. Elias has

provided me with a constant platform to sound out my ideas and offered invaluable sug-

gestions to tackle various problems. Finally, I couldn’t have asked for a better academic

brother than Jiachen Yang, whose sharp knowledge, discipline and straightforward nature

constantly inspired me. He has become a great friend and in addition to our continued re-

search collaboration, I highly cherish various discussions and debates with him surrounding

philosophy, physics, marathons and joint criticism of various pitfalls in the academic and

research practices.

Additionally, several collaborators and colleagues played a vital role in benefiting my

research: Yunfei Bai, Prasenjeet Biswal, Sisman Bunyamin, Bo Dai, Hanjun Dai, Nan

Du, Chelsea Finn, Ben London, Jun Ma, Apurv Verma, Yichen Wang, Bo Xie, Huan Xu,

Xiaojing Ye among others. Further, memorable moments such as election and current

vi

affairs discussions with labmates Caleb and Amrita, sob stories on paper rejections with

Yujia Xie, pool time with Harsh Shrivastava, coding practice with Lansie Ma, late night

drives and conversations with Yuyu Zhang and Zhi Zhang and many more made my PhD

life smooth and enjoyable. I am particularly thankful to my lifetime friends Anshuman

Dutt, Pranay Kolakkar, Surabhi Potnis and Pratik Pattani who have been there providing me

with warmth and a sense of security despite being at farther distance, thereby continuously

supporting me in my pursuit.

I will always be indebted to my parents who showered me with uncountable support

and love while making several sacrifices to contribute towards my progress and develop-

ment. They taught me to persevere under hardest circumstances while providing me with

an environment of fostering good values that guides me to always work towards becoming

a better human being. I am greatly inspired by my younger and cheerful sister, Shradhdha,

who has given me a lot of love and strength to pursue my goals. I am also thankful to my

extended family, grand parents, in-laws, uncles, aunts and cousins for all their support and

trust in me. Lastly, but most importantly, I am extremely fortunate to have my wife, Hazel,

stand by my side as a rock in this arduous journey. Hazel is my best friend, lover and

lifetime companion who has always created wonderful moments in our life, motivated me

through tough times and encouraged me to never give up on my dreams. Her unwavering

support for an always busy, stressed and deadline stretched husband, while pursuing her

own challenging career goals speaks of her unparalleled strength and unconditional strong

belief in us and our future. Thank you Hazel for everything, I am very proud of you and I

look forward to a wonderful future with you.

vii

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xvi

List of Figures .xviii

Chapter 1: Introduction . 1

1.1 Learning dynamic processes over graphs 4

1.1.1 Part I. Multi-graph representation learning 4

1.1.2 Part II. Modeling and learning dynamic network processes 5

1.1.3 Part III. Learning graph formation mechanisms 5

1.2 Organization . 7

Chapter 2: Literature Survey . 8

2.1 Entity Resolution in relational data and learning across multiple graphs . . . 8

2.2 Dynamic graph representation learning . 8

2.3 Deep Generative Models of Graph Generation 9

2.4 Network Emergence Games . 10

PART I MULTI-GRAPH REPRESENTATION LEARNING 12

Chapter 3: Relational Learning over Multi-source Knowledge 13

viii

3.1 Introduction . 13

3.2 Preliminaries . 15

3.2.1 Knowledge Graph Representation 15

3.2.2 Multi-Graph Relational Learning 16

3.3 Proposed Method: LinkNBed . 16

3.3.1 Atomic Layer . 18

3.3.2 Contextual Layer . 19

3.3.3 Representation Layer . 20

3.3.4 Relational Score Function . 22

3.4 Efficient Learning Procedure . 22

3.4.1 Objective Function . 22

3.5 Experiments . 25

3.5.1 Datasets . 25

3.5.2 Baselines . 26

3.5.3 Evaluation Scheme . 27

3.5.4 Predictive Analysis . 27

3.6 Related Work . 30

3.6.1 Neural Embedding Methods for Relational Learning 30

3.6.2 Entity Resolution in Relational Data 31

3.6.3 Learning across multiple graphs 31

3.7 Summary . 32

3.7.1 Discussion and Insights on Entity Linkage Task 33

3.7.2 Implementation Details . 36

ix

3.7.3 Contextual Information Formulations 37

PART II MODELING AND LEARNING DYNAMIC NETWORK PROCESSES 39

Chapter 4: Representation Learning over Dynamic Graphs 40

4.1 Introduction . 40

4.2 Background and Preliminaries . 44

4.2.1 Related Work . 44

4.2.2 Temporal Point Processes . 45

4.2.3 Notations and Dynamic Graph Setting 45

4.3 Proposed Method: DyRep . 46

4.3.1 Modeling Two-Time Scale Observed Graph Dynamics 47

4.3.2 Learning latent Mediation Process Via Temporally Attentive Rep-
resentation Network . 48

4.4 Efficient Learning Procedure . 53

4.5 Experiments . 54

4.5.1 Datasets . 54

4.5.2 Tasks and Metrics . 55

4.5.3 Baselines . 56

4.5.4 Evaluation Scheme . 57

4.5.5 Experimental Results . 57

4.6 Summary . 60

Chapter 5: Temporal Reasoning over Dynamic Knowledge 61

5.1 Introduction . 61

x

5.2 Preliminaries . 64

5.2.1 Temporal Point Process . 64

5.2.2 Temporal Knowledge Graph representation 65

5.3 Evolutionary Knowledge Network . 66

5.3.1 Temporal Process . 66

5.3.2 Relational Score Function . 67

5.3.3 Dynamically Evolving Entity Representations 67

5.3.4 Understanding Unified View of Know-Evolve 71

5.4 Efficient Training Procedure . 71

5.5 Experiments . 73

5.5.1 Temporal Knowledge Graph Data 75

5.5.2 Competitors . 75

5.5.3 Evaluation Protocol . 76

5.5.4 Quantitative Analysis . 77

5.6 Related Work . 78

5.6.1 Relational Learning . 78

5.6.2 Temporal Modeling . 79

5.7 Summary . 79

PART III LEARNING GRAPH FORMATION MECHANISMS 81

Chapter 6: Learning Optimization Models of Graphs 82

6.1 Introduction and Related Work . 82

6.2 Proposed Approach: GraphOpt . 85

xi

6.2.1 Optimization Models of Graph Formation 85

6.2.2 Problem Definition . 86

6.2.3 Graph Formation as a Markov Decision Process 87

6.2.4 GraphOpt’s Neural Policy Architecture 89

6.3 Maximum Entropy Learning Procedure 91

6.4 Experiments . 93

6.4.1 Discovering Transferable Latent Objective 94

6.4.2 Policy Generalization to Prediction Task 95

6.4.3 Synthesizing Graphs via Learned Generative Mechanism 99

6.5 Summary . 101

Chapter 7: Learning Strategic Network Emergence Games 102

7.1 Introduction . 102

7.2 Preliminaries . 106

7.2.1 Markov Network Emergence Game 106

7.2.2 Solution Concept for Network Emergence Games 108

7.2.3 Multi-Agent Inverse Reinforcement Learning 109

7.3 Proposed Model . 110

7.4 Experiments . 113

7.4.1 Payoff Function . 113

7.4.2 Strategic Prediction . 118

7.5 Summary . 119

Chapter 8: Conclusion . 120

xii

8.1 Contributions . 120

8.2 Limitations and Future Work . 123

Appendix A: Relational Learning over Multi-Source Knowledge 126

A.1 Discussion and Insights on Entity Linkage Task 126

A.2 Implementation Details . 129

A.2.1 Additional Dataset Details . 129

A.2.2 Training Configurations . 130

A.2.3 Contextual Information Formulations 130

Appendix B: Representation Learning over Dynamic Graphs 132

B.1 Pictorial Exposition of DyRep Representation Network 132

B.1.1 Localized Embedding Propagation 132

B.1.2 Computing hstruct: Temporal Point Process based Attention 134

B.1.3 Computing S: Algorithm 1 . 134

B.2 Rationale Behind DyRep Framework . 134

B.3 Ablation Study . 140

B.4 Exploratory Analysis . 143

B.5 Full Experiment Results for both Datasets 145

B.6 Detailed Related Work . 146

B.7 Implementation Details . 147

B.7.1 Additional Dataset Details . 147

B.7.2 Training Configurations . 148

B.8 Monte Carlo Estimation for Survival Term in L for Section 4 150

xiii

Appendix C: Temporal Reasoning over Dynamic Knowledge 152

C.1 Algorithm for Global BPTT Computation 152

C.2 Data Statistics and Sparsity of Knowledge Tensor 153

C.3 Implementation Details . 153

C.4 Parameter Complexity Analysis . 154

C.5 Exploratory Analysis . 155

C.5.1 Temporal Reasoning . 155

C.6 Sliding Window Training Experiment . 159

C.7 Recurrent Facts vs. New facts . 160

Appendix D: Learning Optimization Models of Graph Formation 161

D.1 Gradient Updates for GraphOpt Algorithm 161

D.2 More Related Work . 163

D.3 Additional Details on Experiments . 165

D.3.1 Datasets . 165

D.3.2 Baselines . 165

D.3.3 Evaluation Protocol for Link Prediction using Learned Embeddings 167

D.3.4 GraphOpt Implementation . 167

D.3.5 Metrics . 169

D.4 Additional Experiment Results . 171

D.4.1 Synthesizing Graphs Via Learned Generative Mechanism 171

Appendix E: Learning Strategic Network Emergence Games 173

xiv

E.1 Network Emergence Games and Multi-Agent Inverse Reinforcement Learn-
ing . 173

E.2 MINE Algorithm . 178

E.3 Further Experiment Details . 180

E.3.1 Datasets . 180

E.3.2 Baselines . 182

E.3.3 Evaluation Protocol . 184

E.3.4 Training Configurations . 185

E.4 More Related Work . 186

References . 205

xv

LIST OF TABLES

3.1 Statistics for Datasets: D-IMDB and D-FB 26

3.2 Link Prediction Results on both datasets 29

3.3 Entity Linkage Results - Unsupervised case uses classifier at second step . . 30

4.1 Comparison of DyRep with state-of-the-art approaches 56

6.1 Transfer Performance Comparison . 94

6.2 Link Prediction on non-relational data: (*) is used to signify better per-
former amongst GraphOpt and method with implicit objective. Bold num-
bers are best two performers overall. 97

6.3 Link Prediction performance on relational data: (*) is used to signify better
performer amongst GraphOpt and RL method with +1/-1 reward. Bold
numbers indicate best two performers overall. 97

6.4 Generalization Performance Comparison 97

6.5 Percent deviation of graph statistics for generated graph from observed one
(lower is better). First row displays the actual statistics of the observed
graph. Results for more graphs and more metrics for generated graphs are
available in D.4.1. 99

7.1 Analysis of the learned reward using: (a) Game-theoretic reward function
(b) Zachary Karate club data (no ground truth reward). Correct links are
fraction of original links recovered. 114

7.2 (a)Transfer Performance (Top row: transfer across #agents, Bottom 2 rows:
transfer across set of agents). (b) Strategic Link Prediction Performance:
Number are AUC. (c) Dataset Statistics. 117

xvi

B.1 Dataset Statistics for Social Evolution and Github. 147

C.1 Statistics for each dataset. 153

C.2 Sparsity of Knowledge Tensor. 153

C.3 Comparison of our method with various relational methods for memory
complexity. Last two columns provide example realizations of this com-
plexity in full versions for GDELT and ICEWS datasets. Ha and Hb corre-
spond to hidden layers used in respective methods.He and Hr correspond
to entity and relation embedding dimensions respectively. Ne and Nr are
number of entities and relations in each dataset. For GDELT, Ne = 14018
and Nr = 20. For ICEWS, Ne = 12498 and Nr = 260. We borrow the
notations from [19] for simplicity. 154

D.1 Dataset Statistics for Construction Experiments 165

D.2 Social, Metabolic and Citation Graphs for Link Prediction 165

D.3 Knowledge Graphs for Link Prediction . 165

D.4 Hyper Parameter Configuration Table . 168

D.5 Percent deviation of graph statistics for generated graphs from observed
BA graph (lower is better) . 171

D.6 Percent deviation of graph statistics for generated graphs from the observed
Erdos-Renyi graph (lower is better) . 171

D.7 Percent deviation of graph statistics for generated graphs from the observed
Political Blogs Graph (lower is better) . 172

D.8 Percent deviation of graph statistics for generated graphs from the observed
Cora-ML graph . 172

D.9 Percent deviation of graph statistics for generated graphs from the observed
Pubmed graph . 172

E.1 Hyper Parameter Configuration Table . 185

xvii

LIST OF FIGURES

3.1 LinkNBed Architecture Overview - one step score computation for a given
triplet (es, r, eo). The Attribute embeddings are not simple lookups but they
are learned as shown in Eq 3.3 . 17

4.1 Evolution Through Mediation. (a) Association events (k=0) where the node
or edge grows. (c) Communication Events (k=1) where nodes interact
with each other. For both these processes, tp,k=0 < (t1, t2, t3, t4, t5)k=1 <
tq,k=0 < (t6, t7)k=1 < tr,k=0. (b) Evolving Representations. 42

4.2 Dynamic Link Prediction Performance for (a-b) Social Evolution Dataset
(c-d) Github Dataset. We report HITS@10 results and zoomed versions in
Appendix E. Best viewed in pdf. 58

4.3 Time Prediction Performance (unit is hrs). Figure best viewed in pdf or
colored print. 58

4.4 tSNE for learned embeddings after training. Figure best viewed in color. . . 59

5.1 Sample temporal knowledge subgraph between persons, organizations and
countries. 62

5.2 Realization of Evolutionary Knowledge Network Architecture over a time-
line. Here t′′, t′ and t may or may not be consecutive time points. We
focus on the event at time point t and show how previous events affected
the embeddings of entities involved in this event. From Eq. (5.5) and (5.6),
tp−1 = t′ and tq−1 = t′′ respectively. tesprev, t

eo

prev represent previous time
points in history before t′, t′′. hother stands for hidden layer for the entities
(other than the ones in focus) involved in events at t′ and t′′. resprev = r2 and
re
o

prev = r1. All other notations mean exactly as defined in text. We only
label nodes, edges and embeddings directly relevant to event at time t for
clarity. 68

xviii

5.3 One step visualization of Know-Evolve computations done in Figure 5.2
after observing an event at time t. (Best viewed in color) 68

5.4 Mean Average Rank (MAR) for Entity Prediction on both datasets. 73

5.5 Standard Deviation (STD) in MAR for Entity Prediction on both datasets. . 74

5.6 HITS@10 for Entity Prediction on both datasets. 74

5.7 Time prediction performance (Unit is hours). 77

6.1 Ω is set of latent objective functions {Fi}, any of which could lead to ob-
served graph G when optimised. Our goal is to discover one such latent
objectiveFopt that could serve as an explanation of the observed graph prop-
erties, and optimise it to learn a graph construction procedure Π such that
Π(V), given node set V , mimics the network patterns observed in G. While
Fopt may not match the unknown ground truth mechanism when one exists,
it can produce an accurate Π and hence can be operationally equivalent to
the true mechanism. 83

6.2 Overview of GraphOpt Framework. (a) A GNN encoder maps a graph state
st into a representation Zt (1), which is aggregated and passed through an
MLP (2), and interpreted as the mean and standard deviation of a Gaussian
policy. A latent continuous action (a(1), a(2)) is sampled and mapped to
two nodes with most similar embeddings (3). States are evaluated by re-
ward function Rϕ (4). (b) GraphOpt interleaves policy improvement using
the current reward function and reward updates using generated and expert
trajectories. 89

6.3 Degree and Clus. Coeff. distribution of graph constructed using the pol-
icy learned on CiteSeer, while optimizing the objective transferred from
training on Cora-ML dataset. 95

6.4 Policy Transfer across different size (Barabasi-Albert graph) and different
graph (Cora-ML→Citeseer). 98

6.5 (a-b) Original vs. GraphOpt: Cora-ML (c-d) Original vs. GraphOpt:
Pol.Blogs . 100

7.1 Karate network . 114

xix

7.2 Payoff interpretability in relation to the real-world Australian Bank net-
work. (a) Observed Network (Darker nodes have more importance). (b)
Marginal Payoff heatmap (lighter color signify higher utility) for state-
action pairs where state is a single node of particular type and action is
the link formation with a new node: (S0): Teller, (S1): Service Advisor,
(S2) Deputy Manager and (S3) Branch Manager (c) Payoff behavior for
each agent with respect to its Katz centrality in the network. 115

B.1 Localized Embedding Propagation: An event is observed between nodes
u and v and k can be 0 or 1 i.e. It can either be a topological event or
interaction event. The first term in Eq 4. contains hstruct which is com-
puted for updating each node involved in the event. For node u, the update
will come from hvstruct (green flow) and for node v, the update will come
from hustruct (red flow). Please note all embeddings are dynamically evolv-
ing hence the information flow after every event is different and evolves in
a complex fashion. With this mechanism, the information is passed from
neighbors of node u to node v and neighbors of node v to node u. (i) Inter-
action events lead to temporary pathway - such events can occur between
nodes which are not connected. In that case, this flow will occur only once
but it will not make u and v neighbors of each other (e.g. meeting at a
conference). (ii) Topological events lead to permanent pathway - in this
case u and v becomes neighbor of each other and hence will contribute to
structural properties moving forward (e.g. being academic friends). The
difference in number of blue arrows on each side signify different impor-
tance of each node to node u and node v respectively. 132

B.2 Temporal Point Process based Self-Attention: This figure illustrates the
computation of hustruct for node u to pass to node v for the same event
described before between nodes u and v at time t with any k. hustruct is
computed by aggregating information from neighbors (1,2,3) of u. How-
ever, Nodes that are closely connected or has higher interactions tend to
attend more to each other compared to nodes that are not connected or
nodes between which interactions is less even in presence of connection.
Further, every node has a specific attention span for other node and there-
fore attention itself is a temporally evolving quantity. DyRep computes
the temporally evolving attention based on association and communication
history between connected nodes. The attention coefficient function (q’s)
is parameterized by S which is computed using the intensity of events be-
tween connected nodes. Such attention mechanism allows the evolution of
importance of neighbors to a particular node (u in this case) which aligns
with real-world phenomenon. 134

xx

B.3 Computing S. Illustration of the update to S under two circumstances for
events that involve node u: (i) Interaction events between neighbors (ii)
Topological Event between non-neighbors. We only illustrate one node but
update will happen for both nodes in the event (e.g. for (u, v), rows of both
nodes will be updated asymmetrically due to different neighborhood size.
(a) shows the initial state where u has 4 neighbors and hence background
attention is uniform b = 0.25. (b) u has an interaction event with node 5.
Update only happens to Su5 and S5u based on intensity of the event. (c) u
has a topological event with node 4. b changes to 0.2. b′ = 0.25 which is
the previous b. Update happens to Su4 and S4u based on intensity of event.
Next attention for all other neighbors of both nodes (We only show for
u here) are adjusted to reflect neighborhood size change. The matrix S is
used for computing attention and hence does not get updated for interaction
events between nodes which do not have an edge (for e.g. pair (1,2) may
have an interaction event S12 won’t be updated as they are not neighbors. . . 135

B.4 Ablation Study on Github Dataset . 141

B.5 Use Case I. Top row: GraphSage Embeddings. Bottom Row: DyRep
Embeddings. 144

B.6 Use Case II. Top row: GraphSage Embeddings. Bottom Row: DyRep
Embeddings. 144

B.7 Use Case IV: DyRep Embeddings over time - From left to right and top to
bottom. t are the timepoints when test with that id ended. Hence, t = 1
means the time when test slot 1 finished. 145

B.8 Dynamic Link Prediction Performance: Top 2 rows show performance for
Social Evolution Dataset. Bottom 2 rows show performance for Github
Dataset. 1st and 3rd row show performance for Communication Events
while 2nd and 4th row show performance for Association Events. 151

C.1 Relationship graph for Cairo and Croatia. Dotted arrow shows the predicted
edge. Direction of the arrow is from subject to object entity. 155

C.2 Relationship graph for Columbia and Ottawa. Dotted arrow shows the pre-
dicted edge. Direction of the arrow is from subject to object entity. 157

C.3 Performance comparison of sliding window vs. non-sliding window training.160

C.4 Comparison with NTN over recurrent and non-recurrent test version. 160

xxi

SUMMARY

Graphs appear as a versatile representation of information across domains spanning so-

cial networks, biological networks, transportation networks, molecular structures, knowl-

edge networks, web information network and many more. Graphs represent heterogeneous

information about the real-world entities and complex relationships between them in a

very succinct manner. At the same time, graphs exhibit combinatorial, discrete and non-

Euclidean properties in addition to being inherently sparse and incomplete which poses

several challenges to techniques that analyze and study these graph structures.

There exist various approaches across different fields spanning network science, game

theory, stochastic process and others that provide excellent theoretical and analytical tools

with interpretability benefits to analyze these networks. However, such approaches do not

learn from data and make assumptions about real-world that capture only subset of prop-

erties. More importantly, they do not support predictive capabilities critical for decision

making applications. In this thesis, we develop novel data driven learning approaches that

incorporate useful inductive biases inspired from these classical approaches. The resulting

learning approaches exhibit more general properties that go beyond conventional proba-

bilistic assumptions and allow for building transferable and interpretable modules. We

build these approaches anchored around two fundamental questions: (i) (Formation Pro-

cess) How do these networks come into existence? and (ii) (Temporal Evolution Process)

How do real-world networks evolve over time?

First, we focus on the challenge of learning in a setting with highly sparse and in-

complete knowledge graphs, where it is important to leverage multiple input graphs to sup-

port accurate performance for variety of downstream applications such as recommendation,

search and question-answering systems. Specifically, we develop a large-scale multi-graph

deep relational learning framework that identifies entity linkage as a vital component of

data fusion and learns to jointly perform representation learning and graph linkage across

xxii

multiple graphs with applications to relational reasoning and knowledge construction.

Next, we consider networks that evolve over time and propose a generative model of dy-

namic graphs that is useful to encode evolving network information into low-dimensional

representations that facilitate accurate downstream event prediction tasks. Our approach re-

lies on the coevolution principle of network structure evolution and network activities being

tightly couple processes and develops a multi time scale temporal point process formulation

parameterized by a recurrent architecture comprising of a novel Temporal Attention mech-

anism. Representation learning is posed as a latent mediation process – observed network

processes evolve the state of nodes, while this node evolution governs future dynamics

of observed processes and applied to downstream dynamic link prediction tasks and time

prediction of future realizations (events) of both observed processes.

Finally, we investigate the implication of adopting the optimization perspective of net-

work formation mechanisms for building learning approaches for graph structured data. In

this work, we first focus on global mechanisms that govern the formation of links in the

network and build an inverse reinforcement learning based algorithm to jointly discover

latent mechanisms directly from observed data, optimization of which enables a graph con-

struction procedure capable of producing graphs with properties similar to observed data.

Such an approach facilitates transfer and generalization properties and has been applied to

variety of real-world graphs. In the last part, we consider the settings where the agents

forming links are strategic and build a learnable model of network emergence games that

jointly discovers the underlying payoff mechanisms and strategic profiles of agents from

the data. This approach enables learning interpretable and transferable payoffs while the

learned game as a model facilitates strategic prediction tasks, both of which are applied to

several real world networks.

xxiii

CHAPTER 1

INTRODUCTION

Graphs serve as natural representations of information in many complex system domains

such as social networks, knowledge graphs, financial systems, protein-protein networks and

many more. While being a versatile representation of information, graphs exhibit discrete

and combinatorial characteristics that give rise to significant challenges in leveraging the

underlying information for downstream applications. The ubiquitous use of graphs for rep-

resenting information across domains and applications has inspired concentrated efforts in

building scalable machine learning techniques to address these graph learning challenges.

Applications of such machine learning models seek to perform new predictions, inference,

discover new patterns via generative reasoning and model behaviors. However, graphs that

represent complex real-world domains exhibit intricate characteristics beyond discrete and

combinatorial structure and raises new learning challenges. Below we briefly outline some

of these challenges:

• Incompleteness. Real-world data represented as graphs often exhibit sparsity and

incompleteness which becomes a big challenge when the downstream applications

are dependent on the heterogeneous information contained in the missing edges. The

problem is exacerbated large scale of graphs consisting billions of nodes. Hence the

learning techniques need to perform powerful reasoning to infer missing information

while meeting scalability demands.

• Dynamics. Most real-world networks exhibit temporal dynamic properties in which

the entities and/or their interactions change over time. For instance, both the user

behavior and the network structure they form (with other users on social networks

or products on e-commerce platform) vary over time, collaboration networks evolve

1

with changing interests and interactions between authors and so on. Such settings re-

quire the learning approach to adapt and evolve corresponding to the network evolu-

tion. Traditional graph learning techniques that consider time-independent structures

would cease to work effectively in these dynamic settings due to lack of their ability

to consume, process and learn over evolving information.

• Non-probabilistic Generative Mechanisms. Learning generative mechanisms of

graph-structured data is an important approach to build graph constructors for data

augmentation [1] and inference modules for downstream network analysis and pre-

diction tasks. Modeling the generative process of discrete structures is a hard prob-

lem and learning approaches tackling this challenge mainly rely on the probabilistic

assumption of underlying mechanisms that govern this generative process. However,

many real world networks form due to non-probabilistic processes such as global cost

optimization (e.g. popularity in social networks) or local strategy optimizations (e.g.

benefits in financial networks). These underlying processes violate the probabilis-

tic assumptions often made by existing learning approaches. In real-world domains,

such generative mechanisms are often unknown and learning them from data is chal-

lenging due to limited or no access to the construction process (one often observes

only the final outcome structure).

There are several approaches that address the above challenges by building learning or

simulation tools and techniques inspired from human intuition and assumptions about the

underlying processes. We briefly discuss some of them below:

• For the incompleteness problem, many data drive organizations take the approach of

constructing a unified super-graph by integrating data from multiple sources. Such

unification has shown to significantly help in various applications, such as search,

question answering, and personal assistance. To this end, there exists a rich body of

work on linking entities and relations, and conflict resolution (e.g., knowledge fu-

2

sion [2]). Another typical approach for learning over multiple graphs is to first solve

graph alignment problem to merge the graphs and then use existing relational learn-

ing methods on merged graph. These approaches leverage on specialized alignment

techniques [3, 4, 5, 6] that address its unique challenges.

• In the dynamic network settings, there exist a rich body of works that focus on mod-

eling temporal evolution of networks for network mining and link prediction tasks [7,

8, 9, 10, 11]. These techniques incorporate specific modeling assumptions to capture

the observed processes. Further, there have been efforts in building sophisticated

learning approaches that use parametric models for modeling fine-grained temporal

dynamics. A successful class of these models leverage the mathematical models of

temporal point process that model network evolution as continuous time events [12].

• While learning generative mechanisms under non-probabilistic setting is still an under-

explored problem, there are several classical modeling approaches in other fields that

focus on analysing the generative process of networks in corresponding domains and

putting it to use for explaining network formation and building network design sim-

ulators. For instance, network science approaches attempt to explain the network

formation process using specific functional forms of global objective, optimization

of which is considered to be the driving factor of the generative process. [13, 14,

15, 16]. On the other hand, there has been decades of efforts in building game-

theoretic approaches, called Network Formation Games [17], that analyze and ex-

plain the emergence of strategic networks formed due to actions of non-inanimate

agents. These models serve as an elegant theoretical and interpretable framework to

characterize the generative process.

While the above approaches have been effective in specific settings and provide in-

terpretability benefits in some instances, they have their own shortcomings. For instance,

graph alignment is currently an unsolved problem and faces severe scalability challenges

3

making it an expensive external step preceding learning. Next, specific models of dynamic

networks are often prone to misspecification when the model assumptions do not align with

the real-world intricacies involved in the dynamic evolution process. Finally, existing net-

work science and game-theoretic approaches focus on simple but succinct models that are

not learned from data, and which tend to model important albeit a subset of the properties

of complex networks. Most importantly, all of the above (learning) approaches consider

hand-designed node and edge features which often fail to capture complex information

available in the graph. On the other hand, deep learning techniques for graph structured

data [18] learn powerful graph representations that successfully capture various important

properties of complex networks. These techniques have been extended to support com-

plex tasks over graph structured information such as relational reasoning [19], probabilistic

graph generation [20], learning simulation models [21], combinatorial optimization [22,

23, 24] and powerful prediction models [25].

Based on the above discussion, a natural question rises: Can we leverage the benefits of

aforementioned classical approaches to build deep learning techniques that: (i) model and

learn to discover the complex processes governing the properties exhibited by real-world

networks and (ii) facilitate transferable modules and powerful predictions, so as to address

the learning challenges on complex real-world networks? In this thesis, we take several

steps to address this question.

1.1 Learning dynamic processes over graphs

Below, we introduce each one of our approaches and summarize their applications:

1.1.1 Part I. Multi-graph representation learning

In this part, we focus on alleviating the need of an external expensive step of data fu-

sion for learning from multiple graph sources. Specifically, we identify entity linkage as

an important component of data fusion and build a deep learning technique [26], learns

4

to jointly perform representation learning and graph linkage across multiple knowledge

graphs. LinkNBed employs a robust multi-task loss function and a novel evaluation scheme

to support entity linkage across various learning scenarios including presence of unlabeled

instances or only negative instances. We apply this technique to perform relational reason-

ing tasks for knowledge graphs.

1.1.2 Part II. Modeling and learning dynamic network processes

Network structure evolution (dynamics of the network) and network activities (dynamics

on the network) do not occur in isolation; these two processes are rather interleaved, af-

fecting each other in an intricate manner. We adopt this coevolution principle for modeling

evolution process of dynamic networks and leverage this model to learn dynamic graph

representations. Specifically, we propose DyRep [27], a continuous time deep represen-

tation learning framework that uses a temporal point process formulation parameterized

by a recurrent architecture comprising of a novel Temporal Attention mechanism. Rep-

resentation learning is posed as a latent mediation process – observed network processes

evolve the state of nodes, while this node evolution governs future dynamics of observed

processes. DyRep is applied to dynamic link prediction and time prediction tasks. In this

part, we also discuss an earlier work [28] modeling dynamically evolving knowledge over

multi-relational interactions. This is a specialized version of above approach for temporal

reasoning over dynamic knowledge graphs.

1.1.3 Part III. Learning graph formation mechanisms

In the above two parts, we focus on settings where the goal is to build deep learning ar-

chitectures to model observed properties and encode them into representations, so as to

perform effective learning for downstream predictions. In this part, we focus on settings

where the underlying processes (mechanisms) are not observed and the goal is to discover

such mechanisms directly from observed data, that are the final outcome of the latent mech-

5

anisms. Specifically, we focus on the network formation mechanisms, the process by which

network come to assemble.

In real world graphs, these mechanisms are often unknown due to the limited or no ac-

cess to the construction process of real-world graphs. In the first approach, we focus on the

inverse problem setting of learning to discover such mechanisms from observed data and

develop an end-to-end learning framework, GraphOpt [29], that adopts the network science

view of optimization-based network formation. GraphOpt jointly learns the forward model

of graph construction (posed as a sequential decision process) and solves the inverse prob-

lem of discovering an underlying optimization mechanism, in the form of a latent objective

function (learned using an inverse reinforcement learning algorithm). GraphOpt learns to

discover transferable mechanisms; demonstrates compelling generalization properties via

its competitive link prediction performance and showcases its ability to serve as a useful

graph constructor.

Complementary to the focus of the above approach on global mechanisms, in the sec-

ond approach focuses on real-world networks, that emerge due to actions of non-inanimate

agents (e.g. humans, animals). Such networks are the result of underlying strategic mech-

anisms aimed at maximizing local individual or collective benefits. Network learning ap-

proaches built to capture these strategic insights would gain interpretability and flexibility

benefits that are required to generalize beyond observations. we consider a game-theoretic

formalism of network emergence that accounts for the underlying strategic mechanisms

and take it to data to discover an explanation for the observed real-world networks. We

propose MINE, a new learning framework that solves Markov-Perfect network emergence

games using multi-agent inverse reinforcement learning. MINE recovers a versatile and ro-

bust payoff useful for explaining final network structure and the network emergence game

as a learned model facilitates strategic predictions.

6

1.2 Organization

The rest of the document is organized as follows: In Chapter 2, I present the literature

survey on various works related to the above approaches. Then, in part I, I discuss my

work on learning multi-source graph representations. Next, In part II, I present the works

on modeling dynamic graphs and learning evolving representations over them. In part III,

chapter 6, I discuss the work on learning optimization models of graph formation. Finally,

in part III, chapter 7, I outline our recent work on learning strategic network emergence

mechanisms. I conclude my thesis with a discussion on some limitations of my works and

corresponding future directions.

7

CHAPTER 2

LITERATURE SURVEY

In this chapter, we discuss related works in different settings of our focus.

2.1 Entity Resolution in relational data and learning across multiple graphs

Entity Resolution refers to resolving entities available in knowledge graphs with entity

mentions in text. [30] proposed entity disambiguation method for KB population, [31]

learns entity embeddings for resolution, [32] propose a sophisticated DNN architecture

for resolution, [33] proposes entity resolution across multiple social domains, [34] jointly

embeds text and knowledge graph to perform resolution while [35] proposes Attention

Mechanism for Collective Entity Resolution.

Recently, learning over multiple graphs have gained traction. [3] divides a multi-

relational graph into multiple homogeneous graphs and learns associations across them by

employing product operator. Unlike our work, they do not learn across multiple multi-

relational graphs. [36] provides logic based insights for cross learning, [4] does pairwise

entity matching across multi-relational graphs and is very expensive, [37] learns embed-

dings to support multi-lingual learning and Big-Align [5] tackles graph alignment problem

efficiently for bipartite graphs. None of these methods learn latent representations or jointly

train graph alignment and learning which is the goal of our work.

2.2 Dynamic graph representation learning

Preliminary approaches in dynamic representation learning have considered discrete time

approach. [38] propose a temporal latent space model for link prediction using nonnegative

matrix factorization. [39] uses a warm start method to train across snapshots and employs

8

a heuristic approach to learn stable embeddings over time but do not model time. [40] fo-

cuses on specific structure of triad to model how close triads are formed from open triads in

dynamic networks. [41] proposes a deep architecture based on combination of CNN to cap-

ture spatial characteristics and an RNN to capture temporal characteristics, to model struc-

tured sequences which in graph case will lead to discrete time model. [42] develops extends

skip-gram based approaches for network embedding to dynamic setting where the graphs a

re observed as discrete time snapshot and the goal is to learn embeddings that can preserve

the optimality of skip-gram objective. NetWalk [43] is a discrete-time dynamic embed-

ding approach specifically designed for anomaly detection which uses clique based embed-

ding techniques to learn vertex representations. Recently, [28] proposed Know-Evolve, a

deep recurrent architecture to model multi-relational timestamped edges that addresses the

communication process. Unlike our approach, Know-Evolve models all edges at a single

timescale, works for setting restricted to relational graphs and uses only edge-level struc-

tural information with no attention mechanism. DANE [44] proposes a network embedding

method in dynamic environment but their dynamics consists of change in node’s attributes

over time and their current work can be considered orthogonal to our approach. [45] pro-

poses a dynamic network formation model to learn node representations by employing a

Hawkes process to model the temporal evolution of neighborhood for nodes. This work

only considers association events. [46] proposes a continuous time embedding framework

that employs a temporal version of traditional random walks in a simple manner to capture

temporally evolving neighborhood information.

2.3 Deep Generative Models of Graph Generation

Recently, there have been significant research efforts in building deep generative models of

graph generation as they allow to effectively capture complex structural properties observed

in a graph and use that information to output realistic graphs. Most of these works can be

broadly categorized into two classes: (i) Methods that learn from collection of graphs (e.g.

9

DeepGMG [47], GraphRNN [20], GCPN [48]) and (ii) Methods that learn from a single

graph (e.g VGAE [49], GraphGan [50], MolGAN [51], NetGan [52]). As discussed in the

main paper, our current approach falls into the second category. DeepGMG builds proba-

bilistic model where the partially generated graph is encoded by the graph neural network

(GNN) and the representation is used to make decision of constructing next node or edge.

GraphRNN proposes an auto-regressive model of graph generation, wherein the focus is

on generating sequence of adjacency vectors that be mapped to graph structure. It em-

ploys hierarchical recurrent architecture to encode the historical path information. While it

can produce arbitrarily large graphs, it has been shown to learn from relatively small sized

graphs (input). Finally, it still needs a collection of graphs to learn well. GCPN combines

GCN with RL and learns a deep generative model using an objective that is very specific

to domain of chemistry. GCPN also requires a collection of molecular structures as input

and works only with small graphs. In the second category, methods like GraphGan and

GVAE are implicit models but their main focus is to learn graph representations and hence

perform weakly on generation tasks and have limited scalability. NetGan is a recently pro-

posed implict graph generator model exhibiting generalization properties. However, unlike

GraphOpt, NetGAN optimizes a GAN-based objective which converge to an uninforma-

tive discriminator, thereby not useful for transfer, which in contrast is a key objective of

our approach. Further, our method learns to model graphs using GNN over graph struc-

ture, thereby capturing better structural properties, in contrast to Netgan that employs an

LSTM architecture to learn information from fixed length random walks. Finally, unlike

NetGan, our appraoach is able to serve as an unsupervised framework for learning node

representations (comes for free) that are useful for downstream prediction tasks.

2.4 Network Emergence Games

Network emergence games focus on analyzing the construction of equilibrium networks

where no agent want to locally change the network [53]. Various equilibrium concepts

10

(with special focus on network stability (robustness)) have been proposed and studied to

analyze the formation process in networks. It has been shown that pure Nash equilibrium

is a weak and restrictive concept, for instance empty networks (where no agent announces

any link) are always in Nash equilibrium, which further requires that agents’ actions in each

state to be independent [54]. As a more useful solution concept, [55] proposed pairwise

stability that searches for networks that are robust to one link deviation, where link cre-

ation is bilateral and under mutual consent of the agents while link severance is unilateral.

Building upon two concepts, [55, 56] proposed pairwise-Nash equilibrium that allows for

unilateral multi-link severance in addition to mutual one-link creation and thereby effec-

tively model non-cooperative games. [56]’s proposal is a noncooperative linking game in

which agents independently announce which bilateral links they would like to see formed

and then standard game-theoretic equilibrium concepts apply for making predictions. Fi-

nally, [57] proposed another linking game where players can §offer or demand transfers

along with the links they suggest, which allows players to subsidize the emergence of par-

ticular links. Network emergence games have been generally modeled as one-shot normal

form game or an extensive form game and only recently have been investigated by [58,

59] in Markov setting. Finally, couple of approaches[59, 60] have focused on estimating

network emergence games where they use data to estimate the parameters of the model.

While being computationally inefficient and limited in their practical applications, these

approaches demonstrate the promise in investigating the use of observed data to learn the

specifications for game theoretic approaches.

11

Part I

Multi-Graph Representation Learning

12

CHAPTER 3

RELATIONAL LEARNING OVER MULTI-SOURCE KNOWLEDGE

Knowledge graphs have emerged as an important model for studying complex multi-relational

data. This has given rise to the construction of numerous large scale but incomplete knowl-

edge graphs encoding information extracted from various resources. An effective and scal-

able approach to jointly learn over multiple graphs and eventually construct a unified graph

is a crucial next step for the success of knowledge-based inference for many downstream

applications. To this end, we propose LinkNBed, a deep relational learning framework

that learns entity and relationship representations across multiple graphs. We identify en-

tity linkage across graphs as a vital component to achieve our goal. We design a novel

objective that leverage entity linkage and build an efficient multi-task training procedure.

Experiments on link prediction and entity linkage demonstrate substantial improvements

over the State-of-the-art relational learning approaches.

3.1 Introduction

Reasoning over multi-relational data is a key concept in Artificial Intelligence and knowl-

edge graphs have appeared at the forefront as an effective tool to model such multi-relational

data. Knowledge graphs have found increasing importance due to its wider range of im-

portant applications such as information retrieval [61], natural language processing [62],

recommender systems [63], question-answering [64] and many more. This has led to the in-

creased efforts in constructing numerous large-scale Knowledge Bases (e.g. Freebase [65],

DBpedia [66], Google’s Knowledge graph [2], Yago [67] and NELL [68]), that can cater to

these applications, by representing information available on the web in relational format.

All knowledge graphs share common drawback of incompleteness and sparsity and

hence most existing relational learning techniques focus on using observed triplets in an

13

incomplete graph to infer unobserved triplets for that graph [19]. Neural embedding tech-

niques that learn vector space representations of entities and relationships have achieved

remarkable success in this task. However, these techniques only focus on learning from a

single graph. In addition to incompleteness property, these knowledge graphs also share

a set of overlapping entities and relationships with varying information about them. This

makes a compelling case to design a technique that can learn over multiple graphs and

eventually aid in constructing a unified giant graph out of them. While research on learn-

ing representations over single graph has progressed rapidly in recent years [69, 2, 70, 71,

72, 73], there is a conspicuous lack of principled approach to tackle the unique challenges

involved in learning across multiple graphs.

One approach to multi-graph representation learning could be to first solve graph align-

ment problem to merge the graphs and then use existing relational learning methods on

merged graph. Unfortunately, graph alignment is an important but still unsolved problem

and there exist several techniques addressing its challenges [3, 4, 5, 6] in limited settings.

The key challenges for the graph alignment problem emanate from the fact that the real

world data are noisy and intricate in nature. The noisy or sparse data make it difficult to

learn robust alignment features, and data abundance leads to computational challenges due

to the combinatorial permutations needed for alignment. These challenges are compounded

in multi-relational settings due to heterogeneous nodes and edges in such graphs.

Recently, deep learning has shown significant impact in learning useful information

over noisy, large-scale and heterogeneous graph data [74]. We, therefore, posit that combin-

ing graph alignment task with deep representation learning across multi-relational graphs

has potential to induce a synergistic effect on both tasks. Specifically, we identify that a key

component of graph alignment process—entity linkage—also plays a vital role in learning

across graphs. For instance, the embeddings learned over two knowledge graphs for an

actor should be closer to one another compared to the embeddings of all the other entities.

Similarly, the entities that are already aligned together across the two graphs should pro-

14

duce better embeddings due to the shared context and data. To model this phenomenon, we

propose LinkNBed, a novel deep learning framework that jointly performs representation

learning and graph linkage task. To achieve this, we identify key challenges involved in the

learning process and make the following contributions to address them:

• We propose novel and principled approach towards jointly learning entity represen-

tations and entity linkage. The novelty of our framework stems from its ability to

support linkage task across heterogeneous types of entities.

• We devise a graph-independent inductive framework that learns functions to cap-

ture contextual information for entities and relations. It combines the structural and

semantic information in individual graphs for joint inference in a principled manner.

• Labeled instances (specifically positive instances for linkage task) are typically very

sparse and hence we design a novel multi-task loss function where entity linkage task

is tackled in robust manner across various learning scenarios such as learning only

with unlabeled instances or only with negative instances.

• We design an efficient training procedure to perform joint training in linear time in

the number of triples. We demonstrate superior performance of our method on two

datasets curated from Freebase and IMDB against State-of-the-art neural embedding

methods.

3.2 Preliminaries

3.2.1 Knowledge Graph Representation

A knowledge graph G comprises of set of facts represented as triplets (es, r, eo) denoting

the relationship r between subject entity es and object entity eo. Associated to this knowl-

edge graph, we have a set of attributes that describe observed characteristics of an entity.

Attributes are represented as set of key-value pairs for each entity and an attribute can have

15

null (missing) value for an entity. We follow Open World Assumption - triplets not observed

in knowledge graph are considered to be missing but not false. We assume that there are

no duplicate triplets or self-loops.

3.2.2 Multi-Graph Relational Learning

Definition. Given a collection of knowledge graphs G, Multi-Graph Relational Learning

refers to the the task of learning information rich representations of entities and relation-

ships across graphs. The learned embeddings can further be used to infer new knowledge

in the form of link prediction or learn new labels in the form of entity linkage. We motivate

our work with the setting of two knowledge graphs where given two graphs G1, G2 ∈ G,

the task is to match an entity eG1 ∈ G1 to an entity eG2 ∈ G2 if they represent the same

real-world entity. We discuss a straightforward extension of this setting to more than two

graphs in Section 7.

Notations. LetX and Y represent realization of two such knowledge graphs extracted from

two different sources. Let nXe and nYe represent number of entities in X and Y respectively.

Similarly, nXr and nYr represent number of relations in X and Y . We combine triplets from

both X and Y to obtain set of all observed triplets D = {(es, r, eo)p}Pp=1 where P is total

number of available records across from both graphs. Let E andR be the set of all entities

and all relations in D respectively. Let |E| = n and |R| = m. In addition to D, we also

have set of linkage labels L for entities between X and Y . Each record in L is represented

as triplet (eX ∈ X , eY ∈ Y , l ∈ {0, 1}) where l = 1 when the entities are matched and

l = 0 otherwise.

3.3 Proposed Method: LinkNBed

We present a novel inductive multi-graph relational learning framework that learns a set of

aggregator functions capable of ingesting various contextual information for both entities

and relationships in multi-relational graph. These functions encode the ingested structural

16

Figure 3.1: LinkNBed Architecture Overview - one step score computation for a given
triplet (es, r, eo). The Attribute embeddings are not simple lookups but they are learned as

shown in Eq 3.3

and semantic information into low-dimensional entity and relation embeddings. Further,

we use these representations to learn a relational score function that computes how two

entities are likely to be connected in a particular relationship. The key idea behind this

formulation is that when a triplet is observed, the relationship between the two entities can

be explained using various contextual information such as local neighborhood features of

both entities, attribute features of both entities and type information of the entities which

participate in that relationship.

We outline two key insights for establishing the relationships between embeddings of

the entities over multiple graphs in our framework:

Insight 1 (Embedding Similarity): If the two entities eX ∈ X and eY ∈ Y represent the

same real-world entity then their embeddings eX and eY will be close to each other.

Insight 2 (Semantic Replacement): For a given triplet t = (es, r, eo) ∈ X , denote g(t) as

the function that computes a relational score for t using entity and relation embeddings. If

there exists a matching entity es′ ∈ Y for es ∈ X , denote t′ = (es
′
, r, eo) obtained after

replacing es with es′ . In this case, g(t) ∼ g(t′) i.e. score of triplets t and t′ will be similar.

For a triplet (es, r, eo) ∈ D, we describe encoding mechanism of LinkNBed as three-

layered architecture that computes the final output representations of zr, ze
s
, ze

o for the

given triplet. Figure 3.1 provides an overview of LinkNBed architecture and we describe

17

the three steps below:

3.3.1 Atomic Layer

Entities, Relations, Types and Attributes are first encoded in its basic vector representa-

tions. We use these basic representations to derive more complex contextual embeddings

further.

Entities, Relations and Types. The embedding vectors corresponding to these three com-

ponents are learned as follows:

ves = f(WEes) veo = f(WEeo) (3.1)

vr = f(WRr) vt = f(WTt) (3.2)

where ves ,veo ∈ Rd. es, eo ∈ Rn are “one-hot” representations of es and eo respectively.

vr ∈ Rk and r ∈ Rm is “one-hot” representation of r. vt ∈ Rq and t ∈ Rz is ”one-

hot” representation of t . WE ∈ Rd×n, WR ∈ Rk×m and WT ∈ Rq×z are the entity,

relation and type embedding matrices respectively. f is a nonlinear activation function

(Relu in our case). WE, WR and WT can be initialized randomly or using pre-trained

word embeddings or vector compositions based on name phrases of components [75].

Attributes. For a given attribute a represented as key-value pair, we use paragraph2vec

[76] type of embedding network to learn attribute embedding. Specifically, we represent

attribute embedding vector as:

a = f(Wkeyakey + Wvalaval) (3.3)

where a ∈ Ry, akey ∈ Ru and aval ∈ Rv. Wkey ∈ Ry×u and Wval ∈ Ry×v. akey

will be “one-hot” vector and aval will be feature vector. Note that the dimensions of the

embedding vectors do not necessarily need to be the same.

18

3.3.2 Contextual Layer

While the entity and relationship embeddings described above help to capture very generic

latent features, embeddings can be further enriched to capture structural information, at-

tribute information and type information to better explain the existence of a fact. Such

information can be modeled as context of nodes and edges in the graph. To this end, we de-

sign the following canonical aggregator function that learns various contextual information

by aggregating over relevant embedding vectors:

c(z) = AGG({z′,∀z′ ∈ C(z)}) (3.4)

where c(z) is the vector representation of the aggregated contextual information for com-

ponent z. Here, component z can be either an entity or a relation. C(z) is the set of

components in the context of z and z′ correspond to the vector embeddings of those com-

ponents. AGG is the aggregator function which can take many forms such Mean, Max,

Pooling or more complex LSTM based aggregators. It is plausible that different compo-

nents in a context may have varied impact on the component for which the embedding is

being learned. To account for this, we employ a soft attention mechanism where we learn

attention coefficients to weight components based on their impact before aggregating them.

We modify Eq. 3.4 as:

c(z) = AGG(q(z) ∗ {z′, ∀z′ ∈ C(z)}) (3.5)

where

q(z) =
exp(θz)∑

z′∈C(z)

exp(θz′)
(3.6)

19

and θz’s are the parameters of attention model.

Following contextual information is modeled in our framework:

Entity Neighborhood Context Nc(e) ∈ Rd. Given a triplet (es, r, eo), the neighborhood

context for an entity es will be the nodes located near es other than the node eo. This

will capture the effect of local neighborhood in the graph surrounding es that drives es to

participate in fact (es, r, eo). We use Mean as aggregator function. As there can be large

number of neighbors, we collect the neighborhood set for each entity as a pre-processing

step using a random walk method. Specifically, given a node e, we run k rounds of random-

walks of length l following [18] and create set N (e) by adding all unique nodes visited

across these walks. This context can be similarly computed for object entity.

Entity Attribute Context Ac(e) ∈ Ry. For an entity e, we collect all attribute embeddings

for e obtained from Atomic Layer and learn aggregated information over them using Max

operator given in Eq. 3.4.

Relation Type Context Tc(r) ∈ Rq. We use type context for relation embedding i.e. for

a given relationship r, this context aims at capturing the effect of type of entities that have

participated in this relationship. For a given triplet (es, r, eo), type context for relationship r

is computed by aggregation with mean over type embeddings corresponding to the context

of r. Appendix C provides specific forms of contextual information.

3.3.3 Representation Layer

Having computed the atomic and contextual embeddings for a triplet (es, r, eo), we obtain

the final embedded representations of entities and relation in the triplet using the following

formulation:

20

zes = σ(W1v
es︸ ︷︷ ︸

Subject Entity Embedding

+ W2Nc(e
s)︸ ︷︷ ︸

Neighborhood Context

+ W3Ac(e
s))︸ ︷︷ ︸

Subject Entity Attributes

(3.7)

zeo = σ(W1v
eo︸ ︷︷ ︸

Object Entity Embedding

+ W2Nc(e
o)︸ ︷︷ ︸

Neighborhood Context

+ W3Ac(e
o))︸ ︷︷ ︸

Object Entity Attributes

(3.8)

zr = σ(W4v
r︸ ︷︷ ︸

Relation Embedding

+ W5Tc(r))︸ ︷︷ ︸
Entity Type Context

(3.9)

where W1,W2 ∈ Rd×d, W3 ∈ Rd×y, W4 ∈ Rd×k and W5 ∈ Rd×q. σ is nonlinear

activation function – generally Tanh or Relu.

Following is the rationale for our formulation: An entity’s representation can be enriched

by encoding information about the local neighborhood features and attribute information

associated with the entity in addition to its own latent features. Parameters W1,W2,W3

learn to capture these different aspects and map them into the entity embedding space.

Similarly, a relation’s representation can be enriched by encoding information about entity

types that participate in that relationship in addition to its own latent features. Parameters

W4,W5 learn to capture these aspects and map them into the relation embedding space.

Further, as the ultimate goal is to jointly learn over multiple graphs, shared parameterization

in our model facilitate the propagation of information across graphs thereby making it a

graph-independent inductive model. The flexibility of the model stems from the ability

to shrink it (to a very simple model considering atomic entity and relation embeddings

only) or expand it (to a complex model by adding different contextual information) without

affecting any other step in the learning procedure.

21

3.3.4 Relational Score Function

Having observed a triplet (es, r, eo), we first use Eq. 7, 8 and 9 to compute entity and

relation representations. We then use these embeddings to capture relational interaction

between two entities using the following score function g(·):

g(es, r, eo) = σ(zr
T · (zes � ze

o

)) (3.10)

where zr, ze
s
, ze

o ∈ Rd are d-dimensional representations of entity and relationships as de-

scribed below. σ is the nonlinear activation function and� represent element-wise product.

3.4 Efficient Learning Procedure

3.4.1 Objective Function

The complete parameter space of the model can be given by:

Ω = {{Wi}5i=1,W
E,WR,Wkey,Wval,Wt,Θ}. To learn these parameters, we design a

novel multi-task objective function that jointly trains over two graphs. As identified ear-

lier, the goal of our model is to leverage the available linkage information across graphs

for optimizing the entity and relation embeddings such that they can explain the observed

triplets across the graphs. Further, we want to leverage these optimized embeddings to

match entities across graphs and expand the available linkage information. To achieve this

goal, we define following two different loss functions catering to each learning task and

jointly optimize over them as a multi-task objective to learn model parameters:

Relational Learning Loss. This is conventional loss function used to learn knowledge

graph embeddings. Specifically, given a p-th triplet (es, r, eo)p from training set D, we

sample C negative samples by replacing either head or tail entity and define a contrastive

22

max margin function as shown in [75]:

Lrel =
C∑
c=1

max(0, γ − g(esp, rp, e
o
p)

+ g′(esc, rp, e
o
p))

(3.11)

where, γ is margin, esc represent corrupted entity and g′(esc, rp, e
o
p) represent corrupted triplet

score.

Linkage Learning Loss: We design a novel loss function to leverage pairwise label set

L. Given a triplet (esX , rX , e
o
X) from knowledge graph X , we first find the entity e+

Y from

graph Y that represent the same real-world entity as esX . We then replace esX with e+
Y and

compute score g(e+
Y , rX , e

o
X). Next, we find set of all entities E−Y from graph Y that has

a negative label with entity esX . We consider them analogous to the negative samples we

generated for Eq. 3.11. We then propose the label learning loss function as:

Llab =
Z∑
z=1

max(0, γ − g(e+
Y , rX , e

o
X)

+ (g′(e−Y , rX , e
o
X)z))

(3.12)

where, Z is the total number of negative labels for eX . γ is margin which is usually set to

1 and e−Y ∈ E
−
Y represent entity from graph Y with which entity esX had a negative label.

Please note that this applies symmetrically for the triplets that originate from graph Y in the

overall dataset. Note that if both entities of a triplet have labels, we will include both cases

when computing the loss. Eq. 3.12 is inspired by Insight 1 and Insight 2 defined earlier

in Section 2. Given a set D of N observed triplets across two graphs, we define complete

multi-task objective as:

L(Ω) =
N∑
i=1

[b · Lrel + (1− b) · Llab] + λ ‖Ω‖2
2 (3.13)

23

Algorithm 1 LinkNBed mini-batch Training
Input: Mini-batch M, Negative Sample Size C, Negative Label Size Z, Attribute
data att data, Neighborhood data nhbr data, Type data type data, Positive Label Dict
pos dict, Negative Label Dict neg dict
Output: Mini-batch Loss LM.
LM = 0
score pos = []; score neg = []; score pos lab = []; score neg lab = []
for i = 0 to size(M) do

input tuple =M[i] = (es, r, eo)
sc = compute triplet score(es, r, eo) (Eq. 3.10)
score pos.append(sc)
for j = 0 to C do

Select esc from entity list such that esc 6= es and esc 6= eo and (esc, r, e
o) /∈ D

sc neg = compute triplet score(esc, r, e
o)

score neg.append(sc neg)
end for
if es in pos dict then

es+ = positive label for es

sc pos l = compute triplet score(es+, r, eo)
score pos lab.append(sc pos l)

end if
for k = 0 to Z do

Select es− from neg dict
sc neg l = compute triplet score(es−, r, eo)
score neg lab.append(sc neg l)

end for
end for
LM += compute minibatch loss(score pos, score neg, score pos lab, score neg lab)
(Eq. 3.13)
Back-propagate errors and update parameters Ω
return LM

where Ω is set of all model parameters and λ is regularization hyper-parameter. b is weight

hyper-parameter used to attribute importance to each task. We train with mini-batch SGD

procedure (Algorithm 7) using Adam Optimizer.

Missing Positive Labels. It is expensive to obtain positive labels across multiple graphs

and hence it is highly likely that many entities will not have positive labels available. For

those entities, we will modify Eq. 3.12 to use the original triplet (esX , rX , e
o
X) in place of

perturbed triplet g(e+
Y , rX , e

o
X) for the positive label. The rationale here again arises from

24

Insight 2 wherein embeddings of two duplicate entities should be able to replace each other

without affecting the score.

Training Time Complexity. Most contextual information is pre-computed and available to

all training steps which leads to constant time embedding lookup for those context. But for

attribute network, embedding needs to be computed for each attribute separately and hence

the complexity to compute score for one triplet is O(2a) where a is number of attributes.

Also for training, we generate C negative samples for relational loss function and use Z

negative labels for label loss function. Let k = C+Z. Hence, the training time complexity

for a set of n triplets will beO(2ak∗n) which is linear in number of triplets with a constant

factor as ak << n for real world knowledge graphs. This is desirable as the number of

triplets tend to be very large per graph in multi-relational settings.

Memory Complexity. We borrow notations from [19] and describe the parameter com-

plexity of our model in terms of the number of each component and corresponding embed-

ding dimension requirements. Let Ha = 2 ∗NeHe +NrHr +NtHt +NkHk +NvHv. The

parameter complexity of our model is: Ha ∗ (Hb + 1). Here, Ne, Nr, Nt, Nk, Nv signify

number of entities, relations, types, attribute keys and vocab size of attribute values across

both datasets. Here Hb is the output dimension of the hidden layer.

3.5 Experiments

3.5.1 Datasets

We evaluate LinkNBed and baselines on two real world knowledge graphs: D-IMDB (de-

rived from large scale IMDB data snapshot) and D-FB (derived from large scale Freebase

data snapshot). Table 2.1 provides statistics for our final dataset used in the experiments.

Appendix B.1 provides complete details about dataset processing.

25

Table 3.1: Statistics for Datasets: D-IMDB and D-FB

Dataset # Entities # Relations # Attributes # Entity # Available
Name Types Triples

D-IMDB 378207 38 23 41 143928582
D-FB 39667 146 69 324 22140475

3.5.2 Baselines

We compare the performance of our method against State-of-the-art representation learn-

ing baselines that use neural embedding techniques to learn entity and relation represen-

tation. Specifically, we consider compositional methods of RESCAL [69] as basic matrix

factorization method, DISTMULT [73] as simple multiplicative model good for capturing

symmetric relationships, and Complex [70], an upgrade over DISTMULT that can cap-

ture asymmetric relationships using complex valued embeddings. We also compare against

translational model of STransE that combined original structured embedding with TransE

and has shown State-of-art performance in benchmark testing [77]. Finally, we compare

with GAKE [78], a model that captures context in entity and relationship representations.

In addition to the above State-of-art models, we analyze the effectiveness of different com-

ponents of our model by comparing with various versions that use partial information.

Specifically, we report results on following variants:

LinkNBed - Embed Only. Only use entity embeddings, LinkNBed - Attr Only. Only use

Attribute Context, LinkNBed - Nhbr Only. Only use Neighborhood Context, LinkNBed

- Embed + Attr. Use both Entity embeddings and Attribute Context, LinkNBed - Embed

+ Nhbr. Use both Entity embeddings and Neighbor Context and LinkNBed - Embed All.

Use all three Contexts.

26

3.5.3 Evaluation Scheme

We evaluate our model using two inference tasks:

Link Prediction. Given a test triplet (es, r, eo), we first score this triplet using Eq. 3.10.

We then replace eo with all other entities in the dataset and filter the resulting set of triplets

as shown in [71]. We score the remaining set of perturbed triplets using Eq. 3.10. All the

scored triplets are sorted based on the scores and then the rank of the ground truth triplet is

used for the evaluation. We use this ranking mechanism to compute HITS@10 (predicted

rank ≤ 10) and reciprocal rank (1
rank

) of each test triplet. We report the mean over all test

samples.

Entity Linkage. In alignment with Insight 2, we pose a novel evaluation scheme to perform

entity linkage. Let there be two ground truth test sample triplets: (eX , e
+
Y , 1) representing

a positive duplicate label and (eX , e
−
Y , 0) representing a negative duplicate label. Algo-

rithm 6 outlines the procedure to compute linkage probability or score q (∈ [0, 1]) for the

pair (eX , eY). We use L1 distance between the two vectors analogous to Mean Absolute

Error (MAE). In lieu of hard-labeling test pairs, we use score q to compute Area Under the

Precision-Recall Curve (AUPRC).

For the baselines and the unsupervised version (with no labels for entity linkage) of our

model, we use second stage multilayer Neural Network as classifier for evaluating entity

linkage. Appendix B.2 provides training configuration details.

3.5.4 Predictive Analysis

Link Prediction Results. We train LinkNBed model jointly across two knowledge graphs

and then perform inference over individual graphs to report link prediction reports. For

baselines, we train each baseline on individual graphs and use parameters specific to the

graph to perform link prediction inference over each individual graph. Table 2.2 shows

link prediction performance for all methods. Our model variant with attention mechanism

27

Algorithm 2 Entity Linkage Score Computation

Input: Test pair – (eX ∈ X, eY ∈ Y).
Output: Linkage Score – q.

1. Collect all triplets involving eX from graph X and all triplets involving eY from graph
Y into a combined set O. Let |O| = k.
2. Construct Sorig ∈ Rk.
For each triplet o ∈ O, compute score g(o) using Eq. 3.10 and store the score in Sorig.
3. Create triplet set O′ as following:
if o ∈ O contain eX ∈ X then

Replace eX with eY to create perturbed triplet o′ and store it in O′
end if
if o ∈ O contain eY ∈ Y then

Replace eY with eX to create perturbed triplet o′ and store it in O′
end if
4. Construct Srepl ∈ Rk.
For each triplet o′ ∈ O′, compute score g(o′) using Eq. 3.10 and store the score in Srepl.
5. Compute q.
Elements in Sorig and Srepl have one-one correspondence so take the mean absolute
difference:
q = |Sorig - Srepl|1
return q

outperforms all the baselines with 4.15% improvement over single graph State-of-the-art

Complex model on D-IMDB and 8.23% improvement on D-FB dataset. D-FB is more

challenging dataset to learn as it has a large set of sparse relationships, types and attributes

and it has an order of magnitude lesser relational evidence (number of triplets) compared

to D-IMDB. Hence, LinkNBed’s pronounced improvement on D-FB demonstrates the ef-

fectiveness of the model. The simplest version of LinkNBed with only entity embeddings

resembles DISTMULT model with different objective function. Hence closer performance

of those two models aligns with expected outcome. We observed that the Neighborhood

context alone provides only marginal improvements while the model benefits more from

the use of attributes. Despite being marginal, attention mechanism also improves accuracy

for both datasets. Compared to the baselines which are obtained by trained and evaluated on

individual graphs, our superior performance demonstrates the effectiveness of multi-graph

learning.

28

Table 3.2: Link Prediction Results on both datasets

Method D-IMDB-HITS10 D-IMDB-MRR D-FB-HITS10 D-FB-MRR

RESCAL 75.3 0.592 69.99 0.147
DISTMULT 79.5 0.691 72.34 0.556

Complex 83.2 0.725 75.67 0.629
STransE 80.7 0.421 69.87 0.397
GAKE 69.5 0.114 63.22 0.093

LinkNBed-Embed Only 79.9 0.612 73.2 0.519
LinkNBed-Attr Only 82.2 0.676 74.7 0.588
LinkNBed-Nhbr Only 80.1 0.577 73.4 0.572

LinkNBed-Embed + Attr 84.2 0.673 78.39 0.606
LinkNBed-Embed + Nhbr 81.7 0.544 73.45 0.563

LinkNBed-Embed All 84.3 0.725 80.2 0.632
LinkNBed-Embed All (Attention) 86.8 0.733 81.9 0.677

Improvement (%) 4.15 1.10 7.61 7.09

Entity Linkage Results. We report entity linkage results for our method in two set-

tings: a.) Supervised case where we train using both the objective functions. b.) Unsuper-

vised case where we learn with only the relational loss function. The latter case resembles

the baseline training where each model is trained separately on two graphs in an unsuper-

vised manner. For performing the entity linkage in unsupervised case for all models, we

first train a second stage of simple neural network classifier and then perform inference. In

the supervised case, we use Algorithm 6 for performing the inference. Table 2.3 demon-

strates the performance of all methods on this task. Our method significantly outperforms

all the baselines with 33.86% over second best baseline in supervised case and 17.35% bet-

ter performance in unsupervised case. The difference in the performance of our method in

two cases demonstrate that the two training objectives are helping one another by learning

across the graphs. GAKE’s superior performance on this task compared to the other State-

of-the-art relational baselines shows the importance of using contextual information for

entity linkage. Performance of other variants of our model again demonstrate that attribute

information is more helpful than neighborhood context and attention provides marginal im-

provements. We provide further insights with examples and detailed discussion on entity

linkage task in Appendix A.

29

Table 3.3: Entity Linkage Results - Unsupervised case uses classifier at second step

Method AUPRC (Supervised) AUPRC (Unsupervised)

RESCAL - 0.327
DISTMULT - 0.292

Complex - 0.359
STransE - 0.231
GAKE - 0.457

LinkNBed-Embed Only 0.376 0.304
LinkNBed-Attr Only 0.451 0.397
LinkNBed-Nhbr Only 0.388 0.322

LinkNBed-Embed + Attr 0.512 0.414
LinkNBed-Embed + Nhbr 0.429 0.356

LinkNBed-Embed All 0.686 0.512
LinkNBed-Embed All (Attention) 0.691 0.553

Improvement (%) 33.86 17.35

3.6 Related Work

3.6.1 Neural Embedding Methods for Relational Learning

Compositional Models learn representations by various composition operators on entity

and relational embeddings. These models are multiplicative in nature and highly expressive

but often suffer from scalability issues. Initial models include RESCAL [69] that uses a re-

lation specific weight matrix to explain triplets via pairwise interactions of latent features,

Neural Tensor Network [75], more expressive model that combines a standard NN layer

with a bilinear tensor layer and [2] that employs a concatenation-projection method to

project entities and relations to lower dimensional space. Later, many sophisticated models

(Neural Association Model [79], HoLE [80]) have been proposed. Path based composi-

tion models [81] and contextual models GAKE [78] have been recently studied to cap-

ture more information from graphs. Recently, model like Complex [70] and Analogy [82]

have demonstrated State-of-the art performance on relational learning tasks. Translational

Models ([83], [84], [71], [85], [86], [72]) learn representation by employing translational

30

operators on the embeddings and optimizing based on their score. They offer an additive

and efficient alternative to expensive multiplicative models. Due to their simplicity, they

often loose expressive power. For a comprehensive survey of relational learning methods

and empirical comparisons, we refer the readers to [19], [77], [87] and [73]. None of these

methods address multi-graph relational learning and cannot be adapted to tasks like entity

linkage in straightforward manner.

3.6.2 Entity Resolution in Relational Data

Entity Resolution refers to resolving entities available in knowledge graphs with entity

mentions in text. [30] proposed entity disambiguation method for KB population, [31]

learns entity embeddings for resolution, [32] propose a sophisticated DNN architecture

for resolution, [33] proposes entity resolution across multiple social domains, [34] jointly

embeds text and knowledge graph to perform resolution while [35] proposes Attention

Mechanism for Collective Entity Resolution.

3.6.3 Learning across multiple graphs

Recently, learning over multiple graphs have gained traction. [3] divides a multi-relational

graph into multiple homogeneous graphs and learns associations across them by employ-

ing product operator. Unlike our work, they do not learn across multiple multi-relational

graphs. [36] provides logic based insights for cross learning, [4] does pairwise entity

matching across multi-relational graphs and is very expensive, [37] learns embeddings to

support multi-lingual learning and Big-Align [5] tackles graph alignment problem effi-

ciently for bipartite graphs. None of these methods learn latent representations or jointly

train graph alignment and learning which is the goal of our work.

31

3.7 Summary

We present a novel relational learning framework that learns entity and relationship embed-

dings across multiple graphs. The proposed representation learning framework leverage an

efficient learning and inference procedure which takes into account the duplicate entities

representing the same real-world entity in a multi-graph setting. We demonstrate superior

accuracies on link prediction and entity linkage tasks compared to the existing approaches

that are trained only on individual graphs. We believe that this work opens a new research

direction in joint representation learning over multiple knowledge graphs.

Many data driven organizations such as Google and Microsoft take the approach of con-

structing a unified super-graph by integrating data from multiple sources. Such unification

has shown to significantly help in various applications, such as search, question answering,

and personal assistance. To this end, there exists a rich body of work on linking entities and

relations, and conflict resolution (e.g., knowledge fusion [2]. Still, the problem remains

challenging for large scale knowledge graphs and this paper proposes a deep learning solu-

tion that can play a vital role in this construction process. In real-world setting, we envision

our method to be integrated in a large scale system that would include various other com-

ponents for tasks like conflict resolution, active learning and human-in-loop learning to

ensure quality of constructed super-graph. However, we point out that our method is not

restricted to such use cases—one can readily apply our method to directly make inference

over multiple graphs to support applications like question answering and conversations.

For future work, we would like to extend the current evaluation of our work from a

two-graph setting to multiple graphs. A straightforward approach is to create a unified

dataset out of more than two graphs by combining set of triplets as described in Section

2, and apply learning and inference on the unified graph without any major change in the

methodology. Our inductive framework learns functions to encode contextual information

and hence is graph independent. Alternatively, one can develop sophisticated approaches

32

with iterative merging and learning over pairs of graphs until exhausting all graphs in an

input collection.

3.7.1 Discussion and Insights on Entity Linkage Task

Entity linkage task is novel in the space of multi-graph learning and yet has not been tack-

led by any existing relational learning approaches. Hence we analyze our performance on

the task in more detail here. We acknowledge that baseline methods are not tailored to the

task of entity linkage and hence their low performance is natural. But we observe that our

model performs well even in the unsupervised scenario where essentially the linkage loss

function is switched off and our model becomes a relational learning baseline. We believe

that the inductive ability of our model and shared parameterization helps to capture knowl-

edge across graphs and allows for better linkage performance. This outcome demonstrates

the merit in multi-graph learning for different inference tasks. Having said that, we admit

that our results are far from comparable to State-of-the-art linkage results (Das et al., 2017)

and much work needs to be done to advance representation and relational learning methods

to support effective entity linkage. But we note that our model works for multiple types of

entities in a very heterogeneous environment with some promising results which serves as

an evidence to pursue this direction for entity linkage task.

We now discuss several use-case scenarios where our model did not perform well to gain

insights on what further steps can be pursued to improve over this initial model:

Han Solo with many attributes (False-negative example). Han Solo is a fictional charac-

ter in Star Wars and appears in both D-IMDB and D-FB records. We have a positive label

for this sample but we do not predict it correctly. Our model combines multiple compo-

nents to effectively learn across graphs. Hence we investigated all the components to check

for the failures. One observation we have is the mismatch in the amount of attributes across

33

the two datasets. Further, this is compounded by multi-value attributes. As described, we

use paragraph2vec like model to learn attribute embeddings where for each attribute, we

aggregate over all its values. This seems to be computing embeddings that are very noisy.

As we have seen attributes are affecting the final result with high impact and hence learning

very noisy attributes is not helping. Further, the mismatch in number of types is also an

issue. Even after filtering the types, the difference is pretty large. Types are also included

as attributes and they contribute context to relation embeddings. We believe that the skew

in type difference is making the model learn bad embeddings. Specifically this happens

in cases where lot of information is available like Han Solo as it lead to the scenario of

abundant noisy data. With our investigation, we believe that contextual embeddings need

further sophistication to handle such scenarios. Further, as we already learn relation, type

and attribute embeddings in addition to entity embeddings, aligning relations, types and

attributes as integral task could also be an important future direction.

Alfred Pennyworth is never the subject of matter (False-negative example). In this

case, we observe a new pattern which was found in many other examples. While there are

many triples available for this character in D-IMDB, very few triplets are available in D-

FB. This skew in availability of data hampers the learning of deep network which ends up

learning very different embeddings for two realizations. Further, we observe another patter

where Alfred Pennyworth appears only as an object in all those few triplets of D-FB while

it appears as both subject and object in D-IMDB. Accounting for asymmetric relationships

in an explicit manner may become helpful for this scenario.

Thomas Wayne is Martha Wayne! (False-positive example). This is the case of abun-

dance of similar contextual information as our model predicts Thomas Wayne and Martha

Wayne to be same entity. Both the characters share a lot of context and hence many triples

and attributes, neighborhood etc. are similar for of them eventually learning very similar

34

embeddings. Further as we have seen before, neighborhood has shown to be a weak context

which seems to hamper the learning in this case. Finally, the key insight here is to be able

to attend to the very few discriminative features for the entities in both datasets (e.g. male

vs female) and hence a more sophisticated attention mechanism would help.

In addition to the above specific use cases, we would like to discuss insights on follow-

ing general concepts that naturally occur when learning over multiple graphs:

• Entity Overlap Across Graphs. In terms of overlap, one needs to distinguish be-

tween *real* and *known* overlap between entities. For the known overlap between

entities, we use that knowledge for linkage loss function Llab. But our method does

not need to assume either types of overlap. In case there is no real overlap, the model

will learn embeddings as if they were on two separate graphs and hence will only

provide marginal (if any) improvement over State-of-art embedding methods for sin-

gle graphs. If there is real overlap but no known overlap (i.e., no linked entity labels),

the only change is that Equation (13) will ignore the term (1−b) ·Llab. Table 3 shows

that in this case (corresponding to AUPRC (Unsupervised)), we are still able to learn

similar embeddings for graph entities corresponding to the same real-world entity.

• Disproportionate Evidence for entities across graphs. While higher proportion

of occurrences help to provide more evidence for training an entity embedding, the

overall quality of embedding will also be affected by all other contexts and hence we

expect to have varied entity-specific behavior when they occur in different propor-

tions across two graphs

• Ambiguity vs. Accuracy. The effect of ambiguity on accuracy is dependent on the

type of semantic differences. For example, it is observed that similar entities with

major difference in attributes across graphs hurts the accuracy while the impact is

not so prominent for similar entities when only their neighborhood is different.

35

3.7.2 Implementation Details

Additional Dataset Details

We perform light pre-processing on the dataset to remove self-loops from triples, clean

the attributes to remove garbage characters and collapse CVT (Compound Value Types)

entities into single triplets. Further we observe that there is big skew in the number of types

between D-IMDB and D-FB. D-FB contains many non-informative type information such

as #base.∗. We remove all such non-informative types from both datasets which retains

41 types in D-IMDB and 324 types in D-FB. This filtering does not reduce the number of

entities or triples by significant number (less than 1000 entities filtered)

For comparing at scale with baselines, we further reduce dataset using similar tech-

niques adopted in producing widely accepted FB-15K or FB-237K. Specifically, we filter

relational triples such that both entities in a triple contained in our dataset must appear in

more than k triples. We use k = 50 for D-FB and k = 100 for D-IMDB as D-IMDB

has orders of magnitude more triples compared to D-FB in our curated datasets. We still

maintain the overall ratio of the number of triples between the two datasets.

Positive and Negative Labels. We obtain 500662 positive labels using the existing

links between the two datasets. Note that any entity can have only one positive label. We

also generate 20 negative labels for each entity using the following method: (i) randomly

select 10 entities from the other graph such that both entities belong to the same type and

there exist no positive label between entities (ii) randomly select 10 entities from the other

graph such that both entities belong to different types.

Training Configurations

We performed hyper-parameter grid search to obtain the best performance of our method

and finally used the following configuration to obtain the reported results:

– Entity Embedding Size: 256, Relation Embedding Size=64, Attribute Embedding Size =

36

16, Type Embedding Size = 16, Attribute Value Embedding Size = 512. We tried multiple

batch sizes with very minor difference in performance and finally used size of 2000. For

hidden units per layer, we use size = 64. We used C = 50 negative samples and Z = 20

negative labels. The learning rate was initialized as 0.01 and then decayed over epochs.

We ran our experiments for 5 epochs after which the training starts to convert as the dataset

is very large. We use loss weights b as 0.6 and margin as 1. Further, we use K = 50

random walks of length l = 3 for each entity We used a train/test split of 60%/40% for

both the triples set and labels set. For baselines, we used the implementations provided

by the respective authors and performed grid search for all methods according to their

requirements.

3.7.3 Contextual Information Formulations

Here we describe exact formulation of each context that we used in our work.

Neighborhood Context: Given a triplet (es, r, eo), the neighborhood context for an en-

tity es will be all the nodes at 1-hop distance from es other than the node eo. This will

capture the effect of other nodes in the graph surrounding es that drives es to participate in

fact (es, r, eo). Concretely, we define the neighborhood context of es as follows:

Nc(e
s) =

1

ne′

∑
e′∈N (es)
e′ 6=eo

ve′ (3.14)

where N (es) is the set of all entities in neighborhood of es other than eo. We collect

the neighborhood set for each entity as a pre-processing step using a random walk method.

Specifically, given a node e, we run k rounds of random-walks of length l and create the

neighborhood set N (e) by adding all unique nodes visited across these walks.

37

Please note that we can also use max function in (A.1) instead of sum. Nc(e
s) ∈ Rd

and the context can be similarly computed for object entity.

Attribute Context. For an entity es, the corresponding attribute context is defined as

Ac(e
s) =

1

na

na∑
i=1

aes

i (3.15)

where na is the number of attributes. aes

i is the embedding for attribute i. Ac(e
s) ∈ Ry.

Type Context. We use type context mainly for relationships i.e. for a given relation-

ship r, this context aims at capturing the effect of type of entities that have participated in

this relationship. For a given triplet (es, r, eo), we define type context for relationship r as:

Tc(r) =
1

nrt

nrt∑
i=1

vt′

i (3.16)

where, nrt is the total number of types of entities that has participated in relationship r

and vt′

i is the type embedding that corresponds to type t. Tc(r) ∈ Rq.

38

Part II

Modeling and Learning Dynamic

Network Processes

39

CHAPTER 4

REPRESENTATION LEARNING OVER DYNAMIC GRAPHS

Representation Learning over graph structured data has received significant attention re-

cently due to its ubiquitous applicability. However, most advancements have been made

in static graph settings while efforts for jointly learning dynamic of the graph and dy-

namic on the graph are still in an infant stage. Two fundamental questions arise in learn-

ing over dynamic graphs: (i) How to elegantly model dynamical processes over graphs?

(ii) How to leverage such a model to effectively encode evolving graph information into

low-dimensional representations? We present DyRep - a novel modeling framework for

dynamic graphs that posits representation learning as a latent mediation process bridging

two observed processes namely – dynamics of the network (realized as topological evolu-

tion) and dynamics on the network (realized as activities between nodes). Concretely, we

propose a two-time scale deep temporal point process model that captures the interleaved

dynamics of the observed processes. This model is further parameterized by a temporal-

attentive representation network that encodes temporally evolving structural information

into node representations which in turn drives the nonlinear evolution of the observed graph

dynamics. Our unified framework is trained using an efficient unsupervised procedure and

has capability to generalize over unseen nodes. We demonstrate that DyRep outperforms

state-of-the-art baselines for dynamic link prediction and time prediction tasks and present

extensive qualitative insights into our framework.

4.1 Introduction

Representation learning over graph structured data has emerged as a keystone machine

learning task due to its ubiquitous applicability in variety of domains such as social net-

works, bioinformatics, natural language processing, and relational knowledge bases. Learn-

40

ing node representations to effectively encode high-dimensional and non-Euclidean graph

information is a challenging problem but recent advances in deep learning has helped im-

portant progress towards addressing it [88, 89, 90, 91, 92, 93, 94], with majority of the

approaches focusing on advancing the state-of-the-art in static graph setting. However,

several domains now present highly dynamic data that exhibit complex temporal proper-

ties in addition to earlier cited challenges. For instance, social network communications,

financial transaction graphs or longitudinal citation data contain fine-grained temporal in-

formation on nodes and edges that characterize the dynamic evolution of a graph and its

properties over time.

These recent developments have created a conspicuous need for principled approaches

to advance graph embedding techniques for dynamic graphs [95]. We focus on two per-

tinent questions fundamental to representation learning over dynamic graphs: (i) What

can serve as an elegant model for dynamic processes over graphs? — A key modeling

choice in existing representation learning techniques for dynamic graphs [39, 40, 28, 46,

43] assume that graph dynamics evolve as a single time scale process. In contrast to these

approaches, we observe that most real-world graphs exhibit at least two distinct dynamic

processes that evolve at different time scales — Topological Evolution: where the number

of nodes and edges are expected to grow (or shrink) over time leading to structural changes

in the graph; and Node Interactions: which relates to activities between nodes that may or

may not be structurally connected. Modeling interleaved dependencies between these non-

linearly evolving dynamic processes is a crucial next step for advancing the formal models

of dynamic graphs.

(ii) How can one leverage such a model to learn dynamic node representations that

are effectively able to capture evolving graph information over time? — Existing tech-

niques in this direction can be divided into two approaches: a.) Discrete-Time Approach,

where the evolution of a dynamic graph is observed as collection of static graph snapshots

over time [38, 39, 40]. These approaches tend to preserve (encode) very limited structural

41

Figure 4.1: Evolution Through Mediation. (a) Association events (k=0) where the node or
edge grows. (c) Communication Events (k=1) where nodes interact with each other. For
both these processes, tp,k=0 < (t1, t2, t3, t4, t5)k=1 < tq,k=0 < (t6, t7)k=1 < tr,k=0. (b)
Evolving Representations.

information and capture temporal information at a very coarse level which leads to loss

of information between snapshots and lack of ability to capture fine-grained temporal dy-

namics. Another challenge in such approaches is the selection of appropriate aggregation

granularity which is often misspecified. b.) Continuous-Time Approach, where evolution

is modeled at finer time granularity in order to address the above challenges. While existing

approaches have demonstrated to be very effective in specific settings, they either model

simple structural and complex temporal properties in a decoupled fashion [28] or use sim-

ple temporal models (exponential family in [46]). But several domains exhibit highly

nonlinear evolution of structural properties coupled with complex temporal dynamics and

it remains an open problem to effectively model and learn informative representations cap-

turing various dynamical properties of such complex systems.

As noted in [96], an important requirement to effectively learn over such dynamical

systems is the ability to express the dynamical processes at different scales. We propose

that any dynamic graph must be minimally expressed as a result of two fundamental pro-

cesses evolving at different time scales: Association Process (dynamics of the network),

that brings change in the graph structure and leads to long lasting information exchange

42

between nodes; and Communication Process (dynamics on the network), that relates to

activities between (not necessarily connected) nodes which leads to temporary information

flow between them [97, 98]. We, then, posit our goal of learning node representations as

modeling a latent mediation process that bridges the above two observed processes such

that learned representations drive the complex temporal dynamics of both processes and

these processes subsequently lead to the nonlinear evolution of node representations. Fur-

ther, the information propagated across the graph is governed by the temporal dynamics of

communication and association histories of nodes with its neighborhood. For instance, in

a social network, when a node’s neighborhood grows, it changes that node’s representation

which in turn affects her social interactions (association → embedding → communica-

tion). Similarly, when node’s interaction behavior changes, it affects the representation

of her neighbors and herself which in turn changes the structure and strength of her con-

nections due to link addition or deletion (communication → embedding → association).

We call this phenomenon — evolution through mediation and illustrate it graphically in

Figure 4.1.

In this work, we propose a novel representation learning framework for dynamic graphs,

DyRep, to model interleaved evolution of two observed processes through latent mediation

process expressed above and effectively learn richer node representations over time. Our

framework ingests dynamic graph information in the form of association and communica-

tion events over time and updates the node representations as they appear in these events.

We build a two-time scale deep temporal point process approach to capture the continuous-

time fine-grained temporal dynamics of the two observed processes. We further parameter-

ize the conditional intensity function of the temporal point process with a deep inductive

representation network that learns functions to compute node representations. Finally, we

couple the structural and temporal components of our framework by designing a novel

Temporal Attention Mechanism, which induces temporal attentiveness over neighborhood

nodes using the learned intensity function. This allows to capture highly interleaved and

43

nonlinear dynamics governing node representations over time. We design an efficient un-

supervised training procedure for end-to-end training of our framework. We demonstrate

consistent and significant improvement over state-of-the-art representative baselines on two

real-world dynamic graphs for the tasks of dynamic link prediction and time prediction. We

further present an extensive qualitative analysis through embedding visualization and abla-

tion studies to discern the effectiveness of our framework.

4.2 Background and Preliminaries

4.2.1 Related Work

Representation Learning approaches for static graphs either perform node embedding [88,

89, 90, 91, 92, 93, 94] or sub-graph embedding [99, 100, 101] which can also utilize con-

volutional neural networks [102, 103, 104]. Among them, GraphSage [18] is an inductive

method for learning functions to compute node representations that can be generalized to

unseen nodes. Most of these approaches only work with static graphs or can model evolv-

ing graphs without temporal information. Dynamic network embedding is pursued through

various techniques such as matrix factorization [38], structural properties [40], CNN-based

approaches [41], deep recurrent models [28], and random walks [46]. There exists a rich

body of literature on temporal modeling of dynamic networks [7], that focus on link predic-

tion tasks but their goal is orthogonal to our work as they build task specific methods and

do not focus on representation learning. Authors in [105, 106] proposed models of learning

dynamic embeddings but none of them consider time at finer level and do not capture both

topological evolution and interactions simultaneously. In parallel, research on deep point

process models include parametric approaches to learn intensity [107, 108] using recur-

rent neural networks and GAN based approaches to learn intensity functions [109]. More

detailed related works are provided in Appendix F.

44

4.2.2 Temporal Point Processes

Stochastic point processes [110] are random processes whose realization comprises of dis-

crete events in time, t1, t2, A temporal point process is one such stochastic process that

can be equivalently represented as a counting process, N(t), which contains the number of

events up to time t. The common way to characterize temporal point processes is via the

conditional intensity function λ(t), a stochastic model of rate of happening events given the

previous events. Formally, λ(t)dt is the conditional probability of observing an event in

the tiny window [t, t+ dt), λ(t)dt := P[event in [t, t+ dt)|T (t)] = E[dN(t)|T (t)], where

T (t) = tk|tk < t is history until t. Similarly, for t > tn and given history T = t1, . . . , tn,

we characterize the conditional probability that no event happens during [tn, t) as S(t|T) =

exp
(
−
∫ t
tn
λ(τ) dτ

)
, which is called survival function of the process [111]. Moreover, the

conditional density that an event occurs at time t is defined as f(t) = λ(t)S(t). The in-

tensity λ(t) is often designed to capture phenomena of interests – common forms include

Poisson Process, Hawkes processes [112, 113, 114, 115], Self-Correcting Process [116].

Temporal Point Processes have previously been used to model both – dynamics on the

network [117, 118, 119] and dynamics of the network [120, 12].

4.2.3 Notations and Dynamic Graph Setting

Notations. Let Gt = (Vt, Et) denote graph G at time t, where Vt is the set of nodes and Et is

the set of edges in Gt and the edges are undirected. Event Observation – Both communica-

tion and association processes are realized in the form of dyadic events observed between

nodes on graph G over a temporal window [t0, T] and ordered by time. We use the follow-

ing canonical tuple representation for any type of event at time t of the form e = (u, v, t, k),

where u, v are the two nodes involved in an event. t represents time of the event. k ∈ {0, 1}

and we use k = 0 to signify events from the topological evolution process (association) and

k = 1 to signify events from node interaction process (communication). Persistent edges in

the graph only appear through topological events while interaction events do not contribute

45

them. Hence, k represents an abstraction of scale (evolution rate) associated with processes

that generate topological (dynamic of the network) and interaction events (dynamic on the

network) respectively. We then represent complete set of P observed events ordered by

time in window [0, T] as O = {(u, v, t, k)p}Pp=1. Here, tp ∈ R+, 0 ≤ tp ≤ T . Appendix

B discusses a marked point process view of such an event set. Node Representation— Let

zv ∈ Rd represent d-dimensional representation of node v. As the representation evolve

over time, we qualify them as function of time: zv(t) — the representation of node v be-

ing updated after an event involving v at time t. We use zv(t̄) for most recently updated

embedding of node v just before t.

Dynamic Graph Setting. Let Gt0 = (Vt0 , Et0) be the initial snapshot of a graph at time

t0. Please note that Gt0 may be empty or it may contain an initial structure (association

edges) but it will not have any communication history. Our framework observes evolution

of graph as a stream of events O and hence any new node will always be observed as a

part of such an event. This will induce a natural ordering over nodes as available from the

data. As our method is inductive, we never learn node-specific representations and rather

learn functions to compute node representations. In this work, we only support growth of

network i.e. we only model addition of nodes and structural edges and leave deletion as

future work. Further, for general description of the model, we will assume that an edge in

the graph do not have types and nodes do not have attributes but we discuss the details on

how to use our model to accommodate these features in Appendix B.

4.3 Proposed Method: DyRep

The key idea of DyRep is to build a unified architecture that can ingest evolving information

over graphs and effectively model the evolution through mediation phenomenon described

in Section 1. To achieve this, we design a two-time scale temporal point process model

of observed processes and parameterize it with an inductive representation network which

subsequently models the latent mediation process of learning node representations. The

46

rationale behind our framework is that the observed set of events are the realizations of the

nonlinear dynamic processes governing the changes in topological structure of graph and

interactions between the nodes in the graph. Now, when an event is observed between two

nodes, information flows from the neighborhood of one node to the other and affects the

representations of the nodes accordingly. While a communication event (interaction) only

propagates local information across two nodes, an association event changes the topology

and thereby has more global effect. The goal is to learn node representations that encode

information evolving due to such local and global effects and further drive the dynamics of

the observed events.

4.3.1 Modeling Two-Time Scale Observed Graph Dynamics

The observations over dynamic graph contain temporal point patterns of two interleaved

complex processes in the form of communication and association events respectively. At

any time t, the occurrence of an event, from either of these processes, is dependent on

the most recent state of the graph, i.e., two nodes will participate in any event based on

their most current representations. Given an observed event p = (u, v, t, k), we define

a continuous-time deep model of temporal point process using the conditional intensity

function λu,vk (t) that models the occurrence of event p between nodes u and v at time t:

λu,vk (t) = fk(g
u,v
k (t̄)) (4.1)

where t̄ signifies the timepoint just before current event. The inner function gk(t̄) computes

the compatibility of the most recently updated representations of two nodes, zu(t̄) and zv(t̄)

as follows:

gu,vk (t̄) = ωTk · [zu(t̄); zv(t̄)] (4.2)

[;] signifies concatenation and ωk ∈ R2d serves as the model parameter that learns time-

scale specific compatibility. gk(t̄) is a function of node representations learned through a

47

representation network described in Section 3.2. This network parameterizes the intensity

function of the point process model which serves as a unifying factor. Note that the dy-

namics are not two simple point processes dependent on each other, but, they are related

through the mediation process and in the embedding space. Further, a well curated attention

mechanism is employed to learn how the past drives future.

The choice of outer function fk needs to account for two critical criteria: 1) Intensity

needs to be positive. 2) As mentioned before, the dynamics corresponding to communica-

tion and association processes evolve at different time scales. To account for this, we use a

modified version of softplus function parameterized by a dynamics parameter ψk to capture

this timescale dependence:

fk(x) = ψk log(1 + exp(x/ψk)) (4.3)

where, x = g(t̄) in our case and ψk(> 0) is scalar time-scale parameter learned as part

of training. ψk corresponds to the rate of events arising from a corresponding process. In

1D event sequences, the formulation in (4.3) corresponds to the nonlinear transfer function

in [108].

4.3.2 Learning latent Mediation Process Via Temporally Attentive Representation Network

We build a deep recurrent architecture that parameterizes the intensity function in Eq. (4.1)

and learns functions to compute node representations. Specifically, after an event has oc-

curred, the representation of both the participating nodes need to be updated to capture the

effect of the observed event based on the principles of:

Self-Propagation. Self-propagation can be considered as a minimal component of the

dynamics governing an individual node’s evolution. A node evolves in the embedded space

with respect to its previous position (e.g. set of features) and not in a random fashion.

48

Exogenous Drive. Some exogenous force may smoothly update the node’s current

features during the time interval (e.g. between two global events involving that node).

Localized Embedding Propagation. Two nodes involved in an event form a temporary

(communication) or a permanent (association) pathway for the information to propagate

from the neighborhood of one node to the other node. This corresponds to the influence

of the nodes at second-order proximity passing through the other node participating in the

event (See Appendix A for pictorial depiction).

To realize the above processes in our setting, we first describe an example setup: Con-

sider nodes u and v participating in any type of event at time t. Let Nu and Nv denote the

neighborhood of nodes u and v respectively. We discuss two key points here: 1) Node u

serves as a bridge passing information fromNu to node v and hence v receives the informa-

tion in an aggregated form through u. 2) While each neighbor of u passes its information

to v, the information that node u relays is governed by an aggregate function parametrized

by u’s communication and association history with its neighbors.

With this setup, for any event at time t, we update the embeddings for both nodes

involved in the event using a recurrent architecture. Specifically, for p-th event of node v,

we evolve zv as:

zv(tp) = σ(Wstructhustruct(t̄p)︸ ︷︷ ︸
Localized Embedding Propagation

+ Wreczv(t̄vp)︸ ︷︷ ︸
Self-Propagation

+ Wt(tp − t̄vp)︸ ︷︷ ︸
Exogenous Drive

), (4.4)

where, hustruct ∈ Rd is the output representation vectors obtained from aggregator function

on node u’s neighborhood and zv(t̄vp) is the recurrent state obtained from the previous rep-

resentation of node v. tp is time point of current event, t̄p signifies the timepoint just before

current event and t̄vp represent time point of previous event for node v. zv(t̄vp = 0), the initial

representation of a node v may be initialized either using input node features from dataset

or random vector as per the setting. Eq. 4 is a neural network based functional form pa-

rameterized by Wstruct,Wrec ∈ Rd×d and Wt ∈ Rd that govern the aggregate effect of all

49

the three inputs (graph structure, previous embedding and exogenous feature) respectively

to compute representations. The above formulation is inductive (supports unseen nodes)

and flexible (supports node and edge types) as discussed in Appendix B.

Temporally Attentive Aggregation

The Localized Embedding Propagation principle above captures rich structural properties

based on neighborhood structure which is a key to any representation learning task over

graphs. However, for a given node, not all of its neighbors are uniformly important and

hence it becomes extremely important to capture information from each neighbor in some

weighted fashion. Recently proposed attention mechanisms have shown great success in

dealing with variable sized inputs, focusing on the most relevant parts of the input to make

decisions. However, existing approaches consider attention as a static quantity. In dynamic

graphs, changing neighborhood structure and interaction activities between nodes evolves

importance of each neighbor to a node over time, thereby making attention itself a tem-

porally evolving quantity. Further this quantity is dependent on the temporal history of

association and communication of neighboring nodes through evolving representations. To

this end, we propose a novel Temporal Point Process based Attention Mechanism that uses

temporal information to compute the attention coefficient for a structural edge between

nodes. These coefficient are then used to compute the aggregate quantity (hstruct) required

for embedding propagation.

Let A(t) ∈ Rn×n be the adjacency matrix for graph Gt at time t. Let S(t) ∈ Rn×n

be a stochastic matrix capturing the strength between pair of vertices at time t. One can

consider S as a selection matrix that induces a natural selection process for a node – it

would tend to communicate more with other nodes that it wants to associate with or has

recently associated with. And it would want to attend less to non-interesting nodes. We

start with following implication required for the construction of hustruct in (4.4): For any

two nodes u and v at time t, Suv(t) ∈ [0, 1] if Auv(t) = 1 and Suv(t) = 0 if Auv(t) = 0.

50

Denote Nu(t) = {i : Aiu(t) = 1} as the 1-hop neighborhood of node u at time t.

To formally capture the difference in the influence of different neighbors, we propose a

novel conditional intensity based attention layer that uses the matrix S to induce a shared

attention mechanism to compute attention coefficients over neighborhood. Specifically, we

perform localized attention for a given node u and compute the coefficients pertaining to

the 1-hop neighbors i of node u as: qui(t) = exp(Sui(t̄))∑
i′∈Nu(t) exp(Sui′ (t̄))

, where qui signifies the

attention weight for the neighbor i at time t and hence it is a temporally evolving quantity.

These attention coefficients are then used to compute the aggregate information hustruct(t̄)

for node u by employing an attended aggregation mechanism across neighbors as follows:

hustruct(t̄) = max ({σ (qui(t) · hi(t̄)) ,∀i ∈ Nu(t̄)}), where, hi(t̄) = Whzi(t̄) + bh and

Wh ∈ Rd×d and bh ∈ Rd are parameters governing the information propagated by each

neighbor of u. zi(t̄) ∈ Rd is the most recent embedding for node i. The use of max operator

is inspired from learning on general point sets [121]. By applying max-pooling operator

element-wise, the model effectively captures different aspects of the neighborhood. We

found max to work slightly better as it considers temporal aspect of neighborhood which

would be amortized if mean is used instead.

Connection to Neural Attention over Graphs. Our proposed temporal attention layer

shares the motivation of recently proposed Graph Attention Networks (GAT) [122] and

Gated Attention Networks (GaAN) [123] in the spirit of applying non-uniform attention

over neighborhood. Both GAT and GaAN have demonstrated significant success in static

graph setting. GAT advances GraphSage [18] by employing multi-head non-uniform atten-

tion over neighborhood and GaAN advances GAT by applying different weights to different

heads in the multi-head attention formulation. The key innovation in our model is the pa-

rameterization of attention mechanism by a point process based temporal quantity S that

is evolving and drives the impact that each neighbor has on the given node. Further, un-

like static methods, we use these attention coefficients as input to the aggregator function

51

Algorithm 3 Update Algorithm for S and A

Input: Event record o = (u, v, t, k), Event Intensity λu,vk (t) computed in (4.1), most
recently updated A(t̄) and S(t̄). Output: A(t) and S(t)

1. Update A : A(t) = A(t̄)
if k = 0 then Auv(t) = Avu(t) = 1 . Association event

2. Update S : S(t) = S(t̄)
if k = 1 and Auv(t) = 0 return S(t),A(t) . Communication event, no Association
exists
for j ∈ {u, v} do

b = 1
|Nj(t)| where |Nj(t)| is the size of Nj(t) = {i : Aij(t) = 1}

y← Sj(t)
if k = 1 and Auv(t) = 1 then . Communication event, Association exists

yi = b+ λjik (t) where i is the other node involved in the event. . λ from Eq. 2
else if k = 0 and Auv(t) = 0 then . Association event

b′ = 1
|Nj(t̄)| where |Nj(t̄)| is the size of Nj(t̄) = {i : Aij(t̄) = 1}

x = b′ − b
yi = b+ λjik (t) where i is the other node involved in the event . λ from Eq. 2
yw = yw − x; ∀w 6= i, yw 6= 0

end if
Normalize y and set Sj(t)← y

end for
return S(t),A(t)

for computing the temporal-structural effect of neighborhood. Finally, static methods use

multi-head attention to stabilize learning by capturing multiple representation spaces but

this is an inherent property in our layer as representations and event intensities update over

time and hence new events help capture multiple representation spaces.

Construction and Update of S. We construct a single stochastic matrix S (used to

parameterize attention in the earlier section) to capture complex temporal information. At

the initial timepoint t = t0, we construct S(t0) directly from A(t0). Specifically, for a given

node v, we initialize the elements of corresponding row vector Sv(t0) as: Svu(t0) = 0 if

(v = u or Avu(t0) = 0) and Svu(t0) = 1
|Nv(t0)| if Nv(t0) = {u : Auv(t0) = 1}.

After observing an event o = (u, v, t, k) at time t > t0, we make updates to A and S

as per the observation of k. Specifically, A only gets updated for association events (k=0,

52

change in structure). Note that S is parameter for a structural temporal attention which

means temporal attention is only applied on structural neighborhood of a node. Hence, the

values of S are only updated/active in two scenarios: a) the current event is an interaction

between nodes which already has structural edge (Auv(t) = 1 and k = 1) and b) the current

event is an association event (k = 0). Given a neighborhood of node u, b represents back-

ground (base) attention for each edge which is uniform attention based on neighborhood

size. Whenever an event involving u occurs, this attention changes in following ways: For

case (a), the attention value for corresponding S entries are updated using the intensity of

the event. For case (b), repeat same as (a) but also adjust the background attention (by

b − b′, b and b′ being the new and old background attention respectively) for edge with

other neighbors as the neighborhood size grows in this case. From mathematical view-

point, this update resembles a standard temporal point process formulation where the term

coming from b serves as background attention while λ can be viewed as endogenous inten-

sity based attention. Algorithm 7 outlines complete update scenarios. In the directed graph

case, updates to A will not be symmetric, which will subsequently affect the neighborhood

structure and attention flow for a node. Appendix A provides a pictorial depiction of the

complete DyRep framework discussed in this section. We provide an extensive ablation

study in Appendix C that can help discern the contribution of all the above components in

achieving our goal.

4.4 Efficient Learning Procedure

The complete parameter space for the current model is Ω = {Wstruct,Wrec,Wt,Wh,bh,

{ωk}k=0,1, {ψk}k=0,1}. For a set O of P observed events, we learn these parameters by

minimizing the negative log likelihood: L = −
∑P

p=1 log (λp(t)) +
∫ T

0
Λ(τ)dτ , where

λp(t) = λ
up,vp
kp

(t) represent the intensity of event at time t and Λ(τ) =
∑n

u=1

∑n
v=1

∑
k∈{0,1} λ

u,v
k (τ)

represent total survival probability for events that do not happen. While it is intractable

(will require O(n2k) time) and unnecessary to compute the integral in the log-likelihood

53

equation for all possible non-events in a stochastic setting, we can locally optimize L using

mini-batch stochastic gradient descent where we estimate the integral using novel sam-

pling technique. Algorithm 6 in Appendix H adopts a simple variant of Monte Carlo trick

to compute the survival term of log-likelihood equation. Specifically, in each mini-batch,

we sample non-events instead of considering all pairs of non-events (which can be mil-

lions). Let m be the mini-batch size and N be the number of samples. The complexity of

Algorithm 6 will then beO(2mkN) for the batch where the factor of 2 accounts for the up-

date happening for two nodes per event which demonstrates linear scalability in number of

events which is desired to tackle web-scale dynamic networks [124]. The overall training

procedure is adopted from [28] where the Backpropagation Through Time (BPTT) training

is conducted over a global sequence, thereby maintaining the dependencies between events

across sequences while avoiding gradient related issues. Implementation details are left to

Appendix G.

4.5 Experiments

4.5.1 Datasets

We evaluate DyRep and baselines on two real world datasets: Social Evolution Dataset

released by MIT Human Dynamics Lab — #nodes: 83, #Initial Associations: 376, #Final

Associations: 791, #Communications: 2016339 and Clustering Coefficient: 0.548. Github

Dataset available at Github Archive — #nodes: 12328, #Initial Associations: 70640, #Fi-

nal Associations: 166565, #Communications: 604649 and Clustering Coefficient: 0.087.

These datasets cover a range of configurations as Social Dataset is a small network with

high clustering coefficient and over 2M events. In contrast, Github dataset forms a large

network with low clustering coefficient and sparse events thus allowing us to test the ro-

bustness of our model. Further, Github dataset contains several unseen nodes which were

never encountered during training.

54

4.5.2 Tasks and Metrics

We study the effectiveness of DyRep by evaluating our model on tasks of dynamic link

prediction and event time prediction tasks:

Dynamic Link Prediction. When any two nodes in a graph has increased rate of

interaction events, they are more likely to get involved in further interactions and eventually

these interactions may lead to the formation of structural link between them. Similarly,

formation of the structural link may lead to increased likelihood of interactions between

newly connected nodes. To understand, how well our model captures these phenomenon,

we ask questions like: Which is the most likely node u that would undergo an event with a

given node v governed by dynamics k at time t? The conditional density of such and event

at time t can be computed: fu,vk (t) = λu,vk (t) · exp
(∫ t

t̄
λ(s)ds

)
, where t̄ is the time of the

most recent event on either dimension u or v. We use this conditional density to find most

likely node.

For a given test record (u, v, t, k), we replace v with other entities in the graph and

compute the density as above. We then rank all the entities in descending order of the

density and report the rank of the ground truth entity. Please note that the latest embeddings

of the nodes update even during the test while the parameters of the model remaining fixed.

Hence, when ranking the entities, we remove any entities that creates a pair already seen in

the test. We report Mean Average Rank (MAR) and HITS(@10) metric for dynamic link

prediction.

Event Time Prediction. This is a relatively novel application where the aim is to

compute the next time point when a particular type of event (structural or interaction) can

occur. Given a pair of nodes (u, v) and event type k at time t, we use the above density

formulation to compute conditional density at time t. The next time point t̂ for the event

can then be computed as: t̂ =
∫∞
t
tfu,vk (t)dt where the integral does not have an analytic

form and hence we estimate it using Monte Carlo trick. For a given test record (u, v, t, k),

we compute the next time this communication event may occur and report Mean Absolute

55

Table 4.1: Comparison of DyRep with state-of-the-art approaches

Key DyRep Know-Evolve DynGem GraphSage GAT
Properties (Our Method) (Dynamic) (Dynamic) (Static) (Static)

Models Association X X X X X
Models Communication X X X X X

Models Time X X X X X
Learns Representation X X X X X

Predicts Time X X X X X
Graph Information 2nd-order Single 1st and 2nd-order 2nd-order 1st-order

Neighborhood Edge Neighborhood Neighborhood Neighborhood
Attention Mechanism Temporal Point Process None None Sampling Multi-head

(Non-Uniform) (Uniform) (Non-Uniform)
Learning Unsupervised Unsupervised Semi-Supervised Unsupervised Supervised

Error (MAE) against the ground truth.

4.5.3 Baselines

Dynamic Link Prediction. We compare the performance of our model against mul-

tiple representation learning baselines, four of which has capability to model evolving

graphs. Specifically, we compare with Know-Evolve [28]— a state-of-the-art model for

multi-relational dynamic graphs where each edge has time-stamp and type (communica-

tion events), DynGem [39]—divides timeline into discrete time points and learns em-

bedding for the graph snapshots at these time points. DynTrd [40] focuses on specific

structure of triad to model how close triads are formed from open triads in dynamic net-

works. GraphSage [18]— an inductive representation learning method that learns sam-

ple and aggregation functions to learn representations instead of training for individual

node. Node2Vec [89]—simple transductive baseline to learn graph embeddings over static

graphs. Table 4.1 provides qualitative comparison between state-of-the-art methods and our

framework. In our experiments, we compare with GraphSage instead of GAT as we share

the unsupervised setting with GraphSage while GAT is designed for supervised learning.

In Appendix A (Ablation studies), we show results on one version where we only update

attention based on Association events which is temporal analogous to GAT.

Event Time Prediction. We compare our model against (i) Know-Evolve which has the

ability to predict time in a multi-relational dynamic graphs (II) Multi-dimensional Hawkes

56

Process (MHP) [42] model where all events in graph are considered as dyadic.

4.5.4 Evaluation Scheme

We divide our test sets into n(= 6) slots based on time and report the performance for each

time slot, thus providing comprehensive temporal evaluation of different methods. This

method of reporting is expected to provide fine-grained insights on how various methods

perform over time as they move farther from the learned training history. For dynamic base-

lines that do not explicitly model time (DynGem, DynTrd, GraphSage) and static baselines

(Node2Vec), we adopt a sliding window training approach with warm-start method where

we learn on initial train set and test for the first slot. Then we add the data from first slot in

the train set and remove equal amount of data from start of train set and retrain the model

using the embeddings from previous train.

4.5.5 Experimental Results

Communication Event Prediction Performance. We first consider the task of predict-

ing communication events between nodes which may or may not have a permanent edge

(association) between them. Figure 4.2 (a-b) shows corresponding results.

Social Evolution. Our method significantly and consistently outperforms all the base-

lines on both metrics. While the performance of our method drops a little over time, it

is expected due to the temporal recency affect on node’s evolution. Know-Evolve can

capture event dynamics well and shows consistently better rank than others but its perfor-

mance deteriorates significantly in HITS@10 metric over time. We conjecture that features

learned through edge-level modeling limits the predictive capacity of the method over time.

The inability of DynGem (snapshot based dynamic), DynTrd and GraphSage (inductive)

to significantly outperform Node2vec (transductive static baseline) demonstrate that dis-

crete time snapshot based models fail to capture fine-grained dynamics of communication

events.

57

0

20

40

60

1 2 3 4 5 6
Time_Slot

M
AR

DynGem
DynTrd

DyRep
GraphSage

Know-Evolve
Node2Vec

11.0773
13.4774

42.5548 42.74

19.0348

40.5741

0

10

20

30

40

50

Methods

M
AR

DyRep
Know-Evolve

DynGem
DynTrd

GraphSage
Node2Vec

3500

4000

4500

1 2 3 4 5 6
Time_Slot

M
AR

DynGem
DynTrd

DyRep
GraphSage

Know-Evolve
Node2Vec

2722.81
3007.0233

3762.024

4149.9546

3124.5371

4202.606

0

1000

2000

3000

4000

Methods

M
AR

DyRep
Know-Evolve

DynGem
DynTrd

GraphSage
Node2Vec

(a) Social (Communication) (b) Social (Association) (c) Github (Communication) (c) Github (Association)

Figure 4.2: Dynamic Link Prediction Performance for (a-b) Social Evolution Dataset (c-d)
Github Dataset. We report HITS@10 results and zoomed versions in Appendix E. Best
viewed in pdf.

0

500

1000

1500

1 2 3 4 5 6
Time_Slot

M
AE

DyRep Know-Evolve MHP

0

500

1000

1500

2000

2500

1 2 3 4 5 6
Time_Slot

M
AE

DyRep Know-Evolve MHP

23.4448
129.2163

1179.6804

0

500

1000

1500

Methods

M
AE

Method
DyRep
Know-Evolve
MHP

110.3168
301.4191

1917.2893

0

500

1000

1500

2000

Methods

M
AE

Method
DyRep
Know-Evolve
MHP

(a) Social Evolution (b) Github (c) Social Evolution (d) Github

Figure 4.3: Time Prediction Performance (unit is hrs). Figure best viewed in pdf or
colored print.

Github dataset. We demonstrate comparable performance with both Know-Evolve

and GraphSage on Rank metric. We would like to note that overall performance for all

methods on rank metric is low. As we reported earlier, Github dataset is very sparse with

very low clustering coefficient which makes it a challenging dataset to learn. It is expected

that for a large number of nodes with no communication history, most of the methods

will show comparable performance but our method outperforms all others when there is

some history available. This is demonstrated by our significantly better performance for

HITS@10 metric where we are able to do highly accurate prediction for nodes where we

learn better history. This can also be attributed to our model’s ability to capture the effect

of evolving topology which is missed by Know-Evolve. Finally, we do not see significant

decrease in performance of any method over time in this case which can again be attributed

to roughly uniform distribution of nodes with no communication history across time slots.

Association Event Prediction Performance. Association events are not available for

all time slots so Figure 4.2 (c-d) report the aggregate number for this task. For both the

datasets, our model significantly outperforms the baselines for this task. Specifically, our

58

100 75 50 25 0 25 50 75
100

75

50

25

0

25

50

75

100

100 75 50 25 0 25 50 75

75

50

25

0

25

50

75

20 10 0 10 20

10

0

10

20

19
26

20 10 0 10 20

20

15

10

5

0

5

10

15
19

26

(a) DyRep Embeddings (b) GraphSage Embeddings (c) DyRep Embeddings (d) GraphSage Embeddings

Figure 4.4: tSNE for learned embeddings after training. Figure best viewed in color.

model’s strong performance on HITS@10 metric across both datasets demonstrates its ro-

bustness in accurate learning from various properties of data. On Social evolution dataset,

the number of association events are very small (only 485) and hence our strong perfor-

mance shows that the model is able to capture the influence of communication events on the

association events through the learned representations (mediation). On the Github dataset,

the network grows through new nodes and our model’s strong performance across both

metric demonstrates its inductive ability to generalize across new nodes across time. An

interesting observation was poor performance of DynTrd which seems to be due to its ob-

jective to complete triangles. Github dataset is very sparse and has very few possibilities

for triadic closure.

Time Prediction Performance. Figure 4.3 demonstrates consistently better perfor-

mance than state-of-the-art baseline for event time prediction on both datasets. While

Know-Evolve models both processes as two different relations between entities, it does

not explicitly capture the variance in the time scales of two processes. Further, Know-

Evolve does not consider influence of neighborhood which may lead to capturing weaker

temporal-structural dynamics across the graph. MHP uses specific parametric intensity

function which fails to account for intricate dependencies across graph.

Qualitative Performance. We conducted a series of qualitative analysis to understand

the discriminative power of evolving embeddings learned by DyRep. We compare our em-

beddings against GraphSage embeddings as it is state-of-the-art embedding method that is

also inductive. Figure 4.4 (a-b) shows the tSNE embeddings learned by Dyrep (left) and

GraphSage (right) respectively. The visualization demonstrates that DyRep embeddings

59

have more discriminative power as it can effectively capture the distinctive and evolving

structural features over time as aligned with empirical evidence. Figure 4.4 (c-d) shows use

case of two associated nodes (19 and 26) that has persistent edge but less communication

for above two methods. DyRep keeps the embeddings nearby although not in same cluster

(cos. dist. - 0.649) which demonstrates its ability to learn the association and less com-

munication dynamics between two nodes. For GraphSage the embeddings are on opposite

ends of cluster with (cos. dist. - 1.964). We provide more analysis in Appendix D.

4.6 Summary

We introduced a novel modeling framework for dynamic graphs that effectively and effi-

ciently learns node representations by posing representation learning as latent mediation

process bridging dynamic processes of topological evolution and node interactions. We

proposed a deep temporal point process model parameterized by temporally attentive repre-

sentation network that models these complex and nonlinearly evolving dynamic processes

and learns to encode structural-temporal information over graph into low dimensional rep-

resentations. Our superior evaluation performance demonstrates the effectiveness of our

approach compared to state-of-the-art methods. We present this work as the first generic

and unified representation learning framework that adopts a novel modeling paradigm for

dynamic graphs and support wide range of dynamic graph characteristics which can poten-

tially have many exciting adaptations. As a part of our framework, we also propose a novel

temporal point process based attention mechanism that can attend over neighborhood based

on the history of communications and association events in the graph. Currently, DyRep

does not support network shrinkage due to following reasons: (i) It is difficult to procure

data with fine grained deletion time stamps and (ii) The temporal point process model re-

quires more sophistication to support deletion. For example, one can augment the model

with a survival process formulation to account for lack of node/edge at future time. Another

interesting future direction could be to support encoding higher order dynamic structures.

60

CHAPTER 5

TEMPORAL REASONING OVER DYNAMIC KNOWLEDGE

The availability of large scale event data with time stamps has given rise to dynamically

evolving knowledge graphs that contain temporal information for each edge. Reasoning

over time in such dynamic knowledge graphs is not yet well understood. To this end,

we present Know-Evolve, a novel deep evolutionary knowledge network that learns non-

linearly evolving entity representations over time. The occurrence of a fact (edge) is mod-

eled as a multivariate point process whose intensity function is modulated by the score for

that fact computed based on the learned entity embeddings. We demonstrate significantly

improved performance over various relational learning approaches on two large scale real-

world datasets. Further, our method effectively predicts occurrence or recurrence time of a

fact which is novel compared to prior reasoning approaches in multi-relational setting.

5.1 Introduction

Reasoning is a key concept in artificial intelligence. A host of applications such as search

engines, question-answering systems, conversational dialogue systems, and social net-

works require reasoning over underlying structured knowledge. Effective representation

and learning over such knowledge has come to the fore as a very important task. In par-

ticular, Knowledge Graphs have gained much attention as an important model for studying

complex multi-relational settings. Traditionally, knowledge graphs are considered to be

static snapshot of multi-relational data. However, recent availability of large amount of

event based interaction data that exhibits complex temporal dynamics in addition to its

multi-relational nature has created the need for approaches that can characterize and rea-

son over temporally evolving systems. For instance, GDELT [125] and ICEWS [126]

are two popular event based data repository that contains evolving knowledge about entity

61

Figure 5.1: Sample temporal knowledge subgraph between persons, organizations and
countries.

interactions across the globe.

Thus traditional knowledge graphs need to be augmented into Temporal Knowledge

Graphs, where facts occur, recur or evolve over time in these graphs, and each edge in the

graphs have temporal information associated with it. Figure 5.1 shows a subgraph snapshot

of such temporal knowledge graph. Static knowledge graphs suffer from incompleteness

resulting in their limited reasoning ability. Most work on static graphs have therefore fo-

cussed on advancing entity-relationship representation learning to infer missing facts based

on available knowledge. But these methods lack ability to use rich temporal dynamics

available in underlying data represented by temporal knowledge graphs.

Effectively capturing temporal dependencies across facts in addition to the relational

(structural) dependencies can help improve the understanding on behavior of entities and

how they contribute to generation of facts over time. For example, one can precisely answer

questions like:

• Object prediction. (Who) will Donald Trump mention next?

• Subject prediction. (Which country) will provide material support to US next month?

• Time prediction. (When) will Bob visit Burger King?

”People (entities) change over time and so do relationships.” When two entities forge

a relationship, the newly formed edge drives their preferences and behavior. This change

62

is effected by combination of their own historical factors (temporal evolution) and their

compatibility with the historical factors of the other entity (mutual evolution).

For instance, if two countries have tense relationships, they are more likely to engage

in conflicts. On the other hand, two countries forging an alliance are most likely to take

confrontational stands against enemies of each other. Finally, time plays a vital role in this

process. A country that was once peaceful may not have same characteristics 10 years in

future due to various facts (events) that may occur during that period. Being able to capture

this temporal and evolutionary effects can help us reason better about future relationship of

an entity. We term this combined phenomenon of evolving entities and their dynamically

changing relationships over time as “knowledge evolution”.

In this paper, we propose an elegant framework to model knowledge evolution and

reason over complex non-linear interactions between entities in a multi-relational setting.

The key idea of our work is to model the occurrence of a fact as multidimensional temporal

point process whose conditional intensity function is modulated by the relationship score

for that fact. The relationship score further depends on the dynamically evolving entity

embeddings. Specifically, our work makes the following contributions:

• We propose a novel deep learning architecture that evolves over time based on avail-

ability of new facts. The dynamically evolving network will ingest the incoming new

facts, learn from them and update the embeddings of involved entities based on their

recent relationships and temporal behavior.

• Besides predicting the occurrence of a fact, our architecture has ability to predict

time when the fact may potentially occur which is not possible by any prior relational

learning approaches to the best of our knowledge.

• Our model supports Open World Assumption as missing links are not considered to be

false and may potentially occur in future. It further supports prediction over unseen

entities due to its novel dynamic embedding process.

63

• The large-scale experiments on two real world datasets show that our framework has

consistently and significantly better performance for link prediction than state-of-arts

that do not account for temporal and evolving non-linear dynamics.

• Our work aims to introduce the use of powerful mathematical tool of temporal point

process framework for temporal reasoning over dynamically evolving knowledge

graphs. It has potential to open a new research direction in reasoning over time

for various multi-relational settings with underlying spatio-temporal dynamics.

5.2 Preliminaries

5.2.1 Temporal Point Process

A temporal point process [127] is a random process whose realization consists of a list of

events localized in time, {ti} with ti ∈ R+. Equivalently, a given temporal point process

can be represented as a counting process, N(t), which records the number of events before

time t.

An important way to characterize temporal point processes is via the conditional inten-

sity function λ(t), a stochastic model for the time of the next event given all the previous

events. Formally, λ(t)dt is the conditional probability of observing an event in a small

window [t, t+ dt) given the history T (t) := {tk|tk < t} up to t, i.e.,

λ(t)dt := P {event in [t, t+ dt)|T (t)}

= E[dN(t)|T (t)]

(5.1)

where one typically assumes that only one event can happen in a small window of size dt,

i.e., dN(t) ∈ {0, 1}.

From the survival analysis theory [111], given the history T = {t1, . . . , tn}, for any

t > tn, we characterize the conditional probability that no event happens during [tn, t) as

S(t|T) = exp
(
−
∫ t
tn
λ(τ) dτ

)
. Moreover, the conditional density that an event occurs at

64

time t is defined as :

f(t) = λ(t)S(t) (5.2)

The functional form of the intensity λ(t) is often designed to capture the phenomena of

interests. Some Common forms include: Poisson Process, Hawkes processes [113], Self-

Correcting Process [116], Power Law and Rayleigh Process.

Rayleigh Process is a non-monotonic process and is well-adapted to modeling fads,

where event likelihood drops rapidly after rising to a peak. Its intensity function is λ(t) =

α · (t), where α > 0 is the weight parameter, and the log survival function is logS(t|α) =

−α · (t)2/2.

5.2.2 Temporal Knowledge Graph representation

We define a Temporal Knowledge Graph (TKG) as a multi-relational directed graph with

timestamped edges between any pair of nodes. In a TKG, each edge between two nodes

represent an event in the real world and edge type (relationship) represent the corresponding

event type. Further an edge may be available multiple times (recurrence). We do not allow

duplicate edges and self-loops in graph. Hence, all recurrent edges will have different time

points and every edge will have distinct subject and object entities.

Given ne entities and nr relationships, we extend traditional triplet representation for

knowledge graphs to introduce time dimension and represent each fact in TKG as a quadru-

plet (es, r, eo, t), where es, eo ∈ {1, . . . , ne}, es 6= eo, r ∈ {1, . . . , nr}, t ∈ R+. It repre-

sents the creation of relationship edge r between subject entity es, and object entity eo at

time t. The complete TKG can therefore be represented as an ne × ne × nr × T - di-

mensional tensor where T is the total number of available time points. Consider a TKG

comprising of N edges and denote the globally ordered set of corresponding N observed

events as D = {(es, r, eo, t)n}Nn=1, where 0 ≤ t1 ≤ t2 . . . ≤ T .

65

5.3 Evolutionary Knowledge Network

We present our unified knowledge evolution framework (Know-Evolve) for reasoning over

temporal knowledge graphs. The reasoning power of Know-Evolve stems from the follow-

ing three major components:

1. A powerful mathematical tool of temporal point process that models occurrence of a

fact.

2. A bilinear relationship score that captures multi-relational interactions between enti-

ties and modulates the intensity function of above point process.

3. A novel deep recurrent network that learns non-linearly and mutually evolving latent

representations of entities based on their interactions with other entities in multi-

relational space over time.

5.3.1 Temporal Process

Large scale temporal knowledge graphs exhibit highly heterogeneous temporal patterns of

events between entities. Discrete epoch based methods to model such temporal behavior

fail to capture the underlying intricate temporal dependencies. We therefore model time as

a random variable and use temporal point process to model occurrence of fact.

More concretely, given a set of observed events O corresponding to a TKG, we con-

struct a relationship-modulated multidimensional point process to model occurrence of

these events. We characterize this point process with the following conditional intensity

function:

λe
s,eo

r (t|t̄) = f(ge
s,eo

r (t̄)) ∗ (t− t̄) (5.3)

where t > t̄, t is the time of the current event and t̄ = max(te
s−, teo−) is the most recent

time point when either subject or object entity was involved in an event before time t. Thus,

λe
s,eo

r (t|t̄) represents intensity of event involving triplet (es, r, ej) at time t given previous

66

time point t̄ when either es or eo was involved in an event. This modulates the intensity of

current event based on most recent activity on either entities’ timeline and allows to capture

scenarios like non-periodic events and previously unseen events. f(·) = exp(·) ensures that

intensity is positive and well defined.

5.3.2 Relational Score Function

The first term in (5.3) modulates the intensity function by the relational compatibility

score between the involved entities in that specific relationship. Specifically, for an event

(es, r, eo, t) ∈ D occurring at time t, the score term ge
s,eo

r is computed using a bilinear

formulation as follows:

ge
s,eo

r (t) = ves(t−)T ·Rr · veo(t−) (5.4)

where ves , ves ∈ Rd represent latent feature embeddings of entities appearing in subject

and object position respectively. Rr ∈ Rd×d represents relationship weight matrix which

attempts to capture interaction between two entities in the specific relationship space r.

This matrix is unique for each relation in dataset and is learned during training. t is time of

current event and t− represent time point just before time t. ves(t−) and veo(t−), therefore

represent most recently updated vector embeddings of subject and object entities respec-

tively before time t. As these entity embeddings evolve and update over time, ges,eor (t) is

able to capture cumulative knowledge learned about the entities over the history of events

that have affected their embeddings.

5.3.3 Dynamically Evolving Entity Representations

We represent latent feature embedding of an entity e at time t with a low-dimensional

vector ve(t). We add superscript s and o as shown in Eq. (5.4) to indicate if the embedding

corresponds to entity in subject or object position respectively. We also use relationship-

67

Figure 5.2: Realization of Evolutionary Knowledge Network Architecture over a timeline.
Here t′′, t′ and t may or may not be consecutive time points. We focus on the event at time
point t and show how previous events affected the embeddings of entities involved in this
event. From Eq. (5.5) and (5.6), tp−1 = t′ and tq−1 = t′′ respectively. tesprev, t

eo

prev represent
previous time points in history before t′, t′′. hother stands for hidden layer for the entities

(other than the ones in focus) involved in events at t′ and t′′. resprev = r2 and reoprev = r1. All
other notations mean exactly as defined in text. We only label nodes, edges and

embeddings directly relevant to event at time t for clarity.

(a) Intensity Computation at time t (c) Entity Embedding update after event observed at time t

Figure 5.3: One step visualization of Know-Evolve computations done in Figure 5.2 after
observing an event at time t. (Best viewed in color)

specific low-dimensional representation for each relation type.

The latent representations of entities change over time as entities forge relationships

with each other. We design novel deep recurrent neural network based update functions

to capture mutually evolving and nonlinear dynamics of entities in their vector space rep-

resentations. We consider an event m = (es, r, eo, t)m ∈ D occurring at time t. Also,

consider that event m is entity es’s p-th event while it is entity eo’s q-th event. As entities

participate in events in a heterogeneous pattern, it is less likely that p = q although not im-

possible. Having observed this event, we update the embeddings of two involved entities

as follows:

68

Subject Embedding:

ves(tp) = σ(Ws
t(tp − tp−1) + Whh · hes(tp−))

hes(tp−) = σ(Wh · [ves(tp−1)⊕ veo(tp−)⊕ re
s

p−1])

(5.5)

Object Embedding:

veo(tq) = σ(Wo
t (tq − tq−1) + Whh · heo(tq−))

heo(tq−) = σ(Wh · [veo(tq−1)⊕ ves(tq−)⊕ re
o

q−1])

(5.6)

where, ves , veo ∈ Rd. tp = tq = tm is the time of observed event. For subject embed-

ding update in Eq. (5.5), tp−1 is the time point of the previous event in which entity es

was involved. tp− is the timepoint just before time tp. Hence, ves(tp−1) represents latest

embedding for entity es that was updated after (p − 1)-th event for that entity. veo(tp−)

represents latest embedding for entity eo that was updated any time just before tp = tm.

This accounts for the fact that entity eo may have been involved in some other event during

the interval between current (p) and previous (p−1) event of entity es. re
s

p−1 ∈ Rc represent

relationship embedding that corresponds to relationship type of the (p−1)-th event of entity

es. Note that the relationship vectors are static and do not evolve over time. hes(tp−) ∈ Rd

is the hidden layer. The semantics of notations apply similarly to object embedding update

in Eq. (5.6).

Ws
t,W

o
t ∈ Rd×1, Whh ∈ Rd×l and Wh ∈ Rl×(2d+c) are weight parameters in network

learned during training. Ws
t,W

o
t captures variation in temporal drift for subject and object

respectively. Whh is shared parameter that captures recurrent participation effect for each

entity. Wh is a shared projection matrix applied to consider the compatibility of entities

in their previous relationships. ⊕ represent simple concatenation operator. σ(·) denotes

nonlinear activation function (tanh in our case). Our formulations use simple RNN units

but it can be replaced with more expressive units like LSTM or GRU in straightforward

69

manner. In our experiments, we choose d = l and d 6= c but they can be chosen differently.

Below we explain the rationales of our deep recurrent architecture that captures nonlinear

evolutionary dynamics of entities over time.

Reasoning Based on Structural Dependency: The hidden layer (hes) reasons for an

event by capturing the compatibility of most recent subject embedding with most recent

object embedding in previous relationship of subject entity. This accounts for the behavior

that within a short period of time, entities tend to form relationships with other entities that

have similar recent actions and goals. This layer thereby uses historical information of the

two nodes involved in current event and the edges they both created before this event. This

holds symmetrically for hidden layer (heo).

Reasoning based on Temporal Dependency: The recurrent layer uses hidden layer in-

formation to model the intertwined evolution of entity embeddings over time. Specifically

this layer has two main components:

• Drift over time: The first term captures the temporal difference between consecutive

events on respective dimension of each entity. This captures the external influences

that entities may have experienced between events and allows to smoothly drift their

features over time. This term will not contribute anything in case when multiple

events happen for an entity at same time point (e.g. within a day in our dataset).

While tp− tp−1 may exhibit high variation, the corresponding weight parameter will

capture these variations and along with the second recurrent term, it will prevent

ves(tp) to collapse.

• Relation-specific Mutual Evolution: The latent features of both subject and object

entities influence each other. In multi-relational setting, this is further affected by the

relationship they form. Recurrent update to entity embedding with the information

from the hidden layer allows to capture the intricate non-linear and evolutionary dy-

namics of an entity with respect to itself and the other entity in a specific relationship

70

space.

5.3.4 Understanding Unified View of Know-Evolve

Figure (5.2) and Figure (5.3) shows the architecture of knowledge evolution framework and

one step of our model.

The updates to the entity representations in Eq. (5.5) and (5.6) are driven by the events

involving those entities which makes the embeddings piecewise constant i.e. an entity

embedding remains unchanged in the duration between two events involving that entity

and updates only when an event happens on its dimension. This is justifiable as an entity’s

features may update only when it forges a relationship with other entity within the graph.

Note that the first term in Eq. (5.5) and (5.6) already accounts for any external influences.

Having observed an event at time t, Know-Evolve considers it as an incoming fact that

brings new knowledge about the entities involved in that event. It computes the intensity

of that event in Eq. (5.3) which is based on relational compatibility score in Eq. (5.4) be-

tween most recent latent embeddings of involved entities. As these embeddings are piece-

wise constant, we use time interval term (t − t̄) in Eq. (5.3) to make the overall intensity

piecewise linear which is standard mathematical choice for efficient computation in point

process framework. This formulation naturally leads to Rayleigh distribution which mod-

els time interval between current event and most recent event on either entities’ dimension.

Rayleigh distribution has an added benefit of having a simple analytic form of likelihood

which can be further used to find entity for which the likelihood reaches maximum value

and thereby make precise entity predictions.

5.4 Efficient Training Procedure

The complete parameter space for the above model is:

Ω = {{Ve}e=1:ne , {Rr}r=1:nr ,We,W
s
t,W

o
t ,W

h,

Whh,Wr}. Although Know-Evolve gains expressive power from deep architecture, Table

71

4 (Appendix D) shows that the memory footprint of our model is comparable to simpler

relational models. The intensity function in (5.3) allows to use maximum likelihood esti-

mation over all the facts as our objective function. Concretely, given a collection of facts

recorded in a temporal window [0, T), we learn the model by minimizing the joint negative

log likelihood of intensity function [128] written as:

L = −
N∑
p=1

log
(
λe

s,eo

r (tp|t̄p)
)

︸ ︷︷ ︸
happened events

+
nr∑
r=1

ne∑
es=1

ne∑
eo=1

∫ T

0

λe
s,eo

r (τ |τ̄) dτ︸ ︷︷ ︸
survival term

(5.7)

The first term maximizes the probability of specific type of event between two entities; the

second term penalizes non-presence of all possible types of events between all possible en-

tity pairs in a given observation window. We use Back Propagation Through Time (BPTT)

algorithm to train our model. Previous techniques [107, 129] that use BPTT algorithm

decompose data into independent sequences and train on mini-batches of those sequences.

But there exists intricate relational and temporal dependencies between data points in our

setting which limits our ability to efficiently train by decomposing events into independent

sequences. To address this challenge, we design an efficient Global BPTT algorithm (Al-

gorithm 2, Appendix A) that creates mini-batches of events over global timeline in sliding

window fashion and allows to capture dependencies across batches while retaining effi-

ciency.

Intractable Survival Term. To compute the second survival term in (5.7), since our in-

tensity function is modulated by relation-specific parameter, for each relationship we need

to compute survival probability over all pairs of entities. Next, given a relation r and entity

pair (es, eo), we denote P(es,eo) as total number of events of type r involving either es or eo

in window [T0, T). As our intensity function is piecewise-linear, we can decompose the

72

integration term−
∫ T
T0
λe

s,eo

r (τ |τ̄)dτ into multiple time intervals where intensity is constant:

∫ T

T0

λe
s,eo

r (τ |τ̄)dτ

=

P(es,eo)−1∑
p=1

∫ tp+1

tp

λe
s,eo

r (τ |τ̄)dτ

=

P(es,eo)−1∑
p=1

(t2p+1 − t2p) · exp(ves(tp)
T ·Rr · veo(tp)) (5.8)

The integral calculations in (5.8) for all possible triplets requires O(n2r) computations

(n is number of entities and r is the number of relations). This is computationally in-

tractable and also unnecessary. Knowledge tensors are inherently sparse and hence it is

plausible to approximate the survival loss in a stochastic setting. We take inspiration from

techniques like noise contrastive [130] estimation and adopt a random sampling strategy to

compute survival loss: Given a mini-batch of events, for each relation in the mini-batch,

we compute dyadic survival term across all entities in that batch. Algorithm 6 presents the

survival loss computation procedure. While this procedure may randomly avoid penalizing

some dimensions in a relationship, it still includes all dimensions that had events on them.

The computational complexity for this procedure will be O(2n′r′m) where m is size of

mini-batch and n′ and r′ represent number of entities and relations in the mini-batch.

5.5 Experiments

200

500

1000

2000

2 4 6 8 10 12 14 16 18 20 22 24
Week

M
AR

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

100

200

500

1000

2000

2 4 6 8 10 12 14 16 18 20 22 24
Week

M
AR

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

500

1000

2000

2 4 6 8 10 12 14 16 18 20 22 24
Week

M
AR

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

500

1000

2000

2 4 6 8 10 12 14 16 18 20 22 24
Week

M
AR

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

(a) ICEWS-raw (b) ICEWS-filtered (c) GDELT-raw (d) GDELT-filtered

Figure 5.4: Mean Average Rank (MAR) for Entity Prediction on both datasets.

73

Algorithm 4 Survival Loss Computation in mini-batch
Input: Minibatch E , size s, Batch Entity List bl
loss = 0.0
for p = 0 to s− 1 do

subj feat = Ep → ves(t−)
obj feat = Ep → veo(t−)
rel weight = Ep → Rr

t end = Ep → t
subj surv = 0, obj surv = 0, total surv = 0
for i = 0 to bl.size do

obj other = bl[i]
if obj other == Ep → es then

continue
end if
t̄ = max(te

s−, teo−)
subj surv += (t end2 − t̄2) · exp(subj featT · rel weight · obj other feat)

end for
for j = 0 to bl.size do

subj other = bl[i]
if subj other == Ep → eo then

continue
end if
t̄ = max(te

s−, teo−)
obj surv += (t end2 − t̄2) · exp(subj other featT · rel weight · obj feat)

end for
loss += subj surv + obj surv

end for

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24
Week

ST
D

EV

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24
Week

ST
D

EV

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

1500

2000

2500

3000

3500

2 4 6 8 10 12 14 16 18 20 22 24
Week

ST
D

EV

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

1000

1500

2000

2500

3000

3500

2 4 6 8 10 12 14 16 18 20 22 24
Week

ST
D

EV

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

(a) ICEWS-raw (b) ICEWS-filtered (c) GDELT-raw (d) GDELT-filtered

Figure 5.5: Standard Deviation (STD) in MAR for Entity Prediction on both datasets.

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14 16 18 20 22 24
Week

H
IT

S_
10

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14 16 18 20 22 24
Week

H
IT

S_
10

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14 16 18 20 22 24
Week

H
IT

S_
10

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14 16 18 20 22 24
Week

H
IT

S_
10

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

(a) ICEWS-raw (b) ICEWS-filtered (c) GDELT-raw (d) GDELT-filtered

Figure 5.6: HITS@10 for Entity Prediction on both datasets.

74

5.5.1 Temporal Knowledge Graph Data

We use two datasets: Global Database of Events, Language, and Tone (GDELT) [125]

and Integrated Crisis Early Warning System (ICEWS) [126] which has recently gained

attention in learning community [131] as useful temporal KGs. GDELT data is collected

from April 1, 2015 to Mar 31, 2016 (temporal granularity of 15 mins). ICEWS dataset is

collected from Jan 1, 2014 to Dec 31, 2014 (temporal granularity of 24 hrs). Both datasets

contain records of events that include two actors, action type and timestamp of event. We

use different hierarchy of actions in two datasets - (top level 20 relations for GDELT while

last level 260 relations for ICEWS) - to test on variety of knowledge tensor configurations.

Note that this does not filter any record from the dataset. We process both datasets to

remove any duplicate quadruples, any mono-actor events (i.e., we use only dyadic events),

and self-loops. We report our main results on full versions of each dataset. We create

smaller version of both datasets for exploration purposes. Table 1 (Appendix B) provide

statistics about the data and Table 2 (Appendix B) demonstrates the sparsity of knowledge

tensor.

5.5.2 Competitors

We compare the performance of our method1 with following relational learning methods:

RESCAL, Neural Tensor Network (NTN), Multiway Neural Network (ER-MLP), TransE

and TransR. To the best of our knowledge, there are no existing relational learning ap-

proaches that can predict time for a new fact. Hence we devised two baseline methods for

evaluating time prediction performance — (i) Multi-dimensional Hawkes process (MHP):

We model dyadic entity interactions as multi-dimensional Hawkes process similar to [42].

Here, an entity pair constitutes a dimension and for each pair we collect sequence of events

on its dimension and train and test on that sequence. Relationship is not modeled in this

setup. (ii) Recurrent Temporal Point Process (RTPP): We implement a simplified version

1Code is available at: https://github.com/rstriv/Know-Evolve

75

of RMTPP [107] where we do not predict the marker. For training, we concatenate static

entity and relationship embeddings and augment the resulting vector with temporal fea-

ture. This augmented unit is used as input to global RNN which produces output vector ht.

During test time, for a given triplet, we use this vector ht to compute conditional intensity

of the event given history which is further used to predict next event time. Appendix C

provides implementation details of our method and competitors.

5.5.3 Evaluation Protocol

We report experimental results on two tasks: Link prediction and Time prediction.

Link prediction: Given a test quadruplet (es, r, eo, t), we replace eo with all the en-

tities in the dataset and compute the conditional density des,eor = λe
s,eo

r (t)Se
s,eo

r (t) for the

resulting quadruplets including the ground truth. We then sort all the quadruplets in the de-

scending order of this density to rank the correct entity for object position. We also conduct

testing after applying the filtering techniques described in [71] - we only rank against the

entities that do not generate a true triplet (seen in train) when it replaces ground truth ob-

ject. We report Mean Absolute Rank (MAR), Standard Deviation for MAR and HITS@10

(correct entity in top 10 predictions) for both Raw and Filtered Versions.

Time prediction: Give a test triplet (es, r, eo), we predict the expected value of next

time the fact (es, r, eo) can occur. This expectation is defined by: Ees,eor (t) =
√

π

2 exp(ge
s,eo
r (t))

,

where ges,eor (t) is computed using equation (5.4). We report Mean Absolute Error (MAE)

between the predicted time and true time in hours.

Sliding Window Evaluation. As our work concentrates on temporal knowledge graphs,

it is more interesting to see the performance of methods over time span of test set as com-

pared to single rank value. This evaluation method can help to realize the effect of model-

ing temporal and evolutionary knowledge. We therefore partition our test set in 12 different

slides and report results in each window. For both datasets, each slide included 2 weeks of

time.

76

110.8

1116.884
1875.4

10

1000

Methods

M
AE

Methods
Know-Evolve
MHP
ER-TPP

42.82

1348.924

2727

10

1000

Methods

M
AE

Methods
Know-Evolve
MHP
ER-TPP

(a) GDELT-500 (b) ICEWS-500

Figure 5.7: Time prediction performance (Unit is hours).

5.5.4 Quantitative Analysis

Link Prediction Results. Figure (5.4, 5.5, 5.6) demonstrate link prediction performance

comparison on both datasets. Know-Evolve significantly and consistently outperforms all

competitors in terms of prediction rank without any deterioration over time. Neural Tensor

Network’s second best performance compared to other baselines demonstrate its rich ex-

pressive power but it fails to capture the evolving dynamics of intricate dependencies over

time. This is further substantiated by its decreasing performance as we move test window

further in time.

The second row represents deviation error for MAR across samples in a given test

window. Our method achieves significantly low deviation error compared to competitors

making it most stable. Finally, high performance on HITS@10 metric demonstrates ex-

tensive discriminative ability of Know-Evolve. For instance, GDELT has only 20 relations

but 32M events where many entities interact with each other in multiple relationships. In

this complex setting, other methods depend only on static entity embeddings to perform

prediction unlike our method which does effectively infers new knowledge using powerful

evolutionary network and provides accurate prediction results.

Time Prediction Results. Figure 5.7 demonstrates that Know-Evolve performs sig-

nificantly better than other point process based methods for predicting time. MHP uses a

specific parametric form of the intensity function which limits its expressiveness. Further,

each entity pair interaction is modeled as an independent dimension and does not take into

account relational feature which fails to capture the intricate influence of different entities

on each other. On the other hand, RTPP uses relational features as part of input, but it

77

sees all events globally and cannot model the intricate evolutionary dependencies on past

events. We observe that our method effectively captures such non-linear relational and

temporal dynamics.

In addition to the superior quantitative performance, we demonstrate the effectiveness

of our method by providing extensive exploratory analysis in Appendix E.

5.6 Related Work

In this section, we discuss relevant works in relational learning and temporal modeling

techniques.

5.6.1 Relational Learning

Among various relational learning techniques, neural embedding models that focus on

learning low-dimensional representations of entities and relations have shown state-of-the-

art performance. These methods compute a score for the fact based on different operations

on these latent representations. Such models can be mainly categorized into two variants:

Compositional Models. RESCAL [69] uses a relation specific weight matrix to explain

triplets via pairwise interactions of latent features. Neural Tensor Network (NTN) [75] is

more expressive model as it combines a standard NN layer with a bilinear tensor layer.

[2] employs a concatenation-projection method to project entities and relations to lower

dimensional space. Other sophisticated models include Holographic Embeddings (HoLE)

[80] that employs circular correlation on entity embeddings and Neural Association Models

(NAM) [79], a deep network used for probabilistic reasoning.

Translation Based Models. [84] uses two relation-specific matrices to project subject

and object entities and computes L1 distance to score a fact between two entity vectors.

[71] proposed TransE model that computes score as a distance between relation-specific

translations of entity embeddings. [85] improved TransE by allowing entities to have dis-

tributed representations on relation specific hyperplane where distance between them is

78

computed. TransR [86] extends this model to use separate semantic spaces for entities and

relations and does translation in the relationship space.

[19] and [73, 87] contains comprehensive reviews and empirical comparison of rela-

tional learning techniques respectively. All these methods consider knowledge graphs as

static models and lack ability to capture temporally evolving dynamics.

5.6.2 Temporal Modeling

Temporal point processes have been shown as very effective tool to model various intricate

temporal behaviors in networks [132, 133, 12, 42, 107, 134, 135, 114, 136, 137]. Recently,

[134, 138] proposed novel co-evolutionary feature embedding process that captures self-

evolution and co-evolution dynamics of users and items interacting in a recommendation

system. In relational setting, [9] proposed relational mining approach to discover changes

in structure of dynamic network over time. [8] proposes method to capture temporal au-

tocorrelation in data to improve predictive performance. [139] proposes summarization

techniques to model evolving relational-temporal domains. Recently, [140] proposed mul-

tiway neural network architecture for modeling event based relational graph. The authors

draw a synergistic relation between a static knowledge graph and an event set wherein the

knowledge graph provide information about entities participating in events and new events

in turn contribute to enhancement of knowledge graph. They do not capture the evolving

dynamics of entities and model time as discrete points which limits its capacity to model

complex temporal dynamics. [141] models dependence of relationship on time to facilitate

time-aware link prediction but do not capture evolving entity dynamics.

5.7 Summary

We propose a novel deep evolutionary knowledge network that efficiently learns non-

linearly evolving entity representations over time in multi-relational setting. Evolutionary

dynamics of both subject and object entities are captured by deep recurrent architecture

79

that models historical evolution of entity embeddings in a specific relationship space. The

occurrence of a fact is then modeled by multivariate point process that captures temporal

dependencies across facts. The superior performance and high scalability of our method

on large real-world temporal knowledge graphs demonstrate the importance of supporting

temporal reasoning in dynamically evolving relational systems. Our work establishes pre-

viously unexplored connection between relational processes and temporal point processes

with a potential to open a new direction of research on reasoning over time.

80

Part III

Learning Graph Formation Mechanisms

81

CHAPTER 6

LEARNING OPTIMIZATION MODELS OF GRAPHS

Formation mechanisms are fundamental to the study of complex networks, but learning

them from observations is challenging. In real-world domains, one often has access only

to the final constructed graph, instead of the full construction process, and observed graphs

exhibit complex structural properties. In this work, we propose GraphOpt, an end-to-end

framework that jointly learns an implicit model of graph structure formation and discov-

ers an underlying optimization mechanism in the form of a latent objective function. The

learned objective can serve as an explanation for the observed graph properties, thereby

lending itself to transfer across different graphs within a domain. GraphOpt poses link

formation in graphs as a sequential decision-making process and solves it using maximum

entropy inverse reinforcement learning algorithm. Further, it employs a novel continuous

latent action space that aids scalability. Empirically, we demonstrate that GraphOpt dis-

covers a latent objective transferable across graphs with different characteristics. GraphOpt

also learns a robust stochastic policy that achieves competitive link prediction performance

without being explicitly trained on this task and further enables construction of graphs with

properties similar to those of the observed graph.

6.1 Introduction and Related Work

Learning generative mechanisms of graph-structured data is an important approach to build

graph constructors for data augmentation [1] and inference modules for downstream net-

work analysis and prediction tasks. Such models have wide-ranging applications in several

domains spanning recommendation systems [142], biological networks [143], knowledge

graphs [72], social networks [144] and many more. Formation mechanisms play a funda-

mental role in driving the generative process of structures observed in the real-world [145].

82

Figure 6.1: Ω is set of latent objective functions {Fi}, any of which could lead to
observed graph G when optimised. Our goal is to discover one such latent objective Fopt

that could serve as an explanation of the observed graph properties, and optimise it to
learn a graph construction procedure Π such that Π(V), given node set V , mimics the
network patterns observed in G. While Fopt may not match the unknown ground truth

mechanism when one exists, it can produce an accurate Π and hence can be operationally
equivalent to the true mechanism.

Modeling these mechanisms is important as it could facilitate synthesis of novel graph

structures for various subsequent studies such as analysing disease progression. Moreover,

access to these mechanisms could help to build intelligent systems that generalize beyond

the task of structure generation and support transfer to graphs beyond available observa-

tions. However, in real-world domains, such formation mechanisms are often unknown

and learning them from data is challenging due to: limited or no access to the construction

process (one often observes only the final graph); complex discrete nature of graph and rare

availability of large collection of graph samples for learning.

In this paper, we investigate the novel problem setting of discovering an underlying for-

mation mechanism of the observed graph structure. Concretely, we propose GraphOpt, an

end-to-end learning framework that jointly learns the forward model of graph construction

and solves the inverse problem of discovering an underlying optimization mechanism, in the

form of a latent objective function, that serves as an explanation for the existence of the ob-

served graph structure. From a broader perspective of network science, GraphOpt naturally

aligns more with the ”optimization” viewpoint of graph formation [146, 13, 145]—link for-

mation is viewed as the outcome of an underlying optimization mechanism whereby deci-

sions are based on current global state of the network. For instance, links in transportation

83

networks appear as a result of optimizing some underlying cost function [147]. In contrast,

most existing learning approaches for graphs are implicitly rooted in the ”probabilistic”

viewpoint, which models link formation in networks as random events that depend largely

on local structural properties [148, 149]. 6.1 provides an overview of our proposition.

Formally, GraphOpt is realised as an efficient maximum entropy based reinforcement

learning [150, 151] framework that models graph formation as a sequential decision-making

process. It trains a novel structured policy network such that the learned stochastic policy

constructs edges in a sequential manner to produce a graph with minimal deviation in a set

of graph properties from an observed graph. This policy network uses a graph neural net-

work to capture the complex information of a partially constructed graph into a continuous

state representation. As the true graph formation objective function is unknown, the policy

optimizes a latent reward function learned via inverse reinforcement learning (IRL) [151,

152], which amounts to learning an optimization-based model of graph formation. Further,

we propose a novel continuous latent action space that is independent of the size of graph,

thereby allowing GraphOpt to learn over large graphs.

Traditional generative approaches include explicit probabilistic models that are care-

fully hand-designed to incorporate assumptions on structural properties [153, 154, 155,

156, 157]. Such intuitive model specifications produce graphs that often exhibit disagree-

ment with real-world graphs [158, 159]. Recent advances in deep generative models for

graphs [47, 160, 20, 49] address this issue by directly learning from data to be able to

mimic the observed properties and produce realistic graphs. However, these techniques

are either limited to learn over small graphs or require a large collection of graphs from

the same distribution to achieve a desired fidelity, both of which pose great limitations on

learning over real-world graphs. Further, the above techniques only facilitate graph gen-

eration but does not directly allow downstream inference tasks, which further limits their

usability. A recently proposed deep generative model NetGAN [52], resembles GraphOpt

in being implicit model for graph construction, however, the two approaches are fundamen-

84

tally different as NetGAN builds a probabilistic model of random walks over graphs and

avoids learning an objective function which stands in contrast to our optimization-based

framework.

We perform extensive experiments on graphs with varying properties to gauge the effi-

cacy of GraphOpt on the following measures: (i) Can GraphOpt discover a useful and trans-

ferable latent objective for a given domain? (ii) How well does GraphOpt’s construction

policy generalize to downstream inference tasks? (iii) Can GraphOpt serve as an effective

graph constructor useful to synthesize new graphs that exhibit structural patterns similar

to the ones found in an observed graph? We comprehensively answer all three questions

in the positive via experiments demonstrating effective transfer in the domain of citation

graphs; competitive link prediction performance against dedicated baselines demonstrat-

ing compelling generalization properties; and consistently superior performance on graph

construction experiments against strong baselines that learn from single input graph. We

discuss more related works in D.2.

6.2 Proposed Approach: GraphOpt

We first elaborate on the optimization viewpoint of graph formation and how it motivates

our modeling approach. Next, we formally define the problem we tackle and define the

corresponding sequential decision-making process. Finally, we present architecture details

of the GraphOpt framework.

6.2.1 Optimization Models of Graph Formation

A reasonable graph formation model can help to determine how networks come into ex-

istence, which can be fundamentally important in various applications where the network

structure often influences decision making [161]. While networks in certain domains (e.g.

transportation [147]) can be explained by an underlying optimization mechanism with a

known functional form, most general networks often exhibit properties that have given rise

85

to long-standing debates in the network science community on the true mechanisms un-

derlying their emergence [16]. For instance, power laws observed in social and biological

networks can be explained by the probabilistic model of preferential attachment [162], but

they can also be the result of an underlying optimization process in which nodes optimize

between popularity and similarity when forming connections [13, 14, 15]. For complex

networks, the functional form of the objective being optimized in this process is often un-

known or difficult to specify in closed form.

In this work, we rigorously investigate the optimization viewpoint and its implications

on developing learning approaches for graphs. As the true underlying mechanisms are un-

known, we design an algorithm that discovers a latent objective that is operationally equiv-

alent to the true mechanism, in the sense that the discovered objective, when optimised,

enables a suitable graph construction procedure to produce graphs with similar properties

as the observed one. As both the construction procedure and the objective depend on the

global information, our approach is naturally aligned with the optimization viewpoint of

graph formation.

6.2.2 Problem Definition

Given a graph G = (V , E), we propose a graph formation model in which the optimization

of some latent objective function Fopt : G → R drives the formation of edges in E . Fopt

may correspond to any domain-specific or generic graph property but is unknown in gen-

eral. Our primary aim is to learn a graph construction procedure Π∗ and discover a latent

objective Fopt, such that the optimization of Fopt by Π∗ leads to the construction of a graph

G ′ = Π∗(V) with structural properties similar to the observed graph G, given node set V

and initially empty edge set E0. Learning the construction procedure is formalized as:

Π∗ = argmax
Π

Fopt(Π(V)), (6.1)

86

Fopt is often unknown as we only observe the final graph. To this end, we draw inspira-

tion from inverse reinforcement learning [163] and formulate our objective as the following

minmax optimization problem:

Π∗ = argmin
Π

max
F

[F(G)−F(Π(V))]

Fopt = argmax
F

[F(G)−F(Π∗(V))]

(6.2)

where the goal is to learn jointly: (i) a latent objective F , defined via a reward function,

that assigns higher value to G than to all other graphs with different structural properties; (ii)

a construction procedure Π, defined as the sequential execution of a policy, that constructs

G ′ with minimal difference from G in structural properties measured by F .

6.2.3 Graph Formation as a Markov Decision Process

The graph formation mechanism is the central focus of our work. Formation of real-world

graphs in general is not confined to result in a connected graph. Therefore, we propose

a mechanism for link formation without this constraint. Let G = (V , E ,Y ,X) denote a

graph, where V is the set of nodes, E is the set of edges, Y is the set of edge types and X is

the set of node features. We define a Graph Formation Markov decision process (GF-MDP)

M = (S,A,R, P) as follows:

State st ∈ S. The state of the environment st at time t is the partially constructed graph

Gt = (V , Et,Y ,X). Initial state s0 = G0 is a graph with all nodes but no edges, i.e. Et = ∅.

Node features X and edge types Y are optional. This definition is sufficient to describe

the graph at any time t and allows for sequential construction of edges without enforcing

connectivity. For ease of exposition and w.l.o.g., we let st = (V , Et) represent a state in this

paper.

Action at ∈ A. Each step in procedure Π involves the creation of an edge between two

nodes in V . For any state st, information of nodes in V , as encoded in their representations,

87

is vital in determining the compatibility of two nodes for next edge creation. To capture this

insight, we propose a novel continuous latent action space, whereby an action is mapped

to the creation of an edge between two nodes with feature representation most similar

to the action vector (6.2.4). In contrast to previous RL approaches to modeling graph

structured data that define a discrete action space [24, 164, 48], our continuous latent action

is independent of the size of graph, thereby facilitating scalable learning.

Transition Dynamics. The transition function P (st+1|st, at) is defined such that an

action mapped to edge (vi, vj) chosen at a state st = (V , Et) produces a next state st+1 =

(V , Et ∪ (vi, vj)). All edges are allowed for selection except when transition is a self-

loop—i.e., both action components map to same node—which is rejected with no change

in state.

Reward R. The GF-MDP perspective gives a concrete instantiation of the key com-

ponent of our model – an underlying (latent) optimization objective Fopt in (6.2): Fopt is

exactly the expected return Eπφ,P [
∑T

t=0R(st)] for executing a policy πφ(at|st) with tran-

sition function P (st+1|st, at) under a latent reward function R evaluated at every state. In

contrast to existing RL frameworks for modeling graph structured data [165, 48], which use

specific forms on the reward function, we propose to learn R directly from the observed

graph.

Optimization over F in (6.2) is the search for a reward function R that assigns greater

value to the observed graph than all other generated graphs, which reflects the assumption

of optimality of the observed graph. The optimization over Π in (6.2) is an optimization

over πφ to maximize the expected return of R over the formation process, which serves

to construct a graph with minimal difference in structural properties, as measured by the

reward, from the observed graph.

88

(a) GraphOpt Neural Policy Architecture (b) GraphOpt Learning Loop

Figure 6.2: Overview of GraphOpt Framework. (a) A GNN encoder maps a graph state st
into a representation Zt (1), which is aggregated and passed through an MLP (2), and

interpreted as the mean and standard deviation of a Gaussian policy. A latent continuous
action (a(1), a(2)) is sampled and mapped to two nodes with most similar embeddings (3).

States are evaluated by reward function Rϕ (4). (b) GraphOpt interleaves policy
improvement using the current reward function and reward updates using generated and

expert trajectories.

6.2.4 GraphOpt’s Neural Policy Architecture

As GraphOpt operates in a graph-structured environment, we build a graph neural network

(GNN) based structured policy network to effectively utilize the structural information. At

time step t, GNN encodes graph state st into low dimensional representation for the policy

to compute a corresponding action at. We first describe the action selection procedure

followed by the state encoder architecture. Figure 6.2 (a) provides an overview of the

policy network.

Stochastic Action Selection

We design a stochastic policy that takes as input state st and outputs a link formation action

at. As outlined in GF-MDP, we introduce a novel continuous latent action space which

induces action over node representations learned from data. Specifically, action at is a 2-

tuple (a(1), a(2)) whose components a(i) ∈ Rd are mapped to the node representations so as

to select two nodes to construct an edge. Let v ∈ V denote a node and let zv ∈ Rd denote

its embedding (learned in 6.2.4). Under a Gaussian policy πφ, the next action is computed

89

as follows:

[µ, log(σ2)] = π(st) = gφ(Encω(st))

a(1), a(2) ∼ N (µ, log(σ2))

(6.3)

where gφ is a two layer MLP with the policy parameters φ. Encω(·) is a state encoder

that computes low-dimensional representations of graph states. For an effective encoding

of state information, we employ a GNN architecture with parameters ω (6.2.4). Then we

select two nodes to construct an edge using a similarity criterion:

vi = argmax
zv : ∀v∈V

σ〈a(i), zv〉 for i = 1, 2 (6.4)

where 〈·, ·〉 is a dot product and σ is the sigmoid function. As the mapping from continuous

a(i)’s to node indices is external to policy network, GraphOpt is fully differentiable.

Structured State Encoder

During the graph formation process, the present structure of the graph may be a crucial

factor that determines a new edge creation. Structural information of graphs are often

encoded into low-dimensional representations and input to the policy network [166]. To

achieve this, each state st is represented by a node embedding matrix Zt ∈ Rn×d (where

n = |V|), computed using a GNN [167] via a p-step message propagation architecture. At

initial state s0 when E = ∅, Z0 is initialized with node features. After adding an edge at

time t, we perform p iterations of message passing across the node set to obtain Zt+1. For

each iteration p, we update representation of each node as per the following equations:

Aggregate messages from the neighborhood of v:

mp
v ← AGG(M(Hp−1

u)), ∀u : At(u, v) = 1

and then compute representation update for v using:

Hp
v ← U(Hp−1

v ,mp
v)

90

where At is the adjacency matrix. We use max pooling as AGG aggregation function

due to its better empirical performance. Both the message function M and the update

function U are MLP. At the end of each training episode, we reset Zt to initial state when

resetting the environment.

6.3 Maximum Entropy Learning Procedure

GraphOpt contains three modules: a graph construction policy π, a latent reward function

R, and a state encoder network1. As the policy and latent reward are learned simultane-

ously in a graph structured environment, we require both stability and efficiency, which

are difficult to satisfy simultaneously by off-policy methods such as DDPG [168] and on-

policy methods such as PPO [169]. To this end, we adopt Soft-Actor-Critic (SAC) [150],

a maximum entropy variant of the actor-critic framework [170], and combine it with max-

imum entropy based Inverse Optimal Control (IOC) objective [152]. We build a unified

training pipeline that optimizes following objectives:

(a) Soft Q-function. SAC trains a function Qθ(st, at) on off-policy experiences by

minimizing the Bellman residual

JQ(θ) = E(st,at)∼B
[(
Qθ(st, at)− Q̂(st, at)

)2
/2
]

where Q̂(st, at) = r(st, at) + γEst+1∼p[Vψ̄(st+1)]. Value function Vψ̄ is implicitly defined

by parameters of Qθ(s, a)[150, Equation 3].

(b) Policy Network. The policy network πφ(at|st) is trained using the following objec-

tive function:

Jπ(φ) = Est∼B,εt∼N [α log πφ(at|st)−Qθ(st, at)].

Following [150], we also use a reparameterization trick with a neural network transforma-

1The state encoder network is trained by back-propagating the policy gradients to GNN parameters in an
end-to-end manner.

91

Algorithm 5 GraphOpt Algorithm
1: procedure GRAPHOPT

2: Input: Empty trajectories list Tgen, replay buffer B
3: node representation matrix Z0, parameters
4: ψ, φ, θ, ω, ϕ.
5: for each epoch do
6: Reset adj. matrix A0 = 0
7: # Using state encoder,
8: Reset state to s0 = Encω(Z0,A0)
9: Initialize trajectory τ = {s0}

10: for each environment step do
11: (v1, v2)← at ∼ πφ(at|st) using Eq 6.3, 6.4
12: Update At+1 ← At[v1, v2] = 1.
13: Update st+1 = Encω(st, At+1)
14: Compute rt = Rϕ(st+1)
15: B ← B ∪ {(st, at, rt, st+1, At+1)}
16: Update trajectory τ ← concat(τ, st+1)
17: Train Policy (B,ψ, φ, θ, ψ̄, ω) # Alg 8
18: If each edge in Gt is repeated k times or
19: max path length reached then
20: reset episode, store τ in Tgen,
21: and start new trajectory τ = {s0}
22: end for
23: Collect trajectories Tmeas (expert)
24: Use Tmeas and Tgen to update reward
25: estimator Rϕ

26: end for
27: end procedure

tion as: at = fφ(εt; st) that results in low variance estimator.

(c) Reward function. Rϕ(st) is learned using the inverse optimal control objective:

JR(ϕ) := − 1
N

∑
τi∈Tmeas

Rϕ(τi) + log
(

1
M

∑
τj∈Tgen

zj exp(Rϕ(τj))
)

where Tgen is the set

of link formation trajectories obtained from the learned policy and Tmeas is the set of link

formation trajectories obtained from the observed graph. These measured trajectories are

collected by accumulating edges from different permutations over the ordering of edges in

the original graph. All permutations can be considered “expert” trajectories as each starts

from same initial state (E0 = ∅) and contains only true edges seen in the observed graph.

5 outlines the complete set of steps that are used for end-to-end training of GraphOpt.

An epoch starts with initial state representation computed using state encoder when there is

92

no edge between the nodes (line 4-7). For every step in the environment, the policy either

creates a new edge or repeats an existing edge (line 8). It receives a reward based on current

reward function and the state of the environment is updated along with replay buffer and

current trajectory information (line 9-13). We train the policy network, Q-network, and

state encoder after every few steps taken by the environment (line 15). If all existing edges

have repeated k times, the episode ends (line 16-19), the environment is reset and new

trajectory τ is initialized. The reward network is trained after end of each epoch (line 21-

23). D.1 details the gradient updates. In contrast to generative adversarial approaches to

(6.2) for imitation learning [171], which converge to an uninformative discriminator, and

in contrast to behavioral cloning [172], which does not provide an explanatory mechanism,

maximum entropy IRL satisfies the key objective of our work by recovering a useful latent

reward. Figure 6.2 (b) provides an overview of our algorithm.

6.4 Experiments

In this section, we aim to answer the following questions to evaluate the efficacy of our

approach:

(i) Can GraphOpt discover a useful latent objective that is operationally equivalent to

some underlying mechanism of a graph-structured domain, and thereby transferable to an

unseen graph in that domain? The success and necessity of transfer is shown by how well

the objective discovered on a source graph facilitates construction when optimised by a

new policy on a target graph, in contrast to directly running (i.e., without fine-tuning) the

trained policy on the target.

(ii) How well does GraphOpt’s construction policy, learned by optimizing the discov-

ered objective, generalize to downstream inference tasks? Here, we turn to the classical

problem of link prediction in graphs, which requires the construction policy to generalize

to predict hidden links with high accuracy, and—more crucially—perform a link prediction

task for which it was not explicitly trained. We further stress test GraphOpt’s generalization

93

capacity by deploying a trained policy on unseen target graph environments of different size

and characteristics, without fine-tuning.

(iii) Can GraphOpt serve as an effective graph constructor to synthesize new graphs

that exhibit structural patterns similar to those in an observed graph? We assess the perfor-

mance of the learned construction policy by deploying it on the full set of training nodes

and generating new graphs, analogous to standard practice in reinforcement learning [173].

GraphOpt’s stochastic policy avoids copying the observed graph while preserving the sta-

tistical properties.

To the best of our knowledge, no single baseline can do all three tasks. Hence we com-

pare GraphOpt with task-specific baselines for (ii) and (iii) and follow standard procedure

in the IRL literature to report performance for (i).

Training. All experiments begin by using the observed graph to learn the construction

policy and latent reward function via 5. A key advantage of using SAC as the base RL

algorithm is that it largely eliminates the need for per-task hyperparameter tuning. To

encourage creation of new edges during training, we terminate an episode when the number

of repeated creations of each existing edge reaches a threshold k, which signifies that the

policy has lost the ability to explore further. We provide more details on other training

configurations in D.3.4.

6.4.1 Discovering Transferable Latent Objective

For this experiment, we use two citation graphs: Cora-ML as a source environment and

Citeseer as a target environment. We train on Cora-ML to discover a latent reward function,

which is then transfered to train a new policy network from scratch on CiteSeer. While

training on Citeseer, the reward function remains fixed and is not further trained.

Table 6.1: Transfer Performance Comparison

Triangle Count Clustering Coeff. Max Degree
Cora-ML (train) 4890 0.241 168

CiteSeer (observed) 3501 0.1414 99

CiteSeer (reward) 2847.66± 57.13 0.098± 0.0010 80.66± 1.527
CiteSeer (direct) 2234± 58.96 0.084± 0.004 70.66± 2.081

94

(a) Degree distribution (b) Clus Coeff distribution

Figure 6.3: Degree and Clus. Coeff. distribution of graph constructed using the policy
learned on CiteSeer, while optimizing the objective transferred from training on Cora-ML

dataset.

After training, we input CiteSeer’s node set with an empty edge set to the model and run

the evaluation policy to construct edges. We collect 3 graphs and report mean and standard

deviation for graph based statistics representing network patterns of the generated graphs.

Table 6.1 and Figure 6.3 demonstrates that optimising the transferred objective, GraphOpt

learns an effective policy to construct edge topologies that results in similar network pat-

terns as observed in Citeseer. In contrast, the poor performance of the Cora-trained policy

when directly deployed on CiteSeer without training with the transferred objective (“Cite-

Seer (direct)” in 6.1 and 6.4b) shows that the discovered objective is important for transfer.

This experiment demonstrates GraphOpt’s effectiveness in discovering a useful latent ob-

jective that serves as an explanation for the formation of observed network patterns across

citation graphs, thereby lending itself to transfer across graphs within this domain.

6.4.2 Policy Generalization to Prediction Task

We first discuss the task of link prediction, which demonstrates GraphOpt’s ability to learn

a construction policy that generalizes to unseen task for which it was not explicitly trained.

We then show the performance of the policy to generalize to new graphs of different sizes

and characteristics.

95

Link Prediction

Setup. We conduct link prediction experiments on a variety of graphs from both non-

relational and relational domains2. We compare our performance with both explicit base-

lines that employ a dedicated hand-designed link prediction objective and implicit models

that generalize to the link prediction task without using explicit link prediction objectives

during training; GraphOpt falls under the latter category. For all experiments, we follow

the protocol in [25] by randomly removing 10% of edges to form a held-out test set and

randomly sampling the same number of nonexistent links to form negative test samples.

Training is then performed on the remaining graph. For relational graphs, we include edge

type as an extra feature in the message passing scheme in the state encoder.

After training, we provide the observed graph as initial state and run the policy to assess

how well it can predict hidden edges. For non-relational baselines, we label each edge from

the test set as 1 if the policy created it and 0 otherwise, and compare with true labels to

report AUC (Area under curve) and AP (average precision). For relational baselines, for

a test triple ((es, r, eo)), we collect all the edges that are created for tuple (es, r) and rank

them in order of creation to report MRR and HITS@10—this signifies policy’s preference

to create one test edge over another. We also perform link prediction experiments to assess

the usefulness of node representations learned by our state encoder.

Performance. Tables 6.2 and 6.3 show that GraphOpt’s link prediction performance

surpasses implicit baselines on most datasets. It is highly competitive with NetGAN (non-

relational),which uses a GAN based objective, and shows significant improvement over RL

based Minerva (relational), which uses LSTM encoder for state representation and a fixed

reward value of +1/-1 for each step. Superior prediction performance demonstrates that

GraphOpt learns a model with strong generalization capacity. GraphOpt’s success in this

aspect can be attributed to the combination of a stochastic policy that encourages explo-

ration during training and the ability of the GNN to encode state representations that gen-

2Table D.2 and D.3 in D.3.1 provide dataset details

96

Table 6.2: Link Prediction on non-relational data: (*) is used to signify better performer amongst GraphOpt
and method with implicit objective. Bold numbers are best two performers overall.

Cora-ML Political Blogs E. Coli

AUC AP AUC AP AUC AP
VGAE 94.70 96.10 92.60 93.44 93.22 93.10
Node2Vec 91.12 91.78 87.22 85.51 79.99 74.32
NetGAN 94.20* 95.22* 95.51* 90.00 93.17 94.50
SEAL 97.21 97.99 95.32 96.10 97.12 97.50

GraphOpt-Policy 93.50 94.87 92.21 92.33* 94.43* 95*
GraphOpt-Embed 96.21 96.66 95.50 95.32 97.20 97.44

Table 6.3: Link Prediction performance on relational data: (*) is used to signify better
performer amongst GraphOpt and RL method with +1/-1 reward. Bold numbers indicate

best two performers overall.

Kinship FB15K-237 WN18RR

MRR H@10 MRR H@10 MRR H@10
ConvE 87.1 98.1 43.5 62.2 44.9 54
NeuralLP 61.9 91.2 22.7 34.8 46.3 65.7
Reward Shaping 87.8 98.2 40.7 56.4 47.2 54.2
Minerva 72.0 92.4* 29.3 45.6 44.8* 51.3

GraphOpt-Policy 82.2* 92.33 33.12* 53.22* 44.2 53.6*
GraphOpt-Embed 84 96.12 39.66 58.51 47.3 58.43

Table 6.4: Generalization Performance Comparison

Triangle Count Clustering Coeff. Max Degree
BA-200 (train) 780 0.12 43

BA-1000 (observed) 1632 0.0407 115

BA-1000 (eval) 1470.66± 25.71 0.036± 0.0044 119.33± 2.081

Cora (train) 4890 0.241 168
CiteSeer (observed) 3501 0.1414 99

Citeseer (eval) 2234± 58.96 0.084± 0.004 70.66± 2.081

eralize to inference time. As a tradeoff for its greater generality, GraphOpt does not have

the luxury of domain-specific architectures or objectives; hence its competitive but often

slightly worse performance against state-of-the-art dedicated link prediction baselines is

not surprising. However, GraphOpt’s comparable performance demonstrates its greater po-

tential for domains where an objective function is not known a priori and hand-designing an

objective is difficult—this opens up exciting avenues of research for improvement. Surpris-

ingly, the embedding based prediction shows strong performance, often surpassing base-

lines on various datasets (last row in 6.2 and 6.3). This demonstrates that GraphOpt learns

a representation network that can be independently leveraged to perform various down-

stream tasks. As the encoder is trained in the same computational graph as the policy,

through optimising the discovered latent objective, this further supports the usefulness of

the discovered objective.

97

(a) BA-200 trained policy (b) Cora trained policy

Figure 6.4: Policy Transfer across different size (Barabasi-Albert graph) and different
graph (Cora-ML→Citeseer).

Evaluating Policy performance on Unseen Environments

We now focus on the performance of the construction policy when trained on a source

graph and deployed on an unseen target graph without further training3. Specifically, we

investigate two aspects of this direct policy transfer:

(i) Transfer from small to large graph from same distribution. We train GraphOpt on

a source BA graph of 200 nodes. Then we input the node set of a target BA graph with

1000 nodes to the learned policy and run it without further training to generate 3 graphs.

6.4a and 6.4 (top 3 rows) demonstrate that generated graphs exhibit similar properties to

the BA graph of 1000 nodes. This suggests that the learned construction policy can be used

to generate synthetic graphs of larger size than the training graph, while preserving the

underlying structural properties. (ii) Direct transfer from source to target graph in the same

domain. We return to the earlier experiment on citation graphs, but this time transferring

the trained policy from Cora-ML to run on the CiteSeer node set, without using the learned

objective. As expected, 6.4 (bottom 3 rows) and 6.4b show that the policy mostly fails

to construct similar patterns as observed in the original Citeseer, but it does approximate

some patterns (e.g. max degree) well. This supports the necessity of using GraphOpt’s
3For these experiments, we are only interested in evaluating the learned policy on a target environment;

hence the learned reward is not used on the target graph.

98

discovered reward for transfer and suggests room for further investigation.

6.4.3 Synthesizing Graphs via Learned Generative Mechanism

Table 6.5: Percent deviation of graph statistics for generated graph from observed one
(lower is better). First row displays the actual statistics of the observed graph. Results for

more graphs and more metrics for generated graphs are available in D.4.1.

Barabasi Albert Political Blogs CORA-ML

Model Triangle Cnt. Clust. Coeff. Max Degree Triangle Cnt. Clust. Coeff. Max Degree Traingle Cnt. Clust. Coeff. Max Degree
Observed Graph 504 0.1471 33 303129 0.319 351 4890 0.2406 168

DC-SBM 46.56± 6.58 59.44± 7.11 28.29± 7.63 52.78± 9.15 91.73± 1.18 40.86± 1.89 71.17± 1.53 68.25± 20.16 6.94± 5.40
BTER 48.02± 9.11 33.20± 1.28 33.33± 0 45.47± 7.25 54.17± 13.57 43.87± 0.75 40.06± 1.17 81.66± 1.74 16.47± 14.49
VGAE 70.89± 8.95 94.40± 0.81 8.08± 1.75 98.56± 0.44 99.32± 0.55 44.06± 0.92 99.56± 0.24 93.10± 2.11 94.44± 1.82

NetGAN 31.68± 6.28 40.69± 4.27 4.04± 1.74 44.28± 8.27 37.55± 7.2 38.75± 3.70 64.19± 2.15 41.12± 18.82 4.17± 2.38

GraphOpt 6.28± 4.05 25.52± 8.25 5.05± 4.63 34.73± 3.79 20.34± 9.1 36.85± 2.71 19.46± 1.01 14.63± 5.78 2.58± 1.24

Setup. We evaluate GraphOpt’s ability to synthesize new graphs after learning to con-

struct from an observed graph. We use both synthetic and real world graphs that span

different domains, characteristics and sizes (Table D.1 in D.3.1). All graphs are undirected.

For training, we use the complete observed graph. For evaluation, we provide the node

set of the input graph and empty edge set and run the trained policy to construct edges.

GraphOpt learns from a single large graph and hence we compare with strong baselines

with similar setting (details in D.3.2). For all methods, we generate 3 graphs for evalua-

tion and report mean and standard deviation of percentage error of graph based statistics

between observed and generated graphs (Table 6.5). For GraphOpt, we run the evalua-

tion policy up to either the original termination condition or a multiple of actual number

of edges in observed graph, whichever is earlier. We follow reported stopping criteria for

baselines.

Performance. Table 6.5 demonstrates that GraphOpt learns a construction policy that

effectively captures structural patterns in the observed network and constructs graphs with

similar properties to the observed graph. GraphOpt registers consistent and significantly

superior performance across all datasets and against all baselines, which can perform well

on some but not all metrics as they model specific statistics (except NetGAN). BTER re-

covers clustering coefficient statistics well but struggles on others; DC-SBM recovers Max

99

(a) Degree distribution (b) Clus. Coeff. distribution

(c) Degree distribution (d) Clus. Coeff. distribution

Figure 6.5: (a-b) Original vs. GraphOpt: Cora-ML (c-d) Original vs. GraphOpt:
Pol.Blogs

Degree better than others. Further, 6.5 demonstrates the ability of Graphopt to capture in-

trinsic properties of graph structure. Our stochastic policy ensures that generated graphs are

not merely copies of the observed graph, which is further substantiated by link prediction

experiments in Section 5.2. These performance characteristics are also visible for Net-

GAN, which performs well in general across all metrics and datasets. However, our supe-

rior performance can be attributed to the following differences: (i) Our construction policy

optimises a useful latent objective, whereas NetGAN’s generator imitates the given graph

by optimizing against an eventually uninformative discriminator; (ii) Our use of GNN cap-

tures better structural properties to provide rich state information to the policy network, in

contrast to LSTM based path processing in NetGAN; (iii) GraphOpt allows construction of

100

disconnected components, often found in most real-world graphs such as in these datasets.

Given these properties, we envision the use of GraphOpt as a graph constructor that ingests

real-world graphs and generates synthetic versions to enrich graph repositories [174] with

large-scale benchmark test sets.

We provide more details on baselines/metrics used for experiments in D.3.2 and D.3.5

respectively.

6.5 Summary

In this work, we investigate a novel setting for learning over graphs that is motivated by the

optimization perspective of graph formation in network science. Our novel optimization-

based learning framework, GraphOpt, models graph formation as a sequential decision-

making process, learns a forward model of graph construction, and discovers a latent ob-

jective that is operationally equivalent to some underlying mechanism that could explain

the formation of edges in observed graph. GraphOpt employs a novel combination of

structured policy network, continuous latent action space and inverse reinforcement learn-

ing. Empirically, GraphOpt discovers a latent objective and a robust stochastic policy that

transfer across graphs with different characteristics, exhibit competitive generalization for

link prediction task and enable construction of graphs with similar properties as that of the

observed graph. We believe that our investigation of the optimization-based perspective on

network formation stemming from the wider debate in network science literature and its im-

plications for building sophisticated models to learn effectively from graph-structured ob-

servations, coupled with the versatility of our proposed approach, would benefit the graph

learning community and open exciting avenues for future research.

101

CHAPTER 7

LEARNING STRATEGIC NETWORK EMERGENCE GAMES

1

Real-world networks, especially the ones that emerge due to actions of non-inanimate

agents (e.g. humans, animals), are the result of underlying strategic mechanisms aimed at

maximizing individual or collective benefits. Network learning approaches built to capture

these strategic insights would gain interpretability and flexibility benefits that are required

to generalize beyond observations. To this end, we consider a game-theoretic formalism

of network emergence that accounts for the underlying strategic mechanisms and take it to

data to discover an explanation for the observed real-world networks. We propose MINE

(Multi-agent Inverse models of Network Emergence mechanism), a new learning frame-

work that solves Markov-Perfect network emergence games using multi-agent inverse rein-

forcement learning. MINE jointly discovers agents’ strategy profiles in the form of network

emergence policy and the latent payoff mechanism in the form of learned reward function.

In the experiments, we demonstrate that MINE learns a versatile and robust payoff mech-

anisms that: highly correlates with the ground truth; can be used to explain the observed

network structure; and enable effective transfer to unseen environments. Further, we show

that the network emergence game as a learned model supports meaningful strategic pre-

dictions, thereby signifying its applicability to a variety of challenging network analysis

tasks.

7.1 Introduction

Machine Learning methods for networks [175, 18, 176, 177] typically operate on the

stochastic assumption about the nature of underlying mechanisms that govern the emer-

1This chapter is under review at a conference. Please do not distribute.

102

gence of observed networks. Several networks, in spite of their different origins, indicate

large commonalities among their structural properties (e.g. diameter, clustering coeffi-

cient, etc.). Solution approaches to learn from network data, therefore, rely on optimizing

the likelihood of observing specific structural properties and often use surrogate objectives

parameterized by modules that capture these properties, achieving notable success across

different areas [51, 178, 179, 180, 181, 182]. On the other hand, many real-world networks,

that emerge due to actions of non-inanimate agents, are the result of strategic behavior of

individuals rather than based on probabilities. For instance, economic partnerships between

financial organizations, social collaborations at work and trade between countries, all per-

tain to strategic actions adopted by individual entities. The network emerging out of such

relationships may not correspond to any common structural parameters. Hence, it would

be beneficial to model the learning problem as an equilibrium, an area that is unexplored

within the existing network and relational learning literature.

Network Emergence (Formation/Creation) Games [17] provide a formal interpretable

framework to characterize and analyze the decentralized process among many interacting

agents, whose outcome is the observed network. This process assumes that agents follow

strategic behavior in forming links with other agents and the interacting agents are consid-

ered to be inherently selfish with some capacity allowing for emergent local coordination

between neighboring agents.While serving as an elegant theoretical tool to explain net-

work emergence process, the practical applicability of Network Emergence Games beyond

building stylized simulators is often hindered due to several limitations:

Existing game theoretic approaches to analyze networks [17, 53, 55, 56, 58, 59] do

not directly learn from the observed network data, instead their model is hand-designed

with specifications based on assumptions and intuitions about the real observations. Such

specifications manifest in the form of an agent-specific payoff (utility), wherein an agent is

assumed to optimize this utility so as to maximize their individual benefits based on their

position in the network. Simple form of payoff functions often capture only a subset of

103

properties related to the strategic behavior of agents, thereby diverging far from emergence

mechanisms of complex real-world networks while modeling complex properties relying

on hand-designed utility functions is often prone to misspecification. Further, most network

games assume access to the entire network (complete information) whereas in real world

networks, agents often deal with incomplete information mainly limited to its neighbors.

Additionally, the emergence procedure in such games is not considered to be sequential

(i.e. all agents announce all their links in one shot and the resulting network is analyzed

for equilibrium after which the game is restarted). While the problem of incomplete in-

formation in network games is still under-explored even in game theory literature, recent

works [58] have proposed Markov version of network games that consider network emer-

gence as a sequential process and we discuss them in detail later.

Our Approach. In this work, we combine the interpretability merits of game theo-

retic modeling with practical usefulness of data-driven learning and propose an algorithmic

framework, MINE, to learn strategic network emergence games from the observed network

data. Concretely, our data consists of a graph structure between n-players (represented by

the nodes), where the observed structure is the result of strategic interactions between these

n players under some unknown payoff. A key novelty of MINE is to explicitly incorporate

the network game dynamics into the learning framework tasked to jointly discover both

the agents’ strategies and unknown payoff mechanism that led to the emergence of the

observed network. Learning the payoff directly from the observed data (inverse problem)

allows to model complex mechanisms – often missed by the hand-designed specifications

or difficult to express in an explicit form in the first place. We consider this network emer-

gence game being played in a Markov setting where the agents interact with each other in

a sequential manner to achieve Markov Perfect equilibrium networks and the strategies of

agents at any step only depends on the current state of the network. To develop a practical

learning framework, we leverage on Markov Quantal Response equilibrium (MQRE) as

a solution concept and design our algorithm building on recently proposed inverse rein-

104

forcement learning technique [183] for solving Markov games, where the learned reward

is interpreted as the payoff mechanism. Solving for equilibrium in our setting can then

be viewed as searching for agents’ strategy profiles (policies) that leads to equilibrium

network (under the learned reward) from the set of all feasible networks which is a combi-

natorial search task. For efficient learning in graph structured environment, we use graph

neural network (GNN) [167] based state representation, continuous action space mapped

from agents’ features and Soft-Actor-Critic (SAC) [150] algorithm to update policies in the

inner loop of reward learning.

A key outcome of our data-driven learning of network emergence games is its ability to

facilitate interpretability (the discovered reward function can be analyzed to characterize

the observed network properties) and generalization (the learned modules can be trans-

ferred for use beyond observed network) – both of which are hallmarks of human intelli-

gence and highly desirable of any learning framework. Additionally, as MINE focuses on

strategic mechanisms of network emergence, it can be used for performing strategic predic-

tion tasks, signifying its practical usefulness for network analysis of real-world agent-based

networks. In the experiments, we focus on the above properties of MINE and address the

following questions: (i) Can MINE effectively discover the payoff mechanisms useful to

explain the characteristics of observed network?; (ii) How well does the learned payoff

facilitate transfer across different set or number of players? and (iii) Can the learned net-

work emergence game serve as an effective predictive model to perform strategic prediction

tasks? We comprehensively answer these questions in the positive by analyzing reward to

explain a strategic network, performing in-domain transfer for trade and movie networks

and evaluating strategic link prediction performance across different networks.

105

7.2 Preliminaries

7.2.1 Markov Network Emergence Game

We consider an n-player Markov Network Formation Game, where agents form links with

each other to maximize their individual payoffs. The game is played in a sequential manner,

where at each step, the agents announce the links they want to form and their current strate-

gies are dependent only on the current state of the network - the Markov property. A general

n-player Markov game [184] is defined as (S, {Ai}ni=1, {ri}ni=1,PT , ν, γ) where S is the

state space and Ai is the action space for agent i. The function PT : S ×A1 × ...×An →

PT (S) specifies the transition process between states, where PT (S) denotes probability

distribution over set S. ν ∈ PT specifies an initial state distribution and γ is the dis-

count factor. A state st of the game at time t transitions to state st+1 with probability

PT (st+1|st, a1, ..., an) due to agents’ actions {a1, ..., an}. Each agent i receives a reward

given by the function ri : S × A1 × ...×An. We use bars to indicate joint quantities over

all agents – π̄ denote the joint policy, r̄ denote rewards of all agents and ā denote actions of

all agents. Further, subscript −i denotes all agents other than i – the tuple (ai, ā−i) denote

actions of all agents. Each agent i aims to maximize its individual payoff ui, instantiated

by the expected sum of discounted rewards, ui = Eπ
[∑T

t=1 γ
tri,t

]
, where ri,t is the re-

ward received t steps into the future by agent i. Each agent selects actions according to its

stochastic policy πi : S → P(Ai), where P(Ai) is the distribution over agent i’s actions

space. Further, for each agent i, the expected return for a state-action pair is defined as:

u
πi,π̄−i
i (st, āt) = Est+1:T ,āt+1:T

[∑
l≥t γ

l−1ri(sl, āl)|st, āt, π̄
]
. Network Emergence Game.

We consider a partially observable Markov Game, where each agent has access only to its

local observations. For a set of n interacting agents, let G ⊂ {0, 1}n×(n−1) denote the set

of all feasible networks. Let G = (V ,A,X) ∈ G specify one such feasible network, where

|V| = n is the set of agents (vertices) in the game, A is the adjacency matrix specifying the

link structure between agents and and X denote the feature set for agents. Below we out-

106

line the decision process that incorporates the standard game-theoretic network emergence

dynamics:

State S: The state of the game st at any time t is the graph structure Gt = (V ,At,X),

where At contains information of the graph structure at time t. G0 = (V ,A0 = 0,X)

defines the initial state of the game s0. Any agent i can only access its local observation

oi,t = (ηi,t,Xηi,t) ∈ O from the game’s overall state st ∈ S, where ηi,t = {j|Aij
t = 1}

is the neighborhood of agent i at time t. Action A: A step t in the game involves each

agent announcing their intentions to form the links with other agents. We map this action

to a continuous low-dimensional vector (ai,t ∈ Rd where d� n) that represents an agent’s

intention to form a link. The vectors announced by each agents are then matched externally

(details discussed later) to compute the links that finally emerge out of that step. This

action space is inspired from recent work on Geometric Network Creation Games [54]. Our

continuous action space is independent of the number of nodes which facilitates scalability.

Transition Dynamics PT : Let ē denote set of joint edge operations that are derived from

joint action profile ā for all agents at state st. The transition functionPT is defined such that

the ā profile obtained for all agents at state st = (V ,At,X) produces the next state st+1 =

(V ,At+1,X). Here, At+1 = At � ē where � represents all the edge operations (such as

creation, maintenance or severance of an edge for the game) applied to adjacency At to

modify the network structure. Reward r: A key objective of our work is to infer agent’s

individual payoff from the observed network and hence we do not impose any specific

functional form on the reward function, instead learn the reward function ri corresponding

for each agent i directly from the data. The reward parameterization controls the shared

properties of the utility function across agents. Further, we consider the localized utility

setting where the reward ri(oi,t, ai,t) for agent i is computed only with respect to its current

neighborhood. We outline the parameterization of the reward function in next section.

107

7.2.2 Solution Concept for Network Emergence Games

Network emergence games focus on analyzing the construction of equilibrium networks

where no agent want to locally change the network [53]. To setup our reinforcement learn-

ing (RL) procedure, the first step is to specify an appropriate equilibrium concept for char-

acterizing the trajectories distribution induced by the reward function. We focus on Markov

Perfect Equilibrium (MPE) [185, 186, 187, 188], as it directly relates to this work and dis-

cuss others in Appendix E.4. This concept has been investigated and formalized in recent

works in stochastic game formulation for network emergence [58, 189]. MPE admits prop-

erties that map directly to reinforcement learning setting, as discussed below.

Markov Perfect Equilibrium. The definition of network emergence policy πi for each

agent i concretely specifies agents’ Markov strategies – a Nash equilibrium (NE) in which

is referred as Markov Perfect Equilibrium. While existence of an MPE has been long es-

tablished for stochastic games [190, 191, 192], a straightforward application of Bellman’s

optimality principle [193] shows that solving for MPE directly maps to recursive procedure

of learning optimal joint policy π̄∗ by optimizing individual reward ri using the RL proce-

dure (details provided in Appendix E.1). However, solving for MPE requires solving for

NE at each state, which is not amenable to learning due to discontinuous characteristics of

NE with respect to payoff matrix. Further, NE assumes all agents to be perfectly rational

which is often not the case for agents participating in real-world network emergence. Both

these difficulties are addressed by Quantal Response Equilibrium (QRE) and its logistic

version [194, 195], which is stochastic generalization of NE. Specifically, QRE accounts

for bounded rationality using a parameter λ and models payoff matrices injected with noise,

thereby introducing smoothness useful for gradient based approaches [196]. For stochastic

games, QRE has been extended to Markov version by [197, 189] and referred as Markov

Quantal Response Equilibrium (MQRE).

Logistic Markov Quantal Response Equilibrium. The most interesting version of

MQRE is its logistic version (MLQRE) which arise from the noise that is i.i.d accord-

108

ing to Gumbel distribution with parameter λ ∈ R+, which also controls the rationality

of agents. An MLQRE π̄∗ can then be expressed in closed form as a solution to the fol-

lowing system of equations: For all states st ∈ S , all agents i and all actions a ∈ Ai:

π̄∗i (ai|s) = e
λ·ui(s,a,π̄

∗
−i)∑

a′∈Ai
eλ·ui(s,a

′,π̄−i∗)
and V ∗i (s) =

∑
a′∈Ai π̄

∗
i (ai|s) · ui(s, a′, π̄∗−i), where ui is

the expected payoff from playing action a for agent i in state s, given strategies of other

players and is expressed as :ui(s, a, π̄) = ri(s, a, π̄) + γ
∑

s′∈S Pss′(ai, p̄i−i) · Vi(s′). In the

quantal response framework, agent i is assumed to perceive noise injected payoff version of

this expression as ûi(s, a, π̄) = ui(s, a, π̄) + εi(s, a). λ can be interpreted as the precision

with which the agents perceive the payoffs. When λ → 0, the equilibrium is fully noisy

and the agents with select actions uniformly at random. When λ → ∞, the agents will

choose actions in best response manner (greedily) and [189] has shown that its limit point

converges to Markov perfect equilibrium. That is, π̄∗∗ = limλ→∞ π̄
∗(λ) is a Markov perfect

equilibrium for some LMQRE π̄∗(λ). This establishes LMQRE as an appropriate equilib-

rium concept to use in the RL setting for solving Markov Perfect Network emergence game

which is our case. We discuss more details on MQRE, its convergence to Markov Perfect

equilibrium and properties of πi in the Appendix E.1.

7.2.3 Multi-Agent Inverse Reinforcement Learning

Most game-theoretic methods hand-design a reward function for theoretical analysis, but

for real-world networks, it is often difficult to specify the explicit form of such reward

mechanism. One of the key contributions of this paper is to discover this reward function

from the observed networks. Specifically, our goal is to jointly learn the strategy profile

for agents that can reconstruct the observed network and discover the latent payoff func-

tion. To achieve this, we leverage maximum entropy (MaxEnt) bases inverse reinforcement

learning (IRL) [151] which aims to learn a reward function that rationalizes the expert be-

haviors with least commitment. Let D denote expert demonstrations provided by n experts

in the n-player Markov game. D is realized as a set of M trajectories {τj}Mj=1, where

109

τj =
{

(stj, ā
t
j)
}T
t=1

denote an expert trajectory collected by sampling s1 ∼ ν(s), āt ∼

πE(āt|st), st+1 ∼ P (st+1|st, āt). D, obtained from observed graph for network emergence

game, contains all the available supervision for the learning procedure. Denoting Max-

Ent IRL function as IRL(πE), we have: IRL(πE) = argmaxr∈RS×A EπE [r(s, a)]−RL(r),

where RL(r) = maxπ∈ΠH(π) + Eπ[r(s, a)] and H(π) = Eπ[− log π(a|s)] is the policy

entropy.

For this work, we consider MA-AIRL [183], a recently proposed IRL algorithm for

multi-agent setting. MA-AIRL uses Logistic Stochastic Best Response Equilibrium (LS-

BRE) as a solution concept to characterize the trajectory distributions induced by the

reward functions of agents {ri(s, ā)}Ni=1. Given a Markov game with horizon T , LS-

BRE is defined as a sequence of T stochastic policies {πt}Tt=1, where each joint policy

π̄ : S → P(A1 × ...×An) is given by:π̄t(a1, ..., an|st) = P
(⋂

i{z
t,(∞)
i (st) = ai}

)
. Here,

zi is a mapping from state to action expressed as:zt,(k+1)
i (st) ∼ P t

i (a
t
i|āt−i = z̄

t,(k)
−i (st), st) =

exp
(
λQπ̄

t+1:T

i (st,ati,z̄
t,(k)
−i (st))

)
∑
a′
i

exp
(
λQπ̄

t+1:T
i (st,a′ti,z̄

t,(k)
−i (st))

) , where λ ∈ R+ is noise parameter controlling rationality of

agents and {P t
i }Ni=1 specifies set of conditional distributions. We specifically note the close

relation of the form of zi in LSBRE with that of πi in MLQRE that allows us to design our

practical algorithm building on MA-AIRL [183] while using LMQRE as a solution concept

for network emergence games. We discuss more details on connection between MLQRE

and LSBRE in the Appendix E.1.

7.3 Proposed Model

In this section, we first describe the architecture details of the MINE model and then out-

line the learning procedure that jointly learns both the reward function and the network

emergence policy.

Architecture. Being a network emergence game, the performance of our agents de-

pend on effectively learning over the graph structure of the problem. To achieve this, we

design a graph neural network [167] based policy network that embeds the observation into

110

a continuous vector space, further processed by the next layers of policy network to output

the action vectors. We outline the details on our structured strategy network below along

with the specifications on environment updates based on the continuous action vector. Fur-

ther, we also discuss the parameterization of learned reward function and its connection to

conventional game-theoretic approaches.

Structured Strategy Network. We leverage structured policy network [166] to design

and implement a mapping function from state st = Gt to the embedding matrix H ∈ Rn×d

where each row of the matrix represent the embedding hi for agent i. The mapping starts

from the initial agent features h
(0)
i which are problem dependent. A P -step message pass-

ing procedure updates these features by aggregating information from P -hop neighbor-

hood of agent i as follows: h
(p+1)
i = U

(
h

(p)
i ,
{

(mij,h
(p)
j)
}
j∈N (i)

)
, where U is the up-

date function, mij is the message on the edge between agents i and agent j and N (i) is

the neighborhood agent set for agent i. The update to all agents’ embeddings occur at

the end of the environment step and the the policy function takes the agent i specific lo-

cal observations (now mapped to embeddings) as input to compute the action for agent

i. For computing a graph/subgraph embedding, we use an attention based aggregation of

the participant agents’ embeddings from last message passing iteration h
(P)
i . Next, we de-

sign a stochastic policy that takes as input observation ōi,t and outputs a link formation

action ai,t for agent i. Under a Gaussian policy πφ, the next action is computed as fol-

lows: [µ, log(σ2)] = π(st) = α(gφi(ōi,t)) and ai,t ∼ N (µ, log(σ2)), where gφi is a two

layer MLP with the policy parameters φi for agent i and α is the activation function. Ex-

ternal to the policy network, we map the action vector ai,t for all agents to discrete edge

operation set ē described in Section 2.1, making our approach fully differentiable: We in-

terpret the value of action vector ai,t ∈ Rd as a direct prediction of agent j’s embedding

with which agent i wants to form a link. It is possible that the action vector of an agent

i maps to action vectors of multiple agents j. We capture this insight by first stacking

action vectors of all the agents into action matrix a ∈ Rn×d. We then compute the prob-

111

abilities of forming a link between two agents as: aprob = σ(aTa), where aprob ∈ Rn×n

is the link probability matrix and σ represents sigmoid function. Subsequently, the en-

tire environment structure is updated by modifying the adjacency matrix At as follows:

Aij
t+1 = 1 if aijprob > 0.5 and Aij

t+1 = 0 otherwise. Analogous to game-theoretic approaches

– a link is formed/maintained in the next step between two agents only with mutual consent

(i.e. both the agents i and j select actions close to each other in the latent space). If either

agent do not consent, the link is never formed or severed if it existed in At previously.

Neural Payoff Mechanism. We use a novel parameterization for the reward function ri

for each agent i, inspiring from the game-theoretic insights where the payoff is designed

with an assumption that the agents optimize their position in the network. We use a local

1-layer GNN to compute observation input (ōi,(t+1)) to the reward function for agent i. As

the actions effectively map to (choice of) agents, we are able to use the state only reward

function. Further, the observations for all agents would have been updated based on their

actions before computing the reward and hence each agent will have access to other agent’s

actions and its outcomes (strategy) locally.

Learning. We design an efficient training procedure for learning network emergence

games by building on the recently proposed multi-agent adversarial reinforcement learn-

ing (MA-AIRL [183]) algorithm. For matching the efficiency and scalability demands of

learning in the challenging graph-structured environment, we modify the the original al-

gorithm to use multi-agent attention actor critic (MAAC [198]) to solve the inner RL loop

of the MA-IRL algorithm. We further account for the graph structured environment by

modifying the critic to use graph attention networks [199]. Algorithm 1 in Appendix E.2

outlines complete training procedure. An important consideration for the inverse methods

is the extraction of expert demonstrations. Unlike conventional RL environments, where

the expert demonstrations are readily available, for observed graphs, we only have access

to final graph structure (experts’ outcome). Hence, we need to extract useful and valid

trajectories. Following previous multi-agent IRL work, we also extract joint trajectories of

112

each construction in the graph where at each step of the trajectory, we sample an edge for

each agent either via random permutation order or BFS ordering on the entire graph and

use it to define the action of agents. While such expert trajectories will only show growing

graph, the action space of learning agents still need to consider severance to account for

wrong edges that they create which they need to remove over time.

7.4 Experiments

In this section, we provide insights into the important aspects of learning network emer-

gence games. First we demonstrate the ability of MINE to discover a paypoff mechanism

that has high correlation to the ground truth game-theoretic utility and then use a toy real-

world network to illustrate that MINE is able to recover the strategic links in the observed

network using the learned policy. We further assess the interpretability benefits by qualita-

tively analyzing the learned reward behavior with respect to the observed network structure.

Finally, we evaluate the transfer properties of MINE across different settings. We conclude

our experiments by demonstrating MINE’s capability to facilitate effective prediction of

future strategies (links) of agents given a state of the network. We provide more details on

experimental setup in Appendix E.3 and dataset statistics in Table 7.2(c). Code and Data

will be made available upon publication.

7.4.1 Payoff Function

MINE learns the underlying payoff mechanisms from the observed networks and hence it

is important to evaluate its ability to learn a meaningful payoff function useful for inter-

pretation and transfer purposes. Below, we outline our analysis of the learned reward with

respect to these properties:

Quality. To evaluate the quality of the learned reward, we perform two different ex-

periments: For real-world networks, we do not have access to the ground truth utility that

was originally optimized by the involved players. Hence, we first perform a synthetic ex-

113

Table 7.1: Analysis of the learned reward using: (a) Game-theoretic reward function (b)
Zachary Karate club data (no ground truth reward). Correct links are fraction of original

links recovered.

Agent#1 Agent#2 Agent#3 Agent#4 Agent#5 Average

PCC 0.842 0.928 0.883 0.763 0.681 0.8194

Expert -7.213 -12.221 -10.65 -6.441 -12.294 -

MINE -8.331 -12.252 -10.31 -8.045 -10.797 -

Leader#Red Leader#Purple Community#Red Community#Purple

Correct Links 72 77 75 81

Original -132.33 -83.42 -99.98 -74.61

Policy -141.71 -85.22 -112.32 -77.04

Perturbed -221.4 -118.93 -199.74 -101.65

(a) (b)

periment, where an expert is trained to optimize a specific form of a game-theoretic reward

function using the inner MAAC algorithm of MINE (no reward learning). Specifically, we

use the following form of the reward inspired from game-theoretical model of social net-

work emergence [200]:

ri(oi) =
∑

j∈N (i)

(∑K
k=1 bk max(zjk − zik, 0)− ‖c� (zj − zi)‖2

)
,

Figure 7.1: Karate network
where, b and c are benefit and cost parameters respec-

tively with fixed values and k is dimension of agent embed-

dings z. We perform this experiment with N = 5 agents

that play the game defined by MINE’s MDP but optimize the

above reward. We report the correlation (Pearson Correlation

Coefficient (PCC)) between the learned and the expert reward

and show comparison between expected returns of the learned

and the expert policies. Results in Table 7.1(a) demonstrate

that MINE successfully learns a reward function that has high correlation with a ground-

truth game-theoretic utility. Further, the learned policies that optimizes this reward imitates

the experts well.

Next, we consider a toy real-world network of Zachary’s karate club (34 agents, 78

links) that contains two clearly different communities (Figure 7.1). For learning, we extract

expert trajectories as described in previous section. We evaluate the learned policy under

following criteria: fraction(%) of correct links recovered (Table 7.1(b) top row) and policy

performance in terms of expected return (Table 7.1(b) bottom 3 rows). Community#Red

and Community#Purple results are averaged across their follower vertices respectively. The

114

(a) (b) (c)

Figure 7.2: Payoff interpretability in relation to the real-world Australian Bank network.
(a) Observed Network (Darker nodes have more importance). (b) Marginal Payoff

heatmap (lighter color signify higher utility) for state-action pairs where state is a single
node of particular type and action is the link formation with a new node: (S0): Teller,

(S1): Service Advisor, (S2) Deputy Manager and (S3) Branch Manager (c) Payoff
behavior for each agent with respect to its Katz centrality in the network.

first row demonstrates that MINE recovers a significant portion of strategic interactions

(links). To substantiate that this is not the result of mimicking only the structural properties,

we report the utility values for 3 different network states: original graph, policy generated

graph and perturbed graph, where the perturbation swaps two leaders with their followers.

This preserves structural configuration of the graph but results in strategically different

network. Table 7.1(b) bottom rows show that network emerging as a result of learned

policy has closer behavior to the original graph compared to the perturbed graph under the

learned payoff, thereby confirming the vital role of learned objective in recovering real-

world strategies.

Interpretability. We consider Australian bank dataset (Figure 7.2(a)), a network of

strategic confiding relationships between branch personnel representing hierarchy among

the employees. We first study how the the learned payoff can be interpreted with respect

to the strategic behavior of agents. After training, we compute marginal utility of indi-

vidual agents for proposing an action (link formation choice w.r.t other agents). In the

heatmap (Figure 7.2(b)), A0 to A3 are signify actions (chosen agents). In real-world set-

ting, agents often confide in other agents at the same or next level higher up but not oth-

erwise. The heatmap demonstrates similar properties of the learned reward (e.g. a Teller

(S0) receives high payoff for proposing a link with other Tellers (A0) and Service advi-

115

sors (SA) (A1) but not with managers). However, this behavior changes towards the top

of hierarchy where clustering behavior is not observed due to fewer agents and confiding

relationships become reciprocating with agents at lower level, which is also captured by the

learned reward (e.g. Branch manager (BM) (S3) gets high payoff for proposing link with

both Deputy manager (DM) (A2) and SA (A1)).

We also investigate how the learned payoff relates to the strategic importance of the

agents in the network in terms of Katz centrality (KC) [201], a widely used measure in

game-theoretic payoff functions [202]. Each agent in the observed network (Figure 7.2(a))

has importance attribute not based on KC. After training, we modify the network such

that it affects the KC of particular agents while keeping others same and then compute the

state-only reward for each agent (Figure 7.2(c)). Tellers with low KC get high rewards,

explained by peripheral roles of tellers. But we modified the local structure of one teller

(T2, golden star in Figure 7.2(c)) to increase its KC, keeping its (low) importance attribute

same. T2 gets low utility value owing to contrast to its (low) importance value. Further, in

spite of having lower KC value for Branch Manager than SA in observed network, BM gets

high reward than SA. This shows that MINE captures intricate properties beyond structure

that may not be modeled by hand-designed specifications. For instance, KC considers

the entire network however, in real-world, an agent often only have access to its local

observations. Finally, we modified the observed network to decrease the KC for SA2 such

that its incoming links are removed. As expected, in spite having high importance values,

SA2 gets a low reward value for not being involved in confiding with tellers.

Transfer. In this section, we evaluate the ability of learned payoff to facilitate effec-

tive transfer across games. For all the experiments, we first train our policy and reward

functions on source network (that provides expert demonstrations). We then transfer the

learned reward function to the target graph, where the policy is re-trained to optimize the

transferred reward. For comparison, we train the full model on the target network (no

reward transfer). Additionally, we perform an experiment to evaluate the generalization ca-

116

Table 7.2: (a)Transfer Performance (Top row: transfer across #agents, Bottom 2 rows:
transfer across set of agents). (b) Strategic Link Prediction Performance: Number are

AUC. (c) Dataset Statistics.

Dataset Correct Links PCC Training Episodes

Andorra
Target Trained Reward (No Transfer) 76.5 - 100000

Source Trained Reward (Transfer) 70.2 0.681 72000
Policy Transfer 68.88 0.59 -

Trade
Target Trained Reward (No Transfer) 87.2 - 25000

Source Trained Reward (Transfer) 81 0.848 18000
Policy Transfer 62.45 0.648 -

Movie
Target Trained Reward (No Transfer) 62.54 0.712 60000

Source Trained Reward (Transfer) 53.09 0.631 45000
Policy Transfer 51.1 0.598 -

Datasets Nodes edges

Andorra 32,829 513,931
Trade 100 703

Company 1984 12,751
Movie 2788 10,399

Arxiv GR-QC 5242 14496

(c)

Methods Trade Company Arxiv GR-QC

GT core 0.834 0.762 0.943
Social Game Embed 0.968 0.987 0.857

svII 0.821 0.774 0.658

Seal 0.971 0.933 0.912
Graphite 0.942 0.889 0.823

MINE 0.91 0.819 0.855

(b)
(a)

pacity of the learned policy. Specifically, we train a full model on source network and then

directly evaluate the learned policy on target network without re-training (zero-shot gen-

eralization). We report our results on three criteria: fraction of correct links recovered on

target network, correlation between the policy performance between target trained model

and transferred models (both retrained one and policy transfer) and number of training

episodes for convergence.

Transfer across different network sizes– To this end, we consider Andorra phone call

network with attributes such as phone type (apple, Samsung and others), location and in-

ternet usage. We train MINE on a sub-network of 100 agents to learn the payoff (source

training). We then fix the learned payoff and re-optimize the policy over the full network

(transfer). Table 7.2(a) top row demonstrates successful transfer with an on par perfor-

mance compared to the model fully trained on the large network and notably requires

lesser episodes, thereby providing speedup. Transfer across different set of players– We

consider two strategic networks from different domains: a trade network between countries

and bipartite movie network between directors and cast. We spilt each network into two

connected components disjoint set of agents. We train MINE on one component (source

training) and transfer it to the other. Table 7.2(a) showcases highly competitive transfer

performance for Trade data, signifying its applicability to extract a useful strategic mecha-

117

nism from an observed network to train network games with different configurations. For

the movie network, the performance degrades slightly and we suspect it is due to its bipar-

tite nature that requires further constraints in the model.

Finally, the policy transfer performs worse than re-optimizing the policy on target net-

work. Nevertheless, its moderate success (with no re-training) has applications in scenarios

where quick testing may be useful first step. This usefulness of MINE for zero-shot gener-

alization is due to the use of GNN for encoding agent representations that generalize across

unseen states of the environment.

7.4.2 Strategic Prediction

In this section, we evaluate the ability of learned network emergence games as a model to

support meaningful strategic predictions. Concretely, we focus on classical link prediction

task that forms the basis of many further network analysis tasks. We consider three net-

works from different domains: a financial trade network, a company network of communi-

cation between members at different hierarchy and a co-authorship network of General rel-

ativity and Quantum Cosmology field. We split the networks into train (80%) and test(20%)

edge sets and train a reward and policy over the training edges. At convergence, we roll-

out the evaluation policy asking agents to form links between them. We report the standard

link prediction metrics Area under the curve (AUC) in Table 7.2(b). For baselines, we

use 3 game theoretic approaches for link prediction as a direct comparison: GT core [203]

and Social Game Embed [200] that combines network embedding approaches with game-

theoretic payoff functions and svII [204], a recently proposed similarity measure used to

perform link prediction based on agent similarities. For completeness, we compare with a

state-of-art discriminative model SEAL [25] and generative model Graphite [205] for link

prediction. The results in Table 7.2(b) demonstrate that a learned MINE model has strong

predictive capabilities that often outperforms or achieves comparable performance to styl-

ized game-theoretic approaches. The high performance of Social Game Embed for Trade

118

and Company dataset is attributed to its dataset specific payoff function but its performance

degrades on dataset which uses a different strategy than a social game while MINE demon-

strates consistently good performance. The superior performance of learning baselines for

link prediction is expected as these baselines use a task-dedicated architecture and training

objective, which stands in contrast to MINE, which discovers the objective from the ob-

served network and learns a generic network emergence strategy model. This demonstrates

compelling generalization properties of MINE that is coupled with the interpretability ben-

efits, both absent in deep learning approaches such as the dedicated baselines. Finally, none

of the above approaches facilitate seamless transfer across new players which makes our

approach versatile.

7.5 Summary

In this paper, we investigate the problem of learning network emergence games directly

from the observed networks without any assumptions on the underlying strategic mecha-

nisms. We propose, MINE, a data-driven learning framework that incorporates Markov-

Perfect Network emergence game dynamics into its sequential decision process formula-

tion and solves it using multi-agent reinforcement learning. MINE jointly discovers agents’

strategy profiles in the form of learned policy and the latent payoff mechanism in the form

of learned reward function. Our experimental evaluation of the predictive, transfer and

explanatory properties of MINE demonstrates that MINE successfully combines the inter-

pretability benefits of game-theoretic frameworks with the practical applicability of learn-

ing approaches.This opens up new avenues for research on leveraging game theoretic ap-

proaches to build interpretable and transferable learning frameworks for network analysis.

119

CHAPTER 8

CONCLUSION

Graphs are ubiquitous representation of information across domains such as social net-

works, knowledge graphs, financial systems, protein-protein networks and many more.

Machine Learning over graph structured data has enjoyed successful advancements in the

past decade with the increasing availability of standardized benchmarks, proliferation of

conceptual models and a simultaneous upsurge in the application domains that leverage

structured knowledge for decision-making. Given the versatile presence of graph struc-

tures, it is important to study the processes that leads to the emergence or governs the evo-

lution of these graphs. In this thesis, we follow the principle of tightly coupling the recent

advancements in machine learning over graphs with the classical modeling approaches.

We leverage this principle to build machine learning frameworks for modeling, learning

and inferring such processes over graph structured data. Specifically, we make following

contributions:

8.1 Contributions

As a part of this thesis, we build both generative and discriminative modules to learn over

graph structured data. In the generative case, we focus on modeling evolution process of

dynamic networks and learning dynamic node representations that evolve over time. This

work has been specialized to perform temporal reasoning over multi-relational dynamic

knowledge graphs. Further, we focus on the process of network formation and build learn-

ing approaches that aim to discover global optimization models of graph formation and

learn local strategic network emergence mechanisms. Finally, in the discriminate case,

we propose a deep relational learning architecture that can jointly perform representation

learning and entity linkage over multiple graph sources in an end-to-end fashion.

120

Dynamics. For modeling and learning dynamic graphs, we propose a novel deep learn-

ing framework grounded in rich mathematical model of temporal point process and show

that temporal point process based graph evolution model supports capturing fine-grained

temporal dynamics. We also propose novel two-time scale modeling of dynamics, local-

ized embedding propagation and temporal attention all of which serve as useful inductive

biases for our deep learning architecture. Finally, we demonstrate that the proposed work

is useful for any event based applications and supports accurate event based predictions for

variety of domains that exhibit temporal evolution.

Global Formation Mechanisms. We investigate the implications of adopting the opti-

mization perspective for building graph learning approaches and found that modeling opti-

mization mechanisms of graph formation is a promising approach for learning over graphs.

Modeling these mechanisms allow for building approaches that function effectively in a

non-probabilistic setting and lend itself to transfer within a given domain. In this work, we

specifically focus on discovering global optimization mechanisms that govern the forma-

tion process of graphs and demonstrate that models learned with these properties generalize

well to prediction task and further serve as an effective graph constructor.

Local Strategic Mechanisms. We further our investigation into building optimization

based network learning approaches to the setting where agents are strategic and rational

and they participate in network formation process with the aim of optimizing local utility

or benefits. Subsequently, we focus on network emergence games studied extensively in

game theory and take it to the data for supporting practical applications on real-world data.

Our approach incorporates network game dynamics explicitly into the learning framework

jointly tasked to learn payoff mechanisms and strategy profiles. We demonstrate that our

approach learns interpretable and transferable mechanisms and the learned game as a model

is useful to perform strategic link prediction.

Multi-graph Representation Learning. Many data driven organizations such as Google

and Microsoft take the approach of constructing a unified super-graph by integrating data

121

from multiple sources. Such unification has shown to significantly help in various applica-

tions, such as search, question answering, and personal assistance. To this end, there exists

a rich body of work on linking entities and relations, and conflict resolution. Still, the prob-

lem remains challenging for large scale knowledge graphs and this paper proposes a deep

learning solution that can play a vital role in this construction process. To address this, we

propose a novel relational learning framework that learns entity and relationship embed-

dings across multiple graphs. The proposed representation learning framework leverage an

efficient learning and inference procedure which takes into account the duplicate entities

representing the same real-world entity in a multi-graph setting. We demonstrate superior

accuracies on link prediction and entity linkage tasks compared to the existing approaches

that are trained only on individual graphs. In real-world setting, we envision our method

to be integrated in a large scale system that would include various other components for

tasks like conflict resolution, active learning and human-in-loop learning to ensure quality

of constructed super-graph.

As the focus of this thesis is to build approaches that tightly couple classical model-

ing approaches/insights with deep learning techniques for networks, several of these works

adopt a novel perspective compared to the prevalent ones in the graph learning commu-

nity. This contributes towards opening up several new research directions and avenues.

While our work on formation mechanisms is fairly recent and demonstrates the promise of

high impact on graph learning community, both our earlier work on dynamic graphs and

multi-graph representation learning have received have gained significant attention both

in academia and industry. Our work on dynamic graphs have forged a line of follow up

works on modeling dynamic processes over graphs and designing various temporal atten-

tion based architecture. Simultaneously, our work on multi-graph representation learning

has led to a multi-year project at Amazon on using representation learning for unifying

graphs from different sources and constructing Amazon Product Graph, a billion-entity

scale knowledge graph of Amazon products.

122

8.2 Limitations and Future Work

The overall theme of this thesis is to build a synergy between classical approaches that ana-

lyze and study networks and the success in learning over complex graph structures with an

aim to combine the benefits of both worlds specifically focusing on moving the needle to-

wards generalizable and interpretable approaches to learning over graphs in heterogeneous

settings. While our contributions take several initial steps in this direction, there are lot of

open problems and challenges that remain to be solved as a part of future work in each of

the proposed directions:

Dynamics. Our current work on modeling dynamic graphs does not support shrinkage

due to following reasons: (i) It is difficult to procure data with fine grained deletion time

stamps and (ii) The temporal point process model requires more sophistication to support

deletion. Another interesting future direction could be to support encoding higher order

dynamic structures. Further, sophisticated approaches that can account for birth and death

process, multi-time scale dynamics, causal interventions and many more characteristics

need to be researched and developed for supporting decision critical applications.

Optimization Mechanisms Viewpoint. Our work on building learning approaches

based on optimization viewpoint is a novel approach for graph learning approaches and

hence we expect a several follow up work that adopt this viewpoint and focus on different

tasks. For immediate extensions, our current approach learns from single graph and hence

the next step will be to support multiple input graphs when samples from distribution over

graphs is available. Further, we start out with supporting general objective functions, but

it would be interesting to specialize these methods to specific applications that require

constrained learning. Finally, our current work only relies on the final outcome observation

but it would be useful to build approaches that support learning from construction process

whenever it is available atleast partially in the form of evolving graphs.

Learning over multiple graphs. Our current work in this direction mainly focuses on

123

aligning two graphs while jointly learning representations over them. For future work, it

would be interesting to extend the current evaluation of our work from a two-graph setting

to multiple graphs. A straightforward approach is to create a unified dataset out of more

than two graphs by combining set of triplets, and apply learning and inference on the uni-

fied graph without any major change in the methodology. Alternatively, one can develop

sophisticated approaches with iterative merging and learning over pairs of graphs until ex-

hausting all graphs in an input collection. Further, more sophisticated learning methods

based on graph matching and optimal transport can be leveraged to conduct sophisticated

learning tasks over multiple graphs.

124

Appendices

125

APPENDIX A

RELATIONAL LEARNING OVER MULTI-SOURCE KNOWLEDGE

A.1 Discussion and Insights on Entity Linkage Task

Entity linkage task is novel in the space of multi-graph learning and yet has not been tack-

led by any existing relational learning approaches. Hence we analyze our performance on

the task in more detail here. We acknowledge that baseline methods are not tailored to the

task of entity linkage and hence their low performance is natural. But we observe that our

model performs well even in the unsupervised scenario where essentially the linkage loss

function is switched off and our model becomes a relational learning baseline. We believe

that the inductive ability of our model and shared parameterization helps to capture knowl-

edge across graphs and allows for better linkage performance. This outcome demonstrates

the merit in multi-graph learning for different inference tasks. Having said that, we admit

that our results are far from comparable to State-of-the-art linkage results (Das et al., 2017)

and much work needs to be done to advance representation and relational learning methods

to support effective entity linkage. But we note that our model works for multiple types of

entities in a very heterogeneous environment with some promising results which serves as

an evidence to pursue this direction for entity linkage task.

We now discuss several use-case scenarios where our model did not perform well to gain

insights on what further steps can be pursued to improve over this initial model:

Han Solo with many attributes (False-negative example). Han Solo is a fictional charac-

ter in Star Wars and appears in both D-IMDB and D-FB records. We have a positive label

for this sample but we do not predict it correctly. Our model combines multiple compo-

126

nents to effectively learn across graphs. Hence we investigated all the components to check

for the failures. One observation we have is the mismatch in the amount of attributes across

the two datasets. Further, this is compounded by multi-value attributes. As described, we

use paragraph2vec like model to learn attribute embeddings where for each attribute, we

aggregate over all its values. This seems to be computing embeddings that are very noisy.

As we have seen attributes are affecting the final result with high impact and hence learning

very noisy attributes is not helping. Further, the mismatch in number of types is also an

issue. Even after filtering the types, the difference is pretty large. Types are also included

as attributes and they contribute context to relation embeddings. We believe that the skew

in type difference is making the model learn bad embeddings. Specifically this happens

in cases where lot of information is available like Han Solo as it lead to the scenario of

abundant noisy data. With our investigation, we believe that contextual embeddings need

further sophistication to handle such scenarios. Further, as we already learn relation, type

and attribute embeddings in addition to entity embeddings, aligning relations, types and

attributes as integral task could also be an important future direction.

Alfred Pennyworth is never the subject of matter (False-negative example). In this

case, we observe a new pattern which was found in many other examples. While there are

many triples available for this character in D-IMDB, very few triplets are available in D-

FB. This skew in availability of data hampers the learning of deep network which ends up

learning very different embeddings for two realizations. Further, we observe another patter

where Alfred Pennyworth appears only as an object in all those few triplets of D-FB while

it appears as both subject and object in D-IMDB. Accounting for asymmetric relationships

in an explicit manner may become helpful for this scenario.

Thomas Wayne is Martha Wayne! (False-positive example). This is the case of abun-

dance of similar contextual information as our model predicts Thomas Wayne and Martha

127

Wayne to be same entity. Both the characters share a lot of context and hence many triples

and attributes, neighborhood etc. are similar for of them eventually learning very similar

embeddings. Further as we have seen before, neighborhood has shown to be a weak context

which seems to hamper the learning in this case. Finally, the key insight here is to be able

to attend to the very few discriminative features for the entities in both datasets (e.g. male

vs female) and hence a more sophisticated attention mechanism would help.

In addition to the above specific use cases, we would like to discuss insights on follow-

ing general concepts that naturally occur when learning over multiple graphs:

• Entity Overlap Across Graphs. In terms of overlap, one needs to distinguish be-

tween *real* and *known* overlap between entities. For the known overlap between

entities, we use that knowledge for linkage loss function Llab. But our method does

not need to assume either types of overlap. In case there is no real overlap, the model

will learn embeddings as if they were on two separate graphs and hence will only

provide marginal (if any) improvement over State-of-art embedding methods for sin-

gle graphs. If there is real overlap but no known overlap (i.e., no linked entity labels),

the only change is that Equation (13) will ignore the term (1−b) ·Llab. Table 3 shows

that in this case (corresponding to AUPRC (Unsupervised)), we are still able to learn

similar embeddings for graph entities corresponding to the same real-world entity.

• Disproportionate Evidence for entities across graphs. While higher proportion

of occurrences help to provide more evidence for training an entity embedding, the

overall quality of embedding will also be affected by all other contexts and hence we

expect to have varied entity-specific behavior when they occur in different propor-

tions across two graphs

• Ambiguity vs. Accuracy. The effect of ambiguity on accuracy is dependent on the

type of semantic differences. For example, it is observed that similar entities with

128

major difference in attributes across graphs hurts the accuracy while the impact is

not so prominent for similar entities when only their neighborhood is different.

A.2 Implementation Details

A.2.1 Additional Dataset Details

We perform light pre-processing on the dataset to remove self-loops from triples, clean

the attributes to remove garbage characters and collapse CVT (Compound Value Types)

entities into single triplets. Further we observe that there is big skew in the number of types

between D-IMDB and D-FB. D-FB contains many non-informative type information such

as #base.∗. We remove all such non-informative types from both datasets which retains

41 types in D-IMDB and 324 types in D-FB. This filtering does not reduce the number of

entities or triples by significant number (less than 1000 entities filtered)

For comparing at scale with baselines, we further reduce dataset using similar tech-

niques adopted in producing widely accepted FB-15K or FB-237K. Specifically, we filter

relational triples such that both entities in a triple contained in our dataset must appear in

more than k triples. We use k = 50 for D-FB and k = 100 for D-IMDB as D-IMDB

has orders of magnitude more triples compared to D-FB in our curated datasets. We still

maintain the overall ratio of the number of triples between the two datasets.

Positive and Negative Labels. We obtain 500662 positive labels using the existing

links between the two datasets. Note that any entity can have only one positive label. We

also generate 20 negative labels for each entity using the following method: (i) randomly

select 10 entities from the other graph such that both entities belong to the same type and

there exist no positive label between entities (ii) randomly select 10 entities from the other

graph such that both entities belong to different types.

129

A.2.2 Training Configurations

We performed hyper-parameter grid search to obtain the best performance of our method

and finally used the following configuration to obtain the reported results:

– Entity Embedding Size: 256, Relation Embedding Size=64, Attribute Embedding Size =

16, Type Embedding Size = 16, Attribute Value Embedding Size = 512. We tried multiple

batch sizes with very minor difference in performance and finally used size of 2000. For

hidden units per layer, we use size = 64. We used C = 50 negative samples and Z = 20

negative labels. The learning rate was initialized as 0.01 and then decayed over epochs.

We ran our experiments for 5 epochs after which the training starts to convert as the dataset

is very large. We use loss weights b as 0.6 and margin as 1. Further, we use K = 50

random walks of length l = 3 for each entity We used a train/test split of 60%/40% for

both the triples set and labels set. For baselines, we used the implementations provided

by the respective authors and performed grid search for all methods according to their

requirements.

A.2.3 Contextual Information Formulations

Here we describe exact formulation of each context that we used in our work.

Neighborhood Context: Given a triplet (es, r, eo), the neighborhood context for an en-

tity es will be all the nodes at 1-hop distance from es other than the node eo. This will

capture the effect of other nodes in the graph surrounding es that drives es to participate in

fact (es, r, eo). Concretely, we define the neighborhood context of es as follows:

Nc(e
s) =

1

ne′

∑
e′∈N (es)
e′ 6=eo

ve′ (A.1)

130

where N (es) is the set of all entities in neighborhood of es other than eo. We collect

the neighborhood set for each entity as a pre-processing step using a random walk method.

Specifically, given a node e, we run k rounds of random-walks of length l and create the

neighborhood set N (e) by adding all unique nodes visited across these walks.

Please note that we can also use max function in (A.1) instead of sum. Nc(e
s) ∈ Rd

and the context can be similarly computed for object entity.

Attribute Context. For an entity es, the corresponding attribute context is defined as

Ac(e
s) =

1

na

na∑
i=1

aes

i (A.2)

where na is the number of attributes. aes

i is the embedding for attribute i. Ac(e
s) ∈ Ry.

Type Context. We use type context mainly for relationships i.e. for a given relation-

ship r, this context aims at capturing the effect of type of entities that have participated in

this relationship. For a given triplet (es, r, eo), we define type context for relationship r as:

Tc(r) =
1

nrt

nrt∑
i=1

vt′

i (A.3)

where, nrt is the total number of types of entities that has participated in relationship r

and vt′

i is the type embedding that corresponds to type t. Tc(r) ∈ Rq.

131

APPENDIX B

REPRESENTATION LEARNING OVER DYNAMIC GRAPHS

B.1 Pictorial Exposition of DyRep Representation Network

B.1.1 Localized Embedding Propagation

u v

1

4

3

2 5

6

7

𝒛"(𝑡̅)

𝒛'(𝑡̅)

𝒛((𝑡̅)

𝒛)(𝑡̅)

𝒛*(𝑡̅)

𝒛+(𝑡̅)

𝒛,(𝑡̅)

𝒛-(𝑡̅)

𝒛.(𝑡̅)

𝒉012*31. (𝑡̅)

𝒉012*31* (𝑡̅)

Figure B.1: Localized Embedding Propagation: An event is observed between nodes u
and v and k can be 0 or 1 i.e. It can either be a topological event or interaction event.
The first term in Eq 4. contains hstruct which is computed for updating each node involved
in the event. For node u, the update will come from hvstruct (green flow) and for node v,
the update will come from hustruct (red flow). Please note all embeddings are dynamically
evolving hence the information flow after every event is different and evolves in a complex
fashion. With this mechanism, the information is passed from neighbors of node u to node
v and neighbors of node v to node u. (i) Interaction events lead to temporary pathway
- such events can occur between nodes which are not connected. In that case, this flow
will occur only once but it will not make u and v neighbors of each other (e.g. meeting
at a conference). (ii) Topological events lead to permanent pathway - in this case u and v
becomes neighbor of each other and hence will contribute to structural properties moving
forward (e.g. being academic friends). The difference in number of blue arrows on each
side signify different importance of each node to node u and node v respectively.

Overall Embedding Update Process. As a starting point, neighborhood only includes

132

nodes connected by a structural edge. On observing an event, we update the embeddings of

two nodes involved in the event using Eq 4. For a node u, the first term of Eq 4 (Localized

Embedding Propagation) requires hstruct which is the information that is passed from

neighborhood (Nv) of node v to node u via node v (one can visualize v as being the message

passer from its neighborhood to u). This information is used to update the embedding of

node u. However, we posit that node v does not relay equal amount of information from

its neighbors to node u. Rather, node v receives its information to be relayed based on its

communication and association history with its neighbors (which relates to importance of

each neighbor). This requires to compute the attention coefficients on the structural edges

between node v and its neighbors. For any edge, we want this coefficient to be dependent

on rate of events between the two nodes (thereby emulating real world phenomenon that

one gains more information from people one interacts more with). Hence, we parameterize

our attention module with the temporal point process parameter Suv. Algorithm 1 outlines

the process of computing the value of this parameter.

133

B.1.2 Computing hstruct: Temporal Point Process based Attention

u v

1

4

3

2

𝒛"(𝑡̅)

𝒛'(𝑡̅)

𝒛((𝑡̅)

𝒛)(𝑡̅)

𝒛*(𝑡̅)

𝒉,-.*/-* (𝑡̅)

𝑞*((𝑡̅) 𝑞*)(𝑡̅)

𝑞*'(𝑡̅)

Temporal Point Process Self-
Attention:

𝒉,-.*/-* 𝑡̅
= max(𝜎(𝑞*6 𝑡̅ ∗ 𝒉6 𝑡̅))

𝒉6 𝑡̅ = 𝑾9𝒛6 𝑡̅ +	𝑏9

where 𝑖	 ∈ 	𝑁* 𝑡̅ is the node
in neighborhood of node u.

𝑞*6 𝑡̅

= 	
exp(𝑆*6(𝑡̅))

∑ exp(𝑆*6D (𝑡̅))6D 	∈	EF -̅

𝒛G(𝑡̅)

Figure B.2: Temporal Point Process based Self-Attention: This figure illustrates the com-
putation of hustruct for node u to pass to node v for the same event described before between
nodes u and v at time t with any k. hustruct is computed by aggregating information from
neighbors (1,2,3) of u. However, Nodes that are closely connected or has higher interac-
tions tend to attend more to each other compared to nodes that are not connected or nodes
between which interactions is less even in presence of connection. Further, every node has
a specific attention span for other node and therefore attention itself is a temporally evolv-
ing quantity. DyRep computes the temporally evolving attention based on association and
communication history between connected nodes. The attention coefficient function (q’s)
is parameterized by S which is computed using the intensity of events between connected
nodes. Such attention mechanism allows the evolution of importance of neighbors to a
particular node (u in this case) which aligns with real-world phenomenon.

B.1.3 Computing S: Algorithm 1

Please check Figure B.3 on next page.

B.2 Rationale Behind DyRep Framework

Connection to Marked Point Process. From a mathematical viewpoint, for any event e

at time t, any information other than the time point can be considered a part of mark space

describing the events. Hence, for DyRep, given a one-dimensional timeline, one can con-

134

u

1

4

3

2

𝒛"(𝑡̅)

𝒛'(𝑡̅)

𝒛((𝑡̅)

𝒛)(𝑡̅)

𝒛*(𝑡̅)

5

𝒛+(𝑡̅)

𝑆*(𝑡 = b = 0.25

𝑆*'(𝑡) = b = 0.25 𝑆*3(𝑡) = b = 0.25

𝑆*)(𝑡) = b = 0.25

𝑆'"(𝑡) = b = 1

(a) Start State

u

1

4

3

2

𝒛"(𝑡̅)

𝒛'(𝑡̅)

𝒛((𝑡̅)

𝒛)(𝑡̅)

𝒛*(𝑡̅)

5

𝒛+(𝑡̅)

𝑆*(𝑡 = 0.25

𝑆*'(𝑡) = 0.25
𝑆*2(𝑡) = 0.25+ 𝜆56)*2 (𝑡)	

𝑆*)(𝑡) = 0.25

𝑆'"(𝑡) = 1
𝜆56)*2 (𝑡)	

Interaction Event on an
existing edge
(Note b = 0.25 previously)

u

1

4

3

2

𝒛"(𝑡̅)

𝒛'(𝑡̅)

𝒛((𝑡̅)

𝒛)(𝑡̅)

𝒛*(𝑡̅)

5

𝒛+(𝑡̅)

𝑆*(𝑡 = 𝑆*(𝑡 − 𝑥

𝑆*'(𝑡) = 𝑆*' 𝑡 − 𝑥 𝑆*0(𝑡) = 𝑆*0 𝑡 − 𝑥

𝑆*)(𝑡) = 𝑆*) 𝑡 − 𝑥

𝑆'"(𝑡) = 1 𝑆*"(𝑡) = 𝑏 + 𝜆56)
*" (𝑡) Topological Event on a

non-existing edge
(Note 𝑏	 = 	0.2 now and
𝑥	 = 	𝑏’	(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝑏)	−
	𝑏	 = 	0.25	– 	0.2	 = 	0.5)

𝜆56)*" (𝑡)

Adjustment due to growth
in neighborhood size

(b) Update to S after Interaction Event (c) Update to S after Topological Event

Figure B.3: Computing S. Illustration of the update to S under two circumstances for
events that involve node u: (i) Interaction events between neighbors (ii) Topological Event
between non-neighbors. We only illustrate one node but update will happen for both nodes
in the event (e.g. for (u, v), rows of both nodes will be updated asymmetrically due to
different neighborhood size. (a) shows the initial state where u has 4 neighbors and hence
background attention is uniform b = 0.25. (b) u has an interaction event with node 5.
Update only happens to Su5 and S5u based on intensity of the event. (c) u has a topological
event with node 4. b changes to 0.2. b′ = 0.25 which is the previous b. Update happens to
Su4 and S4u based on intensity of event. Next attention for all other neighbors of both nodes
(We only show for u here) are adjusted to reflect neighborhood size change. The matrix
S is used for computing attention and hence does not get updated for interaction events
between nodes which do not have an edge (for e.g. pair (1,2) may have an interaction event
S12 won’t be updated as they are not neighbors.

sider O = {(u, v, k)p, tp)
P
p=1 as a marked process with the triple (u, v, k) representing the

mark.

However, from machine learning perspective, using a single-dimensional process with such

marks does not allow to efficiently and effectively discover or model the structure in the

135

point process useful for learning intricate dependencies between events, participants of the

events and dynamics governing those events. Hence, it is often important to extract the in-

formation out of the mark space and build an abstraction that helps to discover the structure

in point process and make this learning parameter efficient. In our case, this translates to

two components:

1. The nodes in the graph are considered as dimensions of the point process, thus mak-

ing it a multi-dimensional point process where an event represents interaction/structure

between the dimensions, thus allowing us to explicitly capture dependencies between

nodes.

2. The topological evolution of networks happen at much different temporal scale than

activities on a fixed topology network (e.g. rate of making friends vs liking a post

on a social network). However both these processes affect each other’s evolution in

a complex and nonlinear fashion. Abstracting k to associate it with these different

scales of evolution facilitates to model our purpose of expressing dynamic graphs at

two time scales in a principled manner. It also provides an ability to explicitly cap-

ture the influential dynamics [96] of topological evolution on dynamics of network

activities and vice versa (through the learned embedding – aka evolution through

mediation.

Note that this distinction in use of mark information is also important as we learn represen-

tations for nodes (dimensions) but not for k. It is important to realize that k representing

two different scales of event dynamics is not same as edge or interaction type. For instance,

in case of typed persistent edge (e.g. wasbornIn, livesIn) or typed interaction (e.g. visit,

fight), one would add type as another component in the mark space to represent an event

while k still signifying different dynamic scales.

Comparison to [28]. In the similar vein as above, the point process specification of

[28] can also be considered as a marked process that models the typed interaction dynam-

136

ics at a single time-scale and does not model topological evolution. In contrast to that, our

method explicitly models dynamic graph process at two time scales. While both models

use a point process based formulation for modeling temporal dynamics, there are several

significant methodological differences between the two approaches:

Deep Point Process Model — While one can augment the event specification in (Trivedi et.

al. 2017) with additional mark information, that itself is not adequate to achieve DyRep’s

modeling of dynamical process over graphs at multiple time scales. We employ a soft-

plus function for fk which contains a dynamic specific scale parameter ψk to achieve this

while (Trivedi et al. 2017) uses an exponential (exp) function for f with no scale param-

eter. Their intensity formulation attains a Rayleigh distribution which leads to a specific

assumption about underlying dynamics which models fads where intensity of events drop

rapidly between events after increasing. Our two-time scale model is more general and

induces modularization, where each of two components allow complex, nonlinear and de-

pendent dynamics towards a non-zero steady state intensity.

Graph Structure— As shown in [95], the key idea behind representation learning over

graphs is to capture both the global position and local neighborhood structural information

of node into its representations. Hence, there has been significant research efforts invested

in devising methods to incorporate graph structure into the computation of node represen-

tation. Aligned with these efforts, DyRep proposes a novel and sophisticated Localized

Embedding Propagation principle that dynamically incorporates graph structure from both

local neighborhood and faraway nodes (as interactions are allowed between nodes that do

not have an edge). Contrary to that, [28] uses single edge level information, specific to the

relational setting, into their representations.

Deep Temporal Point Process Based Self-Attention— For learning over graphs, attention

has been shown to be extremely valuable as importance of nodes differ significantly rela-

tive to each other. The state-of-the-art approaches have focused solely on static graphs with

Graph Attention Networks [122] being the most recent one. Our attention mechanism for

137

dynamic graphs present a significant and principled advancement over the existing state-

of-the-art Graph based Neural Self-Attention techniques which only support static graphs.

As [28] do not incorporate graph structure, they do not use any kind of attention mecha-

nism.

Support for Node Attributes and Edge Types. Node types or attributes are supported

in our work. In Eq. 4, zv(t̄p
v) induces recurrence on node v’s embedding, but when node

v is observed for first time, zv(t̄p
v) = xv where xv is randomly initialized or contains the

raw node features available in data (which also includes type). One can also add an extra

term in Eq. 4 to support high-dimension node attributes. Further, we also support different

types of edges. If either the structural edge or an interaction has a type associated with

it, our model can trivially support it in Eq. 3 and Eq. 4, first term hstruct. Currently, for

computing hstruct, the formulation is shown to use aggregation over nodes. However, this

aggregation can be augmented with edge type information as conventionally done in many

representation learning frameworks [95]. Further, for more direct effect, Eq 3 can include

edge type as third feature vector in the concatenation for computing gk.

Support for new nodes. As mentioned in Section 2.3 of the main paper, the data con-

tains a set of dyadic events ordered in time. Hence, each event involves two nodes u and

v. A new node will always appear as a part of such an event. Now, as mentioned above,

the initial embedding of any new node u is given by zu(t̄p
u) which can be randomly ini-

tialized or using the raw feature vector of the node u, xu. This allows the computation of

intensity function for the event involving new node in Eq 1. Due to the inductive ability of

our framework, we can then compute the embedding of the new node using Eq 4. There

are two cases possible: Either one of the two nodes are new or both nodes are new. The

mechanism for these two cases work as follows:

- Only one new node in observed event — To compute the embedding of new nodes, hstruct

is computed using neighborhood of the existing (other) node, z(tu0) s the feature vector of

138

the node or random and drift is 0. To compute the new embedding of existing node, hstruct

is the feature vector of the new node, self-propation uses the most recent embedding of the

node and drift is based on previous time point.

- Both nodes in the observed event are new — hstruct is the feature vector of the feature

vector of the other nodes, z(tu0) s the feature vector of the node or random and drift is 0.

Finally, Algorithm 1 does not require to handle new nodes any differently. As already

available in the paper, both A and S are qualified by time and hence the matrices get

updated every time. The starting dimension of the two matrices can be specified in two

ways: (i) Construct both matrices of dimension = total possible no. of nodes in dataset

and make the rows belonging to unseen nodes 0. (ii) Expand the dimensions of matrices

as you start seeing new nodes. While we implement the first case, (ii) will be required in

real-world streaming scenario.

139

B.3 Ablation Study

DyRep framework unifies several components that contribute to its effectiveness in learning

rich node representation over complex and nonlinear processes in dynamic graphs. In this

section, we provide insights on each component and how it is indispensable to the learn-

ing mechanism by performing an ablation study on various design choices of our model.

Specifically, DyRep can be divided into three main parts: Multi-time scale point process

model, Representation Update Formulation and Conditional Intensity Based Atten-

tion Mechanism. We focus on design choices available in each component and evaluate

them on large github dataset. DyRep in the Figure B.4 is the full model.

Multiple Time- Scale Processes. For this component, we perform two major tests:

• DyRep-Comm. In this variant, we make Eq 1., time-scale independent (i.e. remove

k) and we train on only Communication Events. But we evaluate on both commu-

nication and association events. Please note that this is possible as our framework

can compute representations for unseen nodes. Hence during training they will only

learn representation parameters based on communication events. It is observed that

compared to the full model, the performance of model degrades in prediction for

both types of events. But the decline is more prominent for the Association events

compared to Communication Events.

• DyRep-Assoc. In this variant, similar to above, we make Eq 1., time-scale inde-

pendent and we train on only Association Events. But we evaluate on both com-

munication and association events. It is observed that compared to the full model,

the performance of model degrades in prediction for both types of events. But the

decline is more prominent for the Communication events compared to Association

Events.

The above two experiments show that considering events at a single time scale and not

140

distinguishing between the processes hurt the performance. Although the performance is

hurt more when communication events are not considered which may be due to the more

availability of communication events due to its rapid frequency. We also performed a small

test by training on all events but using a single scale parameter (ψ). The performance for

both the dynamics degrades which demonstrates the effectiveness of ψk.

3427.75

3709.52

4404.67

3599.14
3839.09

3962.48

3445.24

4798.86

0

1000

2000

3000

4000

5000

Methods

M
AR

DyRep
DyRep-Comm

DyRep-Assoc
DyRep-S-Comm

DyRep-S-Assoc
DyRep-No-Att

DyRep-No-SP
DyRep-No-Struct

0.4467
0.4132

0.2903

0.4243
0.402

0.3654

0.4442

0.268

0.0

0.1

0.2

0.3

0.4

Methods
H

IT
S_

10

DyRep
DyRep-Comm

DyRep-Assoc
DyRep-S-Comm

DyRep-S-Assoc
DyRep-No-Att

DyRep-No-SP
DyRep-No-Struct

(a) MAR (Communication) (b) HITS@10 (Communication)

2722.81

3212.9158
3104.0034

2831.7224 2913.4067 2986.9226

2755.4837

3784.7059

0

1000

2000

3000

4000

Methods

M
AR

DyRep
DyRep-Comm

DyRep-Assoc
DyRep-S-Comm

DyRep-S-Assoc
DyRep-No-Att

DyRep-No-SP
DyRep-No-Struct

0.323

0.2584

0.2907 0.3004 0.2922
0.2746

0.3214

0.1873

0.0

0.1

0.2

0.3

Methods

H
IT

S_
10

DyRep
DyRep-Comm

DyRep-Assoc
DyRep-S-Comm

DyRep-S-Assoc
DyRep-No-Att

DyRep-No-SP
DyRep-No-Struct

(c) MAR (Association) (d) HITS@10 (Association)

Figure B.4: Ablation Study on Github Dataset

Representation Update Formulation. For this component, we focus on Eq. 4 and

switch off the components to observe its effect.

• DyRep-No-SP. In this variant, we switch off the self-propagation component and

we observe that the overall performance is not hurt significantly by not using self-

propagation. In general, this term provides a very weak feature and mainly captures

141

the recurrent evolution of one’s own latent features independent of others. It is ob-

served that the deviation has increased for Association events which may point to the

reason that there are few nodes who have links but highly varying frequency of com-

munication and hence most of their features are either self-propagated or completely

associated with others.

• DyRep-No-Struct. In this variant, we remove the structural part of the model and

as one would expect, the performance drops drastically in both the scenarios. This

provides evidence to the necessity of building sophisticated structural encoders for

dynamic graphs.

Intensity Attention Mechanism. For this component, we focus on Section 3.2 which

builds the novel intensity based attention mechanism. Specifically, we carry following test:

• DyRep-No-Att. Here we completely remove the attention from the structural com-

ponent and we see a significant drop in the performance.

• DyRep-S-Comm. In this variant, we focus on Algorithm 1 and we only make update

to the S matrix for Communication events but do not do it for Association events.

This leads to slightly worse performance which helps to see how the S matrix is

helping to mediate the two processes and not considering association events leads to

loss of information.

• DyRep-S-Assoc. In this variant, we focus on Algorithm 1 and we only make update

to the S matrix for Association events but do not do it for Communication events.

This leads to a significant drop in performance again validating the need for using

both processes but its prominent effect also shows that communication events (dy-

namics on the network) is more important while considering the influence of neigh-

bors. Please note that this version is temporal analogous of GAT.

142

B.4 Exploratory Analysis

We assess the quality of learned embeddings and the ability of model to capture both tem-

poral and structural information. Let t0 be the time point when train ended. Let t1 be the

timepoint when the first test slot ends.

Effect of Association and Communication on Embeddings. We conducted this ex-

periment on Social dataset. We consider three use cases to demonstrate how the interac-

tions and associations between the nodes changed their representations and visualize them

to realize the effect.

• Nodes that did not have association before test but got linked during first test

slot. Nodes 46 and 76 got associated in test between test points 0 and 1. This re-

duced the cosine distance in both models but DyRep shows prominent effect of this

association which should be the case. DyRep reduces the cosine distance from 1.231

to 0.005. Also, DyRep embeddings for these two points belong to different clusters

initially but later converge to same cluster. In GraphSage, the cosine distance reduces

from 1.011 to 0.199 and the embeddings still remain in original clusters. Figure B.5

shows the visualization of embeddings at the two time points in both the methods.

This demonstrates that our embeddings can capture association events effectively.

• Nodes that did not have association but many communication events (114000).

Nodes 27 and 70 is such a use case. DyRep embeddings consider the nodes to be

in top 5 nearest neighbor of each other, in the same cluster and cosine distance of

0.005 which is aligned with the fact that nodes with large number of events tend

to develop similar features over time. Graphsage on the other hand considers them

32nd nearest neighbor, puts them in different clusters with cosine distance - 0.792.

Figure B.6 shows the visualization of embeddings at the two time points in both the

methods. This demonstrates the ability of DyRep’s embedding to capture communi-

cation events and their temporal effect on embeddings effectively.

143

20 10 0 10 20

20

15

10

5

0

5

10

15

46

76

10 0 10 20

20

10

0

10

20

46

76

20 10 0 10 20

10

0

10

20

46

76

20 10 0 10 20

20

10

0

10

46

76

(a) Train End Time (b) Test Slot 1 End Time.

Figure B.5: Use Case I. Top row: GraphSage Embeddings. Bottom Row: DyRep
Embeddings.

20 10 0 10 20

20

15

10

5

0

5

10

15

27

70

10 0 10 20

20

10

0

10

20

27

70

20 10 0 10 20

10

0

10

20

27

70

20 10 0 10 20

20

10

0

10

27

70

(a) Train End Time (b) Test Slot 1 End Time.

Figure B.6: Use Case II. Top row: GraphSage Embeddings. Bottom Row: DyRep
Embeddings.

144

• Temporal evolution of DyRep embeddings. In figure B.7 we visualize the embed-

ding positions of the nodes (tracked in red) as they evolve through time and forms

and breaks from clusters.

20 10 0 10 20

20

10

0

10
(46, 20)
(18, 61)
(0, 13)
(72, 23)
(19,26)
(78, 69)
(53, 3)
(82, 48)
others

20 10 0 10 20 30

20

15

10

5

0

5

10

15

(46, 20)
(18, 61)
(0, 13)
(72, 23)
(19,26)
(78, 69)
(53, 3)
(82, 48)
others

t = 1 t = 2

20 15 10 5 0 5 10 15 20

20

10

0

10

20

(46, 20)
(18, 61)
(0, 13)
(72, 23)
(19,26)
(78, 69)
(53, 3)
(82, 48)
others

20 10 0 10 20

20

15

10

5

0

5

10

15

20

(46, 20)
(18, 61)
(0, 13)
(72, 23)
(19,26)
(78, 69)
(53, 3)
(82, 48)
others

t = 3 t = 4

20 10 0 10 20

20

10

0

10

20

(46, 20)
(18, 61)
(0, 13)
(72, 23)
(19,26)
(78, 69)
(53, 3)
(82, 48)
others

20 10 0 10 20
30

20

10

0

10

20

(46, 20)
(18, 61)
(0, 13)
(72, 23)
(19,26)
(78, 69)
(53, 3)
(82, 48)
others

t = 5 t = 6

Figure B.7: Use Case IV: DyRep Embeddings over time - From left to right and top to
bottom. t are the timepoints when test with that id ended. Hence, t = 1 means the time

when test slot 1 finished.

B.5 Full Experiment Results for both Datasets

Figure B.8 provides HITS@10 results in addition to the MAR results reported for Link

Prediction in Section 5 (Experiments) of the main paper.

145

B.6 Detailed Related Work

Static Embedding Approaches. Representation Learning approaches for static graphs

can be broadly classified into two categories – Node embedding approaches aim to en-

code structural information pertaining to a node to produce its low-dimensional represen-

tation [88, 89, 90, 91, 92, 93, 94]. As they learn each individual node’s representation,

they are inherently transductive. Recently, [18] proposed GraphSage, an inductive method

for learning functions to compute node representations that can be generalized to unseen

nodes. Sub-graph embedding techniques learn to encode higher order graph structures into

low dimensional vector representations [99, 100, 101]. Further, various approaches to use

convolutional neural networks [102, 103, 104] over graphs have been proposed to capture

sophisticated feature information but are generally less scalable. Most of these approaches

only work with static graphs or can model evolving graphs without temporal information.

Other models for dynamic networks. There exists a rich body of literature on tem-

poral modeling of dynamic networks [7] that focus on link prediction tasks but their goal

is orthogonal to us as they build task specific methods and do not focus on representation

learning. Further, there are several approaches in graph mining and temporal relational

learning community [8, 9, 10, 11] that consider dynamic networks but are orthogonal to

our current work. Research on learning dynamic embeddings has also progressed in lin-

guistic community where the aim is to learn temporally evolving word embeddings [206,

207]. [105, 106] include some other approaches that propose model of learning dynamic

embeddings in graph data but none of these models consider time at finer level and do not

capture both topological evolution and interactions. [208] proposes subgraph pattern neu-

ral networks that focuses on evolution of subgraphs instead of single nodes and links. They

build a novel neural network architecture for supervised learning where the hidden layers

146

represent the subgraph patterns observed in the data and output layer is used to perform

prediction. [209] induces a dynamic graph from videos based on the visual correlation

of object proposal that spans across the video. They further propose an LSTM based ar-

chitecture to capture temporal dependencies over this induced graph and perform object

detection. [210] proposes a dynamic probabilistic model in bipartite case of user-item rec-

ommendation where the goal is to learn the evolution of user and item latent features under

the context of Poisson factorization, thus considering the evolution processes of users’ and

items’ latent features as independent of each other.

Deep Temporal Point Process Models. Recently, [107] has shown that fixed paramet-

ric form of point processes lead into the model misspecification issues ultimately affecting

performance on real world datasets. [107] therefore propose a data driven alternative to

instead learn the conditional intensity function from observed events and thereby increase

its flexibility. Following that work, there have been increased attraction in topic of learning

conditional intensity function using deep learning[108] and also intensity free approach

using GANS [109] for learning with deep generative temporal point process models.

B.7 Implementation Details

B.7.1 Additional Dataset Details

Table B.1: Dataset Statistics for Social Evolution and Github.

Dataset #Nodes #Initial #Final #Communications Clustering
Associations Associations Coefficient

Social Evolution 83 376 791 2016339 0.548
Github 12328 70640 166565 604649 0.087

For the social evolution dataset, we consider Proximity, Calls and SMS records between

users as communication events (k=1) and all Close Friendship records as association events

(k=0). For Github dataset, we consider Star/Watch records as communication events (k=1)

and Follow records as association events (k=0). The Social Evolution data is collected from

Jan 2008 to to June, 30 2009. We consider the association events between user from Jan

147

2008-Sep 10, 2008 (survey date) to form the initial network and use the rest of data for

our experiments. We collected Github data from Jan 2013 - Dec 2013. For the nodes in

2013, we consider Follow link that existed between them before 2013 to form the initial

network. We pre-process both datasets to remove duplicate (not recurrent in time) records

and self-loops. We also process Github dataset to only contain users (and not organizations)

as nodes and we select nodes that have at least 40 communication (watch) events and 10

association (follow) events.

Temporal Train/Test Split: For all the experiments, the data is divided into train and

test based on time line. For Social Evolution Dataset, we train on data from Sep 11, 2008

to Apr 30, 2009 and use May 1, 2009-Jun, 30 2009 data for test which gives 10 days of

time per test slot. This leads to an approximate 70/30 (train/test) split. For Github data, we

train from Jan 1, 2013 to Sep 30, 2013 and test for Oct 1, 2013 - Dec, 31 2013 which gives

15 days of events per time slot. This leads to an approximate 65/35 (train/test) split.

B.7.2 Training Configurations

We performed hyper parameter search for best performance for our method and all the

baselines and used the following hyper-parameters to obtain the reported results:

– For social dataset: Num nodes = 100, Num Dynamics = 2, bptt (sequence length) = 200,

embed size = 32, hidden unit size = 32, nsamples (for survival) = 5, gradient clip = 100

and no dropout.

– For github dataset: Num nodes = 12328, Num Dynamics = 2, bptt (sequence length) =

300, embed size = 256, hidden unit size = 256, nsamples (for survival) = 5, gradient clip

= 100.

For baselines, we used the implementations provided by their authors and we report the

range of configurations used for baseline here: max iter = {1000, 5000, 10000}, bptt =

{100, 200, 300}, lr = {0.0005, 0.0050.5, 0.1, 1}, embed E = {32, 64, 128, 256}, embed R =

{32, 64, 128, 256}, hidden = {32, 64, 128, 256}, warm = 0, t scale = 0.0001, w scale =

148

0.1, num epochs = {10, 50, 100, 500, 1000}. As mentioned in experiment section, we

always train baselines with warmstart in a sliding window training fashion.

Know-Evolve: The code provided by the authors was implemented in C++.

GraphSage: The code was implemented in Tensorflow by the authors. We use only the

unsupervised train module to generate embeddings.

Node2Vec: We use the original python code with few changes in the hyper-parameters.

We fix q in the node2vec as 0.8 for Social Dataset and 1 for Github dataset.

DynGEM: We experiment on the original code implemented in Keras with Theano back-

end by the authors.

DynTrd: We use original code provided by the authors.

For tSNE embedding visualization in Figure 4, we used sklearn.manifold.TSNE

library to plot this figure with n components = 2, learning rate = 200, perplexity = 30,

metric = ”euclidean”, min grad norm = 1e-9, early exaggeration = 4 and ran for 40,000

iterations.

149

B.8 Monte Carlo Estimation for Survival Term in L for Section 4

Algorithm 6 Computation of integral term in L for a mini-batch

Input: MinibatchM = {mq = (u, v, t, k)q}|M|q=1. Minibatch node list l, sample size N .

Output: Minibatch survival loss Lsurv

Lsurv = 0.0

for q = 0 to |M| − 1 do

tcurr = mq → t; ucurr = mq → u

vcurr = mq → v ; usurv = 0 ; vsurv = 0

for N samples do

select uother ∈ l uniformly randomly s.t. uother /∈ {ucurr, vcurr}

select vother ∈ l uniformly randomly s.t. vother /∈ {ucurr, vcurr}

for k ∈ {0, 1} do

usurv+ = λucurr,votherk (tcurr)

vsurv+ = λuother,vcurrk (tcurr)

end for

end for

Lsurv+ = (usurv + vsurv)/N

end for

return Lsurv

Algorithm 6 is a simple variant of Monte Carlo trick to compute the survival term of log-

likelihood equation. Specifically, in each mini-batch, we sample non-events instead of

considering all pairs of non-events (which can be millions). Let m be the mini-batch size

and N be the number of samples. The complexity of Algorithm 6 will then be O(2mkN)

for the batch where the factor of 2 accounts for the update happening for two nodes per

event which demonstrates linear scalability in number of events.

150

0

20

40

60

1 2 3 4 5 6
Time_Slot

M
AR

DynGem
DynTrd

DyRep
GraphSage

Know-Evolve
Node2Vec

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6
Time_Slot

H
IT

S_
10

DynGem
DynTrd

DyRep
GraphSage

Know-Evolve
Node2Vec

11.0773
13.4774

42.5548 42.74

19.0348

40.5741

0

10

20

30

40

50

Methods

M
AR

DyRep
Know-Evolve

DynGem
DynTrd

GraphSage
Node2Vec

0.787

0.6515

0.1032 0.1236

0.1949
0.1483

0.0

0.2

0.4

0.6

0.8

Methods
H

IT
S_

10

DyRep
Know-Evolve

DynGem
DynTrd

GraphSage
Node2Vec

3500

4000

4500

1 2 3 4 5 6
Time_Slot

M
AR

DynGem
DynTrd

DyRep
GraphSage

Know-Evolve
Node2Vec

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6
Time_Slot

H
IT

S_
10

DynGem
DynTrd

DyRep
GraphSage

Know-Evolve
Node2Vec

2722.81
3007.0233

3762.024

4149.9546

3124.5371

4202.606

0

1000

2000

3000

4000

Methods

M
AR

DyRep
Know-Evolve

DynGem
DynTrd

GraphSage
Node2Vec

0.323

0.1173

0.0246
0.0069

0.0232
0.01310.0

0.1

0.2

0.3

Methods

H
IT

S_
10

DyRep
Know-Evolve

DynGem
DynTrd

GraphSage
Node2Vec

Figure B.8: Dynamic Link Prediction Performance: Top 2 rows show performance for
Social Evolution Dataset. Bottom 2 rows show performance for Github Dataset. 1st and
3rd row show performance for Communication Events while 2nd and 4th row show perfor-
mance for Association Events.

151

APPENDIX C

TEMPORAL REASONING OVER DYNAMIC KNOWLEDGE

C.1 Algorithm for Global BPTT Computation

As mentioned in Section 4 of main paper, the intricate relational and temporal dependencies

between data points in our setting limits our ability to efficiently train by decomposing

events into independent sequences. To address this challenge, we design an efficient Global

BPTT algorithm presented below. During each step of training, we build computational

graph using consecutive events in the sliding window of a fixed size. We then move sliding

window further and train till the end of timeline in similar fashion which allows to capture

dependencies across batches while retaining efficiency.

Algorithm 7 Global-BPTT
Input: Global Event Sequence O, Steps s, Stopping Condition max iter
cur index = 0, t begin = 0
for iter = 0 to max iter do

if cur index > 0 then
t begin = O[cur index− 1]→ t

end if
e mini batch = O[cur index : cur index+ s]
Build Training Network specific to e mini batch
Feed Forward inputs over network of s time steps
Compute Total Loss L over s steps:
L = −

∑s
p=1 log

(
λe

s,eo

r (tp|t̄p)
)

+ Survival loss computed using Algorithm 6
Backpropagate error through s time steps and update all weights
if cur index+ s > O.size then

cur index = 0
else

cur index = cur index+ s
end if

end for

152

C.2 Data Statistics and Sparsity of Knowledge Tensor

Table C.1: Statistics for each dataset.

Dataset Name # Entities # Relations # Events

GDELT-full 14018 20 31.29M
GDELT-500 500 20 3.42M
ICEWS-full 12498 260 0.67M
ICEWS-500 500 256 0.45M

Table C.2: Sparsity of Knowledge Tensor.

Dataset Name # Possible # Available % Proportion
Entries Entries

GDELT-full 3.93B 4.52M 0.12
GDELT-500 5M 0.76M 15.21
ICEWS-full 39.98B 0.31M 7e-3
ICEWS-500 64M 0.15M 0.24

C.3 Implementation Details

Know-Evolve. Both Algorithm 6 and Algorithm 7 demonstrate that the computational

graph for each mini-batch will be significantly different due to high variations in the inter-

actions happening in each window. To facilitate efficient training over dynamic computa-

tional graph setting, we leverage on graph embedding framework proposed in [101] that

allows to learn over graph structure where the objective function may potentially have dif-

ferent computational graph for each batch. We use Adam Optimizer with gradient clipping

for making parameter updates. Using grid search method across hyper-parameters, we set

mini-batch size = 200, weight scale = 0.1 and learning rate = 0.0005 for all datasets. We

used zero initialization for our entity embeddings which is reasonable choice for dynami-

cally evolving entities.

153

Competitors. We implemented all the reported baselines in Tensorflow and evaluated

all methods uniformly. For each method, we use grid search on hyper-parameters and

embedding size and chose the ones providing best performance in respective methods. All

the baseline methods are trained using contrastive max-margin objective function described

in [75]. We use Adagrad optimization provided in Tensorflow for optimizing this objective

function. We randomly initialize entity embeddings as typically done for these models.

C.4 Parameter Complexity Analysis

We report the dimensionality of embeddings and the resulting number of parameters of

various models. Table C.3 illustrates that Know-Evolve is significantly efficient in the

number of parameters compared to Neural Tensor Network while being highly expressive

as demonstrated by its prediction performance in Section 5 of main paper. The overall

number of parameters for different dataset configurations are comparable to the simpler

relational models in order of magnitude.

Table C.3: Comparison of our method with various relational methods for memory
complexity. Last two columns provide example realizations of this complexity in full

versions for GDELT and ICEWS datasets. Ha and Hb correspond to hidden layers used in
respective methods.He and Hr correspond to entity and relation embedding dimensions

respectively. Ne and Nr are number of entities and relations in each dataset. For GDELT,
Ne = 14018 and Nr = 20. For ICEWS, Ne = 12498 and Nr = 260. We borrow the

notations from [19] for simplicity.

Method Memory Complexity GDELT ICEWS

He/Hr/Ha/Hb # Params He/Hr/Ha/Hb # Params

NTN N2
eHb +Nr(Hb +Ha) + 2NrNeHa +NeHe 100/16/60/60 11.83B 60/32/60/60 9.76B

RESCAL NrH
2
e +NeHe 100/-/-/- 1.60M 60/-/-/- 1.69M

TransE NeHe +NrHe 100/-/-/- 1.40M 60/-/-/- 0.77M
TransR NeHe +NrHr +NrH

2
r 100/20/-/- 1.41M 60/32/-/- 1.02M

ER-MLP NeHe +NrHr +Ha +Ha(2He +Hr) 100/20/100/- 1.42M 60/32/60/- 0.77M

Know-Evolve He(Ne +NrHe) +NrHr +Ha ∗ (2He +Hr) +Ha ∗Hb + 2Hb 100/20/100/100 1.63M 60/32/60/60 1.71M

154

C.5 Exploratory Analysis

C.5.1 Temporal Reasoning

We have shown that our model can achieve high accuracy when predicting a future event

triplet or the time of event. Here, we present two case studies to demonstrate the ability

of evolutionary knowledge network to perform superior reasoning across multiple relation-

ships in the knowledge graphs.

Case Study I: Enemy’s Friends is an Enemy

Figure C.1: Relationship graph for Cairo and Croatia. Dotted arrow shows the predicted
edge. Direction of the arrow is from subject to object entity.

We concentrate on the prediction of a quadruplet (Cairo,Assault,Croatia,July 5,2015)

available in test set. This event relates to the news report of an assault on a Croation

prisoner in Cairo on July 6 2015. Our model gives rank-1 to the object entity Croatia while

the baselines did not predict them well (rank > 250).

We first consider relationship characteristics for Cairo and Croatia. In the current train

span, there are 142 nodes with which Cairo was involved in a relationship as a subject

(total of 1369 events) and Croatia was involved in a relationship as an object (total of 1037

events). As a subject, Cairo was involved in an assault relationship only 59 times while as

155

an object, Croatia was involved in assault only 5 times. As mentioned earlier, there was no

direct edge present between Cairo and Croatia with relationship type assault.

While the conventional reasoning methods consider static interactions of entities in a

specific relationship space, they fail to account for the temporal effect on certain relation-

ships and dynamic evolution of entity embeddings. We believe that our method is able to

capture this multi-faceted knowledge that helps to reason better than the competitors for

the above case.

Temporal Effect. It is observed in the dataset that many entities were involved more

in negative relationships in the last month of training data as compared to earlier months

of the year. Further, a lot of assault activities on foreign prisoners were being reported in

Cairo starting from May 2015. Our model successfully captures this increased intensity

of such events in recent past. The interesting observation is that overall, Cairo has been

involved in much higher number of positive relationships as compared to negative ones and

that would lead conventional baselines to use that path to reason for new entity – instead

our model tries to capture effect of most recent events.

Dynamic Knowledge Evolution. It can be seen from the dataset that Cairo got asso-

ciated with more and more negative events towards the mid of year 2015 as compared to

start of the year where it was mostly involved in positive and cooperation relationships.

While this was not very prominent in case of Croatia, it still showed some change in the

type of relationships over time. There were multiple instances where Cairo was involved

in a negative relationship with a node which in turn had positive relationship with Croatia.

This signifies that the features of the two entities were jointly and non-linearly evolving

with the features of the third entity in different relationship spaces.

Below we provide reference links for the actual event news related to the edges in

Figure C.1.

Predicted Edge.

• (Cairo, Assault, Croatia, 06-Jul-2015): https://www.bloomberg.com/news/articles/2015-

156

08-05/islamic-state-egypt-affiliate-threatens-to-kill-croatian-citizen

Other Edges.

• (Cairo, Assault, Protester, 20-Jan-2015):http://usa.chinadaily.com.cn/world/2015-

04/22/content 20501452

• (Cairo, Threaten, Manchester, 06-Mar-2015): http://www.manchestereveningnews.

co.uk/news/greater-manchester-news/anthony-filz-stashed-deadly-machine-8788541

• (Protester, Consult, Croatia, 07-Jun-2015): http://globalvoicesonline.org/2015/06/07/

veterans-of-croatias-war-of-independence-are-still-knocking-on-the-governments-

door/

• (Manchester, Provide Aid, Croatia, 30-May-2015): http://www.offthepost.info/blog/2015

/05/liverpool-meet-inter-to-discuss-mateo-kovacic-deal/

Case Study II: Common enemy forges friendship

Figure C.2: Relationship graph for Columbia and Ottawa. Dotted arrow shows the
predicted edge. Direction of the arrow is from subject to object entity.

We concentrate on the prediction of a quadruplet (Colombia,Engage in Material Coop-

eration,Ottawa,July 2 2015) available in test set. This event relates to the news report of

157

concerns over a military deal between Colombia and Canada on July 2 2015 and reported

in Ottawa Citizen. Our model gives rank-1 to the object entity Ottawa while the other base-

lines do not predict well (rank > 250). The above test event is a new relationship and was

never seen in training.

As before, we consider relationship characteristics between Colombia and Ottawa. In

the current train span, there are 165 nodes for which Colombia was involved in a relation-

ship with that node as a subject (total of 1604 events) and on the other hand, Ottawa was

involved in a relationship with those nodes as an object total of 733 events). As a subject,

Colombia was involved in a cooperation relationship 71 times while as an object, Ottawa

was involved in cooperation 24 times.

Temporal Effect. It is observed in the dataset that Colombia has been involved in

hundreds of relationships with Venezuela (which is natural as they are neighbors). These

relationships range across the spectrum from being as negative as “fight” to being as pos-

itive as “engagement in material cooperation”. But more recently in the training set (i.e

after May 2015), the two countries have been mostly involved in positive relationships.

Venezuela in turn has only been in cooperation relationship with Ottawa (Canada). Thus, it

can be inferred that Colombia is affected by its more recent interaction with its neighbors

while forming relationship with Canada.

Dynamic Knowledge Evolution. Overall it was observed that Colombia got involved

in more positive relationships towards the end of training period as compared to the start.

This can be attributed to events like economic growth, better living standards, better re-

lations getting developed which has led to evolution of Colombia’s features in positive

direction. The features for Ottawa (Canada) have continued to evolve in positive direction

as it has been involved very less in negative relationships.

More interesting events exemplifying mutual evolution were also observed. In these

cases, the relationship between Colombia and third entity were negative but following that

relationship in time, the third entity forged a positive relationship with Ottawa (Canada).

158

One can infer that it was in Colombia’s strategic interest to forge cooperation (positive

relation) with Ottawa so as to counter its relationship with third entity. Below we provide

reference links for the actual event news related to the edges in Figure C.2.

Predicted Edge.

• (Columbia, Material Coop., Ottawa, 02-Jul-2015): http://ottawacitizen.com/news/

politics/report-on-military-executions-casts-shadow-over-lav-deal-with-colombia

Other Edges.

• (Columbia, Trade Coop., New Delhi, 16-May-2015): http://www.newindianexpress.com/

business/2015/may/16/Petroleum-Minister-Dharmendra-to-Lead-Business-Delegation-

to-Mexico-Colombia-761494.html

• (Columbia, Fight, Venezuela, 03-Feb-2015):http://www.turkishpress.com/news/421947/

• (New Delhi, Diplomatic Coop., Ottawa, 28-May-2015):http://www.marketwatch.com/

story/art-of-living-set-to-showcase-the-yoga-way-2015-06-11-61734555

• (Belgium, Fight, Ottawa, 05-May-2015): https://www.durhamregion.com/news-

story/5597504-9-facts-about-in-flanders-fields-on-its-100th-anniversary/

C.6 Sliding Window Training Experiment

Unlike competitors, the entity embeddings in our model get updated after every event in

the test, but the model parameters remain unchanged after training. To balance out the

advantage that this may give to our method, we explore the use of sliding window training

paradigm for baselines: We train on first six months of dataset and evaluate on the first test

window. Next we throw away as many days (2 weeks) from start of train set as found in test

set and incorporate the test data into training. We retrain the model using previously learned

parameters as warm start. This can effectively aid the baselines to adapt to the evolving

knowledge over time. Figure C.3 shows that the sliding window training contributes to

159

stable performance of baselines across the time window (i.e.the temporal deterioration is

no longer observed significantly for baselines). But the overall performance of our method

still surpasses all the competitors.

G
D

E
LT

-5
00

10

20

50

100

2 4 6 8 10 12 14 16 18 20 22 24
Week

M
AR

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

10

20

50

100

200

2 4 6 8 10 12 14 16 18 20 22 24
Week

M
AR

ER-MLP
Know-Evolve

NTN
RESCAL

TransE
TransR

(c) Sliding Window Training (d) Non-sliding window Training

Figure C.3: Performance comparison of sliding window vs. non-sliding window training.

20

40

60

80

100

120

140

160

180

2 4 6 8 10 12 14 16 18 20 22 24
Week

M
AR

Know-Evolve NTN

20

40

60

2 4 6 8 10 12 14 16 18 20 22 24
Week

M
AR

Know-Evolve NTN

(a) New facts only (b) Recurrent Facts Only

Figure C.4: Comparison with NTN over recurrent and non-recurrent test version.

C.7 Recurrent Facts vs. New facts

One fundamental distinction in our multi-relational setting is the existence of recurrence

relations which is not the case for traditional knowledge graphs. To that end, we compare

our method with the best performing competitor - NTN on two different testing setups: 1.)

Only Recurrent Facts in test set 2.) Only New facts in test set. We perform this experiment

on GDELT-500 data. We call a test fact “new” if it was never seen in training. As one can

expect, the proportion of new facts will increase as we move further in time. In our case, it

ranges from 40%-60% of the total number of events in a specific test window. Figure C.4

demonstrates that our method performs consistently and significantly better in both cases.

160

APPENDIX D

LEARNING OPTIMIZATION MODELS OF GRAPH FORMATION

D.1 Gradient Updates for GraphOpt Algorithm

In this section, we provide details on the gradient update algorithm:

Algorithm 8 Parameter Update

1: procedure TRAIN POLICY(B,ψ, φ, θ, ψ̄, ω)
2: for each gradient step do
3: Sample mini-batch ofM transitions
4: {(st, at, rt(st, at), st+1)} from B
5: Compute ∇̂ψJV (ψ), ∇̂θJQ(θ), ∇̂φJπ(φ) using
6: Eq. D.2,D.3, D.5 and compute∇ωJ for repr. network
7: Update the parameters based on following:
8: ψ ← ψ − λV ∇̂ψJV (ψ)

9: θi ← θi − λQ∇̂θJQ(θi) i ∈ {1, 2}
10: φ← φ− λπ∇̂φJπ(φ)
11: ψ̄ ← lψ̄ + (1− l)ψ̄
12: ω ← ω − λemb∇̂ωJemb(ω)
13: end for
14: end procedure

For completeness, we present the gradients of each objective below, however, they are

adopted from [150] and we encourage interested readers to refer to the original manuscript

for more details:

1. Soft Q-function is trained to minimize the Bellman residual:

JQ(θ) = E(st,at)∼B

[
1

2

(
Qθ(st, at)− Q̂(st, at)

)2
]

(D.1)

where,

Q̂(st, at) = r(st, at) + γEst+1 ∼ p[Vψ̄(st+1)] (D.2)

where Vψ̄ is a target value network and ψ̄ is an exponentially moving average of the

161

value network weights for stabilizing training. The gradients for Eq. D.1 is given by:

∇̂θJQ(θ) = ∇θQθ(st, at)(Qθ(st, at)

− r(st, at)− γVψ̄(st+1))

(D.3)

2. Policy Network is trained using the following objective function:

Jπ(φ) = Est∼B,εt∼N [log πφ(fφ(εt; st)|st)

−Qθ(st, fφ(εt; st))]

(D.4)

where fφ is the transformation applied to the policy network to induce reparameter-

ization that helps in building a low variance estimator. The gradient for Eq. D.4 is

then given by:

∇̂φJπ(φ) = ∇φ log πφ(at|st)

+∇φfφ(εt; st) (∇at log πφ(at|st)

− ∇atQ(st, at))

(D.5)

162

D.2 More Related Work

Reinforcement Learning for Graphs. Recent advancements in deep learning techniques

over graph structured data [177, 18] and progress in deep RL [168, 169] has stimulated

increased interest in casting the general task of learning over graphs into a sequential de-

cision process, whereby actions correspond to the discrete set of nodes to be sequentially

connected to a partially constructed graph. This procedure optimizes task-specific objec-

tives in the form of the reward function. Specifically, deep reinforcement learning has been

used in three major learning paradigms: Learning to Generate [48] proposes a generative

model for molecular structure using a graph convolutional policy network to optimize a

domain specific reward that captures various properties of molecules. Learning to Walk

[211, 164, 212] uses RL for tasks of link prediction and QA over Knowledge Graphs. The

key goal in these works is to find an optimal path from a query entity to a target answer

entity. Learning to Optimize [22, 23, 24]: builds a combination of graph neural networks

and RL to learn optimization algorithms for NP-hard problems (e.g. MaxCut).

Maximum Entropy Reinforcement Learning. Deep Reinforcement Learning [213,

214, 215], specifically Actor-critic algorithms [170] has recently achieved great success in a

variety of tasks that require search over combinatorial space and have inspired many new ar-

chitectures that can be broadly categorized into: on-policy algorithms [216, 169] that build

on standard on-policy policy gradients and off-policy algorithms [168] that use off-policy

samples from replay buffer. Both categories exhibit trade-off between sample complexity

and stability with on-policy algorithms being more stable while off-policy counterpart be-

ing more sample efficient. We build our framework on recently proposed Soft Actor-Critic

(SAC) [150] algorithm that has been shown to be both sample efficient and stable. SAC

falls in the category of Maximum entropy based algorithms [151, 217, 218, 219, 220] that

are based on maximum entropy learning [221] and have been shown to be robust in the face

of model and estimation errors while improving exploration [222]. Inverse Reinforcement

163

Learning (IRL) — Methods in IRL [163] and imitation learning [223] seek to recover a

reward function given measurements of near-optimal expert trajectories. The maximum

entropy IRL framework [151] leads to a sample-based method that learns a neural network

approximation of the reward, without requiring knowledge of the MDP transition function

[152].

Deep Generative Models of Graph Generation. Recently, there have been significant

research efforts in building deep generative models of graph generation as they allow to ef-

fectively capture complex structural properties observed in a graph and use that information

to output realistic graphs. Most of these works can be broadly categorized into two classes:

(i) Methods that learn from collection of graphs (e.g. DeepGMG [47], GraphRNN [20],

GCPN [48]) and (ii) Methods that learn from a single graph (e.g VGAE [49], Graph-

Gan [50], MolGAN [51], NetGan [52]). As discussed in the main paper, our current ap-

proach falls into the second category. DeepGMG builds probabilistic model where the

partially generated graph is encoded by the graph neural network (GNN) and the represen-

tation is used to make decision of constructing next node or edge. However, it suffers from

scalability issues. GraphRNN solves this problem by proposing an auto-regressive model

of graph generation, wherein the focus is on generating sequence of adjacency vectors that

be mapped to graph structure. It employs hierarchical recurrent architecture to encode the

historical path information. GCPN combines GCN with RL and learns a deep generative

model using an objective specific to domain of chemistry. In the second category, meth-

ods like GraphGan and GVAE are implicit models but their main focus is to learn graph

representations and hence perform weakly on generation tasks and have limited scalabil-

ity. NetGan is a recently proposed implict graph generator model exhibiting generalization

properties. However, unlike GraphOpt, NetGAN optimizes a GAN-based objective which

converge to an uninformative discriminator, thereby not useful for transfer, which in con-

trast is a key objective of our approach.

164

D.3 Additional Details on Experiments

D.3.1 Datasets

Table D.1 provide statistics and reference to the dataset used for Graph Construction ex-

periments. Table D.2 provides dataset statistics for non-relational datasets and Table D.3

provides dataset statistics for relational datasets, both used for link prediction.
Table D.1: Dataset Statistics for Construction Experiments

Graph Nodes Edges Density Avg. Degree Source
Barabasi-Albert (BA) 100 384 0.0384 7.68 Synthetic

Erdos-Renyi 500 6152 0.02461 24.608 Synthetic
Political Blogs 1224 16718 0.0127 27.316 [224]

CORA-ML 2995 8158 0.001 3.898 [225]
PubMed 19717 44327 0.00011 4.496 [226]
CiteSeer 3327 4676 0.00042 2.811 [226]

Table D.2: Social, Metabolic and Citation Graphs for Link Prediction

Graph Nodes Edges Density Average Deg. Source
Cora-ML 2995 8158 0.001 3.898 [225]

Political Blogs 1224 16718 0.0112 27.316 [224]
E. Coli 1805 14660 0.0045 12.55 [25]

Table D.3: Knowledge Graphs for Link Prediction

Graph Nodes Egdes Relations Density Average Deg. Source
Kinship 104 10686 25 0.9879 82.15 [227]

FB15k-237 14541 310116 237 0.0013 19.74 [228]
WN18RR 40943 93003 11 0.00005 2.19 [229]

D.3.2 Baselines

As we learn from single graph as an observation, we compare with the state-of-art baselines

that can operate in this setting for a fair comparison. Below we provide references and some

details on each baseline that we compare with:

• For graph construction experiments, we compare against two traditional generators:

Degree Corrected Stochastic Block Model (DC-SBM) [230] that extends classical

stochastic block models to account for heterogeneous degree of the vertices and

block two level Erdos-Reniy (BTER) random graph model [231] that generates graph

165

with dense subgraphs, each being an ER graph in itself and has a degree preserving

property. Next, we use Variational Graph Autoencoder (VGAE) [49] that uses an au-

toencoding mechanism to learn node embeddings. Being an autorecnoder, it has the

capacity to generate graphs and hence serves as a representative node embedding ap-

proach for graph generation. Finally, NetGAN [52] is the state-of-art implicit model

of graph generation that learns to mimic network patterns observed in a graph by

building a probabilistic models of random walks over the graph. NetGAN employs a

GAN based objective where the discriminator attempts to distinguish the generated

random walks from the observations.

• For link prediction experiments in non-relational domains, we compare again with

NetGan and GVAE. NetGan is an implicit model of graph generation that general-

izes to the task of link prediction which is also the property of our model and hence

provides a strong baseline for our work. Further, GVAE being a node embedding ap-

proach, is naturally suitable for link prediction. Next, we compare Node2Vec [232],

a classical node embedding approach based on random walks. Finally, we compare

with a strong state-of-art link prediction baseline, SEAL [25], that uses a graph neu-

ral network based architecture to perform link prediction. It is important to note

that SEAL employs a task specific architecture and task-specific objective and hence

provide a strong baseline to compare with.

• For relational link prediction on knowledge graphs, we cover a spectrum of ap-

proaches through their representative baselines. ConvE [229] is the state-of-art em-

bedding based relational learning approach that has been shown to outperform most

of earlier baselines in relational learning over knowledge literature [233]. We con-

sider two Rl based method, Minerva [164] and Reward Shaping [165]. Minerva em-

ploys an LSTM encoder to encode the path information into the state representation

and then solve a Markov Decision Process using policy gradients more specifically

166

by REINFORCE algorithm [234]. Reward Shaping advances the methods in MIN-

ERVA to build a strong state-of-art baseline. However, it is again important to note

both ConvE and Reward Shaping are dedicated baselines with task specific archi-

tecture and objective analogous to SEAL above (Reward shaping specifically shapes

the reward using embedding model which essentially makes it very close to link pre-

diction objective). On the other hand, MINVERVA can be considered somewhat

closer in spirit to our work as it uses more general form of reward (+1/-1) which is

also sparse while still using task-specific architecture. Finally, we also compare with

NeuralLP [235] that introduces a differential rule learning system using symbolic

operaters to learn logic rules to perform reasoning.

D.3.3 Evaluation Protocol for Link Prediction using Learned Embeddings

Our state encoder learns to represent the nodes into low dimensional representation. This

experiment evaluates how well the encoder network was learned by testing the ability of

embeddings learned by the encoder itself to perform link prediction. Once the model is

trained, we pass the training graph through the encoder to get the final trained embed-

ding of nodes. For non-relational case, we use dot product based embedding similarity

criterion and label edges as before. For relational case, we use score function similar to

ComplEx [236] and rank the entities as before.

D.3.4 GraphOpt Implementation

We closely follow SAC’s architecture in using two Q-functions for efficient learning and

parameterizing them with standard multi-layered perceptron. Similarly, the reward function

R is parameterized by standard multi-layer perceptron. As described in Section 3, we use

GNN based policy network. We use the rlkit library1 available online and adapt it for our

framework. In general, SAC does not have any aggressive hyper-parameters that needs

1https://github.com/vitchyr/rlkit

167

Table D.4: Hyper Parameter Configuration Table

GraphOpt Algorithm

HyperParameters Default Values HyperParameters Default Values
num epochs 10000 reward lr 0.01
num steps per epoch 500 soft target tau 0.001
num steps per eval 1000 policy lr 1.00E-04
num steps before training online 25 qf lr 1.00E-03
replay buffer size 100000 optimizer Adam
batch size 128 train policy with reprarameterization TRUE
max path length 1000 eval deterministic FALSE
discount 0.99 use automatic entropy tuning TRUE
reward iter 30 gen from policy 10
irl episode per train 10 term threshold 100
meas samples 5 l1 coeff 0.1
gen samples 10 n embed size 32
prop rounds 2 net size 256

to be tuned – Table E.1 provides complete list of hyper-parameters with their reasonable

default values that were used for maximum number of experiments and here we describe

the ones that were mostly tuned using validation performance.

For evaluation, SAC provides two choices to use either deterministic or stochastic and

we use stochastic for our evaluation as stochastic action is an important factor in our

work. We tune the number of epochs ranging from 10000-50000 epochs depending on

the graph environment. For inverse learning, we vary reward iterations from 30-300. Most

of other hyper-parameters remain fairly constant across the environments. For state en-

coder, we tune prop-round between 2-4 and found 2 to be best choice. term threshold

ranges from 100-500 based on dataset and node emebeding size is tuned in the range

{32, 64, 128, 256, 512}. In the general parameters, net size represents the size of the hidden

units of MLP that were used for policy, Q, representation and reward networks. We tune

this parameter again in the range {32, 64, 128, 256, 512} based on the environment.

All the experiments were conducted on Intel Xeon CPU V4 2.20 GHZ with 64 GB

memory and Nvidia GeForce 1080 GPU.

168

D.3.5 Metrics

We provide several results on our constructed graphs and link predictions and below we

discuss some information about the metrics reported in the tables and figures:

1. Graph Construction Experiments We chose the following statistics that cover various

aspects of graph structure:

• Triangle Count: Number of triangles in the graph

• Clustering Coefficient: measure of the degree to which nodes in a graph tend to

cluster together.

• Longest Connected Component: Size of the largest connected component.

• Assortativity: Pearson correlation of degrees of connected nodes, A = cov(X,Y)
σXσY

where the (xi, yi) pairs are the degrees of connected nodes.

• Max Degree: Maximum degree of all nodes in the graph.

2. Non-relational Link Prediction Experiments

• AUC (Area under ROC Curve): Measures how well a parameter / model distin-

guish between correct and wrong connections.

• Average Precision: Classical measure used to evaluate link prediction based on

the precision recall performance of the model

3. Relational Link Prediction Experiments

• MRR (Mean Reciprocal Rank): This is a more robust statistic for evaluating

link prediction compared to mean average rank and is widely used in relational

learning tasks.

• HITS@K: It measures how many correct predictions made by the policy lie in

the top K predictions.

169

Finally, we provide percent Deviation values with error in main paper in 6.5. This

metric represent the percentage difference in graph bases statistics between the original

graph and the generated graphs. As we generate multiple graphs to measure variation, we

take the percent deviation with each of the generated graphs individually and then report

the mean and error over these readings.

170

D.4 Additional Experiment Results

D.4.1 Synthesizing Graphs Via Learned Generative Mechanism

In this section, we provide more comprehensive results on the construction capabilities of

GraphOpt with results on two more datasets: Erdos-Renyi (Table D.6) and Pubmed (Table

D.9). We also present results for the datasets we showed in the main paper along with these

two as it contains two more statistics (Largest connected component and Assortativity) that

we evaluated which we could not show in main paper due to space constraint.
Table D.5: Percent deviation of graph statistics for generated graphs from observed BA

graph (lower is better)

Model Triangle Count Clustering Coeff. Largest Connected Component Assortativity Max Degree
Observed Graph 504 0.147 100 -0.096 33

DC-SBM 46.56± 6.58 59.44± 7.11 27.33± 2.52 91.61± 0.64 28.29± 7.63
BTER 48.02± 9.11 33.20± 1.28 35.33± 0.58 86.06± 1.85 33.33± 0.00
VGAE 70.89± 8.95 94.40± 0.81 9.00± 1.00 92.40± 1.77 8.08± 1.75

NetGAN 31.68± 6.28 40.69± 4.27 4.00± 1.73 62.12± 35.49 4.04± 1.74

GraphOpt 6.28± 4.05 25.52± 8.25 6.00± 2.65 8.24± 0.78 5.05± 4.63

Erdos-Renyi Graph

Table D.6: Percent deviation of graph statistics for generated graphs from the observed
Erdos-Renyi graph (lower is better)

Model Triangle Count Clustering Coeff. Largest Connected Component Assortativity Max Degree
Observed Graph 7335 4.84E-02 500 -0.019 37

DC-SBM 54.67± 1.07 94.91± 0.74 35.53± 2.10 70.17± 9.36 30.63± 5.63
BTER 60.11± 0.85 59.81± 0.86 38.87± 2.48 91.22± 2.59 8.11± 4.68
VGAE 85.62± 0.44 83.12± 1.27 2.33± 0.31 82.81± 11.05 6.31± 1.56

NetGAN 51.54± 2.78 49.47± 5.89 3.73± 3.36 31.58± 22.94 2.73± 2.70

GraphOpt 26.29± 2.89 23.96± 3.68 6.07± 1.22 33.33± 21.27 5.41± 2.70

Political Blogs Graph

171

Table D.7: Percent deviation of graph statistics for generated graphs from the observed
Political Blogs Graph (lower is better)

Model Triangle Count Clustering Coeff. Largest Connected Component Assortativity Max Degree
Observed Graph 303129 0.320 1222 -0.221 351

DC-SBM 52.78± 9.15 91.73± 1.18 65.25± 10.79 88.49± 4.93 40.86± 1.89
BTER 45.47± 7.25 54.17± 13.57 55.46± 3.73 90.75± 4.83 43.87± 0.75
VGAE 98.56± 0.44 99.32± 0.55 42.01± 5.78 97.86± 2.03 44.06± 0.92

NetGAN 44.28± 8.27 37.55± 7.20 29.59± 5.00 24.95± 13.79 38.75± 3.70

GraphOpt 34.73± 3.79 20.34± 9.12 24.30± 2.05 21.79± 4.78 36.85± 2.71

CORA-ML Graph

Table D.8: Percent deviation of graph statistics for generated graphs from the observed
Cora-ML graph

Model Triangle Count Clustering Coeff. Largest Connected Component Assortativity Max Degree
Observed Graph 4890 0.241 2485 -0.066 168

DC-SBM 71.17± 1.53 68.25± 20.16 1.76± 2.21 26.04± 7.49 6.94± 5.40
BTER 40.06± 1.17 81.66± 1.74 5.15± 2.85 89.96± 6.37 16.47± 14.49
VGAE 99.56± 0.24 93.10± 2.11 0.05± 0.02 96.86± 1.52 94.44± 1.82

NetGAN 64.19± 2.15 41.12± 18.82 0.52± 0.11 2.84± 3.16 4.17± 2.38

GraphOpt 19.46± 1.01 14.63± 5.78 2.09± 0.34 4.10± 3.53 2.58± 1.24

PubMed Graph

Table D.9: Percent deviation of graph statistics for generated graphs from the observed
Pubmed graph

Model Triangle Count Clustering Coeff. Largest Connected Component Assortativity Max Degree
Observed Graph 37560 6.02E-02 19717 -0.0436 171

DC-SBM 40.56± 5.33 85.33± 8.31 38.22± 3.77 83.87± 18.17 39.57± 3.43
BTER 35.17± 4.69 65.17± 2.00 41.74± 2.34 69.57± 7.62 37.43± 5.064
VGAE N/A N/A N/A N/A N/A

NetGAN 23.39± 3.79 53.32± 7.13 29.99± 3.16 57.57± 12.76 40.94± 2.03

GraphOpt 19.95± 2.30 42.47± 2.33 13.63± 1.39 18.19± 11.87 23.19± 6.00

172

APPENDIX E

LEARNING STRATEGIC NETWORK EMERGENCE GAMES

E.1 Network Emergence Games and Multi-Agent Inverse Reinforcement Learning

In this section, we first provide details on Markov Perfect equilibrium (MPE) as a solution

concept for Markov Network Emergence games and outline how the procedure for solving

it maps to the reinforcement learning setting. Next, we discuss the connection of MPE with

more general solution concept of Markov Quantal Response Equilibrium (MQRE) that aids

in building a gradient based learning approach. Finally, we discuss how the logistic version

of MQRE is an appropriate solution concept for solving network emergence games with

multi-agent reinforcement learning. We note that several materials discussed in this section

can be found scattered across different literature resources cited in the main paper, but we

discuss some of these details here in a consolidated manner using canonical notations for

ease of exposition and establishing direct correspondence to our approach.

The description of network emergence policy (in Section 2.1) πi : S → P(Ai), where

P(Ai) is the distribution over agent i’s actions space, concretely specifies the Markov

strategy for an agent i.

Definition 1 (Markov Perfect Equilibrium). A Markov perfect equilibrium (π∗i)i∈N is a

Nash equilibrium in Markov strategies.

While existence of a Markov Perfect Equilibrium (MPE) in stochastic games has been

long established for stochastic games [190, 191, 192], an application of Bellman’s opti-

mality principle [193] shows that solving for MPE directly maps to recursive procedure of

learning optimal joint policy π̄∗ by optimizing individual reward ri as done in a reinforce-

ment learning procedure.

173

Theorem 2 (Recursive representation of MPE). A joint Markov strategy profile π̄∗ consti-

tutes a Markov perfect equilibrium if and only if:

1. For all agents i, there exist state value function V ∗i : S → R such that:

V ∗i (s) = max
ai∈Ai

ri(s, ai, π̄
∗
−i) + γ

∑
s′∈S

Pss′(ai, π̄
∗
−i) · V ∗i (s′) (E.1)

holds for all states st ∈ S , where π̄∗−i represent optimal strategy of all agents other

than agent i.

2. For all states st ∈ S, the joint strategy profile π̄∗ constitutes a Nash equilibrium of

normal-form game (Nash for current state) with action space A and agent-specific

payoff value:

r̂i(s, ā) = ri(s, ā) + γ
∑
s′∈S

Pss′(ā) · V ∗i (s′) (E.2)

for ā ∈ A and all agents i.

Proof. See [237] Page 374 for a proof sketch.

In stochastic games such as network emergence, the subsequent course of play which

depends on strategies of all players, affects the final outcome in addition to the payoff i.e.

decisions are based on:

r̂i(s, π̄) = ri(s, π̄) + γ
∑
s′∈S

Pss′(π̄) · Vi(s′) (E.3)

As the payoff and strategies are interdependent, MPE can be found by simultaneously

solving for state values V̄ ∗ and strategies π̄∗ using the following maximization operations

for all st ∈ S and all agents i:

V ∗i = max
πi

r̂i(s, πi, π̄)

π∗ = arg max
πi

r̂i(s, πi, π̄)

(E.4)

174

Multi-agent Reinforcement learning algorithms are capable of solving the above system

of equations in (E.4) efficiently, where optimizing individual reward functions for learning

joint optimal policy (π̄) maps to solving for Markov Perfect Equilibrium. However, solving

directly for MPE requires solving for Nash equilibrium at each state, which is not amenable

to learning due to discontinuous characteristics of Nash Equilibrium with respect to pay-

off matrix. Further, Nash equilibrium assumes all agents to be perfectly rational which is

often not the case for agents participating in the network emergence games. Fortunately,

both these difficulties are addressed by another solution concept, Quantal Response Equi-

librium (QRE) and its logistic version [194, 195], which is stochastic generalization of

Nash equilibrium. Specifically, QRE accounts for bounded rationality using a parameter

λ and models the situations where payoff matrices are injected with some noise, thereby

introducing smoothness useful for gradient based learning approaches [196]. In the context

of stochastic games, QRE has been extended to Markov version by [197, 189] and referred

as Markov Quantal Response Equilibrium (MQRE).

Let the expected payoff from playing action a for agent i in state s, given strategies of

other players, is denoted by:

r̂i(s, a, π̄) = ri(s, a, π̄) + γ
∑
s′∈S

Pss′(ai, π̄−i) · Vi(s′) (E.5)

In the quantal response framework, agent i is assumed to perceive noise injected payoff

version of Eq. (E.5) as:

r̃i(s, a, π̄) = r̂i(s, a, π̄) + εi(s, a) (E.6)

The noise vector for all actions εi(s) = (εi(s, a))a∈Ai follows a joint distribution with

zero mean and density function fi(εi(s)). Let agent i’s response set of action a in state s

175

denoted by:

Ri(s, a) =
{
εi(s) ∈ R|Ai| : r̃i(s, a, π̄) > r̃i(s, a

′, π̄) ∀a′ ∈ Ai
}

(E.7)

Ri(s, a) specifies the realization of εi(s) such that agent i in state s perceives action a

as the one with the highest payoff.

Definition 3 (Markov quantal response equilibrium). A Markov quantal response equilib-

rium is a strategy profile π̄∗ such that

π̄∗ =

∫
Ri(s,a)

fi(εi(s)) dε (E.8)

where the probability mass function of the response set of agent i specifies the proba-

bility that agent i in state s takes action a. An interesting version of MQRE is its logistic

version (MLQRE) which arise from the noise that is i.i.d according to Gumbel distribution

with parameter λ ∈ R+
0 , which also controls the rationality of agents. An MLQRE π̄∗ can

then be expressed in closed form as a solution to the following system of equations: For all

states st ∈ S, all agents i and all actions a ∈ Ai:

π̄∗i (ai|s) =
eλ·r̂i(s,a,π̄

∗
−i)∑

a′∈Ai e
λ·r̂i(s,a′,π̄∗−i)

V ∗i (s) =
∑
a′∈Ai

π̄∗i (ai|s) · r̂i(s, a′, π̄∗−i)
(E.9)

When λ→ 0, the equilibrium is fully noisy and the agents will select actions uniformly

at random. When λ → ∞, the agents will choose actions in best response manner (greed-

ily). Recently, [189] has shown that if the logit MQRE converges as λ → ∞, the limit

point is Markov perfect equilibrium.

176

Theorem 4. Let π̄lim be the limit point of some logit MQRE π̄∗(λ), i.e.

π̄lim = lim
λ→∞

π̄∗(λ) (E.10)

Then, π̄lim is a Markov perfect equilibrium.

Proof. See [189] Page 13, Theorem 4 for a proof by contradiction.

[189] further provides proof on the existence of the limit point for stochastic games

which establishes logit MQRE an appropriate equilibrium concept for characterizing tra-

jectory distributions induced by the reward functions specified in the decision process of

Markov Perfect network emergence games. However, the system of equations in Eq. (E.9)

provide a solution to a set of constraints which do not explicitly specify concrete joint pol-

icy profiles that can be used to maximize the likelihood of the observed data as a function

of rewards, a key objective of this work. To address this exact challenge, [183] introduces a

new solution concept, referred as Logistic Stochastic Best Response Equilibrium (LSBRE),

that corresponds to the outcome of repeated application of a stochastic process where each

agent attempts to optimize its actions while keeping other agents’ actions fixed. Please

refer to Section 2.3 for the complete definition of LSBRE for a Markov game with horizon

T - a key component of which is the form of zi which is given as:

z
t,(k+1)
i (st) ∼ P t

i (a
t
i|āt−i = z̄

t,(k)
−i (st), st) =

exp
(
λQπ̄t+1:T

i (st, ati, z̄
t,(k)
−i (st))

)
∑

a′i
exp

(
λQπ̄t+1:T

i (st, a′ti, z̄
t,(k)
−i (st))

) (E.11)

where, Qπ̄t+1:T

i is recursively defined as:

Qπ̄t+1:T

i (st, ati, π̄
t
−i) = r̂i(s

t, ati, π̄
t
−i) + Est+1∼P (·|st,ā)

[
H(πt+1

i (·|st+1))

+Eat+1∼π̄t+1(·|st+1)[Q
π̄t+2:T

i (st+1, āt+1)]
] (E.12)

177

The reward term r̂i(s
t, ati, π̄

t
−i) in Eq. E.12 corresponds to the payoff term r̂i(s, a, π̄

∗
−i)

in Eq. E.9. Further, [183] establishes that the trajectory induced by LSBRE policies can

be characterized with energy-based formulation such that the probability of a trajectory in-

creases exponentially as the sum of rewards increases. This allows them to build a practical

inverse reinforcement learning algorithm for multi-agent setting where the expert policies

are assumed to form a unique LSBRE under some unknown reward. We build our approach

based on this algorithm and extend it to network emergence games which we discuss in the

next section.

E.2 MINE Algorithm

In this section, we outline the multi-agent inverse reinforcement learning procedure to learn

network emergence games.

Algorithm 9 builds on the recently proposed multi-agent adversarial reinforcement

learning [183] technique by extending it to support graph structured environment and mod-

ifying it to use multi-agent attention actor-critic (MAAC [198]) algorithm in the inner RL

loop for efficient off-policy learning. At the start of each epoch, the game is reset such that

there exists no links between the agents (line 7, At is the adjacency matrix at step t). At

this stage, agents’ low-dimensional embeddings are initialized from their features using one

round of the the GNN based state encoder (due to lack of edges there will be no message

passing initially). Next, we rollout several forward steps to collect experience in replay

buffer (line 13) and build agents’ trajectories (line 14). During each step in the game, we

sample actions for all agents using our Gaussian policy (line 10, corresponds to each agents’

announcements of forming links with other agents as discussed in Section 3). These contin-

uous actions are mapped (externally to the network) to links between agents and used to up-

date At. Based on the new structure, the state of the environment is updated using SE (line

12). After several rollouts, few iterations of gradient updates are used to update the param-

eters of all the networks. For each update, we obtain set of trajectory samples from both ex-

178

Algorithm 9 MINE Algorithm
1: procedure MINE
2: Input: Expert Demonstrations DE = {τEj }, Empty list of Agent’s trajectories Dπ,
3: Replay Buffer B, Agent feature matrix X
4: Initialize the parameters for policies p̄i, attentive critic Q̄, reward estimators ḡ,

potential
5: functions h̄ and state encoder (SE) with φ̄, ψ̄, ω̄, θ̄ and ϕ respectively
6: repeat
7: Reset the environment and set adjacency matrix A0 = 0 (no links)
8: Initialize τπ = {}
9: for each step do do

10: Sample ā ∼ π̄φ̄(āt|ōt)
11: Update At based on ā (c.f. Section 3)
12: Update st+1 = SEϕ(st,At+1)
13: Add (ō, ā, ō′) to B
14: Update τπ ← concat(τπ, (ō, ā, ō′))
15: end for
16: Add τπ to Dπ and reset τπ ← {}
17: for each training iteration do do
18: Sample (ō, ā, ō′)π triples Tπ from Dπ and (ō, ā, ō′)E triples TE from DE

19: Update ω̄, θ̄ using:
20: ETE [logD((ō, ā, ō′)E)] + ETπ [log(1−D((ō, ā, ō′)π))]
21: Update reward estimates r̄(ō, ā, ō′) with ḡω̄(ō, ā)
22:
23: Update φ̄, ϕ w.r.t. r̄(ō, ā, ō′) using MAAC policy gradients:
24: ∇φiJ(π̄φ) = Eō∼B,ā∼π̄[∇φi log(πφi(ai|oi))(−α log(πφi(ai|oi))
25: +Qψi(ō, ā)− b(ō, a−i))]
26:
27: Update critic parameters ψ̄ by minimizing the TD-error:
28: E(ō,ā∼B[

∑N
i=1(Qψi(ō, ā)− yi)2] where

29: yi = ri(ō, ā) + γEa′∼π̄φ̄(ō′)[Qψi(ō
′, ā′)− α log(πφi(a

′
i|o′i))]

30: end for
31: until Convergence
32: Output: Learned policies π̄φ, reward functions ḡω and state encoder SEϕ
33: end procedure

pert and agents’ trajectories (line 18). For the loss function in line 20, we follow [183] and

use the following structure for the discriminators: Di(oi, ai, o
′
i) =

exp(fωi (oi,ai,o
′
i)

exp(fωi (oi,ai,o
′
i))+πφi (ai|oi)

,

where fωi(oi, ai, o
′
i) = gωi(oi, ai) + γhθi(o

′
i) − hθi(oi). gω is the reward estimator and hθ

is the potential function. We use this discriminator definition to update parameters ω̄ and

θ̄ (line 19-20). The update reward estimator gω serves as an updated the reward function

179

r̄ (line 21). The parameters of the structured strategy network (which includes both the

policy network and the state encoder network) are updated with respect the newly esti-

mated reward function r̄ using the soft-policy gradients (line 24). Our updates are based

on off-policy gradients as we use MAAC [198] for policy learning that extends Soft-Actor

Critic [150] algorithm to multi-agent setting with attention based critics. In line 24-25, α

is the temperature parameter that balances the trade off between policy entropy and reward

maximization. Further, b is the baseline advantage function used to solve the credit as-

signment problem in multi-agent setting and we follow [198] to compute it. Finally, the

attentive critics are updated by minimizing the TD-error as shown in line (28-29). We note

that there is no explicit objective function for directly optimizing the state encoder param-

eters ϕ, however, the policy gradients backpropagate through the state encoder network

in an end-to-end fashion, thereby updating the encoder network. At convergence, MINE

returns the learned policy network π̄, reward function ḡ and state encoder SE, which are

then used for performing evaluation tasks as described in next section.

E.3 Further Experiment Details

E.3.1 Datasets

In this section, we provide more details on the properties of the datasets used in our work.

Andorra1. The Andorra dataset contains call detail records between 32,829 citizens

where a link between two citizens if they were involved in atleast one call interaction dur-

ing the period from July 2015 to June 2016. The dataset contains three attributes for each

agent – Phone type (takes values Apple, Samsung, others), frequent city (takes values be-

tween 0 and 6) and cellular usage (real value). These attributes are strongly correlated with

important unobserved individual characteristics such as phone type may be related to in-

come, frequent city to the place of dwelling and cellular usage to the daily online activities.

Trade1. This is the 2014 international trade data between countries provided by the

1 Dataset can be downloaded from repository for [200] at https://github.com/yuany94/endowment/tree/master/data

180

United Nations Statistical Division (UN Comtrade Database: https://comtrade.un.org/).

The network contains 100 countries, a link among which indicates that the trade value be-

tween two countries is greater than 1 billion dollars in both directions. the dataset contains

three attributes – Continent (Africa, America, Asia/Pacific and Europe), Economic Com-

plexity Index [] and GDP (real value). While continent affects the location based strategic

trade decision, ECI captures the diversity and sophistication of country’s export and GDP

directly impacts a country’s ability to perform trade partnerships. In this dataset, an entire

country represents an agent in the game and hence this is an example where the network

emerges due to indirect impact of human beings.

Movie1. The movie dataset is specific type of social network where edges signify col-

laborations between directors and actor/actresses (cast). The links in this network are

formed strategically based on the benefits to both parties. The overall network structure

is close to bipartite network (some nodes are both directors and cast members) with 160

directors, 2628 cast members and 10,399 links between them. The dataset was collected

for 3493 movies in the period of 2000-2016 and contains two attributes for each agent –

Occupation (director, cast) and Gender (male, female).

Company1. This data consists of network between employees in a company where

an edge between them signify a call or text communication. Each employee is either a

manger or a subordinate (which is also the only attribute for agents in this network) and

there are 420 managers and 1564 subordinates with 12,751 edges between them. In this

network, managers are mostly connected to other managers and similar for subordinates

with occasional links between subordinates with their specific manager. This is an example

of a hierarchical network that the properties with the Australian bank toy network that we

used to analyze the reward interpretability.

Arxiv GR-QC2. This is a collaboration network between authors in the field of General

Relativity and Quantum Cosmology where an edge between them indicate they co-authored

2 Data is available at: https://snap.stanford.edu/data/ca-GrQc.html

181

atleast one paper between them. The network consists of 5242 nodes with 13396 edges

between. This network does not contain any attributes hence we only use one-hot identity

map as initial feature vector for agents. In this network, the strategy of link formation

between two authors would depend on their common neighbors and hence the network

emerges based on development of its own structure.

E.3.2 Baselines

In this section, we provide details on baselines used for comparison in strategic prediction

task.

GT core [203]. This method incorporates game-theoretic models into node represen-

tation learning methods for learning latent node features that are used for downstream link

prediction. Specifically, this method focuses on two node representation learning methods

– node2vec and DeepWalk and enhances them by proposing a novel form of biased ran-

dom walk. In this biased walk, the next node is not chosen randomly, instead it is chosen

based on link probability between the current node and set of possible next nodes. The

link probability is computed as a product of two weight values corresponding to that edge.

These two weight values are computed using game-theoretic model based utility function

and k-core decomposition respectively. The game-theoretic weights are further computed

using two different utility models - a co-authorship model [238] and influence games [239].

Once the biased random walk is performed to select the neighbors, standard gradient based

training is done and link prediction is performed based on learned node representations.

Social Game Embed [200]. This work takes an economic view of link formation

between heterogeneous agents, where the link formation is considered to be driven by

the tradeoff between exchange benefits and coordination costs between interacting agents.

Based on this view, a social network formation model is proposed with utility function de-

signed to capture this relation between benefits and cost. The agents in the network are

characterized by vectors, called endowment vectors and agents are assumed to maximize

182

their utility by comparing their endowment vectors with those of others. This vectors are

learned from the observed network by solving an optimization problem. Following is the

form of the utility function of agent i with respect to agent j:
∑K

k=1 bk max(zjk − zik, 0)−

‖c� (zj−zi)‖2, where the parameters b, c,W are learned by minimizing the loss function

L(b, c,W|D). Note that the hand-designed reward function used for the synthetic exper-

iments in our work is inspired from the above function. Once the parameters are learned,

link prediction is performed by using the utility of an agent i with respect to other agents j

as a predictor.

svII [204]. svII is a game-theory based interaction index that captures the notion of

similarity between agents. The interaction index is build upon two well-known solution

concepts from game theory - the Shapely value and the Bazhaf index. The payoff for an

agent in the network is a function of its sphere of influence parameterized by k, where k

is the degree of influence. Given this influence game, the above index measures similarity

between the spheres of influence of any two nodes. Link prediction is performed by com-

puting the similarity between any pair of nodes not having an edge in current graph and

connect the most similar pair.

SEAL [25]. This is the state-of-art discriminative model for link prediction that uses

graph neural network to learn general graph structure features from local enclosing sub-

graphs, embeddings and attributes, thereby capturing higher order properties. Link predic-

tion is performed using standard technique used in learning based approaches.

Graphite [205]. Graphite is a state-of-art latent variable generative model for graphs

based on variational auto-encoding. Graphite learns a directed model expressing a joint dis-

tribution over the entries of adjacency matrix of graphs and latent feature vectors for every

node. Graph neural networks are used in straightforward manner for inference (encoding),

while the decoding of these latent features to reconstruct the original graph (generation) is

done using a multi-layer iterative procedure. Link prediction is performed by first train-

ing the model on a subgraph, adding the test edges back to the graph and evaluating the

183

probabilities assigned to the test edges.

E.3.3 Evaluation Protocol

In this section, we elaborate and clarify the evaluation protocol used in the modified (per-

turbed) network setting (quality and interpretability tasks in Section 4) and strategic pre-

diction setting. As described in Algorithm 1, at the start of every epoch, the environment is

reset to an empty graph state (only agents, no links) and then the agents learn to form links

by observing the real network. However, for evaluation purposes, it is not required to start

from an empty graph state. and at convergence, one can input a graph with edges as initial

input to MINE and perform evaluation tasks thereof. Note that both the policy network and

reward network employ a GNN based architecture and hence any graph structure provide

as input will be encoded into continuous representation by these GNN before being used

as input to either policy or reward network. WE outline the evaluation steps for each task

below:

Quality. For the experiments on Karate network (Table 7.1(b)), the values for three

different graphs are the agent specific utilities for two leaders and average of agent-specific

utilities across all agents of each community. To obtain these numbers, we first train MINE

using the observed network data. Once the model is trained, we input the three graph

configurations to the learned reward model and compute the agent-specific utilities directly.

The perturbation is done on the original network and the policy generated graph is obtained

by running the evaluation policy starting from an empty network.

Interpretability. For the experiments on Australian bank dataset with respect to Katz

centrality, we first train MINE using the original network. We then modify the original

network to alter centrality of some nodes. Next, we provide this new network as input

to the learned reward function without running the evaluation policy. Note that reward

estimator is a learned function that takes agent-specific local observation structure (encoded

via GNN) as input and hence it directly processes the input network observations for each

184

agent and return the reward value that is used to report the analysis.

Strategic Prediction. For this task, after the training ends, we provide the graph with

80% training edges as an initial input to MINE. Next we run the evaluation policy and

collect the new links formed by the agents. We use these links as predictions and compare

them with the test edges to report the results.

E.3.4 Training Configurations

We design our approach based on recently proposed MA-AIRL algorithm but replace its in-

ner loop on-policy RL algorithm with off-policy MAAC algorithm. Hence, we closely fol-

low the architecture and training configurations of MA-AIRL for the descriminators while

we adopt the configurations of MAAC for policy learning. MAAC uses Soft-Actor critic to

update the policies and in general, SAC does not have any aggressive hyper-parameters that

needs to be tuned. We use a target critic function Qψ̂ following [198] as it helps to stabi-

lize the use of experience replay for off-policy reinforcement learning with neural network

function approximators. For GNN, we tune propagation round P between 2-4 but found 2

to be best choice. We tune the node embedding dimension in the range of {32, 64, 128, 256}

based on the graph. We reset each environment after every 100 steps. After 100 steps, we

perform 4 updates for the attention critic and for all policies. We perform gradient descent

on the Q-function loss objective, as well as the policy objective, using Adam optimizer.

Further, following [198], we use 4 heads for our attention critics and dimension of 128

for all hidden units across networks. Table E.1 provides list of hyper-parameters that were

used across all the experiments:
Table E.1: Hyper Parameter Configuration Table

HyperParameters Values HyperParameters Values

discount factor 0.99 replay buffer size 1e6
batch size 1024 policy and critic learning rate 0.001
policy entropy temperature 0.01 target policy and critic update rate 0.005
discriminator entropy temperature 0.01 discriminator learning rate 0.0005

185

All the experiments were conducted on Intel Xeon CPU V4 2.20 GHZ with 64 GB

memory and Nvidia GeForce 1080 GPU.

E.4 More Related Work

In this section, we discuss more literature on inverse reinforcement learning.

Inverse Reinforcement Learning. As stated before, the MaxEnt IRL framework [151]

aims to recover a reward function that rationalizes the expert behaviors with least commit-

ment and denoted as IRL(πE): IRL(πE) = argmaxr∈RS×A EπE [r(s, a)] − RL(r) where

RL(r) = maxπ∈ΠH(π) + Eπ[r(s, a)]. Here, H(π) = Eπ[− log π(a|s)] is the policy en-

tropy. The forward RL problem in the inner loop makes the above procedure less efficient

and hence various improvements have been proposed in the literature. [240, 241] propose

one such framework, Adversarial IRL, a sampling based approximation to MaxEnt IRL

that uses adversarial training framework where the discriminator takes following specific

form: D(s, a) = exp(f(s,a))
exp(f(s,a)+q(a|s)

, where f(s, a, s′) = g(s, a) + γh(s′) − h(s). The policy

is trained to maximize [logD − log(1−D)] and the specific form of f is used to alleviate

the reward shaping ambiguity where many reward function can explain an optimal policy.

It has been shown that at optimality, either f or g will approximate the advantage func-

tion of the expert policy and thereby recover the reward upto some approximation while q

will approximate the expert policy. Our approach is built on [183] that extends the above

setup to multi-agent case and we have discussed all the relevant details in the earlier sec-

tions. The above method is general in a sense that it supports cooperative, competitive and

mixed environments hence useful for our case. There are other inverse learning methods

specific to various multi-agent settings and tasks that include cooperative inverse reinforce-

ment learning [242], non-cooperative inverse reinforcement learning [243] and competitive

multi-agent inverse reinforcement learning with suboptimal demonstrations [244]. [245]

is a very early work in multi-agent inverse reinforcement learning that form the basis of

recent advancements in multi-agent inverse reinforcement learning.

186

REFERENCES

[1] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, generators, and algorithms,”
ACM Comput. Surv., 2006.

[2] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang, “Knowledge vault: A web-scale approach to probabilistic
knowledge fusion,” in Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2014, pp. 601–610.

[3] H. Liu and Y. Yang, “Cross-graph learning of multi-relational associations,” in Pro-
ceedings of the 33rd International Conference on Machine Learning, 2016.

[4] M. Pershina, M. Yakout, and K. Chakrabarti, “Holistic entity matching across knowl-
edge graphs,” in 2015 IEEE International Conference on Big Data (Big Data),
2015.

[5] D. Koutra, H. Tong, and D. Lubensky, “Big-align: Fast bipartite graph alignment,”
in 2013 IEEE 13th International Conference on Data Mining, 2013.

[6] P. Buneman and S. Staworko, “Rdf graph alignment with bisimulation,” Proc.
VLDB Endow., 2016.

[7] B. Kim, K. Lee, L. Xue, and X. Niu, “A review of dynamic network models with
latent variables,” arXiv:1711.10421, 2017.

[8] C. Loglisci and D. Malerba, “Leveraging temporal autocorrelation of historical data
for improving accuracy in network regression,” Statistical Analysis and Data Min-
ing: The ASA Data Science Journal, vol. 10, no. 1, pp. 40–53, 2017.

[9] C. Loglisci, M. Ceci, and D. Malerba, “Relational mining for discovering changes
in evolving networks,” Neurocomputing, vol. 150, Part A, pp. 265–288, 2015.

[10] C. Esteban, V. Tresp, Y. Yang, S. Baier, and D. Krompa, “Predicting the co-evolution
of event and knowledge graphs,” in FUSION, 2016.

[11] T. Jiang, T. Liu, T. Ge, L. Sha, S. Li, B. Chang, and Z. Sui, “Encoding temporal
information for time-aware link prediction,” in ACL, 2016.

[12] M. Farajtabar, Y. Wang, M. Gomez-Rodriguez, S. Li, H. Zha, and L. Song, “Co-
evolve: A joint point process model for information diffusion and network co-
evolution,” in NIPS, 2015, pp. 1954–1962.

187

[13] F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguná, and D. Krioukov, “Popu-
larity versus similarity in growing networks,” Nature, 2012.

[14] R. M. D’souza, C. Borgs, J. T. Chayes, N. Berger, and R. D. Kleinberg, “Emer-
gence of tempered preferential attachment from optimization,” Proceedings of the
National Academy of Sciences, 2007.

[15] A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou, “Heuristically optimized
trade-offs: A new paradigm for power laws in the internet,” in International Collo-
quium on Automata, Languages, and Programming, Springer, 2002, pp. 110–122.

[16] A.-L. Barabási, “Network science: Luck or reason,” Nature, 2012.

[17] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker, “On a
network creation game,” in Proceedings of the Twenty-Second Annual Symposium
on Principles of Distributed Computing, 2003.

[18] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” arXiv preprint arXiv:1706.02216, 2017.

[19] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of relational ma-
chine learning for knowledge graphs,” Proceedings of the IEEE, 2016.

[20] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “Graphrnn: Generative
realistic graphs with deep auto-regressive mdoels,” arXiv preprint arXiv:1802.08773,
2018.

[21] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia,
“Learning to simulate complex physics with graph networks,” arxiv:2002.09405,
2020.

[22] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial
optimization algorithms over graphs,” in NIPS, 2017.

[23] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph convolu-
tional networks and guided tree search,” in NeurIPS, 2018.

[24] S. V. Bojja, M. Alizadeh, and P. Viswanath, “Graph2seq: Scalable learning dynam-
ics for graphs,” arXiv:1802.04948v3, 2018.

[25] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” arxiv:1802.09691,
2018.

[26] R. Trivedi, B. Sisman, J. Ma, C. Faloutsos, H. Zha, and X. L. Dong, “Linknbed:
Multi-graph representation learning with entity linkage,” in ACL, 2018.

188

[27] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning representations
over dynamic graphs,” in ICLR, 2019.

[28] R. Trivedi, H. Dai, Y. Wang, and L. Song, “Know-evolve: Deep temporal reasoning
for dynamic knowledge graphs,” in ICML, 2017.

[29] R. Trivedi, J. Yang, and H. Zha, “Graphopt: Learning optimization models of graph
formation,” in ICML, 2020.

[30] M. Dredze, P. McNamee, D. Rao, A. Gerber, and T. Finin, “Entity disambiguation
for knowledge base population,” in Proceedings of the 23rd International Confer-
ence on Computational Linguistics, 2010.

[31] Z. He, S. Liu, M. Li, M. Zhou, L. Zhang, and H. Wang, “Learning entity represen-
tation for entity disambiguation,” in Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics, 2013.

[32] H. Huang, L. Heck, and H. Ji, “Leveraging deep neural networks and knowledge
graphs for entity disambiguation,” arXiv:1504.07678v1, 2015.

[33] W. M. Campbell, L. Li, C. Dagli, J. Acevedo-Aviles, K. Geyer, J. P. Campbell, and
C. Priebe, “Cross-domain entity resolution in social media,” arXiv:1608.01386v1,
2016.

[34] W. Fang, J. Zhang, D. Wang, Z. Chen, and M. Li, “Entity disambiguation by knowl-
edge and text jointly embedding,” in CoNLL, 2016.

[35] A. Globerson, N. Lazic, S. Chakrabarti, A. Subramanya, M. Ringaard, and F. Pereira,
“Collective entity resolution with multi-focal attention,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, 2016.

[36] J. Pujara and L. Getoor, “Generic statistical relational entity resolution in knowl-
edge graphs,” in Sixth International Workshop on Statistical Relational AI, 2016.

[37] M. Chen, Y. Tian, M. Yang, and C. Zaniolo, “Multilingual knowledge graph em-
beddings for cross-lingual knowledge alignment,” 2017.

[38] L. Zhu, d. Guo, J. Yin, G. V. Steeg, and A. Galstyan, “Scalable temporal latent
space inference for link prediction in dynamic social networks,” TKDE, 2016.

[39] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding method for
dynamic graphs,” IJCAI International Workshop on Representation Learning for
Graphs, 2017.

189

[40] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network embedding
by modeling triadic closure process,” in AAAI, 2018.

[41] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured sequence
modeling with graph convolutional recurrent networks,” arXiv:1612.07659, 2016.

[42] N. Du, Y. Wang, N. He, and L. Song, “Time sensitive recommendation from recur-
rent user activities,” in NIPS, 2015, pp. 3492–3500.

[43] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang, “Netwalk: A
flexible deep embedding approach for anamoly detection in dynamic networks,” in
KDD, 2018.

[44] J. Li, H. Dani, X. Hu, J. Tang, Y. Change, and H. Liu, “Attributed network embed-
ding for learning in a dynamic environment,” in CIKM, 2017.

[45] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embedding temporal network
via neighborhood formation,” in KDD, 2018.

[46] G. H. Ngyuyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim, “Continuous-
time dynamic network embeddings,” in WWW, 2018.

[47] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep generative
models of graphs,” arXiv preprint arXiv:1803.03324, 2018.

[48] J. You, B. Liu, R. Ying, V. Pande, and J. Leskovec, “Graph convolutional policy
network for goal directed molecule generation,” in NIPS, 2018.

[49] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308,
2016.

[50] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and M. Guo,
“Graphgan: Graph representation learning with generative adversarial nets,” 1711.08267,
2017.

[51] N. D. Cao and T. Kipf, “Molgan: An implicit generative model for small molecular
graphs,” arXiv:1805.11973, 2018.

[52] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “Netgan: Generating
graphs via random walks,” in Proceedings of the 35th International Conference on
Machine Learning, 2018.

[53] C. H. Papadimitriou, “Algorithms, games, and the internet,” in ACM Symposium on
Theory of Computing, 2001.

190

[54] D. Bilò, T. Friedrich, P. Lenzner, and A. Melnichenko, “Geometric network cre-
ation games,” in ACM Symposium on Parallelism in Algorithms and Architectures,
2019.

[55] M. Jackson and A. Wolinsky, “A strategic model of social and economic networks,”
Journal of Economic Theory, 1996.

[56] R. Myerson, “Game theory: Analysis of conflict,” Harvard University Press, 1991.

[57] F. Bloch and M. O. Jackson, “The formation of networks with transfers among
players,” Journal of Economic Theory, 2007.

[58] R. Lee and K. Fong, “Markov-perfect network formation: An applied framework
for bilateral oligopoly and bargaining in buyer-seller networks,” 2013.

[59] T. R. Johnson, “Dynamic network formation: Theory and estimation,” 2017.

[60] G. Ridder and S. Sheng, “Estimation of large network formation games,” arXiv:2001.03838,
2020.

[61] J. Dalton, L. Dietz, and J. Allan, “Entity query feature expansion using knowledge
base links,” in Proceedings of the 37th International ACM SIGIR Conference on
Research & Development in Information Retrieval, 2014.

[62] E. Gabrilovich and S. Markovitch, “Wikipedia-based semantic interpretation for
natural language processing,” J. Artif. Int. Res., 2009.

[63] R. Catherine and W. Cohen, “Personalized recommendations using knowledge graphs:
A probabilistic logic programming approach,” in Proceedings of the 10th ACM
Conference on Recommender Systems, 2016.

[64] W. Cui, Y. Xiao, H. Wang, Y. Song, S.-w. Hwang, and W. Wang, “Kbqa: Learning
question answering over qa corpora and knowledge bases,” Proc. VLDB Endow.,
2017.

[65] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: A collab-
oratively created graph database for structuring human knowledge,” in SIGMOD
Conference, 2008.

[66] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “DBpedia:
A nucleus for a web of open data,” in The Semantic Web, 2007.

[67] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A core of semantic knowl-
edge,” in Proceedings of the 16th International Conference on World Wide Web,
2007.

191

[68] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr., and T. M.
Mitchell, “Toward an architecture for never-ending language learning,” in Proceed-
ings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI 2010), 2010.

[69] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective learning
on multi-relational data,” in Proceedings of the 28th International Conference on
Machine Learning (ICML-11), 2011, pp. 809–816.

[70] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard, “Complex embed-
dings for simple link prediction,” in Proceedings of the 33rd International Confer-
ence on Machine Learning, 2016.

[71] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translat-
ing embeddings for modeling multi-relational data,” in Advances in neural infor-
mation processing systems, 2013, pp. 2787–2795.

[72] H. Xiao, M. Huang, and X. Zhu, “Transg: A generative model for knowledge graph
embedding,” in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, 2016.

[73] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and relations
for learning and inference in knowledge bases,” arXiv:1412.6575, 2015.

[74] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Deep feature learning for graphs,”
arXiv:1704.08829, 2017.

[75] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural tensor
networks for knowledge base completion,” in Advances in Neural Information Pro-
cessing Systems, 2013, pp. 926–934.

[76] Q. V. Le and T. Mikolov, “Distributed representations of sentences and documents,”
arXiv preprint arXiv:1405.4053, 2014.

[77] R. Kadlec, O. Bajgar, and J. Kleindienst, “Knowledge base completion: Baselines
strike back,” in Proceedings of the 2nd Workshop on Representation Learning for
NLP, 2017.

[78] J. Feng, M. Huang, Y. Yang, and X. Zhu, “Gake: Graph aware knowledge embed-
ding,” in COLING, 2016.

[79] Q. Liu, H. Jiang, A. Evdokimov, Z.-H. Ling, X. Zhu, S. Wei, and Y. Hu, “Probabilis-
tic reasoning via deep learning: Neural association models,” arXiv:1603.07704v2,
2016.

192

[80] M. Nickel, L. Rosasco, and T. Poggio, “Holographic embeddings of knowledge
graphs,” 2016.

[81] K. Toutanova, X. V. Lin, W.-t. Yih, H. Poon, and C. Quirk, “Compositional learning
of embeddings for relation paths in knowledge bases and text,” in Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics, vol. 1,
2016, pp. 1434–1444.

[82] H. Liu, Y. Wu, and Y. Yang, “Analogical inference for multi-relatinal embeddings,”
in Proceedings of the 34th International Conference on Machine Learning, 2017.

[83] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “A semantic matching energy
function for learning with multi-relational data,” Machine Learning, 2014.

[84] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning structured embed-
dings of knowledge bases,” in AAAI, 2011.

[85] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by trans-
lating on hyperplanes,” 2014.

[86] Y. Lin, Z. Liu, M. Sun, and X. Zhu, “Learning entity and relation embeddings for
knowledge graph completion,” 2015.

[87] K. Toutanova and D. Chen, “Observed versus latent features for knowledge base
and text inference,” 2015.

[88] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with global
structural information,” in CIKM, 2015.

[89] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in
KDD, 2016.

[90] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-
sentations,” arXiv preprint arXiv:1403.6652, 2014.

[91] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale infor-
mation network embedding,” in Proceedings of the 24th International Conference
on World Wide Web, International World Wide Web Conferences Steering Commit-
tee, 2015, pp. 1067–1077.

[92] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in KDD, 2016.

[93] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community preserving
network embedding,” in AAAI, 2017.

193

[94] L. Xu, X. Wei, J. Cao, and P. Y. Yu, “Embedding identity and interest for social
networks,” in WWW, 2017.

[95] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs:
Methods and applications,” arXiv:1709.05584, 2017.

[96] B. Chazelle, “Natural algorithms and influence systems,” Communications of the
ACM, 2012.

[97] D. Farine, “The dynamics of transmission and the dynamics of networks,” Journal
of Animal Ecology, vol. 86, no. 3, pp. 415–418, 2017.

[98] O. Artime, J. J. Ramasco, and M. S. Miguel, “Dynamics on networks: Competition
of temporal and topological correlations,” arXiv:1604.04155, 2017.

[99] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” Neural Networks, IEEE Transactions on, vol. 20, no. 1,
pp. 61–80, 2009.

[100] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural
networks,” arXiv preprint arXiv:1511.05493, 2015.

[101] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent variable models
for structured data,” CoRR, vol. abs/1603.05629, 2016.

[102] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” arXiv preprint arXiv:1609.02907, 2016.

[103] ——, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308, 2016.

[104] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[105] C. Yang, M. Liu, Z. Wang, L. Liu, and J. Han, “Graph clustering with dynamic
embedding,” arXiv:1712.08249, 2017.

[106] P. Sarkar, S. Siddiqi, and G. Gordon, “A latent space approach to dynamic embed-
ding of co-occurence data,” in AISTATS, 2007.

[107] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and L. Song, “Re-
current marked temporal point processes: Embedding event history to vector,” in
KDD, 2016.

[108] H. Mei and J. M. Eisner, “The neural hawkes process: A neurally self-modulating
multivariate point process,” in NIPS, 2017.

194

[109] S. Xiao, M. Farajtabar, X. Ye, J. Yan, L. Song, and H. Zha, “Wasserstein learning
of deep generative point process models,” in NIPS, 2017.

[110] D. Daley and D Vere-Jones, An Introduction to the Theory of Point Processes:
Volume I: Elementary Theory and Methods. 2007.

[111] O. Aalen, O. Borgan, and H. Gjessing, Survival and event history analysis: a pro-
cess point of view. Springer, 2008.

[112] M. Farajtabar, N. Du, M. G. Rodriguez, I. Valera, H. Zha, and L. Song, “Shaping
social activity by incentivizing users,” in NIPS, 2014.

[113] A. G. Hawkes, “Spectra of some self-exciting and mutually exciting point pro-
cesses,” Biometrika, vol. 58, no. 1, pp. 83–90, 1971.

[114] Y. Wang, B. Xie, N. Du, and L. Song, “Isotonic hawkes processes,” in ICML, 2016,
pp. 2226–2234.

[115] B. Tabibian, I. Valera, M. Farajtabar, L. Song, B. Schölkopf, and M. Gomez-Rodriguez,
“Distilling information reliability and source trustworthiness from digital traces,”
in WWW, 2017.

[116] V. Isham and M. Westcott, “A self-correcting pint process,” Advances in Applied
Probability, vol. 37, pp. 629–646, 1979.

[117] M. Farajtabar, X. Ye, S. Harati, L. Song, and H. Zha, “Multistage campaigning in
social networks,” in NIPS, 2016.

[118] A. Zarezade, A. Khodadadi, M. Farajtabar, H. R. Rabiee, and H. Zha, “Correlated
cascades: Compete or cooperate.,” in AAAI, 2017.

[119] M. Farajtabar, J. Yang, X. Ye, H. Xu, R. Trivedi, E. Khalil, S. Li, L. Song, and H.
Zha, “Fake news mitigation via point process based intervention,” in ICML, 2017.

[120] L. Tran, M. Farajtabar, L. Song, and H. Zha, “Netcodec: Community detection
from individual activities,” in SDM, 2015.

[121] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for
3d classification and segmentation,” in CVPR, 2017.

[122] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph
attention networks,” in ICLR, 2018.

[123] J. Zhang, X. Shi, J. Xie, h. Ma, I. King, and D.-Y. Yeung, “Gaan: Gated attention
networks for learning on large spatiotemporal graphs,” in UAI, 2018.

195

[124] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal networks,” in
WSDM, 2017.

[125] K. Leetaru and P. A. Schrodt, “Gdelt: Global data on events, location, and tone,”
ISA Annual Convention, 2013.

[126] E. Boschee, J. Lautenschlager, S. O’Brien, S. Shellman, J. Starz, and M. Ward,
“Icews coded event data,” 2017.

[127] D. Cox and P. Lewis, “Multivariate point processes,” Selected Statistical Papers of
Sir David Cox: Volume 1, Design of Investigations, Statistical Methods and Appli-
cations, vol. 1, p. 159, 2006.

[128] D. Daley and D. Vere-Jones, An introduction to the theory of point processes: vol-
ume II: general theory and structure. Springer, 2007, vol. 2.

[129] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommen-
dations with recurrent neural networks,” in ICLR, 2016.

[130] M. U. Gutmann and A. Hyvärinen, “Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics,” Journal of Machine
Learning Research, vol. 13, no. Feb, pp. 307–361, 2012.

[131] A. Schein, M. Zhou, D. Blei, and H. Wallach, “Bayesian poisson tucker decompo-
sition for learning the structure of international relations,” arXiv:1606.01855, 2016.

[132] S.-H. Yang and H. Zha, “Mixture of mutually exciting processes for viral diffusion,”
in ICML, 2013, pp. 1–9.

[133] M. Farajtabar, N. Du, M. Gomez-Rodriguez, I. Valera, H. Zha, and L. Song, “Shap-
ing social activity by incentivizing users,” in NIPS, 2014, pp. 2474–2482.

[134] Y. Wang, N. Du, R. Trivedi, and L. Song, “Coevolutionary latent feature processes
for continuous-time user-item interactions,” in NIPS, 2016, pp. 4547–4555.

[135] Y. Wang, E. Theodorou, A. Verma, and L. Song, “A stochastic differential equa-
tion framework for guiding online user activities in closed loop,” arXiv preprint
arXiv:1603.09021, 2016.

[136] Y. Wang, G. Williams, E. Theodorou, and L. Song, “Variational policy for guiding
point processes,” in ICML, 2017.

[137] Y. Wang, X. Ye, H. Zha, and L. Song, “Predicting user activity level in point pro-
cesses with mass transport equation,” in NIPS, 2017.

196

[138] H. Dai, Y. Wang, R. Trivedi, and L. Song, “Deep coevolutionary network: Embed-
ding user and item features for recommendation,” arXiv preprint arXiv:1609.03675,
2016.

[139] U. Sharan and J. Neville, “Temporal-relational classifiers for prediction in evolving
domains,” in 2008 Eighth IEEE International Conference on Data Mining, 2008,
pp. 540–549.

[140] C. Esteban, V. Tresp, Y. Yang, S. Baier, and D. Krompaß, “Predicting the co-
evolution of event and knowledge graphs,” in 2016 19th International Conference
on Information Fusion (FUSION), 2016, pp. 98–105.

[141] T. Jiang, T. Liu, T. Ge, S. Lei, S. Li, B. Chang, and Z. Sui, “Encoding temporal
information for time-aware link prediction,” 2016.

[142] S. Zhang, L. Yao, and A. Sun, “Deep learning based recommender system: A sur-
vey and new perspectives,” arXiv:1707.07435, 2017.

[143] V. Singh and P. Lio, “Towards probabilistic generative models harnessing graph
neural networks for disease-gene prediction,” arxiv:1907.05628, 2019.

[144] L. Liu, W. K. Cheung, X. Li, and L. Liao, “Aligning users across social networks
using network embedding,” in Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, 2016.

[145] A.-L. Barabási and M. Pósfai, Network science. Cambridge University Press, 2016.

[146] M. Newman, Networks: An Introduction. OUP Oxford, 2010.

[147] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Rev.
Mod. Phys., 2002.

[148] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tompkins, and E. Upfal,
“The web as a graph,” in Proceedings of the nineteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, 2000, pp. 1–10.

[149] A. Vázquez, A. Flammini, A. Maritan, and A. Vespignani, “Modeling of protein
interaction networks,” Complexus, vol. 1, no. 1, pp. 38–44, 2003.

[150] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, and S. Levine, “Soft actor-critic algorithms and applications,”
arxiv:1812.05905, 2018.

[151] B. D. Ziebart, A. Maas, J. Bagnell, and A. K. Dey, “Maximum entropy inverse
reinforcement learning,” in AAAI, 2008.

197

[152] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse optimal
control via policy optimization,” in International Conference on Machine Learning,
2016, pp. 49–58.

[153] G. Robins, P. Pattison, Y. Kalish, and D. Lusher, “An introduction to exponential
random graph (p*) models for social networks,” Social Networks, vol. 29, no. 2,
pp. 173–191, 2007.

[154] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification and
shrinking diameters,” ACM Trans. Knowl. Discov. Data, 2007.

[155] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed membership
stochastic blockmodels,” in Advances in Neural Information Processing Systems
21, 2009.

[156] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kro-
necker graphs: An approach to modeling networks,” J. Mach. Learn. Res., 2010.

[157] P. Erdös and A. Rényi, “On random graphs,” Publ. Math. Debrecen, vol. 6, pp. 290–
291, 1959.

[158] A. D. Broido and A. Clauset, “Scale-free networks are rare,” in Nature Communi-
cations, 2018.

[159] Y. Dong, R. A. Johnson, J. Xu, and N. V. Chawla, “Structural diversity and ho-
mophily: A study across more than one hundred big networks,” in Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2017.

[160] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of small graphs
using variational autoencoders,” arxiv:1802.03480, 2018.

[161] A. D. Paula, S. Richards-Shubik, and E. Tamer, “Identifying preferences in net-
works with bounded degree,” Econometrica, 2018.

[162] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” science,
1999.

[163] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learning,” in in
Proc. 17th International Conf. on Machine Learning, Morgan Kaufmann, 2000,
pp. 663–670.

[164] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishnamurthy, A.
Smola, and A. McCallum, “Go for a walk and arrive at the answer: Reasoning over
paths in knowledge bases using reinforcement learning,” 2018.

198

[165] X. V. Lin, R. Socher, and C. Xiong, “Multi-hop knowledge graph reasoning with
reward shaping,” arxiv:1808.10568, 2018.

[166] T. Wang, R. Liao, J. Ba, and S. Fidler, “Nervenet: Learning structured policy via
graph neural networks,” in ICLR, 2018.

[167] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Transactions on Neural Networks, 2009.

[168] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.
Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[169] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv:1707.06347, 2017.

[170] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in neural
information processing systems, 2000, pp. 1008–1014.

[171] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in
Neural Information Processing Systems, 2016, pp. 4565–4573.

[172] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observation,” in Pro-
ceedings of the 27th International Joint Conference on Artificial Intelligence, 2018,
pp. 4950–4957.

[173] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[174] B. Liu, W. Hu, M. Zitnik, and J. Leskovec, “Open graph benchmark,” To appear,
2020.

[175] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Ç. Gülçehre,
F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. Allen, C. Nash, V.
Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li,
and R. Pascanu, “Relational inductive biases, deep learning, and graph networks,”
arXiv:1806.01261, 2018.

[176] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A sur-
vey of approaches and applications,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.

[177] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” arXiv:1812.04202,
2018.

199

[178] C. W. Coley, R. Barzilay, W. H. Green, T. S. Jaakkola, and K. F. Jensen, “Convolu-
tional embedding of attributed molecular graphs for physical property prediction,”
Journal of Chemical Information and Modeling, 2017.

[179] F. Dutil, J. P. Cohen, M. Weiss, G. Derevyanko, and Y. Bengio, “Towards gene
expression convolutions using gene interaction graphs,” arxiv:1806.06975, 2018.

[180] S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker, and D. Rueck-
ert, “Distance metric learning using graph convolutional networks: Application to
functional brain networks,” arxiv:1703.02161, 2017.

[181] J. Ma, C. Zhou, P. Cui, H. Yang, and W. Zhu, “Learning disentangled representa-
tions for recommendation,” arxiv:1910.14238, 2019.

[182] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “Deepinf: Social influence
prediction with deep learning,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2018.

[183] L. Yu, J. Song, and S. Ermon, “Multi-agent adversarial inverse reinforcement learn-
ing,” in International Conference on Machine Learning, 2019.

[184] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learn-
ing,” in International Conference on Machine Learning, 1994.

[185] L. S. Shapley, “Stochastic games,” in Proceedings of the National Academy of Sci-
ences, 1953.

[186] E. Maskin and T. J., “A theory of dynamic oligopoly i: Overview and quantity
competition with large fixed costs,” Econometrica, 1988.

[187] ——, “A theory of dynamic oligopoly ii: Price competition, kinked demand curves,
and edgeworth cycles,” Econometrica, 1988.

[188] ——, “Markov perfect equilibrium: I. observable actions,” Journal of Economic
Theory, 2001.

[189] S. Eibelshäuser and D. Poensgen, “Markov quantal response equilibrium and a ho-
motopy method for computing and selecting markov perfect equilibria of dynamic
stochastic games,” 2019.

[190] A. M. Fink, “Equilibrium in a stochastic n-person game,” Journal of Science of the
Hiroshima University, 1964.

[191] M. Takahashi, “Equilibrium points of stochastic, noncooperative n-person games,”
Journal of Science of the Hiroshima University, 1964.

200

[192] M. J. Sobel, “Non-cooperative stochastic games,” Annals of Mathematical Statis-
tics, 1971.

[193] R. E. Bellman, “The theory of dynamic programming,” Bulletin of the American
Mathematical Society, 1954.

[194] R. D. McKelvey and T. R. Palfrey, “Quantal response equilibria for normal form
games,” Games and Economic Behavior, 1995.

[195] ——, “Quantal response equilibria for extensive form games,” Experimental Eco-
nomics, 1998.

[196] C. K. Ling, F. Fang, and J. Z. Kolter, “What game are we playing? end-to-end
learning in normal and extensive form games,” in International Joint Conference
on Artificial Intelligence, 2018.

[197] Y. Breitmoser, J. H. Tan, and D. J. Zizzo, “Understanding perpetual r and d races,”
Economic Theory, 2010.

[198] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement learning,”
in International Conference on Machine Learning, 2019.

[199] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph
attention networks,” in International Conference on Learning Representations, 2018.

[200] Y. Yuan, A. Alabdulkareem, and A. Pentland, “An interpretable approach for so-
cial network formation among heterogeneous agents,” in Nature Communications,
2018.

[201] L. Katz, “A new status index derived from sociometric analysis,” Psychometrika,
1953.

[202] N. Pagan and F. Dörfler, “Game theoretical inference of human behavior in social
networks,” Nature Communications, 2019.

[203] E. Nasiri, A. Bouyer, and E. Nourani, “A node representation learning approach for
link prediction in social networks using game theory and k-core decomposition,”
The European Physical Journal B, 2019.

[204] P. L. Szczepanski, A. Barcz, T. P. Michalak, and T. Rahwan, “The game-theoretic
interaction index on social networks with applications to link prediction and com-
munity detection,” in Proceedings of the 24th International Conference on Artificial
Intelligence, 2015.

201

[205] A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative modeling of
graphs,” in Proceedings of the 36th International Conference on Machine Learning,
2019.

[206] R. Bamler and S. Mandt, “Dynamic word embedding,” in ICML, 2017.

[207] M. Rudolph and D. Blei, “Dynamic embeddings for language evolution,” in WWW,
2018.

[208] C. Meng, C. S. Mouli, B. Ribeiro, and J. Neville, “Subgraph pattern neural net-
works for high-order graph evolution prediction,” in AAAI, 2018.

[209] Y. Yuan, X. Liang, X. Wang, D.-Y. Yeung, and A. Gupta, “Temporal dynamic graph
lstm for action-driven video object detection,” in ICCV, 2017.

[210] G. Jerfel, M. E. Basbug, and B. E. Engelhardt, “Dynamic collaborative filtering
with compund poisson factorization,” in AISTATS, 2017.

[211] W. Xiong, T. Hoang, and W. Y. Wang, “Deeppath: A reinforcement learning method
for knowledge graph reasoning,” arXiv preprint arXiv:1707.06690, 2017.

[212] Y. Shen, J. Chen, P.-S. Huang, Y. Guo, and J. Gao, “M-walk: Learning to walk over
graphs using monte carlo tree search,” in NeurIPS, 2018.

[213] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[214] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van
den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go without
human knowledge,” Nature, 2017.

[215] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the
game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587,
p. 484, 2016.

[216] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation,” in Advances in neural
information processing systems, 2000, pp. 1057–1063.

[217] M. Toussaint, “Robot trajectory optimization using approximate inference,” in ICML,
2009.

202

[218] K. Rawlik, M. Toussaint, and S. Vijayakumar, “On stochastic optimal control and
reinforcement learning by approximate inference (extended abstract),” in IJCAI,
2013.

[219] R. Fox, A. Pakman, and N. Tishby, “Taming the noise in reinforcement learning
via soft updates,” in UAI, 2016.

[220] S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial
and review,” arxiv:1805.00909, 2018.

[221] B. D. Ziebart, “Modeling purposeful adaptive behavior with the principle of maxi-
mum causal entropy,” PhD thesis, Machine Learning Department, Carnegie Mellon
University, 2010.

[222] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep
energy-based policies,” in ICML, 2017.

[223] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learn-
ing,” in ICML, 2004.

[224] L. A. Adamic and N. Glance, “The political blogosphere and the 2004 u.s. elec-
tion: Divided they blog,” in Proceedings of the 3rd International Workshop on Link
Discovery, 2005.

[225] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating the construc-
tion of internet portals with machine learning,” Information Retrieval, 2000.

[226] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and Eliassi-Rad, “Collective
classification in network data,” Ai Magazine, 2008.

[227] S. Kok and P. Domingos, “Statistical predicate invention,” in ICML, 2007.

[228] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Gamon, “Repre-
senting text for joint embedding of text and knowledge bases,” in EMNLP, 2015.

[229] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2d knowl-
edge graph embeddings,” in AAAI, 2018.

[230] B. Karrer and M. Newman, “Stochastic blockmodels and community structure in
networks,” Arxiv preprint arXiv:1008.3926, 2010.

[231] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community structure and scale-free col-
lections of erdos-renyi graphs,” Physical Review E, 2012.

203

[232] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in
KDD, 2016.

[233] G. A. Geses, R. Biswas, M. Alam, and H. Sack, “A survey on knowledge graph
embeddings with literals: Which model links better literal-ly?” arXiv:1910.12507,
2019.

[234] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, 1992.

[235] F. Yang, Z. Yang, and W. W. Cohen, “Differentiable learning of logical rules for
knowledge base completion,” arxiv:1702.08367, 2017.

[236] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard, “Complex embed-
dings for simple link prediction,” in ICML, 2016.

[237] U. Doraszelski and J. F. Escobar, “A theory of regular markov perfect equilibria
in dynamic stochastic games: Genericity, stability, and purification,” Theoretical
Economics, 2010.

[238] M. O. Jackson, “A survey of models of network formation: Stability and efficiency,”
2003.

[239] T. P. Michalak, K. V. Aadithya, P. L. Szczepanski, B. Ravindran, and N. R. Jen-
nings, “Efficient computation of the shapley value for game-theoretic network cen-
trality,” Journal of Artificial Intelligence Research, 2013.

[240] C. Finn, P. Christiano, P. Abbeel, and S Levine, “A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models,”
arXiv:1611.03852, 2016.

[241] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adverserial inverse
reinforcement learning,” in International Conference on Learning Representations,
2018.

[242] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan, “Cooperative inverse
reinforcement learning,” in Advances in Neural Information Processing Systems
29, 2016.

[243] X. Zhang, K. Zhang, E. Miehling, and T. Basar, “Non-cooperative inverse rein-
forcement learning,” in Advances in Neural Information Processing Systems 32,
2019.

204

[244] X. Wang and D. Klabjan, “Competitive multi-agent inverse reinforcement learning
with sub-optimal demonstrations,” in International Conference on Machine Learn-
ing, 2018.

[245] S. Natarajan, G. Kunapuli, K. Judahy, P. Tadepalliy, K. Kerstingzand, and J. Shav-
lik, “Multi-agent inverse reinforcement learning,” in International Conference on
Machine Learning and Applications, 2010.

205

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Learning dynamic processes over graphs
	Part I. Multi-graph representation learning
	Part II. Modeling and learning dynamic network processes
	Part III. Learning graph formation mechanisms

	Organization

	Literature Survey
	Entity Resolution in relational data and learning across multiple graphs
	Dynamic graph representation learning
	Deep Generative Models of Graph Generation
	Network Emergence Games

	I Multi-Graph Representation Learning
	Relational Learning over Multi-source Knowledge
	Introduction
	Preliminaries
	Knowledge Graph Representation
	Multi-Graph Relational Learning

	Proposed Method: LinkNBed
	Atomic Layer
	Contextual Layer
	Representation Layer
	Relational Score Function

	Efficient Learning Procedure
	Objective Function

	Experiments
	Datasets
	Baselines
	Evaluation Scheme
	Predictive Analysis

	Related Work
	Neural Embedding Methods for Relational Learning
	Entity Resolution in Relational Data
	Learning across multiple graphs

	Summary
	Discussion and Insights on Entity Linkage Task
	Implementation Details
	Contextual Information Formulations

	II Modeling and Learning Dynamic Network Processes
	Representation Learning over Dynamic Graphs
	Introduction
	Background and Preliminaries
	Related Work
	Temporal Point Processes
	Notations and Dynamic Graph Setting

	Proposed Method: DyRep
	Modeling Two-Time Scale Observed Graph Dynamics
	Learning latent Mediation Process Via Temporally Attentive Representation Network

	Efficient Learning Procedure
	Experiments
	Datasets
	Tasks and Metrics
	Baselines
	Evaluation Scheme
	Experimental Results

	Summary

	Temporal Reasoning over Dynamic Knowledge
	Introduction
	Preliminaries
	Temporal Point Process
	Temporal Knowledge Graph representation

	Evolutionary Knowledge Network
	Temporal Process
	Relational Score Function
	Dynamically Evolving Entity Representations
	Understanding Unified View of Know-Evolve

	Efficient Training Procedure
	Experiments
	Temporal Knowledge Graph Data
	Competitors
	Evaluation Protocol
	Quantitative Analysis

	Related Work
	Relational Learning
	Temporal Modeling

	Summary

	III Learning Graph Formation Mechanisms
	Learning Optimization Models of Graphs
	Introduction and Related Work
	Proposed Approach: GraphOpt
	Optimization Models of Graph Formation
	Problem Definition
	Graph Formation as a Markov Decision Process
	GraphOpt's Neural Policy Architecture

	Maximum Entropy Learning Procedure
	Experiments
	Discovering Transferable Latent Objective
	Policy Generalization to Prediction Task
	Synthesizing Graphs via Learned Generative Mechanism

	Summary

	Learning Strategic Network Emergence Games
	Introduction
	Preliminaries
	Markov Network Emergence Game
	Solution Concept for Network Emergence Games
	Multi-Agent Inverse Reinforcement Learning

	Proposed Model
	Experiments
	Payoff Function
	Strategic Prediction

	Summary

	Conclusion
	Contributions
	Limitations and Future Work

	Relational Learning over Multi-Source Knowledge
	Discussion and Insights on Entity Linkage Task
	Implementation Details
	Additional Dataset Details
	Training Configurations
	Contextual Information Formulations

	Representation Learning over Dynamic Graphs
	Pictorial Exposition of DyRep Representation Network
	Localized Embedding Propagation
	Computing hstruct: Temporal Point Process based Attention
	Computing S: Algorithm 1

	Rationale Behind DyRep Framework
	Ablation Study
	Exploratory Analysis
	Full Experiment Results for both Datasets
	Detailed Related Work
	Implementation Details
	Additional Dataset Details
	Training Configurations

	Monte Carlo Estimation for Survival Term in L for Section 4

	Temporal Reasoning over Dynamic Knowledge
	Algorithm for Global BPTT Computation
	Data Statistics and Sparsity of Knowledge Tensor
	Implementation Details
	Parameter Complexity Analysis
	Exploratory Analysis
	Temporal Reasoning

	Sliding Window Training Experiment
	Recurrent Facts vs. New facts

	Learning Optimization Models of Graph Formation
	Gradient Updates for GraphOpt Algorithm
	More Related Work
	Additional Details on Experiments
	Datasets
	Baselines
	Evaluation Protocol for Link Prediction using Learned Embeddings
	GraphOpt Implementation
	Metrics

	Additional Experiment Results
	Synthesizing Graphs Via Learned Generative Mechanism

	Learning Strategic Network Emergence Games
	Network Emergence Games and Multi-Agent Inverse Reinforcement Learning
	MINE Algorithm
	Further Experiment Details
	Datasets
	Baselines
	Evaluation Protocol
	Training Configurations

	More Related Work

	References

