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Loss and Heat Generation in Piezoelectric Transducers 

1 Introduction 

Heat generation is one of the most important issues in piezoelectric devices working at 
high frequency such as resonant motors. It is caused by both electrical and- mechanical 
losses in ferroelectric materials. The electrical and mechanical loss tangents were found 
to be proportional to each other (Hardtl 1982). The losses below the Curie temperature 
are mainly caused by domain wall movements. Models relating the losses and heat 
generation to field strength, frequency and temperature are needed. 

To achieve certain vibration displacement/velocity, the amplitude of the driving electric 
field will be a function of frequency. Heat generation at low frequency (high electric field, 
low stress) is caused mainly by dielectric loss (D-E hysteresis loss), while at resonance 
(low electric field, high stress) it is mainly caused by mechanical loss (T-S hysteresis 
loss) (Uchino and Hirose, 2001; Uchino et al., 2000; Uchino et al., 2006). 

Hysteresis is a lag between cause and effect. When hysteresis occurs with extensive and 
intensive variables, a hysteresis loop is formed. The work done on the system in a cycle is 
the area within the hysteresis loop of the extensive and associated intensive variables. 
This work is the energy loss, which is converted into heat (or other form of energy). 

Field and stress induced domain-wall activities also lead to great changes of dielectric 
and piezoelectric constants (Hall, 2001; Zhang et al., 1994). A Rayleigh relationship was 
found between the permittivity of ferroelectrics and the ac electric field (Taylor and 
Damjanovic, 1997, 1998). It was shown that the permittivity decrease linearly with the 
logarithm of the frequency of the ac field. Similarly, at low alternating stress amplitudes, 
the relation of piezoelectric coefficient and stress may be described by the Rayleigh law, 
see Figure 1 (Damjanovic, 1997; Damjanovic and Demartin, 1996; Damjanovic and 
Demartin, 1997). The nonlinear response of piezoelectric ceramics was shown to obey 
the Rayleigh law in a specific field and low frequency ranges (Eitel et al., 2006). 

It is a great challenge to accurately model the hysteretic loss in piezoelectric actuators 
under dynamic loadings (Hall, 2001). Models for the nonlinear behavior of the 
ferroelectric materials under the combined electric field and stress are needed for the 
simulation of the electric field and stress distributions in piezoelectric components. At 
small alternating stress and electric field of certain ranges, complex material constants 
may be used to simulate the hysteretic response. For arbitrary loadings and loading paths, 
micro-mechanical models based on domain switching and domain wall motion should be 
a better solution. 

Here we report our attempts in modeling the losses and heat generation as functions of 
field strength, frequency and temperature. Details of the model is described and discussed 
below. 
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2 Transducer and Material Loss Modeling 

2.1 Transducer Model and Solution Scheme 

A basic resonant transducer contains a piezoelectric stack, a head mass and a tail mass, as 
shown in Figure 2(a). When it is fixed at some position of the stack, u = 0 at x = 0, it can 
be simplified as shown in Figure 2(b). More complex transducer design may be 
considered by through dynamics analysis. 
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F i g u r e 2 . S k e t c h o f p i e z o e l e c t r i c t r a n s d u c e r 

To model the losses and heat generation of such a transducer, the following steps are 
taken: 

1. Analyze the dynamics of transducer structure. Start with linear analysis, Evaluate the 
electric field E induced displacement u and stress T as functions of frequency f. 

2. Compute losses in a field cycle as functions of electric field E, Stress T, f r e q u e n c y f a n d 

t e m p e r a t u r e . Develop models to compute the losses in a field cycle. This is the main task of 
the project. It includes material hysteresis modeling and implementation of material 
models for the dynamics system of transducers. The contributions of electric field and 
stress to losses are the main concern. The effects of frequency and temperature may be 
put in through frequency and temperature dependent parameters. 



3. Compute temperature increase due to heat generation. The temperature increase profile 
of the transducer may be computed when the total losses and overall heat transfer 
coefficient is known. 

2.2 Dynamics of Transducer Structure (Linear Solution) 

Piezoelectric stack data: 

V = 1 0 * 1 0 * 3 * l e - 9 ; A r e a = 3 2 0 e - 6 ; d e n = 8 0 0 0 ; c = 4 2 0 ; % { P o w e r s 0 0 ) 

v e = 8 * 8 * 2 . 8 6 - 9 / % v e : e f f e c t i v e ( p i e z o ) v o l u m e 

A = 8 * 8 e - 6 ; % c r o s s A r e a 

L = 1 . 4 e - 3 ; % s t a c k l e n g t h 

k = 1 5 0 ; % H e a t t r a n s f e r c o e f f i c i e n t , o v e r a l l 

M = 0 . 1 ; % t a i l m a s s 

Piezoelectric coefficients: 

d d l : = 2 0 0 0 e - 1 2 : s s l : = 6 0 e - 1 2 ; e e l : = 5 0 0 0 * e 0 ; # P M N - P T 

Loss tangents: 

a d = 0 . 1 : a s = 0 . 1 : a e = 0 . 1 : 

Field variable: 
E - electric field (bias Eo, amplitude E a ) 
Dele - electric displacement 
S - strain 
T - stress, (bias/preload To, amplitude T a ) 
w/co - angular frequency 
f - frequency 
t - time Driving electric field: 

Governing equations: 

E:=t—> E0 + Ea s'm(w r) 

pde := den 
f a 2 ^ 

u(x, t) 

V d f 2 J 

_ S - ddl E 

S := —— u(x, t) 
dx 

d 
7'(x, 0 

dx 

Boundary conditions: 
Left end: 



h(0, /) = 0 
Right end: 

72 := TO 

F2 = M 

( a2 

E2 

u{L, t) 

Solution 
Displacement: 

u := (x, /) —> (ssJ TO + ddl EG) x + ua s'm(wv x) sin(w t) 

ddl A Ea ua := 

cos(vvv L) wv A - ssl M w" sin(wv L) 

Resonant frequency: 

wl :={), 

wv := w vs vs := Vden ssJ 

RootOf (-_ Z M tan(_Z) + LA den) 
V den ssl L 

Ea :-

0.33 

0.2 

0.1 

0 
-0.1 

-0.23 

-0.3 

(transcendental frequency equations) 
2 

ua (-cos(w'v L) wv A + ssl M w sin(wv L)) 
ddl A 

Ea(MV/m)-f for u=1 urn atx=L 

\ 
5000 10000 \ 15000 20000 V 

Strain: 

Stress: 

Figure 3. Ea (f) to achieve u = 1 urn at x = L. resonant frequency (ty = 14 kHz 
S := (x, t) —> ssl TO + ddJ E0 + ua cos(wv x) wv sin(w t) 

ssl TO + ua cos(wv x) wv sin(w' /) - ddl Ea sin(u' if) 
T := {x, t) -> 

ssl 

Electric displacement: 

r^ , ddl (ssl TO + ua cos(wv x) wv sin(w t) - ddl Ea sin(w t)) ,,r^ r- • , NN 
Dele := — —- + eel (E0 + Ea sm(w /)) 

ssl 



2.3 Computation of Work and Loss 

Experiments on relaxor single crystals were performed in which the strain and electric 
displacement were varied. This experimental data can be integrated along the loading 
path to obtain the sum of the change of internal energy and the heat removed. 

The energy balance of a unit volume can be expressed in an incremental form as 

dE - Cjfde.^ + EjdDj + dq 

where the last term on the RHS is the thermal energy added per unit volume by heat flux. 
(Note the sign change since heat flux is outward positive. Also note that dq is an 
increment of heat added, not flux.) 

The mechanical work along a loading path is given by 
B 

A V T = \oi}dei} 

A 

And the electrical work is 
B 

AWe = \EjdDj 

A 

The energy equation becomes 

AE = AWm + AWe +Aq 

In integrating a closed cycle under isothermal condition, the final state is the same as the 

initial state, i.e. <^dE = 0 . Since the integration is performed about a closed cycle, any 

offset at the end of the cycle is given by 

jdWm+jdWe =-Aq 

The mechanical and electrical work may be partitioned into a reversible part and an 
irreversible part. The reversible work for a closed cycle is zero, therefore the integrations 
gives the irreversible work (loss) in a cycle. They equal to the areas of the D-E loop and 
the T-S loop. The loss is converted into heat, which leads to temperature increase of the 
single crystal. Details on the thermodynamics of electromechanical coupled materials are 
given in Appendix A in the end of this report. 

3 Complex Coefficient Model 



3.1 Complex Constants 

The ferroelectric constitutive relations can be expressed as: 

£ - £r = SL<7., + d .E 
i] ij ijkl Id nij n 

D m - D r

m =d,,ak[ +k°En 

m m mki Kl mn n 

The remnant strain and remnant electric displacement represent the nonlinearity and the 
irreversibility. The coefficients should also be field dependent. When the hysteresis is 
small, the relations can be expressed in complex form: 

£ =S*a +d* E* 
ij 'JKI kl nij n 

D* = d ' a +K*E* 
m m k ! kl m n n 

In which complex dielectric, elastic and piezoelectric constants are used. 

Consider a steady electric field at frequency f = co/27r: 

E = E aCos(cot) 

It can be expressed in complex form as 

E* = E a e I c o t (E = Re (E*) ) 

When the hysteresis is relatively small, the induced electric displacement can be 
expressed as 

D = D aCos(cot- 5) 

or in complex form 

D* = D a e I ( c o t " 8 ) (D = Re(D*) ) 

Where 5 is the phase delay. 

At zero stress state, the relation between D* and E* can be expressed as 

D * = e * E * 

Where £* is the complex dielectric constant 

£* = £ ' - ! e" = Da/Ea e"15 = Da/Ea (cos5 - I sin5) 

where 



s' is the real part of the dielectric constant; e" is the imaginary part of the permittivity, 
which is related to the rate at which energy is absorbed by the medium (converted into 
thermal energy, etc). 

The loss tangent is the ratio of the imaginary permittivity to the real permittivity of a 
material. 

tan 8 = e 7 e' 

The complex elastic constant is analogous to the complex dielectric constant: 

s * = s' - Is" 

where 
s' is the real part, s" is the imaginary part (loss modulus), / = - 1 . They are related to the 
mechanical phase angle. Consider the stress-strain relation with phase angle 8m: 

Stress T* = T a e I c o t 

Strain S* = S a e I ( a 3 t - S m ) 

The dynamic elastic constant is 

s * = S * / T * = S a / X a e - i 8 m = S a / T a ( c o g 6 m _ j s i n 6 m ) = s , + i S 2 = S l ( i + i t anS m ) 

tanS m = S2 /S1 . s i = s (static constant) when t an8 m < 0.2. 

FIGURE 4. COMPLEX VARIABLES AND PHASE ANGLE. 

Similarly the complex piezoelectric constant is 

d* = d ' - I d " 

The coefficients are actually field dependent. They can be expressed as polynomials of 
applied stress and electric field amplitude. 



3.2 Losses in Ferroelectrics 

In ferroelectric materials there are dielectric loss and mechanical loss when electric field 
and stress are present. Under loadings (in complex form) 

tat cE:=Eae{lwt) 

E* = E a e I ( 0 t , or 

w , „ , S T , cl := l a e c 

T* = T a e I ( ( 0 t + 5 T ) , or (with a phase difference 5 T to E) 

The induced complex strain and complex electric displacement are: 

cS := (si -1 s2) lae e v + (dl -1 d2) Eae 

n> r a i TOT (I w t) ( / aT) . . . ( / vr / ) cD := (dl -1 c!2) la c e +(el-le2)Eat 

In the above equations ( j7 - / s i ) is the complex elastic constant, ( e l - I e2) is the 
complex dielectric constant, and {dl - I dl) is the complex piezoelectric constant. 

Assuming constant coefficients, Integration following Section 2.3 gives the electrical loss 
energy in a cycle: 

7 

Ee := Ea ~ e2 n - Ta sin(aT) Ea dl j i + Ta cos(aT) Ea d2 k 

This is the area of the D-E loop. 

The mechanical loss energy in a cycle is 
LOT := 1 cos(a7*)2 Ta 2 si + 1 si.n(a7')2 Ta 2 si + Ta 2 s2 n - I Ta 2 si + Ta sin(aT) Ea dl n 

2 2 2 

+ Ta cos(a7~) Ea d2 n 

This is the area of the T-S loop. 

Total loss in a cycle: 
Ijoss \- I QO&(aT)2 Ta 2 si + I sin(a7")2 7a 2 si + Ta2 s2 n - - Ta2 si +2 Ta cos(aD Ea d2 n + Ea2 e2 tc 

2 2 2 

Figure 5 plots the total loss as a function of Sr. The loss is maximum when T and E are in 
phase and minimum when T and E are with phase angle n. Phase angles must be 
regulated so that the total loss > 0. 



F i g u r e 5. L o s s as a f u n c t i o n o f &V 

When 6V = 0: 
Mechanical work (loss) in a cycle (including coupling terms): 

2 

Lm := Ta s2 JR. + Ta Ea d2 jc 

Dielectric work (loss) in a cycle (including coupling terms): 
2 

Le : = 7 a Ea d2 n + ta e2 tc 

Total work (loss) in a cycle: 
Loss : - 7 f l „v2 tc + 2 7 a /i"a c/2 tc + Eci" e2 tc 

3.3 Determination of Loss Tangents 

According to the equations shown in last section, the losses in a cycle are functions of 
loss modulus as well as stress and electric field. 

From experimental data, the losses can be obtained by computing the areas of the T-S 
loop and/or the D-E loop. When a Rayleigh relationship can be used to describe the T-S 
curve and/or the D-E curve, it can be used for the computation of the losses (Damjanovic, 
1997). The effective loss modulus and loss tangents can then be computed from the 
losses. 

There are different arguments regarding the relations of tan Se, tan Sm and tan 8p. It's 
more reliable to measure these values directly. The elastic loss modulus s" can be 
measured under mechanical loading under constant electric field (E a = 0), 

s" = ^ \ , tan 5 m = s"/s' 

The dielectric loss modulus 8 " can be measured under electrical loading under constant 
stress (T a = 0), 

L » ... . 



The piezoelectric loss modulus d" can be measured under combined stress and electrical 
loading (for simplicity of expression, consider the case the stress and electric field are in 
phase, 5 t = 0), 

Loss-7is"T2 -7T£"E2 

, tan 5 P = did 

2 ^ A 
Constant stress condition at high frequency is often not practical, therefore two tests of 
combined loadings with different stress and electric fields may be conducted, d" and e" 
are then obtained by solving two equations of d" and e". 

It can also be measured from the S-E curve (at constant stress) or the T-D curve (at 
constant electric field) (Eitel et al., 2006), 

A A 
d " = ^ 4 - , d " = ^ & 

The loss tangents are functions of field frequency. Therefore measurements of loss 
tangents at different frequencies (particularly working frequencies) are needed. It has 
been observed that the piezoelectric loss tangents in hard and soft PZT decrease linearly 
with the logarithm of the frequency (Damjanovic, 1994; Damjanovic et al., 1996). 
Assuming such a relation, loss tangent data at a number of frequencies will be sufficient. 

3.4 Simulation of the Dynamic Response 

Apply stress TO = -10 MPa, electric field E = E0 + Ea*sin(f*2*Pi*t), E0 = 0.5 MV/m. Ea 
is adjusted to achieve displacement u = 1 \im at x = L. 

All the field variables can be computed as functions of position (x) and time (t). Work 
rate done by the electric field and the stress are 

A T(x, t) dS(x, t) dx A E ( a \ t) dD(x, t) dx 
J0 

The sum of them is the total work rate. Time integral of the work rate gives the work (and 
the loss). 

int(EdD,V)(w) int(TdS,V)(w) 

F i g u r e 6. E l e c t r i c a l a n d m e c h a n i c a l w o r k r a t e 

In the following the results at three frequencies are compared: 



1) At low frequency, f = 1.4 KHz, Ea = 0.35 MV/m 
The induced stress is small. Loss in a cycle Lossl = 0.16e-3 J 

2) closer to resonance, f = 10 KHz, Ea = 0.17 MV/m 
Large induced stress. Loss in a cycle Lossl = 0.22e-3 J 

3) Above resonance, f = 15 KHz, Ea = 0.06 MV/m 
Large induced stress plus tensile stress. Loss in a cycle Lossl = 0.24e-3 J 

WO*-LOSS(J) 
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Figure 7. Left: u(L,t) and T(0,t); Right: work (and loss) as a function of time. 

Loss tangents are functions of field (E, T, Temperature) and frequency. For illustration, 
here loss tangents are set to ad = 0.1, as = 0.1, ae = 0.1. Figure 8 and Figure 9 show the 
different D-E and S-E curves for frequency below resonance and above resonance. 



T-D atx=0 

FIGURE 9 . AT F = 1 5 K H Z , U, S , T , D AND E ARE ANTI-PHASE 

For the current transducer dimension and with the assumption of constant complex 
coefficients, the stress along the actuator is quite uniform. In such case, the strain/stress 
and electric displacement may be averaged as functions of time (t) only. 
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F i g u r e 1 0 . f = 1 0 k H z , u a n d T a l o n g t h e p i e z o e l e c t r i c e l e m e n t w h e n u ( L ) = ± 1 u.m. 

3.5 Simulation with Simulink 

The process may be simulated with Simulink. The current code simulates a lumped 
system (the distributed mass of the piezoelectric element is neglected). Parameters of the 
transducer, piezoelectric material coefficients and loss tangents are put in, and an electric 
field and stress preload are applied. Induced stress is connected as a feedback to satisfy 
the dynamic equation. Field variables, work done by the electric field and stress are 
computed and plotted as functions of time. The net work done in a cycle is the loss. 

Gains 



FIGURE 1 1 . SIMULINK DIAGRAM AND OUTPUT. 

4 Constitutive Modeling of Ferroelectric Material Loss 

Instead of using complex coefficients, the hysteresis may be modeled by considering the 
changes of remnant electric displacement and remnant strain under electric field and 
stress. Change of the remnant electric displacement reflects domain reorientations and 
domain wall movements. Therefore it is directly connected to losses. In the following we 
will find the expression for the remnant electric displacement as a function of applied 
electric field and stress. We will start with the constitutive formulation of ferroelectrics. 

4.1 Constitutive Formulation 

More details of the constitutive behavior of ceramic ferroelectric materials are needed to 
take the next step in formulating constitutive laws. We desire phenomenological 
constitutive laws within a thermodynamics framework. For a linear reversible 
piezoelectric material one fixes the remanent terms and performs a Taylor series 
expansion to obtain constitutive laws. This gives the constants for mechanical and 
electrical compliance as well as the electro-mechanical coupling. In the case of the 
material that undergoes ferroelectric reorientation, several things happen. The single 
domain single crystal regions are linear piezoelectric within a certain range of loading. In 
this region the material is anisotropic in its elastic, piezoelectric, and dielectric properties. 
Outside of that range there can be field induced phase transformations. 

Within a single crystal the boundaries between regions of like polarization (domain walls) 
find compatible orientations. This satisfies boundary conditions of strain and electric 
displacement compatibility and minimizes inter-domain stress and electric fields. At the 
grain scale, however, strain incompatibilities are reduced through non 180° domain walls 
within the grain. Similar statement for polarization incompatibilities. 



The stress and electric field are related to the elastic terms. The linear piezoelectric 
constitutive behavior with fixed remanent strain and fixed remanent polarization is given 
by 

a = c£e -hDe 

E = - h e e +j3De 

If the remanent terms change in response to applied loads, what are the constitutive laws 
that govern small changes of stress and electric field in response to changes of the 
governing variables? These can be obtained by expressing the stress and electric field in 
terms of the independent variables and taking partial derivatives. 

G = o{£\D\£\Drj) 

E = E{£e,D\£r,Dr,T) 

. d<J . e 3cT 3<7 r 3CT \ j-\r 1 
A c t = A£ + AD + A£ + AD + -

d£e dDe d£r dDr 2 

3 a A £ e A £ e + 2 ^ G A£eADe + 
d£e2 

2 * ° 

2-

d£ed£r 

3 2 CT 

dDed£r 

A£eA£r +2 

d£edDe 

d2a 

ADeA£r +2 

d£edDr 

dDedDr 

A£eADr + 

ADeADr 

- \ 2 ~\ 2 
2 A£rADr +-—^rADeADe + 

d£rdDr 

d2a 

d£rd£r 
A£rA£r +• 

dDe2 

d2a 

dDrdDr 
ADrADr 

where the first order terms give 
da 

= c, 
d£e 

da 3c 
d£r d£r 

dDe 

da dc 

dh 

d£r 
D' 

dh 
D' 

dDr dDr dDr 

Combining the first four terms of the series expansion gives 

Aa = c A e * 4 ~ £ e - — D< 
\,d£r d£r 

A£r - hADe + e f dc . dh 
[dDr £ - dD' 

Dl AD' 



If we define out reference state such that the stress and electric field go to zero when the 
elastic components go to zero we can get rid of some of the deltas to arrive at 

(7 = C£ + 
dc 

£ -
dh 

D' 
d£r d£r 

which can be factored into 

A£r -hDe + 
dc 

dDr £ -
dh 

De \ADr 

a = \c + 
dc 

d£r 
A£r + 

dc_ 
dDr 

ADr £e - h + 
dh 

d£r 

A£r + 
dh 

drr 
ADr Dl 

If we back track to the origination of the coupled constitutive law, it was obtained from a 
series expansion in which all of the terms were increments. Putting our result in that 
form gives 

o - c + 
dc . r dc 

d£r 

and similarly 

£ + dD' 
Dr £ - h + dh . r , dh • r V 

d£r £ + 
dDr 

Dr \D 

E = - h + 
,r , dh ^ r 

d£r 
£ + dDr 

D1 £ + 
d£r £ + dDr 

Dr D 

These incremental laws govern the constitutive behavior and have the Maxwell symmetry. 

We now need to develop the functions c(£r), h{pr), fc(Dr) as well as the equations 
governing the evolution of the remnant terms. 

This can be done most readily using micromechanics and volume averaging. 
Micromechanical models in which the volume fraction of each variant evolves at a rate 
proportional to the driving force for that evolution will give rise to the functions we are 
seeking that govern minor hysteresis loops. We can also add in driving forces for phase 
transformations. 

The second law states that the dissipation rate will be non-negative: 

4.2 Domain Engineering and Phase Transitions 

The rhombohedral (R) phase has a spontaneous polarization in the <111> direction and 
the orthorhombic (O) phase has a spontaneous polarization in <110> direction. Crystal 



variants present in a <110> poled single crystal and the rhombohedral-orthorhombic (R-
O) phase transition under electric field E3 and stress cr 2 2 are illustrated in Figure 12. 
Electric field induced rhombohedral to orthorhombic phase change has been observed in 
<110> oriented PMN-30%PT (Viehlandet al., 2002; Feng et al. 2003) and PZN-
4.5%PT(Liu and Lynch, 2003). 

Figure 13 is a schematic of a crystal variant representation of the average domain 
structure and possible phase transitions driven by electric field and stress loading in the 
<001> direction. An electric field induced phase transition between the rhombohedral and 
tetragonal (R-T) phases has been observed (Liu et al., 1999; Ren, Liu and Mukherjee, 
2002; Noheda et al., 2001; Viehland, 2000; Park and Hackenberger, 2002; Chen, Zhang 
and Luo, 2002). 

The phase stability of the relaxor single crystals depends on the electrical, mechanical 
and thermal conditions. Changes of temperature, electric field and stress lead to 
polarization switching and phase transitions in these crystals and hence dramatically alter 
their electromechanical properties. 

MHO) £3Qio) 

Figure 12. Crystal variants in <110> poled (32-mode) single crystals 

Figure 13. Crystal variants in <001> poled (33-mode) single crystals 



4.3 Polarization Switching Model 

When an opposite electric field reach certain level (the coercive field Ec), polarization 
switching (effectively 180°) occurs. When a compressive stress in the poling direction 
reached certain level (the coercive stress Tc), depolarization (effectively 90° switching) 
occurs. Combination of the electric field and the stress determines the poling (switching) 
or depoling process. 
For the 33-mode, a compressive stress in the poling direction acts against an electric field 
in the poling direction, while it works together with an opposite electric field during the 
depoling stage. When E/Ec > T/Tc, we consider this as a polarization switching 
(effectively 180°) process. The normalized driving force for poling is expressed as: 

E T 
ET = — - _ 

Ec Tc 

When E/Ec < T/Tc, we consider this as a depolarization (effectively 90° switching) 
process. The normalized driving force for depoling is expressed as: 

Ec Tc 

The switching/depoling criterion is ET >= 1. Hyperbolic tangent functions are used to 
simulate the poling and depoling process. Below shows the simulated D r -E curves at To = 
0, Tc, 2Tc. At zero stress, no depolarization occurs therefore a smooth curve is obtained. 
When there is a compressive stress applied, there is a depoling stage before the reverse 
polarization. A better function for the depolarization process is needed to model a smooth 
depoling-repoling process and the minor depolarization during electric field unloading. 
Rate dependence may be included by introducing phase angles into the model. The phase 
angles may be field and temperature dependent. 

Dr-E Dr-E Dr-E 

T 0 = 0, T 0 = Tc, T 0 = 2Tc 

FIGURE 1 4 . DR-E CURVES AT DIFFERENT STRESS PRELOADS 

4.4 Depolarization Model 

Here remnant electric displacement as a function of stress and electric field is modeled. 
The effect of stress (preload, TO) may be modeled by the following function: 
For 33-mode (depoling): 



Drl = DrO -

f ( TO - Tc^ 
T V . 

DrO t a n h 
( TO - Tc^ 

T V . 
+ t a n h ( l ) 

V I 1 0 J 
I + t a n h ( l ) 

For 32-mode (polarization strengthening): 

Drl = DrO + (1 - DrO) t a n h 

(DrO~0) 

( T0\ 

KTCJ (DrO~l) 

The effect of electric field (polarization strengthening) is modeled with: 
f E^ 

Dr = DrI + (1 - Drl) tanW 
Ec 

Change of D r during the electric field cycling is then: 

8 D r = (l -Drl){ t a n h 

( D r l ~ l ) 

( E0+ Ea^ 
- t a n h 

( E 

Ec 
\ J 

- t a n h 
Ec 

J J 

Remnant electric displacement versus electric field at different stress preloads and change 
of remnant electric displacement versus electric field amplitude (zero bias) at different 
stress preloads are plotted as follows. The opposite effects of the stress in the two modes 
are apparent. 
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These functions for depolarization may be adapted into the switching model. 

To introduce the hysteresis, we need to set up a relation between loss and ADr. We may 
assume the dielectric loss tangent to be proportional to ADr. 

Note that the previous models do not capture phase transitions that may occur in both 33-
mode and 32-mode rhombohedral single crystals. 

4.5 Model for Switching and Phase Transformations 
A model is constructed to capture both polarization switching and phase transformation. 
The remnant electric displacement D r is expressed as a function of electric field and stress: 

E2 (Dr2 - Dri) 

Dr := DO + (OrI - DO) T A N H 

k El 

~Ec~ 

+ T A N H 

( kph ( | E2\ - Eel) > ^ 

Ec 

2 ( \E2\ + 1 1 0 " 2 0 ) 

There are three terms in this function. The first term DO is a function of stress T as well 
as electric field bias E0 and amplitude Ea: 

( kDO E0\ 
DO := Dri T A N H 

Ea 
DrT 

( . J 0 . 5 Tc\ 
1 - T A N H 

TO 
DrT := 1 

T A N H 
taoT(T0-Tc)\ 

Tc 
Umh(taoT) 

+ T A N H (tao T) 

Tc is the coercive stress and kDO and taoT are two parameters. DrT is plotted as follows. 
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FIGURE 1 6 . DEPOLAIZATION UNDER STRESS 

The second term of Dr represents the polarization switching process. In this term El is 
the electric field with a delay of aD: 

El := EG + Ea SIN(2 tc w t - aD) 

k is a parameter 

ARCTANN Ec 

Ic := V D } 1 J aD := 1 . 0 0 1 ARCSINF — 
Easia(aD) { E a 

The third term of Dr represents the phase transformation process. In this term E2 is the 
electric field with a delay of aD2: 

E2 : = EO + Ea SIN(2 nwt- aD2) 

Ec2 is the electric field level at which the phase transition occurs. 

Ec2 := 1 .4 + 
TO Ec 

Tc 

kph is a parameter. 

The Dr-E curve under unipolar electric field cycling is shown below. At zero stress 
preload, the curve has two hysteresis loops and two flat regions. The hysteresis at low 
electric field is due to depoling. This is more severe as the stress preload increases. 
Above certain electric field level, the polarization of the <001> rhombohedral phase 
single crystal is stabilized (the first flat region). As the electric field further increases, a 
rhombohedral to monoclinic phase transformation is induced, resulting in the second 
hysteresis loop. After the phase transformation, the crystal is again stabilized in the 
monoclinic phase. The stress preload leads to higher phase transition field level. 
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Figure 17. Depolarization and phase change under unipolar electric field with stress preload (a) T{) = 
0, (b) Tc, (c) 2Tc. 

This model is able to simulate the polarization switching process as well. Shown below 
are the simulations or D r -E and S r-E curves under bipolar electric field cycling at stress 
preload T 0 = 0, Tc, 2Tc. Here the remnant strain is computed from the remnant electric 
displacement through electrostrictive relations. It is shown that the major hysteresis loop 
due to polarization switching and the minor hysteresis loops due to phase transition are 
predicted with a smooth function. The stress preload leads to depolarization and change 
of the D r -E and S r-E curves. The coercive field and remnant electric displacement as 
parameters are put in the model. Further development is needed to capture the stress 
cycling behavior. 
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FIGURE 1 8 . SIMULATIONS OF D R - E AND S R - E CURVES 

With the D r and S r data, the losses in a cycle can be computed by integration. Effective 
loss modulus and loss tangents can also be computed from the losses. 
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5 Temperature Increase due to Heat Generation 

Assume the irreversible work (electrical loss and mechanical loss) are all converted into 
heat. The temperature increase of the transducer can then be computed: 

AT = ^ - (Pritchard 2004) 
kA 

Here e is the total loss in an electric field cycle (J /mm 3 /cycle) , / is the field frequency, ve 

is the effective volume of the piezoelectric element, k is the overall heat transfer 
coefficient and A the surface area of the transducer. 

Based on the depolarization model, temperature profile of a 33-mode actuator under 
different electric field biases, amplitudes, frequencies and different stress preloads are 
simulated and plotted in the following. At low frequency, induced stress is small 
therefore heat generation is mainly due to dielectric loss. Note that the simulations here 
do not mean to be accurate. The actual loss at different loading conditions and the heat 
transfer coefficient will be needed in order to predict the temperature increase. 
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(c) With different electric field amplitudes (d) At different electric field biases 

FIGURE 1 9 . TEMPERATURE PROFILE OF THE ACTUATOR UNDER DIFFERENT ELECTRIC FIELD BIASES, AMPLITUDES, 

FREQUENCIES AND DIFFERENT STRESS PRELOADS. 

Figure 20 plots the field amplitude to achieve u=l(j.m displacement and the corresponding 
temperature increase. When the electric field frequency approaches the resonant 
frequency, the required electric field amplitude is reduced, at the same time large stress is 
induced associated with large mechanical loss. 
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6 Summary 

The losses and heat generation of a transducer has been modeled. There are two levels in 
the modeling efforts: transducer system level and material level. Applied electric field 
and bias, stress preload, frequency and dynamic response of the transducer has been 
considered. 

At the transducer system level, the dynamics of a transducer structure was analyzed. The 
linear vibration problem was first solved and the electric field E induced displacement u 
and stress as functions of frequency were obtained. Loss tangents were then used to 
compute dielectric and mechanical loss. Losses in a field cycle were compute by path 
integration. The temperature increase profile of the transducer was computed with input 
of total losses and overall heat transfer coefficient. 

At the material level, loss mechanism and hysteretic material models were investigated. 
For complex electromechanical loadings, the complex coefficients are not sufficient to 
capture the complex polarization switching and phase transition features of ferroelectric 
single crystals. The dielectric and mechanical losses can be computed as the irreversible 
work done by the electric field and stress. Constitutive models were developed to predict 



the evolution of remnant electric displacement and remnant strain as functions of electric 
field, Stress, frequency and temperature. 

The response of a transducer will depend on the nonlinear and hysteretic behavior of the 
piezoelectric material. Additional efforts are needed to finish the remnant electric 
displacement based hysteresis model for combined electromechanical loadings. 
Experimental data and the model will then be implemented for the dynamics system of 
transducers. Developed computer codes will be further debugged and packed with proper 
user interface and documentation. 

A P P E N D I X 

A . T H E R M O D Y N A M I C S OF E L E C T R O M E C H A N I C A L C O U P L I N G M A T E R I A L S 

W O R K A N D E N E R G Y 

Mechanical work rate: The mechanical work rate is given by the integration of tractions 
over displacements 

Electrical work rate: The electrical work rate is given by 

The rate of change of kinetic energy of the body is given by 

The rate of change of internal energy is given by 

and the rate heat is being added to the body is given by 

where r is the rate at which heat is generated within the volume from an external source 
such as microwaves (to be distinguished from heat generated by a dissipative process 



driven by a mechanical or electrical source; it is very important to recognize that r does 
not include heat generated through dissipative processes such as stress driven domain 
wall motion), and q{ are components of the outward heat flux vector and thus the minus 
sign to obtain the inward heat flux. Note the dot over the Q, r, and q indicates that these 
are rates. This dot is usually omitted in the literature. 

Equation of Energy Balance 
The expression for energy balance is 

Wm+We + Q = K + E 

where each of the terms on the LHS represent work done on the body and of heat added 
to the body, i.e. a sum of all energy transferred to the body; and the terms on the RHS 
represent where this energy went. 

Combining these expressions gives 

+ ^(pcodS + JVdV - Jg.̂ dS = — J -pV jV jdV +— ^pedV 
a r a r r ar dt r 2 dt r 

The surface integrals on the LHS can be written as volume integrals 

^a^n^dV - ^(pDjnjdV + frdV - ^q^dS = — ^-pv^^V +— \pedV 
ar a r r ar dt r 2 dt r 

which becomes 

j(cr,k,.) . d V - \($D.) . d V + \rdV - \qhJdV = j - j i p u . u . d V +1 \pedV 

Mechanical equilibrium is expressed as 

and quasi-static charge equilibrium is expressed by 

The integrals thus become 
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r r r r 

and 

- \(</Dj)jdv =- jfy,z>. + ̂ >,>v = \{EJDJ -</>pv)dV 

r r r 

For a homogeneous medium the kinetic energy term becomes 

— \—puudV = \piiudV 
d t \ T 1 1 I 1 1 

Upon substitution one obtains 

\{[pU, - f. )ut + a..*.. )dV + \{EjD. - #pv)dV + jrdV - \qudV = \pu}u .dV + j - \pedV 
r r r r r ^ r 

which can be rearranged to give the general equation of energy balance 

/(-//",• + V^iM + \(EA -<t>pMv + \rdV - \qjjdV = \pedV 
r r r r r 

In the absence of body forces and motion of body charges we obtain 

JV,.,̂  )dV + \{EJDJ )dV + J(r - q j t J )dV = \pedV 

Note that the motion of body charges is a source of dissipation and will contribute to 
minor hysteresis loops. This is an electrical conductivity term that will be neglected 
relative to effects of domain wall motion. 

The volume may now be shrunk to a point to obtain a local expression for the rate of 
change of internal energy. 

pe = a J i £ i J + E J b J + r - q J J 

This expression is valid even if the strain and electric displacement increments contain 
irreversible (dissipative) terms. 

S E C O N D L A W OF T H E R M O D Y N A M I C S 

At this point, temperature and entropy are introduces as work conjugate variables. 
Thermodynamic processes progress such that the dissipation is always positive or zero. 
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This means that the increase of thermal energy of the body is always greater than the heat 
added. 

TS>Q 

where 

S = \psdV 
r 

thus 

TS = jpTsdV> \{r-qiti)dV 
r r 

or locally, 

pTs>{i--qii) 

I r r e v e r s i b l e S t r a i n a n d E l e c t r i c D i s p l a c e m e n t C o m p o n e n t s 

To address irreversible strain and irreversible electric displacement the material structure 
must be considered. To do this, a volume is considered that is sufficiently small that the 
average stress, strain, electric displacement, and electric field can be considered uniform; 
yet it must be sufficiently large that details of the microstructure can be replaced with 
volume average behavior. This raises the issue of energy stored at the micro-structural 
length scale associated with incompatible strain and electric displacement components. 
The incompatibilities become compatible through reversible deformation accompanied 
by local stress and local electric field. The result is that energy can be stored in the 
microstructure. The macroscopic observable variables are the total strain, the elastic 
strain, the remnant strain, the total electric displacement, the reversible electric 
displacement, the remnant electric displacement, and the temperature. The micro-
structurally stored energy gives rise to phenomena such as logarithmic aging of the 
piezoelectric coefficients, relaxation of the remnant strain with time, etc. 

At this point the concept of internal variables is introduced. The directly measurable 
variables are the total strain, the total electric displacement, the tractions applied to the 
surface, and the charges on the surface. One can also measure the electric potential and 
the temperature. The independent variables associated with external work done on the 
body are the strain and electric displacement. If the body is electro-mechanically loaded 
from zero and subsequently unloaded to zero, the macroscopic reversible strain and 
reversible polarization are zero. Permanent changes in strain and polarization are 
observed. These are the remnant strain and remnant polarization. 

The macroscopic strain rate and electric displacement rate are partitioned into reversible 
and irreversible components. These are expressed as 
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D, = D° + D; 

In addition, there is reversible strain and polarization at the micro-structural level that 
give rise to local stress and local electric field. Although the volume averages of these 
local fields are zero, the stored energy associated with these quantities is non-zero. These 
must be included in the expression for the energy. 

The partitioned strain and electric displacement can be substituted into the expression for 
internal energy to obtain 

M I C R O - S T R U C T U R A L F I E L D S 

This is a local expression in which local fields are to be considered. If the volume 
element considered is large enough that there has been some homogenization of the local 
fields, a term must be included to account for the electrical and mechanical energy stored 
in the local fields for which the volume average terms (stress, strain, electric field, 
electric displacement) are zero. This will be brought in through the concept of the 
microstructural stress, micro structural strain, microstrutural electric field, and 
microstructural electric displacement. The energy expression then becomes 

The microstrutural terms are related through a constitutive law and have magnitudes such 
that they give the correct contribution to the internal energy. The microstructural stress 
and electric fields contribute to the driving forces for domain wall motion (evolution of 
the remanent strain and remanent polarization). This accounts for the driving force for 
creep and aging behavior. An example of where these microstructural terms arise is 
intergranular stress associated with poling a ferroelectric ceramic. Each grain can only be 
poled in certain crystallographic directions. It elongates in the polar direction and 
contracts in a plane perpendicular to the polar direction. The grains are bound together at 
their boundaries. Due to their different spatial orientations they are constrained at their 
boundaries. A hypothetical fully poled ceramic (sufficient large field to give single 
domain grains) would thus have a large elastic stress within each grain. Some grains 
would be in tension and some in compression, depending on their orientation. The 
volume average stress would be zero, but the strain energy associated with the 
microstructural stress would not be zero. This microstructural stress would drive the 
nucleation and motion of domain walls such that the domains would reduce the 
microstructural energy. The application of an external field can thus move domain walls 
in one direction and on removal of the field the intergranular stress can move them back. 
The dissipation associated with this process gives rise to minor hysteresis loops. The 
same arguments apply to local electric energy. If there are space charges within a crystal, 

pe = <J..£e +EDe +<J..£r. + E Dr + ap£p + EPDM + r-q. 
r JI tj J i Jt i] J i <J <J i t "j, 



domain structures will form that minimize the energy of the structure. This will give rise 
to domain walls that satisfy the electrical term D. . - pv. The domain walls will thus be 

compatible with the local charge distribution. If the applied stress or electric field forces 
domain wall motion away from the charge, a local field will be generated that attracts the 
domain wall back to the charge. If the charge can diffuse in the structure, it will follow 
the domain wall motion if the domain wall moves slowly enough. 

Dissipation 
The remanent strain and remanent electric displacement increments are dissipative. The 
dissipation is associated with domain wall motion and may include effects associated 
with diffusion of charge as domain walls move away from local charges. The heat added 
plus the dissipation shows up in the thermal term. 

pe = + Erf + G»E> + E?b» + pTs 

where 

p T ^ G ^ + E ^ + r - q ^ 

This suggests partitioning the entropy into that portion generated by internal dissipative 
processes, and changes in entropy associated with heat added from the surroundings, 
leading to 

pT(sy^)=Gji^+EjD;+r-qjJ 

where 

pTs'=ojie'ij + E1b< 

and 

pTsq =r-qjj 

There is also an entropy term associated with reversible constitutive behavior that is 
important in the. field coupled material. This term is associated with thermal expansion, 
pyroelectricity, and heat capacity. 

This expression makes the direct connection between the dissipative increments of the 
strain and electric displacement and the generation of thermal energy. The second law 
states that these dissipative increments are always positive or zero (no negative 
dissipation) and that the result of dissipation is always an increase of thermal energy. 

B. Complex Dielectric Cons tan t and Dielectric Loss 



Consider electric field 
E = E aCos(cot) 

And the induced electric displacement 
D = D aCos(cot-5) 

The work done by the electric field is 

dw e = EdD = E aCos(cot) d(D aCos(cot- 5 ) ) = -coEaDaCos(cot) Sin(cot- 5)dt 

Dielectric loss energy during an electric field cycle per unit volume of the dielectrics 
be computed by integration: 

L, = JEdD = £ E(dDldt)dt = 7cE aD aSin8 = 7te"Ea

2 = Tte'Ea

2 tan5 

Another expression: 

Electric field E = -{E * +£*): 
2 

Electric displacement 

dwP = EdD: 

£-:=ifi,t«('°')

 + e ( J - , ) ) 

2 

Dele := - Da (e + e ) 

9 
m I . „ , (/(to/ -5)) (-/(tor-8)) c/D := - 7 Z)a to (e - e ) 

9 

Jvv := i - / (e + e ) Da oo (e - e ) 

It can be simplified as 

- / Ea Da a) 4 
(ev 0 (id) 1 e + 

(15) 

(/6) e ( / 5 ) ( e ^ ' V 

or 



dw := - Ea Da to (sin(8) - sin(-8 + 2 co /)) 

Dielectric loss in a cycle Le = QEdD = I E{dDI dt)dt 

Ee : = £ a Da sin(8) 7t 

Introduce 8 * = s' - I 8 " : 

e l -/e2 = 
Da e 

Ea 

e l -/e2 = D a c o s ( S ) /Z)asin(8) 

e l sin(8) e l Ea 
el = —, Da = 

cos(8) cos(8) 

Le := Ea" e l tt tan(8) 
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