MINIMUM WEIGRT DESIGN OF STIFFENED CIRCULAR CYIINDRICAI SHEITS SUBJECT TO UNIFORM HYDROSTATIC PRESSURE

A THESIS
Presented to The Faculty of the Division of Graduate

Studies and Research

By

Mohan Aswani

In Partial Fulfillment
 of the Requirements for the Degree
 Doctor of Philosophy in the
 School of Engineering Science and Mechanics

```
Georgia Institute of Technology January, 1975
```


ACKNOWLEDGMENTS

I would like to express my sincere appreciation to Dr. G. J. Simitses for his suggestion of the topic and his direction and guidance throughout the preparation of this work. Sincere appreciation is also extended to Dr. C. V. Smith, Jr., and Dr. L. W. Rehfield for their advice and many hours of helpful discussions during this investigation. The helpful comments of Drs. G. M. Rentzepis, G. A. Wempner, S. Atluri and M. S. Bazaraa are gratefully acknowledged. My deep sense of gratitude goes to Dr. M. E. Raville, Director of the School of Engineering Science and Mechanics, for his understanding, encouragement and for the financial support during the course of the study. Thanks are also extended to Mrs. Jackie Van Hook for typing the final manuscript.

My deepest appreciation goes to my wife, Mohini, for her constant encouragement and devotion during the entire period of study. Completion of this work would have been impossible without her love, patience and steadfast support.

This work was partially supported by the Air Force Office of Scientific Research, Air Force Systems Conmand, USAF, under AFOSR Grant No. 74-2655. This support is gratefully appreciated.

TABLE OF CONIENTS

Page
ACKNOWLEDGMENTS $1 i$
LIST OF TABLES v
LIST OF IUIUSTRATIONS vii
NOTATIONS x
GLOSSARY OF ABBREVIATIONS xiii
SUMMARY xiv
Chapter
I. INTRODUCTION 1
Historical ReviewStatement of the Problem
II. MATHEMATICAL FORMULATJON OF THE PROBLEM 10
Formulation of the Objective FunctionObjective Function Based on Skin YieldingObjective Function Based on General Instability
III. METHOD OF SOLUTION 19
Phase I: Description of Mathematical Search Techniques Phase II: Procedure for Design
IV. NUMERICAL RESULIS AND DISCUSSION 35
V. CONCLUSIONS AND SUGGESTIONS 72
Conclusions
Suggestions
Appendices
A. ANALYSIS OF STIFFENED CIRCULAR CYLINDRICAL SHELLS 76
B. PROPERTIES OF DIFFERENT SHAPES OF STIFFENERS 102

TABLE OF CONTENTS (Continued)

Appendices Page
C. SAMPLE DESIGN TABLES AND DESIGN EXAMPLES 106
D. BUCKIING OF THIN CYLINDERS UNDER UNIFORM LATERAL IOADIVG 123
E. LISTING OF COMPUTER PROGRAMS 146
BIBLIOGRAPHY 187
VITA 191

LIST OF TABLES

Table Page1. Design Table. Sheli Stiffened with Interior RingStiffeners. Skin Yielding Formulation.Material of Construction - Conventional Steel37
2. Design Table. Shell Stiffened with Interior Ring-Stringer Stiffeners. Skin Yielding Formulation.Material of Construction - Conventional Steel39
3. Design Results. Shell Stiffened with InteriorStiffeners. Operating Depth $=1000$ feet,$\sigma_{y}=60,000 \mathrm{psi}$414. Design Table. Shell Stiffened with Interior RingStiffeners. Skin Yielding Formulation.Material of Construction - Conventional Steel45
5. Design Table. Shell Stiffened with Interior Ring-Stringer Stiffeners. Sxin Ylelding Formulation.Material of Construction - Conventional Steel47
6. Design Resuits. Shell Stiffened with InteriorStiffeners. Operating Depth $=3000$ feet,$\sigma_{\mathrm{y}}=60,000 \mathrm{psi}$49
7. Design Results. Shell Stiffened with InteriorStiffeners. Operating Depth $=3000 \mathrm{feet}$,$\sigma_{\mathrm{y}}=120,000 \mathrm{psi}$54
8. Design Results. Shell Stiffened with ExteriorStiffeners. General Instability Formulation.Operating Depth $=3000$ feet, $\sigma_{y}=120,000 \mathrm{psi}$58
9. Design Results. Influence of Varying L / R Ratio onMinimum Weight. Shell Stiffened with Interior TRStiffeners. General Instability Formulation.Operating Depth $=3000$ feet, $\sigma_{y}=120,000$ psi... .61
10. Design Results. Influence of Varying L/R Ratio on Minimum Weight. Shell Stiffened with Interior TR-RS. General Instability Formulation. Operating Depth $=$ 3000 feet, $\sigma_{y}=120,000$ psi64
11. Design Results for the Shell Subject to Combined Loed $(\bar{N}=.2 \mathrm{gR})$. Shell Stiffened with Interior TR-RS.

LIST OF TABLES (CONTINUED)

Table Page
General Instability Formulation 69
B1. Properties of Various Shapes of Stiffeners 105
Cl. Design Table. Interior RR-RS Stiffened Shell. General Instability Formulation. Material of Construction - High Strength Steel 108
C2. Design Table. Interior TR-RS Stiffened Shell. General Instability Formulation. Material of Construction - High Strength Steel 113
C3. Design Table. Interior T-Ring Stiffened Shell. General Instability Formulation. Material of Construction - High Strength Steel 121
D1. Comparison of Critical Pressures for Load Case I (Load Remaining Normal to the Deflected Surface) 134
D2. Comparison of Critical Pressures for Load Case II (Load Remaining Parallel to Original Direction) 134
D3. Comparison of Critical Pressures for Load Case III (Load Directed toward Original Center of Curvature). 139
D4. Comparison of Critical Pressures for Infinitely Long Cylinders 142

IIST OF ILINSTRATIONS

Figure Page
1.: Golden Section Search Technique 22
2. Design Chart for Internally TR-RS Stiffened Shell General Instability Formulation, High Strength Steel Operating Depth $=3000$ feet, $Z=1200$ 28
3. Design Chart for Internally Ring Stiffened Shell Skin Yielding Formulation, Conventional Steel Operating Depth $=1000$ feet 38
4. Determination of Optimum Skin Thickness. Internally IR Stiffened Shell, Operating Depth $=$ 1000 feet. Skin Yielding Formulation, Conventional Steel. 42
5. Determination of Optimum Skin Thickness. Internally
RR-RS Stiffened Shell, Operating Depth $=1000$ feet. General Instability Formulation, Conventional Steel 42
6. Determination of Optimum Skin Thickness. Internally TR-RS Stiffened Shell, Operating Depth = 1000 feet. General Instability Formulation; Conventional Steel 43
7. \because Determination of Optimum Ring Shape Parameter. Internally TR-RS Stiffened Shell, Operating Depth $=$ 1000 feet. General Instability Formulation, Conven- tional Steel 43
8. Design Chart for Internally Ring Stiffened Shell. Skin Yielding Formulation, Conventional Steel. Operating Depth $=3000$ feet 46
9. Determination of Optimum Ring Spacing. Internally TR Stiffened Shell, Operating Depth $=3000$ feet. Skin Yielding Formulation, Conventional Steel 50
10. Determination of Optimum Skin Thickness. Internally TR Stiffened Shell, Operating Depth $=3000$ feet. Skin Yielding Formulation. Conventional Steel 51
ll. Determination of Optimum Skin Thickness. Intermally RR-RS Stiffened She11, Operating Depth $=3000$ feet. General Instability Formulation, Conventional Steel 51

LIST OF ILIUSTRATIONS (Continued)

Figure
Page
12. Determination of Optimum Skin Thickness. Internally TR-RS Stiffened Shell, Operating Depth $=3000$ feet. General Instability Formulation, Conventional Steel. . . 5213. Determination of Optimum Ring Shape Parameter.Internally TR-RS Stiffened Shell. Operating Depth $=$3000 feet. General Instability Formulation,Conventional Steel52
14. Determination of Optimum Skin Thickness: Internally TR Stiffened Shell, Operating Depth $=3000$ feet. General Instability Formulation, High Strength Steel . . 55
15. Determination of Optimum Skin Thickness. Internally RR-RS Stlffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel 55
16. Determination of Optimum Skin Thickness. Internally TR-RS Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel 56
17. Determination of Optimum Ring Shape Parameter. Internally TR-RS Stiffened Shell, Operating Depth $=$ 3000 feet, General Instability Formulation, High Strength Steel 56
18. Determination of Optimum Skin Thickness. Externally TR-RS Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel 59
19. Determination of Optimum Skin Thickness. Internally TR Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel... 62
20. Determination of Optimum Skin Thickness. Internally TR Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel . . 62
21. Determination of Optimum Skin Thickness.Internally TR Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel 63
22. Determination of Optimum Skin Thickness Internally TR Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel 63

LIST OF ILIUSTRATIONS (Continued)

Figure Page
23. Determination of Optimum Skin Thickness. Internalily TR-RS Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel 65
24. Determination of Optimum Skin Thickness. Internaliy TR-RS Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel 65
25. Determination of Optimum Skin Thickness: Internally TR-RS Stiffened Shell, Operating Depth = 3000 feet, General Instability Formulation, High Strength Steel 66
26. Determination of Optimum Skin Thickness. Internally TR-RS Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel 66
27. Influence of L / R on Minimum Weight Design. Internally TR, and TR-RS Stiffened Shell. Operating Depth $=$ 3000 feet. General Instability Formulation, High Strength Steel 67
28. Determination of Optimum Skin Thickness. Axial Com- pression Combined with Hydrostatic Pressure. Internally TR-RS Stiffened Shell, High Strength Steel. General Instability Formulation. Operating Depth $=$ 3000 feet, $\overline{\mathrm{N}}=.2 \mathrm{gR}$ 70
A1. Geometry of Shell 77
A2. Sign Convention and Force Resultants 78
B1. Properties of Various Shapes of Stiffeners 104
Dl. Effect of R / h and $\mathrm{L} / \pi \mathrm{R}$ on Buckling Load Koiter- Budiansky Equations. Load Case I 136
D2. Effect of R / h and $L / \pi R$ on Buckiing Load Koiter- Budiansky Equations. Load Case II 137
D3. Effect of R / h and $\mathrm{L} / \pi \mathrm{R}$ on Buckiling Load Koiter Budiansky Equations. Load Case III 140
D4. Effect of Load Behavior on Bucklang Load Koiter- Budiansky Equations 143

NOTATIONS

$A_{r}, A_{s t}$
A_{x}, A_{y}
$B_{x},{ }^{B_{y}}$
$\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{y}}$
D
$D_{x x}, D_{y y}, D_{x y}$
$D_{\text {xxst }}, D_{\text {yyr }}$
E, $\mathrm{E}_{\mathbf{r}}, \mathrm{E}_{\mathbf{s t}}$
$E_{x x}, E_{y y}$
$\mathrm{E}_{\mathrm{xxp}}, \mathrm{E}_{\mathrm{yy}}$
$\mathrm{E}_{\text {xxst }}, \mathrm{E}_{\text {yyr }}$
G
$(\mathrm{GJ})_{s t},(\mathrm{GJ})_{r}$
G_{x}
$\mathrm{I}_{\mathrm{rc}} ; \mathrm{I}_{\text {ste }}$
L
yy $x y$
$\overline{\mathrm{N}}$
$\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{yy}}, \mathrm{N}_{\mathrm{x}}$

Ring and stringer cross-sectional area, in ${ }^{2}$
Ratio of flange thickness to web thickness for stringer and ring

Ratio of flange width to web depth of stringer and ring

Stringer and ring shape parameters
Flexural stiffness of skin, in-ib
Orthotropic flexural and twisting stiffnesses, in-lb

Flexural stiffnesses of stringer and ring, in-1b

Young's modulus of elasticity of skin, ring, and stringer, psi

Orthotropic extensional stiffnesses, $1 \mathrm{~b} / \mathrm{In}$
Extensional stiffnesses of skin, $1 \mathrm{~b} / \mathrm{in}$
Extensional stiffnesses of stringer and ring, lb/in

Shear modulus of elasticity, psi
Contribution of stiffeners to torsional
Inplane skin shear stiffness, lb/in
Ring and stringer mpment of inertia about their centroidal axes, in ${ }^{4}$

Length of sheli, in
Moment resultants, in-lb/in
Applied axial compression, $1 \mathrm{~b} /$ in
Stress resultants, $1 \mathrm{~b} / \mathrm{In}$

Radius of shell, in
Applied torque, in-1b
Weight per unit length of shell, 1b/in
Non-dimensional weight parameter
Composite weight function, lb
Non-dimensional composite weight function
Curvature parameter
Flange width of ring and stringer, in
Web depth of ring and stringer, in
Eccentricity of ring and stringer, in
Nondimensional eccentricities of stringer and ring

Skin thickness, in
Buckling load parameters for axial compression, pressure and torsion

Panel buckling load parameter
Clear distance between two consecutive rings, in
Ring and stringer spacings, in
Number of longitudinal and circumferential waves for general instability

Wumber of longitudinal and circumferential waves for panel buckling

Hydrostatic pressure, (positive outward) psi
Applied load components in x, y, and z directions, psi

Nondimensional load parameter
Stringer and ring flange thickness, in
Stringer and ring web thickness, in

u, v, w	Displacement components of a point on reference surface, in
x, y, z	Coordinate directions
α	Ratio $\overline{\mathrm{x}}_{\mathrm{xx}} / \mathrm{k}_{\mathrm{yy}}$
$\bar{\alpha}_{x}, \bar{\alpha}_{y}$	Nondimensional radii of gyration of stringer and ring
γ	Shear strain at any point
γ_{w}	Density of immersion fluid lb/in ${ }^{3}$
$\gamma_{x y}$	Shear strain of a point on reference surface
$\epsilon_{x}, \varepsilon_{y}$	Normal strains at any point
$\varepsilon_{x x}, \epsilon_{y y}$	Normal strains of a point on reference surface
$x_{x x}, x_{y y}, x_{x y}$	Changes in curvature
λ	Lagrange multiplier
λ^{*}	Nondimensional Lagrange multiplier
$\bar{\lambda}_{x x}, \bar{\lambda}_{y y}$	Nondimensional extensional stiffnesses of stringer and ring
v	Poisson ratio
$\rho_{s k} ; \rho_{r}, \rho_{s t}$	Weight density of skin, ring, and stringer, 1b/in 3
$\bar{\rho}_{x x}, \bar{\rho}_{y y}$	Nondimensional flexural stiffnesses of stringer and ring
σ_{y}	Permissible yield stress, psi
$\sigma_{\text {xxsk }}, \sigma_{\text {yysk }}$	Prebuckling stresses in skin, psi
$\sigma_{\text {xxst }}, \sigma_{y y r}$	Prebuckling stresses in stringer and ring, psi.
$\begin{aligned} & \sigma_{\mathrm{xxsk}}, \sigma_{\mathrm{xxst}}^{\mathrm{cr}} \\ & \sigma_{\mathrm{yyr}}^{\mathrm{cr}} \end{aligned}$	Critical bucking stresses in skin, stringer, and ring, psi
Superscript "O"	Refers to membrane state
Superscript "1"	Refers to additional quantity necessary to bring the membrane state to the classical buckling state

GLOSSARY OF ABBREVIATIONS

GB
IA
PB
PR
RS
RR-RS
RB
RY
SKB
SKY
STB
STY
TR
TR-RS

Gross bucking $g_{D} / g_{c r}$
Inverted angle
Panel buckling $g_{D} / q_{p_{c r}}$
Rectangular ring
Rectangular stringer
Rectangular ring and stringer
Ring buckling $\sigma_{\mathrm{yyr}} / \sigma_{\mathrm{yyr}}$
Ring yielding $\sigma_{y y r} / \sigma_{y}$
Skin buckling $\sigma_{\mathrm{xxsk}} / \sigma_{\mathrm{xxsk}}$
Skin ylelding $\sigma_{\mathrm{s}} / \sigma_{\mathrm{y}}$
Stringer buckling $\sigma_{x x s k} / \sigma_{x x s k}$
Stringer yielding $\sigma_{x x s k} / \sigma_{y}$
Tee ring
Tee ring and rectangular stringer

SUMMARY

A methodology is developed by which minimum weight design of stiffened cylinders under hydrostatic pressure may be achieved. The precise statement of the problem is: Given a stiffened cylinder of specified material, radius, and length, find the size, shape, spacing of stiffeners, and the thickness of the skin, such that it can carry safely a hydrostatic pressure with minimum weight. The word safely carry' implies that none of the behavioral constraints are violated. These constraints include: general instability, panel instability, local instabilities of skin and stiffeners and the limitation on stress levels in various components of the cylinder.

The solution to the problem is accomplished in two stages. In the first stage, unconstrained minimization of the objective function (defining weight of the cylinder and including one active constraint as penalty function) is performed using a mathematical search technigue. This yields a design space in which all the configurations satisfy the mode of failure that has been included in the objective function. In the second stage, this design space (represented by charts and tables) is used in arriving at final minimum weight configuration satisfying all the remaining constraints. A systematic procedure is given for accomplishing the design.

This methodology provides freedom to the designer to achieve and thus assess all equal weight designs. In addition, he knows what penalty in weight he pays, when moving arbitrarily in the design
space. By this approach simultaneous occurrence of failure modes can be avoided by paying least welght penalty. The availabilty of such information along with the study indicating the influence of type and shape of stiffeners on the weight of cylinder permits a designer to carry out trade-off studies and arrive at practical minimum weight design.

CHAPIER I

INIRODUCTION

Historical Review

During the last two decades, considerable progress has been made in structural analysis. With the aid of computers, structural problems with great degree of complexity can now be solved with relative ease. While these achievements are of great importance in assessing the behavior of structures; their full benefits will only be materialized when reflected in the improved designs of structures.

The aim of devising design procedures which satisfy all constraints of safety and performance and do it with least weight, or least cost is not a new one. The engineers have always strived for good designse by attempting investigations of several alternatives within the bounds of time and cost. However, only limited number of alternatives could be investigated in the absence of the ald of the present day computers. With this tremendous aid, the progress in achieving optimum solutions to the design problems hes been outstanding.

Before attempting any type of solution to the problem of 'optimum' or 'the best' design of a particular structure, the first step is to decide the besis for which various designs can be compared. The basis of comparison, termed the criterion, defines the measure of value and accordingly enables one to choose between any two candidate
design configurations. Often, it is difficult to establish and attain ideal criteria in practice, For example, the criterion of achieving minimum weight and minimum cost, in general, does not yield the same configuration. In such situations one looks for compromises between such reguirements. Such a study or process of compromising between these requirements in the design criterion is known as the establishment of trade-offs. It is rather difficult to express analytically, in terms of the design variables the criterion, including for example, minimum weight and minimum cost. A possible diversion from this ideal situation will be to express the criterion analytically on one of these requirements and attempt a formulation which permits the designer to carry out limited trade-off studies.

Minimum weight is the primary consideration for design of aerospace vehicles and, more recently, of underwater structural systems, such as submarines and bathyscaphs. For these structures, the criterion of design is minimum weight. The function, expressed in terms of design variables, describing the weight is known as the merit function or the objective function.

For any manned underwater vehicle, the pressure hull is the most important component. It is essentially a stiffened cylindrical shell contributing one fourth to more than one half to the total weight of the vehicle. In order to carry the requisite pay load, while preserving adequate buoyancy, it is essential to design the hull for minimum weight. Increased operating depths have further necessitated such an investigation. The present investigation is an attempt to develop a methodology by which one can accomplish
minimum weight design of pressure hulls.
Several attempts have been made in past for designing stiffened sheils for minimum weight. A comprehensive survey related to optimization of aerospace structures was presented by Gerard [1]* in 1966. An excellent review on optimal structural design is given by Niordson and Pederson [2]. The most authoritative and complete surveys of optimum structural design in the context of mathematical programing procedures are those by Schmit [3-5].

The attempts made in the past for cylinders under various load conditions can broadly be classified into two categories. One approach is primarily based on the premise that minimum weight is accomplished if all modes of failure occur simultaneously. In this approach the design variables are established through parametric studies in conjunction with the mathematical equations that express the above premise. References [6-11] adopt such an approach. This conjecture, however, is disproved in some simple cases as shown by Spunt [12]. He shows that such a requirement puts severe restriction on the formulation and the solution of the problem. Furthermore, it prevents a designer from considering the families of alternative designs having equal weight but not satisfying the requirement of simultaneous mode occurrence. The recent studies by Thompson and Lewis [13] on optimal designs of thin walled compression members and by Thompson, Tulk and Walker [14] on stiffened plates have shown that a structural configuration which is designed for simultaneous

[^0]occurrence of failure modes becomes more sensitive to geometric imperfections. These observations and the results of the second approach, which is discussed in the next paragraph, reject the formulation of the problem on the basis of simultaneous occurrence of failure modes.

The second approack is based on mathematical search technique applied for minimization of the objective function. The objective function defining the weight of the structure, contains all of the behavioral (limitations on stress levels) and geometric (limitations on dimensions of design variables) constraints as penalty functions. Such a composite objective function is expressed in terms of the design variables. By means of certain mathematical search technigues one finds the values of those design variables that correspond to minimum weight. References [15-21] adopt such an approach. The method of solution is, undoubtediy, in accord with the present day philosophy of achieving fully automated designs; but such an approach, in the opinion of the author, has certain limitations. The number of design variables associated with a cylinder stiffened with rectanguiar stiffeners is seven. Almost all the investigators who have used mathematical search technigues in seven dimensional space have reported great difficulties and algorithm failures. If one were to deal with other shapes of stiffeners, for example T-shape, the number of variables increases to 11 , and the implementation of search techniques is further complicated. Some of the investigators [18] have attempted to fix certain design variables in the objective function. Such an assumption, however, does not

Indicate precisely how far from the real optimum solution one is. Even if these difficulties can be overcome, there still exist some guestions regarding this approach. First, because of the complete automation the designer is virtually divoreed from the design procedure and control over the design variables. This means that a designer can not introduce needed changes in the design variables with least weight penalty. Second, due to all the constraints included into the objective function, the resulting design represents only one feasible minimum weight configuration. Associated with this configuration, there may be two or more modes of failure that are active. There is no way of avoiding this simultaneous occurrence of two or more fallure modes. Moreover, there may be many more feasible design configurations of equal or nearly egual weight which are not obtainable by this approach. The results of Pappas and AmbaRao [22] and Jones and Hague [16] confirm such a doubt. These investigators have obtained several designs of nearly equal weight but with significantly different design variables. Simitses and Ungbhakorn [23] have explicitly shown that the minimum weight design is not unique in the case of stiffened cylinders subject to uniform axial compression. Third, because the formulation of the peralty function is dependent on which constraint is active, in many cases erroneous expressions have been used in the objective function: If, for example, skin wrinkling is the only active constraint. (see reference [16]) the expression for general instability is incorrect, because it is based on the assumption that the skin has not wrinkled. Furthermore, the investigators in the past have considered
only ring stiffened cylinders, (see reference [18]), for the minimum weight design of pressure hulls employing the equations which are mostly empirical. Rings, no doubt, are of most importance in resisting hydrostatic pressure, but in several situations the presence of light stringers can reduce the weight further. An approach that considers only ring stiffened geometry is therefore restrictive in nature. In addition, no attempt has been made in the past to study the influence of various shapes of stiffeners on the minimum weight. This aspect of study is important not only from the point of view of finding the best shape of stiffeners, but also in carrying out tradeoff studies.

These observations obviously suggest that the approach to minimum weight design needs modification. The needed new methodology should provide freedom to the designer to achleve and thus assess all equal weight designs. In addition, he should know what penalty in weight he pays, when he moves arbitrarily in the design space. The availability of such information along with the study indicating the influence of type and shape of stiffeners on the weight is extremely desirable for obtaining practical minimum weight design and for carrying out trade-off studies.

Statement of the Problem

The methodology in the present investigation is based on the observation that for any given level of the specified parameters the design is governed by one or two failure modes. In very special cases three or more modes of failure may become active corresponding to the
minimum weight configuration. In any case it is desirable, because of the findings of Thompson, Tulk and Walker to adjust the design variables so as to separate these fallure modes. The development of a methodology which permits such a requirement to be satisfied is of tremendous importance. How this can be accomplished, by the present methodology, is discussed after giving precise statement of the problem.

The problem considered is: Given a stiffened cylinder of specified material, radius and length, find the size, shape, spacing of stiffeners, and thickness of the skin, such that it can carry. safely a given hydrostatic pressure with minimum weight. The word 'safely carry' implies that none of the behavioral constraints are violated. These constraints inciude: general instability, panel instability, locel instabilities of skin and stiffeners and the limitations on stress levels in various components of the cylinder. The constraints may also include certain geometric inequalities specifying limitations on dimensions of various design variables.

The design objective is minimum weight. The solution, therefore, reguires minimization of the function defining the weight of the cylinder subject to the constraints defined above. In order to accomplish what is lacking in the earlier approaches, the objective function in the present case is formulated in different manner. The basic principle is similar to the one adopted by Ungbhakorn [24]. Instead of incorporating all the constraints as penalty functions along with the expression for the weight of the cylinder, only one active failure mode, expressed as an equality constraint is included
as penalty function. By studying carefully the expressions of various modes of failure, the design variables are grouped so as to minimize the number of influential optimizing parameters. This point is explained in details in Chapter II.

The solution to the entire problem is accomplished in two stages. In the first stage, unconstrained minimization of the objective function (which includes one active constraint as penalty function) is performed using a mathematical search technique. This yields a design space in which all the configurations satisfy the mode of failure that has been included in the objective function. This design space is represented by means of design charts and design tables. These design charts and design tables give the values of optimizing parameters for each point in the design space. This is the first stage or phase I of the present methodology.

In the second stage or phase II, a designer moves in the design space in a systematic way, discussed in Chapter III, to arrive at a design which satisfies all the remaining failure modes and has minimum welght. One can look at the second stage as moving on the curve, that defines the active mode of failure, starting from a point that corresponds to the least welght to such a point where all the modes of failure are satisfied. It is obvious that the successful working of this approach depends on correctly identifying the active mode of failure. For the design of submarine pressure hulls, the two modes of failure, that are active corresponding to the minimum welght configuration, are general instability and skin yielding. If both modes of failure are active, one may formulate the problem on any one of
these two modes. The weight of the final design configuration should work out the same in either case.

The minimization of the objective function is performed by the Nelder and Mead [25] search technique. There are several mathematical search techniques available in the literature, for example, (see reference [16]), which can possibly be used for the present problem. Since the aim of the present investigation is not to compare the relative merits of various mathematical search technigues, no such attempt is made here. This aspect of study is open to those interested in it.

CHAPTER II

MATHEMATICAL FORMULATION OF THE PROBLEM

The classical general instability parameter of thin stiffened cylindrical shell subject to a uniform hydrostatic pressure and axial compression (which is a known fraction of the hydrostatic pressure) with simply supported boundary conditions is given by (see Appendix A)

$$
\begin{equation*}
\bar{k}_{y y}=\frac{a m^{4}+b m^{2}+c}{f m^{2}+g} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=\left[\left(1+\bar{\beta}^{2}\right)^{2}+\bar{\lambda}_{x x}+\bar{\lambda}_{y y} \bar{\beta}^{4}+\frac{2 \bar{\beta}^{2}}{1-v}\left(\bar{\lambda}_{x x}+\bar{\lambda}_{y y}+\bar{\lambda}_{x x} \bar{\lambda}_{y y}\right)\right]\left[\left(1+\bar{\beta}^{2}\right)^{2}\right. \\
& \left.+\bar{\rho}_{x x}+\bar{\rho}_{y y} \bar{\beta}^{4}\right]+\frac{12 z^{2}}{\pi^{4}\left(1-\nu^{2}\right)}\left[\bar{e}_{s t}^{-2} \bar{\lambda}_{x x}+\frac{2}{1-\nu} \bar{e}_{s t}^{-2} \bar{\lambda}_{x x}\left(1-\nu+\bar{\lambda}_{y y}\right) \bar{\beta}^{2}\right. \\
& \left.+\left\{\bar{e}_{s t}^{-2} \bar{\lambda}_{x x}\left(1+\bar{\lambda}_{y y}\right)+2 \frac{1+v}{1-v} \bar{e}_{s t} \bar{e}_{r} \bar{\lambda}_{x x} \bar{\lambda}_{y y}+\bar{e}_{r}^{-2} \bar{\lambda}_{y y}\left(1+\bar{\lambda}_{x x}\right)\right\}\right\}^{-4} \\
& \left.+\frac{2}{1-v} \bar{e}_{r}^{-2} \bar{\lambda}_{y y}\left(1-v+\bar{\lambda}_{x x}\right) \bar{\beta}^{6}+e_{r}^{-2} \bar{\lambda}_{y y} \bar{\beta}^{8}\right] \\
& b=\frac{12 z^{2}}{\pi\left(1-v^{2}\right)}\left[-2 v \bar{e}_{s t} \bar{\lambda}_{x x}+2\left\{\bar{e}_{s t} \bar{\lambda}_{x x}\left(1+\bar{\lambda}_{y y}\right)+\bar{e}_{r} \bar{\lambda}_{y y}\left(1+\bar{\lambda}_{x x}\right)\right\}^{-2}\right. \\
& \left.-2 \nu \bar{e}_{r} \bar{\lambda}_{y y^{-\overline{8}}}{ }^{-4}\right]
\end{aligned}
$$

$$
\begin{align*}
& c=\frac{12 z^{2}}{\pi^{4}\left(1-v^{2}\right)}\left[\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-v^{2}\right] \\
& f=\left(\frac{L}{\pi \bar{R}}\right)^{2}\left[\left(1+\bar{\beta}^{2}\right)\left(\bar{e}_{s t} \bar{\lambda}_{x x}+\dot{e}_{r} \bar{\lambda}_{y y} \bar{\beta}^{4}\right)+\frac{2 \bar{\beta}^{2}}{1-v} \bar{\lambda}_{x x} \bar{\lambda}_{y y}\left(\bar{e}_{s t}+\bar{e}_{r} \bar{\beta}^{2}\right)\right] \\
& +\left(\frac{1}{2}-\alpha+\bar{\beta}^{2}\right)\left[\left(1+\bar{\beta}^{2}\right)^{2}+\bar{\lambda}_{x x}+\bar{\lambda}_{y y} \bar{\beta}^{4}+\frac{2 \bar{\beta}^{2}}{1-v}\left(\bar{\lambda}_{x x}+\bar{\lambda}_{y y}+\bar{\lambda}_{x x} \bar{\lambda}_{y y}\right)\right] \\
& g=\left(\frac{L}{n \mathbb{R}}\right)^{2}\left[\left(1+\bar{\beta}^{2}\right)\left(v+\bar{\beta}^{2}\right)\right. \\
& \left.+\frac{\bar{\beta}^{2}}{1-\nu}\left(2 \bar{\lambda}_{x x}+\bar{\lambda}_{y y}+\nu \bar{\lambda}_{y y}+2 \bar{\lambda}_{x x} \bar{\lambda}_{y y}\right)+\bar{\lambda}_{y y} \bar{\beta}^{4}\right] \\
& \alpha=\frac{\bar{k}_{x x}}{\bar{k}_{y y}} ; \quad \therefore \quad \bar{k}_{x x}=\frac{\overline{\mathrm{N}}^{2}}{\pi^{2}} \\
& \bar{k}_{y y}=\frac{q_{R L}^{2}}{\pi^{2} D} ; \quad \therefore \quad \bar{\beta}=\frac{n L}{m \pi R} \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
& \bar{\lambda}_{x x}=\frac{E_{s t} A_{s t}\left(1-\nu^{2}\right)}{E h_{s t}} ; \quad \lambda_{y y}=\frac{E_{r} A_{r}\left(1-\nu^{2}\right)}{E h l_{r}} \\
& \bar{\rho}_{x x}=\frac{E_{s t} I_{s t c}}{D \ell_{s t}} ; \quad \quad \bar{\rho}_{y y}=\frac{E_{r} I_{r c}}{D l_{r}} \\
& \dot{e}_{s t}=\frac{\pi^{2} R}{L^{2}} e_{s t} ; \quad \because \quad \bar{e}_{r}=\frac{\pi^{2} R}{L^{2}} e_{r} \tag{3}
\end{align*}
$$

If the cylinder is to be designed for uniform hydrostatic
pressure only, α is set equal to zero in the expression for generai instability. The general instability critical load parameter $\bar{k}_{y y c r}$ for a given cylinder and loading is obtained through minimization of Equation (1) with respect to integer values of m and n.

The prebuckling stresses in the skin, stringers, and rings are (see Appendix A)

$$
\begin{align*}
& \sigma_{x x \beta k}=-\frac{g \mathrm{R}}{2 h}\left[\frac{2 \nu \bar{\lambda}_{x x}+\bar{\lambda}_{y y}(1+2 \alpha)+\left(1-\nu^{2}\right)(1+2 \alpha)}{\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-\nu^{2}}\right] \\
& \sigma_{y y s k}=-\frac{q R}{2 h}\left[\frac{2 \bar{\lambda}_{x x}+(1+2 \alpha) \bar{\lambda}_{y y}+2\left(1-v^{2}\right)}{\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-v^{2}}\right] \\
& \sigma_{x x s t}=-\frac{g R E s t}{2 h E}\left(1-v^{2}\right)\left[\frac{\left(1+\bar{\lambda}_{y y}\right)(1+2 \alpha)-2 \nu}{\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-\nu^{2}}\right] \\
& \sigma_{y y r}=-\frac{q R E}{2 h E}\left(1-v^{2}\right)\left[\frac{2\left(1+\lambda_{x x}\right)-v(1+2 \alpha)}{\left(1+\lambda_{x x}\right)\left(1+\lambda_{y y}\right)-\nu^{2}}\right] \tag{4}
\end{align*}
$$

Formulation of the Objective Function

Assuming the eccentricities of the stiffeners to be small as compared to the radius of the shell, and ignoring the weight of the common material at the intersections of the stiffeners, the weight of the stiffened shell is

$$
\begin{equation*}
\left.W_{S T}=2 \pi R L h \rho_{s k}+\rho_{s t} \int_{0}^{L} \int_{0}^{2 \pi R}\left(A_{s t} / \ell_{s t}\right) d y d x+\rho_{r} \int_{0}^{L_{0}} 2 \pi R A_{r} / l_{r}\right) d y d x \tag{5}
\end{equation*}
$$

Carrying out integrations in Equation (5) and using the nondimensional parameters $\bar{\lambda}_{x x}$ and $\bar{\lambda}_{y y}$ from Equation (3), the weight of the stiffened cylinder is given by

$$
\begin{equation*}
\mathrm{W}_{\mathrm{SI}}=2 \pi \mathrm{RLh} \rho_{\mathrm{sk}}\left[1+\frac{1}{1-v^{2}}\left(\frac{E \rho_{s t}}{E_{s t} \rho_{s k}} \bar{\lambda}_{\mathrm{xx}}+\frac{E \rho_{r}}{\mathrm{E}_{\mathrm{r}} \rho_{s k}} \bar{\lambda}_{y \mathrm{y}}\right)\right] \tag{6}
\end{equation*}
$$

Objective Function Based on Skin Yielding

The prebuckling stresses $\sigma_{x x s k}$ and $\sigma_{y y s k}$ for the skin are obtained from Equation (6). The stress in the skin, σ_{s}, computed on the basis of von Mises-Henkey yield criterion is

$$
\begin{equation*}
\sigma_{s}=\left(\sigma_{x x s k}^{2}+\sigma_{y y s k}^{2}-\sigma_{x x s k} \sigma_{y y s k}\right)^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

Let σ_{y} be the permissible yield stress for the material of the skin. The problem is stated as

$$
\begin{align*}
& \text { Minimize } W_{S T} \\
& \text { such that } \sigma_{s}=\sigma_{y} \tag{8}
\end{align*}
$$

This constrained minimization problem is transformed to an unconstrained minimization problem, leading to the composite objective function

$$
\begin{equation*}
W^{*}=W_{S T}+\lambda\left|\sigma_{s}-\sigma_{y}\right| \tag{9}
\end{equation*}
$$

where λ is a Lagrange multiplier.

Equation (9) can be put in the nondimensional form as

$$
\begin{equation*}
\bar{W}^{*}=\frac{\bar{W}}{}+\lambda^{*}\left|P z^{2}-\sigma^{*} z\right| \tag{10}
\end{equation*}
$$

where

$$
P=\left[\left(1-v+\nu^{2}\right)\left(4 \bar{\lambda}_{x x}^{2}+\bar{\lambda}_{y y}^{2}\right)-2\left(1-4 \nu+\nu^{2}\right) \bar{x}_{x x} \bar{\lambda}_{y y}\right.
$$

In the functional form one can write

$$
\begin{equation*}
\bar{W}^{*}=\bar{W} *\left(z, \bar{\lambda}_{\mathrm{xx}}, \bar{\lambda}_{\mathrm{yy}}\right) \tag{12}
\end{equation*}
$$

It can easily be verified that minimization of \bar{W}^{*} on the basis

$$
\begin{align*}
& \bar{W}^{*}=\frac{W * Z}{2 \pi R L^{3}\left(1-v^{2}\right)^{\frac{1}{2}}} \\
& \bar{W}=1+\frac{1}{\left(1-\nu^{2}\right)}\left[\frac{E \rho_{s t}}{E_{s t} \rho_{s k}} \bar{\lambda}_{x x}+\frac{E \rho_{r}}{E_{r} \rho_{s k}} \bar{\lambda}_{y y}\right] \\
& \lambda^{*}=\frac{g \cdot R^{2} \lambda}{2 \pi L^{5} \rho_{s k}\left(1-\nu^{2}\right)} \tag{il}\\
& -\left(1-\nu^{2}\right)(5 v+1)\left(2 \bar{\lambda}_{x x}+\bar{\lambda}_{y y}\right) \\
& \left.+7\left(1-v^{2}\right)^{2}\right]^{\frac{1}{2}} / 2\left[\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-v^{2}\right] \\
& \sigma^{*}=\sigma_{y}\left(\frac{L}{R}\right)^{2} \frac{\left(1-v^{2}\right)^{\frac{1}{2}}}{q}
\end{align*}
$$

of the skin yielding results in an unstiffened shell. Such a shell, undoubtedly, fails in general instability. Therefore, considering Z (or h) as an independent variable is meaningless in the present formulation. One can, however, approach the problem by considering $\bar{\lambda}_{x x}$ and $\bar{\lambda}_{y y}$ as independent variables. For a fixed value of z (or h), one finds those values of $\bar{\lambda}_{x x}$ and $\bar{\lambda}_{y y}$ which minimize \bar{W}. In this manner one generates sets of date that indicate the distribution of the material in the skin and the stiffeners such that the skin yielding constraint is satisfied. A systematic procedure, given in Chapter III, can then be followed to arrive at those values of the design variables which satisfy all the constraints and result in the minimum weight configuration. The values of λ^{*} in Equation (10) must be sufficiently large, Reference [26], so that the solution of the unconstrained problem approaches to that of the constrained problem. Objective Function Based on General Instability

If general instability is the active failure mode, the objective function is formulated on the basis of this constraint. The problem is stated as

$$
\begin{align*}
& \text { Minimize } W_{S T} \\
& \text { such that } g_{C r}=g_{D} \tag{13}
\end{align*}
$$

where $q_{c r}$ is the general instability critical load, and g_{D} is the design load. This constrained minimization problem is transformed to an unconstrained minimization problem, leading to the objective function

$$
\begin{equation*}
W^{*}=W_{S T}+\lambda\left|q_{c r}-q_{D}\right| \tag{i4}
\end{equation*}
$$

where λ is a Lagrange multiplier.
Equation (14) can be put in the nondimensional form as

$$
\begin{equation*}
\bar{W}^{*}=\bar{W}+\lambda_{G}^{*}\left|\bar{k}_{y y c r}^{*}-g_{D}^{*}\right| \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
& \lambda_{G}^{*}=\frac{\pi E^{E L}}{24 R^{4} \cdot \rho_{\text {sk }}} \lambda \\
& q_{D}^{*}=\frac{12 Z}{\pi^{2}}\left(\frac{L}{R}\right)^{4} \frac{q_{D}}{\left(1-\nu^{2}\right)^{\frac{2}{2}}} \tag{16}\\
& \bar{k}_{\text {yycr }}^{*}=\frac{\bar{k}_{\text {yycr }}}{z^{2}}
\end{align*}
$$

Thus \tilde{W}^{*} is a function of number of variables

$$
\bar{W}^{*}=\bar{W}^{*}\left(z, \bar{\lambda}_{x x}, \bar{\lambda}_{y y}, \bar{p}_{x x}, \bar{\rho}_{y y}, \stackrel{e}{e}_{s t}, \dot{e}_{r}, m^{2}, \bar{\beta}^{2}\right)
$$

It is observed, in this case, that \bar{W}^{*} behaves like $1 / \mathrm{Z}$, suggesting that there is no minimum with respect to finite Z. Equation (1) for the general instability load parameter $\bar{k}_{y y}$ indicates that the value of $\bar{k}_{\text {yycr }}$ increases with the increasing values of $\bar{\rho}_{x x}$, $\bar{p}_{y y}, \bar{e}_{s t}$, and \bar{e}_{r}. But these parameters possess a certain upper limit, because any increase beyond that limit makes the local instabilities active. If these limits can somehow be found, a program can be set up for minimization of \bar{W}^{*} with respect to $\bar{\lambda}_{x x}$ and $\bar{\lambda}_{y y}$ for fixed values of $z, \bar{\rho}_{x x}, \bar{\rho}_{y y}, \bar{e}_{s t}$, and \bar{e}_{r}.

Specifying limits on $\bar{p}_{x x}, \bar{p}_{y y}, \bar{e}_{s t}$, and \bar{e}_{r} as they appear in the expression for $\bar{k}_{y y}$ is rather difficult. This can, however, be accomplished by replacing these four parameters by four new parameters $\bar{\alpha}_{x}, \bar{\alpha}_{y}, C_{x}$, and $C y$. The relations between the new and the old parameters are

$$
\begin{align*}
& \bar{\rho}_{x x}=\bar{\alpha}_{x}^{2} \bar{\lambda}_{x x} ; \bar{\rho}_{y y}=\bar{\alpha}_{y}^{2} \bar{\lambda}_{y y} \\
& \bar{e}_{s t}=\frac{\pi^{2}\left(1-v^{2}\right)^{\frac{1}{2}}}{2 z}\left(1+c_{x} \bar{\alpha}_{x}\right) ; \quad \bar{e}_{r}=\frac{\pi^{2}\left(1-v^{2}\right)^{\frac{1}{2}}}{2 z}\left(1+c \bar{y}_{y}\right) \tag{18}
\end{align*}
$$

The new parameters $\bar{\alpha}_{x}$ and $\bar{\alpha}_{y}$ denote the ratios of radil of gyration of stringers and rings to that of the skin per unit width respectively; and C_{x} and C_{y} are numbers specifying the shape of the stiffeners. These are called the stiffener shape parameters. By making such a substitution the \vec{W}^{*} expression becones

$$
\begin{equation*}
\bar{W}^{*}=\bar{W}^{*}\left[z, \bar{\lambda}_{x x}, \bar{\lambda}_{y y}, m^{2}, \bar{\beta}^{2},\left(\bar{\alpha}_{x}, \bar{\alpha}_{y}, c_{x}, c_{y}\right)\right] \tag{19}
\end{equation*}
$$

Introduction of these four new parameters is helpful in two ways: (a) It is easier now to investigate various shapes of the stiffeners and (b) the range of these four new parameters can reasonably be fixed.

For a fixed value of z (or h) and known load parameter $\mathrm{q}_{\mathrm{D}}^{*}$, values of $\bar{\lambda}_{x x}$ and $\bar{\lambda}_{y y}$ are found in the space of $\bar{\alpha}_{x}-\bar{\alpha}_{y}$ such that \bar{W}^{*} is minimum. The parameters C_{x} and C_{y} can be calculated for a particular shape of the stiffener. For some typical shapes the values of C_{x} and C_{y} are given in Appendix B.

In order to find the dimensions of the stiffeners, their spacings and the skin thickness, the results of first stage operation are used along with the inequalities describing various failure modes. The procedure to be followed for achieving the final design is dis. cussed in Chapter III. Some typical design examples illustrating this procedure are given in Appendix C. A factor of safety of two is used against general instability, panel buckling, and local instabilities of skin and stiffeners. For yielding, a factor of safety of one $1 s$ used.

CHAPTER III

METHOD OF SOLUTION

The solution to the present problem is accomplished, as stated earlier, in two stages. The design charts and tables are generated by performing the unconstrained minimization of the objective function by means of some mathematical search technique. This is the phase I of the present methodology. In the second phase, a design procedure (described in this Chepter) is followed systematically to arrive at the final minimum weight design configuration.

Phase I

Description of Mathematical Search Techniques

There are several mathematical search techiques available for optimization. A general distinction can be made between classical or Indirect methods available to analytical solutions and mathematical programming and search methods which normally require a digital computer for finding a numerical solution to most realistic problems. The classical procedures are restricted to very few real world problems. In most cases one has to rely on the mathematical search techniques. In general, there are many techniques available that can be used for a particular problem. There is no single search technique that can uniquely be described as being the 'best' in all the situations, (see Reference [16]). In the present problem, the Nelder and Mean [25] mathematical search technique is used in the minimization
of the objective function. This search technique proved to be quite effective. The general instability critical load parameter $\bar{k}_{y y c r}$, needed for each iteration, in the general instability formulation, requires minimization with respect to m and n. This is accomplished by using either the golden section [27] or the modified sequential dichotomous [28] search technigue.

Nelder and Mead Algorithm

This search technigue is used for minimization of multivariable unconstrained nonlinear functions. The method is an extension of the simplex method given by Spendley, Hext, and Himsworth [29]. Both methods utilize a regular geometric figure called a simplex consisting of $N+1$ vertices, where N is the number of variables. The Nelder and Mead method accelerates the simplex method and makes it more general. This method adopts itself to the local landscape, using reflected, expanded, and contracted points to locate the minimm. The essential steps of the method are

1. Select a starting point.
2. Construct a starting simplex, refer [25] or Appendix E for appropriate expessions to obtain the remaining points of the simplex.
3. After forming the simplex, the objective function is evaluated at each point. The highest value of the objective function (the worst point) is replaced by a new point. Three operations used for this are reflection, contraction, and expansion. A point is first located by reflection of the worst point. The expression for this step 1s given in Appendix E, or Reference [25].
4. If the reflected point has the worst objective function value of the current points, a contracted point is located. The expression is given in Appendix E.

If the reflected point is better than the worst point but is not the best point, a contracted point is calculated from the reflected point. The objective function is now evaluated at the contracted point. If an improvement over the current points is achieved the process is restarted. If an improvement is not achieved, the points are moved one half the distance toward the best point. The process 1s then restarted.
5. If the reflected point calculated in step 3 is the best point, an expansion point is calculated. The program listing in Appendix E gives the expression for this operation.

If the expansion point is an improvement over the reflected point, the reflected point is replaced by the expansion point and the process is restarted. If the expansion point is not an improvement over the reflected point, the reflected point is retained and the process is restarted.
6. The procedure is terminated when the convergence criterion Is satisfied or a specified number of iterations has been exceeded.

Method of Golden Section

This search technique is used for minimization of a nonlinear function of a single variable, The search comences with evaluation of the objective function at each end of the interval S, and at $d_{1}=2 /(1+\sqrt{5})$ of the interval from both these bounding points. Refer

Figure 1. Golden Section Search Technique.

Figure 1.
On comparing the values of the objective function at these four points, the boundary point which is farthest from the lowest objective function value is discarded. The remaining three points are retained. The search now continues in the region which has been diminished in size by d_{l}. The internal point at which the objective function is known in the reduced interval is at a distance d_{1} of the reduced interval from the remaining bounding point of the original interval. This is because $1-d_{1}=d_{l}^{2}$. The search can, therefore, be continued In the reduced interval with only one additional evaluation of the objective function.

When the specified accuracy is achieved, the search is terminated. The method is based on the assumption of unimodality. It is, therefore, suggested that a set of different original intervals be attempted. The program is given in Appendix E.

Modified, Sequential, Dichotomous Search
This search technique is used for finding general instability critical load treating m and n as integer variables. The essential steps of the search technique are

1. Start from an arbitrary initial point m_{1} and n_{1}. A one dimensional minimization is first performed with respect to m, using dichotomous search. The program in Appendix E gives the steps involved in this process. This search is continued until a minimum with respect to m is located.
2. For the fixed value of m located in step 1 , the search procedure is repeated with respect to n. The search is terminated

When a set of search sequences fails to yield any change in the minimizing values of m and n.

Employing these search techniques the design charts and tables are generated for the two formulations of the objective function discussed in Chapter II. For the skin yielding formulation, values of $\bar{\lambda}_{x x}$ and $\bar{\lambda}_{y y}$ are obtained for various values of z (or h). The results are given in the form of tables and curves. These are discussed in Chapter IV.

For the general instability formulation, values of $\bar{\lambda}_{x x}$ and $\bar{\lambda}_{y y}$ are obtained for fixed values of Z, C_{x} and $C y$, in the space of $\bar{\alpha}_{x}-\bar{\alpha}_{y}$. The results are presented in the form of tables and charts as given in Chapter IV.

Phase II

Procedure for Design

In this phase the values of design variables are found by employing the design charts generated in phase I. The following guantities are known

1. The radius and length of the shell.
2. Applied hydrostatic pressure (or operating depth of submarine) and safety factors. A factor of safety of two is assumed against all the instability failure modes and a factor of safety of one is assumed against yielding.
3. The material of the skin and stiffeners and their properties.
4. The position of the stiffeners.

The design variables to be determined are the skin thickness, the sizes of the stiffeners and their spacings. The systematic approach to arrive at these design variables for the two formulations of the objective function is given as follows.

Design Procedure for General Instability Formulation

Ring Stiffened Shell

In general, the thickness corresponding to the minimum weight design is determined from a curve of Z (or h) versus W. In order to plot such a curve, designs are obtained for at least three different values of z (or h). The following procedure is suggested for determining appropriate values of z (or h).

The upper bound on the skin thickness of the shell is obtained from consideration of either skin yielding or bucking of an unstiffened shell. The optimum skin thickness is a fraction of the upper bound found from any of the above two considerations. The skin thickness obtained on the basis of skin yielding, given by $h_{u}=\frac{\sqrt{3} g R}{2 \sigma_{y}}$, is much lower than the one obtained on the basis of buckling. It is, therefore, suggested to find the starting value of Z (or h) on this besis.

It is anticipated that the optimum thickness may be around $r_{u} / 1.5$ h_{u} 1.5. As an initial guess take $Z=1.2 Z_{u}$; generate some data and design the shell according to steps 1 through 7. Let this weight be W_{1}. The procedure is repeated for $Z=1.3 Z_{u}$ and weight W_{2} is obtained. If $W_{1}<W_{2}$, use $Z=1.1 Z \ldots$ If $W_{1}>W_{2}$, use $Z=1.4 Z_{u}$. If $W_{1} \simeq W_{2}$, then the minimum weight configuration corresponds to
a Z value between $1.2 Z_{u}$ and $1.3 Z_{u}$ In this manner values of Z are selected for plotting the curve of Z versus W. The steps of designing a shell for a flixed Z are given as follows.

1. For a particular value of Z (or h) read values of $\bar{\lambda}_{y y}$ and $\bar{\alpha}_{y}$ corresponding to the minimum value of \bar{W}. Steps 2 through 9 are then followed such that the constraints defining fallure modes are not violated. If any constraint is violated, move to a point of higher value of \bar{W} and repeat the steps.
2. The ring spacing ℓ_{r} is determined from the criterion of panel buckling. This needs a few trials.
3. The ring dimensions are computed as follows

$$
\begin{align*}
& d_{w r}=\frac{h \bar{\alpha}_{y}\left(1+A_{y} B_{y}\right)}{\sqrt{\left(1+4 A_{y} B_{y}\right)} ;} \quad t_{w r}=\frac{\bar{\lambda}_{y y} l_{r} h}{d_{w r}\left(1-v^{2}\right)\left(1+A_{y} B_{y}\right)} \\
& t_{f r}=A_{y} t_{w r} \quad ; \quad b_{f r}=B_{y} d_{w r} \tag{20}
\end{align*}
$$

These expressions are written for T-rings. If rectangular rings are used, A_{y} and B_{y} in the above expressions are set equal to zero. For other shapes Table Bl, in Appendix B, is used for calculating the dimensions of the ring.
4. The stresses in the ring and skin are calculated using Equations (A27), (A28) and (A31) given in Appendix A. These stresses are checked against permissible stress levels.
5. The critical ring stress is calculated from Equation (A21). This should be greater than the applied stress.
6. The ratios of actual load to failure load are calculated
to make sure that failure modes do not oceur simultaneougly. If this condition is not satisfied, either adjust ring spacing or proceed with another value of \bar{W}.
7. The weight of the shell is computed.
8. This procedure is repeated for at least three values of Z (or h), as suggested in the beginning, and \bar{W} versus h is plotted. From this curve one finds the optimum value of h.
9. For this value of h (or Z) generate design data and follow the above steps. This step is needed if exact minimum weight is desired. The curve \bar{W} versus h is relatively flat, indicating that there is a fairly large range of h that corresponds to almost same welight of the shell.

The steps given above are carried out conveniently through a computer program RSSH written for this purpose. A sample example is worked out in Appendix C.

Shell Stiffened with Rectangular Rings and Rectangular Stringers
The appropriate values of Z (or h) are determined as suggested under the ring stiffened shell design procedure.

1. From the design charts for this case, see for example, Figure 2; locate the minimum weight parameter \bar{W} for each Z in the space of $\bar{\alpha}_{x}-\bar{\alpha} y$. Corresponding to this value of \tilde{W}, read values of $\bar{\alpha}_{x}, \bar{\alpha}_{y}, \bar{\lambda}_{x x}$, and $\bar{\lambda}_{y y}$. One then follows steps 2 through 12 such that the constraints are not violated. If any constraint is violated move to a point giving same value of \bar{W}, if there is any, or move to a point of higher value of \bar{W}. With few designs one could get clear indications as regards to the appropriate direction in which one

Figure 2. Design Chart for Internally TR-RS Stiffened Shell General Instability Formulation, High Strength Steel Operating Depth $=3000$ feet, $Z=1200$.
must move to get an acceptable design.
2. Through Equations (4) and (7) calculate stresses in the skin, stringers and rings. If these stresses are within the permissible levels specified, one proceeds to the next step.
3. The depths of stringers and rings are calculated from the following Eguations.

$$
\begin{equation*}
d_{s t}=h \bar{\alpha}_{x} ; \quad d_{w r}=h \bar{\alpha}_{y} \tag{21}
\end{equation*}
$$

4. The ratios of stiffener thickness to the stiffener spacing are determined from the definitions of $\bar{\lambda}_{x x}$ and $\bar{\lambda}_{y y}$ as

$$
\begin{equation*}
\frac{t_{s t}}{l_{s t}}=\frac{E \bar{\lambda}_{x x} h}{E_{s t} d_{s t}\left(1-\nu^{2}\right)} ; \frac{t_{w r}}{l_{r}}=\frac{E \bar{\lambda}_{y y} h}{E_{r} d_{w r}\left(1-\nu^{2}\right)} \tag{22}
\end{equation*}
$$

5. The ring spacing is determined from the reguirement that the stress in the ring must be less than the critical stress or

$$
\left\{\begin{array}{l}
\sqrt{\frac{24\left(1-v^{2}\right) \sigma_{y y r} F_{1}}{\pi^{2} E_{r}} \frac{d_{w r}\left(1-v^{2}\right)}{\bar{\lambda}_{y y} h}\left(d_{w r}-d_{s t}\right)} \tag{23}\\
\text { or } \\
\sqrt{\frac{3\left(1-v^{2}\right) \sigma_{y y r} F_{1}}{\pi^{2} E_{r}}} \frac{d_{w r}\left(1-v^{2}\right)}{\bar{\lambda}_{y y} h} a_{s t} \\
F_{1} \text { is factor of safety }
\end{array}\right.
$$

The largest of the two values is taken as the reguired ring
spacing. The spacing is selected such that the number of rings is an integer. For this ring spacing $t_{w r}$ is calculated from Equation (22). Inequalities (23) are obtained for the case of rings deeper than the stringers. The portion of the ring equal in depth to the stringer is assumed as a plate simply supported on all four sides, whereas the portion of the ring projecting above the stringer is considered as free on one edge.
6. For the ring spacing determined in step 5, check for panel buckling.
7. The stringer spacing is calculated from the requirement that the stringer stress must be less than the critical stringer stress,

$$
\begin{equation*}
i_{s t}>\sqrt{\frac{12\left(1-v^{2}\right) \sigma_{x x s t} F_{1}}{\pi^{2} E_{s t}\left[\frac{d_{s t}}{l_{r}}+.425\right]}} \frac{d_{s t}^{2}\left(1-v^{2}\right)}{h \bar{\lambda}_{x x}} \tag{24}
\end{equation*}
$$

Select $\ell_{\text {st }}$ such that the number of stringers is an integer and inequality (24) is satisfied. From Equation (22), one then calculates $t_{s t}$.
8. For the values of ℓ_{r} and $\ell_{s t}$ determined in steps 6 and 7 , check against skin buckling using Equation (A18), Appendix A. If this constraint is satisfied proceed to the next step, otherwise, examine values of ℓ_{r} and $\ell_{s t}$ and see if they can be adjusted, without violation of any other constraint, so as to satisfy the skin buckling failure mode. If such an adjustment is not possible; go back to
step 1.
9. Calculate ratios of actual load to the failure load. If there is simultaneous occurrence of two or more fallure modes, adjust ℓ_{r} and $\ell_{s t}$ to avoid this, or move to another point in the design space.
10. Compute the weight of the shell.
11. Repeat the above steps for a number of Z (or h) values and plot W versus h. For example, see Figure 5. At least three values of Z (or h) are needed for plotting the curve, see design procedure for ring stiffener shell. From the plot of W versus h one can locate the absolute minimum weight and corresponding value of Z (or h).
12. For this value of Z, design charts are generated and above steps repeated to finalize the design dimensions. This step is needed only if the exact minimum weight configuration is desired. Shell Stiffened with T-Rings and Rectangular Stringers

The steps for the design in this case are similar to those given above. It may, however, be noted that the value of $\mathrm{C} y$ is no longer equal to one and the expressions for $\vec{\alpha}_{y}$ and $\bar{\lambda}_{y y}$ are different than those given for the rectangular shapes. These expressions are given in Table Bl, Appendix B.

The ring spacing in this case is calculated from the following inequality:

In order to find the optimum value of C_{y}, a plot of W versus C_{y} is made. Such a plot, for example, is shown in Figure 7.

Various types of stiffener shapes can be examined by introducing proper values of C's from Table Bl. The essential steps in the procedure for design remain the same.

Design Procedure for Skin Yielding Formulation Ring Stiffened Shells

The steps to be followed for this case are similar to those given under general instability formulation. The difference lies in the fact that for each trial a check for general instability critical load is required. This is accomplished through a computer program, see Appendix E.

Shells Stiffened with Rectangular Rings and Rectangular Stringers

1. From the design charts or tables read the values of $\bar{\lambda}_{x x}$ and $\bar{\lambda}_{y y}$ corresponding to a particular Z (a good starting guess is $z=1.1 Z_{u}$). One then follows steps 2 through 7 such that the constraints are not violated.
2. This step is same as step 2 under corresponding case in general instability formulation.
3. In order to check against general instability fallure mode, one must first determine values of $\bar{\alpha}_{x}$ and $\bar{\alpha}_{y}$. It is indicated by the present study that for minimum weight configuration rings are always deeper than the stringers. The ring spacing is obtainable from inequalities (23). In order that both expressions in that inequality yield the same value of l_{r}, one easily finds that

$$
\begin{equation*}
d_{s t} \simeq .74 d_{w r} \tag{26}
\end{equation*}
$$

If the depth of the ring is IImited by any geometric constraint, the starting value of $d_{w r}$ is taken as equal to that limiting value. If no such limit is specified, $d_{w r}$ is assumed as $R / 15$.
4. With these values of $d_{w r}$ and $d_{s t}, \bar{\alpha}_{x}$ and $\bar{\alpha}_{y}$ are calculated from Equation (21).
5. For these values of $\bar{\alpha}_{x}, \bar{\alpha}_{y}, \bar{\lambda}_{x x}, \bar{\lambda}_{y y}$, and z check the design against general instability. This is done through a computer program, see Appendix E. If $g_{\text {cr }}>q_{D}$, proceed to the next step. Otherwise, change values of $\bar{\alpha}_{x}$ and $\bar{\alpha}_{y}$. An increase in the value of $\bar{\alpha}_{x}$ and $\bar{\alpha}_{y}$ will increase value of $g_{c r}$. If the general instability constraint can not be satisfied, one must move to higher value of \bar{W}. A few trials are needed for this step.
6. The sizes and spacings of the stiffeners are found through the constraints of ring, stringer and skin buckling. The steps outlined under the general instability formulation are applicable in the present case also.
7. The ratios of actual load to failure load are calculated.

This is for making certain that there is no simultaneous occurrence of failure modes.

The procedure for shells stiffened with T-rings (or any other shape) and rectangular stringers is essentially the same except the changes pointed out under the general instability formulation. Some examples are worked out completely in Appendix C to illustrate the procedure for design.

CHAPIER IV

NUMERICAL RESULTS AND DISCUSSION

The following cases are considered during the course of this investigation to amply demonstrate the useful applicability of the present methodology.

Case 1. This case deals with the design studies employing skin yielding formulation for a shell of radius 198 inches and length 594 inches. The operating depths considered for this case are 1000 feet and 3000 feet. The material of construction for all the elements of shell is conventional steel with permissible yield stress of 60,000 psi. Both ring stiffened and ring-stringer stiffened shells are considered to arrive at minimum weight design.

Care-2. This case is similar to the case l, except that the formulation of the objective function is based on general instability.

Case 3. For an operating depth of 3000 feet, the minimum weight designs are obtained for a shel. 1 of radius 198 inches and length 594 inches. The material of construction for all the elements of shell is high strength steel with permissible yield stress of $120 ; 000 \mathrm{psi}$. Both ring stiffened and ring-stringer stiffened geonetries are considered for this case also. The formulation of the objective function is based on general instability.

Case 4. This case is sjmilar to case 3, except that instead of interior stiffeners, exterior stiffeners are considered here.

Case 5. Eiffect of varying L / R ratio on the minimum weight is studied in this case. A sheli of radius 198 inches in considered. The L / R ratio is varied from one through five. The operating depth, type of steel and stiffening are same as in the Case 3.

Case 6. This case deals with the minimum weight design of a shell of radius 198 inches and length 594 inches when predominant hydrostatic pressure is combined with small uniformaxial compression. The operating depth and type of steel used are same as in Case 3. The axial compression, in this case, is assumed to be . 2 gR , where g is the hydrostatic pressure and R is the radius of the shell.

The results of Cases 1 and 3, when the shell is stiffened with only rings, could be compared with the results of [18].

Tables 1 through 11 and Figures $3-28$ give the resuits of the design studies listed above. Three sample design examples and corresponaing deaign charts are given in Appendix C. The design charts for all the cases considered are given in a separate report [30].

For the objective function formulated on the basis of skin yielding, the results of Phase I, for the two operating depths considered, are given in Tables $1,2,4$ and 5. The chart showing skin thickness versus W^{*} is also plotted. Figure 3 and 8 are the design charts for ring stiffened shell with operating depth of 1000 feet and 3000 feet respectively.

Table 3 sumarizes the results of the design studies for an operating depth of 1000 feet, The least weight is obtained, when the shell is stiffened with T-rings and rectangular stringers. The objective function for this case is formulated on the basis of

Table 1, Design Table for Shell Stiffened with Interior Ring Stiffeners. Skin Ylelding Formulation,

Material of Construction - Conventional Steel.

Operating Depth $1000 \mathrm{ft} .$	$\begin{gathered} \nu \\ 0.3000 \end{gathered}$	$\begin{gathered} \sigma_{\mathrm{y}} \\ 60,000 \mathrm{psi} \end{gathered}$	1147.78781
Z	h	$\bar{\lambda}_{\text {yy }}$	\bar{W}
1800.0	. 94440	. 45158	1.41305
1775.0	. 95770	. 42304	1.40291
1750.0	. 97138	. 39522	1.39326
1725.0	. 98546	.36807	1.38405
1700.0	. 99995	.34156	1.37528
1675.0	1.01488	. 31565	1.36690
1650.0	1.03025	. 29029	1.35891
1625.0	1.04610	. 26547	1.35128
1600.0	1.06245	. 24114	1.34399
1575.0	1.07931	. 21729	1.33703
1550.0	1.09672	. 19388	1.33038
1525.0	1.11470	. 17089	1. 32404
1500.0	1.13328	. 14830	1.31797
1475.0	1. 15249	. 12609	1.31218
1450.0	1.17236	. 10424	1.30665
1425.0	1.19293	. 08272	1.30137
1400.0	1.21423	. 06153	1.29633
1350.0	1.25920	. 02004	1.28693

Figure 3. Design Chart for Internally Ring Stiffened Shell Skin Yielding Formulation, Conventional Steel Operating Depth $=1000$ feet.

Table 2. Design Table. Shell Stiffened with Interior RingStringer Stiffeners. Skin Yielding Formulation.

Material of Construction - Conventional Steel.

yielding of skin. On comparing this result with corresponding case under general instability formulation, one notices that an improvement of about 4 percent in weight is realized.

Comparing the weight of ring stiffened shell to that of T-ring and rectangular stringer stiffened shell; it is found that the latter shows an improvement of about 13 percent in weight over the former. This is an appreciable saving in weight, indicating that one cannot ignore the importance of providing stringers without having a closer look at their contribution to the overall strength of the shell under hydrostatic pressure.

The results obtained by Pappas and Allentuch [18] are given in Table 3 along with the present results. The results indicate that, for ring stiffened shell, the minimum weight obtained in the present case is about 18.8 percent better than that of Pappas and Allentuch. One must, however, note that improved constraint equations are used in the present study. If, on the other hand, the comparison is made with respect to the best results obtained in the present case, the improvement in the weight is of the order of 34.3 percent.

The results of Pappas and Allentuch indicate that two or more failure modes occur simultaneously. This has been avoided, in the present results (see Table 3). It is possible, in most cases, to avoid simultaneous occurrence of failure modes, without any increase in the welght; just by adjusting various design variables. In some isolated cases, however, the failure mode interaction can be avoided only by increasing the weight of the shell. The present methodology enables one to achieve this with least weight penalty.

Table 3. Design Results. Shell Stiffened with Interior Stiffeners.

	Skin Yielding Formulation		General Instability Formulation		$\begin{aligned} & \text { Reference } \\ & {[18]} \end{aligned}$
	TR	TR-RS	RR-RS	TR-RS	
W $\mathrm{lb} / \mathrm{in}$	530.2	469.1	495.7	488.0	629.8
h in	1.13328	1.06245	1.00000	1.00000	1.0631
$d_{w r} \quad$ in	11.62590	12.88152	14.50000	11.34493	13.9570
$t_{\text {wr }}$ in	.64580	. 33052	. 42934	. 28892	. 7754
b_{fr} in	3.48777	6.44076		5.67246	9.7698
$\mathrm{t}_{\text {fr }}$ in	. 64580	. 33052	-........	. 28892	. 7754
l_{r} in	23.76000	22.84615	16.50000	13.20000	22.8460
$\mathrm{d}_{\text {st }}$ in	-••••••	2.65612	10.00000	3.00000	
$\mathrm{t}_{\text {st }}$ in		. 16669	. 46056	. 19000	
$l_{\text {st }} \ldots$ in	22.20428	73.14352	13.08884	$\cdots \cdots$
GB	. 91459	.94733	. 96960	.96967	.3780
m, n	$1 ; 3$	1,3	1,3	1. 3	. $\cdot \cdots \cdot \cdots$
PB	. 99228	. 89584	$\bigcirc 15920$.27763	1.0000
m_{p}, n_{p}	1 , 18	1,23	1,81	1 , 49
SKB	-•......	. 92057	. 84593	. 35695
RB	.29038	. 99607	. 89475	. 85093	1.0000
STB 88892	. 99269	. 88626	-......
SKY	1.00000	1.00000	. 99365	. 99769	. 9940
RY	. 80922	. 93961	. 91922	. 92090	. 6570
STY	-•••••	.34646	.37655	.38247

Figure 4. Determination of Optimum Skin Thickness. Internally TR Stiffened Shell, Operating Depth $=$ 1000 feet. Skin Yielding Formulation, Conventional Steel.

Figure 5. Determination of Optimum Skin Thickness. Internally RR-RS Stiffened Shell, Operating Depth $=1000$ feet. General Instability Formulation, Conventional Steel.

Figure 6. Determination of Optiman Skin Thicknessi Internaily TR-RS Stiffened Shell, Operating Depth $=1000$ feet. General Instability Formulation, Conventional Steel.

Figure 7. Determination of Optimum Ring Shape Parameter. Internaliy TR-RS Stiffened Shell, Operating Depth = 1000 feet. General Instability Formulation, Conventional Steel.

An observation of Table 3 indicates that the general instability coefficient is not equal to unity for the results obtained on the basis of general instability formulation. This is due to the fact that the parameter $\beta\left(=\frac{\mathrm{nL}}{\pi \mathrm{R}}\right)$ which minimizes $\overline{\mathrm{k}}_{\mathrm{yy}}$ does not necessarily yield integer value, of n. In some cases, for example, minimizing value of β yield, $n=3.2$. In such cases, $\bar{k}_{y y}$ is calculated for $n=3$ and $n=4$ and the least of these two values is taken as $\bar{k} y y c r$. This value is always alightly greater than the one obtained for $n=3.2$. This is the reason for $G B$ being less than unity,

The effect of the ring shape on the weight of the shell is studied by varying the value of parameter C. This study indicates that of all the shapes considered, T-rings prove to be most effective. Figure 7 shows the effect of varying parameters A_{y} and B_{y} (therefore C_{y}) on the weight of the shell. It helps in determining the optimum T-rings. It is obvious from the Figure 7 that the weight of the shell is not very sensitive to the variations of A_{y} and B_{y} (or C_{y}). This suggests that there is a large number of T-rings having different web depth to flange width ratio, and web thickness to flange thickness ratio, which give almost the same weight of the shell.

A similar study was conducted for stringers also. The results indicate that a rectangular shaped stringer is most effective. T-stringers give slightly higher weight. This phenomenon is understandable in the sense that the major contribution of the stringers is in strengthening the shell against panel buckling. Since local buckling of the stringers itself is not a critical failure mode, the shape of the stringer does not play a major role in reducing the

Table 4. Design Table. Shell Stiffened with Interior Ring Stiffeners. Skin Yielding Formulation

Material of Construction - Conventional Steel

Operating Depth 3000 feet	v 0.300	$\begin{gathered} \sigma_{\mathrm{y}} \\ 60,000 \mathrm{psi} \end{gathered}$	$\begin{gathered} 0^{*} \\ 382.59594 \end{gathered}$
Z	h	$\bar{\lambda}_{\text {yy }}$	$\bar{W} \times \mathrm{h}$
875.0	1.94277	3.90202	10.27321
850.0	1.99991	2.56034	7.62677
825.0	2.06051	1.99755	6.58355
800.0	2.12490	1.64261	5.96049
775.0	2.19344	1.38463	5.53093
750.0	2.26656	1.18232	5.21139
725.0	2.34472	1.01585	4.96217
700.0	2.42846	. 87424	4.76149
675.0	2.51840	. 75077	4.59612
650.0	2.61526	$\therefore .64104$	4.45754
625.0	2.71987	. 54203	4.33992
600.0	2.83320	. 45158	4.23914
575.0	2.95630	. 36807	4.15216
550.0	3.09076	. 29029	4.07673
525.0	3.23794	. 21729	4.01110
500.0	3.39984	.14830	3.95391
475.0	3.57878	. 08272	3.90410

Figure 8. Design Chart for Internally Ring Stiffened Shell. Skin Yielding Formulation, Conventional Steel.
Operating Depth $=3000$ feet.

Table 5. Design Table. Shell Stiffened with Interior Ring-Stringer Stiffeners. Skin Yielding Formulation.

Material of Construction - Conventional Steel

Operating Depth 3000 feet		$\begin{gathered} \sigma_{\mathrm{y}} \\ 60,000 \mathrm{psi} \end{gathered}$		$\begin{gathered} \sigma^{*} \\ 382.59594 \end{gathered}$
Z	h	${ }^{-1}$	$\bar{\lambda}_{\text {yy }}$	$W^{*}=\tilde{W} \times h$
500.0	3.39984	. 02739	.14701	4.05138
525.0	3.23794	. 01320	. 21616	4.05403
550.0	3.09076	. 00882	. 28909	4.10255
575.0	2.95638	.00881	. 36628	4.17494
600.0	2.83320	. 00406	. 45037	4.24801
625.0	2.71987	. 00297	.54078	4.34507
650.0	2.61526	. 01551	. 63230	4.47701
675.0	2.51840	.00761	. 74470	4.60036
700.0	2.42846	. 03036	. 84310	4.75941
725.0	2.34472	. 06291	. 93537	4.91687

weight of the shell. It is, therefore, decided to study only the rectangular stringers in the remaining cases.

The results of the design studies for an operating depth of 3000 feet, using conventional steel are given in Table 6. The governing critical mode of failure in this case is yielding of the skin. This mode of failure controls the design of the shell. Relatively large thickness of the skin is needed for preventing the stresses in the skin from exceeding the permissible level. As stated in Chapter III, for ring stiffened shells, the ring spacing is determined from the panel buckling criterion. However, in the present case, if the ring spacing is determined based on this failure mode, one finds that it results in very wide ring spacing. The widely spaced ring stiffened shell either failed in general instability or was of higher weight than the one with closely spaced rings. This suggests that panel buckling mode is not critical in the sense that one can disregard it temporarily. This means that the ring spacing obtained for the design that satisfies all the constraints except the panel buckling is much smaller than the one reguired by panel buckling constraint. In order to find the best ring spacing, a plot is made for the number of rings versus weight of the shell. Figure 9 shows such plots. The optimum number of rings (or ring spacing) is then found from such plots.

The results given in the Table 6 show that least weight is obtained for ring stiffened geometry under skin yielding formulation. Comparing with the results of Pappas and Allentuch, given in the same Table, one observes an improvement of about 5 percent in weight in the

Table 6. Design Results. Shell Stiffened with Interior Stiffeners.

		Skin Yielding Formulation		General Instability Formulation		$\begin{gathered} \text { Reference } \\ {[18]} \end{gathered}$
		TR.	TR-RS	RR-RS	TR-RS	
W	1b/in	1387.2	1405.3	1414.2	1394.2	1456.0
h	in	3.39984	3.39984	3.23794	3.23794	3.20420
d_{wr}	in	12.68345	13.24957	14.89452	11.80754	17.93300
${ }_{\text {t }}^{\text {wr }}$	in	. 70464	. 36478	.67036	.61154	. 99630
b_{fr}	in	6.34173	6.62478		4.72301	12.55300
t_{fr}	in	. 70464	.3647861154	. 99630
ℓ_{r}	in	22.00000	13.20000	13.20000	13.20000	28.28600
$\mathrm{d}_{\text {st }}$	in		5.09976	11.00899	7.12346	
$\mathrm{t}_{\text {st }}$	in		. 26263	.46216	. 34398	
$\ell_{\text {st }}$	in	- $\quad .$.	13.08884	54.06260	95.64923'
$G B$. 96942	. 98113	. 97920	.97910	. 37400
m		1,3	1,3	1,3	1,3	-••••
PB		. 11571	. 03112	. 02614	. 04160	. 16700
m_{p},	n_{p}	1 , 9	1,30	1. , 45	1 , 22	. \cdot.
SKB			. 02980	.04856	. 05585
RB		. 34835	. 52999	. 28312	. 14185	. 99800
STB		.	. 86934	. 91623	. 89856	\ldots
SKY		. 99998	1.00000	1.00171	1.00096	1.00000
RY		. 97075	. 95856	. 94783	. 94392	. 88400
STY		.	. 29883	. 33873	. 33924	

Figure 9. Determination of Optimum Ring Spacing. Internally TR Stiffened Shell, Operating Depth $=3000$ feet. Skin Yielding Formulation, Conventional Steel.

Figure 10. Determination of Optimum Skin Thickness. Internally TR Stiffened Shell, Operating Depth $=3000$ feet. Skin Yielding Formulation. Conventional Steel.

Figure 11. Determination of Optimum Skin Thickness. Internally RR-RS Stiffened Shell, Operating Depth $=3000$ feet. General Instability Formulation, Conventional Steel.

Figure 12. Determination of Optimum Skin Thickness. Internally TR-RS Stiffened Shell, Operating Depth $=3000$ feet. General Instability Formulation, Conventional Steel.

Figure 13. Determination of Optimum Ring Shape Parameter. Internally TR-RS Stiffened Shell. Operating Depth = 3000 feet. General Instability Formulation, Conventional Steel.
present case. It is also observed that the weight obtained in the case of ring-stringer stiffened shell is almost the same as in the case of ring stiffened geometry; the former being higher by about 1 percent. This indicates that the stringers are not effective in the present case. The reason is obvious, because neither general instability nor panel buckling is a critical mode of failure in the present case; therefore, stiffening by stringers does not show any improvement in the weight of the shell.

The design studies made under case 3 demonstrate the significance of using high strength steel. The results are given in the Table 7 . The skin thickness obtained in this case is reduced to less than half the thickness required for the same depth when conventional steel is used. The governing critical mode of failure for this case is general instability. The skin ylelding does not control the design.

Comparing the least weight obtained in the present case with that obtained for the same operating depth, refer Table 6, one observes that employing high strength steel enables reduction in the weight of 68.6 percent. This is significant weight saving, particularly so, for the submarine hulls, where adequate buoyancy is necessary for large depth operation. One must, however, take into account the cost and fabrication problems before assessing the advantages obtainable by the use of high strength steel.

Since panel buckling and the general instability are important modes of failure in controling the desig, stiffening in the longitudinal direction proves to be helpful in reducing the weight. It is observed during the course of present investigation that stiffening

Table 7. Design Results. Shells Stiffened with Interior Stiffeners.

$$
\text { Operating Depth }=3000 \text { feet } \quad \sigma_{y}=120,000 \text { psi }
$$

Formulation Based on General Instability					Reference [18]
		TR	RR-RS	TR-RS	
W	$\mathrm{lb} / \mathrm{in}$	821.7	848.3	772.7	979.8
h	in	1.78939	1.41660	1.41660	1.45600
d_{wr}	in	15.49656	17.70750	15.33515	18.30700
$t_{\text {wr }}$	in	. 65296	.94687	. 41284	1.01710
b_{fr}	in	7.74828	7.66758	12.81500
$t_{\text {fr }}$	in	. 65296 41284	1.01710
ℓ_{r}	in.	24.75000	17.47058	13.20000	21.21400
$\mathrm{d}_{\text {st }}$	in	9.91620	8.49960
${ }^{\text {t }}$ st	in 76968	. 57950	
$\ell_{\text {st }}$	in	. $\cdot .$.	62.17200	38.85720	. \cdot. ${ }^{\text {a }}$
GB		. 99999	1.00000	1.00000	. 51800
m,		I, 3	1,3	- 1,3	1,3
PB		. 89259	. 21986	. 13977	1.00000
m_{p},		1,14	1 , 69	1,85**
SKB	-	. \cdot.	. 95752	. 54165
RB		. 98629	. 96160	. 83695	1.00000
STB	 86322	. 93656	. 0.
SKY		. 91628	. 91808	. 98447	. 97700
RY		. 79052	. 80143	. 89137	. 63700
STY			. 43853	. 41253	-••••

Figure 14. Determination of Optimum Skin Thickness. Internally TR Stiffened Shell, Operating Depth $=3000$ feet. General Instability Formulation, High Strength Steel.

Figure 15. Determination of Optimum Skin Thickness. Internally RR-RS Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel.

Figure 16. Determination of Optimum Skin Thickness. Internally TR-RS Stiffened Shell, Operating Depth $=3000$ feet; General Instability Formulation, High Strength Steel.

Figure 17. Determination of Optimum Ring Shape Parameter. Internallly IR-RS Stiffened Shell, Operating Depth = 3000 feet, General Instability Formulation, High Strength Steel.
with the stringers changes buckling mode from $m \neq 1$ to $\mathrm{m}=1$. This is also pointed out by Singer and Baruch [31] in connection with the effectiveness of the longitudinal stiffening for shells subject to hydrostatic pressure.

The results in the Table 7 indicate that the least weight is obtained when the shell is stiffened with T-rings and rectangular stringers. This weight shows an improvement of 7 percent over the weight of the shell when it is stiffened with rings only. Instead of T-rings if rectangular rings are used along with rectangular stringers, the weight obtained is 10 percent higher.

The results of Pappas and Allentuch are given in Table 7 for comparison purposes. On comparing their results with the present results, the ring stiffened geometry shows an improvement of 19.2 percent in weight in the present case. On the other hand the ringstringer stiffened geometry shows an improvement in weight of 26.8 percent.

The results of using exterior stiffeners are given in the Table 8 and Figure 18. On comparing these results with the corresponding cases under Case 3 where interior stiffeners are used, it is noted that for ring stiffened shells interior stiffening yields 2 percent better weight, whereas T-ring and stringer stiffened shell shows an improvement of about 9 percent. The weight difference in the case of shells stiffened with rectangular rings and stringers is about 1 percent; the internal stiffening being better. Apart from the weight considerations, the location of stiffeners may depend on practical considerations aiso. If no such restriction is imposed, then the

Table 8. Design Results. Shell Stiffened with Exterior Stiffeners.

General Instability Formulation

Operating Depth $=3000$ feet $\quad \sigma_{y}=120,000 \mathrm{psi}$

		TR	RR-RS	TR-RS
W	$1 \mathrm{l} / \mathrm{in}$	833.9	858.5	840.8
h	in	1.61897	1.41660	1.41660
$\mathrm{d}_{w r}$	in	15.70319	19.83240	16.19392
$\mathrm{t}_{\text {wr }}$	in	. 67049	. 72119	. 38993
b_{fr}	in	7.85159	8.09696
${ }^{\text {fir }}$	in	. 67049 38993
l_{r}	in	21.21428	18.00000	13.20000
$\mathrm{d}_{\text {st }}$	in	14.16600	8.49960
tst	in 83806	. 55339
$l_{s t}$	in	51.81000	19.12984
$G B$		1.00000	1.00000	1.00000
m,		1,3	1,3	1 ; 3
PB		. 91936	. 12981	. 10462
m_{p},		1 , 15	1., 95	1 ,102
SKB		-••••	. 96905	. 44050
RB		.97826	. 94766	. 94523
STB	 95861	. 95485
SKY		. 96284	. 95425	. 97749
RY		. 80513	. 86627	. 89805
STIY	 39545	. 38354

Figure 18. Determination of Optimum Skin Thickness. Externally TR-RS Stiffened Shell, Operating Depth = 3000 feet, General Instability Formulation, High Strength Steel.
internally stiffened shell, for the geometries considered in this study, is better.

The effect of varying L / R ratio, or in other words the effect of locating the heavy bulkheads on the weight of the shell has been studied in Case 5. The ratio is varied from one through five and the results are given in Tables 9 and 10 along with Figure 19-27. The results show that as the L / R ratio increases the weight per unit length also increases. However, it may be noted that this weight does not include the weight of the bulkheads. Therefore, for proper estimate of the weight, one must account for the weight of bulkheads, to arrive at the best L / R ratio which yields the least weight.

Certain functional reguirement might override this phase of the study. That is, if L / R ratio is prespecified due to any practical considerations, it is not necessary to undertake this study. on the other hand if no such limitations are imposed, the results of this study help in arriving at the best ratio.

The results of this study indicate that for $L / R=1$, the weight of the ring stiffened shell is 1.3 percent higher than that of the ring-stringer stiffened shell. This difference increases with the increasing L / R ratio. For $L / R=5$, the difference is about elght percent. This indicates that stringers are more effective for higher L / R ratios. The results of Tables 9 and 10 indicate further, that the depth of the rings required for the minimum weight increases with increasing L / R ratio. This is another controlling factor in deciding for the most suitable L / R ratio.

The minimum weight design results for the case of the shell

Table 9. Design Results. Influence of Varying L / R Ratio on Minimum Weight. Shell Stiffened with Interior IR Stiffeners.

General Instability Formulation
Operating Depth $=3000$ feet $\quad \sigma_{y}=120,000 \mathrm{psi}$

$\mathrm{L} / \mathrm{R} \rightarrow$	1	2	3	4	5
W $\quad \mathrm{lb} / \mathrm{in}$	739.5	784.8	821.7	885.5	930.9
h . in	1.88880	1.77769	1.78939	1.75193	1. 74889
d_{wr} in	10.30522	14.00970	15.49656	18.51003	19.68956
$t_{w r}$ in	. 48927	. 61032	. 65296	.76315	. 83851
b_{fr} in	5.15261	7.00485	7.74828	9.25502	9.84478
$t_{\text {fr }} \therefore$ in	. 48927	. 61032	. 65296	.76315	. 83851
l_{r} in	28.28571	24.75000	24.75000	24.75000	24.75000
GB	. 97105	. 99983	.99999	. 99989	1.00000
$n \mathrm{n}, \mathrm{n}$	5, 6	1 1, 3	1 , 3	1 , 2	1,2
PB	.94774	. 90915	. 89259	. 94710	. 95171
$\mathrm{m}_{\mathrm{p}}, \mathrm{n}_{\mathrm{p}}$	1,14	1. , 14	1 , 14	1,14	1,15
RB	. 87198	. 96736	. 98629	.94444	. 83844
SKX	. 94545	. 93793	. 91628	. 90585	. 89414
RY	. 88734	. 82881	. 79052	. 72475	.68647

Figure 19. Determination of Optimum Skin Thickness. Internaily TR Stiffened She11, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel.

Figure 20. Determination of Optimum Skin Thickness. Internally TR Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Stee1.

Figure 21. Determination of Optimum Skin Thickness Internally TR Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel.

Figure 22. Determination of Optimum Skin Thickness Internally TR Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel.

Table 10. Design Results. Influence of Varying L/R Ratio on Minimum Weight. Shell Stiffened with Interior TR-RS.

General Instability Formulation
Operating Depth $=3000$ feet $\quad \sigma_{y}=120,000$ psi

Figure 23. Determination of Optimum Skin Thickness. Intermally TR-RS Stiffened Shell; Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel.

Figure 24. Determination of Optimum Skin Thickness. Internally TR-RS Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel.

Figure 25. Determination of Optimum Skin Thickness. Internally TR-RS Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel.

Figure 26. Determination of Optimum Skin Thickness. Internally TR-RS Stiffened Shell, Operating Depth $=3000$ feet, General Instability Formulation, High Strength Steel.

Figure 27. Influence of L / R on Minimum Weight Design. Internally TR, and TR-RS Stiffened Shell. Operating Depth $=$ 3000 feet. General Instability Formulation, High Strength Steel.
subjected to the combined load (small axial compression combined with predominant hydrostatic pressure) are given in the Table 11 and Figure 28. The weight of the shell is higher than the corresponding case under hydrostatic pressure. The formulation is based on general instability. The skin thickness needed for this case is higher than the thickness needed for the shell with only hydrostatic pressure. The stringers are undoubtedly important for the present case. The design charts reveal that the weight of the shell is reduced significantly, when the stringers are of such proportion as to change the buckling mode from $m \neq 1$ to $m=1$.

A general type of observation that is made during the present investigation refers to the determination of the optimum thickness of the skin or value of Z. The curves Z (or h) versus W in all the cases are relatively flat. This implies that there is sufficiently large range of skin thicknesses that give almost the same weight. This suggests that it is not necessary to determine very precisely the value of skin thickness which corresponds to minimum weight. The value of skin thickness in the neighbourhood of the minimum exhibited by the curve may be taken as optimum skin thickness.

The other observation is in connection with selecting the type of the formulation to be used for the objective function. The studies reveal that the selection primarily depends on the type of steel or material that is used for construction and the operating or design depth (or hydrostatic pressure, whichever is specified). For 1000 feet operating depth, it is observed that the two formulations (general instability and skin yielding), yield weights that differ by about

Table 1l. Design Results for the Shell Subject to Combined Load. ($\overline{\mathrm{N}}=.2 \mathrm{qR}$)
Shell Stiffened with Interior, TR-RS General Instability Formulation.

Figure 28. Determination of Optimum Skin Thickness. Axial Compression Combined with Hydrostatic Pressures. Internally TR-RS Stiffened Shell, High Strength Steel. General Instability Formulation. Operating Depth $=3000$ feet, $\widehat{\mathrm{N}}=.2 \mathrm{gR}$.
four percent. If the shell is designed for higher operating depth, skin yielding takes over and the formulation must be based on skin yielding. This is true if conventional steel is used. One can, therefore, say that general instability formulation may be used for the operating depths of lower than 1000 feet and skin yielding formulation for higher depths.

If, on the other hand; high strength steel is used, general instability governs the design up to sufficiently hịgh operating depths. From this study it is not possible to say what that upper limit is.

The plot of h is W and C versus W together with the choice of selecting from different design configurations corresponding to the same minimum weight provide important information to carry out trade-off studies. For example, if the minimum weight design configuration requires skin thickness which is difficult or expensive to manufacture, one can study and investigate easily the alternative neighbouring design configuration and make a compromise between the weight penalty and the cost.

CHAPIER V

CONCLUSIONS AND SUGGESTIONS

Conclusions

The main conclusions of the present investigation are

1. The objective function formulated on the basis of an active mode of failure (skin yielding or general instability in the present case) and accomplishing solution in two phases effectively leads to the minimum weight design. In addition, it enables a designer for carrying out important trade-off studies to arrive at practical minimum weight configurations.
2. On the basis of phase I, one can easily assess the need for stiffening in both directions for different shapes of stiffeners.
3. The present approach gives a designer full control over the design variables and it enables him to introduce needed changes or avoid interaction of fallure modes by paying the least penalty in weight.
4. The minimum weight design is not unique. This implies that for a given level of the specified parameters the design variables can be adjusted so as to give several acceptable designs for the same weight.
5. The studies indicate that T-rings are most effective
among all the shape's of stiffeners investigated. The ratios of flange width to web depth and flange thickness to web thickness does not appreciably affect the weight.
6. The curve for determining optimum skin thickness is relatively flat. Therefore, very precise determination of z (or h) is not necessary for minimum weight design. This information is . an important asset for the designer, as it enables him a wide choice in selecting skin thickness.
7. The use of high strength steel enables appreciable weight savings; but this aspect should be studied along with the cost and fabrication problems.
8. In certain cases stringers do help in saving weight. A designer must evaluate the cost of providing these stiffeners against the weight saving.
9. The weight of the shellincreases with increasing L / R ratio. However, no account of the weight of heavy bulk heads is made In these computations. This study is more of qualitative than quantitative nature.
10. The interior stiffening proves to be better for the geometries considered in the present study.

Suggestions

The following suggestions are made for the future work

1. Minimum weight design of shells of shapes other than circular cylindrical.
2. Combined load case needs further study to investigate the entire pattern of interaction of these two loads viz. uniform hydrostatic pressure and axial compression.
3. Minimum weight design of stiffened cylindrical panels is
of significant importance.
4. Most important extension of the present work is to include cost factor.

APPENDIX A

ANALYSIS OF STIFFENED CIRCULAR CYLINDRICAL SHELLS

In this appendix all the equations needed to analyze the stiffened cylinders under hydrostatic pressure and axial compression are presented. These include the general instability analysis of the cylinder as well as the buckling, stress and yield analyses of the skin and stiffeners.

The expression for the general instability failure mode of the stiffened cylinder is derived using Donnell's equations and smearing technique. An investigation for determining the accuracy obtainable from the Donnell's equations was carried out prior to undertaking the present work. The results of this investigation for uniform thin cylinders under lateral loading are given in Appendix. D. It is indicated that the values obtainable by the Donnell's equations are within the acceptable engineering tolerances, especially in the practical range of R / h and L / R ratios. The comparison was made with the results obtained by Budiansky's equations.

The main assumptions for the stability analysis of the stiffened cylinders are

1. The shell is thin
2. The deflections are small
3. Rotations about normal are much smaller than the rotations about in-plane axes.
4. Normals to the reference surface before deformation remain

Figure Al. Geometry of Shell.

Figure A2. Sign Convention and Force Resultants:
normal to the reference surface after deformation; and they are inextensional.
5. The stiffeners are distributed or 'smeared' over the whole surface of the shell.
6. The stiffeners are along the directions of principal curvatures.
7. The connections of stiffeners to the skin are monolithic.
8. The stiffeners do not transmit shear. The shear is carried entirely by skin.
9. The stiffeners are torsionally weak.

Strain-Displacement Relations

The midsurface of the skin is taken as the reference surface. The coordinate system and sign convention are shown in Figure Al and A2 respectively. Let u^{1}, v^{1}, and w^{l} be the additional displacements in x, y and z directions respectively, reguired to bring the membrane state to the classical buckling state. The strain, curvature changes and rotations are given by

$$
\begin{aligned}
& \epsilon_{x}=\epsilon_{x x}+z \kappa_{x x} \\
& \varepsilon_{y}=\varepsilon_{y y}+z \kappa_{y y} \\
& \gamma=\gamma_{x y}+2 z x_{x y} \\
& \varepsilon_{x x}=\frac{\partial u^{l}}{\partial x} \\
& \varepsilon_{y y}=\frac{\partial v^{1}}{\partial x}+\frac{w^{1}}{R}
\end{aligned}
$$

$$
\begin{align*}
y_{x y} & =\frac{\partial u^{1}}{\partial y}+\frac{\partial v^{1}}{\partial x} \\
x_{x x} & =-\frac{\partial^{2} w^{1}}{\partial x^{2}} \\
x_{y y} & =-\frac{\partial^{2} w 1}{\partial y^{2}} \\
x_{x y} & =-\frac{\partial^{2} w^{1}}{\partial x \partial y} \\
\varphi_{x} & =-\frac{\partial w^{1}}{\partial x} \\
\varphi_{y} & =-\frac{\partial w^{1}}{\partial y} \tag{Al}
\end{align*}
$$

Stress-Strain Relations

The stress-strain relations, based on the assumption that skin is in biaxial state of stress, are:

$$
\begin{align*}
& \sigma_{x x s k}=\frac{E}{1-v^{2}}\left(\varepsilon_{x x}+v \varepsilon_{y y}\right) \\
& \sigma_{y y s k}=\frac{E}{1-v^{2}}\left(\varepsilon_{y y}+v \varepsilon_{x x}\right) \\
& \tau_{x y s k}=G \gamma_{x y} \tag{A2}
\end{align*}
$$

The stiffeners are assumed to be in uniaxial state of stress, so that the stress-strain relations for longitudinal and circumferential stiffeners are:

$$
\begin{align*}
& \sigma_{\mathrm{xxst}}=\mathrm{E}_{\mathrm{st}} \varepsilon_{\mathrm{xx}} \\
& \sigma_{\mathrm{yyr}}=\mathrm{E}_{\mathrm{r}} \varepsilon_{\mathrm{yy}} \tag{A2b}
\end{align*}
$$

Stress and Moment Resultants
The stress and moment resultants per unit length are obtained by performing integration of stresses over the thickness of the skin and then adding to these the corresponding stress and moment resultants per unit length in the stiffeners. Based on the assumption that the stiffeners are distributed over the whole surface, the stress and moment resultants per unit length in the stiffeners are obtained by dividing the resultant stress and monent by the stiffener spacing.

The stress resultants are:

$$
N_{x x}=\int_{-h / 2}^{h / 2} \sigma_{x x s k} d z+\frac{1}{l_{s t}} \int_{A_{s t}} \sigma_{x x s t} d A_{s t}
$$

$$
N_{y y}=\int_{-h / 2}^{h / 2} \sigma_{y y s k} d z+\frac{1}{l_{r}} \int_{A_{r}} \sigma_{y y r}{ }^{d A}{ }_{r}
$$

$$
N_{x y}=\int_{-h / 2}^{h / 2} \tau_{x y s k} d z
$$

and moment resultants are

$$
\begin{align*}
& M_{x x}=\int_{-h / 2}^{h / 2} z \sigma_{x x s k} d z+\frac{1}{\ell_{s t}} \int_{A_{s t}} z \sigma_{x x s t} d A_{s t} \\
& M_{y y}=\int_{-h / 2}^{h / 2} z \sigma_{y y s k} d z+\frac{1}{l_{r}} \int_{A_{r}} z \sigma_{y y r} d A_{r} \\
& M_{x y}=\int_{-h / 2}^{h / 2} z T_{x y s k} d z+\frac{(G J)_{s t}}{l_{s t}} x_{x y} \\
& M_{y x}=\int_{-h / 2}^{h / 2} z \tau_{x y s k}^{d z+\frac{(G J)_{r}}{l_{r}} x_{y x}} . \tag{A3}
\end{align*}
$$

Substituting Equations (A1) and (A2) in Equation (A3) and performing appropriate integrations, one gets

$$
\begin{aligned}
& N_{x x}=\frac{E h}{\left(1-v^{2}\right)}\left(\varepsilon_{x x}+v \varepsilon_{y y}\right)+\frac{E_{s t}^{A}}{l_{s t}} \epsilon_{x x}+\frac{E_{s t} A_{s t}}{l_{s t}} e_{s t} \kappa_{x x} \\
& N_{y y}=\frac{E h}{\left(1-v^{2}\right)}\left(\nu \varepsilon_{x x}+\varepsilon_{y y}\right)+\frac{E_{r} A_{r}}{\ell_{r}} \epsilon_{y y}+\frac{E_{r} A_{r}}{l_{r}} e_{r} x_{y y} \\
& N_{x y}=G Y_{x y}
\end{aligned}
$$

and

$$
M_{x x}=\frac{E h^{3}}{12\left(1-v^{2}\right)}\left(x_{x x}+v x_{y y}\right)+\frac{E_{s t} A_{s t}}{l_{s t}} e_{s t} \varepsilon_{x x}
$$

$$
\begin{align*}
& +\frac{E_{s t}}{l_{s t}}\left(I_{s t c}+e_{s t}^{2} A_{s t}\right) u_{x x} \\
& M_{y y}=\frac{E h^{3}}{12\left(1-v^{2}\right)}\left(\nu x_{x x}+\kappa_{y y}\right)+\frac{E_{r} A_{r}}{l_{r}} e_{r} \varepsilon_{y y} \\
& +\frac{E_{r}}{l_{r}}\left(I_{r c}+e_{r}^{2} A_{r}\right) x_{y y} \\
& M_{x y}=\frac{E^{3}}{12(1+\nu)} x_{x y}+\frac{(G J)_{s t}}{l_{s t}} x_{x y} \\
& M_{y x}=\frac{E^{3}}{12(1+\nu)} x_{y x}+\frac{(G J)_{r}}{l_{r}} x_{y x} \tag{A4}
\end{align*}
$$

since stiffeners are assumed to be torsionally weak

$$
M_{x y}=M_{y x}=\frac{\mathrm{En}^{3}}{12(1+\nu)} x_{x y}
$$

A set of new parameters, described below, are introduced

$$
\begin{aligned}
& E_{x x p}=E_{y y p}=E h /\left(1-\nu^{2}\right) \\
& E_{x x s t}=E_{s t} A_{s t} / l_{s t} \\
& E_{y y r}=E_{r} A_{r} / l_{r} \\
& G \quad=E n / 2(l+\nu) \\
& E_{x x}=E_{x x p}+E_{x x s t}
\end{aligned}
$$

$$
\begin{align*}
& E_{y y}=E_{y y p}+E_{y y r} \\
& D_{x x p}=D_{y y p}=E^{3} / 12\left(1-\nu^{2}\right) \\
& D_{x x s t}=E_{s t} I_{s t c} / \ell_{s t} \\
& D_{y y r}=E_{r} I_{r c} / \ell_{r} \\
& D_{x y}=(1-\nu) D_{x x p} \\
& D_{x x}=D_{x x p}+D_{x x s t} \\
& D_{y y}=D_{y y p}+D_{y y r} \tag{A5}
\end{align*}
$$

Substituting these new parameters in Equation (A4), the stress and moment resultants relations become

$$
\begin{align*}
& N_{x x}=E_{x x} \epsilon_{x x}+\nu E_{x x p} \epsilon_{y y}+e_{s t} E_{x x s t} \varkappa_{x x} \\
& N_{y y}=\nu E_{y y p} \epsilon_{x x}+E_{y y} \epsilon_{y y}+e_{r} E_{y y r} \varkappa_{y y} \\
& N_{x y}=G \gamma_{x y} \\
& M_{x x}=\left(D_{x x}+e_{s t}^{2} E_{x x s t}\right) n_{x x}+\nu D_{x x p} n_{y y}+e_{s t} E_{x x s t} \varepsilon_{x x} \\
& M_{y y}=\nu D_{y y p} n_{x x}+\left(D_{y y}+e_{r}^{2} E_{y y r}\right) x_{y y}+e_{r} E_{y y r} \varepsilon_{y y} \\
& M_{x y}=D_{x y} n_{x y} \tag{A6}
\end{align*}
$$

Buckling Analysis

The buckling equations, based on the Donnell's theory are

$$
\begin{align*}
& \frac{\partial N_{x x}^{1}}{\partial x}+\frac{\partial N_{x y}^{1}}{\partial y}=0 \\
& \frac{\partial N_{x y}^{1}}{\partial x}+\frac{\partial N_{y y}^{1}}{\partial y}=0 \\
& \frac{\partial^{2} M_{x x}^{1}}{\partial x^{2}}+\frac{\partial^{2} M_{y y}^{1}}{\partial y^{2}}+2 \frac{\partial^{2} M_{x y}^{1}}{\partial x \partial y}+N_{x x}^{0} \frac{\partial^{2} w^{1}}{\partial x^{2}}+N_{y y}^{0} \frac{\partial^{2} w^{1}}{\partial y^{2}} \\
& \quad+2 N_{x y}^{0} \frac{\partial^{2} w^{1}}{\partial x \partial y}-\frac{N_{y y}^{1}}{R}=0 \tag{AT}
\end{align*}
$$

The buckling Equation (A7) can now be written in terms of displacements u^{1}, v^{1}, and w^{1} by using stress-strain and straindisplacement relations. These equations are

$$
\begin{aligned}
& \left(E_{x x} \frac{\partial^{2}}{\partial x^{2}}+G \frac{\partial^{2}}{\partial y}\right) u^{1}+\left[\left(G_{x y}+v E_{y y p}\right) \frac{\partial^{2}}{\partial x \partial y}\right] v^{1} \\
& \quad=\left[\left(q-\frac{v}{R} E_{y y p}\right) \frac{\partial}{\partial x}+e_{s t} E_{x x s t} \frac{\partial^{3}}{\partial x^{3}}\right] w^{1} \\
& {\left[\left(G_{x y}+v E_{x x p}\right) \frac{\partial^{2}}{\partial x \partial y}\right] u^{1}+\left(E_{y y} \frac{\partial^{2}}{\partial y^{2}}+G \frac{\partial^{2}}{\partial x^{2}}\right) v^{1}} \\
& \quad=\left[\left(q-\frac{E_{y y}}{R}\right) \frac{\partial}{\partial y}+e_{r} E_{y y r} \frac{\partial^{3}}{\partial y^{3}}\right] w^{1} \\
& \left(\frac{\nu}{R} E_{x x p} \frac{\partial}{\partial x}-e_{s t} E_{x x s t} \frac{\partial^{3}}{\partial x^{3}}\right) u^{1}+\left(\frac{E_{y y}}{R} \frac{\partial}{\partial y}-e_{r} E_{y y r} \frac{\partial^{3}}{\partial y^{3}}\right) v^{1}
\end{aligned}
$$

$$
\begin{align*}
& \quad+\left[\left(D_{x x}+e_{s t}^{2} E_{x x s t}\right) \frac{\partial^{4}}{\partial x^{4}}\right. \\
& \quad+2\left(D_{x y}+\frac{\nu}{2} D_{x x p}+\frac{v}{2} D_{y y p}\right) \frac{\partial^{4}}{\partial x^{2} \partial y^{2}} \\
& \quad \\
& \left.\quad+\left(D_{y y}+e_{r}^{2} E_{y y r}\right) \frac{\partial^{4}}{\partial y^{4}}+\frac{E_{y y}}{R^{2}}-2 \frac{e_{r}}{R} E_{y y r} \frac{\partial^{2}}{\partial y^{2}}\right] w^{1} \tag{AB}\\
& =
\end{align*}
$$

These equations are for a stiffened cylinder subject to uniform axial compression, torsion and hydrostatic pressure. The pressure g is assumed to remain normal to the deflected midsurface during the buckling process. This is the true representation of the hydrostatic loading. The prebuckling stress resultants $\mathbb{N}_{x x}^{\circ}, \mathbb{N}_{y y}^{\circ}$ and $N_{x y}^{\circ}$ are given by

$$
\begin{align*}
& N_{x x}^{0}=q R / 2-\bar{N} \\
& N_{y y}^{0}=q R \\
& N_{x y}^{O}=T / 2 \pi R^{2} \tag{A9}
\end{align*}
$$

The following non-dimensional parameters, which help systematize the optimization procedure are introduced

$$
\bar{\lambda}_{x x}=E_{x x s t} / E_{x x p}=E_{s t} A_{s t}\left(1-v^{2}\right) / E n \ell_{s t}
$$

$$
\begin{align*}
& \bar{\lambda}_{y y}=E_{y y r} / E_{y y p}=E_{r} A_{r}\left(1-\nu^{2}\right) / \mathrm{Eh} \ell_{r} \\
& \bar{\rho}_{x x}=D_{x x s t} / D=12 E_{s t} I_{s t c}\left(1-v^{2}\right) / \operatorname{En}^{3} \cdot \ell_{s t} \\
& \bar{\rho}_{\mathrm{yy}}=D_{\mathrm{yyr}} / \mathrm{D}=12 \mathrm{E}_{\mathrm{r}} I_{\mathrm{rc}}\left(1-\nu^{2}\right) / \mathrm{Eh}^{3} \ell_{\mathrm{r}} \\
& \bar{e}_{s t}=\pi^{2} R e_{s t} / L^{2} \\
& \bar{e}_{r}=\pi^{2} R e_{r} / L^{2} \\
& z=L^{2} \cdot \sqrt{1-v^{2}} / R h \\
& \bar{K}_{x x}=\bar{N}^{2} / \pi^{2} D \\
& \bar{k}_{y \mathrm{y}}=\mathrm{qRL} / \pi^{2} \mathrm{D} \\
& \bar{k}_{s}=N_{x y}^{o} L^{2} / \pi^{2} D \tag{AlO}
\end{align*}
$$

It is possible to derive a single higher order DonnellBatdorf type of equetion by eliminating u^{l} and v^{1} in Equation (A8). This has been done in [32]. In terms of the parameters defined in Equation (AlO), the buckling equation reduces to

$$
\begin{align*}
\nabla_{D} w^{1} & +\nabla_{E}^{-1}\left[\frac{1 \partial z^{2}}{1-v^{2}} \nabla_{C}^{w^{I}}-\left(\frac{L}{\pi i}\right)^{2} \bar{k}_{y y} \nabla_{P} w^{1}\right] \\
& =\left(\frac{L}{\pi}\right)^{2}\left[\left(\frac{1}{2} \bar{k}_{y y}-\bar{k}_{x x}\right) \frac{\partial^{2} w^{1}}{\partial x^{2}}+\bar{k}_{y y} \frac{\partial^{2} w^{1}}{\partial y^{2}}+2 \bar{k}_{s} \frac{\partial^{2} w^{1}}{\partial x \partial y}\right] \tag{All}
\end{align*}
$$

where

$$
\begin{align*}
& \nabla_{D}=\left(\frac{I}{\pi}\right)^{4}\left[\left(1+\bar{p}_{x x}\right) \frac{\partial^{4}}{\partial x^{4}}+2 \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}+\left(1+\bar{p}_{y y}\right) \frac{\partial^{4}}{\partial y^{4}}\right] \\
& \nabla_{E}=\left(\frac{L}{\pi}\right)^{4}\left[\left(1+\bar{\lambda}_{x x}\right) \frac{\partial^{4}}{\partial x^{4}}+\frac{2}{1-v}\left\{1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-\nu\right\} \frac{\partial^{4}}{\partial x^{2} \partial y^{2}} \\
& \left.+\left(1+\bar{\lambda}_{y y}\right) \frac{\partial^{4}}{\partial y^{4}}\right] \\
& \nabla_{\mathrm{P}}=\left(\frac{L}{\pi}\right)^{6} \frac{1}{\left(1+\bar{\lambda}_{x x}\right)^{2}}\left[\bar{e}_{s t} \bar{\lambda}_{x x} \frac{\partial^{6}}{\partial x^{6}}+\left(1+\frac{2 \bar{\lambda}_{y y}}{1-\nu}\right) \bar{e}_{s t} \bar{\lambda}_{x x} \frac{\partial^{6}}{\partial x^{4} \partial y^{2}}\right. \\
& +\left(1+\frac{2 \bar{\lambda}_{x x}}{1-v}\right) \bar{e}_{r} \bar{\lambda}_{y y} \frac{\partial^{6}}{\partial x^{2} \partial y^{4}}+\bar{e}_{r} \bar{\lambda}_{y y} \frac{\partial^{6}}{\partial y^{6}}-v\left(\frac{\pi}{I}\right)^{2} \frac{\partial^{4}}{\partial x^{4}} \\
& +\left(\frac{\pi}{I}\right)^{2} \frac{1}{1-v}\left\{v(1+v)-\left(1-\bar{\lambda}_{y y}\right)\left(2 \bar{\lambda}_{x x}+1+v\right)\right\} \frac{\partial^{4}}{\partial x^{2} \partial y^{2}} \\
& \left.-\left(\frac{\pi}{L}\right)^{2}\left(1+\bar{\lambda}_{y y}\right) \frac{\partial^{4}}{\partial y^{4}}\right] \tag{A12}\\
& \nabla_{C}=\left(\frac{L}{\pi}\right)^{8} \frac{1}{1+\bar{\lambda}_{x x}}\left[\bar{e}_{s t}^{-2} \bar{\lambda}_{x x} \frac{\partial^{8}}{\partial x} t^{8}+2 e^{-2} \bar{\lambda}_{x x}\left(1+\frac{\bar{\lambda}_{y y}}{1-v}\right) \frac{\partial^{8}}{\partial x^{6} \partial y^{2}}+\left\{\bar{e}_{s t}^{2} \bar{\lambda}_{x x}\left(1+\bar{\lambda}_{y y}\right)\right.\right. \\
& \left.+2 e_{s t}^{-} \bar{e}_{r} \lambda_{x x} \bar{\lambda}_{y y}\left(\frac{l+v}{1-\nu}\right)+\bar{e}_{r}^{-2} \bar{\lambda}_{y y}\left(1+\bar{\lambda}_{x x}\right)\right\} \frac{\partial^{8}}{\partial x^{4} \partial y^{4}}
\end{align*}
$$

$$
\begin{aligned}
& +2 e_{r}^{-2} \bar{\lambda}_{y}\left(1+\frac{\bar{\lambda}_{x x}}{1-v}\right) \frac{\partial^{8}}{\partial x^{2} \partial y^{6}}+e_{r}^{-2} \bar{\lambda}_{y y} \frac{\partial^{8}}{\partial y^{8}} \\
& +2 v\left(\frac{\pi}{L}\right)^{2} \bar{e}_{s t} \bar{\lambda}_{x x} \frac{\partial^{6}}{\partial x^{6}} \\
& -2\left(\frac{\pi}{L}\right)^{2}\left\{\bar{e}_{s t} \bar{\lambda}_{x x}+\bar{e}_{r} \bar{\lambda}_{y y}+\bar{\lambda}_{x x} \bar{\lambda}_{y y}\left(\bar{e}_{s t}+\bar{e}_{r}\right)\right\} \frac{\partial^{6}}{\partial x^{4} \partial y^{2}} \\
& \left.+2 v\left(\frac{\pi}{L}\right)^{2} \bar{e}_{r} \bar{\lambda}_{y y} \frac{\partial^{6}}{\partial x^{2} \partial y^{4}}+\left(\frac{\pi}{L}\right)^{4}\left\{1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-v^{2}\right\}^{\left.\frac{\partial^{4}}{\partial x^{4}}\right]}
\end{aligned}
$$

where ∇^{-1} is an inverse differential operator such that $\nabla^{-1}=\nabla^{-1} \nabla=1$. Buckling Results for Cylinder Under Uniform Hydrostatic Pressure and Uniform Axial Compression

The buckling results are derived for general case of combined hydrostatic pressure and axial compression. The axial compression is a known fraction of hydrostatic pressure defined by a factor α. In the case of hydrostatic pressure alone, α is set equal to zero. With no torsion applied, the buckling Equation (All) reduces to

$$
\begin{align*}
\nabla_{D} w^{1} & +\frac{12 Z^{2}}{1-\nu^{2}} \nabla_{E} \nabla_{C} w^{1} \\
& -\left(\frac{L}{\pi}\right)^{2} \bar{k}_{y y}\left[\frac{1}{R_{R}^{2}} \nabla_{E}^{-1} \nabla_{P} w^{1}+\left(\frac{1}{2}-\alpha\right) \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w^{1}}{\partial y^{2}}\right]=0 \tag{Al3}
\end{align*}
$$

where

$$
\alpha=\overline{\mathrm{k}}_{\mathrm{xx}} / \overline{\mathrm{k}}_{\mathrm{yy}}
$$

The classical simply supported boundary conditions are

$$
\begin{align*}
& w^{1}(0, y)=w^{l}(L, y)=0 \\
& v^{l}(0, y)=v^{l}(L, y)=0 \\
& M_{x x}^{1}(0, y)=M_{x x}^{l}(L, y)=0 \\
& N_{x x}^{l}(0, y)=N_{x x}^{l}(L, y)=0 \tag{AlL}
\end{align*}
$$

- Constraint Equations

General Instability

The displacement function satisfying the boundary conditions (All) is

$$
\begin{equation*}
w^{l}=w_{m n} \sin \frac{m \pi x}{L} \sin \frac{n y}{R} \tag{All}
\end{equation*}
$$

The displacement function is substituted in the buckling Equation (13).. Using the operators defined earlier, the expression for buckling load parameter is obtained. This expression when minimize with respect to integer values of m and n, representing the mode shape, yields the critical general instability load parameter $\overline{\mathrm{k}}_{\text {yycr }}$. Define $\beta=\frac{n L}{\pi R}$. The expression for buckling load parameter $\bar{k}_{y y}$ is then given by

$$
\begin{aligned}
-\bar{k}_{y y}= & {\left[\left\{\left(m^{2}+\beta^{2}\right)+\bar{\lambda}_{x x} m^{4}+\bar{\lambda}_{y y} \beta^{4}\right.\right.} \\
& \left.\quad+\frac{2 m^{2} \beta^{2}}{1-v}\left(\bar{\lambda}_{x x}+\bar{\lambda}_{y y}+\bar{\lambda}_{x x} \bar{\lambda}_{y y}\right)\right\}\left\{\left(m^{2}+\beta^{2}\right)^{2}+\bar{\rho}_{x x} m^{4}+\bar{\rho}_{y y} \beta^{4}\right\}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{12 Z^{2}}{\pi^{4}\left(1-\nu^{2}\right)}{ }^{-2} E_{s t}^{2} \bar{\lambda}_{x x}{ }^{8}+\frac{2}{1-v} e^{-2} \overline{s t}_{x x}\left(1-\nu+\bar{\lambda}_{y y}\right) m^{6} \beta^{2} \\
& +\left\{e_{s t}^{-2} \bar{\lambda}_{x x}\left(1+\bar{\lambda}_{y y}\right)+2 \frac{1+v}{1-v} \bar{e}_{s t} \bar{e}_{r} \bar{\lambda}_{x x} \bar{\lambda}_{y y}\right. \\
& \left.+\bar{e}_{r}^{-2} \bar{\lambda}_{y y}\left(1+\bar{\lambda}_{x x}\right)\right\}^{4} \beta^{4}+\frac{2}{1-v} \bar{e}_{r}^{2} \bar{\lambda}_{y y}\left(1-v+\bar{\lambda}_{x x}\right) m^{2} \beta^{6} \\
& +\bar{e}_{r y y}^{2} \bar{\lambda}_{y y} \beta^{8}-2 \nu \bar{e}_{s t} \bar{\lambda}_{y y} m^{6} \\
& +2\left\{\bar{e}_{s t} \bar{\lambda}_{x x}\left(1+\bar{\lambda}_{y y}\right)+\bar{\epsilon}_{r} \bar{\lambda}_{y y}\left(1+\bar{\lambda}_{x x}\right)\right\} m^{4} \beta^{2}-2 v \bar{e}_{r} \bar{\lambda}_{y y} m^{2} \beta^{4} \\
& +\left\{\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)\right. \\
& \left.\left.\left.-\nu^{2}\right\} m^{4}\right]\right] /\left[(\frac { L } { \pi R }) ^ { 2 } \left\{\left(m^{2}+\beta^{2}\right)\left(\bar{e}_{s t} \bar{\lambda}_{x x} m^{4}+\bar{e}_{r} \bar{\lambda}_{y y} \beta^{4}+m^{2}+\beta^{2}\right)\right.\right. \\
& +\frac{m^{2} \beta^{2}}{1-v}\left[2 \bar{\lambda}_{x x}+\bar{\lambda}_{y y}(1+v)+2 \bar{\lambda}_{x x} \bar{\lambda}_{y y}\left(1+\bar{e}_{s t^{m}}{ }^{2}+\bar{e}_{r} \beta^{2}\right)\right] \\
& \left.+\bar{\lambda}_{y y} \beta^{4}\right\}+\left\{\left(m^{2}+\beta^{2}\right)^{2}+\bar{\lambda}_{x x^{m}}{ }^{4}+\bar{\lambda}_{y y} \beta^{\beta^{4}}\right. \\
& \left.\left.+\frac{2 m^{2} \beta^{2}}{1-\nu}\left(\bar{\lambda}_{x x}+\bar{\lambda}_{y y}+\bar{\lambda}_{x x} \bar{\lambda}_{y y}\right)\right\}\left(\frac{m^{2}}{2}-\alpha m^{2}+\beta^{2}\right)\right] \tag{AIL}
\end{align*}
$$

Panel Buckling

This is the buckling mode in which stringers and skin between two adjacent rings participate. This is a special case of the general instability, so the expression for panel buckling can be derived by
setting all ring parameters, Equation (Al6), equal to zero. Thus

$$
\begin{array}{ll}
\overline{\mathrm{e}}_{\mathrm{r}}=0, & \bar{\rho}_{\mathrm{yy}}=0 \\
\bar{\lambda}_{\mathrm{yy}}=0, & \mathrm{~L}=\ell_{r}
\end{array}
$$

The expression for panel buckling now becomes

$$
\begin{align*}
& -\bar{k}_{y y p}=\left[\left\{\left(m^{2}+\beta^{2}\right)^{2}+\bar{\lambda}_{x x} m^{4}+\frac{2 m^{2} \beta^{2}}{1-v} \bar{\lambda}_{x x}\right\}\left\{m^{2}+\beta^{2}\right)^{2}+\bar{\rho}_{x x} m^{4}\right\} \\
& +\frac{12 Z^{2}}{\pi^{4}\left(1-v^{2}\right)}\left\{e_{s t}^{-2} \lambda_{x x^{2}}{ }^{8}+2 \bar{e}_{s t}^{-2} \bar{\lambda}_{x x} m^{6} \beta^{2}+e_{s t}^{2} \bar{\lambda}_{x x} m^{4} \theta^{4}\right. \\
& \left.\left.-2 \bar{v}_{s t} \bar{\lambda}_{x x} m^{6}+2 \bar{e}_{s t} \bar{\lambda}_{x x} m^{4} \beta^{2}+\left(1+\bar{\lambda}_{x x}-\nu^{2}\right) m^{4}\right]\right] /\left[\left(\frac{l_{r}}{\pi \mathbb{R}}\right)^{2}\right. \\
& \left\{\left(m^{2}+\beta^{2}\right)\left(\bar{e}_{s t} \bar{\lambda}_{x x^{m}}{ }^{4}+v n^{2}+\beta^{2}\right)+2 \frac{m^{2} \beta^{2}}{1-v} \bar{\lambda}_{x x}\right\} \\
& \left.+\left\{\left(m^{2}+\beta^{2}\right)^{2}+\bar{\lambda}_{x x^{m}} m^{4}+\frac{2 m^{2} \beta^{2}}{1-\nu} \bar{\lambda}_{x x}\right\}\left(\frac{m^{2}}{2}-\alpha m^{2}+\beta^{2}\right)\right] \tag{A7}
\end{align*}
$$

Minimization of the expression (Al7) with respect to integer values of m and n yields the critical load parameter for panel instability.

In Equations (A16) and (A17), \bar{e}_{r} and $\bar{e}_{\text {st }}$ greater than zero correspond to the cylinder stiffened with exterior stiffeners; whereas, if these eccentricity parameters are less than zero they correspond to a cylinder stiffened with interior stiffeners.

Skin Buckling

For a shell which is stiffened with rings only, the skin buckling criterion and panel buckling criterion are identical. One can get the criterion from Equation (Al7) for this case by setting ring and stringer parameters equal to zero and changing $I_{\text {to }} \ell_{r}$.

For the shell stiffened with rings and stringers, the skin is considered as a flat plate simply supported on four sides, and subject to biaxial compression. The buckling criterion is given by Timoshenko [33]. The critical stress is found from the following equation

$$
\begin{equation*}
\sigma_{x x s k} m^{2}+\dot{\sigma}_{y y s k} n^{2}\left(\frac{l_{r}}{l_{s t}}\right)^{2}=\frac{\pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{h}{l_{r}}\right)^{2}\left[m^{2}+\left(\frac{l_{r}}{l_{s t}}\right)^{2} n^{2}\right]^{2} \tag{A18}
\end{equation*}
$$

Stringer Buckling

In general the stringer is considered as a collection of flat plates of length i_{r}. The appropriate boundary conditions and corresponding critical load depends on the relative depth of stringer and ring as well as the shape of the stringer. If the rings are deeper than the stringers, and the stringers are of rectangular crosssection, the boundary conditions for the stringer are: simply supported on three edges and free on one edge. If T, IA (Inverted angle), Z, I shaped stringers are used, the web of the stringers is considered as simply supported on all the four edges, while the flange is considered as simply supported on three edges and free on the unloaded edge. The buckling criteria for various boundary conditions are taken from [33]: For rectangular and T shape stringers the buckling expressions are given as follows
(a) Rectangular Stringers

$$
\begin{equation*}
\sigma_{\mathrm{xxst}_{\mathrm{cr}}}=\frac{\pi^{2} \mathrm{Et}_{\mathrm{st}}}{12\left(1-v^{2}\right)}\left(\frac{t_{s t}}{d_{s t}}\right)^{2}\left[\left(\frac{d_{s t}}{l_{r}}\right)^{2}+0.425\right] \tag{A19}
\end{equation*}
$$

(b) T-Stringers

$$
\begin{gather*}
\sigma_{x x s t_{c r}}(\text { Web })=\frac{\pi_{s t}^{2}}{3\left(1-v^{2}\right)}\left(\frac{t}{d_{s t}}\right)^{2} \\
\sigma_{x x s t} \quad(\text { Flange })=\frac{\pi^{2} E_{s t}}{12\left(1-v^{2}\right)}\left(\frac{2 t_{f s t}}{b_{f s t}-t}\right)^{2}\left[\left(\frac{b_{s t}}{2 t_{r} t_{s t}}\right)^{2}+425\right] \tag{A2O}
\end{gather*}
$$

If the stringers are deeper than the rings, the portion of the stringer below the web of the ring is considered as a flat plate simply supported on four sides and length ℓ_{r}. The outstanding portion of the stringer is considered as simply supported on three edges and free on the fourth edge. The length of the plate in this case is I.

Ring Buckling
The ring is considered as an annular plate suojected to uniform compression along the circumference. For rectangular shape rings, the boundary conditions are assumed to be simply supported at one end and free at the other end. These are the boundary conditions for the case when the shell is stiffened with rings only. If the shell is stiffened with stringers and rings, the rings being deeper than the stringers, the boundary conditions for portion of the ring
projecting above the stringers are simply supported at one edge and free at the other. For the portion of the ring which 1 s equal to the stringer depth the boundary conditions are simply supported at both edges. If T, inverted angle (IA), I, channel, or Z shaped rings are used, the boundary conditions are simply supported at both edges. Furthermore, the depth of the rings is less than $1 / 10$ th of the radius of the shell, which means that the ratio of inner to outer radius of rings is of the order of 0.1 , the annular plate can be approximated: by a long narrow rectangular plate. This has been verified by Majumdar [34], and Yamaki [35]. Therefore, the buckling criterion for the ring is the same as for long narrow rectangular plate. A similar criterion has been used by Nickell and Crawford [6]. Under this assumption, the critical stress for rings is given by .

$$
\begin{equation*}
\sigma_{y y r_{c r}}=K_{R} \frac{\pi^{2} E_{r}}{12\left(1-\nu^{2}\right)}\left(\frac{t_{w r}}{d_{w r}}\right)^{2} \tag{A2l}
\end{equation*}
$$

where $K_{R}=4.0$, for rings with both ends simply supported and $K_{R}=\frac{1}{2}$ for the rings simply supported at one edge and free at the other.

Stresses in Skin and Stiffeners

It is assumed that membrane state exists prior to buckling. The stresses in the skin and the stiffeners are calculated based on this assumption. Under the membrane state displacement component u is assumed to be linear function of x only, where as displacement component v and w are independent of x and y. Denoting by superscript "○", the membrane state parameters are

$$
\begin{align*}
& \varepsilon_{x}^{0}=\varepsilon_{x x}^{\circ}=\frac{\partial u}{\partial x} \\
& \varepsilon_{y}^{0}=\varepsilon_{y y}^{\circ}=\frac{w}{R} \\
& \gamma^{\circ}=0 \tag{AZ}
\end{align*}
$$

The membrane state stress resultants are

$$
\begin{align*}
& N_{\mathrm{xx}}^{\circ}=\frac{E h}{1-v^{2}}\left(1+\bar{\lambda}_{\mathrm{xx}}\right) \varepsilon_{\mathrm{xx}}^{0}+\frac{\nu E h}{1-v^{2}} \epsilon_{\mathrm{yy}}^{0} \\
& \mathrm{~N}_{\mathrm{yy}}^{0}=\frac{\nu E h}{1-\nu^{2}} \varepsilon_{\mathrm{xx}}^{0}+\frac{E h}{1-v^{2}}\left(1+\bar{\lambda}_{\mathrm{yy}}\right) \epsilon_{\mathrm{yy}}^{0} \\
& \mathrm{~N}_{\mathrm{xy}}^{\mathrm{o}}=0 \tag{A23}
\end{align*}
$$

For a circular cylindrical shell under uniform hydrostatic pressure and uniform axial compression

$$
\begin{align*}
& N_{x x}^{o}=-\frac{g R}{2}-\alpha q R \\
& N_{y y}^{o}=-q R \tag{A24}
\end{align*}
$$

From equations (26) and (27), the prebuckling strains are

$$
\begin{align*}
& \varepsilon_{x x}^{o}=-\frac{q R}{2} \frac{\left(1-v^{2}\right)}{\operatorname{Eh}} \frac{\left[\left(1+\bar{\lambda}_{y y}\right)(1+2 \alpha)-2 \nu\right]}{\left[\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-v^{2}\right]} \\
& \varepsilon_{y y}^{o}=-\frac{q R}{2} \frac{\left(1-v^{2}\right)}{\operatorname{Eh}} \frac{\left[2\left(1+\bar{\lambda}_{x x}\right)-v(1+2 \alpha)\right]}{\left[\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-v^{2}\right]} \tag{A25}
\end{align*}
$$

and the stresses in the skin, stringer and ring are

$$
\begin{align*}
& \sigma_{x x s k}=-\frac{q R}{2 h}\left[\frac{2 v \bar{\lambda}_{x x}+\bar{\lambda}_{y y}(1+2 \alpha)+\left(1-\nu^{2}\right)(1+2 \alpha)}{\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-\nu^{2}}\right] \\
& \sigma_{y y s k}=-\frac{q R}{2 h}\left[\frac{2 \bar{\lambda}_{x x}+\nu(1+2 \alpha) \bar{\lambda}_{y y}+2\left(1-\nu^{2}\right)}{\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-\nu^{2}}\right] \\
& \sigma_{x x s t}=-\frac{q R}{2 h} \frac{E_{s t}}{E}\left(1-\nu^{2}\right)\left[\frac{\left(1+\bar{\lambda}_{y y}\right)(1+2 \alpha)-2 \nu}{\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-v^{2}}\right] \\
& =-\frac{q R}{2 h} \frac{E_{r}}{E}\left(1-v^{2}\right)\left[\frac{2\left(1+\bar{\lambda}_{x x}\right)-v(1+2 \alpha)}{\left.\left(1+\bar{\lambda}_{x x}\right)\left(1+\bar{\lambda}_{y y}\right)-\nu^{2}\right]}\right. \tag{A26}
\end{align*}
$$

When the shell is stiffened by rings only, the stresses in the skin and ring are calculated by the analysis given by Salerno and Pulos [36]. The stresses calculated by this analysis are slightiy higher than those calculated by membrane analysis. The stresses at the midsection between the two consecutive rings are

$$
\begin{equation*}
\sigma_{\mathrm{xxsk}}=\sigma_{\mathrm{b}\left(\mathrm{x} \frac{\ell}{2}\right)}-\frac{\mathrm{gR}}{2 \mathrm{~h}} \tag{A27}
\end{equation*}
$$

σ_{b} being the bending stress.

$$
\begin{equation*}
\sigma_{\mathrm{yysk}}=\sigma_{\mathrm{y}}+v \sigma_{\mathrm{b}} \tag{A28}
\end{equation*}
$$

σ_{y} being the circumferential stress.

Further

$$
\begin{align*}
& \sigma_{b}= \pm \frac{q R^{2}}{2}\left(\frac{1-\frac{\nu}{2}}{1-\nu^{2}}\right) \mathrm{TJ} \tag{A29}\\
& \sigma_{y}=-\frac{q R}{h}+\left[\frac{q R}{h}\left(1-\frac{\nu}{2}\right)\right] \frac{M U}{H} \tag{A30}
\end{align*}
$$

The total load carried by the ring per unit length is given by

$$
\begin{equation*}
Q^{*}=\frac{q b-\frac{q R^{2} h^{2} W}{6\left(1-\nu^{2}\right)}\left[1-\frac{\frac{\nu}{2} A_{r}}{A_{r}+b h}\right]}{\left[1-\frac{R^{2} h_{W}}{6\left(1-\nu^{2}\right)\left(A_{r}+b h\right)}\right]} \tag{A31}
\end{equation*}
$$

Parameters $\mathrm{W}, \mathrm{J}, \mathrm{U}, \mathrm{H}$, and T are determined appropriately.
Expressions for W, J, U, H, and T
For hydrostatic pressure, the axial compression component \vec{N}_{x} is given by

$$
\overline{\mathrm{N}}_{\mathrm{x}}=-\mathrm{gR} / 2
$$

Case I

$$
\left(\frac{\overline{\mathrm{N}}}{2 \mathrm{D}}\right)^{2}<\frac{\mathrm{Eh}}{\mathrm{DR}^{2}}
$$

For this case

$$
W=\frac{-16 e f\left(e^{2}+f^{2}\right)\left(\sinh ^{2} e+\sin ^{2} f\right)}{l^{3}(e \sin f \cos f+f \sinh e \cosh e)}
$$

$$
\begin{align*}
& J=\frac{4\left(e^{2}+f^{2}\right)(e \cosh e \sin f-f \sinh e \cos f)}{l^{2}(e \sin f \cos f+f \sinh e \cosh e)} \\
& U=-(f \sinh e \cos f+e \cosh e \sin f) \\
& H=-(e \sin f \cos f+f \sinh e \cosh e) \\
& T=\frac{A_{r} /\left(A_{r}+b h\right)}{\left[1-\frac{R^{2} h^{3} W}{6\left(1-\nu^{2}\right)\left(A_{r}+b h\right.}\right)} \tag{A32}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{e}=\frac{\mathrm{c} \ell}{2} \\
& \mathrm{f}=\frac{\mathrm{d} \ell}{2} \\
& \mathrm{c}=\frac{\bar{\alpha}}{\ell}\left(1-\frac{\mathrm{qR} \alpha^{3-2}}{2 \operatorname{Eh} l^{2}}\right)^{\frac{1}{2}} \\
& \mathrm{~d}=\frac{\bar{\alpha}}{\ell}\left(1+\frac{\mathrm{qR}^{3} \alpha^{2}}{2 \operatorname{Eh} \ell^{2}}\right)^{\frac{1}{2}} \\
& \bar{\alpha}=\left[\frac{3\left(l-v^{2}\right)}{h^{2} \mathrm{R}^{2}}\right]^{\frac{1}{4}} \ell \tag{A33}
\end{align*}
$$

Case II

$$
\left(\frac{\bar{N}_{x}}{2 \mathrm{D}}\right)^{2}=\frac{\mathrm{Eh}}{D R^{2}}
$$

For this case

$$
W=-16 g^{3} \sin ^{2} g /(g+\sin g \cos g) l^{3}
$$

$$
\begin{align*}
& J=4 g^{2}(\sin g-g \cos g) /(g+\sin g \cos g) l^{2} \\
& U=g \sin g+\sin g \\
& H=g+\sin g \cos g \\
& T=\frac{A_{r} /\left(A_{r}+b h\right)}{\left[1-\frac{R^{2} h^{3} W}{6\left(1-\nu^{2}\right)\left(A_{r}+b h\right)}\right]} \tag{A34}
\end{align*}
$$

where

$$
g=\left(\frac{q R}{4 D}\right)^{\frac{1}{2}} \frac{\ell}{2}
$$

Case III

$$
\left(\frac{\overline{\mathrm{N}}}{\overline{\mathrm{D}}}\right)^{2}>\frac{\mathrm{En}}{\mathrm{DR}^{2}}
$$

For this case

$$
\begin{align*}
& W=\frac{-16 e f\left(f^{2}-e^{2}\right)\left(\sin ^{2} f-\sin ^{2} e\right)}{l^{3}(e \sin f \cos f+f \sin e \cos e)} \\
& J=\frac{4\left(e^{2}-f^{2}\right)(f \sin e \cos f-e \cos e \sin f)}{l^{2}(f \sin e \cos e+e \sin f \cos f)} \\
& U=f \sin e \cos f+e \cos e \sin f \\
& H=e \sin f \cos f+f \sin e \cos e \\
& T=\frac{A_{r} /\left(A_{r}+b h\right)}{\left[1-\frac{R^{2} h^{2} W}{6\left(1-\nu^{2}\right)\left(A_{r}+b h\right)}\right]} \tag{A35}
\end{align*}
$$

where

$$
\begin{align*}
& e=\frac{c \ell}{2} \\
& \therefore=\frac{d \ell}{2} \\
& c=\left[\frac{\mathrm{qR}}{8 D}-\frac{1}{2}\left(\frac{E h}{D^{2}}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} \\
& d=\left[\frac{g \mathrm{D}}{8 D}+\frac{1}{2}\left(\frac{E h}{D R^{2}}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} \tag{A36}
\end{align*}
$$

In the above equations ℓ is the clear distance between the two adjacent rings.

APPENDIX B

PROPERTIES OF DIFFERENT SHAPES OF STIFFENERS

The derivation of $\bar{\alpha}^{\prime}$ s and shape parameters for various shapes of stiffener cross-section is given in this Appendix.

Rectangular Cross-Section

The radius of gyration of a rectangular cross-section is
given by

$$
\alpha_{1}=\frac{d_{w}}{\sqrt{12}}
$$

The radius of gyration of unit width of skin is

$$
\alpha_{2}=\frac{h}{\sqrt{12}}
$$

Nondimensionalizing the radius of gyration of stiffener with respect to the radius of gyration of skin, one gets

$$
\bar{\alpha}=\frac{d_{w}}{h}
$$

The nondimensionalized flexural stiffness and the eccentricity parameters of the stiffeners are

$$
\bar{\rho}=\frac{E_{\text {stif }} I_{\text {stif } f}}{l_{\text {stif }} D}
$$

$$
\overrightarrow{\mathrm{e}}=\frac{\pi^{2} \mathrm{Re}}{\mathrm{~L}^{2}}
$$

where

$$
D=\frac{\operatorname{Eh}^{3}}{12\left(1-\nu^{2}\right)}
$$

and

$$
I_{\text {stife }}=t_{w} \cdot d_{w}^{3} / 12
$$

The subscript 'stif' refers to the stiffener.
With simple algebraic operation, one can write

$$
\begin{aligned}
& \bar{\rho}=\alpha^{-2} \vec{\lambda} \\
& \bar{e}=\frac{\pi^{2}\left(1-v^{2}\right)^{\frac{1}{2}}}{2 Z}(1+\bar{\alpha})
\end{aligned}
$$

where

$$
\bar{\lambda}=\frac{A_{\text {stif }}\left(1-\nu^{2}\right)}{l_{\text {stif }}}
$$

In similar way the relations for other shapes of the stiffener are obtained. Some of the shapes are shown in Figure B1. In deriving these expressions, assumption is made that the thickness of the web or flange is much smaller than the depth of the web of the stiffener. Thus, one has

$$
\bar{\rho}_{x x}=\bar{\alpha}_{x}^{2} \vec{\lambda}_{x x}
$$

Figure B1. Properties of Various Shapes of Stiffeners.

$$
\begin{aligned}
\bar{p}_{y y} & =\alpha_{y} \bar{\lambda}_{y y} \\
\bar{e}_{x} & =\frac{\pi^{2}\left(1-\nu^{2}\right)^{\frac{1}{2}}}{2 Z}\left(1+c_{x} \bar{\alpha}_{x}\right) \\
\bar{e}_{y} & =\frac{\pi^{2}\left(1-\nu^{2}\right)^{\frac{1}{2}}}{2 Z}\left(1+c_{y} \bar{\alpha}_{y}\right) \\
A_{\text {stif }} & =t_{w} d_{w} k_{1}
\end{aligned}
$$

Table Al gives the values of different parameters for various shapes of the stiffeners.

Table Bl. Properties of Various Shapes of Stiffeners.

Shape	Area	k_{1}	$\bar{\alpha}$	C
Rectangular	$t_{w}{ }^{\text {d }}$ w	1.0	$\mathrm{d}_{\mathrm{w}} / \mathrm{h}$	1.0
T, IA	$t_{w} d_{w}(1+A B)$	$1+A B$	$\frac{\sqrt{1+4 \mathrm{AB}}}{1+\mathrm{AB}} \frac{\mathrm{~W}}{\mathrm{~h}}$	$\frac{1+2 A B}{\sqrt{1+4 A B}}$
Channel, I,				
2	$t_{w} d_{w}(1+2 A B)$	($1+2 A B$)	$\sqrt{\frac{1+6 A B}{1+A B}} \frac{\mathrm{~d}}{\mathrm{~h}}$	$\sqrt{\frac{1+2 A B}{1+6 A B}}$
Angle	$\mathrm{t}_{\mathrm{w}} \mathrm{d}_{\mathrm{w}}\left(\mathrm{l}_{+} \mathrm{AB}\right)$	($1+\mathrm{AB}$)	$\frac{\sqrt{1+4 A B}}{1+A B}-\frac{w}{h}$	$\frac{1}{\sqrt{1+4 \mathrm{AB}}}$

APPENDIX C

SAMPIE DESIGN TABLES AND DESIGN EXAMPLES

In order to illustrate the procedure of design discussed under Phase II, three design examples are worked out in the Appendix. The design Tables corresponding to these design examples are also given here.

Example 1

For a shell stiffened with rectangular rings and rectangular stringers, the following data are known:

Operating Depth
$=3000$ feet
Radius of the shell $=198$ inches
Length of the shell $\quad \therefore 594$ inches
Permissible yield stress $\quad \therefore \quad=120,000 \mathrm{psi}$
Poisson Ratio $\quad=.300$
Factor of safety
(a) For stress level limitations against yielding I
(b) For all other failure modes 2

Modulus of elasticity $E=E_{s t}=E_{r}=30 \times 10^{6} \mathrm{psi}$
$\rho_{r}=\rho_{s t}=\rho_{s t}=.282 \mathrm{lb} . / \mathrm{in}^{3}$
Density of immersion fluid $=.0374 \mathrm{lb} / \mathrm{in}^{3}$
From the design Table Cl
$Z=1200, C_{x}=C_{y}=1.0$
$h=\frac{L^{2}}{R Z}\left(1-v^{2}\right)^{\frac{1}{2}}=1.41660 \mathrm{in}$.

$$
\begin{array}{ll}
\bar{\alpha}_{x}=7.0 & \bar{\lambda}_{x x}=.07886 \\
\bar{\alpha}_{y}=12.5 & \bar{\lambda}_{y y}=.61651 \\
m=1 & n=3 \\
\bar{w}=1.75945 &
\end{array}
$$

Using Equation (4) the stresses in skin, ring, and stringer are calculated

$$
\begin{aligned}
& \sigma_{\mathrm{xxst}}=89,537.8 \mathrm{psi}, \quad \sigma_{\mathrm{yyr}}=96,172.8 \mathrm{psi} \\
& \sigma_{\mathrm{yysk}}=123,033 \mathrm{psi}, \quad \sigma_{\mathrm{xxsk}}=52,623.9 \mathrm{psi}
\end{aligned}
$$

Using von Mises yield criterion, the stress in the skin is

$$
\sigma_{\mathrm{s}}=110,170 \mathrm{psi}
$$

The stresses in skin, stringer and ring being less than the permissible level, the constraints defining stress level limitations are satisfied.

The depths of stringer and ring are given by

$$
\begin{aligned}
& d_{s t}=\bar{\alpha}_{x} h=9.91620 \mathrm{in} . \\
& d_{r}=\bar{\alpha}_{y} h=17.70750 \mathrm{in} .
\end{aligned}
$$

From the ring buckling criterion, the thickness of the ring is given by

$$
t_{w r}>\sqrt{\frac{24\left(1-v^{2}\right) \times 2 \sigma_{y y r}}{\pi^{2} E_{r}}}\left(d_{r}-d_{s t}\right)
$$

Table Cl. Design Table. Interior RR-RS Stiffened Shell. General Instability Formulation.

Material of Construction - High Strength Steel

v	C_{x}	c_{y}	z	${ }^{\text {a }} \mathrm{X}$	${ }^{\text {A }} \mathrm{y}$	B_{X}	B_{y}		
. 300	1.0	1.0	1200	0	$\bigcirc 0$	0	0	1.4138	$\times 10^{-5}$
$\bar{\alpha}_{x}$	$\bar{\alpha}_{y}$		\bar{W}		$\bar{\lambda}_{x x}$		$\bar{\lambda}_{y y}$	m	n
2.0	14.0		2.07396		. 11069		. 87421	13	4
3.0	14.0		1.70229		. 18203		. 46368	1	3
4.0	14.0		1.62377		. 09195		. 47914	1	3
5.0	14.0		1.58382		. 06845		. 46533	1	3
6.0	14.0		1.57595		. 06086		. 46548	1	3
7.0	14.0		1.58925		. 07344		.46546	1	3
8.0	14.0		1.61359		. 09658		. 46531	1.	3
10.0	14.0		1.67914		. 15864		. 46531	I	3
12.0	14.0		1.61235		. 09520		. 46551	1	3
2.0	13.5		2.05919		. 11496		. 85693	13	4
3.0	13.5		1.72253		. 15690		. 50708	1	3
4.0	13.5		1.64456		. 08168		. 50825	1	3
5.0	13.5		1.63527		. 07262		. 50848	1	3
6.0	13.5		1.65531		. 09170		. 50842	1	3
7.0	13.5		1.61744		. 05535		. 50881	1	3
8.0	13.5		1.64406		. 08075		. 50869.	1	3
10.0	13.5		1.68799		. 12259		. 50855	1	3
12.0	13.5		1.79240		. 22224		. 50803	1	3
2.0	13.0		2.07189		. 11.762		. 86641	13.	4
3.0	13.0		1.72480		. 10707		. 55754	1	3
4.0	13.0		1. 72051		. 10268		. 55782	1	3

or

$$
t_{w r}>.92850 \mathrm{in} .
$$

Using the definition of $\bar{\lambda}_{y y}, \ell_{r}$, the ring spacing is given by

$$
t_{r}>\frac{d_{w r} t_{w r}\left(I-v^{2}\right)}{\bar{\lambda}_{y y} h}
$$

$$
\ell_{r} \quad 17.13140 \mathrm{in} .
$$

Assuming 33 rings, the value of ℓ_{r} and corresponding $t_{w r}$ are calculated as

$$
\begin{aligned}
& t_{r}=17.47058 \mathrm{in} . \\
& t_{\mathrm{wr}}=.94687 \mathrm{in} .
\end{aligned}
$$

The stringer spacing is calculated from Equation (24) as

$$
\ell_{s t}>\sqrt{\frac{12\left(1-\nu^{2}\right) \times \sigma_{x x s t} \times F_{1}}{\pi^{2} E}\left[\frac{\left.d_{s t}^{2}\left(1-\frac{d_{t}}{l_{r}}\right)^{2}+.425\right]}{\left.h \bar{\lambda}_{x x}^{2}\right)}\right.}
$$

or

$$
\ell_{\text {st }}>57.76287 \text { in }
$$

Assuming 20 stringers, the spacing $\ell_{\text {st }}$ and corresponding $t_{s t}$ are calculated. These are

$$
\begin{aligned}
& \ell_{s t}=62.17200 \mathrm{in} . \\
& t_{s t}=.76968 \mathrm{in} .
\end{aligned}
$$

The critical stresses are now calculated for skin, stringer, and ring. These are

$$
\begin{aligned}
& \sigma_{\mathrm{xxsk}}^{\mathrm{cr}} \\
& =187,020 \mathrm{psi} \\
& \sigma_{\mathrm{xxst}}^{\mathrm{cr}} \\
&
\end{aligned}=121,994 \mathrm{psi} .
$$

Using computer program for panel buckling check, the critical load obtained for the design varlables given above is

$$
q_{c r}=12,247.9 \mathrm{psi}
$$

and

$$
m_{p}=1, \quad n_{p}=69
$$

The ratios of actual load to the failure load are now calculated to ensure that interaction of failure modes does not occur

$$
\begin{aligned}
\mathrm{GB}= & & =1.00000 \\
\mathrm{~PB}= & & =.21986 \\
\mathrm{SKB}= & & =.95752 \\
\mathrm{STB}= & & =.86322
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{RB}= & & =.96160 \\
\mathrm{SKY}= & & =.91808 \\
\mathrm{RY}= & & =.80143 \\
\mathrm{SIY}= & & =.43853
\end{aligned}
$$

Finally the weight of the shell is calculated

$$
\mathrm{W}=848.3 \mathrm{lb} / \mathrm{in} .
$$

Example 2

For shell stiffened with T-rings and rectangular stringers, the design Table C2 given in this Appendix is used. The known data are the same as in Example l.

From the design Table C2, for $Z=1200$, one has the following values:

$$
\begin{aligned}
& C_{x}=1.0 \\
& C_{y}=1.155 \\
& A_{y}=1.0 \\
& B_{y}=0.5 \\
& \bar{\alpha}_{x}=6.0 \\
& \bar{\alpha}_{y}=12.5 \\
& \bar{\lambda}_{\mathrm{xx}}=.08143 \\
& \bar{\lambda}_{y y}=.46216 \\
& m
\end{aligned}
$$

Table C2. Design Table. Interior TR-RS Stilfened Shell. General Instability Formulation. Material of Construction - High Strength Steel.

ν	C_{x}	$C_{y} \quad z$	$A_{x} \quad A_{y}$	B_{x}	B_{y}		券
. 300	1.0	1.155 1200	$0 \quad 1.0$	0	. 51	1.41384	$\times 10^{-5}$
$\bar{\alpha}_{x}$	$\bar{\alpha}_{y}$	\bar{W}	$\bar{\lambda}_{x x}$	$\overline{\bar{\lambda}_{\text {yy }}}$		m	n
2.0	15.0	1.40189	. 06792	. 29929	- 1	1	3
3.0	15.0	1.39468	.06106	. 29944		1	3
4.0	15.0	1.42192	. 08653	. 29932		1	3
5.0	15.0	1.42333	. 08775	. 29940		1	3
6.0	15.0	1.47740	. 13828	. 29918		1	3
7.0	15.0	1.40138	. 06708	. 29965		1	3
8.0	15.0	1.40781	. 07304	. 29967		1	3
9.0	15.0	1.41251	. 07740	. 29969		1	3
10.0	15.0	1.42015	. 08450	. 29969		$1 \quad 3$	3
11.0	15.0	1.41698	. 08152	. 29972		13	3
12.0	15.0	1.42846	. 09223	. 29969		1 3	3
2.0	14.5	1.55251	. 04291	. 46138	15	54	4
3.0	14.5	1.44101	. 07958	. 32369	1	1 : 3	3
4.0	14.5	1.45500	. 09264	. 32368	1	1 3	3
5.0	14.5	1.44380	. 08201	. 32387	1	1 3	3
6.0	14.5	1.45169	. 08933	. 32390	1	1 3	3
7.0	14.5	1.45044	. 08808	. 32398	1	1 3	3
8.0	14.5	1.44917	. 04951	. 36060	1	13	3
10.0	14.5	1.45811	. 09513	. 32409	1	13	3
12.0	14.5	1.47155	. 10768	. 32407	1	13	3
2.0	14.0	1.57600	. 04368	. 48214	15	5 4	4
3.0	14.0	1.46659	. 07522	. 35145	1	13	3

	Table	Design	- Co			
$\bar{\alpha}_{\mathrm{x}}$	$\bar{\alpha}_{\mathrm{y}}$	\bar{W}	$\bar{\lambda}_{\text {xx }}$	$\bar{\lambda}_{y y}$	m	n
4.0	14.0	1.46078	. 06962	. 35161	1	3
5.0	14.0	1.45572	. 06477	.35173	1	3
6.0	14.0	1.45368	. 06294	. 35181	1	3
7.0	14.0	1.44866	. 05799	. 35190	1	3
8.0	14.0	1.47446	. 08221	. 35182	1	3
10.0	14.0	1.46230	. 07071	. 35194	1	3
12.0	14.0	1.44672	. 05604	.35202	1.	3
2.0	13.5	1.52822	. 06266	.42016	1	2
3.0	13.5	1.50783	. 08162	. 38306	1	3
4.0	13.5	1.47653	. 05180	. 38347	1	3
5.0	13.5	1.47716	. 05232	. 38353	1	3
6.0	13.5	1.48364	. 05839	. 38355	1	3
7.0	13.5	1.48735	. 06184	. 38358	1	3
8.0	13.5	1.46380	. 03953	.38376	1	3
10.0	13.5	1.47499	. 05006	. 38375	1	3
12.0	13.5	1.47289	.04806	.38377	1	3
2.0	13.0	1.60890	. 04540	. 51066	15.	4
3.0	13.0	1.69924	. 07152	. 56822	1	2
4.0	13.0	1.60974	.14082	. 41903	1	3
5.0	13.0	1.60799	. 13894	.41925	1	3
6.0	13.0	1.51096	. 04650	.42013	1	3
7.0	13.0	1. 60242	. 13333	. 41960	1	3
8.0	13.0	1.60306	. 13383	. 41970	1	3
10.0	13.0	1.61015	.1404 .1	.41981	1	3
12.0	13.0	1.60853	. 13884	.41984	1	3

$\bar{\alpha}_{x}$	$\bar{\alpha}_{y}$	$\overline{\text { W }}$	$\bar{\lambda}_{x x}$	$\overline{\bar{x}}_{y y}$	m	n
2.0	12.5	1. 72179	. 04547	. 61381	15	4
3.0	12.5	1.62547	. 11236	. 46137	1	3
4.0	12.5	1.61 .166	. 09891	. 46172	1	3
5.0	12.5	1.61089	. 09800	. 46189	1	
6.0	12.5	1.59372	. 08143	. 46216	1	3
7.0	12.5	1.62059.	. 10702	. 46207	1	3
8.0	12.5	1.60762	. 09454	. 46224	1	3
10.0	12.5	1.59940	. 08659	. 46238	1	3
12.0	12.5	1.55743	. 04655	. 46261	1	3
2.0	12.0	1.62400	. 05922	. 51140	1	3
3.0	12.0	1.62389	. 05896	. 51154	1	3
4.0	12.0	1.60206	. 03772	. 51192	1	3
5.0	12.0	1.70107	. 03174	. 60800	1	2
6.0	12.0	1.61065	. 04587	. 51197	1	3
7.0	12.0	1.91106	. 33483	. 50987	1	3
8.0	12.0	1.61334	. 04835	. 51205	1	3
10.0	12.0	1.58592	. 02195	. 51226	1	3
12.0	12.0	1.57103	. 00765	. 51235	1	3
2.0	11.5	1.71629	. 08725	. 56932	1	3
3.0	11.5	1.71908	. 08974	. 56951	1	3
4.0	11.5	1. 71570	. 08623	. 56975	1	3
5.0	11.5	1.69033	. 08040	. 55204	1	3
6.0	11.5	1.69544	. 07994	. 55717	1	3
7.0	11.5	1.67799	. 06706	. 55346	1	3
8.0	11.5	1.71230	. 08238	. 57030	1	3
10.0	11.5	1.71249	. 08246	. 57040	1	3

$$
\begin{aligned}
& \mathrm{n}=3 \\
& \overline{\mathrm{~W}}=1.59372
\end{aligned}
$$

Using Equation (4), the stresses in the skin, ring and stringer are calculated. These are

$$
\begin{aligned}
& \sigma_{\mathrm{xxsk}}=89,663.9 \mathrm{psi} \\
& \sigma_{\mathrm{yysk}}=133,864 \mathrm{psi} \\
& \sigma_{\mathrm{yyr}}=106,965 \mathrm{psi} \\
& \sigma_{\mathrm{xxst}}=49,504.7 \mathrm{psi}
\end{aligned}
$$

von Mises yield criterion gives

$$
\sigma_{\mathrm{s}}:=118,137 \mathrm{psi}
$$

All the stresses are within permissible limits.
The depths of the stringer and ring are given by

$$
\begin{aligned}
& d_{s t}=\bar{\alpha}_{x} h=8 ; 49960 \mathrm{in} \\
& a_{w r}=\frac{\bar{\alpha}_{y} \times h \times\left(1+A_{y} B_{y}\right)}{\sqrt{\left(1+4 A_{y} B_{y}\right)}}=15.33515 \mathrm{in} . \\
& b_{f r}=B_{y} \times d_{w r}=7.66758
\end{aligned}
$$

From ring buckling criterion, thickness of the ring is given by

$$
t_{W r}>\sqrt{\frac{3 x^{2} \sigma_{y y r}\left(1-v^{2}\right)}{\pi^{2} E_{r}}} d_{s t}
$$

or

$$
t_{w r}>.37721 \mathrm{in}
$$

Using definition of $\bar{\lambda}_{y y}, \ell_{r}$ is

$$
\tau_{r}>12.10316 \mathrm{in} .
$$

Select ℓ_{r} as

$$
l_{r}=13.2 \mathrm{in}
$$

this gives

$$
t_{w r}=.41284 \mathrm{in}
$$

and

$$
t_{f r}=A_{y} \times t_{W r}=.41284 \mathrm{in}
$$

Thickness of stringer is found from stringer buckling criterion

$$
t_{s t}>\sqrt{\frac{12\left(1-v^{2}\right) \times 2 \sigma_{x x s t}}{\left.\pi^{2} E_{s t}\left[\frac{d_{s t}}{\ell_{r}}\right)^{2}+.425\right]}} d_{s t}
$$

or

$$
t_{\text {st }}>.56077 \text { in. }
$$

this gives

$$
\ell_{s t}>37.60039 \mathrm{in}
$$

Assuming

$$
\ell_{s t}=38.85 \mathrm{Tz} \mathrm{in} .
$$

one gets

$$
t_{s t}=.5795 \mathrm{in} .
$$

The critical stresses for skin, ring and stringer are now calculated, these are

$$
\begin{aligned}
& \sigma_{\mathrm{xxsk}}^{\mathrm{cr}}
\end{aligned}=331,076 \mathrm{psi}, ~ \begin{aligned}
& \\
& \sigma_{\mathrm{xxst}}^{\mathrm{cr}} \\
& =105,716 \mathrm{psi} \\
& \sigma_{y y r}=255,604 \mathrm{psi}
\end{aligned}
$$

The critical load for panel buckling is obtained as

$$
q_{c r}=19,266 \mathrm{psi}, \quad m_{p}=1 \quad \text { and } \quad n_{p}=85
$$

Finally the ratios of actual load to the failure load are calculated to insure separation of these modes

$$
G B=\frac{q_{D}}{g_{c r}}=1.00000
$$

$$
\begin{aligned}
& \mathrm{PB}=\frac{\mathrm{D}}{(\mathrm{~PB})}=.13977 \\
& \mathrm{SKB}=\frac{2 \sigma_{\mathrm{cr} x \mathrm{sk}}}{\sigma_{\mathrm{xxsk}}}=.54165 \\
& \mathrm{STB}=\frac{2 \sigma_{\mathrm{cxst}}}{\sigma_{\mathrm{xxst}}}=.93656 \\
& \mathrm{RB}=\frac{2 \sigma_{\mathrm{yyr}}}{\sigma_{\mathrm{yyr}}}=.83695 \\
& \mathrm{SKY}=\frac{\sigma_{\mathrm{cr}}}{\sigma_{\mathrm{y}}}=.98447 \\
& \mathrm{RY}=\frac{\sigma_{\mathrm{yyr}}}{\sigma_{\mathrm{y}}}=.89137 \\
& \mathrm{STY}=\frac{\sigma_{\mathrm{xxst}}}{\sigma_{\mathrm{y}}}=.41253
\end{aligned}
$$

The weight of the shell is

$$
\mathrm{W}=772.7 \mathrm{lb} / \mathrm{in}
$$

An alternative design giving the same weight as above is

$$
\begin{aligned}
& t_{s t}=38.8572 \mathrm{in} . \\
& t_{s t}=.5795 \mathrm{in} . \\
& t_{r}=13.81395 \mathrm{in} . \\
& t_{W r}=.43204 \mathrm{in} .
\end{aligned}
$$

Example 3

This is the design example for ring stiffened shell. The operating depth is 3000 feet and high strength steel is used as material of construction. The design Table C3 is generated for this case. Program RSSH is used for finding the design variables. Before using above program, the ring spacing is first found from the criterion of panel buckling. Once the ring spacing is known, one proceeds with the design. The input data for the program RSSH are: Z, ELY (ring spacing), $X(2)$ (value of $\bar{\lambda}_{y Y}$), AY, BY, PBCR(panel buckling critical load) and $A L Y\left(\bar{\alpha}_{y}\right)$. The results of the example are given on the next page.

Table C3. Design Table. Interior T-Ring Stiffened Shell. General Instability Formulation. Meterial of Construction - High Strength Steel.

ENIER VALUES OF ZZ, ELY, BK, X(2), AY, BY, PBCR,ALY 950.,24.75,23.,.31187,1.,.5,3016.83,10.

DESIGN RESUITS

OPERATING DEPTH $=3000$.
$Z Z=950.0 \mathrm{~L}=594.0 \quad \mathrm{R}=198.0$
$X(2)=.31187 \quad: C Y=1.1547$
WEIGHT PER TNCH $=821.73$
SKIN THICKNESS $=1.78939$
DEPTH OF WEB $=15.49656$
WEB THICKNESS $=.65296$
FLANGE WIDTH $=7.74828$
FLANGE THICKNESS $=.65296$
RING SPACING $=24.75000$
CKYR $=1212.20 \mathrm{M}=1 \quad \mathrm{~N}=3$
QSTAR $=2692.82$
$\mathrm{QCR}=125604.04 \quad \mathrm{SRY}=94862.00 \quad \mathrm{PBCR}=3016.83$
$S X 2=-89348.22 \cdot S Y 2=-122792.30: Q Q=7831.54$
$\mathrm{SKY}=109953.54$
$G B=.99999$
$\mathrm{PBC}=.89259$
$\mathrm{RBC}=.98629$
RYC $=.79052$
$S K Y C=.91628$

APPENDIX D

BUCKLING OF THIN CYLINDERS UNDER* UNIFORM LATERAL LOADING

This Appendix presents a comparison of buckling loads for thin circular cylindrical shell based on different shell theories. This comparison includes three types of behavior of the lateral loading; 1) load normal to deflected surface (true pressure behavior); 2) load remaining constant-directional, and 3) load acting always toward initial center of curvature. The comparison covers the entire range of cylinder fineness ratios ($L / \pi R$) and the practical range of radius to thickness ratios. The primary conclusion of this work is that previous belief about the inaccuracy of the Donnell Equations for long cylinders is incorrect.
*This work is published in the form of a brief note in transaction of the ASME, Journal of Applied Mechanics, Vol. 4l, No. 3, September 1974, pp. 827-829.

Nomenclature

D

E

H
h.
${ }^{k} y$
L
$M_{x x}, M_{y y}, M_{x y}$
m
$\mathrm{N}_{\mathrm{xx}} ; \mathrm{N}_{\mathrm{yy}}, \mathrm{N}_{\mathrm{xy}}$
n
9
q^{x}, q^{y}, q^{z}

R
u, v, w
x, y
β
$\varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}$
v
$\varphi_{\mathrm{x}}, \varphi_{\mathrm{y}}, \varphi$

Flexural Stiffness
Young's modulus of elasticity
Radius to thickness ratio
Thickness of shell
Applied load coefficient $\left[=\mathrm{gR}^{3} / \mathrm{D}\right]$
Length of shell
Moment resultants
Number of longitudinal half waves
Incremental stress resultants
Number of circumferential waves
Initial normal surface loading (positive outward)
Corrections to surface loading due to load behavior

Radius of shell
Incremental displacements
Lines of curvature coordinates
$[=\mathrm{L} / \pi \mathrm{R}]$
Incremental membrane strains
Poisson's ratio
Incremental rotations

Introduction

Donnell's equations defining small deformations of thin walled circular cylindrical shells have widely been used in the solution of problems of equilibrium and stability. From time to time doubt has been raised as to the accuracy of these equations. Hoff [1]* in 1955 compared and gave the range of basic parameters for which solutions to Donnell's and Flügge's equations are approximately equal. Dym [2] in 1973 compared buckling results obtainable from Donnell's equations with those obtained from Koiter-Budiansky [3-4] equations for cylinders in axial compression. The aim of the present work is to examine the accuracy obtainable from these equations for buckling of cylinders subjected to uniform lateral load.

As a basis of comparison, buckling loads obtained from Koiter and Budiansky!s equations are used. Donnell's equations are much easier to solve than the Koiter and Budiansky's equations. They are, therefore, preferable in engineering applications if their accuracy is satisfactory. In order to have the complete picture, the comparison includes results based on Sanders [4-5] equations and the Von Mises [5] solution of Flügge's [6] equations. The Sanders equations are used with the assumption that the rotations about the normal are negligibly small.

The comparison is performed for large ranges of cylinder fineness ratios $[1 / 3 \leq \mathrm{L} / \pi \mathrm{R} \leq \infty]$ and radius to thickness ratios [25 < R/h < 1000]. In addition, the effect of load behavior during

[^1]the buckling process has been taken into account by studying the following three cases:
I. Loed normal to the deflected surface (true pressure behavior)
II. Load remaining parallel to the original direction (a load model that has been used by many investigators for pressure buckling).
III. Load directed toward the original center of curvature.

The Equations of Koiter-Budiansky; Sanders, and Donnell

The Koiter-Budiansky buckling equations have been deduced from those given in the Appendix to Budiansky's paper. In terms of stress resultants, for a circular cylinder loaded by unfform pressure, q, which remains normal to the deflected surface, the se equations are

$$
\begin{align*}
& N_{x x, x}+N_{x y, y}-\frac{1}{2 R} M_{x y, y}^{*}+q R\left(\frac{1}{2} \gamma_{x y}-\varphi, y\right)^{*}+q \varphi_{x}+q^{x}=0 \\
& N_{x y, x}+N_{y y, y}+\frac{1}{R}\left(M_{y y, y}+M_{x y},\right)^{* *}+\frac{1}{2 R} M_{x y, x}^{*} \\
& \quad+q R\left(\epsilon_{y}^{*}, y-\frac{\varphi_{y}^{* *}}{R}\right)+q \varphi_{y}+q^{y}=0 \\
& -\frac{N_{y y}}{R}+M_{x x, x x}+2 M_{x y}, x y \\
& \tag{DI}\\
& \quad+M_{y y}, y\left(\varepsilon_{x}+\varepsilon_{y}\right)^{*}+q^{2}=0
\end{align*}
$$

Here q^{x}, q^{y}, and q^{2} are corrections to surface loading, due to load behavior, being given by the following expressions for the three load cases
I. $\quad q^{x}=q^{y}=q^{z}=0$
II. $\quad q^{x}=\mathrm{qW}, \mathrm{x}^{\mathrm{x}} \quad \mathrm{q}^{\mathrm{y}}=\mathrm{g}\left(\mathrm{w}, y-\frac{\mathrm{v}^{* *}}{\mathrm{R}}\right) ; \quad \mathrm{q}^{\mathrm{z}}=0$
III. $\quad q^{x}=q w, x ; q^{y}=q w ; y ; q^{z}=0$

The relations between the stress and moment resultants on one hand and deformation components on the other are given below:

$$
\begin{align*}
& N_{x x}=\frac{E h}{1-\nu^{2}}\left(u_{x}+v y_{y}+v \frac{w}{R}\right) \\
& N_{y y}=\frac{E h}{1-\nu^{2}}\left(v y_{y}+\frac{w}{R}+v,_{x}\right) \\
& N_{x y}=\frac{E n}{2(1+\nu)}\left(u, y+v g_{x}\right) \\
& M_{x x}=\frac{E h^{3}}{12\left(1-v^{2}\right)}\left(-w, x x-i w y_{y y}+\nu \frac{v^{* *} y}{R}\right) \\
& M_{x y}=\frac{\mathrm{Eh}^{3}}{22(1+v)}\left[-w, y y+\frac{v^{* *}}{2 R}+\left(\frac{v, x}{4 R}-\frac{u, y}{4 R}\right)^{*}\right] \\
& M_{y y}=\frac{E^{3}}{12\left(1-v^{2}\right)}\left(w, y y+\frac{v_{y}^{*} y}{R}-v w,{ }_{x x}^{*}\right) \tag{D3}
\end{align*}
$$

The corresponding boundary conditions are (at $x=0$ and $x=L$)

$$
\mathrm{u}=0 \text { or } \mathrm{N}_{\mathrm{xx}}=0
$$

$$
\begin{align*}
& v=0 \text { or } N_{x y}+\frac{3}{2 R} M_{x y}=0 \\
& w=0 \text { or } M_{x x, x}+2 M_{x y, y}=0 \\
& w, x=0 \text { or } M_{x x}=0 \tag{D4}
\end{align*}
$$

In the present investigation, the classical simply supported boundary conditions are used. These are

$$
\begin{gather*}
w(0, y)=w(L, y)=0 \\
M_{x x}(0, y)=M_{x x}(L, y)=0 \\
N_{x x}(0, y)=N_{x x}(L, y)=0 \\
v(0, y)=v(L, y)=0 \tag{D5}
\end{gather*}
$$

If terms marked with single asterisk are dropped, Equation (Dl) through (D3) will give Sanders equations. In the same way if the terms marked with either single or double asterisk are dropped in these equations, one obtains Donnell's equations. The same convention will be followed throughout this paper.

The buckling Equation (DI) are expressed entirely in terms of displacements by employing Equation (D3). Using the convention discussed above, the equations in terms of displacements for all the three theories are given by Equation (D6). These equations take into account all the load cases also. The elements in the column matrices correspond to cases I, II and III, respectively.

$$
\begin{align*}
& u,_{x x}+\left(\frac{1-v}{2}+\frac{1-\nu^{*}}{96 H^{2}}+\frac{k_{y}^{*}}{12 H^{2}}\right) u, y y+\left(\frac{1+\nu}{2}-\frac{1-\nu^{*}}{32 H^{2}}\right) v,_{x y}+\frac{v}{R} w,_{x} \\
& +\frac{1-\nu}{24 H^{2}} w^{*} x y y-\frac{k_{y}}{12 H^{2}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=0 \\
& \left(\frac{1+v}{2}-\frac{1-v^{*}}{32 H^{2}}\right) u, x y+\frac{1-v}{2}\left(1+\frac{1^{* *}}{12 H^{2}}+\frac{5^{*}}{48 H^{2}}\right) v ;_{x x} \\
& \left.+\left(1+\frac{1^{* *}}{12 H^{2}}+\frac{k_{y}^{*}}{12 H^{2}}\right) v, y y\right)^{k^{2}}-\frac{H^{2}}{12 H^{2}}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)^{* *} \\
& +\frac{w, y}{R}-\frac{R}{12 H^{2}} w_{y y y}^{* *} \\
& -\left(\frac{R^{* *}}{12 H^{2}}+\frac{1-\nu}{2} \frac{R^{*}}{12 H^{2}}\right)^{w,} x x y-\frac{k}{12 H^{2}} \\
& -\frac{w^{\prime} y}{\mathrm{R}}\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)^{*}-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)^{* *}\right]=0 \\
& \left(v-\frac{k y}{12 H^{2}}\right) u,{ }_{x}+\left(\frac{1-v}{24 H^{2}}\right) R^{2} u^{*}, x y y+\left(1+\frac{k_{y}^{* *}}{12 H^{2}}\right) v, y-\frac{R^{2}}{12 H^{2}} v^{* *} y y y \\
& -\frac{R^{2}}{12 H^{2}}\left(1^{* *}+\frac{1-\nu^{*}}{2}\right) v, x x y+\frac{R^{3}}{12 H^{2}} \nabla^{4} w-\frac{R k}{12 H^{2}} w ; y y \\
& +\frac{W}{R}=0 \tag{D6}
\end{align*}
$$

Where

$$
\begin{align*}
& k_{y}=q R^{3} / D \\
& H=R / h \\
& D=\operatorname{Eh}^{3} / 12\left(1-v^{2}\right) \tag{D7}
\end{align*}
$$

Solution and Results

The solution to Equation (D6) satisfying boundary conditions (D5) is given by

$$
\begin{align*}
& u=A_{m n} \cos \frac{m \pi x}{L} \cos \frac{n y}{R} \\
& v=B_{m n} \sin \frac{m \pi x}{L} \sin \frac{n y}{R} \quad n \geq 2 \\
& w=C_{m n} \sin \frac{m \pi x}{L} \cos \frac{n y}{R} \tag{D8}
\end{align*}
$$

Substitution of Equation (D8) into the differential Equation (D6) yields, with the usual arguments, the characteristic equation
(

Where $\beta=L / \pi R$

$$
\begin{align*}
& a_{11}=\frac{1}{\beta^{2}}+\left(\frac{1-\nu}{2}+\frac{1-\nu^{*}}{96 H^{2}}\right) \frac{n^{2}}{m^{2}} \\
& a_{12}=\left(\frac{1+\nu}{2}-\frac{1-\nu^{*}}{32 H^{2}}\right) \frac{n}{\beta} \\
& a_{13}=\frac{\nu}{\beta}-\frac{1-v n^{2}}{24 H^{2}} \frac{n^{2}}{\beta} \\
& a_{22}=\frac{1-v}{2}\left(1+\frac{1^{* *}}{12 H^{2}}+\frac{5^{*}}{48 H^{2}}\right) \frac{n^{2}}{\beta^{2}}+\left(1+\frac{1^{*}}{12 H^{2}}\right) n^{2} \\
& a_{23}=n+\frac{n^{3 * *}}{12 H^{2}}+\frac{m^{2} n^{* *}}{12 H^{2} \beta^{2}}+\frac{1-v}{24 H^{2}} \frac{m^{2} n^{*}}{\beta^{2}} \\
& a_{33}=\frac{1}{12 H^{2}}\left(\frac{m^{2}}{\beta^{2}}+n^{2}\right)^{2}+1 \tag{D10}
\end{align*}
$$

The characteristic equation is cubic for Koiter-Budiansky theory, it is linear for Donnell's theory and quadratic for Sanders theory except for the load case-II which yields linear equation. Buckling load parameter $k_{y c r}$ is found through minimization with respect to integer values of m and n. The results are given in Tables D1 through D3. The plots, showing the effect of $L / \pi R$ and R / h on buckling load parameter $\mathrm{k}_{\mathrm{ycr}}$ are given for Koiter-Budianskyts theory.

Infinitely Long Cylinder

When the length of the cylinder approaches infinity, the characteristic determinant reduces to

$$
\left|\begin{array}{ccc}
\bar{a}_{11} & 0 & 0 \tag{D11}\\
0 & \bar{a}_{22}+\bar{b}_{22} & \bar{a}_{23}-\bar{b}_{23} \\
0 & \bar{a}_{23}+\frac{k_{y} n^{2 *}}{12 H^{2}} & \bar{a}_{33}+\frac{k^{y^{2}}}{12 H^{2}}
\end{array}\right|
$$

Where

$$
\begin{aligned}
& \bar{a}_{11}=\left(\frac{1-\nu}{2}+\frac{1-\nu^{*}}{96 H^{2}}\right) \frac{n^{2}}{m^{2}} \quad \bar{a}_{23}=n+\frac{n^{3^{* *}}}{12 H^{2}} \\
& \bar{a}_{22}=\left(1+\frac{1^{*}}{12 H^{2}}\right) n^{2} \quad \bar{a}_{33}=\frac{n^{4}}{12 H^{2}}+1
\end{aligned}
$$

$$
\bar{b}_{22}=\frac{k_{y}^{* *}}{12 H^{2}}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\frac{k_{y^{n^{2 *}}}^{12 H^{2}}}{1}
$$

$$
\dot{b}_{23}=\frac{k^{n}}{12 H^{2}}\left[\left(\begin{array}{l}
1 \tag{D12}\\
0 \\
0
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)^{*}-\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)^{* *}\right]
$$

Table Dl. Comparison of Critical Pressures for Load Case I (Load Remaining Normal to the Deflected Surface).

Table D2. Comparison of Critical
Pressures for Load Case II (Load Remaining Parallel to Original
Direction).

$\frac{1}{\pi R}$	$\frac{R}{n}$	$\cdots \mathrm{ky} \mathrm{cr}(0, n)$				- $\mathrm{ky}_{\text {cr }}(\mathrm{m}, \mathrm{n})$			
		FDPIAE: Y KCITFR E®S.	ShTIERS Ecs. ($\mathrm{\varphi}=0$)	$\begin{gathered} \text { DOMPIL } \\ \text { EQS. } \end{gathered}$	$\begin{aligned} & \text { FUUGGE } \\ & \text { EGS. } \end{aligned}$	FODIAMKKY: KOITER EOS.	$\begin{gathered} \text { SuIERSS } \\ \text { EOS. } \end{gathered}$		
1/3		-2,063 $(1,6)$	63.2773 (1,6$)$	$62.2779(1,6)$	56.8344	$64.64{ }^{32}(1,6)$	64, 82899 (1,6$)$	63.7369	
1		18.5825 ${ }^{1,4}$)	$10.6763(1,4)$	16.81166 1,3	18.3576	19.7704 1,4	19,8677 31,4	18.5911	(1,3)
3		$\frac{4.85714}{36454,2)}$	$4.90818(1,2)$	4,37979 1,2$)$	4.81969	$6.43292(1,2)$	$6.50339(1,2)$	5.45461	1,2)
4		$3.64562(1,2)$	$3.67395(1,2)$	$3.62703(1,2)$	3.63389	$4.84230(1,2)$	$4.88133(1,2)$	4.52430	2,2)
5		$3.20146(1,2)$	3.30966(1;2)	3.40090 (1,2)	3.28612	$4.37790(1,2)$	4.40290 1,2	4.24540	2,2
9	25	$3.15581(1,2)$ $3.04256(1,2)$	$3.169448(1,2)$ 3.04844 $1,2)$	$3.31170(1,2)$	3.15280	$4.2007 \mathrm{~h}(1,2)$	4.21800 1, 2	4.23574	1,2
12		$3.04256(1,2)$	3.04844 $3.00203(1,2)$ 3.02	3.23388 3.21590	3.04180 3.01832	$\left.\begin{array}{l}4.04399 \\ 4.02345 \\ 4.02 \\ 1,2\end{array}\right)$	4.06175 $4.02778(1,2$ 4.02	4.04066	1,2
15		3.01016 (1,2)	3,01255(1,2)	3.20924 1,2	3.01018	$4.01289(1,2$	$4.01572(1,2)$	4.018934	1,2
18		$3.00642(1,2)$	3.00811 (1,2)	$3.20607(1,2)$	3.00648	$4.00622(1,2)$	$4.01021(1,2)$	4.00717	1,2
100		$3.000(1,2)$	$3.000(1,2)$	3.200 (1,2)	3.0000	4.000 (1,2)	$4,000 \cdot(1,2)$	4.000	$(1,2)$
1/3		70.5175 (1,6)	$70.6990(1,6)$	69.2578 (1,6$)$	64.2228	72,2586 (1,6)	T2.4332 (1,6)	70.9200	(1,6)
1		$20.0807(1,4)$	$20.1739(1,4)$	19.7320 31,4	19.8485	$21.3630,1,4$	21.4609 (1,4	20.9160	1,2
3		6.44560 1,2$)$	$6.49959(1,2)$	5,32740 1,2	6.39328	8.53618 $(1,2)$	8.61205 12,2	6.6347 B	1,2
		$4.15841(1.2)$	4. $18717(1,2)$	3.93360 (1,2	4.14377	5.52306 (1,2)	$5.563222(1,2)$	4.90672	1,2
5		$3.50361(1,2)$	3.52174 (1,2)	3.40090(1,2)	3.49730	$4.65973(1,2)$	$4.68504(1,2)$	4.40376	1,2)
6	33.	$3.25877(1,2)$	$3.27125(1,2)$	$3.37319(1,2)$	3.25526	$4.33747(1,2)$	$4.35481(1,2)$	4.21254	1,2
9		$3.06322(1,2)$	$3.06884(1,2)$	3.24160 (1,2)	3.06219	$4.08124(1,2)$	$4.06175(1,2)$	4.04066	1,2)
12		$3.02521(1,2)$	3.02846 ${ }^{(1,2)}$	3.21977(1,2)	3.02479	$4.03202(1,2)$	$4.027^{8}(1,2)$	4.01893	1,2
15		$3.01306(1,2)$	$3.01518(1,2)$	$3.21080(1,2)$	3.01283	$4.01647(1,2)$	$4.01572(1,2)$	4.01094	1,2)
18		$3.00796(1,2)$	$3.00936(1,2)$	$3.20684(1,2)$	3.00776	$4.00822(1,2)$	4.01011 $(1,2)$	4.0077	1,2)
100		3,0000 (1,2)	$3.0000(1,2)$	$3.2000(1,2)$	3.0000	$4.000(1,2)$	$4.000(1,2)$	4.000	$(1,2)$
2/3		$81.2253(1,7)$	81. 4036 $(1,7)$	$80.4260(1,7)$	76.5172	62.7387 (1,7$)$	$82.9154(1,7)$	81.8942	
1		23.2624 $(1,4)$	23.3564 (1,4)	22,5340 (1;4)	23.0165	24.7470 (1,4)	24.8465 (1,4)	23.8860	(1,4\}
3		$\frac{8.71346}{5.24750(1,3)}$: $8.73450(1,3)$	$\frac{7.34105}{4.58502}(1 ; 2)$	8.70401 5.32727	9.79229 $(1,3)$	$9.81609(1,3)$	9.14258	1,2)
$\begin{aligned} & 4 \\ & 5 \end{aligned}$		$5.24750(1,2)$ $3.95422(1,2)$	$5.27 \pi / 4$ $3.97247(1,2)$	4.58502 $3.52776(1,2)$	5.22727	6.96932 511,2$)$	7.01218(1,2)	5.71988	1,2)
6	50	3.95422 $3.47728(1,2)$	$3.97247(1,2)$ $3.48967(1,2)$	$3.52776(1,2)$	3.94605	$5.25675(1,2)$	$5.28465(1,2)$	4.74041	1,2
9	80	3.40690 (1,2)	$3.48967(1,2)$ $3.11219(1,2)$	$3.50367(1,2)$ $3.27216(1,2$	3.47299 3.10553	4.62809 4.13924 4.2 1,2	$4.64558(1,2)$	4.37573 4	$(1,2)$
12.		$3.03909(1,2)$	$3.04214(1,2)$	3,22793(1,2	3.03054	$4.05034(1,2)$	$4.03636(1,2)$	4.02376	i, 2
15		$3.01879(1,2)$	3-02075 (1,2)	3.21413 (1,2)	3.01847	$4.02392(1,2)$	4.01922 (1,2)	4.01289	$(1,2)$
18		3.01006(1,2)	1.3,01205(1,2)	3,20849 (1,2)	3.01049	4.01354 (1,2	$4.0477(1,2)$	4.00813	
100		$3.0000(1,2)$.	$\cdots 3.0000(1,2)$	3.2000 (1,2)	3.0000	4.000 (1,2)	4.000 (1,2)	4.000	$(1,2)$

Table D1. (Continued)
Tab1e D2. (Continued)

$\begin{array}{r} 155 \\ 100 \\ 1 / 20 \end{array}$	100				$\begin{aligned} & 104.617 \\ & 32.5114 \\ & 10.2058 \\ & 8.75541 \\ & 66.5859 \\ & 4.7537 \\ & 33.36017 \\ & 3.11927 \\ & 3.05164 \\ & 3.02649 \\ & 3.000 \end{aligned}$			
$\begin{gathered} 1 / 3 \\ 1 \\ 3 \\ 4 \\ 5 \\ 6 \\ 9 \\ 12 \\ 15 \\ 100 \end{gathered}$	200				245.089$45.90 e 2$ 16.21299.12823 4.38123 3.14895$\begin{aligned} & 3.10432 \\ & 3.09052\end{aligned}$ 3.000			
$1 / 3$ 1 3 4 5 6 9 9 12 15 18 100	400				64.2052 20.6768 16.8589 12.2915 10.0950 8.4597 4.73706 3.71506 3.34664 3.000			
$1 / 3$ 1 3 4 5 6 9 12 28 18 100	2000							

Figure D1. Effect of R/h and L/ \mathbb{R} on Buckling Load KoiterBudiansky Equations. Load Case I.

Figure D2. Effect of R / h and $L / / \pi R$ on Buckling Load KoiterBudiansky Equations. Load Case II.
$k_{\text {ycr }}$ is obtained through minimization with respect to integer values of m and n. For this particular case $m=1$ and $n=2$ lead to the critical load parameters. The values for the three load cases and the three theories are given in Table D4. An order analysis was performed to arrive at these values which are independent of R / H.

Discussion of Results

The characteristic Eguation (D9) is solved numerically for all three shell theories (Koiter-Eudiansky, Sanders, and Donnell) and for all three load cases through the UNIVAC 1108 High Speed Digital Computer. The results are presented in a tabular form in Tables Dl through D3 and graphically in Figures D2 through D5. In addition to the computed data the results of the Von Mises solution are presented in Table Dl for comparison purposes.

The comparison shows that for all the load cases and the entire range of the parameters considered ($L / T \mathbb{R}$ and $R-h$) the results due to the Koiter-Budiansky and Sanders shell theories are virtually the same. The discrepancy is less than 1 percent. If the Donnell results are compared to those of the Koiter-Budiansky theory some discrepancies are observed. For load case I, it is seen from Table l, that for each R / h value, the Donnell result is smaller than the Koiter-Budiansky result for small values of $L / \pi R$. Depending on the value of R / h as $\mathrm{L} / \pi \mathrm{R}$ increases a reversal takes place and the Donnell result is higher, with the discrepancy reaching a 6.7 percent at very large values of $L / \pi R$. For example, at $R / h=25$ the reversal takes place somewhere between $\mathrm{J} / \pi \mathrm{R}$ equal four and five, for $\mathrm{R} / \mathrm{h}=35$ the reversal takes place between $L / \pi R$ equal five and six; and in general the value

Table D3. Comparison of Critical Pressures for Load Case III.
(Load Directed Toward Original Center of Curvature)

\underline{L}	$\frac{\mathrm{R}}{\mathrm{h}}$	-ky cr	(m, n)	$\frac{\mathrm{R}}{\mathrm{h}}$	-ky cr	(m,n)
π		BUDIAANSKYKOITER EQS.	$\begin{gathered} \text { SANDERS } \\ \text { EQS: } \end{gathered}$		$\begin{aligned} & \text { BUDIANSKY- } \\ & \text { KOIIER EQS. } \end{aligned}$	$\begin{gathered} \text { SANIERS } \\ \text { EQS. } \end{gathered}$
1/3	35	$72.3192(1,6)$	72.4935 (1,6)	200	148.903 (1,10)	149.023 (1,10)
		21.4614 (1,4)	$21.5596(1,4)$		$47.3328(1,6)$	47.3792 (1,6)
3		$9.62484(1,2)$	$9.68116(1,2)$		$17.7625(1,4)$	$17.7750(1,4)$
4		6.22179(1,2)	6.26798(1,2)		$12.2014(1,4)$	$12.2153(1,3)$
5		$5.24687(1,2)$	5:27586(1,2)		$10.4321(1,3)$	$10.4411(1,3)$
6		4.88276 (1,2)	$4.90255(1,2)$		9.78245 (1,3)	9.78873(1,3)
9		$4.59280(1,2)$	$4.60145(1,2)$		$6.56944(1,2)$	$6.57589(1,2)$
12		4.53688(1,2)	$4.54166(1,2)$		5.16476(1,2)	$5.16713(1,2)$
15		$4.51913(1,2)$	4.52208(1,2)		$4.77557(1,2)$	$4.77706(1,2)$
18		$4.51165(1,2)$	$4.51354(1,2)$		$4.63516(1,2)$	$4.63620(1,2)$
100		$4.5000(1,2)$	4.5000 (1,2)		$4.5000(1,2)$	$4.5000(1,2)$
1/3	50	$82.7761(1,7)$	$82.9527(1,7)$	400	204.639 (1,12)	204.730 (1,12)
1		24.8608 ($1,4$.	$24.9608(1,4)$		65.7290 (1,7)	65.7560 (1,7)
3		$9.94901(1,3)$	$9.97321(1,3)$		$22.1543(1,4)$	$22.1659(1,4)$
4		$7.85087(1,2)$	$7.90059(1,2)$		18.0626 (1,4).	18.0674 (1,4)
5		5.92125(1,2)	5.95115 (1,2)		14.0496 (1,3)	$14.0583(1,3)$
6		$5.20982(1,2)$	5.22995 (1,2)		$11.5353(1,3)$	$11.5409(1,3)$
9		$4.65799(1,2)$	$4.66649(1,2)$		$9.63450(1,3)$	$9.63220(1,3)$
12		$4.55741(1,2)$	$4.68253(1,2)$		7.11114 (1,2)	7.09569(1,2)
15		4.52744 (1,2)	$4.53047(1,2)$		$5.57656(1,2)$	$5.56759(1,2)$
18		$4.51562(1,2)$	$4.51761(1,2)$		$5.01094(1,2)$	$5.00464(1,2)$
100		4.5000 (1,2)	$4.5000(1,2)$		4.5000 (1,2)	$4.5000(1,2)$
1/3	100	$109.900(1,8)$	$110.057(1,8)$	1000	314.880 (1,15)	314.938 (1,15)
1		34.0448 (1,5$)$	34.1104 (1,5)		103.353 (1,9)	103.327 (1,9$)$
3		$11.6661 .(1,3)$	11.6914 (1,3)		34.4646 (1,5$)$	34.4488 (1,5$)$
4		$10.0059(1,3)$	10.0193 (1,3)		27.8601 (1,4)	$27.8472(1,4)$
5		9.52749(1,3)	$9.53651(1,3)$		20.9430 (1,4)	20.9371 (1,4)
6		$7.13222(1,2)$	$7.15462(1,2)$		$18.4372(1,3)$	18.4302 (1,3)
9		$5.04076(1,2)$	$5.04888(1,2)$		$12.0352(1,3)$	$12.0270(1,3)$
12		$4.67818(1,2)$	$4.68253(1,2)$		$10.0807(1,3)$	$10.0544(1,3)$
15		$4.57790(1,2)$	$4.58040(1,2)$		$9.50111(1,3)$	$9.4608(1,3)$
18		$4.53865(1,2)$	$4.54067(1,2)$		7.70723(1,2)	7.62858(1,2)
100		$4.5000(1,2)$	$4.5000(1,2)$		$4.5000(1,2)$	$4.5000(1,2)$

Figure D3. Effect of R / h and L / T^{R} on Buckling Load KolterBudiansky Equations. Load Case III.
of $\mathrm{L} / \pi \mathrm{R}$ at which the reversal takes place tncreases with increasing R / h. In addition, it is seen that the discrepancy in the two results is appreciable only in a small range of $L / \pi R$ values for each R / h value. For example, at $\mathrm{R} / \mathrm{h}=25$, the discrepancy is 12 percent at $L / \pi \mathrm{R}=3$ decreases with further increase in $\mathrm{L} / \pi \mathrm{R}$, and finally after the reversal takes place it reaches a maximum value of -6.7 percent as $L / \pi R \rightarrow \infty$. The value of $L / \pi \mathbb{R}$ at which the discrepancy is the largest increases with increasing value of R / h. These critical loads are underlined in I'able Dl. The largest discrepancies occur at $L / \pi R$ values for which the circumferential mode changes to $n=2$. But the discrepancy is not affected by the fact that $n=2$ as seen from increasing values of $L / \pi R$. The maximum discrepancy computed is 24.3 percent at $L / \pi R=9$ and $R / h=400$. Finally, it is observed that for practical engineering uses of thin cylindrical shells, especially of the submarine hull type, for which $1<L / \pi R<4$, and $100<R / h<400$, the accuracy of the Donnell results is very good. It is also observed from Table Dl that the Von Mises solution which is based on Flügge's equations is extremely accurate (discrepancy less than one percent) except for short and relatively thick thin cylindrical shells ($R / h \leq 35, \mathrm{~L} / \pi \mathrm{R}<1$). For these geometries the discrepancy can be as large as 11 percent.

For load case II, the same conclusion and observations are made, based on the data presented in Table D2. There is only one exception, that there is no reversal taking place. The Donnell results are always smaller than the Koiter-Budiansky results and they become virtually identical for very long cylinders.

For load case III no attempt has been made to compare the Donnell results to those of the Koiter-Buaiansky theory, because the Donnell equations do not differentiate between load case II and III. Because of this one might say that the Donnell results are in error for this load case.

The plots in Figures D1 through D3 show the effect of R / h and $L / \pi R$ on the critical pressure as obtained from the KoiterBudiansky theory. It is observed from these plots (Figure D1) and Table Dl that the discrepancy between these results and the Donnell results is the largest when the curves exhibit sharp corners. The same is true for load case II (Flgure D2 and Table D2).

Table D4. Comparison of Critical Pressures for Infinitely Long Cylinders.

	- ky $_{\text {cr }}$	
DONNELT	SANDERS	
EQUATIONS	EQUATIONS	BUDIANSKY - KOITER EQUATIONS
3.2	3.0	3.0
4.0	4.0	4.0

Figure D4. Effect of Load Behavior on Buckling Load KoiterBudiansky Equations.

Finally, the plots in Figure D4 show the effect of load behavior on the critical pressures for the entire range of R / h and $L / \pi R$ values. It is observed that for short to moderate length cylinders the difference among the results obtained is not appreciable. As the length increases the difference becomes more pronounced, especially for low R / h values, until for extremely long cylinders the difference reaches its maximum value and it is independent of R'h (see Table D4).

Conclusions

Among the most important conclusions of the present investigation one may list the following:

1. For each type of load behavior, the Donnell equations yield results which are within acceptable engineering tolerances, especially in the practical range of R / h and $L / \pi R$ values.
2. Contrary to previous belief, the discrepancy is not associated with the number of circumferential waves. (The previous belief is that when n is very low ($n=2$) the discrepancy is the largest (of the order of 33 percent)). The authors contend that the fallacy of the above belief is attributed to the load behavior model rather than the Donnell equations.
3. Load case II may be used as a mathematical model for pressure bucking for short and moderate length cylinders. For extremely long cylinders this model is inaccurate and leads to overestimates of 33 percent (see Table D4).
4. Hoff, N. J., "The Accuracy of Donnell's Equations," Journal of Applied Mechanics, Vol. 22, No. 3, Tirans. ASME, Vol. 77, September 1955, pp. 329-334.
5. Dym, C. L., "On the Buckling of Cylinders in Axial Compression," Journal of Applied Mechanics, Vo1. 40, No. 2, Trans. ASME, June 1973, pp. 565-568.
6. Koiter, W. T., "General Equations of Elastic Stability for Thin Shells, " Muster, D., ed.; Proceedings, Symposium on the Theory of Shells, University of Houston, Houston, Texas, 1967.
7. Budiansky, B., "Notes on Nonlinear Shell Theory," Journal of Applied Mechanics, Vol. 35, No. 2, Trans. ASME, Vol. 20, Series E, June 1968, pp. 393-401.
8. Sanders, J. L., "Nonlinear Theories of Thin Shells," Quarterly of Applied Mathematics, Vol. 21, 1963, pp. 21-36.
9. Timoshenko, S. P., and Gere, J. M., Theory of Elastic Stability, McGraw-Hill Book Company, Inc.
10. Flưgge, W., Stresses in Shell, Springer-Verlag, Berlin, 1962.

APPENDIX E

LISTING OF COMPUTER PROGRAMS

Following programs are written in this Appendix:

1. MAIN: Nelder and Mead algorithm employed for minimization of objective function formulated on the basis of general instability. The shell is ring-stringer stiffened.
2. MAINY: Nelder and Mead algorithm employed for minimization of objective function formulated on the basis of skin yielding. The shell is ring-stringer stiffened.
3. MAINR: Golden section search technique employed for minimization of objective function formulated on the basis of general instability. The shell is ring stiffened.
4. MAINP: Golden section search technique employed for checking panel buckling.
5. RSSH: The program is written for designing ring stiffened shell based on the results of Phase I.
6. SUBROUTINE START: This sets up the initial simplex for Program MAIN.
7. SUBROUTINE STARTY: This sets up initial simplex for program MATNY.
8. SUBROUTINE WSR: This defines the objective function for program MAIN.
9. SUBROUTINE WSRR: This defines the objective function for
program MAINR.
10. SUBROUTINE WSRY: This defines the objective function for program MAINY.
II. SUBROUTINE GENST: This program finds the general instability critical load parameter treating m and n as discrete variables.
11. SUBROUTINE CKYR: This gives the expression for $\bar{k}_{y y}$.
12. FUNCTION $Q:$ This gives expression for $\bar{k}_{y y}$, treating m as continuous variable.
13. FUNCTION R: This gives expression for $\bar{k}_{y y}$, treating m as an integer.

The list of program variable names and corresponding mathematical notations are given as follows

Program	Variable Name	Mathematical Notation
	AFA	α
	AL	L
	ALX	$\bar{\alpha}_{\mathrm{x}}$
	ALY	$\bar{\alpha}_{y}$
	AX	${ }^{A} \times$
	AY	A_{y}
	BX	B_{x}
	BY	B_{y}
	BB	$\bar{\beta}$
	BET	β
	cx	C_{x}
	CY	C_{x}

Program Variable Name
DIFER

II
KICR

M

N
PO

QDS

QY
$R R$ or R

WBAR

WSS or WSL
WS(IN)
$X(1)$ or $\mathrm{X} 1(\mathrm{KOUNT}, 1)$
$\mathrm{X}(2)$ or $\mathrm{XI}(\mathrm{KOUNT}, 2)$
$\mathrm{X}(3)$
ZZ or 2

Mathematical Notation
Standard deviation of \bar{W}^{*}
Number of iterations
$\bar{k}_{\text {yycr }}$
m
n
v
*
${ }^{9}$
σ^{*}

R
\bar{W}
Wै* minimum
Wै*
$\bar{\lambda}_{\mathrm{XX}}$
$\bar{\lambda} y$
λ^{*}

Z


```
    C. BH IS BETABAR INNKYY EXPRESSION
    SET. AFA ZERO FOR ONLY PRESGURE
    OIMENSION X1(10.10),X(10),WS(10)
    COMMON/S/X1,NX,STEP,K1,WS.IN
    COMMON/SS/ALX,ALY,CX,CY;PO,X,ZT
    COMMON/AAA/M,N
    COMMON/PPO/TN
    COMMON/SR/QDS
    COMMON/XX/AFA,RTO
    WRITE(6.1000)
    1000 FORMAT(//15X, GENFRAL INSTABILITY FORMILATION*//)
    READ(5,110)AX,AY,BX,BY,CX,CY,ODS, AFA,RTO,Z7
    NX=2
    PO=.3
    X(3)=8.
    WRITE (6.1100)
```



```
    15X. 'BY..5X. (Q0S')
    WRITE(6,1200)PO,CX,CY, ZZ.AX,AY,BX.BY,OOS
    1200 FORMAT(6X,F5.3.F6.3.F7.3.3X.FR.2,4F7.4,F15.6//)
    WRITE(6,1300)
    1300 FORMAT (6X,'ALX'.4X,'ALY', 3X,'NBAR',9X,'KYCR',7X, X(1)'
,5x,'x(2)'.
    62 15X,M',4X,'N',5X,'WPSTAR,.4X,'DIFFER',5X,'II')
    6 3
    100 READ(5,110, END=900) AL X,ALY
    64.110.FORMAT()
```

```
FL; C START WITH ASSIMMEO VALIE OF X(1) AND X(2).
f%
6 7
6%
6 9
70
7 1
7 2
7 3
74
75
76
7 7
78
79
80
81
B2
B3
84
84
MG
        x(1)=.1
        x(?)=.6
        STEP=.1
        ALFA=1.0
        HETA=0.5
        GAMA=2.0
        OIFER=0.
        XNX=NK
        IN=1
        CALL WSR
        k1=Nx+1
        k2=Nx+2
        k 3=NN+3
        k4=NX+4
        CAl_L STARF
        DO 3 I=1.K1
        DO }4\textrm{J}=1.N\textrm{N
        4 (J) =x1([,J)
        [N=I
        CMI_WSR
        3 CONFINUE
    C
        63 11=0
        28 If=1it+1
        IF(II.LT.61) GO TO 60
        GO TO 888
    C
    c select labgest value of ws(I) in simplex
        60 WSH=WS(1)
            INDEX=1
            DO 7 [=2.kl.
            IF(WS(I).LEE.WSH).GO TO.7
            WSH=WS(E)
            [NDEX=[
            . }7\mathrm{ CONTINIJE
            C. SELECT MINIMIM VALIE OF WS(I) IN STMPLEEX
            WSL=WS(1)
            KONNT=1
            DO & [=2.K1
```

```
    105
``` WSL=WS(I)
KOUNT=I
8 CONTJNUE
FIND CENTROID OF POINTS WITH I OIFFERENT THAN INDEX DO \(9 \mathrm{~J}=1 \mathrm{NX}\) WS2=0.
DO \(10 \quad I=1\). K1
10 WS \(2=W S 2+\times 1(1 . J)\)
\(\times 1(K 2, J)=1 . / X N \times *(\) NS2-X1(INDEX.J))
C FIND REFLECTION OF HIGH POINT THROUGH CENTROIO
\(\times 1(K 3, J)=(1 .+A L F A) * \times 1(K 2, J)-A L F A * X 1(I N D E X . J)\)
IF \((\times 1(K 3 \cdot J) \cdot L T \cdot 0.) \times 1(K 3 \cdot J)=0\).
\(9 \times(J)=\times 1(k 3, J)\)
I \(\mathrm{N}=\mathrm{K} 3\)
CALL WSH
[F(WS(K3).LT.WSL) GO TO 11
SELEET SECOND LARGEST VALUE IN SIMPLEX IF (INDEX.EQ.1) GO TO 38

GO TO 39
38 NSS=45(2)
39 DO \(12 \mathrm{I}=1, \mathrm{~K} 1\)
IF (\((\) INDEX-I).EQ.0) GO TO 12
IF(WS(I).LE.WSS) GO TO 12
WSS=WS(I)
12 CONTINUE
IF (WS(K3).GT:WSS) GO TO 1.3 GO TO 14
```

[F(WSL. -E.WS(I)) GOTO 8

```


164
165
166
167
168
169
170
171
1.72

173
174
175
176
177
178
179
180
N
181
182
183
184
185
186
187
188
SL.
189
100
- 5: 15)

191
193

Gi) TO 26
16 ن० 21 J=1.Nx
\(x 1(I N D E X \cdot J)=x 1(K, 4, J)\)
\(21 \cdot x(J)=x 1\) (INDE \(x, J)\)
IN=INDEX

CALL: WSR
GO 1026
\(140022 \mathrm{~J}=1 . \mathrm{Nx}\)
\(x_{1}(\operatorname{NDE} \cdot \mathrm{~J})=\times 1(\mathrm{~K} 3 \cdot \mathrm{~J})\)
\(22 \times(J)=x 1(I N D E X: J)\)
\(I N=I N D E X\)
CAL WSP
26 00 23 \(\quad \mathrm{J}=1 \cdot \mathrm{~N} x\)
2.3. \(x(J)=\times 1(k 2, J)\)

IN二人2
CAl_ WS
C. TO TERMINATE THE SEARCH DIFER MUST BE LESS THAN EPSILO

OIFER=0.
0024 I=1.K1
24 DIFER = OIFER + (WS (I)/WS(K2)-1.)**2
DIFER=STRT (1./(XNX+1.0)*OIFER) IF (OIFER.GE. 00001) GO TO 28

\(1 \times 1(K O!N T, 1) * X 1(K O!J N T, 2) /(1,-\infty O * P O) * * 2 * A(Y)\)
WRITE (G, 101) ALX, ALY,WBAR, TN, \((X 1(K O U N T, J), J=1, N X), M, N, W\)
1OIFER, II
101 FORMAT \(1 \times, F 8.1\) FF7.1.F10.5.F11.2.2F10.5. [5. \(15.510 .5 \cdot E 12\)

GO TO 100
909 CONTINUF
END

ASWANT-M-G*OPTIM.START

```

ASWANI-M-G*OP [IM.WSR
1 SUHROUTINE WSR
2 C THIS SUBROUTINE DEFINESTHE OBUECTIVE
3 C FUNCTION FORMULATED ON THE BASIS
4
5
c. OF GENERAL INSTABILITY
DIMENSION X1(10,10), (10).WS(10)
COMMON/S/X1,NX,STEP.K1,WS,IN
COMMON/SS/ALX,ALY,CX,CY,PO,X,ZZ
C COMMON/EE/BB.EM,CKYR
COMMON/SP/QOS
COMMON/XX/AFA,RTO
COMMON/OPR/TN
COMMON/AAA/M,N
00 10 J=1.NX
10 IF(X(J).LT.0.) X(J)=0.
CALL GENST(PCR)
WS(IN)=1.0+(X(1)+X(2))/(1.-P0*PO)+10**X(3)*ABS(TN/(2)**
77)-QDS*
17 12/1-X(1)*X(2)/((1.-PO*OO)**2*ALY)
18 REIIJRN
19
ENO

```

\section*{ASWANI－M－G＊OPTIM．GENST}
```

    SIJBROUTINF GENST(1ん)
    C THIS SUBHOIITNE [G FOR FINDDING KYYCH
    C: TREATING M ANDII AS INTEGERS
    COMMON/AAA/M.N
    COMMON/PPH/FN
    COMMON/YY/ROXX,HOYY,EX.EY
        IK=0
        IL=0
        IH=0
        15=0
        NL=?
    102 N=NL
        JJ=1
        M=1
        40. Nr=N
        MT=M
        NA=0
        MA=1
        NB=8
            MB=30
        17N=N-1
        IF(N-NA) 42.41.41
        42 N=N+1
        41 CALLL CKYR(TA,N,M,AL,IK)
        N二N+1
        CALI CKYR(TGON,M,AL,IK)
        1F(TA-TB) 1.2.?
        1 [F(IR) 3,4,3
        2N=N+1
        IF(N-NR) 46;4F;%45
        45 \GammaN=「B
        N二N-1
        GO TO 7
    46 CALL CKYR(TC,N,M,AL,IK)
        IF(TB-TC) 10,10,11
        4.N=N-2
        IF(N) 43.414.4%
    43 TN=\GammaA
        N=N+1
        GO TO }
    44.CALL CKYR(H),H,M,ALOIK)
    [F(TA-TD) 505,6
    ```
\begin{tabular}{|c|c|c|}
\hline 4.3 & 5 & \\
\hline 44 & & \(\cdots=1+1\) \\
\hline 45 & & （0）50：7 \\
\hline 46 & 6 & \(\mathrm{NH}=\mathrm{N}\) \\
\hline 47 & & \(N=(N A+N H) / 2\) \\
\hline 4 A & & G0） O O \\
\hline 49 & 3 & IF（2－NH＋NA）6－6， 9 \\
\hline 50 & 9 & TN＝TA \\
\hline 51 & & \(N=1.101\) \\
\hline 52 & & GO 107 \\
\hline 53 & 10 & \(\Gamma N=\Gamma\) \\
\hline 54 & & \(N 二 N-1\) \\
\hline ．56） & & （9） 107 \\
\hline 56 & 11 & リF゙（12）15．13．15 \\
\hline 57 & 13 & \(\mathrm{N}=\mathrm{N}+1\) \\
\hline 58 & & \\
\hline 59 & 47 & TN＝TC \\
\hline 60 & & \(N=1.1\) \\
\hline 61 & & G0 107 \\
\hline 62 & 48 & CALI＿CKYR（ 5 O，N，M，A1－＋IK） \\
\hline 63 & & ［F゙（TC－TD） \(14.14,15\) \\
\hline 64 & 14 & \(\mathrm{TN}=\mathrm{TC}\) \\
\hline 65 & & N二小土 1 \\
\hline 66 & & GO TO 7 \\
\hline 67 & 15 & IF（2－NH＋NA）12，12，16 \\
\hline 68 & 16 & TN＝\(T C\) \\
\hline 69 & & GO 107 \\
\hline 70 & 12 & \(N A=N\) \\
\hline 71 & & \(N=(N A+N B) / 2\) \\
\hline 72 & \(\beta\) & \(I R=I R+1\) \\
\hline 73 & & （30 TO 1.7 \\
\hline 74 & 7 & IF（IJ）104．104．103 \\
\hline 75 & 103 & T1 \(=1 \mathrm{~N}\) \\
\hline 76 & & I \(\mathrm{J}=0\) \\
\hline 77 & & \(\mathrm{NL}=\mathrm{N}\) \\
\hline 78 & & \(\mathrm{N}=3\) \\
\hline 79 & & \(M=5\) \\
\hline 80 & & \(I R=0\) \\
\hline 81 & & GO 1040 \\
\hline 82 & 104 & \(M=M-1\) \\
\hline 83. & & ［ 5 （M－MA）49．50．50 \\
\hline
\end{tabular}

126
127 12 凡

129 130 131

132
133
134
135
136
137
\(13 H\)
139
140
141
142
143
144
145
146
147
148
149
150
151
15 ？
153
1.54

155
156
157
158
159 160 161

162
163
164
165
166
167
168
169
\begin{tabular}{c}
\(\mathrm{M}=\mathrm{M}-1\) \\
GO \\
T \\
T \\
\hline
\end{tabular}
25
33． \(1 F(2-M B+M A) \quad 30,30,34\)

34 TN＝FC
GOTO 25
\(30 \mathrm{MA}=\mathrm{M}\)
\(M=(M A+M B) / 2\)
\(26 \mathrm{I} S=[\mathrm{S}+1\)
GO TO 7
25．IF（N－NT） \(40.36,40\)
36 ［F（M－MF） \(40 \cdot 37 \cdot 40\)
\(37 \mathrm{NH}=\mathrm{N}=3\)
DO \(60 \quad[=1,2\)
\(\mathrm{NB}=\mathrm{NH}+2\)
［F（NB）60．56．65
65 IF（NH－8）61．61．60
\(61 . M B=M-3\)
00 \(70 \quad \mathrm{~J}=1.2\)
\(\mathrm{MH}=\mathrm{MB}+2\)
［F（MH）70，70．64
\(64 \mathrm{IF}(\mathrm{MB-30}) .62 \cdot 62 \cdot 71)\)
62 CALL CKYR（TA，NB，MR，AL，IK）
［F（TA－TN）63．63．70
70 CONT［NJE
の0 CONTINJE
IF（N．EQ．O）GO IO 100
IF（N－M） \(101 \cdot 100.100\)
\(101 \mathrm{NI}=\mathrm{N}\)
MI＝M
LF（T1．LT．TN）GO TO 105
RE TIJRN
105 TN＝TL \(N=1 \mathrm{~N}\)
\(M=1\)
KETJRN
\(63 \mathrm{~N}=\mathrm{NB}\)
\(M=M B\)
GO TO． 40
\(100 \quad I L=I L+1\)
IF（IL．GT．1）RECIRN
N二5
\(M=30\)
GO 1040
END
```

ASWANI-M-G*OP FIM.CKYR
1 SUBROUTINE CKYR(U,N,M\&AL,[R)
2. C THIS SIJBROIJTNE DEFINES THE PARAMETER KYYBAL
OOIJBLE PRECISION A1,A2,AB,A4,A,B,C,F,G
OIMENSION X(10)
COMMON/SS/ALX,ALY,CX,CY,PO,X,ZZ
COMMON/YY/ROXX,ROYY,EX,EY
COMNON/XX/AFARRTO
IF(N.EO.O) GO TO 2
IF(IR.EO.1) GO TO 1
IR=1
ROXX=ALX*ALX*X(1)
ROYY=ALY*ALY*X(2)
EX=-3.14*3.14*SQRT(1.-[PO*!PO)*(1.+CX*AL)X)/(2.0*7.7)
EY=-3.14*3.14*SQRT(1.-PO*!O)*(1.+CY*ALY)/(2.0*?%)
1 XN=\
xM=\
BR=xN*RTO/(3.14*)M)
AL=(1.+BH*BH)**2+x(1)+x(2)*日R*)4+2.*BB*BB*(x(1)+x(2)+X
(1)*\times(2))
19 1(1.-P0)
20 \therefore A2=(1.+BR*BB)**2+ROXY+4OYY*B13*:4
21 A3=12.*2%*7Z/(3.14**4*(1.-PO*P0)
22
)+(EX*EX*)
EY*X(2)*(1.+
24. 2X(1)))*BR**4+2.0*EY*FY*X(2)/(1.-PO)*(1.-P0+X(1))*BB**6
+EY*EY*X(2)

```
```

3*PR**8
A=A1*A2+A3*A4
A5=-2.*PO*EX*X(1)+2.*(EX*X(1)*(1.+X(2))+EY*X(2)*(1.++X(
1-2**OOEY*X(2)*BB**4
B=A3*A5
C=A3*((1.+X(1))*(1.+X(2))-PO*SO)
F}=(RTO/3.14)**2*((1.+BB*BH)*(EX*X(1)+EY**(2)*HH**4)+2
*BB*BB/(1.-PO
32
33
2.*x(1)+x(2)
34
35
36
37
38
39
10)*(X(1)*X(2)*(EX+EY*B(B*BB)))+(.5-AFA+BB*EP)*A1
G=(RT0/3.14)**2*((1.+B13*SU)*(P0+B+2*B3)+P3*B4/(1,-P0)*(
1+00*x(2)+2.**(1)**(2))+x(2)*RB*44)
U=(A*XM**4+B*XM**2+C)/(F*XM**2+G)
RETURN
2 U=1.E+30
RETITRN
Eno

```
```

ASWANI-M-G*OHTIM.MAINR
C THIS PROGRAM IS FOR MINIMILATION OF
2 O OBUFCTIVE FIJNCTION FORMILLATED ON
C THE BASIS OF GENERAL INSTABILITY
4. C
THE CYLINDER IS RING STIFFENED
OIMENSION X(10).WS(10), X1(100). 22(100).X3(100),Y1(100)
M2(100),
7
8 COMON/S/INOWS
9 COMMON/S5/ALX,ALY,CX,CY,PO,X,ZZ
1 0
1) commonfopolTN
12. COMMON/XX/AFA.RTO
13 COMMON/AAA/M.N
14
15
16
1 7
18
19
20
21
22
23
24 :90 FOPMAT(6X.OENTER VALINES OF ALY.Z7%/)
25
WRITE(क,1000)

```
```

LL 26 D-300GIR, 1000 FORMAT(//10X,G.I. OPTIMIZATION FOR RING STIFEENED SHE
< 27
: 1//1
28
29
OS*;
30
31. 1200 FORMAT(6X,F5.3.F6.3.4X.F8.2.2F7.4.E15.6/1)
WRITE(6,1300)

```

```

        1.4X.'WPSTAR*)
    555 READ(5.111,FrND=9OC) AIY, L%
    111 FORMAT()
        DATA X1(1).\times2(1). X3(1),F1,EPS/.001..1.4.0.381966011..
    K=1
    L=0
        25*x(2)=\times2(K)
        IN=1
        CAL! WSRP
        11 x(2)=\3(K)
        IN=?
        CALL WSRR
        IF(WS(1)-WS(2)) 10.10.20
        20\times3(k)=\times3(k)+0.2*\times3(k)
        IF(x3(K).LT.15) GO TO 11
        L=L+1
        IF(L.LT.10)GOTO 20
        X1(1)=0.01
        x2(1)=.4
    ```
\(x 3(1)=12.0\)
1F(I.L.r.11) GO ro 25
\(10 \mathrm{DEL}(\mathrm{K})=\times 3(\mathrm{~K})-\times 1(\mathrm{~K})\)
\(12 Y 1(K)=X 1(K)+F 1\) *OEL \((K)\)
\(Y 2(K)=x 3(K)-F 1 * D E L(K)\)
\(x(2)=Y 1(K)\)
\(\mathrm{IN}=1\)
CALL WSRQ
\(x(2)=Y 2(K)\)
\(\mathrm{CN}=2\)
CALI WSHR
IF(WS(1)-WS(2)) \(30.31,32\)
30 DEL \((K+1)=Y 2(K)-\times 1(K)\)
\(x 1(k+1)=x 1(k)\)
\(\times 3(k+1)=Y 2(k)\)
\(k=k+1\)
IF(ABS ((\(\times 3(K)-\times 1(k)) / \times 3(k))\). LT. EPS) GO TO 40
GO TO 12
31 DEL \((K+1)=Y 2(K)-\times 1(K)\)
\(x 1(k+1)=Y 1(k)\)
\(x 3(k+1)=x 3(k)\)
\(k=K+1\)
IF (AHS (\(\times 3(K)-\times 1(K)) / \times 3(K)) . L T\) EPS \()\) GO TO 40
(6). 1012
32. DE \(1-(K+1)=X 3(K)-Y 1(K)\)
\(x 1(k+1)=r 1(k)\)
\(x 3(k+1)=x 3(k)\)
\(k=k+1\).
IF(ABS (\(\times 3(K)-\times 1(K)) / \times 3(K)) . L T . E P S)\) GO TO 40
60 T0 12
\(40 \times(2)=(\times 1(k)+\times 3(k)) / 2\).
[\(\mathrm{N}=1\).
CALI WSRIK
WSS=WS(1)
\(W H A R=1 .+X(2) /(1,-P O * P O)\)
WRITE(G,1の1) MLY:WAAR, TN, \(\times(2)\), MONOWSS
101 FORMAT (1X.FR.1.F10.D.F11.O.F10.5.I5.T5.F10. 5)
GO To 555
999 CONTINUE
END
*ASNANI-M-G*OPTIM.OSRR

```

ASWANI-M-G*OPTIM.MAINY
1. C THIS PROGRAM IS FOR MINIMIZATION
C OF THE OBJECTIVE FUNCTION FORMILATEO
C O ON THE* BASISC OF SKIN YIELDING
C OPTIMIZATION BASEO ON SKIN YIELLD
OIMENSION X1(10,10). X(10).WS(10)
COMMON/S/XI,NX,STEP.K1,WS,IN
COMMON/SS/PO.X:ZL,AL,R
COMMON/SR/OY
WRITE(6.1000)
1000 FORMAT(//15x, 'ONTIMIZATION FOR SHELL O-10:O-I-T R-RS'/
/1
11 NX=2
STFP=.01
PO=.3
AL=594.
R=198.
YS=120000.
DP=3000.
GW=.0374
Q=GWW\mp@code{ON 12.}
QY=YS*9.*SQRT(1.-1O*PO)/0
WRITE(6.1100)
1100 FORMAT(8X, NI.*,12X.'SIG.STAR*)
WRITE(6.1200)PO,GY
1200 FORMAT(6X.F5.3.8X.F11.5)
WRITE(6,1300)
1300 FORMAT(8X.'H*,10X,*X(1)'.8X.'X(2)., 8X.'WBAR'.7X. WSTAR
1ER4.5x.1 II')
100 READ(5, 110.END=900)22

```
```

29
30
31
32
3.3
34
35
36
110 FORMAT（）
C START WITH ASGIMED VALIJE OF $\times(1)$ AND $\times(2)$.
$x(1)=2$
$x(2)=8$
$x(3)=8$ ．
ALFFA＝1．0
$B E$ TA $=0.5$
GAMA $=20$
XNX＝NX
［ $N=1$
CAL．I．WSRY
$K 1=N X+1$
$K 2=N X+2$
$k 3=N X+3$
K $4 \rightarrow 0 \times+4$
CALL．STAFTY
$1003 \cdot I=1, k 1$
$100 \cdot 4 J=1 \cdot N x$
$4 \times(J)=\times 1([1 J)$
IN＝I
CALL WSRY
3 CONTIAIJE
C
$6.3 \quad 1 I=0$
2 A $\quad I=I I+1$
IF（II．LT．100）GO 「O 60
GO．TO $48 \&$
$C$
C SELECT LARGEST VALIE OF WS（I）IN SIMPLEX 60 WSHEWS（1）
［ $\operatorname{NDE} X=1$
ПO 7 โこ2．K1
IF（WS（I）．IF．WSH）GO 「O 7
WSH＝WS（I）
［NOEX＝I
7 CONTINIJE
C SELECT MINIMJM VALIJE OF WS（I）IN SIMPLEX WSL＝WS（1）
KOINT＝1
100．R I $=2 . K 1$
IF（WSL．LE．．WS（I））GO•TO 8

```


```

    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    13.7
    138
    1 3 9
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    x.15)
156
157
158

```
[\(\mathrm{N}=\mathrm{I}\)
29. CONT INUE

GO TO. 26
\(160021 \mathrm{~J}=1\). Nx
X1(INDEX,J) \(=\times 1(K 4, J)\)
\(21 \times(J)=\times 1(\) INDEX.J)
IN=INDEX
CAL! WGRY
GO TO 26
\(140022 \mathrm{~J}=1\) •NX
\(\times 1(I \operatorname{NDE} x \cdot J)=\times 1(K 3, J)\)
2. \(x(J)=x 1(\) NDE \(X, J)\)

IN=INOEX
CALI HSPY
26 DO \(23 \quad J=1 . N K\)
\(23 \times(J)=\times 1(\mathrm{k} 2, j)\)
[N=K2
CALI WSRY
\(C\) TO TERMINATE THE SEARCH DIFFR MUST BE LESS THAN EPSILO DIFER=0.
DO 24 I=1,K1
24 DIFER =DIFER+(NS(I)/WS(K2)-1.)**2
DIFER \(=\operatorname{SQR}(1 . /(X N X+1.0) * O I F E R)\)
IF (OIFER.GE. 0.00001) GO TO.28
883 WRARR \(=1,+(\times 1(\) KOUNT 1\()+\times 1(\) KOUNT 2\()) /(1,-\) PO*RO \()\)
H=AL*AL*SQRT(1.-PO*PO)/(P*Z2)
WAAR \(=W H A R Q\)
WRITE 6,101\() \mathrm{H},(\times 1(K O U N T, J), J=1, N X)\),WBAR, WSL, DIFER, II
101 FORMAT \(\left(3 \times, F 10.5,2 x, 2 F 11,5,2 x, F 10.5,2 x, F 10.5,2 \times,{ }_{2} 12.5,1\right.\)

GO TO 100
900
CONTINUE
END
```

ASWANI-M-G*OPT IM.STAR TY
1 SIHROUTINE STAITYY
2 C THIS STHROHTINE SERS UPN INTTIAL
3. C SIMFLEX:FOR MAINY
4.
5
6
7
8
4
10
11
12
13
14
15
16
17
18
1 9
2 0
2.1
22
C THIS STHHROHTINE SE
DIMENSION X1(10,10).X(10),WS(10),A(10,10)
COMMON/S/X1.NX,CTEP.K1,WS.IN
COMMON/S%/PO%X:Z,I,ALPH
VNONX
STEP1=STEP/(VIN*SORT(2.))*(S\&LT(VN+1.)+VN-1.)
SNED2=STEN/(VN*SNKT(P.) )*(30NT (VN+1.)-1.)

1) 1 J=1 NX

2. A(1,U)=0.
DO 2 I =2,K1
DO 2J=1,Nx
\Lambda(I.J)=STEI?2
L=I-I
A(INL)=STFOI
2 conrITIJE
DO 3 I=1,K1
DO 3 J=1.NX
3 (1([,J)=x(J)+A(IN,N)
RE \Gamma!|RN
END
```
```

ASWANI-M-G*OPTIM.WSRY
1-M-G*OPTIM.WSRY
C THIS SIJROUTINE DEFINES. THE OBJECTIVE
C FUNCTION FORMULATEL DN THE BASIS
C OF SKIN YIELDING
DIMENSION X1(10,10), X(10).NS(10)
COMMON/S/X1,NX.STEP,K1,WS.EN
COMMON/5S/PO,X.22.AL.PH
COMNON/SR/GY
00 10 J=1,N*
10.IF(X(J).LT.O.). X(J)=0.
AFA=.2
A=(1.+X(1))*(1.+X(2))-100*P0
B=2.*PO* X(1)+(1.+2**AFA)*(x(2)+1.-20*O))
C=2.*(x(1)+1.-PO*O0)+50*x(2)*(1.+2.*AF)
P=SQRT(B*R+C*C-B*C)/A
WS(IN)=1.+(X(1)+X(2))/(1.-PO*PO)+10*\&X(3)*ABS(户/2.-QY/
RETIJRN
1A END

```
```

    ASWANI-M-G*OPTIM.MAINP
        1 C THIS PROGRAM IS FOR PANEL BUCKLING
        3 C C SEARCH TECHNIQUE
        4 C
        5
    100) ()(10)
6
1.M(5),GG(5),Z1(5)
7. COMMON/SS/ALX,ALY,CX,CY,PO,XX,Z
8 COMMON/CC/A,B,C,F,G
COMMON/DD/M\&JJ
COMMON/XX/AFA,RTO
PO=.3
CX=1.
CY=1.
ALY=0.
X(2)=0.
100. READ(5,140,END=999)Z,ALX,X(1),EL,RR,AL
140 FORMAT()
RTO=EL/RR
DATA X1(1).X2(1). X3(1),F1.ENS/.00,4.00.5.00.0.38196601
ZZ=Z*EL*EL/(AL*AL)
21 (1000 FORMA (6,1000)
-m. 5x."
23
IBETA'I
```
```

$$
k=1
$$

$1=0$
11 IF（ $(x(x 2(k))-2(\times 3(k))) 10.10 .20$
$20 \times 3(k)=\times 3(k)+0.2 * \times 3(k)$
IF（ $\times 3(K), L T, 15)$ Gi）in 11
$L=L+1$
IF（L．LLT．10）GO TO 11
$\times 1(1)=0.001001$
$\times 2(1)=0.8$
$x 3(1)=1.0$
［F（1．er．11）＇go ro 1．1．
C AITEMPT A TRIAE VALIE FOR FM AS 1
$F M=1.0$
（G） 10.8
10 OFL $(k)=\times 3(k)-\times 1(k)$
$12 \mathrm{Y} 1(\mathrm{~K})=\times 1(\mathrm{~K})+F 1 *) \mathrm{F}_{1}(\mathrm{~K})$
Y2（k）$=\times 3(k)-F 1 *$ DEL $(k)$
IF（Q（Y）（K））－Q（Yつ（K））） $30 \cdot 31.32$
30 DF：$(K+1)=Y 2(K)-X 1(K)$
$x 1(k+1)=x 1(k)$
$\times 3(k+1)=Y 2(k)$
$\mathrm{K}=\mathrm{K}+1$
［F（ABS（ $\times 3(k)-\times 1(K)) / \times 3(K)), 1$ ．EPS $)$ GO TO 40
（90． 1012
31 DEL $(k+1)=12(K)-x 1(k)$
$x 1(K+1)=Y 1(K)$
$\times 3(k+1)=\times 3(k)$
$\mathrm{k}=\mathrm{k}+1$
IF（ABS（ $\times 3(K)-\times 1(K)) / \times 3(K)) . L T$ ．EPS $)$ GO TO 40
GO TO 12
32 $\operatorname{DEL}(K+1)=(3(k)-Y 1(k)$
$x_{1}(K+1)=Y 1(K)$
$x 3(k+1)=x 3(k)$
$k=k+1$
1F（ABS（ $\times 3(k)-\times 1(K)) / \times 3(K))$. LT．EPS）GO TO 40
GO TO 12
$40 \mathrm{Bi}=(\times 1(k)+\times 3(k)) / 2$.
$\alpha x=(\mathrm{O}(\mathrm{Bl})$
$A M=-G / F+S$ SR $(G * F /(F * F)+C / A-H * G /(A * F))$
EM＝SORT（AM）
BET＝BH3EM
8 ：」」＝1
IF（EM－1．0）41．41．42．
$41 M(J J)=1$

```
```

68
69
70
71
72
73
74
75
76
77
78
79
80
凡1
82
83
84
85
86
87
48
89
90
90
91
93
44
95
96
97
98
99
100
101
102
103
104
105
106

```
```

    GO 1049
    ```
 GO 1049
 \(42 \mathrm{JJ}=\mathrm{JJ+1}\)
 \(42 \mathrm{JJ}=\mathrm{JJ+1}\)
 M(JJ) \(=E M\)
 M(JJ) \(=E M\)
 GO 1049
 GO 1049
 \(43 \mathrm{JJ=JJ+1}\)
 \(43 \mathrm{JJ=JJ+1}\)
 \(M(J J)=M(J J-1)+1\)
 \(M(J J)=M(J J-1)+1\)
 GO TO 49
 GO TO 49
 \(49 \times 1(1)=0.01\)
 \(49 \times 1(1)=0.01\)
 \(x 2(1)=4.5\)
 \(\times 3(1)=5.0\)
 \(k=1\)
 \(\mathrm{L}=0\)
```



```
 \(73 \times 3(k)=\times 3(k)+0.2 \times \times 3(k)\)
 IF (\(\times 3\) (K).1.T.15.) GO TO 71
 \(\mathrm{L}=\mathrm{L}+1\)
 IF (L.LT. 20) GO TO 71
 WRITE \((6,101)\)
101 FORMAT (15x. 1 BETA HAR LOST IN R.)
 GO. TO 898
 72 DEL (K) \(=\times 3(k)-\times 1(k)\)
 \(74 \mathrm{Y} 1(\mathrm{~K})=\times 1(K)+F 1 * 1) E 1(K)\)
 \(Y 2(K)=\times 3(K)-F(*\) OEL (\(K\))
 IF (RP(Y1(K))-RP(Y2(K))) 75.76 .77
 75 DEL \((K+1)=Y 2(K)-\times 1(K)\)
 \(x 1(k+1)=x_{1}(k)\)
 \(X 3(K+1)=Y 2(k)\)
 \(k=k+1\)
 IF (ABS (\(\times 3(K)-\times I(K)) / \times 3(k))\). LT.EPS \(G \cap T O 7 A\)
 GO TO 74
 \(76 \mathrm{OE}(\mathrm{K}+1)=\mathrm{Y} 2(\mathrm{~K})-\times 1(\mathrm{~K})\)
 \(x 1(k+1)=Y 1(k)\)
 \(\times 3(k+1)=\times 3(k)\)
 \(k=k+1\)
 \(\operatorname{IF}(\operatorname{ABS}((\times 3(k)-\times 1(k)) / \times 3(K))\) LLT.EPS \(G 0\) ro 78
 GO. 10 74
 77 DEL \((K+1)=\times 3(K)-Y 1(K)\)
 \(x_{1}(k+1)=Y_{1}(k)\)
 \(\times 3(K+1)=x 3(K)\)
```

107
10 H
109
110 111. 112 113 114

115
116 117 118 119 120 121
122
123 124
125 126

127
128

```
\(K=K+1\)
```



```
6010.74
\(74 \% 1(J)=(\times 1(k)+x 3(k)) / 2\).
\(G G(J)=12 P(71(J))\)
IF（JJ．ER．1）GO 「O 51
TF（JJ．EQ．3）GO．TO． 44
GO TO． 43
44 IF（GG（JJ）\(G(G(J)-1))) 51,51+52\)
51 CKYRニGF（J）
\(B 13=71\)（JJ）
EM＝M（JU）
GO ГО． 47
\(52 \mathrm{CKYR}=\mathrm{GG}(山 J-1)\)
\(B H=71(J J-1)\)
\(E M=M(J J-1)\)
47．CONTINISE
\(B E T=B H * E M\)
\(M(J . j)=E M\)
\(\mathrm{E}=3.0 \mathrm{E}+7\)
```



```
（ \(=3.14 * 3.14 * E * H *+3 * C K Y R /(F I * E G * 148, * 12 * *(1,-P O * P O))\)
EN＝3．14＊BET＊19R．／EL
```



```
1001 FORMAT（5x．F8．2， \(1 \times, F 6.2, F 10,5, F R, 1, F Q, 0,1 \times, 15,1 x, F 8,3)\) WHITF（6）22の）
```



```
WRITE（5．333）EN， 1
33 FORMA「（3x．F7．1．5X．E14．7）
\(01 \mathrm{~N}=2692.8\)
PHCR＝Qの／Q
WRITE（6，9П9）PBCR
909 FORMAT（6X．，PRCR＝，F14．5／／／／）
GO TO 100
ago CONTTNDE
```

```
ASWANI-M-G*OPTIM.Q
 1 FINNCTIONQ(BH)
 2 \text { (DOUBLE PRECISION A1,A2,A3,A4,A5,A,B,C.F,G,T}
 3 DIMENSION X(10)
 COMMON/SS/ALX,AI_Y,CX,CY,PO,X,ZZ
 COMMON/CC/A,B,C.E,G
 COM4ON/YY/AFA
 ROXX=ALX*ALX*X(1)
 ROYY=ALY*ALY*X(2)
 EX=-3.14*3.14*SQRT(1.-00*00)*(1.+CX*ALX)/(2.0*7?)
 EY=-3.14*3.14*SQ2Y(1.-00*OO)*(1.+CY*ALY)/(2.0*27)
 A1=(1.+BB*BH)**2+X(1)+X(2)*B'3**4+2.*HB*B4*(X(1)+X(2)+x
(1)* *(2))/
 12 1(1.-0)
 13 A2=(1.+B3*B33)**2+足 X y +2OYY*B4***4
 14 A A=12.*ZZ*77/(3.14**4*(1.-00*PO))
 15
)+{EX*EX*
 16% 1X(1)*(1.+X(2))+2.0*(1.+FO)/(1.-1PO)*EX*FY*X(1)*X(2)+EY*
EY**(2)*(1.t
 17 2X(1)))*QR**4+2.0*EY*EY*X(2)/(1.-PO)*(1,-PO+X(1))*BM**G
+EY*EY*X(2)
 18 3*BH**8
 19
 20
1)))*B3*B3
 21
 22
 23
 C=A3*((1.4x(1))*(1.+x(2))-P0*PO)
```

```
 24.
BB*BB/(1.-PO
 25
2.*x(1)+x(2)
27 1+PO**(2)+2**X(1)*X(2))+X(2)*BB**4)
28 U T=-G/F+SQRT(G*G/(F*F)+C/A-B*G/(A*F)
29 Q=(A*T*T+B*T+C)/(F*T+G)
30 RETURN
31 ENO
ASWANI-M-G*OPTIM.R
```



```
 14 1(1.-PO)
 15 A2=(1.+BP*H3)**2+ROXX+ROYY*BB**4
 16 \ddots A3=12**Z2*2Z/(3.14**4*(1.-PO*PO))
```



```
)+(EX*EX*
 18
1X(1)*(1.+X(2))+2.0*(1.+PO)/(1.-PO)*EX*EY*X(1)*X(2)+EY*
EY*X(2)*(1.+
 19 %.
+EY*EY*X(2)
 20
 21.
 22
1)):*B4**B3
 23
 24
 25
 2.6
*BG*BB/(1.-20
 27
 28
 29 (1+P0*X(2)+2.*)(1)*x(2))+X(2)*BB**4)
 30 }\because\quad\thereforeR=(A*M(JU)**4+B*M(JJ)*M(JJ)+C)/(F*M(JJ)*M(JJ)+G
 31
 RETURN
 END
```

```
ASWANI-M-G*OPTIM.RSSH
```



```
1. C OCR IS RING CRITICAL STRESS
 C .SKY IS STRESS IN SKIM
13 C GHIS GEN. INST COEFFICIENT
14. C PBC IS PANEL BUCKLING COEFFICIFNT
5..C RBC IS RING BUCKLING COEFFICIENT
16% C% RYC IS RING YIFLDING COEFHIGIEMT
17 C C SKYC IS SKIN YIFLDING COEFFICIENT
C GW IS DENSITY OF IMMERSSION FLUTD
DP IS OPERATING OEPIH
DIMENSION X(10)
21.}\because\quad\therefore\quadCOMMON/SS/ALX.ALY.CX.CY.POFX.Z7
22 COMMON/PPP/TN
23 COMMON/AAA/M,N
24. }\because\mathrm{ COMMON/XX/AFARRTO
25: }\quad\therefore\quadALX=.
26}\quad(1)=
27. CX=1.
28 \ 1 READ(5.3,ENU=4) Z2,ELY,BK,X(2),AY,BY,PBCR,ALY,CY,R,AYS.
AFA,GW,DP,AL
```

29
30
31
32
33
34
35
36
37

## 38

$$
39
$$

## 40

41
42
43
44
45

## 45

## 48

3 FORMAT ()
$R T O=A L / R$
$P O=.3$
$G S=.282$
$B=12 . * G W * D P$
$E=, 3 E+R$
H=AL*AL*SNRT(1.-PO)*PO)/(R*ZR)
$\mathrm{DD}=\mathrm{E} * \mathrm{H} * * 3 /(12 . *(1,-\mathrm{PO} * \mathrm{PO}))$
$A A=(3 * Q * R * R /(15 . * D D * D D)$
B $\operatorname{Bil}$ ? $=E * H /(D D * R * R)$
$1000 \mathrm{~A}=\mathrm{x}(2) * \mathrm{EL} * * H /(1,-\mathrm{OO} * \mathrm{PO})$
$D R=A L Y * H *(1 .+A Y * R Y) / S Q R T(1 .+4 . * A Y * B Y)$
$T K=A /(D R *(1,+A Y * B Y))$.
$T F=A Y * T R$
$W F=B Y * D R$
AS=ELY*H
$T B=H *(1 .+B K * A /(A S * B K+A S))$
$Q C R=4 . * 3.14 * 3.14 * E * T R * * 3 /(12 . *(1 .-P O * P O) * D R * D R)$
CALL GENST(PCR)
QSTAR $=T N * 3.14 * 3.14 * D S /(R * A L * A L)$
IF (QSTAR-2.*Q) 36.16.16
$36 \times(2)=x(2)+.0011$
GO TO 1000
16 EI_ELY-TR
IF $(A A-B(3+1) 5,6,7$
$5 \mathrm{CC}=0 * \mathrm{R} /(18 . * 1 \mathrm{D})$ )
$D C=.5 * S Q R(E * H /(D O * R * R))$
$C=\operatorname{GQRT}(-C C+D C)$
$0=S Q R T(C C+D C)$
$V=\mathrm{C} * \mathrm{EL} / 2$ 。
$Y=0 * E L / 2$ 。
$A 1=V * V+Y * Y$.
$A 2=S I N H(V) * S I N H(V)+S I N(Y) * S I N(Y)$
$A 3=V * S I N(Y) * \operatorname{CoS}(Y)+Y * S I N H(V) * \operatorname{COSH}(V)$
$W=-16 * * V * Y * A 1 * A ? /(A 3 * E L * * 3)$
$A 4=V * \operatorname{COS} H(V) * S I N(Y)-Y * S I N H(V) * \operatorname{COS}(Y)$
$A J O=4 \cdot * A 1 * A 4 /(A 3 * E L * E L)$
$A 5=V * S I N(Y) * \operatorname{COS}(Y)-Y * S I N H(V) * \operatorname{COSH}(V)$
$A J=4 . * A 1 * A 5 /(A 3 * E L * E 1$.
$H 0=-(Y * S I N H(V) * \operatorname{COS}(Y)+V * \operatorname{COSH}(V) * S[N(Y))$
$A 6=V * S I N H(V) * \operatorname{COS}(Y)-Y * \operatorname{Cos} H(V) * S H(Y)$
$i H_{2}=A 6 * S N H(V) * S I N(Y)+10 * \operatorname{CoSH}(V) * \operatorname{Cos}(Y)$
$\mathrm{HH}=-\mathrm{A} .3$
fo TO 100
$6 \mathrm{~V}=\mathrm{S}(* \operatorname{Rf}(0 * R /(4 . * 00)) * E L / 2$.
$Y=V+5 I N(V) * \cos (V)$
$W=-16, * V * * 3 * 5(N(V) * S I N(V) /(Y * F I-* * 3)$
$A M=4 * * V * V *(S I d(V)-V * C O S(V)) /(Y * E L * E L)$
$A J=4 . * V * V *(S I N(V) * \operatorname{COS}(V)-V) /(Y * E L * E L)$
$u 0=v * \cos (v)+S \ln (v)$
$U L=U 0 * \operatorname{Cos}(V)+V * S I N(V) * S I N(V)$
$\mathrm{HH}=\mathrm{Y}$
GO TO 100
$7 \mathrm{CC}=0 * R /(8 . * D O)$
$D C=.5 * S Q R T(E * H /(D I) * R * R))$
$C=S Q R T(C C-O C)$
$D=50 R T(C C+D C)$
$V=C * E L / 2$.
$Y=0 * E L / 2$ 。
$B 1=Y * \gamma-V * V$
$B 2=5 \mathrm{IN}(Y) * * 2-\operatorname{SIN}(V) * * 2$
$B 3=V * \operatorname{SIN}(Y) * \operatorname{Cos}(Y)+Y * \operatorname{STN}(V) * \operatorname{Cos}(V)$
$W=-16, * V * Y * R 1 * H 2 /(B 3 * E L * * 3)$
$B 4=r * S T N(V) * \operatorname{Cos}(Y)-V * \operatorname{Cos}(V) * S I N(Y)$
$A J O=-4 \cdot * B 1 * H 4 /(B 3 * E L * E L)$
$B 6=Y * \sin (V) * \cos (V)-V * \sin (Y) * \cos (Y)$
$A J L=-4 . * B 1 * B K /(33 * * L * E L)$
$1.10=Y * \sin (v) * \cos (y)+y * \cos (v) * \operatorname{SIN}(y)$
$B 7=(V * S I N(V) * \cos (Y)+Y * \cos (V) * S I N(Y)) * \operatorname{SIN}(V) * \operatorname{SIN}(Y)$
$\mathrm{UL}=\mathrm{B7} 7+(\mathrm{JO} * \cos (\mathrm{~V}) * \cos (\mathrm{Y})$
$\mathrm{H} \mathrm{H}=\mathrm{B} 3 \mathrm{3}$
GO TO 100
100 AR=A+TR*H
$P P=R *(Q * W * H * * 3 /(6, *(1,-P O * P O) * A R)$
$r \boldsymbol{r}=\mathrm{A} /(\operatorname{AR*}(1 .-\mathrm{P} P))$
$Q Q R=\left(Q *\left(\Gamma R-P P_{*}(A R-P O * A / 2) / H.\right)\right.$
Q $Q=(Q Q /(1,-P D)$
$S R Y=O Q * R / A R$
IF (SRY*TR*2. GT.OCR)GO TO 222
GO TO 3,33
333 IF(SRY.GT.AYS) 60 TO B
GO TO 9
8 WRITE 6.10 )SRY
In FORMAT (6X:.SRY =, 510.21 )
9 SKBO=Q*R*R*(1.-PO/2.)*TT*AJO/(2.*(1.-PO*RO))
SKF1こーQ*R/H+Q*R*(1.-PO/2.)*TT*UO/(H*HH)
SKF2 $=-Q * R / H+Q * R *(1,-P O / 2) * T T * U L /,(H * H H)$
SKBL $=9 * R * R *(1,-P 0 / 2) * T T * A J L(2, *(1-P O * P O))$
$S \times 1=S K A O-Q * R /(2 . * H)$
S×2=-SKBO-R*R/(2.*H)
SY1 $=$ SKF $1+$ PO*SKBO
$5 Y 2=5 K F 1-P 0 * S K B O$
SX1L=SKBL-Q*R/(2**H)
S×2L=-SKBLー日*R/(2**H)
SY1L $=5 K F 2+00 * S K B L$
SY2I $=5 K F 2-00 * S K B L$
SKY=SQRT (SX2**2+SY2**2-SX2*SY2)
IF (SKY.GT.AYS) GO TO 51
GO TO 13
$51 \times(2)=x(2)+.0001$
GO TO 1000
13. RO=R+H/2.
RI=R-H/2.
$R W I=R I=D R$
RFI $=$ RWI - TF
VS=AL* (RO*RO-RI*RI)
$V W=T R *(R I * R I-R W I * R W I) * B K$
$V F=W F *(R W I * R W I-R F I * R F I) * B K$
$W U L=G S * 3.14 *(V S+V W+V F) / A L$
RYC=SRY/AYS
$R B C=S R Y * T R * 2 . / Q C R$
$P B C=2 . * Q / P B C R$
SKYC $=$ SKY/AYS
GB=2.*Q/QSTAR
WRITE (6, 20)
20 FORMAT(//25x.1D ES I G N RESULTS T//)
WRITE $(6.21)$ DP
21 FORMAT ( $6 \times$.'OPERATING OEPTH $=1, F 8,0 /$ ) WRITE $(6,22) \mathrm{ZZ}, A L, R$

WRITE $(6,40) \times(2), \mathrm{CY}$

WRITE 6,50 ) WUL
50. FORMAT ( $6 \times \cdot$ WEIGHT GPER INCH $=1 . F 10.21$ ) WRITE $(6,23) \mathrm{H}$

23 FORMAT (5X, ISKIN THICKNESS $=?, F 10.5 \%$ WRITE (6, 24) DR
24 FORMAT(6X.DEPTH OF WFB $=, . F 10.5 /)$
WRITE $(6,25)$ TR
25 FORMAT ( $6 \times$. WEB THICKNESS $=1 . F 10.5 /$ ) WRITE (6,26) WF
26 FORMAT (6X."FLANGE WIOTH $=:, F 10.5 /$ ) WRITE $(6,27)$ TF
27 FORMAT $6 \times$. PL ANGE THICKNESS $=1, F 10.5 /$ ) WRITE $(6.28)$ ELY
28 FORMAT(6X.)RING SPACING $=1 . F 10.5 /$ ) WRITE 6,41 )TN.M.N

WRITE $(6,42)$ QSTAR

```
 168 : 42 FORMAT(6X,'QSTAR=',F15.2/)
 WRITE(6,30)QCR,SRY,PHCR
 30. FORMAT(6X,'QCR=',F10.2,2X,'SRY=',F10.2,2X,'PBCR=',F10.
 WRITE(6.111)5X2.SY2,QQ
 111 FORMAT(6X.'SX2 = ',F10.2,2X,!SY2 = ',F10.2,2X.'QQ = ',
 WRITE(6.29)SKY
 29 FORMAT(6X.'SKY = ',F10.2/)
 WRITE(6.43)GB
 4 3 \text { FORMAT(6X.'GB = ',F10.5/)}
 WRITE(6,31)PBC
 31 FORMAT(6X.1PBC = '.F10.5/)
 WRITE(6.32)RBC
 32
 FORMAT(6X,'RBC = ',F10.5/)
 WRITE(6.34)RYC
 34
 FORMAT(GX,PRYC = ',F10.5%)
 WRITE(6,35)SKYC
 35 FORMAT(6X.'SKYC= , F10.5%)
 GO TO 55
 222 WRITE(6,3000)
 3000 FORMAT(6X.'RING BUCKLING FAILURE'/)
 GO TO I
 CONTINUE
 END
```


## BIBLIOGRAPHY

1.: Gerard, G., "Optimum Structural Design Concepts for Aerospace Vehicles", Journal Spacecraft, Vol. 3, No. 1, 1966, pp. 5-18.
2. Niordson, F. I., and P. Pederson, "A Review of Optimal Structural Design", Paper Presented at the l3th International Congress of Theoretical and Applied Mechanics, Moscow, USSR, August 1972.
3. Schmit; L., "Structural Synthesis: 1959-1969: A Decade of Progress", Recent Advances in Matrix Methods of Structural Analysis and Design (Ed. R. H. Gallagher et al.), University of Alabana Press, 1971.
4. Schmit, L., "Structural Engineering Applications of Mathematical Programming Techniques", Symposium on Structural Optimization, AGARD Conference Proceedings No. 36 (Editor R. Gellatly), Advisory Group for Aeronautical Research and Development, NATO, October 1970.
5. Schmit, L., "Automated Design", International Science and Technology, June 1966.
6. Nickell, E. H., and R. F. Crawford, "Optimum Ring Stiffened Cylinders Subjected to a Uniform Hydrostatic Pressure", Society of Automotive Engineers, Reprint 578F, 1962.
7. Crawford, R. F., and A. B. Burns, "Minimum Weight Potentials for Stiffened Plates and Shells", AIAA Journal, Vol. 1, No. 4, April 1963, pp. 879-886.
8. Burns, A. B., and B. O. Almroth, "Structural Optimization of Axially Compressed Ring-Stringer Stiffened Cylinders", Journal Spacecraft, Vol. 3, No. 1, 1966, pp. 19-25.
9. Burns, A. B., and J. Skogh, "Combined Loads Minimum Weight Analysis of Stiffened Plates and Shells", Journal Spacecraft, Vol. 3, No. 2, February 1966, pp. 235-240.
10. Block, D. L., "Minimum Weight Design of Axially Compressed Ring Stringer Stiffened Cylindrical Shells", NASA CR-1766, July 1971.
11. Shideler, J. L., M. S. Anderson and L. R. Jackson; "Optimum Mass-Strength Analysis of Orthotropic Ring Stiffened Cylinders Under Axial Compression", NASA TND-6772, July 1972.
12. Spunt, L., Optimal Structural Design, Prentice Hall, 1971.
13. Thompson, J. M. T., and G. M. Lewis, "On the Optimum Design of Thin Walled Compression Members", Journal of Mechanics and Physics Solids, Vol. 20, 1972, pp. 101-109.
14. Thompson, J. M. T., J. D. Tulk, and A. C. Walker, "An Experimental Study of Imperfection-Sensitivity in the Interactive Buckling of Stiffened Plates". To be published.
15. Morrow, Wm, M., II, and L. A. Schmit, Jr., "Structural Synthesis of a Stiffened Cylinder", NASA CR-1217, December 1968.
16. Jones, R. T., and D. S. Hague, "Application of Multivariable Search Techniques to Structural Design Optimization", NASA CR-2039, June 1972.
27. Pappas, M., and A. Allentuch, "Structural Synthesis of Frame Reinforced Sưbmersible, Circular, Cylindrical Hulls", NCE Report No. NV 5, Newark College of Engineering, Newark, New Jersey, May 1972.
18. Pappas, M., and A. Allentuch, "Optimal Design of Submersible Frame Stiffened Circular Cylindrical Hulls", NCE Report No. INV 6, Newark College of Engineering, Newark, New Jersey, July 1972.
19. Pappas, M., and A. Allentuch, "Mathematical Programming Procedures for Mixed Discrete-Continuous Design Problems", NCE Report No. NV 7, Newark College of Engineering; Newark, New Jersey, April 1973.
20. Pappas, M., and A. Allentuch, 'Extended Structural Synthesis Capability of Automated Design of Frame-Stiffened, Submersible, Circular, Cylindrical Shells", NCE Report No. NV 8, Newark College of Engineering, Newark, New Jersey, June 1973.
21. Pappas, M., and A. Al:lentuch, "Pressure Hull Optimization Using General Instability Equations Admitting More than One Longitudinal Buckling Half-Wave", NCE Report No. NV 9, Newark College of Engineering, Newark, New Jersey, June 1973.
22. Pappas, M., and C. L. Amba-Rao, "A Direct Search Algorithm for Automated Structural Design", AIAA Journal, Vol. 2, No. 3, March 1971, pp. 387-393.
23. Simitses, G. J., and V. Ungbhakorn, "Minimum Weight Design of Stiffened Cylinders Under Axial Compression", AIAA Paper No. 74-101, Presented at l2th Aerospace Science Meeting, JanuaryFebruary 1974.
24. Ungbhakorn, V., "Minimum Weight Design of Fuselage Type Stiffened Circular Cylindrical Shells Subject to Uniform Axial Compression", Ph.D. Thesis, School of Engineering Science and Mechanics, Georgia Institute of Technology, June 1974.
25. Nelder, J. A., and R. Mead, "A Simplex Method of Function Minimization", Computer Journal, Vol. I, 1964, pp. 308-313.
26. Courant, R., "Calculus of Variations and Supplementary Notes and Exercịse", (Revised and amended by J. Moses) New York University Institute of Mathematical Sciences, New York, 1956-1957, pp. 270-276.
27. Wilde, D. and C. S. Beightler, Foundation of Optimization, 1967, pp. 242-245.
28. Pappas, M., and C. L. Amba-Rao, "A Discrete Search Procedure for the Minimization of Stiffened Cylindrical Shell Stability Equations", AIAA Journal, Vol. 2, No. 17, November 1970, pp. 2093-2094.
29. Spendley, W.; G. R. Hext, and F. R. Hitnsworth, "Sequential Application of Simplex Designs in Optimization and Evolutionary Operations", Technometrics 4, 1962, pp. 441-461.
30. Aswani, M., "Design Charts for the Minimum Weight Design of Circular Cylindrical Shells Subject to Uniform Hydrostatic Pressure", School of Engineering Science and Mechanics, Georgia Institute of Technology, Atlanta, Georgia, 1974.
31. Singer, J., and M. Baruch, "Recent Studies on Optimization for Elastic Stability of Cylindrical and Conical Shells", Aerospace Proceedings, 1966.
32. Simitses, G. J., "A Note on the General Instability of Eccentrically Stiffened Cylinders", Journal Aircraft, Vol. 4, No. 5, 1967, pp. 473-475.
33. Timoshenko, S. P., and J. M. Gere, Theory of Elastic Stability, McGraw Hill Book Company, 1961.
34. Majumdar, S., "Buckling of a Thin Annular Plate Under Uniform Compression", AIAA Journal, Vol. 2, No. 9, September 1971, pp. 1701-1707.
35. Yamaki, N., "Buckling of Thin Annular Plate Under Uniform Compression", Journal of Applied Mechanics, June 1958, pp. 267-273.
36. Salereno, V. L., and J. G. Pulos, "Stress Distribution in Cylindrical Shells Under Hydrostatic Pressure Stepported by

Equally Spaced Circular Ring Frames", PIBAL No. 171A, Polytechnic Institute of Brooklyn, Brooklyn, New York, June 1951.

Mohan Aswani was born on January 12, 1939 in Nawabshah (W. Pakistan). He received his Bachelor's degree in Civil Engineering from Birla College of Engineering, Pilani (India) in 1962. He was awarded, in 1962, a three year Senior Fellowship under the Technical Teachers Training Program, sponsored by the Government of India. Under this program he received his Master's degree in Structural Engineering from the College of Engineering, Poona (India) in 1965. Thereafter he was appointed as a lecturer in the Department of Civil Engineering, Delhi College of Engineering, Delhi (India) where he served from 1965 to 1970. He entered the Georgia Institute of Technology, Atlanta, Georgia as a doctoral student in the School of Engineering Science and Mechanics in September 1970.


[^0]:    *Numbers in the square brackets designate references at the end of thesis.

[^1]:    *Numbers in square brackets designate references at the end of this Appendix.

