MINIMUM WEIGHT DESIGN OF

STIFFENED CIRCULAR CYLINDRICAL SHELLS SUBJECT TO

UNIFORM HYDROSTATIC PRESSURE

A THESIS

Presented to:

The Faculty of the Division of Graduate Studies and Research

Ву

Mohan Aswani

In Partial Fulfillment

of the Requirements for the Degree Doctor of Philosophy in the School of Engineering Science and Mechanics

Georgia Institute of Technology

January, 1975

MINIMUM WEIGHT DESIGN OF STIFFENED CIRCULAR CYLINDRICAL SHELLS SUBJECT TO UNIFORM HYDROSTATIC PRESSURE

Approved;		- - -		e San San San San San San San San San San	
		<u></u> u	·.		•
G. J	Simits	es, Cha	irman		······
C. V.	Smith	70		<u> </u>	
·		1			
L. W.	Rehrie	id			<u></u>
Date appro	ved by (Chairms	n: 2/	25/	75-

ACKNOWLEDGMENTS

11

I would like to express my sincere appreciation to Dr. G. J. Simitses for his suggestion of the topic and his direction and guidance throughout the preparation of this work. Sincere appreciation is also extended to Dr. C. V. Smith, Jr., and Dr. L. W. Rehfield for their advice and many hours of helpful discussions during this investigation. The helpful comments of Drs. G. M. Rentzepis, G. A. Wempner, S. Atluri and M. S. Bazaraa are gratefully acknowledged. My deep sense of gratitude goes to Dr. M. E. Raville, Director of the School of Engineering Science and Mechanics, for his understanding, encouragement and for the financial support during the course of the study. Thanks are also extended to Mrs. Jackie Van Hook for typing the final manuscript.

My deepest appreciation goes to my wife, Mohini, for her constant encouragement and devotion during the entire period of study. Completion of this work would have been impossible without her love, patience and steadfast support.

This work was partially supported by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under AFOSR Grant No. 74-2655. This support is gratefully appreciated. SUMMARY Xiv 2 2 Chapter INTRODUCTION . Ι. 1 Historical Review Statement of the Problem 11. MATHEMATICAL FORMULATION OF THE PROBLEM •••••10 Formulation of the Objective Function Objective Function Based on Skin Yielding Objective Function Based on General Instability III. METHOD OF SOLUTION :19 Phase I: Description of Mathematical Search Techniques Phase II: Procedure for Design IV. NUMERICAL RESULTS AND DISCUSSION . 35 V. CONCLUSIONS AND SUGGESTIONS 72 Conclusions Suggestions Appendices A. ANALYSIS OF STIFFENED CIRCULAR CYLINDRICAL SHELLS . . . 76

в.

GLOSSARY OF ABBREVIATIONS . . .

NOTATIONS .

LIST OF ILLUSTRATIONS . . .

LIST OF TABLES

ACKNOWLEDGMENTS .

iii

Page

• vii

.xiii -

 \mathbf{X}

11

TABLE OF CONTENTS.

TABLE OF CONTENTS (Continued)

C.	SAMPLE DESIGN TABLES AND DESIGN EXAMPLES	106
D.	BUCKLING OF THIN CYLINDERS UNDER UNIFORM	LATERAL
Е.	LISTING OF COMPUTER PROGRAMS	146
BLIC	ОGRАРНУ	

ВΠ

VITA

Appendices

87 191

Page

iv

LIST OF TABLES

Table		Page
1.	Design Table. Shell Stiffened with Interior Ring Stiffeners. Skin Yielding Formulation. Material of Construction - Conventional Steel	. 37
2.	Design Table. Shell Stiffened with Interior Ring-	
	Stringer Stiffeners. Skin Yielding Formulation. Material of Construction - Conventional Steel	• 39
3.	Design Results. Shell Stiffened with Interior Stiffeners. Operating Depth = 1000 feet, $\sigma_y = 60,000 \text{ psi} \dots \dots$. 41
4.	Design Table. Shell Stiffened with Interior Ring Stiffeners. Skin Yielding Formulation. Material of Construction - Conventional Steel	. 45
5.	Design Table. Shell Stiffened with Interior Ring- Stringer Stiffeners. Skin Yielding Formulation. Material of Construction - Conventional Steel	• 47
6.	Design Results. Shell Stiffened with Interior Stiffeners. Operating Depth = 3000 feet, σ_y = 60,000 psi	. 49
7.	Design Results. Shell Stiffened with Interior Stiffeners. Operating Depth = 3000 feet, $\sigma_v = 120,000 \text{ psi}$	• 54
8.	Design Results. Shell Stiffened with Exterior Stiffeners. General Instability Formulation. Operating Depth = 3000 feet, $\sigma_y = 120,000$ psi	• 58
9.	Design Results. Influence of Varying L/R Ratio on Minimum Weight. Shell Stiffened with Interior TR Stiffeners. General Instability Formulation. Operating Depth = 3000 feet, $\sigma_{\rm y}$ = 120,000 psi	. 61
10.	Design Results. Influence of Varying L/R Ratio on Minimum Weight. Shell Stiffened with Interior TR-RS. General Instability Formulation. Operating Depth = 3000 feet. $\sigma = 120,000$ psi	. 64
11.	Design Results for the Shell Subject to Combined Load $(\bar{N} = .2 \text{ gR})$. Shell Stiffened with Interior TR-RS.	

LIST OF TABLES (CONTINUED)

Table		Page
	General Instability Formulation	69
Bl.	Properties of Various Shapes of Stiffeners	105
Cl.	Design Table. Interior RR-RS Stiffened Shell. General Instability Formulation. Material of Construction - High Strength Steel	108
C2.	Design Table. Interior TR-RS Stiffened Shell. General Instability Formulation. Material of Construction - High Strength Steel	113
С3.	Design Table. Interior T-Ring Stiffened Shell. General Instability Formulation. Material of Construction - High Strength Steel	121
D1.	Comparison of Critical Pressures for Load Case I (Load Remaining Normal to the Deflected Surface) , .	134
D2.	Comparison of Critical Pressures for Load Case II (Load Remaining Parallel to Original Direction)	134
D3.	Comparison of Critical Pressures for Load Case III (Load Directed toward Original Center of Curvature) .	139
D4.	Comparison of Critical Pressures for Infinitely Long Cylinders	142

vi 🤇

LIST OF ILLUSTRATIONS

Figure		Page
1.	Golden Section Search Technique	. 22
2.	Design Chart for Internally TR-RS Stiffened Shell General Instability Formulation, High Strength Steel Operating Depth = 3000 feet, $Z = 1200 \dots \dots \dots$. 28
3.	Design Chart for Internally Ring Stiffened Shell Skin Yielding Formulation, Conventional Steel Operating Depth = 1000 feet	. 38
4.	Determination of Optimum Skin Thickness. Internally TR Stiffened Shell, Operating Depth = 1000 feet. Skin Yielding Formulation, Conventional Steel	cıl
5.	Determination of Optimum Skin Thickness. Internally	•
•	RR-RS Stiffened Shell, Operating Depth = 1000 feet. General Instability Formulation, Conventional Steel .	. 42
6.	Determination of Optimum Skin Thickness. Internally TR-RS Stiffened Shell, Operating Depth = 1000 feet. General Instability Formulation, Conventional Steel .	• 43
7.	Determination of Optimum Ring Shape Parameter. Internally TR-RS Stiffened Shell, Operating Depth = 1000 feet. General Instability Formulation, Conven- tional Steel	• 43
8.	Design Chart for Internally Ring Stiffened Shell. Skin Yielding Formulation, Conventional Steel.	
	Operating Depth = 3000 feet	. 46
9.	Determination of Optimum Ring Spacing. Internally TR Stiffened Shell, Operating Depth = 3000 feet. Skin	
	Yielding Formulation, Conventional Steel	• 50
10.	Determination of Optimum Skin Thickness. Internally TR Stiffened Shell, Operating Depth = 3000 feet. Skin Yielding Formulation. Conventional Steel	. 51
11.	Determination of Optimum Skin Thickness. Internally	an in an Arrana Arrana Arrana
	RR-RS Stiffened Shell, Operating Depth = 3000 feet.	

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
12.	Determination of Optimum Skin Thickness. Internally	
	TR-RS Stiffened Shell, Operating Depth - 3000 feet	· ·
•	General Instability Formulation. Conventional Steel	52
н. . н	deneral instability formalability conventional section	• /-
13.	Determination of Optimum Ring Shape Parameter.	11.1 2
	Internally TR-RS Stiffened Shell. Operating Depth =	
	3000 feet. General Instability Formulation,	
	Conventional Steel	52
- 1		
14.	Determination of Optimum Skin Thickness. Internally	
• •	TR Stiffened Shell, Operating Depth = 3000 feet.	·
·	General Instability Formulation, High Strength Steel .	• 55
. 15	Determination of Ontimum Skin Whickness Internally	
	DD DC Staffanod Shall Onewsting Donth - 2000 feet	
ана стана Стана стана Стана стана стан	RR-RD Dollitened Dhell, Operating Depth = 3000 reet,	. 55
	General instability formulation, high strength steel .	· //
16.	Determination of Optimum Skin Thickness. Internally	
	TR-RS Stiffened Shell, Operating Depth = 3000 feet.	
	General Instability Formulation, High Strength Steel .	. 56
:		1 1 A.
17.	Determination of Optimum Ring Shape Parameter.	<u>-</u>
	Internally TR-RS Stiffened Shell, Operating Depth =	
	3000 feet, General Instability Formulation, High	•
	Strength Steel	• 56
-		
18.	Determination of Optimum Skin Thickness. Externally	ан ^{сан} н
	TR-RS Stiffened Shell, Operating Depth = 3000 feet,	· · ·
· · · ·	General Instability Formulation, High Strength Steel .	• 59
10	Determination of Antimum Skin Mickness Internally	
19.	TD Stiffened Shall Onensting Denth - 2000 feet	
e generative i	Concert Tratability Derivitation With Strongth Starl	60
· .	General instability formulation, high Strength Steel .	. 02
20.	Determination of Optimum Skin Thickness. Internally	
	TR Stiffened Shell, Operating Depth = 3000 feet.	
	General Instability Formulation. High Strength Steel .	. 62
21.	Determination of Optimum Skin Thickness.Internally	
	TR Stiffened Shell, Operating Depth = 3000 feet,	
	General Instability Formulation, High Strength Steel .	. 63
22	Determinetion of Ontimum Skin Whiskness Intowerlin	
<i>cc</i> .	mp Griegenne Chell Cheveling Dauth 2000 Best	
. · · · ·	IN OUTTIERED OREIL, OPERATING DEPTH $= 3000$ [Ref,	40
	General instability formulation, High Strength Steel .	• Q2

viii

LIST OF ILLUSTRATIONS (Continued)

TRULG		rage
23.	Determination of Optimum Skin Thickness. Internally	
1	TR-RS Stiffened Shell, Operating Depth = 3000 feet,	
	General Instability Formulation, High Strength Steel	65
24.	Determination of Optimum Skin Thickness. Internally	•
•	TR-RS Stiffened Shell, Operating Depth = 3000 feet,	•
· · · ·	General Instability Formulation, High Strength Steel	65
25.	Determination of Optimum Skin Thickness. Internally	194 197
	TR-RS Stiffened Shell, Operating Depth = 3000 feet,	
	General Instability Formulation, High Strength Steel	66
26.	Determination of Optimum Skin Thickness. Internally	
11 A.	TR-RS Stiffened Shell, Operating Depth = 3000 feet,	
	General Instability Formulation, High Strength Steel	- 66
27.	Influence of L/R on Minimum Weight Design. Internally	in in Filippine
	TR, and TR-RS Stiffened Shell. Operating Depth = $-$	
÷.	3000 feet. General Instability Formulation, High	
	Strength Steel	67
28.	Determination of Optimum Skin Thickness. Axial Com-	
	pression Combined with Hydrostatic Pressure.	
	Internally TR-RS Stiffened Shell, High Strength Steel.	
. •	General Instability Formulation. Operating Depth =	
بند ر	3000 feet, N = .2qR	70
Al.	Geometry of Shell	77
42	Sign Convention and Porce Resultants	79
<i></i>		0
B1.	Properties of Various Shapes of Stiffeners	104
Dl.	Effect of R/h and L/ π R on Buckling Load Koiter-	
•	Budiansky Equations. Load Case I	136
D2.	Effect of R/h and $L/\pi R$ on Buckling Load Koiter-	
	Budiansky Equations. Load Case II	137
D3.	Effect of R/h and L/nR on Buckling Load Koiter-	
	Budiansky Equations. Load Case III	140
D 4-	Effect of Load Behavior on Buckling Load Koiter-	анана 1911 г. – С
	Buding also Fauntions	- 1

1x

NOTATIONS

A_r, A_{st}

Ax' Ay

в**,** В_v

C, C,

 D_{xx} , D_{yy} , D_{xy}

D_{xxst}, D_{yyr}

E, E_r, E_{st}

E_{xx}, E_{yy}

E_{xxp}, E_{yyp}

E_{xxst}, E_{yyr}

 $(GJ)_{st}^{}, (GJ)_{r}^{}$

 $\mathbf{G}_{\mathbf{x} \dot{\mathbf{y}}}$

Ĺ

Irc, Iste

M_{xx}, M_{yy}, M_{xy}

N_{xx}, N_{yy}, N_{xy}

Ring and stringer cross-sectional area, in

Ratio of flange thickness to web thickness for stringer and ring

Ratio of flange width to web depth of stringer and ring

Stringer and ring shape parameters

Flexural stiffness of skin, in-lb

Orthotropic flexural and twisting stiffnesses, in-lb

Flexural stiffnesses of stringer and ring, in-lb

Young's modulus of elasticity of skin, ring, and stringer, psi

Orthotropic extensional stiffnesses, 1b/in

Extensional stiffnesses of skin, 1b/in

Extensional stiffnesses of stringer and ring, lb/in

Shear modulus of elasticity, psi

Contribution of stiffeners to torsional stiffness, in²-lb

Inplane skin shear stiffness, lb/in

Ring and stringer moment of inertia about their centroidal axes, in⁴

Length of shell, in

Moment resultants, in-lb/in

Applied axial compression, 1b/in

Stress resultants, 1b/in

Radius of shell, in

R

Т

W

Ŵ

W¥

₩¥

 \mathbf{Z}

^bfr, ^bfst

d_{wr}, d_{st}

^er'^est

^ex'^ey

 $\tilde{k}_{xx}, \tilde{k}_{yy}, \tilde{k}_{s}$

h

к уур

lr, lst

m, n

^mp^{, n}p

٩ħ

 q^{x}, q^{y}, q^{z}

t_{fst}, t_{fr}

t_{st}, t_{wr}

Applied torque, in-1b

Weight per unit length of shell, 1b/in Non-dimensional weight parameter xi

Composite weight function, 1b

Non-dimensional composite weight function Curvature parameter

Flange width of ring and stringer, in Web depth of ring and stringer, in

Eccentricity of ring and stringer, in

Nondimensional eccentricities of stringer and ring

Skin thickness, in

Buckling load parameters for axial compression, pressure and torsion

Panel buckling load parameter

Clear distance between two consecutive rings, in

Ring and stringer spacings, in

Number of longitudinal and circumferential waves for general instability

Number of longitudinal and circumferential waves for panel buckling

Hydrostatic pressure, (positive outward) psi

Applied load components in x, y, and z directions, psi

Nondimensional load parameter

Stringer and ring flange thickness, in

Stringer and ring web thickness, in

Displacement components of a point on reference surface, in

Coordinate directions

Ratio $\bar{k}_{xx}/\bar{k}_{yy}$

u, v, w

X, Y, Z

 α_x, α_y

α

Υ.

Y_u

۷_{xy}

λ*

€_x, €_v

^єхх' ^єуу

 $\lambda_{xx}, \lambda_{yy}$

ρ_{xx}, ρ_{yy}

 $\sigma_{\dot{y}}$

ρ_{sk}, ρ_r, ρ_{st}

σ_{xxsk}, σ_{yysk}

σ_{xxst}, σ_{yyr}

 $\sigma_{\rm yyr}_{\rm cr}$

σ_{xxsk}cr' σ_{xxst}er

Superscript "o"

Superscript "1"

*xx' *yy' *xy

Nondimensional radii of gyration of stringer and ring

Shear strain at any point

Density of immersion fluid lb/in³

Shear strain of a point on reference surface

Normal strains at any point

Normal strains of a point on reference surface

Changes in curvature

Lagrange multiplier

Nondimensional Lagrange multiplier

Nondimensional extensional stiffnesses of stringer and ring

Poisson ratio

Weight density of skin, ring, and stringer, lb/in^3

Nondimensional flexural stiffnesses of stringer and ring

Permissible yield stress, psi

Prebuckling stresses in skin, psi

Prebuckling stresses in stringer and ring, psi

Critical buckling stresses in skin, stringer, and ring, psi

Refers to membrane state

Refers to additional quantity necessary to bring the membrane state to the classical buckling state

GLOSSARY OF ABBREVIATIONS

xiii

Gross buckling $q_D^{/q}_{cr}$ GB Inverted angle IA Panel buckling $g_{D}^{/q} p_{cr}$ PΒ PR Rectangular ring RS Rectangular stringer RR-RS Rectangular ring and stringer Ring buckling $\sigma_{yyr}/\sigma_{yyr}_{cr}$ RB Ring yielding $\sigma_{yyr}^{\prime}/\sigma_y$ RY Skin buckling $\sigma_{xxsk}/\sigma_{xxsk}_{cr}$ SKB Skin yielding $\sigma_{\rm s}^{\prime}/\sigma_{\rm y}^{\prime}$ SKY Stringer buckling $\sigma_{xxsk} / \sigma_{xxsk}_{cr}$ STB Stringer yielding $\sigma_{\rm xxsk}/\sigma_{\rm y}$ STY TR Tee ring TR-RS Tee ring and rectangular stringer SUMMARY

A methodology is developed by which minimum weight design of stiffened cylinders under hydrostatic pressure may be achieved. The precise statement of the problem is: Given a stiffened cylinder of specified material, radius, and length, find the size, shape, spacing of stiffeners, and the thickness of the skin, such that it can carry safely a hydrostatic pressure with minimum weight. The word 'safely carry' implies that none of the behavioral constraints are violated. These constraints include: general instability, panel instability, local instabilities of skin and stiffeners and the limitation on stress levels in various components of the cylinder.

The solution to the problem is accomplished in two stages. In the first stage, unconstrained minimization of the objective function (defining weight of the cylinder and including one active constraint as penalty function) is performed using a mathematical search technique. This yields a design space in which all the configurations satisfy the mode of failure that has been included in the objective function. In the second stage, this design space (represented by charts and tables) is used in arriving at final minimum weight configuration satisfying all the remaining constraints. A systematic procedure is given for accomplishing the design.

This methodology provides freedom to the designer to achieve and thus assess all equal weight designs. In addition, he knows what penalty in weight he pays, when moving arbitrarily in the design

xiv -

space. By this approach simultaneous occurrence of failure modes can be avoided by paying least weight penalty. The availability of such information along with the study indicating the influence of type and shape of stiffeners on the weight of cylinder permits a designer to carry out trade-off studies and arrive at practical minimum weight design.

XV

CHAPTER I

INTRODUCTION

Historical Review

During the last two decades, considerable progress has been made in structural analysis. With the aid of computers, structural problems with great degree of complexity can now be solved with relative ease. While these achievements are of great importance in assessing the behavior of structures, their full benefits will only be materialized when reflected in the improved designs of structures.

The aim of devising design procedures which satisfy all constraints of safety and performance and do it with least weight, or least cost is not a new one. The engineers have always strived for good designs by attempting investigations of several alternatives within the bounds of time and cost. However, only limited number of alternatives could be investigated in the absence of the aid of the present day computers. With this tremendous aid, the progress in achieving optimum solutions to the design problems has been outstanding.

Before attempting any type of solution to the problem of 'optimum' or 'the best' design of a particular structure, the first step is to decide the basis for which various designs can be compared. The basis of comparison, termed the criterion, defines the measure of

value and accordingly enables one to choose between any two candidate

design configurations. Often, it is difficult to establish and attain ideal criteria in practice. For example, the criterion of achieving minimum weight and minimum cost, in general, does not yield the same configuration. In such situations one looks for compromises between such requirements. Such a study or process of compromising between these requirements in the design criterion is known as the establishment of trade-offs. It is rather difficult to express analytically, in terms of the design variables the criterion, including for example, minimum weight and minimum cost. A possible diversion from this ideal situation will be to express the criterion analytically on one of these requirements and attempt a formulation which permits the designer to carry out limited trade-off studies.

Minimum weight is the primary consideration for design of aerospace vehicles and, more recently, of underwater structural systems, such as submarines and bathyscaphs. For these structures, the criterion of design is minimum weight. The function, expressed in terms of design variables, describing the weight is known as the merit function or the objective function.

For any manned underwater vehicle, the pressure hull is the most important component. It is essentially a stiffened cylindrical shell contributing one fourth to more than one half to the total weight of the vehicle. In order to carry the requisite pay load, while preserving adequate buoyancy, it is essential to design the hull for minimum weight. Increased operating depths have further necessitated such an investigation. The present investigation is an attempt to develop a methodology by which one can accomplish

2

minimum weight design of pressure hulls.

Several attempts have been made in past for designing stiffened shells for minimum weight. A comprehensive survey related to optimization of aerospace structures was presented by Gerard [1]* in 1966. An excellent review on optimal structural design is given by Niordson and Pederson [2]. The most authoritative and complete surveys of optimum structural design in the context of mathematical programming procedures are those by Schmit [3-5].

The attempts made in the past for cylinders under various load conditions can broadly be classified into two categories. One approach is primarily based on the premise that minimum weight is accomplished if all modes of failure occur simultaneously. In this approach the design variables are established through parametric studies in conjunction with the mathematical equations that express the above premise. References [6-11] adopt such an approach. This conjecture, however, is disproved in some simple cases as shown by Spunt $\lceil 12 \rceil$. He shows that such a requirement puts severe restriction on the formulation and the solution of the problem. Furthermore, it prevents a designer from considering the families of alternative designs having equal weight but not satisfying the requirement of simultaneous mode occurrence. The recent studies by Thompson and Lewis [13] on optimal designs of thin walled compression members and by Thompson, Tulk and Walker [14] on stiffened plates have shown that a structural configuration which is designed for simultaneous

*Numbers in the square brackets designate references at the end of thesis.

occurrence of failure modes becomes more sensitive to geometric imperfections. These observations and the results of the second approach, which is discussed in the next paragraph, reject the formulation of the problem on the basis of simultaneous occurrence of failure modes.

The second approach is based on mathematical search technique applied for minimization of the objective function. The objective function defining the weight of the structure, contains all of the behavioral (limitations on stress levels) and geometric (limitations on dimensions of design variables) constraints as penalty functions. Such a composite objective function is expressed in terms of the design variables. By means of certain mathematical search techniques one finds the values of those design variables that correspond to minimum weight. References [15-21] adopt such an approach. The method of solution is, undoubtedly, in accord with the present day philosophy of achieving fully automated designs, but such an approach, in the opinion of the author, has certain limitations. The number of design variables associated with a cylinder stiffened with rectangular stiffeners is seven. Almost all the investigators who have used mathematical search techniques in seven dimensional space have reported great difficulties and algorithm failures. If one were to deal with other shapes of stiffeners, for example T-shape, the number of variables increases to 11, and the implementation of search techniques is further complicated. Some of the investigators [18] have attempted to fix certain design variables

in the objective function. Such an assumption, however, does not

indicate precisely how far from the real optimum solution one is. Even if these difficulties can be overcome, there still exist some questions regarding this approach. First, because of the complete automation the designer is virtually divorced from the design procedure and control over the design variables. This means that a designer can not introduce needed changes in the design variables with least weight penalty. Second, due to all the constraints included into the objective function, the resulting design represents only one feasible minimum weight configuration. Associated with this configuration, there may be two or more modes of failure that are active. There is no way of avoiding this simultaneous occurrence of two or more failure modes. Moreover, there may be many more feasible design configurations of equal or nearly equal weight which are not obtainable by this approach. The results of Pappas and Amba-Rao [22] and Jones and Hague [16] confirm such a doubt. These investigators have obtained several designs of nearly equal weight but with significantly different design variables. Simitses and Ungbhakorn [23] have explicitly shown that the minimum weight design is not unique in the case of stiffened cylinders subject to uniform axial compression. Third, because the formulation of the penalty function is dependent on which constraint is active, in many cases erroneous expressions have been used in the objective function. If, for example, skin wrinkling is the only active constraint. (see reference [16]) the expression for general instability is incorrect, because it is based on the assumption that the skin has not wrinkled. Furthermore, the investigators in the past have considered

only ring stiffened cylinders, (see reference [18]), for the minimum weight design of pressure hulls employing the equations which are mostly empirical. Rings, no doubt, are of most importance in resisting hydrostatic pressure, but in several situations the presence of light stringers can reduce the weight further. An approach that considers only ring stiffened geometry is therefore restrictive in nature. In addition, no attempt has been made in the past to study the influence of various shapes of stiffeners on the minimum weight. This aspect of study is important not only from the point of view of finding the best shape of stiffeners, but also in carrying out tradeoff studies.

These observations obviously suggest that the approach to minimum weight design needs modification. The needed new methodology should provide freedom to the designer to achieve and thus assess all equal weight designs. In addition, he should know what penalty in weight he pays, when he moves arbitrarily in the design space. The availability of such information along with the study indicating the influence of type and shape of stiffeners on the weight is extremely desirable for obtaining practical minimum weight design and for carrying out trade-off studies.

Statement of the Problem

The methodology in the present investigation is based on the observation that for any given level of the specified parameters the design is governed by one or two failure modes. In very special cases three or more modes of failure may become active corresponding to the minimum weight configuration. In any case it is desirable, because of the findings of Thompson, Tulk and Walker to adjust the design variables so as to separate these failure modes. The development of a methodology which permits such a requirement to be satisfied is of tremendous importance. How this can be accomplished, by the present methodology, is discussed after giving precise statement of the problem.

The problem considered is: Given a stiffened cylinder of specified material, radius and length, find the size, shape, spacing of stiffeners, and thickness of the skin, such that it can carry safely a given hydrostatic pressure with minimum weight. The word 'safely carry' implies that none of the behavioral constraints are violated. These constraints include: general instability, panel instability, local instabilities of skin and stiffeners and the limitations on stress levels in various components of the cylinder. The constraints may also include certain geometric inequalities specifying limitations on dimensions of various design variables.

The design objective is minimum weight. The solution, therefore, requires minimization of the function defining the weight of the cylinder subject to the constraints defined above. In order to accomplish what is lacking in the earlier approaches, the objective function in the present case is formulated in different manner. The basic principle is similar to the one adopted by Ungbhakorn [24]. Instead of incorporating all the constraints as penalty functions along with the expression for the weight of the cylinder, only one active failure mode, expressed as an equality constraint is included

7

as penalty function. By studying carefully the expressions of various modes of failure, the design variables are grouped so as to minimize the number of influential optimizing parameters. This point is explained in details in Chapter II,

The solution to the entire problem is accomplished in two stages. In the first stage, unconstrained minimization of the objective function (which includes one active constraint as penalty function) is performed using a mathematical search technique. This yields a design space in which all the configurations satisfy the mode of failure that has been included in the objective function. This design space is represented by means of design charts and design tables. These design charts and design tables give the values of optimizing parameters for each point in the design space. This is the first stage or phase I of the present methodology.

In the second stage or phase II, a designer moves in the design space in a systematic way, discussed in Chapter III, to arrive at a design which satisfies all the remaining failure modes and has minimum weight. One can look at the second stage as moving on the curve, that defines the active mode of failure, starting from a point that corresponds to the least weight to such a point where all the modes of failure are satisfied. It is obvious that the successful working of this approach depends on correctly identifying the active mode of failure. For the design of submarine pressure hulls, the two modes of failure, that are active corresponding to the minimum weight configuration, are general instability and skin yielding. If both modes of failure are active, one may formulate the problem on any one of

3

these two modes. The weight of the final design configuration should work out the same in either case.

The minimization of the objective function is performed by the Nelder and Mead [25] search technique. There are several mathematical search techniques available in the literature, for example, (see reference [16]), which can possibly be used for the present problem. Since the aim of the present investigation is not to compare the relative merits of various mathematical search techniques, no such attempt is made here. This aspect of study is open to those interested

in it.

CHAPTER II

MATHEMATICAL FORMULATION OF THE PROBLEM

The classical general instability parameter of thin stiffened cylindrical shell subject to a uniform hydrostatic pressure and axial compression (which is a known fraction of the hydrostatic pressure) with simply supported boundary conditions is given by (see Appendix A)

$$\bar{k}_{yy} = \frac{am^4 + bm^2 + c}{fm^2 + g}$$
 (1)

where

$$\begin{split} \mathbf{h} &= \left[\left[\mathbf{1} + \bar{\mathbf{\beta}}^2 \right]^2 + \bar{\lambda}_{\mathbf{x}\mathbf{x}} + \bar{\lambda}_{\mathbf{y}\mathbf{y}} \bar{\mathbf{\beta}}^4 + \frac{2\bar{\mathbf{\beta}}^2}{1 - \nu} \left(\bar{\lambda}_{\mathbf{x}\mathbf{x}} + \bar{\lambda}_{\mathbf{y}\mathbf{y}} + \bar{\lambda}_{\mathbf{x}\mathbf{x}} \bar{\lambda}_{\mathbf{y}\mathbf{y}} \right) \right] \left[\left(\mathbf{1} + \bar{\mathbf{\beta}}^2 \right)^2 \\ &+ \bar{\mathbf{\rho}}_{\mathbf{x}\mathbf{x}} + \bar{\mathbf{\rho}}_{\mathbf{y}\mathbf{y}} \bar{\mathbf{\beta}}^4 \right] + \frac{12Z^2}{\pi^4 (1 - \nu^2)} \left[\bar{\mathbf{e}}_{st}^2 \bar{\lambda}_{\mathbf{x}\mathbf{x}} + \frac{2}{1 - \nu} \bar{\mathbf{e}}_{st}^2 \bar{\lambda}_{\mathbf{x}\mathbf{x}} (1 - \nu + \bar{\lambda}_{\mathbf{y}\mathbf{y}}) \bar{\mathbf{\beta}}^2 \\ &+ \left\{ \bar{\mathbf{e}}_{st}^2 \bar{\lambda}_{\mathbf{x}\mathbf{x}} (1 + \bar{\lambda}_{\mathbf{y}\mathbf{y}}) + 2 \frac{1 + \nu}{1 - \nu} \bar{\mathbf{e}}_{st} \bar{\mathbf{e}}_{\mathbf{x}} \bar{\lambda}_{\mathbf{x}\mathbf{x}} + \frac{2}{1 - \nu} \bar{\mathbf{e}}_{st}^2 \bar{\lambda}_{\mathbf{x}\mathbf{x}} (1 - \nu + \bar{\lambda}_{\mathbf{y}\mathbf{y}}) \bar{\mathbf{\beta}}^2 \\ &+ \left\{ \bar{\mathbf{e}}_{st}^2 \bar{\lambda}_{\mathbf{x}\mathbf{x}} (1 + \bar{\lambda}_{\mathbf{y}\mathbf{y}}) + 2 \frac{1 + \nu}{1 - \nu} \bar{\mathbf{e}}_{st} \bar{\mathbf{e}}_{\mathbf{x}} \bar{\lambda}_{\mathbf{x}\mathbf{x}} \bar{\lambda}_{\mathbf{y}\mathbf{y}} + \bar{\mathbf{e}}_{\mathbf{x}}^2 \bar{\lambda}_{\mathbf{y}\mathbf{y}} (1 + \bar{\lambda}_{\mathbf{x}\mathbf{x}}) \right\} \bar{\mathbf{\beta}}^4 \\ &+ \frac{2}{1 - \nu} \bar{\mathbf{e}}_{\mathbf{x}}^2 \bar{\lambda}_{\mathbf{y}\mathbf{y}} (1 - \nu + \bar{\lambda}_{\mathbf{x}\mathbf{x}}) \bar{\mathbf{\beta}}^6 + \bar{\mathbf{e}}_{\mathbf{x}}^2 \bar{\lambda}_{\mathbf{y}\mathbf{y}} \bar{\mathbf{\beta}}^8 \right] \\ &+ \frac{12}{\pi^4} (1 - \nu^2) \left[-2\nu \bar{\mathbf{e}}_{st} \bar{\lambda}_{\mathbf{x}\mathbf{x}} + 2 \left\{ \bar{\mathbf{e}}_{st} \bar{\lambda}_{\mathbf{x}\mathbf{x}} (1 + \bar{\lambda}_{\mathbf{y}\mathbf{y}}) + \bar{\mathbf{e}}_{\mathbf{x}} \bar{\lambda}_{\mathbf{y}\mathbf{y}} (1 + \bar{\lambda}_{\mathbf{x}\mathbf{x}}) \right\} \bar{\mathbf{\beta}}^2 \\ &- 2\nu \bar{\mathbf{e}}_{\mathbf{x}} \bar{\mathbf{x}} \bar{\mathbf{x}}^4 \right] \end{split}$$

10

 $c = \frac{12 z^2}{\pi^4 (1 - v^2)} [(1 + \bar{\lambda}_{xx})(1 + \bar{\lambda}_{yy}) - v^2]$ $\mathbf{f} = \left(\frac{\mathbf{L}}{\mathbf{n}\overline{\mathbf{R}}}\right)^2 \left[(1+\overline{\mathbf{\beta}}^2) (\overline{\mathbf{e}}_{st}\overline{\lambda}_{xx} + \overline{\mathbf{e}}_r\overline{\lambda}_{vv}\overline{\mathbf{\beta}}^4) + \frac{2\overline{\mathbf{\beta}}^2}{1-v} \overline{\lambda}_{xx}\overline{\lambda}_{vv} (\overline{\mathbf{e}}_{st} + \overline{\mathbf{e}}_r\overline{\mathbf{\beta}}^2) \right]$ $+ \left(\frac{1}{2} - \alpha + \overline{\beta}^{2}\right) \left[\left(1 + \overline{\beta}^{2}\right)^{2} + \overline{\lambda}_{xx} + \overline{\lambda}_{yy} \overline{\beta}^{4} + \frac{2\overline{\beta}^{2}}{1 - y} \left(\overline{\lambda}_{xx} + \overline{\lambda}_{yy} + \overline{\lambda}_{xx} \overline{\lambda}_{yy}\right) \right]$ $g = \left(\frac{L}{\pi R}\right)^2 \left[(1+\bar{\beta}^2)(\nu+\bar{\beta}^2) \right]$ $+ \frac{\bar{\beta}^{2}}{1-\nu} (2\bar{\lambda}_{xx} + \bar{\lambda}_{yy} + \nu \bar{\lambda}_{yy} + 2\bar{\lambda}_{xx} \bar{\lambda}_{yy}) + \bar{\lambda}_{yy} \bar{\beta}^{4}]$ $\alpha \simeq \frac{k_{xx}}{\bar{k}_{x}};$ $\bar{\mathbf{k}}_{\mathbf{x}\mathbf{x}} = \frac{\bar{\mathbf{N}}\mathbf{L}^2}{\pi^2 \bar{\mathbf{p}}}$ $\bar{k}_{yy} = \frac{qRL^2}{r^2}; \qquad \bar{\beta} = \frac{nL}{m\pi R}$ (2) and

11

(3)

$$\bar{\lambda}_{xx} = \frac{E_{st}A_{st}(1-\nu^2)}{E h \ell_{st}}; \quad \bar{\lambda}_{yy} = \frac{E_{r}A_{r}(1-\nu^2)}{E h \ell_{r}}$$

 $\bar{\rho}_{xx} = \frac{\mathbf{E}_{st}\mathbf{I}_{stc}}{\mathbf{D} \, \boldsymbol{\ell}_{st}}; \qquad \bar{\rho}_{yy} = \frac{\mathbf{E}_{r}\mathbf{I}_{rc}}{\mathbf{D} \, \boldsymbol{\ell}_{r}}$ $\bar{e}_{st} = \frac{\pi^{2}R}{r^{2}} \, e_{st}; \qquad \bar{e}_{r} = \frac{\pi^{2}R}{r^{2}} \, e_{r}$

If the cylinder is to be designed for uniform hydrostatic

pressure only, α is set equal to zero in the expression for general instability. The general instability critical load parameter \bar{k}_{yycr} for a given cylinder and loading is obtained through minimization of Equation (1) with respect to integer values of m and n.

The prebuckling stresses in the skin, stringers, and rings are (see Appendix A)

$$\sigma_{xxsk} = -\frac{qR}{2h} \left[\frac{2\nu \bar{\lambda}_{xx} + \bar{\lambda}_{yy}(1+2\alpha) + (1-\nu^2)(1+2\alpha)}{(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy}) - \nu^2} - \frac{qR}{2\nu^2} \right]$$

$$\sigma_{yysk} = -\frac{qR}{2h} \left[\frac{2\bar{\lambda}_{xx} + (1+2\alpha)\bar{\lambda}_{yy} + 2(1-\nu^2)}{(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy}) - \nu^2} \right]$$

$$\sigma_{\text{xxst}} = -\frac{qRE_{\text{st}}}{2hE} (1-v^2) \left[\frac{(1+\bar{\lambda}_{yy})(1+2\alpha)-2v}{(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy})-v^2} \right]$$

$$\sigma_{yyr} = -\frac{qRE_{r}}{2hE} (1-v^{2}) \left[\frac{2(1+\bar{\lambda}_{xx})-v(1+2\alpha)}{(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy})-v^{2}} \right]$$
(4)

Formulation of the Objective Function

Assuming the eccentricities of the stiffeners to be small as compared to the radius of the shell, and ignoring the weight of the common material at the intersections of the stiffeners, the weight of the stiffened shell is

$$W_{\rm ST} = 2\pi R \ln \rho_{\rm sk} + \rho_{\rm st} \int \int (A_{\rm st}/\ell_{\rm st}) dy dx + \rho_{\rm r} \int \int (A_{\rm r}/\ell_{\rm r}) dy dx$$
(5)

Carrying out integrations in Equation (5) and using the nondimensional parameters $\bar{\lambda}_{xx}$ and $\bar{\lambda}_{yy}$ from Equation (3), the weight of the stiffened cylinder is given by

$$W_{\rm ST} = 2\pi RLh \rho_{\rm sk} \left[1 + \frac{1}{1-v^2} \left(\frac{E\rho_{\rm st}}{E_{\rm st}\rho_{\rm sk}} \bar{\lambda}_{\rm xx} + \frac{E\rho_{\rm r}}{E_{\rm r}\rho_{\rm sk}} \bar{\lambda}_{\rm yy} \right) \right] \quad (6)$$

Objective Function Based on Skin Yielding

The prebuckling stresses σ_{xxsk} and σ_{yysk} for the skin are obtained from Equation (6). The stress in the skin, σ_s , computed on the basis of von Mises-Henkey yield criterion is

$$s = (\sigma_{xxsk}^{2} + \sigma_{yysk}^{2} - \sigma_{xxsk}\sigma_{yysk})^{\frac{1}{2}}$$
(7)

Let σ_y be the permissible yield stress for the material of the skin. The problem is stated as

such that
$$\sigma_s = \sigma_v$$
 (8)

This constrained minimization problem is transformed to an unconstrained minimization problem, leading to the composite objective function

$$W^* = W_{ST} + \lambda |\sigma_s - \sigma_y|$$

where λ is a Lagrange multiplier.

(9)

Equation (9) can be put in the nondimensional form as

$$\bar{\mathbf{W}}^* = \bar{\mathbf{W}} + \lambda^* \left| \mathbf{PZ}^2 - \sigma^* \mathbf{Z} \right|$$

where

P

$$\bar{\mathbf{W}}^* = \frac{W^*Z}{2\pi RL^3 (1-v^2)^{\frac{1}{2}}}$$

$$\bar{W} = 1 + \frac{1}{(1-v^2)} \begin{bmatrix} E\rho_{st} \\ E_{st}\rho_{sk} \end{bmatrix} \bar{\lambda}_{xx} + \frac{E\rho_r}{E_r\rho_{sk}} \bar{\lambda}_{yy}$$

$$\lambda^* = \frac{q R^2 \lambda}{2\pi L^5 \rho_{sk} (1-\nu^2)}$$

$$= [(1-\nu+\nu^{2})(4\bar{\lambda}_{xx}^{2} + \bar{\lambda}_{yy}^{2}) - 2(1-4\nu+\nu^{2})\bar{\lambda}_{xx}\bar{\lambda}_{yy} - (1-\nu^{2})(5\nu+1)(2\bar{\lambda}_{xx}+\bar{\lambda}_{yy}) + 7(1-\nu^{2})^{2}]^{\frac{1}{2}}/2[(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy}) - \nu^{2}]$$

$$\sigma^{*} = \sigma_{y}(\frac{L}{R})^{2} \frac{(1-\nu^{2})^{\frac{1}{2}}}{q}$$

In the functional form one can write

q

$$\bar{W}^* = \bar{W}^*(Z, \bar{\lambda}_{xx}, \bar{\lambda}_{yy})$$
(12)

It can easily be verified that minimization of \bar{W}^{\star} on the basis

(10)

(11)

of the skin yielding results in an unstiffened shell. Such a shell, undoubtedly, fails in general instability. Therefore, considering Z (or h) as an independent variable is meaningless in the present formulation. One can, however, approach the problem by considering $\bar{\lambda}_{xx}$ and $\bar{\lambda}_{yy}$ as independent variables. For a fixed value of Z (or h), one finds those values of $\bar{\lambda}_{xx}$ and $\bar{\lambda}_{yy}$ which minimize \bar{W} . In this manner one generates sets of data that indicate the distribution of the material in the skin and the stiffeners such that the skin yielding constraint is satisfied. A systematic procedure, given in Chapter III, can then be followed to arrive at those values of the design variables which satisfy all the constraints and result in the minimum weight configuration. The values of λ^* in Equation (10) must be sufficiently large, Reference [26], so that the solution of the unconstrained problem approaches to that of the constrained problem. Objective Function Based on General Instability

If general instability is the active failure mode, the objective function is formulated on the basis of this constraint. The

problem is stated as

Minimize W_{ST}

such that $q_{cr} = q_{D}$

where q_{cr} is the general instability critical load, and q_{D} is the design load. This constrained minimization problem is transformed to an unconstrained minimization problem, leading to the objective function

 $W^* = W_{ST} + \lambda |q_{cr} - q_D|$ (14)

(13)

where λ is a Lagrange multiplier.

Equation (14) can be put in the nondimensional form as

$$\bar{W}^* = \bar{W} + \lambda_{C}^* \left| \bar{k}_{yycr}^* - q_{D}^* \right|$$
(15)

where

$$\xi = \frac{\pi EL}{24R^4} \lambda$$

$$\mathbf{E}_{D}^{*} = \frac{12Z}{\pi^{2}E} \left(\frac{L}{R}\right)^{4} \frac{q_{D}}{(1-v^{2})^{\frac{1}{2}}}$$

$$\bar{k}_{yycr}^{*} = \frac{k_{yycr}}{z^2}$$

Thus \tilde{W}^{\star} is a function of number of variables

 $\bar{W}^{*} = \bar{W}^{*}(Z, \bar{\lambda}_{xx}, \bar{\lambda}_{yy}, \bar{\rho}_{xx}, \bar{\rho}_{yy}, \bar{e}_{st}, \bar{e}_{r}, m^{2}, \bar{\beta}^{2})$ (17)

It is observed, in this case, that \bar{W}^* behaves like 1/Z, suggesting that there is no minimum with respect to finite Z. Equation (1) for the general instability load parameter \bar{k}_{yy} indicates that the value of \bar{k}_{yycr} increases with the increasing values of $\bar{\rho}_{xx}$, $\bar{\rho}_{yy}$, \bar{e}_{st} , and \bar{e}_{r} . But these parameters possess a certain upper limit, because any increase beyond that limit makes the local instabilities active. If these limits can somehow be found, a program can be set up for minimization of \bar{W}^* with respect to $\bar{\lambda}_{xx}$ and $\bar{\lambda}_{yy}$ for fixed values of Z, $\bar{\rho}_{xx}$, $\bar{\rho}_{yy}$, \bar{e}_{st} , and \bar{e}_{r} .

(16)

Specifying limits on $\bar{\rho}_{\chi\chi}$, $\bar{\rho}_{\chiy}$, \bar{e}_{st} , and \bar{e}_{r} as they appear in the expression for $\bar{k}_{\chi y}$ is rather difficult. This can, however, be accomplished by replacing these four parameters by four new parameters $\bar{\alpha}_{\chi}$, $\bar{\alpha}_{\chi}$, C_{χ} , and C_{χ} . The relations between the new and the old parameters are

$$\bar{\rho}_{xx} = \bar{\alpha}_{x}^{2} \bar{\lambda}_{xx} ; \qquad \bar{\rho}_{yy} = \bar{\alpha}_{y}^{2} \bar{\lambda}_{yy}$$

$$\bar{e}_{st} = \frac{\pi^{2} (1 - v)^{2}}{2\pi} (1 + c_{x} \bar{\alpha}_{x}) ; \quad \bar{e}_{y} = \frac{\pi^{2} (1 - v^{2})^{\frac{1}{2}}}{2\pi} (1 + c_{y} \bar{\alpha}_{y}) \qquad (18)$$

The new parameters $\bar{\alpha}_x$ and $\bar{\alpha}_y$ denote the ratios of radii of gyration of stringers and rings to that of the skin per unit width respectively, and C_x and C_y are numbers specifying the shape of the stiffeners. These are called the stiffener shape parameters. By making such a substitution the \bar{W}^* expression becomes

$$\bar{W}^* = \bar{W}^* [Z, \bar{\lambda}_{xx}, \bar{\lambda}_{yy}, m^2, \bar{B}^2, (\bar{\alpha}_x, \bar{\alpha}_y, C_x, C_y)]$$
(19)

Introduction of these four new parameters is helpful in two ways: (a) It is easier now to investigate various shapes of the stiffeners and (b) the range of these four new parameters can reasonably be fixed.

For a fixed value of Z (or h) and known load parameter q_D^* , values of $\bar{\lambda}_{xx}$ and $\bar{\lambda}_{yy}$ are found in the space of $\bar{\alpha}_x - \bar{\alpha}_y$ such that \bar{W}^* is minimum. The parameters C_x and C_y can be calculated for a particular shape of the stiffener. For some typical shapes the values of C_x and C_y are given in Appendix B. In order to find the dimensions of the stiffeners, their spacings and the skin thickness, the results of first stage operation are used along with the inequalities describing various failure modes. The procedure to be followed for achieving the final design is discussed in Chapter III. Some typical design examples illustrating this procedure are given in Appendix C. A factor of safety of two is used against general instability, panel buckling, and local instabilities of skin and stiffeners. For yielding, a factor of safety of one is used.

18

CHAPTER III

METHOD OF SOLUTION

The solution to the present problem is accomplished, as stated earlier, in two stages. The design charts and tables are generated by performing the unconstrained minimization of the objective function by means of some mathematical search technique. This is the phase I of the present methodology. In the second phase, a design procedure (described in this Chapter) is followed systematically to arrive at the final minimum weight design configuration.

Phase I

Description of Mathematical Search Techniques

There are several mathematical search techniques available for optimization. A general distinction can be made between classical or indirect methods available to analytical solutions and mathematical programming and search methods which normally require a digital computer for finding a numerical solution to most realistic problems. The classical procedures are restricted to very few real world problems. In most cases one has to rely on the mathematical search techniques. In general, there are many techniques available that can be used for a particular problem. There is no single search technique that can uniquely be described as being the 'best' in all the situations, (see Reference [16]). In the present problem, the Nelder and Mean [25] mathematical search technique is used in the minimization of the objective function. This search technique proved to be quite effective. The general instability critical load parameter \hat{k}_{yycr} , needed for each iteration, in the general instability formulation, requires minimization with respect to m and n. This is accomplished by using either the golden section [27] or the modified sequential dichotomous [28] search technique.

Nelder and Mead Algorithm

This search technique is used for minimization of multivariable unconstrained nonlinear functions. The method is an extension of the simplex method given by Spendley, Hext, and Himsworth [29]. Both methods utilize a regular geometric figure called a simplex consisting of N+1 vertices, where N is the number of variables. The Nelder and Mead method accelerates the simplex method and makes it more general. This method adopts itself to the local landscape, using reflected, expanded, and contracted points to locate the minimum. The essential steps of the method are

1. Select a starting point.

2. Construct a starting simplex, refer [25] or Appendix E for appropriate expessions to obtain the remaining points of the simplex.

3. After forming the simplex, the objective function is evaluated at each point. The highest value of the objective function (the worst point) is replaced by a new point. Three operations used for this are reflection, contraction, and expansion. A point is first located by reflection of the worst point. The expression for this step is given in Appendix E, or Reference [25].
4. If the reflected point has the worst objective function value of the current points, a contracted point is located. The expression is given in Appendix E.

If the reflected point is better than the worst point but is not the best point, a contracted point is calculated from the reflected point. The objective function is now evaluated at the contracted point. If an improvement over the current points is achieved the process is restarted. If an improvement is not achieved, the points are moved one half the distance toward the best point. The process is then restarted.

5. If the reflected point calculated in step 3 is the best point, an expansion point is calculated. The program listing in Appendix E gives the expression for this operation.

If the expansion point is an improvement over the reflected point, the reflected point is replaced by the expansion point and the process is restarted. If the expansion point is not an improvement over the reflected point, the reflected point is retained and the process is restarted.

6. The procedure is terminated when the convergence criterion is satisfied or a specified number of iterations has been exceeded.

Method of Golden Section

This search technique is used for minimization of a nonlinear function of a single variable. The search commences with evaluation of the objective function at each end of the interval S, and at $d_1 = 2/(1+\sqrt{5})$ of the interval from both these bounding points. Refer

Figure 1.

On comparing the values of the objective function at these four points, the boundary point which is farthest from the lowest objective function value is discarded. The remaining three points are retained. The search now continues in the region which has been diminished in size by d_1 . The internal point at which the objective function is known in the reduced interval is at a distance d_1 of the reduced interval from the remaining bounding point of the original interval. This is because $1-d_1 = d_1^2$. The search can, therefore, be continued in the reduced interval with only one additional evaluation of the objective function.

When the specified accuracy is achieved, the search is terminated. The method is based on the assumption of unimodality. It is, therefore, suggested that a set of different original intervals be attempted. The program is given in Appendix E.

Modified, Sequential, Dichotomous Search

This search technique is used for finding general instability critical load treating m and n as integer variables. The essential steps of the search technique are

1. Start from an arbitrary initial point m_1 and n_1 . A one dimensional minimization is first performed with respect to m, using dichotomous search. The program in Appendix E gives the steps involved in this process. This search is continued until a minimum with respect to m is located.

2. For the fixed value of m located in step 1, the search procedure is repeated with respect to n. The search is terminated

when a set of search sequences fails to yield any change in the minimizing values of m and n.

Employing these search techniques the design charts and tables are generated for the two formulations of the objective function discussed in Chapter II. For the skin yielding formulation, values of $\bar{\lambda}_{xx}$ and $\bar{\lambda}_{yy}$ are obtained for various values of Z (or h). The results are given in the form of tables and curves. These are discussed in Chapter IV.

For the general instability formulation, values of $\bar{\lambda}_{xx}$ and $\bar{\lambda}_{yy}$ are obtained for fixed values of Z, C_x and C_y, in the space of $\bar{\alpha}_x - \bar{\alpha}_y$. The results are presented in the form of tables and charts as given in Chapter IV.

Phase II

Procedure for Design

In this phase the values of design variables are found by employing the design charts generated in phase I. The following quantities are known

1. The radius and length of the shell.

2. Applied hydrostatic pressure (or operating depth of submarine) and safety factors. A factor of safety of two is assumed against all the instability failure modes and a factor of safety of one is assumed against yielding.

3. The material of the skin and stiffeners and their properties.

The position of the stiffeners.

The design variables to be determined are the skin thickness, the sizes of the stiffeners and their spacings. The systematic approach to arrive at these design variables for the two formulations of the objective function is given as follows.

Design Procedure for General Instability Formulation

Ring Stiffened Shell

In general, the thickness corresponding to the minimum weight design is determined from a curve of Z (or h) versus W. In order to plot such a curve, designs are obtained for at least three different values of Z (or h). The following procedure is suggested for determining appropriate values of Z (or h).

The upper bound on the skin thickness of the shell is obtained from consideration of either skin yielding or buckling of an unstiffened shell. The optimum skin thickness is a fraction of the upper bound found from any of the above two considerations. The skin thickness obtained on the basis of skin yielding, given by $h_u = \frac{\sqrt{3} \text{ gR}}{2 \sigma_y}$ is much lower than the one obtained on the basis of buckling. It is, therefore, suggested to find the starting value of Z (or h) on this basis.

It is anticipated that the optimum thickness may be around $h_u/1.5$ $h_u/1.5$. As an initial guess take Z = 1.2 Z_u ; generate some data and design the shell according to steps 1 through 7. Let this weight be W_1 . The procedure is repeated for Z = 1.3 Z_u and weight W_2 is obtained. If $W_1 < W_2$, use Z = 1.1 Z. If $W_1 > W_2$, use Z = 1.4 Z_u . If $W_1 \simeq W_2$, then the minimum weight configuration corresponds to

25

a Z value between 1.2 Z_u and 1.3 Z_u . In this manner values of Z are selected for plotting the curve of Z versus W. The steps of designing a shell for a fixed Z are given as follows.

1. For a particular value of Z (or h) read values of $\bar{\lambda}_{yy}$ and $\bar{\alpha}_{y}$ corresponding to the minimum value of \bar{W} . Steps 2 through 9 are then followed such that the constraints defining failure modes are not violated. If any constraint is violated, move to a point of higher value of \bar{W} and repeat the steps.

2. The ring spacing ℓ_r is determined from the criterion of panel buckling. This needs a few trials.

3. The ring dimensions are computed as follows

$$d_{wr} = \frac{h \tilde{\alpha}_{y}(1+A_{y}B_{y})}{\sqrt{(1+4A_{y}B_{y})}}; \quad t_{wr} = \frac{\bar{\lambda}_{yy}\ell_{r}h}{d_{wr}(1-\nu^{2})(1+A_{y}B_{y})}$$

 $t_{fr} = A_y t_{wr} \qquad ; \qquad b_{fr} = B_y d_{wr} \qquad (20)$

These expressions are written for T-rings. If rectangular rings are used, A_y and B_y in the above expressions are set equal to zero. For other shapes Table Bl, in Appendix B, is used for calculating the dimensions of the ring.

4. The stresses in the ring and skin are calculated using Equations (A27), (A28) and (A31) given in Appendix A. These stresses are checked against permissible stress levels.

5. The critical ring stress is calculated from Equation (A21). This should be greater than the applied stress.

6. The ratios of actual load to failure load are calculated

to make sure that failure modes do not occur simultaneously. If this condition is not satisfied, either adjust ring spacing or proceed with another value of \bar{W} .

7. The weight of the shell is computed.

8. This procedure is repeated for at least three values of Z (or h), as suggested in the beginning, and \overline{W} versus h is plotted. From this curve one finds the optimum value of h.

9. For this value of h (or Z) generate design data and follow the above steps. This step is needed if exact minimum weight is desired. The curve \bar{W} versus h is relatively flat, indicating that there is a fairly large range of h that corresponds to almost same weight of the shell.

The steps given above are carried out conveniently through a computer program RSSH written for this purpose. A sample example is worked out in Appendix C.

Shell Stiffened with Rectangular Rings and Rectangular Stringers

The appropriate values of Z (or h) are determined as suggested under the ring stiffened shell design procedure.

1. From the design charts for this case, see for example, Figure 2, locate the minimum weight parameter \bar{W} for each Z in the space of $\bar{\alpha}_x - \bar{\alpha}_y$. Corresponding to this value of \bar{W} , read values of $\bar{\alpha}_x$, $\bar{\alpha}_y$, $\bar{\lambda}_{xx}$, and $\bar{\lambda}_{yy}$. One then follows steps 2 through 12 such that the constraints are not violated. If any constraint is violated move to a point giving same value of \bar{W} , if there is any, or move to a point of higher value of \bar{W} . With few designs one could get clear indications as regards to the appropriate direction in which one

	• .		н. ¹				ā						
	0	•	2.0		4.0		6.0	:	8.0	1	0.0	1	2.0
		<u>.</u>		•	1		1 1-						1
11.	و ا	· . 	•					· . -					·
11.	5	•	1.72	1.72	1.72	1.69	1.70	1.68	1.71		1.71	·	
12.	°		1.62	1.62	1.60	1.70	1.61	1.91	1.61	·	1.58	• •	1.57
12.	5 -	- 	1.72	1.63	1 61	1.61	1.59	1.62	1 61	•	1.60	*. •	1.56
a _y 13.	Ĩ		1.61	1.70	1.61	1.61	1.51	1.60	1.60		i.61	· · ·	1.61
13.	<u>}</u>	-	1.53	1 51	1.48	1 48	1.48	1.48	1.49	·	1.47		1.47
14.		•	1.58	1.47	1.46	1.46	1.45	1.45	1.47		1 46	, ,, ,	1.45
14.	?		1.55	1.44	1.46	1.44	1.45	1.45	1.45		1.46		1 47
15.	•	- 	1.40	1.39	1.42	1.42	1.48	1.40	1.41	1.41	1.42	1.42	1.43

Figure 2. Design Chart for Internally TR-RS Stiffened Shell General Instability Formulation, High Strength Steel Operating Depth = 3000 feet, $Z \approx 1200$. must move to get an acceptable design.

2. Through Equations (4) and (7) calculate stresses in the skin, stringers and rings. If these stresses are within the permissible levels specified, one proceeds to the next step.

3. The depths of stringers and rings are calculated from the following Equations.

$$d_{st} = h \tilde{\alpha}_{x} ; \quad d_{wr} = h \tilde{\alpha}_{y}$$
 (21)

4. The ratios of stiffener thickness to the stiffener spacing are determined from the definitions of $\bar{\lambda}_{xx}$ and $\bar{\lambda}_{yy}$ as

$$\frac{t_{st}}{\iota_{st}} = \frac{E \bar{\lambda}_{xx} h}{E_{st} d_{st} (1-\nu^2)} ; \quad \frac{t_{wr}}{\iota_{r}} = \frac{E \bar{\lambda}_{yy} h}{E_{r} d_{wr} (1-\nu^2)}$$
(22)

5. The ring spacing is determined from the requirement that the stress in the ring must be less than the critical stress or

$$\int \frac{\frac{24(1-\nu^{2})\sigma_{yyr} F_{1}}{\pi^{2} E_{r}} \frac{d_{wr}(1-\nu^{2})}{\bar{\lambda}_{yy} h} (d_{wr} - d_{st})}{\sigma_{wr} - d_{st}} (23)$$
or
$$\int \frac{3(1-\nu^{2})\sigma_{yyr} F_{1}}{\pi^{2} E_{r}} \frac{d_{wr}(1-\nu^{2})}{\bar{\lambda}_{yy} h} d_{st}$$

F₁ is factor of safety

The largest of the two values is taken as the required ring

spacing. The spacing is selected such that the number of rings is an integer. For this ring spacing t_{wr} is calculated from Equation (22). Inequalities (23) are obtained for the case of rings deeper than the stringers. The portion of the ring equal in depth to the stringer is assumed as a plate simply supported on all four sides, whereas the portion of the ring projecting above the stringer is considered as free on one edge.

6. For the ring spacing determined in step 5, check for panel buckling.

7. The stringer spacing is calculated from the requirement that the stringer stress must be less than the critical stringer stress,

$$\ell_{st} > \sqrt{\frac{12(1-\nu^{2})\sigma_{xxst} F_{1}}{2}} \frac{d_{st}^{2}(1-\nu^{2})}{h \bar{\lambda}_{xx}}} \sqrt{\pi^{2}E_{st} \left[\frac{d_{st}^{2}}{\ell_{r}} + .425\right]}$$
(24)

Select l_{st} such that the number of stringers is an integer and inequality (24) is satisfied. From Equation (22), one then calculates t_{st} .

8. For the values of ℓ_r and ℓ_{st} determined in steps 6 and 7, check against skin buckling using Equation (A18), Appendix A. If this constraint is satisfied proceed to the next step, otherwise, examine values of ℓ_r and ℓ_{st} and see if they can be adjusted, without violation of any other constraint, so as to satisfy the skin buckling failure mode. If such an adjustment is not possible, go back to step 1.

9. Calculate ratios of actual load to the failure load. If there is simultaneous occurrence of two or more failure modes, adjust ℓ_r and ℓ_{st} to avoid this, or move to another point in the design space.

10. Compute the weight of the shell.

11. Repeat the above steps for a number of Z (or h) values and plot W versus h. For example, see Figure 5. At least three values of Z (or h) are needed for plotting the curve, see design procedure for ring stiffener shell. From the plot of W versus h one can locate the absolute minimum weight and corresponding value of Z (or h).

12. For this value of Z, design charts are generated and above steps repeated to finalize the design dimensions. This step is needed only if the exact minimum weight configuration is desired. Shell Stiffened with T-Rings and Rectangular Stringers

The steps for the design in this case are similar to those given above. It may, however, be noted that the value of C_y is no longer equal to one and the expressions for $\dot{\alpha}_y$ and $\bar{\lambda}_{yy}$ are different than those given for the rectangular shapes. These expressions are given in Table Bl, Appendix B.

The ring spacing in this case is calculated from the following inequality:

 $\frac{(1 + A_y B_y)(1 - v^2)d_{wr}}{z}$ (25) $\frac{1 + A_y B_y)(1 - v^2)d_{wr}}{\tilde{\lambda}_{vv} h} (d_{wr} - d_{st})$

32

In order to find the optimum value of C_y , a plot of W versus C_y is made. Such a plot, for example, is shown in Figure 7.

Various types of stiffener shapes can be examined by introducing proper values of C's from Table Bl. The essential steps in the procedure for design remain the same.

Design Procedure for Skin Yielding Formulation Ring Stiffened Shells

The steps to be followed for this case are similar to those given under general instability formulation. The difference lies in the fact that for each trial a check for general instability critical load is required. This is accomplished through a computer program, see Appendix E.

Shells Stiffened with Rectangular Rings and Rectangular Stringers

1. From the design charts or tables read the values of $\bar{\lambda}_{xx}$ and $\bar{\lambda}_{yy}$ corresponding to a particular Z (a good starting guess is $Z = 1.1 Z_u$). One then follows steps 2 through 7 such that the constraints are not violated.

2. This step is same as step 2 under corresponding case in general instability formulation.

3. In order to check against general instability failure mode, one must first determine values of $\bar{\alpha}_x$ and $\bar{\alpha}_y$. It is indicated by the present study that for minimum weight configuration rings are always deeper than the stringers. The ring spacing is obtainable from inequalities (23). In order that both expressions in that inequality yield the same value of ℓ_r , one easily finds that

If the depth of the ring is limited by any geometric constraint, the starting value of d_{wr} is taken as equal to that limiting value. If no such limit is specified, d_{wr} is assumed as R/15.

 $d_{st} \simeq \cdot 7^4 d_{wr}$

4. With these values of d_{wr} and d_{st} , $\bar{\alpha}_x$ and $\bar{\alpha}_y$ are calculated from Equation (21).

5. For these values of $\tilde{\alpha}_x$, $\tilde{\alpha}_y$, $\tilde{\lambda}_{xx}$, $\tilde{\lambda}_{yy}$, and Z check the design against general instability. This is done through a computer program, see Appendix E. If $q_{cr} > q_{D}$, proceed to the next step. Otherwise, change values of $\tilde{\alpha}_x$ and $\tilde{\alpha}_y$. An increase in the value of $\tilde{\alpha}_x$ and $\tilde{\alpha}_y$ will increase value of q_{cr} . If the general instability constraint can not be satisfied, one must move to higher value of \bar{W} . A few trials are needed for this step.

6. The sizes and spacings of the stiffeners are found through the constraints of ring, stringer and skin buckling. The steps outlined under the general instability formulation are applicable in the present case also.

7. The ratios of actual load to failure load are calculated.

(26)

This is for making certain that there is no simultaneous occurrence of failure modes.

34

The procedure for shells stiffened with T-rings (or any other shape) and rectangular stringers is essentially the same except the changes pointed out under the general instability formulation. Some examples are worked out completely in Appendix C to illustrate the procedure for design.

CHAPTER IV

NUMERICAL RESULTS AND DISCUSSION

The following cases are considered during the course of this investigation to amply demonstrate the useful applicability of the present methodology.

Case 1. This case deals with the design studies employing skin yielding formulation for a shell of radius 198 inches and length 594 inches. The operating depths considered for this case are 1000 feet and 3000 feet. The material of construction for all the elements of shell is conventional steel with permissible yield stress of 60,000 psi. Both ring stiffened and ring-stringer stiffened shells are considered to arrive at minimum weight design.

Care 2. This case is similar to the case 1, except that the formulation of the objective function is based on general instability.

Case 3. For an operating depth of 3000 feet, the minimum weight designs are obtained for a shell of radius 198 inches and length 594 inches. The material of construction for all the elements of shell is high strength steel with permissible yield stress of 120,000 psi. Both ring stiffened and ring-stringer stiffened geometries are considered for this case also. The formulation of the objective function is based on general instability.

Case 4. This case is similar to case 3, except that instead of interior stiffeners, exterior stiffeners are considered here. Case 5. Effect of varying L/R ratio on the minimum weight is studied in this case. A shell of radius 198 inches in considered. The L/R ratio is varied from one through five. The operating depth, type of steel and stiffening are same as in the Case 3.

Case 6. This case deals with the minimum weight design of a shell of radius 198 inches and length 594 inches when predominant hydrostatic pressure is combined with small uniform axial compression. The operating depth and type of steel used are same as in Case 3. The axial compression, in this case, is assumed to be .2qR, where q is the hydrostatic pressure and R is the radius of the shell.

The results of Cases 1 and 3, when the shell is stiffened with only rings, could be compared with the results of [18].

Tables 1 through 11 and Figures 3-28 give the results of the design studies listed above. Three sample design examples and corresponding design charts are given in Appendix C. The design charts for all the cases considered are given in a separate report [30].

For the objective function formulated on the basis of skin yielding, the results of Phase I, for the two operating depths considered, are given in Tables 1, 2, 4 and 5. The chart showing skin thickness versus W* is also plotted. Figure 3 and 8 are the design charts for ring stiffened shell with operating depth of 1000 feet and 3000 feet respectively.

Table 3 summarizes the results of the design studies for an operating depth of 1000 feet. The least weight is obtained, when the shell is stiffened with T-rings and rectangular stringers. The objective function for this case is formulated on the basis of

Table 1. Design Table for Shell Stiffened with Interior Ring Stiffeners. Skin Yielding Formulation.

			•		
Mada	0 0			0	
Material o	I CONSTRUCTION	-	Conventional	STEEL.	
			the second se		

0.3000 h .94440 .95770	60,000 psi λ _{yy} .45158	1147.78781 Ŵ
h .94440 .95770	λ _{γγ} .45158	Ŵ
.94440 .95770	.45158	
.95770		1,41305
- 2 2 1 1 M	. 42304	1,40291
.97138	.39522	1.39326
.98546	.36807	1.38405
•99995	.34156	1.37528
1.01488	.31565	1.36690
1.03025	.29029	1.35891
1.04610	.26547	1.35128
1.06245	.24114	1,34399
1.07931	.21729	1.33703
1.09672	.19388	1.33038
1.11470	.17089	1,32404
1.13328	.14830	1.31797
1.15249	. 12609	1.31218
1,17236	.10424	1.30665
1.19293	.08272	1.30137
1.21423	.06153	1.29633
1.25920	.02004	1.28693
	.97138 .98546 .99995 1.01488 1.03025 1.04610 1.06245 1.07931 1.09672 1.11470 1.13328 1.15249 1.17236 1.19293 1.21423 1.25920	.97138 $.39522$ $.98546$ $.36807$ $.99995$ $.34156$ 1.01488 $.31565$ 1.03025 $.29029$ 1.04610 $.26547$ 1.06245 $.24114$ 1.07931 $.21729$ 1.09672 $.19388$ 1.11470 $.17089$ 1.1328 $.14830$ 1.15249 $.12609$ 1.17236 $.10424$ 1.19293 $.08272$ 1.21423 $.06153$ 1.25920 $.02004$

Figure 3.

Design Chart for Internally Ring Stiffened Shell Skin Yielding Formulation, Conventional Steel Operating Depth = 1000 feet.

38

Table 2. Design Table. Shell Stiffened with Interior Ring-Stringer Stiffeners. Skin Yielding Formulation.

Operating Dep	th	<u>ب</u>	· · ·	σy	σ*
1000 ft.		0.300		60,000 psi	1147.78781
Z	h		$\bar{\lambda}_{xx}$	λ _{yy}	$W^* = \overline{W} \times h$
1850.0	.91888	· · · ·	.00287	.50994	1.43669
1825.0	.93146		.00330	.47978	1.42593
1800.0	.94440		.00406	.45037	1,41600
1775.0	.95770		.00252	.42237	1.40485
1750.0	.97138		.00365	.39436	1.39623
1725.0	.98546		.00862	.36631	1.39147
1700.0	•99995		.00692	.34031	1.38088
1675.0	1.01488		.00883	.31426	1.37520
1650.0	1.03025		.00909	.28905	1,36778
1625.0	1.04610	• * •	.01464	.26376	1,36612
1600.0	1.06245		.01708	.23944	1.36194
1575.0	1.07931		.01328	.21615	1.35142
1550.0	1.09672		.02103	.19239	1.35391
1525.0	1.11470		.02567	.16940	1.35362
1500.0	1.13328	•	.02741	.14701	1.35049
1475.0	1.15249		.02594	.12511	1.34379
1450.0	1.17236		.01661	.10373	1.32740

Material of Construction - Conventional Steel.

yielding of skin. On comparing this result with corresponding case under general instability formulation, one notices that an improvement of about 4 percent in weight is realized.

Comparing the weight of ring stiffened shell to that of T-ring and rectangular stringer stiffened shell, it is found that the latter shows an improvement of about 13 percent in weight over the former. This is an appreciable saving in weight, indicating that one cannot ignore the importance of providing stringers without having a closer look at their contribution to the overall strength of the shell under hydrostatic pressure.

The results obtained by Pappas and Allentuch [18] are given in Table 3 along with the present results. The results indicate that, for ring stiffened shell, the minimum weight obtained in the present case is about 18.8 percent better than that of Pappas and Allentuch. One must, however, note that improved constraint equations are used in the present study. If, on the other hand, the comparison is made with respect to the best results obtained in the present case, the improvement in the weight is of the order of 34.3 percent.

ť

111

Ŀ,

ŕ

The results of Pappas and Allentuch indicate that two or more failure modes occur simultaneously. This has been avoided, in the present results (see Table 3). It is possible, in most cases, to avoid simultaneous occurrence of failure modes, without any increase in the weight, just by adjusting various design variables. In some isolated cases, however, the failure mode interaction can be avoided only by increasing the weight of the shell. The present methodology enables one to achieve this with least weight penalty.

Table 3. Design Results. Shell Stiffened with Interior Stiffeners.

Operating Depth = 1000 feet

 $\sigma_{\rm y}$ = 60,000 psi

en e		Skin Yie Formuls	elding tion	General In Formula	Reference	
		TR	TR-RS	RR-RS	TR-RS	[18]
W	1b/in	530.2	469.1	495.7	488.0	629.8
h	in	1.13328	1.06245	1.00000	1,00000	1.0631
d	in	11.62590	12.88152	14.50000	11.34493	13.9570
t	in	.64580	.33052	.42934	.28892	•7754
b _{fr}	in	3.48777	6.44076	· · · · · · · · ·	5.67246	9.7698
t _{fr}	in	.64580	.33052		.28892	•7754
l,	in	23.76000	22.84615	16.50000	13.20000	22.8460
đ	in	•••••	2.65612	10.00000	3.00000	
t _{st}	in		. 16669	. 46056	.19000	
$\iota_{\rm st}$	in	••••	22.20428	73.14352	13.08884	• • • • • • • •
GB		.91459	.94733	.96960	.96967	. 3780
m,	n	1,3	1,3	l , 3	1,3	••••••
PB		.99228	.89584	.15920	.27763	1,0000
m T	, n _p	1,18	1,23	1 , 81	1,49	
SKB	•		.92057	.84593	•35695	
RB		.29038	.99607	• ⁸ 9475	.85093	1.0000
STB	. :	•••••	.88892	.99269	.88626	•••••
SKY		1,00000	1.00000	.99365	.99769	.9940
RY	• :	.80922	.9 3961	.91922	.92090	.6570
STY		•••••	.34646	.37655	.38247	

An observation of Table 3 indicates that the general instability coefficient is not equal to unity for the results obtained on the basis of general instability formulation. This is due to the fact that the parameter $\beta \left(=\frac{nL}{\pi R}\right)$ which minimizes \bar{k}_{yy} does not necessarily yield integer value of n. In some cases, for example, minimizing value of β yield, n = 3.2. In such cases, \bar{k}_{yy} is calculated for n = 3 and n = 4 and the least of these two values is taken as \bar{k}_{yycr} . This value is always slightly greater than the one obtained for n = 3.2. This is the reason for GB being less than unity,

The effect of the ring shape on the weight of the shell is studied by varying the value of parameter C_y . This study indicates that of all the shapes considered, T-rings prove to be most effective. Figure 7 shows the effect of varying parameters A_y and B_y (therefore C_y) on the weight of the shell. It helps in determining the optimum T-rings. It is obvious from the Figure 7 that the weight of the shell is not very sensitive to the variations of A_y and B_y (or C_y). This suggests that there is a large number of T-rings having different web depth to flange width ratio, and web thickness to flange thickness ratio, which give almost the same weight of the shell.

A similar study was conducted for stringers also. The results indicate that a rectangular shaped stringer is most effective. T-stringers give slightly higher weight. This phenomenon is understandable in the sense that the major contribution of the stringers is in strengthening the shell against panel buckling. Since local buckling of the stringers itself is not a critical failure mode, the shape of the stringer does not play a major role in reducing the

44

Material of Construction - Conventional Steel						
Operating Depth	v	σ _y	c *			
3000 feet	0,300	60,000 psi	382.59594			
Z	h	λ _{yy}	Ŵ x h			
875.0	1.94277	3.90202	10.27321			
850.0	1,99991	2.56034	7.62677			
825.0	2,06051	1.99755	6.58355			
800.0	2 12490	1.64261	5.96049			
775.0	2.19344	1.38463	5.53093			
750.0	2,26656	1.18232	5.21139			
725.0	2.34472	1.01585	4.96217			
700.0	2.42846	.87424	4.76149			
675.0	2.51840	.75077	4.59612			
650.0	2.61526	.64104	4.45754			
625.0	2,71987	.54203	4.33992			
600.0	2,83320	.45158	4.23914			
575.0	2.95630	.36807	4,15216			
550.0	3.09076	.29029	4.07673			
525.0	3.23794	.21729	4.01110			
500.0	3.39984	.14830	3.95391			
475.0	3.57878	.08272	3.90410			

Table 4. Design Table. Shell Stiffened with Interior Ring. Stiffeners. Skin Yielding Formulation

Operating Depth 3000 feet	v 0.300	60,	c y ,000 psi	σ * 382.59594
Z	h	$\bar{\lambda}_{xx}$	λ _{yy}	$W^* = \tilde{W}_X h$
500.0	3.39984	.02739	.14701	4.05138
525.0	3.23794	.01320	.21616	4.05403
550.0	3.09076	.00882	.28909	4.10255
575.0	2,95638	.00881	.36628	4.17494
600.0	2.83320	.00406	. 45037	4,24801
625.0	2.71987	.00297	.54078	4.34507
650.0	2.61526	.01551	.63230	4,47701
675.0	2,51840	.00761	.74470	4.60036
700.0	2.42846	.03036	.84310	4.75941
725.0	2.34472	.06291	•93537	4,91687

Design Table. Shell Stiffened with Interior Ring-Stringer Stiffeners. Skin Yielding Formulation.

Material of Construction - Conventional Steel

Table 5.

weight of the shell. It is, therefore, decided to study only the rectangular stringers in the remaining cases.

The results of the design studies for an operating depth of 3000 feet, using conventional steel are given in Table 6. The governing critical mode of failure in this case is yielding of the skin. This mode of failure controls the design of the shell. Relatively large thickness of the skin is needed for preventing the stresses in the skin from exceeding the permissible level. As stated in Chapter III, for ring stiffened shells, the ring spacing is determined from the panel buckling criterion. However, in the present case, if the ring spacing is determined based on this failure mode, one finds that it results in very wide ring spacing. The widely spaced ring stiffened shell either failed in general instability or was of higher weight than the one with closely spaced rings. This suggests that panel buckling mode is not critical in the sense that one can disregard it temporarily. This means that the ring spacing obtained for the design that satisfies all the constraints except the panel buckling is much smaller than the one required by panel buckling constraint. In order to find the best ring spacing, a plot is made for the number of rings versus weight of the shell. Figure 9 shows such plots. The optimum number of rings (or ring spacing) is then found from such

plots.

The results given in the Table 6 show that least weight is obtained for ring stiffened geometry under skin yielding formulation. Comparing with the results of Pappas and Allentuch, given in the same Table, one observes an improvement of about 5 percent in weight in the Table 6. Design Results. Shell Stiffened with Interior Stiffeners.

Operating Depth = 3000 feet

	Skin Yielding Formulation		General Ins Formula	Reference		
	- X	TR	TR-RS	RR-RS	TR-RS	[18]
W	lb/in	1387.2	1405.3	1414.2	1394.2	1456.0
h.	in	3.39984	3.39984	3.23794	3.23794	3.20420
d wr	in	12,68345	13.24957	14.89452	11.80754	17.93300
twr	in	.70464	.36478	.67036	.61154	.99630
b fr	in	6.34173	6,62478	• • • • •	4.72301	12.55300
$t_{fr}^{}$	in	.70464	.36478		.61154	.99630
ℓ_r	in	22,00000	13.20000	13.20000	13.20000	28.28600
^d st	in		5.09976	11.00899	7.12346	
tst	in	• • • • •	. 26263	.46216	.34398	• • • • •
$\iota_{\rm st}$	in		13.08884	54.06260	95.64923	
	n An Angelan					
GB		.96942	.98113	.97920	•97910	.37400
m,	n	1,3	1,3	1 , 3	1,3	• • • • •
PB	۲۰۰۰ می ^{ار}	.11571	.03112	.02614	.04160	.16700
m _p ,	np	1,9	1,30	ı,45	1,22	••••
SKB ·	-	••••	.02980	.04856	.05585	••••
RB	· .	.34835	.52999	.28312	.14185	.99800
STB			.86934	.91623	.898 56	• • • • •
SKY		•99 <mark>99</mark> 8	1.00000	1.00171	1.00096	1.00000
RY	ч.	.97075	.95856	.94783	.94392	.88400
STY		••••	.29883	.33873	•33924	••••

-50

. .

present case. It is also observed that the weight obtained in the case of ring-stringer stiffened shell is almost the same as in the case of ring stiffened geometry, the former being higher by about 1 percent. This indicates that the stringers are not effective in the present case. The reason is obvious, because neither general instability nor panel buckling is a critical mode of failure in the present case; therefore, stiffening by stringers does not show any improvement in the weight of the shell.

The design studies made under case 3 demonstrate the significance of using high strength steel. The results are given in the Table 7. The skin thickness obtained in this case is reduced to less than half the thickness required for the same depth when conventional steel is used. The governing critical mode of failure for this case is general instability. The skin yielding does not control the design.

Comparing the least weight obtained in the present case with that obtained for the same operating depth, refer Table 6, one observes that employing high strength steel enables reduction in the weight of 68.6 percent. This is significant weight saving, particularly so, for the submarine hulls, where adequate buoyancy is necessary for large depth operation. One must, however, take into account the cost and fabrication problems before assessing the advantages obtainable by the use of high strength steel.

Since panel buckling and the general instability are important modes of failure in controlling the design, stiffening in the longitudinal direction proves to be helpful in reducing the weight. It is observed during the course of present investigation that stiffening Table 7. Design Results. Shells Stiffened with Interior Stiffeners.

Operating Depth = 3000 feet $\sigma_y = 120,000$ psi

. .

_		
	 	 -

	Formulation Based on General Instability					
		TR	RR-RS	TR-RS	[0]	
W [lb/in	821.7	848.3	772.7	979.8	
h	in	1.78939	1.41660	1,41660	1.45600	
đ	in	15.49656	17.70750	15.33515	18,30700	
t	in	.65296	.94687	.41284	1.01710	
b _{fr}	in	7.74828		7.66758	12.81500	
tr	in	.65296		.41284	1.01710	
l _r	in	24.75000	17.47058	13.20000	21.21400	
d _{st}	in		9.91620	8.49960		
tst	in		.76968	•57950	••••	
lst	in	• • • • •	62.17200	38.85720	••••	
		· · ·		 ;		
GB		• 999999	1.00000	1.00000	.51800	
m, n	n	1 , 3	1 , 3	_ 1 , 3	1 , 3	
PB		.89259	.21986	.13977	1,00000	
m _o , n	ó .	1,14	1,69	1,85	• • • • •	
SKB	 	• • • • •	•95752	.54165	•••••	
RB	· . · · ·	.98629	.96160	.83695	1.00000	
STB			.86322	.93656		
SKY	· .	.91628	.91808	.98447	.97700	
RY		.79052	.80143	.89137	.63700	
STY		* • • • *	.43853	.41253	• • • • •	

with the stringers changes buckling mode from $m \neq 1$ to m = 1. This is also pointed out by Singer and Baruch [31] in connection with the effectiveness of the longitudinal stiffening for shells subject to hydrostatic pressure.

The results in the Table 7 indicate that the least weight is obtained when the shell is stiffened with T-rings and rectangular stringers. This weight shows an improvement of 7 percent over the weight of the shell when it is stiffened with rings only. Instead of T-rings if rectangular rings are used along with rectangular stringers, the weight obtained is 10 percent higher.

The results of Pappas and Allentuch are given in Table 7 for comparison purposes. On comparing their results with the present results, the ring stiffened geometry shows an improvement of 19.2 percent in weight in the present case. On the other hand the ringstringer stiffened geometry shows an improvement in weight of 26.8 percent.

The results of using exterior stiffeners are given in the Table 8 and Figure 18. On comparing these results with the corresponding cases under Case 3 where interior stiffeners are used, it is noted that for ring stiffened shells interior stiffening yields 2 percent better weight, whereas T-ring and stringer stiffened shell shows an improvement of about 9 percent. The weight difference in the case of shells stiffened with rectangular rings and stringers is about 1 percent; the internal stiffening being better. Apart from the weight considerations, the location of stiffeners may depend on practical considerations also. If no such restriction is imposed, then the Table 8. Design Results. Shell Stiffened with Exterior Stiffeners.

General Instability Formulation

Operating Depth = 3000 feet

 $\sigma_y = 120,000 \text{ psi}$

	TR	RR-RS	TR-RS
W lb/in	833.9	858.5	840.8
h in	1.61897	1.41660	1.41660
d _{vr} in	15.70319	19.83240	16.19392
t in	.67049	.72119	.38993
b _{fr} in	7.85159		8.09696
t _{fr} in	.67049	••••	.38993
l _r in	21.21428	18.00000	13.20000
d _{st} in	• • • • •	14,16600	8.49960
t _{st} in		.83806	•55339
ℓ _{st} in	••••	51.81000	19.12984
GB	1.00000	1,00000	1,00000
m, n	1,3	1,3	l, 3
PB	.91936	.12981	.10462
m _n , n _n	1,15	1,95	1,102
SKB		.96905	.44050
RB	.97826	.94766	.94523
STB	••••	.95861	.95485
SKY	.96284	.95425	•97749
RY	.80513	.86627	.89805
STY		• 39545	. 38354

internally stiffened shell, for the geometries considered in this study, is better.

The effect of varying L/R ratio, or in other words the effect of locating the heavy bulkheads on the weight of the shell has been studied in Case 5. The ratio is varied from one through five and the results are given in Tables 9 and 10 along with Figure 19-27. The results show that as the L/R ratio increases the weight per unit length also increases. However, it may be noted that this weight does not include the weight of the bulkheads. Therefore, for proper estimate of the weight, one must account for the weight of bulkheads, to arrive at the best L/R ratio which yields the least weight. Certain functional requirement might override this phase of the study. That is, if L/R ratio is prespecified due to any practical considerations, it is not necessary to undertake this study. On the other hand if no such limitations are imposed, the results of this study help in arriving at the best ratio.

The results of this study indicate that for L/R = 1, the weight of the ring stiffened shell is 1.3 percent higher than that of the ring-stringer stiffened shell. This difference increases with the increasing L/R ratio. For L/R = 5, the difference is about eight percent. This indicates that stringers are more effective for higher L/R ratios. The results of Tables 9 and 10 indicate further, that the depth of the rings required for the minimum weight increases with increasing L/R ratio. This is another controlling factor in deciding for the most suitable L/R ratio.

The minimum weight design results for the case of the shell

Table 9. Design Results. Influence of Varying L/R Ratio on Minimum Weight. Shell Stiffened with Interior TR Stiffeners.

General Instability Formulation

Operating Depth = 3000 feet $\sigma_v = 120,000$ psi

L/R		1	2	3	4	5
W	lb/in	739.5	784.8	821.7	885.5	930.9
h	in	1.88880	1.77769	1.78939	1.75193	1.74889
d _{wr}	in	10.30522	14.00970	15.49656	18.51003	19,68956
t _{ur}	in	.48927	.61032	.65296	.76315	.83851
ייי דיי	in	5.15261	7.00485	7.74828	9.25502	9.84478
t _{fr} ,	in	.48927	.61032	.65296	.76315	.83851
l _r	in	28,28571	24.75000	24.75000	24.75000	24,75000
GB	ه ۲۰۰۰ ۲۰۰۰ - ۲۰۰۰ ۲۰۰۰ - ۲۰	.97105	• 9998 3	•999999	.99989	1,00000
m,	n	5,6	l , 3	1,3	1,2	1,2
PB		•94774	.90915	.89259	•94710	.95171
m_ , 1	n ·	1 , 1 4	1 , 1 4	1,14	1,14	1,15
RB	P	.87198	.96736	.98629	•94444	.83844
SKY		.94545	· 93793	.91628	.90585	.89414
RY		.88734	.82881	.79052	.72475	.68647

62

General Instability Formulation, High Strength Steel.

63

TR Stiffened Shell, Operating Depth = 3000 feet, General Instability Formulation, High Strength Steel.

Table 10. Design Results. Influence of Varying L/R Ratio on Minimum Weight. Shell Stiffened with Interior TR-RS.

General Instability Formulation

Operating Depth = 3000 feet

 $\sigma_y = 120,000 \text{ psi}$

- I	./R →	1	2	3	4	5
W	lb/in	730.0	753.5	772.7	815.9	863.1
h	in	1.71707	1.51102	1.41660	1.4056	1.52321
d wr	in	11.89621	15.04896	15.33515	19.47657	21.76579
twr	in	.34436	.37235	.41284	•53732	•53775
b _. fr	in	5.94810	7.52434	7.66758	9.73828	10.88289
tfr	in	.34436	.37235	. 41284	•53732	•53775
ι_r	in	19.80000	15.84000	13.20000	16.50000	20.62500
d _{st}	in	6.86828	7.55510	8.49960	7.02800	9.13926
tst	in	.50196	.53852	.57950	.58595	.69810
٤ _{st}	in	34.54000	25.37632	38.85720	73.14352	40.11096
GB		1.00000	1.00000	1.00000	1.00000	1.00000
m,	n	1,5	1,3	1,3	1,2	1,2
PB		.28197	,17782	.13977	.35405	• ²⁵⁷⁵⁹
m _n ,	n D	1,41	ı,68	ı, 85	1,49	1,57
SKB	F	.66709	.57615	.54615	.91155	.97132
RB		.82455	.85110	.83695	.95647	.98069
STB		.88979	•94909	.93656	.96900	.94344
SKY	· · · · ·	.97634	.99741	.98447	.93240	.89679
RY	. ' .	.93570	.93325	.89137	.80445	.80302
STY	· · . · ·	.29245	•35474	. 41253	. 46098	.38601

.

subjected to the combined load (small axial compression combined with predominant hydrostatic pressure) are given in the Table 11 and Figure 28. The weight of the shell is higher than the corresponding case under hydrostatic pressure. The formulation is based on general instability. The skin thickness needed for this case is higher than the thickness needed for the shell with only hydrostatic pressure. The stringers are undoubtedly important for the present case. The design charts reveal that the weight of the shell is reduced significantly, when the stringers are of such proportion as to change the buckling mode from $m \neq 1$ to m = 1.

A general type of observation that is made during the present investigation refers to the determination of the optimum thickness of the skin or value of Z. The curves Z(or h) versus W in all the cases are relatively flat. This implies that there is sufficiently large range of skin thicknesses that give almost the same weight. This suggests that it is not necessary to determine very precisely the value of skin thickness which corresponds to minimum weight. The value of skin thickness in the neighbourhood of the minimum exhibited by the curve may be taken as optimum skin thickness.

The other observation is in connection with selecting the type of the formulation to be used for the objective function. The studies reveal that the selection primarily depends on the type of steel or material that is used for construction and the operating or design depth (or hydrostatic pressure, whichever is specified). For 1000 feet operating depth, it is observed that the two formulations (general instability and skin yielding), yield weights that differ by about

Table 11. Design Results for the Shell Subject to Combined Load. $(\bar{N} = .2qR)$ Shell Stiffened with Interior, TR-RS General Instability Formulation.

O perating De 3000 feet	epth t	σ _γ 120,000 psi	
W lb/ir	1	832.0	
h ir	1	1.69990	· · ·
d ir	1	16,92980	
t, ir	1	.37581	
br in	n	8.46490	•
t _{ru} 11	a	.37581	
l in	1	18,00000	
d_+ ir	1	8.49950	
t _{st} ir	1	. 74893	· · · ·
ει l _{et} ir	1	32,72210	
GB	· · .	1.00000	
m , n	•	l,3	· · · · · ·
PB		.15629	1
m, n	· · ·	1,61	
Р Р SKB	· · · ·	.68697	
RB		.90759	
STB	· · ·	.94458	
SKY		.97137	. •
RY		.80101	
STY		.53632	

Figure 28.

Determination of Optimum Skin Thickness. Axial Compression Combined with Hydrostatic Pressures. Internally TR-RS Stiffened Shell, High Strength Steel. General Instability Formulation. Operating Depth = 3000 feet, $\tilde{N} = .2qR$. four percent. If the shell is designed for higher operating depth, skin yielding takes over and the formulation must be based on skin yielding. This is true if conventional steel is used. One can, therefore, say that general instability formulation may be used for the operating depths of lower than 1000 feet and skin yielding formulation for higher depths.

If, on the other hand, high strength steel is used, general instability governs the design up to sufficiently high operating depths. From this study it is not possible to say what that upper limit is.

The plot of h is W and C_y versus W together with the choice of selecting from different design configurations corresponding to the same minimum weight provide important information to carry out trade-off studies. For example, if the minimum weight design configuration requires skin thickness which is difficult or expensive to manufacture, one can study and investigate easily the alternative neighbouring design configuration and make a compromise between the weight penalty and the cost.

CHAPTER V

CONCLUSIONS AND SUGGESTIONS

Conclusions

The main conclusions of the present investigation are

72

1. The objective function formulated on the basis of an active mode of failure (skin yielding or general instability in the present case) and accomplishing solution in two phases effectively leads to the minimum weight design. In addition, it enables a designer for carrying out important trade-off studies to arrive at practical minimum weight configurations.

2. On the basis of phase I, one can easily assess the need for stiffening in both directions for different shapes of stiffeners.

3. The present approach gives a designer full control over the design variables and it enables him to introduce needed changes or avoid interaction of failure modes by paying the least penalty in weight.

4. The minimum weight design is not unique. This implies that for a given level of the specified parameters the design variables can be adjusted so as to give several acceptable designs for the same weight.

5. The studies indicate that T-rings are most effective among all the shape's of stiffeners investigated. The ratios of flange width to web depth and flange thickness to web thickness does not appreciably affect the weight. 6. The curve for determining optimum skin thickness is relatively flat. Therefore, very precise determination of Z (or h) is not necessary for minimum weight design. This information is an important asset for the designer, as it enables him a wide choice in selecting skin thickness.

7. The use of high strength steel enables appreciable weight savings; but this aspect should be studied along with the cost and fabrication problems.

8. In certain cases stringers do help in saving weight. A designer must evaluate the cost of providing these stiffeners against the weight saving.

9. The weight of the shell increases with increasing L/R ratio. However, no account of the weight of heavy bulk heads is made in these computations. This study is more of qualitative than

guantitative nature.

10. The interior stiffening proves to be better for the geometries considered in the present study.

Suggestions

The following suggestions are made for the future work

1. Minimum weight design of shells of shapes other than circular cylindrical.

2. Combined load case needs further study to investigate the entire pattern of interaction of these two loads viz. uniform hydrostatic pressure and axial compression.

3. Minimum weight design of stiffened cylindrical panels is

of significant importance.

4. Most important extension of the present work is to include

cost factor.

APPENDICES

APPENDIX A

ANALYSIS OF STIFFENED CIRCULAR CYLINDRICAL SHELLS

In this appendix all the equations needed to analyze the stiffened cylinders under hydrostatic pressure and axial compression are presented. These include the general instability analysis of the cylinder as well as the buckling, stress and yield analyses of the skin and stiffeners.

The expression for the general instability failure mode of the stiffened cylinder is derived using Donnell's equations and smearing technique. An investigation for determining the accuracy obtainable from the Donnell's equations was carried out prior to undertaking the present work. The results of this investigation for uniform thin cylinders under lateral loading are given in Appendix D. It is indicated that the values obtainable by the Donnell's equations are within the acceptable engineering tolerances, especially in the practical range of R/h and L/R ratios. The comparison was made with the results obtained by Budiansky's equations.

The main assumptions for the stability analysis of the stiffened cylinders are

1. The shell is thin

2. The deflections are small

3. Rotations about normal are much smaller than the rotations about in-plane axes.

4. Normals to the reference surface before deformation remain

normal to the reference surface after deformation, and they are inextensional.

5. The stiffeners are distributed or 'smeared' over the whole surface of the shell.

6. The stiffeners are along the directions of principal curvatures.

7. The connections of stiffeners to the skin are monolithic.

8. The stiffeners do not transmit shear. The shear is carried entirely by skin.

9. The stiffeners are torsionally weak.

Strain-Displacement Relations

The midsurface of the skin is taken as the reference surface. The coordinate system and sign convention are shown in Figure A1 and A2 respectively. Let u^1 , v^1 , and w^1 be the additional displacements in x, y and z directions respectively, required to bring the membrane state to the classical buckling state. The strain, curvature changes and rotations are given by

$$\epsilon_{\rm X} = \epsilon_{\rm XX} + z\kappa_{\rm XX}$$

$$\varepsilon_{y} = \varepsilon_{yy} + z_{yy}$$
$$\gamma = \gamma_{xy} + 2z_{xy}$$

$$\varepsilon_{xx} = \frac{\partial u^{1}}{\partial x}$$
$$\varepsilon_{yy} = \frac{\partial v^{1}}{\partial x} + \frac{w^{1}}{R}$$

 $Y_{xy} = \frac{\partial u^{1}}{\partial y} + \frac{\partial v^{1}}{\partial x}$

 $\kappa_{\rm XX} = -\frac{\partial^2 w^1}{\partial x^2}$

 $\kappa_{yy} = -\frac{\partial^2 w^1}{\partial y^2}$

 $w^{x\lambda} = -\frac{9x9\lambda}{9\pi^{-1}}$

 $\varphi_{x} = - \frac{\partial w^{l}}{\partial x}$

Stress-Strain Relations

The stress-strain relations, based on the assumption that skin is in biaxial state of stress, are:

$$\sigma_{xxsk} = \frac{E}{1-v^2} (\epsilon_{xx} + v \epsilon_{yy})$$

$$\sigma_{yysk} = \frac{E}{1-v} \left(\epsilon_{yy} + v \epsilon_{xx} \right)$$

 $\tau_{xysk} = G \gamma_{xy}$

The stiffeners are assumed to be in uniaxial state of stress, so that the stress-strain relations for longitudinal and circum-

ferential stiffeners are:

(A1)

(A2)

$\sigma_{xxst} = E_{st} \epsilon_{xx}$

$\sigma_{yyr} = E_r \epsilon_{yy}$

Stress and Moment Resultants

The stress and moment resultants per unit length are obtained by performing integration of stresses over the thickness of the skin and then adding to these the corresponding stress and moment resultants per unit length in the stiffeners. Based on the assumption that the stiffeners are distributed over the whole surface, the stress and moment resultants per unit length in the stiffeners are obtained by dividing the resultant stress and moment by the stiffener spacing.

The stress resultants are:

$$N_{xx} = \int_{-h/2}^{h/2} \sigma_{xxsk} dz + \frac{1}{\ell_{st}} \int_{A_{st}}^{A} \sigma_{xxst} dA_{st}$$

$$N_{yy} = \int_{-h/2}^{h/2} \sigma_{yysk} dz + \frac{1}{\ell_r} \int_{A_r} \sigma_{yyr} dA$$

$$V_{xy} = \int_{-h/2}^{h/2} \tau_{xysk} dz$$

and moment resultants are

81

(A2b)

$$M_{xx} = \int_{-h/2}^{h/2} z \sigma_{xxsk} dz + \frac{1}{\ell_{st}} \int_{A_{st}}^{f} z \sigma_{xxst} dA_{st}$$

$$M_{yy} = \int_{-h/2}^{h/2} z \sigma_{yysk} dz + \frac{1}{\ell_r} \int_{A_r} z \sigma_{yyr} dA_r$$

$$M_{xy} = \int_{-h/2}^{h/2} z \tau_{xysk} dz + \frac{(GJ)_{st}}{\ell_{st}} \kappa_{xysk}$$

$$M_{yx} = \int_{-h/2}^{h/2} z \tau_{xysk} dz + \frac{(GJ)_r}{\ell_r} n_{yx}$$

Substituting Equations (A1) and (A2) in Equation (A3) and performing appropriate integrations, one gets

$$N_{xx} = \frac{Eh}{(1-v^2)} (\epsilon_{xx} + v \epsilon_{yy}) + \frac{E_{st}A_{st}}{\ell_{st}} \epsilon_{xx} + \frac{E_{st}A_{st}}{\ell_{st}} \epsilon_{st} \kappa_{xx}$$

$$N_{yy} = \frac{Eh}{(1-v^2)} \left(v \, \epsilon_{xx} + \epsilon_{yy} \right) + \frac{E_r A_r}{\ell_r} \, \epsilon_{yy} + \frac{E_r A_r}{\ell_r} \, \epsilon_r \, \kappa_{yy}$$

$$N_{xy} = G Y_{xy}$$

and

1

$$\mathbf{M}_{xx} = \frac{\mathbf{Eh}^3}{12(1-v^2)} (\mathbf{n}_{xx} + v \mathbf{n}_{yy}) + \frac{\mathbf{E}_{st} \mathbf{A}_{st}}{\ell_{st}} \mathbf{e}_{st} \mathbf{s}_{xx}$$

82

(A3)

+
$$\frac{E_{st}}{\ell_{st}}$$
 (I_{stc} + $e_{st}^2 A_{st}$) κ_{xx}

$$M_{yy} = \frac{Eh^3}{12(1-v^2)} (v \kappa_{xx} + \kappa_{yy}) + \frac{E_r A_r}{\ell_r} e_r \epsilon_{yy}$$

$$+ \frac{E_r}{\ell_r} (I_{rc} + e_r^2 A_r) \varkappa_{yy}$$

$$M_{xy} = \frac{Eh^3}{12(1+\nu)} \varkappa_{xy} + \frac{(GJ)_{st}}{\ell_{st}} \varkappa_{xy}$$

$$M_{yx} = \frac{Eh^3}{12(1+\nu)} \varkappa_{yx} + \frac{(GJ)_r}{\ell_r} \varkappa_{yx}$$

since stiffeners are assumed to be torsionally weak

$$M_{xy} = M_{yx} = \frac{Eh^3}{12(1+\nu)} \kappa_{xy}$$

A set of new parameters, described below, are introduced

$$E_{xxp} = E_{yyp} = Eh/(1-v^2)$$

$$E_{xxst} = E_{st} A_{st} / \ell_{st}$$

$$E_{yyr} \simeq E_r A_r / \ell_r$$

$$= Eh/2(1+v)$$

$$E_{xx} = E_{xxp} + E_{xxst}$$

83

(A4)

Substituting these new parameters in Equation (A4), the stress and moment resultants relations become

$$N_{xx} = E_{xx} \epsilon_{xx} + \nu E_{xxp} \epsilon_{yy} + e_{st} E_{xxst} \kappa_{xx}$$

$$N_{yy} = \nu E_{yyp} \epsilon_{xx} + E_{yy} \epsilon_{yy} + e_{r} E_{yyr} \kappa_{yy}$$

$$N_{xy} = G \gamma_{xy}$$

$$M_{xx} = (D_{xx} + e_{st}^{2} E_{xxst}) \kappa_{xx} + \nu D_{xxp} \kappa_{yy} + e_{st} E_{xxst} \epsilon_{xx}$$

$$M_{yy} = \nu D_{yyp} \kappa_{xx} + (D_{yy} + e_{r}^{2} E_{yyr}) \kappa_{yy} + e_{r} E_{yyr} \epsilon_{yy}$$

 $M_{xy} = D_{xy} \kappa_{xy}$

84

(A5)

(A6)

Buckling Analysis

The buckling equations, based on the Donnell's theory are

$$\frac{\partial N_{xx}^{1}}{\partial x} + \frac{\partial N_{xy}^{1}}{\partial y} = 0$$

$$\frac{\partial N_{xx}^{1}}{\partial x} + \frac{\partial N_{xy}^{1}}{\partial y} = 0$$

$$\frac{\partial^{2}M_{xx}^{1}}{\partial x^{2}} + \frac{\partial^{2}M_{xy}^{1}}{\partial y^{2}} + 2\frac{\partial^{2}M_{xy}^{1}}{\partial x \partial y} + N_{xx}^{\infty}\frac{\partial^{2}w^{1}}{\partial x^{2}} + N_{yy}^{0}\frac{\partial^{2}w^{1}}{\partial y^{2}}$$

$$+ 2N_{yy}^{0}\frac{\partial^{2}w^{1}}{\partial x^{2}} - \frac{N_{xy}^{1}}{R} = 0$$

The buckling Equation (A7) can now be written in terms of displacements u^1 , v^1 , and w^1 by using stress-strain and straindisplacement relations. These equations are

$$\left(E_{xx}\frac{\partial^2}{\partial x^2} + G\frac{\partial^2}{\partial y^2}\right)u^1 + \left[\left(G_{xy} + v E_{yyp}\right)\frac{\partial^2}{\partial x\partial y}\right]v^1$$

$$= \left[\left(q - \frac{v}{R} E_{yyp} \right) \frac{\partial}{\partial x} + e_{st} E_{xxst} \frac{\partial^3}{\partial x^3} \right] w^1$$
$$(G_{xy} + v E_{xxp}) \frac{\partial^2}{\partial x \partial y} u^1 + \left(E_{yy} \frac{\partial^2}{\partial y^2} + G \frac{\partial^2}{\partial x^2} \right) v^1$$
$$= \left[\left(q - \frac{E_{yy}}{R} \right) \frac{\partial}{\partial y} + e_r E_{yyr} \frac{\partial^3}{\partial y^3} \right] w^1$$

$$\left(\frac{\nu}{R} E_{xxp} \frac{\partial}{\partial x} - e_{st} E_{xxst} \frac{\partial^3}{\partial x^3}\right) u^1 + \left(\frac{E_{yy}}{R} \frac{\partial}{\partial y} - e_r E_{yyr} \frac{\partial^3}{\partial y^3}\right) v^3$$

85

(A7)

+ $\left[\left(D_{xx} + e_{st}^2 E_{xxst} \right) \frac{\partial^4}{\partial x^4} \right]$ + $2\left(D_{xy} + \frac{v}{2}D_{xxp} + \frac{v}{2}D_{yyp}\right)\frac{\partial^4}{\partial v^2 \partial v^2}$ + $(D_{yy} + e_r^2 E_{yyr}) \frac{\partial^4}{\partial v^4} + \frac{E_{yy}}{R^2} - 2 \frac{e_r}{R} E_{yyr} \frac{\partial^2}{\partial v^2} w^1$ $= N_{o}^{xx} \frac{3}{2} \frac{5}{2} + N_{o}^{yy} \frac{3}{2} \frac{5}{2} + 5N_{o}^{xy} \frac{3}{2} \frac{3}{2} \frac{5}{2}$ (A8)

These equations are for a stiffened cylinder subject to uniform axial compression, torsion and hydrostatic pressure. The pressure q is assumed to remain normal to the deflected midsurface during the buckling process. This is the true representation of the hydrostatic loading. The prebuckling stress resultants N_{xx}^{o} , N_{yy}^{o} and N_{xy}^{o} are

given by

$$N_{XX}^{O} = qR/2 - \bar{N}$$

 $N_{YY}^{O} = qR$

 $N_{xy}^{O} = T/2\pi R^{2}$

(A9)

The following non-dimensional parameters, which help systematize the optimization procedure are introduced

$$\bar{\lambda}_{xx} = E_{xxst}/E_{xxp} = E_{st} A_{st} (1-v^2)/Eh \ell_{st}$$

$$\begin{split} \bar{\lambda}_{yy} &= E_{yyr}/E_{yyp} = E_r A_r (1-v^2)/Eh \ell_r \\ \bar{\rho}_{xx} &= D_{xxst}/D = 12 E_{st} I_{stc} (1-v^2)/Eh^3 \ell_{st} \\ \bar{\rho}_{yy} &= D_{yyr}/D = 12 E_r I_{rc} (1-v^2)/Eh^3 \ell_r \\ \bar{e}_{st} &= \pi^2 R e_{st}/L^2 \\ \bar{e}_r &= \pi^2 R e_r/L^2 \\ z &= L^2 \sqrt{1-v^2}/Rh \\ \bar{k}_{xx} &= \bar{N}L^2/\pi^2 D \\ \bar{k}_s &= N_{xy}^o L^2/\pi^2 D \end{split}$$

It is possible to derive a single higher order Donnell-Batdorf type of equation by eliminating u^1 and v^1 in Equation (A8). This has been done in [32]. In terms of the parameters defined in Equation (AlO), the buckling equation reduces to

 $\ell_{\rm r}$

$$\nabla_{\mathrm{D}} \mathbf{w}^{\mathrm{L}} + \nabla_{\mathrm{E}}^{-1} \left[\frac{12\mathbb{Z}^{2}}{1-\nu^{2}} \nabla_{\mathrm{C}} \mathbf{w}^{\mathrm{L}} - \left(\frac{\mathrm{L}}{\mathrm{mR}} \right)^{2} \tilde{\mathbf{k}}_{\mathrm{yy}} \nabla_{\mathrm{p}} \mathbf{w}^{\mathrm{L}} \right]$$
$$= \left(\frac{\mathrm{L}}{\mathrm{m}} \right)^{2} \left[\left(\frac{1}{2} \tilde{\mathbf{k}}_{\mathrm{yy}} - \tilde{\mathbf{k}}_{\mathrm{xx}} \right) \frac{\partial^{2} \mathbf{w}^{\mathrm{L}}}{\partial \mathbf{x}^{2}} + \tilde{\mathbf{k}}_{\mathrm{yy}} \frac{\partial^{2} \mathbf{w}^{\mathrm{L}}}{\partial \mathbf{y}^{2}} + 2\tilde{\mathbf{k}}_{\mathrm{s}} \frac{\partial^{2} \mathbf{w}^{\mathrm{L}}}{\partial \mathrm{x} \partial \mathrm{y}} \right] \qquad (A11)$$

(A10)

where

$$\begin{split} \nabla_{\rm D} &= \left(\frac{1}{n} \right)^{\rm h} \left[\left(1 + \bar{p}_{\rm XX} \right) \frac{\partial}{\partial x^{\rm h}} + 2 \frac{\partial}{\partial x^{\rm c} \partial y^{\rm c}} + \left(1 + \bar{p}_{\rm YY} \right) \frac{\partial}{\partial y^{\rm h}} \right] \right] \\ \nabla_{\rm E} &= \left(\frac{1}{n} \right)^{\rm h} \left[\left(1 + \bar{\lambda}_{\rm XX} \right) \frac{\partial}{\partial x^{\rm h}} + 2 \frac{\partial}{\partial x^{\rm c} \partial y^{\rm c}} + \left(1 + \bar{\lambda}_{\rm XX} \right) \left(1 + \bar{\lambda}_{\rm YY} \right) - v \right] \frac{\partial}{\partial x^{\rm c} \partial y^{\rm c}} \\ &+ \left(1 + \bar{\lambda}_{\rm YY} \right) \frac{\partial}{\partial y^{\rm h}} \right] \\ \nabla_{\rm P} &= \left(\frac{1}{n} \right)^{\rm c} \frac{1}{\left(1 + \bar{\lambda}_{\rm XX} \right)^{\rm c}} \left[\hat{e}_{s+} \bar{\lambda}_{\rm XX} \frac{\partial}{\partial x^{\rm c}} + \left(1 + \frac{2\bar{\lambda}_{\rm YY}}{1 - v} \right) \bar{e}_{s+} \bar{\lambda}_{\rm XX} \frac{\partial}{\partial x^{\rm h}} \frac{\partial}{\partial x^{\rm c}} \\ &+ \left(1 + \frac{2\bar{\lambda}_{\rm XX}}{1 - v} \right) \bar{e}_{\rm x} \bar{\lambda}_{\rm XX} + \bar{e}_{\rm x} - \bar{\lambda}_{\rm YY} \frac{\partial}{\partial y^{\rm c}} - v \left(\frac{\pi}{L} \right)^{\rm c} \frac{\partial}{\partial x^{\rm h}} \\ &+ \left(\frac{\pi}{L} \right)^{\rm c} \frac{1}{1 - v} \left[v \left(1 + v \right) - \left(1 - \bar{\lambda}_{\rm YY} \right) \left(2\bar{\lambda}_{\rm XX} + 1 + v \right) \right] \frac{\partial}{\partial x^{\rm c} \partial y^{\rm c}} \\ &- \left(\frac{\pi}{L} \right)^{\rm c} \left(1 + \bar{\lambda}_{\rm YY} \right) \frac{\partial}{\partial y^{\rm h}} \right] \qquad (A12) \\ \nabla_{\rm C} &= \left(\frac{\pi}{\pi} \right)^{\rm c} \frac{1}{1 + \bar{\lambda}_{\rm XX}} \left[\bar{z}_{\rm xx}^{\rm c} \bar{\lambda}_{\rm X} \frac{\partial}{\partial y}^{\rm c} + 2 \bar{z}_{\rm x}^{\rm c} \bar{\lambda}_{\rm YY} \left(1 + \bar{\lambda}_{\rm XX} \right) \right] \frac{\partial}{\partial x^{\rm c} \partial y^{\rm c}} \\ &+ 2 \bar{z}_{\rm st} \bar{z}_{\rm x} \bar{\lambda}_{\rm XY} \overline{y} \left(\frac{1 + v}{1 - v} \right) + \bar{z}_{\rm x}^{\rm c} \bar{\lambda}_{\rm YY} \left(1 + \bar{\lambda}_{\rm XX} \right) \right] \frac{\partial}{\partial x^{\rm c} \partial y^{\rm c}} \end{split}$$

ليتركب بالالتان وأراب متابع فتناب بسيعا التنابي فالمعافظ

.

+ $2\bar{e}_{r}^{2}\bar{\lambda}_{y}\left(1+\frac{\bar{\lambda}_{xx}}{1-v}\right)\frac{\partial^{8}}{\partial v^{2}\lambda v} + \bar{e}_{r}^{2}\bar{\lambda}_{yy}\frac{\partial^{8}}{\partial v^{8}}$ + $2\nu \left(\frac{\pi}{L}\right)^2 \bar{e}_{st} \bar{\lambda}_{xx} \frac{\partial^6}{\partial r^6}$

 $- 2\left(\frac{\pi}{L}\right)^{2} \{\bar{e}_{st}\bar{\lambda}_{xx} + \bar{e}_{r}\bar{\lambda}_{yy} + \bar{\lambda}_{xx}\bar{\lambda}_{yy}(\bar{e}_{st} + \bar{e}_{r})\} \frac{\partial^{6}}{\partial x^{4}\partial y^{2}}$

$$+ 2\nu \left(\frac{\pi}{L}\right)^2 \bar{e}_r \bar{\lambda}_{yy} \frac{\partial^6}{\partial x^2 \partial y^4} + \left(\frac{\pi}{L}\right)^4 \{1 + \bar{\lambda}_{xx}\}(1 + \bar{\lambda}_{yy}) - \nu^2 \} \frac{\partial^4}{\partial x^4}$$

where ∇^{-1} is an inverse differential operator such that $\nabla \nabla^{-1} = \nabla^{-1} \nabla = 1$. Buckling Results for Cylinder Under Uniform Hydrostatic Pressure and Uniform Axial Compression

The buckling results are derived for general case of combined hydrostatic pressure and axial compression. The axial compression is a known fraction of hydrostatic pressure defined by a factor α . In the case of hydrostatic pressure alone, α is set equal to zero. With no torsion applied, the buckling Equation (All) reduces to

(A13)

 $-\left(\frac{L}{\pi}\right)^{2}\bar{k}_{yy}\left[\frac{1}{2}\nabla_{E}^{-1}\nabla_{P}w^{1}+\left(\frac{1}{2}-\alpha\right)\frac{\partial^{2}w^{1}}{\partial w^{2}}+\frac{\partial^{2}w^{1}}{\partial w^{2}}\right]=0$

 $\alpha = \bar{k}_{xx}/\bar{k}_{yy}$

where

 $\nabla_{\mathrm{D}} \mathrm{w}^{1} + \frac{12\mathrm{Z}^{2}}{2} \nabla_{\mathrm{E}} \nabla_{\mathrm{C}} \mathrm{w}^{1}$

The classical simply supported boundary conditions are

$$w^{1}(0,y) = w^{1}(L,y) = 0$$
$$v^{1}(0,y) = v^{1}(L,y) = 0$$
$$M^{1}_{XX}(0,y) = M^{1}_{XX}(L,y) = 0$$
$$N^{1}_{XX}(0,y) = N^{1}_{XX}(L,y) = 0$$

Constraint Equations

General Instability

The displacement function satisfying the boundary conditions (A14) is

$$w^{1} = w_{mn} \sin \frac{m\pi x}{L} \sin \frac{ny}{R}$$
 (A15)

The displacement function is substituted in the buckling Equation (13). Using the operators defined earlier, the expression for buckling load parameter is obtained. This expression when minimized with respect to integer values of m and n, representing the mode shape, yields the critical general instability load parameter \bar{k}_{yycr} .

Define $\beta = \frac{nL}{\pi R}$. The expression for buckling load parameter \bar{k} yy is then given by

$$\begin{split} \bar{\mathbf{k}}_{\mathbf{y}\mathbf{y}} &= \left[\left\{ (\mathbf{m}^2 + \mathbf{\beta}^2) + \bar{\lambda}_{\mathbf{x}\mathbf{x}}^{\mathbf{m}^4} + \bar{\lambda}_{\mathbf{y}\mathbf{y}}^{\mathbf{\beta}^4} \right. \\ &+ \frac{2\mathbf{m}^2 \mathbf{\beta}^2}{1 - \nu} \left(\bar{\lambda}_{\mathbf{x}\mathbf{x}} + \bar{\lambda}_{\mathbf{y}\mathbf{y}} + \bar{\lambda}_{\mathbf{x}\mathbf{x}}^{\mathbf{x}} \bar{\lambda}_{\mathbf{y}\mathbf{y}} \right) \right\} \left\{ (\mathbf{m}^2 + \mathbf{\beta}^2)^2 + \bar{\rho}_{\mathbf{x}\mathbf{x}}^{\mathbf{m}^4} + \bar{\rho}_{\mathbf{y}\mathbf{y}}^{\mathbf{\beta}^4} \right] \end{split}$$

(A14)

$$\begin{split} &+ \frac{12Z^2}{\pi^4(1-\nu^2)} \left[\sum_{s=1}^{p^2} \bar{\lambda}_{xx} m^8 + \frac{2}{1-\nu} \bar{e}_{st}^2 \bar{\lambda}_{xx} (1-\nu+\bar{\lambda}_{yy}) m^6 \beta^2 \right. \\ &+ \left\{ \overline{e}_{st}^{2} \bar{\lambda}_{xx} (1+\bar{\lambda}_{yy}) + 2 \frac{1+\nu}{1-\nu} \bar{e}_{st} \bar{e}_{r} \bar{\lambda}_{xx} \bar{\lambda}_{yy} \right. \\ &+ \left. \overline{e}_{r}^{2} \bar{\lambda}_{yy} (1+\bar{\lambda}_{xx}) \right\} m^4 \beta^4 + \frac{2}{1-\nu} \bar{e}_{r}^{2} \bar{\lambda}_{yy} (1-\nu+\bar{\lambda}_{xx}) m^2 \beta^6 \\ &+ \bar{e}_{r}^{2} \bar{\lambda}_{yy} \beta^8 - 2\nu \bar{e}_{st} \bar{\lambda}_{yy} m^6 \\ &+ 2 \left[\bar{e}_{st} \bar{\lambda}_{xx} (1+\bar{\lambda}_{yy}) + \bar{e}_{r} \bar{\lambda}_{yy} (1+\bar{\lambda}_{xx}) \right] m^4 \beta^2 - 2\nu \bar{e}_{r} \bar{\lambda}_{yy} m^2 \beta^4 \\ &+ \left[(1+\bar{\lambda}_{xx}) (1+\bar{\lambda}_{yy}) + \bar{e}_{r} \bar{\lambda}_{yy} (1+\bar{\lambda}_{xx}) \right] m^4 \beta^2 - 2\nu \bar{e}_{r} \bar{\lambda}_{yy} m^2 \beta^4 \\ &+ \left[(1+\bar{\lambda}_{xx}) (1+\bar{\lambda}_{yy}) + \bar{e}_{r} \bar{\lambda}_{yy} (1+\bar{\lambda}_{xx}) \right] m^4 \beta^2 - 2\nu \bar{e}_{r} \bar{\lambda}_{yy} m^2 \beta^4 \\ &+ \left[(1+\bar{\lambda}_{xx}) (1+\bar{\lambda}_{yy}) + \bar{e}_{r} \bar{\lambda}_{yy} (1+\bar{\lambda}_{xx}) + \bar{e}_{r} \bar{\lambda}_{yy} \beta^4 + \nu m^2 + \bar{p}_{r} \bar{\lambda}_{yy} \beta^4 \right] \\ &+ \left[(1+\bar{\lambda}_{xx}) (1+\bar{\lambda}_{yy}) + \bar{e}_{r} \bar{\lambda}_{yy} (1+\bar{\lambda}_{xx}) + \bar{e}_{r} \bar{\lambda}_{yy} \beta^4 + \nu m^2 + \bar{p}_{r} \bar{\lambda}_{yy} \beta^4 \right] \\ &+ \left[(1+\bar{\lambda}_{xx}) (1+\bar{\lambda}_{yy}) + \bar{e}_{xx} \bar{\lambda}_{yy} (1+\bar{\lambda}_{xx}) + \bar{\mu}_{yy} \beta^4 + \nu m^2 + \bar{p}_{r} \bar{\lambda}_{yy} \beta^4 \right] \\ &+ \left[(1+\bar{\lambda}_{yy}) + \bar{\lambda}_{yy} (1+\nu) + 2\bar{\lambda}_{xx} \bar{\lambda}_{yy} (1+\bar{e}_{st} m^2 + \bar{e}_{r} \beta^2) \right] \\ &+ \bar{\lambda}_{yy} \beta^4 + \left[(m^2 + \bar{p}^2)^2 + \bar{\lambda}_{xx} m^4 + \bar{\lambda}_{yy} \beta^4 \right] \end{split}$$

 $+ \frac{2m^{2}\beta^{2}}{1-\nu} \left(\bar{\lambda}_{xx} + \bar{\lambda}_{yy} + \bar{\lambda}_{xx}\bar{\lambda}_{yy}\right) \left\{ \left(\frac{m^{2}}{2} - \alpha m^{2} + \beta^{2}\right) \right] \quad (A16)$

Panel Buckling

This is the buckling mode in which stringers and skin between two adjacent rings participate. This is a special case of the general instability, so the expression for panel buckling can be derived by

setting all ring parameters, Equation (A16), equal to zero. Thus

$$\bar{\mathbf{e}}_{\mathbf{r}} = 0 , \quad \bar{\mathbf{\rho}}_{\mathbf{y}\mathbf{y}} = 0$$
$$\bar{\lambda}_{\mathbf{y}\mathbf{y}} = 0 , \quad \mathbf{L} = \ell_{\mathbf{r}}$$

The expression for panel buckling now becomes

$$\begin{split} \tilde{\lambda}_{yyp} &= \left[\left\{ \left(m^{2} + \beta^{2}\right)^{2} + \tilde{\lambda}_{xx}^{2} m^{4} + \frac{2m^{2}\beta^{2}}{1-\nu} \tilde{\lambda}_{xx}^{2} \right\} \left\{ m^{2} + \beta^{2} \right)^{2} + \tilde{\rho}_{xx}^{2} m^{4} \right\} \\ &+ \frac{12Z^{2}}{\pi^{4}(1-\nu^{2})} \left\{ \tilde{e}_{st}^{2} \tilde{\lambda}_{xx}^{2} m^{8} + 2\tilde{e}_{st}^{2} \tilde{\lambda}_{xx}^{2} m^{6} \beta^{2} + \tilde{e}_{st}^{2} \tilde{\lambda}_{xx}^{2} m^{4} \beta^{4} \right. \\ &- 2\nu \tilde{e}_{st}^{2} \tilde{\lambda}_{xx}^{2} m^{6} + 2\tilde{e}_{st}^{2} \tilde{\lambda}_{xx}^{2} m^{4} \beta^{2} + \left(1 + \tilde{\lambda}_{xx}^{2} - \nu^{2}\right) m^{4} \right\} \left] / \left[\left(\frac{\ell_{x}}{\pi R} \right)^{2} \right] \\ &\left\{ \left(m^{2} + \beta^{2}\right) \left(\tilde{e}_{st}^{2} \tilde{\lambda}_{xx}^{2} m^{4} + \nu m^{2} + \beta^{2}\right) + 2 \frac{m^{2}\beta^{2}}{1-\nu} \tilde{\lambda}_{xx} \right\} \\ &+ \left\{ \left(m^{2} + \beta^{2}\right)^{2} + \tilde{\lambda}_{xx}^{2} m^{4} + \frac{2m^{2}\beta^{2}}{1-\nu} \tilde{\lambda}_{xx} \right\} \left(\frac{m^{2}}{2} - \alpha m^{2} + \beta^{2} \right) \right\} (A17) \end{split}$$

Minimization of the expression (Al7) with respect to integer values of m and n yields the critical load parameter for panel instability.

In Equations (A16) and (A17), \bar{e}_r and \bar{e}_{st} greater than zero correspond to the cylinder stiffened with exterior stiffeners; whereas, if these eccentricity parameters are less than zero they correspond to a cylinder stiffened with interior stiffeners.
Skin Buckling

For a shell which is stiffened with rings only, the skin buckling criterion and panel buckling criterion are identical. One can get the criterion from Equation (Al7) for this case by setting ring and stringer parameters equal to zero and changing L to ℓ_{r} .

For the shell stiffened with rings and stringers, the skin is considered as a flat plate simply supported on four sides, and subject to biaxial compression. The buckling criterion is given by Timoshenko [33]. The critical stress is found from the following equation

$$\sigma_{\rm xxsk} \, {\rm m}^2 + \sigma_{\rm yysk} \, {\rm n}^2 \left(\frac{\ell_{\rm r}}{\ell_{\rm st}}\right)^2 = \frac{\pi^2 E}{12(1-\nu^2)} \, \left(\frac{h}{\ell_{\rm r}}\right)^2 \left[{\rm m}^2 + \left(\frac{\ell_{\rm r}}{\ell_{\rm st}}\right)^2 {\rm n}^2\right]^2 \, (A18)$$

Stringer Buckling

In general the stringer is considered as a collection of flat plates of length $\ell_{\rm r}$. The appropriate boundary conditions and corresponding critical load depends on the relative depth of stringer and ring as well as the shape of the stringer. If the rings are deeper than the stringers, and the stringers are of rectangular crosssection, the boundary conditions for the stringer are: simply supported on three edges and free on one edge. If T, IA (inverted angle), Z, I shaped stringers are used, the web of the stringers is considered as simply supported on all the four edges, while the flange is considered as simply supported on three edges and free on the unloaded edge. The buckling criteria for various boundary conditions are taken from [33]. For rectangular and T shape stringers the buckling expressions are given as follows

.93

(a) Rectangular Stringers

$$\sigma_{\text{xxst}_{\text{cr}}} = \frac{\pi^2 E_{\text{st}}}{12(1-\nu^2)} \left(\frac{t_{\text{st}}}{d_{\text{st}}}\right)^2 \left[\left(\frac{d_{\text{st}}}{\ell_r}\right)^2 + 0.425\right]$$

94

(A19)

(b) <u>T-Stringers</u>

$$\sigma_{\text{xxst}_{\text{cr}}} (\text{Web}) = \frac{\pi^2 \mathbf{st}}{3(1-\nu^2)} \left(\frac{\mathbf{t}_{\text{st}}}{\mathbf{d}_{\text{st}}}\right)^2$$

$$f_{xxst}_{cr} (Flange) = \frac{\pi^2 E_{st}}{12(1-\nu^2)} \left(\frac{2t_{fst}}{b_{fst} - t_{st}}\right)^2 \left[\left(\frac{b_{fst} - t_{st}}{2\ell_r}\right)^2 + 425\right]$$
(A20)

If the stringers are deeper than the rings, the portion of the stringer below the web of the ring is considered as a flat plate simply supported on four sides and length ℓ_r . The outstanding portion of the stringer is considered as simply supported on three edges and free on the fourth edge. The length of the plate in this case is L.

Ring Buckling

The ring is considered as an annular plate subjected to uniform compression along the circumference. For rectangular shape rings, the boundary conditions are assumed to be simply supported at one end and free at the other end. These are the boundary conditions for the case when the shell is stiffened with rings only. If the shell is stiffened with stringers and rings, the rings being deeper than the stringers, the boundary conditions for portion of the ring projecting above the stringers are simply supported at one edge and free at the other. For the portion of the ring which is equal to the stringer depth the boundary conditions are simply supported at both edges. If T, inverted angle (IA), I, channel, or Z shaped rings are used, the boundary conditions are simply supported at both edges. Furthermore, the depth of the rings is less than 1/10th of the radius of the shell, which means that the ratio of inner to outer radius of rings is of the order of 0.1, the annular plate can be approximated by a long narrow rectangular plate. This has been verified by Majumdar [34], and Yamaki [35]. Therefore, the buckling criterion for the ring is the same as for long narrow rectangular plate. A similar criterion has been used by Nickell and Crawford [6]. Under this assumption, the critical stress for rings is given by

$$\sigma_{yyr_{cr}} = K_{R} \frac{\pi^{2} E_{r}}{12(1-\nu^{2})} \left(\frac{t_{wr}}{d_{wr}}\right)^{2}$$
(A21)

where $K_{\rm R} = 4.0$, for rings with both ends simply supported and $K_{\rm R} = \frac{1}{2}$ for the rings simply supported at one edge and free at the other. Stresses in Skin and Stiffeners

It is assumed that membrane state exists prior to buckling. The stresses in the skin and the stiffeners are calculated based on this assumption. Under the membrane state displacement component u is assumed to be linear function of x only, where as displacement component v and w are independent of x and y. Denoting by superscript "o", the membrane state parameters are

The membrane state stress resultants are

 $\gamma^0 \stackrel{.}{=} 0$

$$N_{xx}^{o} = \frac{Eh}{1-v^{2}} (1 + \bar{\lambda}_{xx}) \varepsilon_{xx}^{o} + \frac{vEh}{1-v^{2}} \varepsilon_{yy}^{o}$$
$$N_{yy}^{o} = \frac{vEh}{1-v^{2}} \varepsilon_{xx}^{o} + \frac{Eh}{1-v^{2}} (1 + \bar{\lambda}_{yy}) \varepsilon_{yy}^{o}$$
$$N_{xy}^{o} = 0$$

For a circular cylindrical shell under uniform hydrostatic pressure and uniform axial compression

$$N_{xx}^{O} = -\frac{qR}{2} - \alpha qR$$
$$N_{yy}^{O} = -qR$$

From equations (26) and (27), the prebuckling strains are

$$P_{xx} = -\frac{qR}{2} \frac{(1-v^2)}{Eh} \frac{[(1+\bar{\lambda}_{yy})(1+2\alpha) - 2\nu]}{[(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy}) - v^2]}$$

$$\boldsymbol{\varepsilon}_{yy}^{o} = - \frac{qR}{2} \frac{(1-\nu^2)}{Eh} \frac{[2(1+\bar{\lambda}_{xx}) - \nu(1+2\alpha)]}{[(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy}) - \nu^2]}$$

(A25)

96

(A22)

(A23)

(A24)

and the stresses in the skin, stringer and ring are

$$\bar{\nu}_{xxsk} = -\frac{qR}{2h} \left[\frac{2\nu\bar{\lambda}_{xx} + \bar{\lambda}_{yy}(1+2\alpha) + (1-\nu^2)(1+2\alpha)}{(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy}) - \nu^2} \right]$$

$$\sigma_{yysk} = -\frac{qR}{2h} \left[\frac{2\bar{\lambda}_{xx} + \nu(1+2\alpha)\bar{\lambda}_{yy} + 2(1-\nu^2)}{(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy}) - \nu^2} \right]$$

$$\sigma_{xxst} = -\frac{qR}{2h} \frac{E_{st}}{E} (1-v^2) \left[\frac{(1+\bar{\lambda}_{yy})(1+2\alpha) - 2\bar{\nu}}{(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy}) - v^2} \right]$$

$$\sigma_{yyr} = -\frac{qR}{2h} \frac{E_r}{E} (1-v^2) \left[\frac{2(1+\bar{\lambda}_{xx}) - v(1+2\alpha)}{(1+\bar{\lambda}_{xx})(1+\bar{\lambda}_{yy}) - v^2} \right]$$
(A26)

When the shell is stiffened by rings only, the stresses in the skin and ring are calculated by the analysis given by Salerno and Pulos [36]. The stresses calculated by this analysis are slightly higher than those calculated by membrane analysis. The stresses at the midsection between the two consecutive rings are

$$\sigma_{xxsk} = \sigma_{b\left(x=\frac{\ell}{2}\right)} - \frac{qR}{2h}$$
(A27)

 $\sigma_{\rm b}$ being the bending stress.

$$\sigma_{yysk} = \sigma_y + v\sigma_b$$

 σ_y being the circumferential stress.

A28

Further

$$\sigma_{\rm b} = \pm \frac{{\rm g}{\rm R}^2}{2} \left(\frac{1-\frac{\nu}{2}}{1-\nu^2}\right) \, {\rm TJ}$$

 $\sigma_{y} = -\frac{qR}{h} + \left[\frac{qR}{h}\left(1 - \frac{v}{2}\right)\right]\frac{TU}{H}$

The total load carried by the ring per unit length is given by

$$Q^{*} = \frac{qb - \frac{qR^{2}h^{2}W}{6(1-v^{2})} \left[1 - \frac{\frac{v}{2}A_{r}}{A_{r}+bh}\right]}{\left[1 - \frac{R^{2}h^{3}W}{6(1-v^{2})(A_{r}+bh)}\right]}$$

Parameters W, J, U, H, and T are determined appropriately.

Expressions for W, J, U, H, and T

For hydrostatic pressure, the axial compression component $\bar{\tilde{N}}_{_{\rm X}}$ is given by

$$\bar{N}_{\rm y} = -qR/2$$

Case I

$$\left(\frac{\bar{N}_x}{2D}\right)^2 < \frac{Eh}{DR^2}$$

For this case

$$W = \frac{-16ef (e^2 + f^2)(\sinh^2 e + \sin^2 f)}{\iota^3 (e \sin f \cos f + f \sinh e \cosh e)}$$

98

(A29)

(A30)

(A31)

$$J = \frac{4(e^2 + t^2)(e \cosh e \sin f - f \sinh e \cosh f)}{t^2(e \sin f \cos f + f \sinh e \cosh e)}$$

$$U = -(f \sinh e \cos f + e \cosh e \sin f)$$

$$H = -(e \sin f \cos f + f \sinh e \cosh e)$$

$$T = \frac{A_r/(A_r + bh)}{\left[1 - \frac{R^2 h^2 W}{6(1 - v^2)(A_r + bh)}\right]}$$
(A32)
where
$$e = \frac{et}{2}$$

$$f = \frac{dt}{2}$$

$$c = \frac{e}{t} \left(1 - \frac{qR^3 a^2}{2Eht^2}\right)^{\frac{1}{2}}$$

$$d = \frac{a}{t} \left(1 + \frac{qR^3 a^2}{2Eht^2}\right)^{\frac{1}{2}}$$

$$\bar{a} = \left[\frac{3(1 - v^2)}{h^2 R^2}\right]^{\frac{1}{4}} t$$
(A33)
$$\frac{Case II}{(\frac{R}{2D})^2} = \frac{Bh}{DR^2}$$
For this case
$$W = -16 g^3 \sin^2 g/(g + \sin g \cos g)t^3$$

- 99

$$J = 4g^{2}(\sin g - g \cos g)/(g + \sin g \cos g)\ell^{2}$$

 $U = g \sin g + \sin g$

 $H = g + \sin g \cos g$

$$T = \frac{A_{r}^{/(A_{r} + bh)}}{\left[1 - \frac{R^{2}h^{3}W}{6(1-v^{2})(A_{r} + bh)}\right]}$$

where

$$g = \left(\frac{qR}{4D}\right)^{\frac{1}{2}} \frac{\ell}{2}$$

Case III

$$\left(\frac{\tilde{N}_{x}}{2D}\right)^{2} > \frac{Eh}{DR^{2}}$$

For this case

$$I = \frac{-16ef(f^2 - e^2)(sin^2 f - sin^2 e)}{\iota^3(e sin f cos f + f sin e cos e}$$

$$J = \frac{4(e^2 - f^2)(f \sin e \cos f - e \cos e \sin f)}{\ell^2 (f \sin e \cos e + e \sin f \cos f)}$$

 $\mathbf{U} = \mathbf{f} \sin \mathbf{e} \cos \mathbf{f} + \mathbf{e} \cos \mathbf{e} \sin \mathbf{f}$

$$\mathbf{H} = \mathbf{e} \, \sin \, \mathbf{f} \, \cos \, \mathbf{f} + \mathbf{f} \, \sin \, \mathbf{e} \, \cos \, \mathbf{e}$$

$$T = \frac{A_r / (A_r + bh)}{\left[1 - \frac{R^2 h^2 W}{6(1 - v^2)(A_r + bh)}\right]}$$

(A34)

(A35)

where

(A36)

101

In the above equations ℓ is the clear distance between the two adjacent rings.

APPENDIX B

PROPERTIES OF DIFFERENT SHAPES OF STIFFENERS

The derivation of $\bar{\alpha}$'s and shape parameters for various shapes of stiffener cross-section is given in this Appendix.

Rectangular Cross-Section

The radius of gyration of a rectangular cross-section is

given by

$$\alpha_{1} = \frac{d_w}{\sqrt{12}}$$

The radius of gyration of unit width of skin is

$$\alpha_2 = \frac{h}{\sqrt{12}}$$

Nondimensionalizing the radius of gyration of stiffener with

respect to the radius of gyration of skin, one gets

$$\bar{\alpha} = \frac{\mathrm{d}_{w}}{\mathrm{h}}$$

The nondimensionalized flexural stiffness and the eccentricity

parameters of the stiffeners are

$$\bar{\rho} = \frac{E_{\text{stif}} I_{\text{stifc}}}{\ell_{\text{stif}} D}$$

where

 $D = \frac{Eh^3}{12(1-v^2)}$

and

The subscript 'stif' refers to the stiffener.

With simple algebraic operation, one can write

$$\rho = \alpha^{-} \lambda$$

 $I_{stife} \approx t_w d_w^3/12$

$$\bar{e} = \frac{\pi^2 (1 - v^2)^{\bar{z}}}{2Z} (1 + \bar{\alpha})$$

where

$$\bar{\lambda} = \frac{A_{\text{stif}} (1 - v^2)}{\ell_{\text{stif}} h}$$

In similar way the relations for other shapes of the stiffener are obtained. Some of the shapes are shown in Figure Bl. In deriving these expressions, assumption is made that the thickness of the web or flange is much smaller than the depth of the web of the stiffener. Thus, one has

$$\tilde{\rho}_{xx} = \tilde{\alpha}_x^2 \ \tilde{\lambda}_{xx}$$

 $\tilde{\rho}_{yy} = \tilde{\alpha}_y^2 \ \tilde{\lambda}_{yy}$ $\bar{e}_{x} = \frac{\pi^{2}(1-v^{2})^{\frac{1}{2}}}{2Z} (1 + C_{x} \tilde{\alpha}_{x})$ $\bar{e}_{y} = \frac{\pi^{2}(1-v^{2})^{\frac{1}{2}}}{2Z} (1 + C_{y} \tilde{\alpha}_{y})$ $A_{stif} = t_w d_w k_l$

 10^{6}

Table Al gives the values of different parameters for various shapes of the stiffeners.

Table B1. Properties of Various Shapes of Stiffeners.

Shape	Area		ā	С
Rectangular	t _w đ	1.0	d _₩ /h	1.0
Т, І А	$t_{y}d_{y}(1+AB)$	1+AB	$\frac{\sqrt{1+4AB}}{1+AB} \frac{d_{w}}{h}$	<u>1+2AB</u>
Channel, I,	. · ·	· · · ·	•	¶-+-∞÷
Z	t _w d _w (1+2AB)	(1+2AB)	$\sqrt{\frac{1+6AB}{1+AB}} \frac{d}{h}$	1+2AB 1+6AB
Angle	t _w d _w (l ₄ AB)	(1+AB)	$\frac{\sqrt{1+4AB}}{1+AB} \frac{d_w}{h}$	$\frac{1}{\sqrt{1+4AB}}$
and the second			· · ·	

APPENDIX C

SAMPLE DESIGN TABLES AND DESIGN EXAMPLES

In order to illustrate the procedure of design discussed under Phase II, three design examples are worked out in the Appendix. The design Tables corresponding to these design examples are also given here.

106

Example 1

For a shell stiffened with rectangular rings and rectangular stringers, the following data are known:

	Operating Depth	= 3000 feet
	Radius of the shell	= 198 inches
	Length of the shell	= 594 inches
* .	Permissible yield stress	= 120,000 psi
. · ·	Poisson Ratio	= .300
· ·	Factor of safety	
(a)	For stress level limitations against yielding	g 1
(ъ)	For all other failure modes	2
	Modulus of elasticity $E = E_{st} = E_r = 30 \times 10^6$	psi
	$\rho_r = \rho_{st} = \rho_{st} = .282 \text{ lb./in.}^3$	
	Density of immersion fluid = $.0374$ lb/in. ³	
	From the design Table Cl	
	$Z = 1200, C_{x} = C_{y} = 1.0$	
	h = $\frac{L^2}{RZ} (1-v^2)^{\frac{1}{2}} = 1.41660$ in.	

Using Equation (4) the stresses in skin, ring, and stringer are calculated

$$\sigma_{xxst} = 89,537.8 \text{ psi}, \sigma_{yyr} = 96,172.8 \text{ psi}$$

 $\sigma_{yysk} = 123,033 \text{ psi}, \sigma_{xxsk} = 52,623.9 \text{ psi}$

Using von Mises yield criterion, the stress in the skin is

$$\sigma_{c} = 110,170 \text{ psi}$$

The stresses in skin, stringer and ring being less than the permissible level, the constraints defining stress level limitations are satisfied.

The depths of stringer and ring are given by

$$d_{st} = \bar{\alpha}_{x} h = 9.91620 \text{ in.}$$

 $d_{r} = \bar{\alpha}_{y} h = 17.70750 \text{ in.}$

From the ring buckling criterion, the thickness of the ring is given by

 $t_{wr} > \sqrt{\frac{24(1-v^2) \times 2\sigma_{yyr}}{\pi E_{wr}}} (d_r - d_{st})$

ν···	C _x	C y	Z	A _x A _y	B _x B _y	₽ P	
.300	1.0	1.0	1200	0 0	0 0	1.41384	x 10 ⁻⁵
α _x	α _y		พิ	$\bar{\lambda}_{xx}$	$\bar{\lambda}_{yy}$	m	n
2.0	14.0		2.07396	.11069	.87421	13	. 4
3.0	14.0		1.70229	.18203	.46368	1	3
4.0	14.0		1.62377	.09195	.47914	· · 1 · ·	3
5.0	14.0		1.58382	.06845	.46533	່. 1	3
6.0	14.0		1.57595	.06086	.46548	l	3
7.0	14.0		1,58925	.07344	.46546	1	3
8.0	14.0	•	1.61359	.09658	.46531	1	· <u>3</u> ·
10.0	14.0		1.67914	. 15864	.46531	I	3
12.0	14.0		1.61235	.09520	.46551	1	- 3
+ :							·
2.0	13.5	· · · .	2.05919	.11496	.85693	13	4
3.0	13.5	•	1.72253	.15690	.50708	l	3
4.0	13.5	•	1.64456	.08168	.50825	Ĺ	3
5.0	13.5		1.63527	.07262	.50848	· 1	3
6.0	13.5		1.65531	.09170	.50842	1	3
7.0	13.5		1.61744	•05535	.50881	l	3
8.0	13.5		1.64406	.08075	.50869	1	3
10.0	13.5		1.68799	.12259	.50855	1	3
12.0	13.5		1.79240	.22224	. 50803	1.	3
				· .			· ·
2.0	13.0		2.07189	.11762	.86641	13	4
3.0	13.0	. ·	1.72480	.10707	•55754	1	3
4.0	13.0		1.72051	.10268	.55782	1	3

Material of Construction - High Strength Steel

12.0 12.0 12.0	≥.0 4.0 5.0 10.0	12.0
0.3 0.3 0.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	र र र र र य र र र र र य स य य य	Table C1. 2. 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0
2.06031 1.88168 1.84141 1.82312 1.82312 1.79627 1.79627 1.95395	2.04181 1.80766 1.79363 1.77348 1.75268 1.75268 1.75945 1.84643 1.84643 1.80322	Design Tab W 1.72253 1.71310 1.70972 1.67607 1.86975 1.73267
. 12471 . 12725 . 08717 . 06896 . 04243 . 04243 . 01302 . 19652	. 12200 . 12667 . 11267 . 09280 . 07240 . 07240 . 07240 . 07240 . 12715 . 12107 . 12107	Le. (Contin λ _{xx} . 10444 . 09517 . 09178 . 04535 . 24535 . 11361
. 84988 . 68304 . 68397 . 68440 . 684440 . 68484	.83501 .61515 .61563 .61610 .61647 .61551 .65037 .61642	ued) √yy • 55799 • 55825 • 55840 • 57207 • 55769 • 55848
ㅋ ᅜ ㅋ ㅋ ㅋ ᅜ	β 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	႕ က က က က ရ က က	ω ώ ϣ ϣ ϣ ϗ

60T

. .

 $t_{wr} > .92850$ in.

Using the definition of $\bar{\lambda}_{yy}$, ℓ_r , the ring spacing is given by

$$t_r > \frac{d_{wr} t_{wr} (1-v^2)}{\bar{\lambda}_{yy} h}$$

17.13140 in.

ł_r

Assuming 33 rings, the value of ℓ_r and corresponding t_{wr} are

calculated as

 \mathbf{or}

 $\ell_r = 17.47058$ in. $t_{wr} = .94687$ in.

The stringer spacing is calculated from Equation (24) as

$$\ell_{st} > \sqrt{\frac{12(1-\nu^2) \times \sigma_{xxst} \times F_1}{\pi^2 E_{st} \left[\left(\frac{d_{st}}{\ell_r}\right)^2 + .425 \right]}} \frac{d_{st}^2(1-\nu^2)}{h \bar{\lambda}_{xx}}$$

 \mathbf{r}

$$l_{\rm st} > 57.76287$$
 in.

Assuming 20 stringers, the spacing ℓ_{st} and corresponding t_{st} are calculated. These are

ℓ_{st} = 62.17200 in. t_{st} = .76968 in.

The critical stresses are now calculated for skin, stringer,

and ring. These are

$$\sigma_{xxsk_{cr}} = 187,020 \text{ psi}$$

 $\sigma_{xxst_{cr}} = 121,994 \text{ psi}$

Using computer program for panel buckling check, the critical

load obtained for the design variables given above is

$$q_{er} = 12,247.9 \text{ ps}$$

and

$$m_{p} = 1, n_{p} = 69$$

The ratios of actual load to the failure load are now calculated to ensure that interaction of failure modes does not occur

> GB = = 1.00000 PB = = .21986 SKB = = .95752 STB = = .86322

RB	=	≅.	.96160
SKY	201 1		.91808
RY	=	=	.80143
STY	=	=	.43853

Finally the weight of the shell is calculated

W = 848.3 lb/in.

Example 2

For shell stiffened with T-rings and rectangular stringers, the design Table C2 given in this Appendix is used. The known data are the same as in Example 1.

From the design Table C2, for Z = 1200, one has the following values:

$$C_x = 1.0$$

 $C_y = 1.155$
 $A_y = 1.0$
 $B_y = 0.5$
 $\bar{\alpha}_x = 6.0$
 $\bar{\alpha}_y = 12.5$
 $\bar{\lambda}_{xx} = .08143$
 $\bar{\lambda}_{yy} = .46216$
 $m = 1$

v	°x	c _y z	A _x A _y	B _x B _y	r .	₫Ď	
.300	1.0	1.155 1200	0 1.0	<u>ِ</u> 0	5 1.4	1384 x 10	-5
α _x	α _y	 Ŵ	λ _{xx}	λ _{yy}	m	n	
2.0	15.0	1.40189	.06792	.29929	. <u>1</u>	3	
3.0	15.0	1.39468	.06106	29944	1	3	
4.0	15.0	1.42192	.08653	.29932	1	3	
5.0	15.0	1.42333	.08775	.29940	ı	· 3	
6.0	15.0	1.47740	.13828	.29918	1	3`	
7.0	15.0	1.40138	.06708	.29965	1.	. 3	
8.0	15.0	1.40781	.07304	.29967	l	3	
9.0	15.0	1,41251	.07740	.29969	1	3	
10.0	15.0	1.42015	.08450	.29969	1	. 3	
11.0	15.0	1.41698	.08152	.29972	l	3	
12.0	15.0	1.42846	.09223	•29969 °	1	3	
• •.		•	·				
2.0	14.5	1,55251	.04291	.46138	15	4	·
3.0	14.5	1.44101	.07958	.32369	1 .	3	
4.0	14.5	1.45500	.09264	.32368	" l	3	
5.0	14.5	1.44380	.08201	.32387	1	3	
6.0	14.5	1.45169	.08933	.32390	1	3	
7.0	14.5	1.45044	.08808	.32398	1.	3	
8.0	14.5	1.44917	.04951	.36060	l	3	
10.0	14.5	1.45811	.09513	.32409	1	3	
12.0	14.5	1.47155	. 10768	.32407	1	3	
				et al construction de la constru			•
2.0	14.0	1.57600	.04368	.48214	15	<u>4</u>	
3.0	14.0	1.46659	.07522	.35145	. 1	3	

Table C2. Design Table. Interior TR-RS Stiffened Shell. General Instability Formulation. Material of Construction - High Strength Steel.

Table C2. Design Table. (Continued)

Ħ **m m** \sim ŝ \sim \mathbf{c} \sim ∞ \sim ∞ \mathfrak{O} \mathbf{m} ∞ \sim mന E н -1 -ភ - - -ч ч н. **н** н -1 -1 Ч н н Ч ، ^کم ، .35190 ,35182 .35194 .42016 .38306 .38347 .38376 .07914. .35181 .35202 .38353 .38355 .38358 .38375 .51066 41960 .35161 .35173 .38377 .56822 .⁴1903 41925 42013 .41981 48614. .05006 .06294 .05604 .06266 .08162 .05180 .05232 .05839 .04540 .14082 .13894 .04650 .13383 .13884 .06962 .05799 .08221 .07071 .06184 • 03953 .04806 .07152 14041. .06477 .13333 کې کې 1.44866 1.47446 1.47289 1.44672 1.52822 1.50783 1.48364 1.48735 1.60890 1.51096 1.46078 1.47653 1.47499 1.69924 1.60974 1.45572 1.45368 1.46230 1.47716 1.46380 1.60799 1.60242 1.60306 1.61015 1.60853 13 14.0 14.0 14°0. 14.0 14.0 14.0 13.5 13.0 13.0 13.0 14.0 Ц.5 13.5 13.5 13.5 13.5 13.5 L3.5 13.5 13.0 13.0 13.0 13.0 13.0 13.0 ່ຈີ 0°† 6.0 8.0 10.0 0.5 5.0 6.0 7.0 **8.**0 10.0 5.0 5.0 0. ... ₽.° 5.0 6.0 0.7 0 8 10**.**0 0.4 5.0 0.ਪ 2.0 12.0 0"ਟੋਹ י א^א

- continued -

•	(Continued)
	Design Table.
	છુ
	Table

A 4 m m m m \mathbf{m} 3 ∞ \mathbf{m} . m. m. a m m m \sim ŝ ∞ ∞ ∞ m : m mന്ന 덢 ង н н Ч ч н Ы н Ч Ч н н н н н н - H н н н н Ч 1 ا مر مر 46189 04115. .57030 16216 .46238 51154 60800 .51226 .55346 .61381 .46137 46172 46207 46224 .46261 51192 71197 71197 50987 51205 .51235 56932 .56951 .56975 55204 55717 .570HO .11236 .08143 .09800 .10702 .09454 .08659 .03772 .03174 .00765 .08238 .08246 .09891 .04655 .05922 .05896 .04587 .33483 .04835 .02195 .08725 .08974 .08623 .08040 46670. .06706 .04540. , XX 1.71230 1.61089 1.59372 1.62059 1.55743 1.62389 1.61065 30116.1 1.61334 1.58592 1.57103 1.71629 1.71908 1.71570 **1.**69033 **1.**69544 1.67799 1.72179 1.62547 1,61166 1.60762 1.59940 1.62400 1.60206 042L7.L 1.70107 13 0.SL ਹ ਨਾ 0 रा 0 टा 12.0 0. ਪ 0.ਪ ਹ 12.0 12.5 12.5 Ъ.5 12.5 12.5 12.5 12.5 12°2 12.5 12.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 ج ک^م ا 3.0 0°† 5.0 8.0 0°9 7.0 8.0 10.0 ъ.0 6.0 7.0 10.0 0.51 0.4 0. B 0.4 5.0 6.0 7.0 8.0 10.0 <u>਼</u> ਨਾ ю. У 3.0 0. † 5.0 ់ទេ

5TT

• . •

₩ = 1.59372

. = 3

n

Using Equation (4), the stresses in the skin, ring and stringer

116

are calculated. These are

$$\sigma_{xxsk} = 89,663.9 \text{ psi}$$

 $\sigma_{yysk} = 133,864 \text{ psi}$
 $\sigma_{yyr} = 106,965 \text{ psi}$
 $\sigma_{xxst} = 49,504.7 \text{ psi}$

von Mises yield criterion gives

All the stresses are within permissible limits. The depths of the stringer and ring are given by

$$d_{st} = \bar{\alpha}_{x} h = 8;49960 in.$$

$$d_{wr} = \frac{\tilde{\alpha}_y \times h \times (1 + A_y B_y)}{\sqrt{(1 + 4 A_y B_y)}} = 15.33515 \text{ in}$$

 $b_{fr} = B_y \times d_{wr} = 7.66758$

From ring buckling criterion, thickness of the ring is

given by

Using definition of
$$\bar{\lambda}_{-}$$
, ℓ_{-} is

 $l_r > 12.10316$ in.

Select l_r as

this gives

 \mathbf{or}

$$t_{m} = .41284 \text{ in}$$

= 13.2 in.

 ℓ_r

and

$$t_{fr} = A_y \times t_{wr} = .41284$$
 in.

Thickness of stringer is found from stringer buckling criterion

$$t_{st} > \sqrt{\frac{12(1-v^2) \times 2\sigma_{xxst}}{\pi^2 E_{st} \left[\left(\frac{d_{st}}{l_r}\right)^2 + .425\right]}} d_{st}$$

or

this gives

$$l_{st} > 37.60039$$
 in.

Assuming

$$k_{ot} = 38.8572$$
 in.

one gets

The critical stresses for skin, ring and stringer are now calculated, these are

The critical load for panel buckling is obtained as

$$q_{cr} = 19,266 \text{ psi}, m_p = 1 \text{ and } m_p = 85$$

Finally the ratios of actual load to the failure load are calculated to insure separation of these modes

$$\mathbf{FB} = \frac{\mathbf{q}_{\mathbf{D}}}{\mathbf{q}_{\mathbf{cr}}} = 1.00000$$

$$PB = \frac{q}{q_{cr}} = .13977$$

$$SKB = \frac{2\sigma_{xxsk}}{\sigma_{xxsk}cr} = .54165$$

$$STB = \frac{2\sigma_{xxsk}}{\sigma_{xxsk}cr} = .93656$$

$$RB = \frac{2\sigma_{yyr}}{\sigma_{yyr}cr} = .83695$$

$$SKY = \frac{\sigma_{g}}{\sigma_{y}} = .98447$$

$$RY = \frac{\sigma_{yyr}}{\sigma_{y}} = .89137$$

$$STY = \frac{\sigma_{xxst}}{\sigma_{y}} = .41253$$

The weight of the shell is

An alternative design giving the same weight as above is

$$t_{st} = 38.8572$$
 in.
 $t_{st} = .5795$ in.
 $t_r = 13.81395$ in.

 $t_{wr} = .43204$ in.

Example_3

page.

This is the design example for ring stiffened shell. The operating depth is 3000 feet and high strength steel is used as material of construction. The design Table C3 is generated for this case. Program RSSH is used for finding the design variables. Before using above program, the ring spacing is first found from the criterion of panel buckling. Once the ring spacing is known, one proceeds with the design. The input data for the program RSSH are: Z, ELX(ring spacing), X(2)(value of $\bar{\lambda}_{yy}$), AY, BY, PBCR(panel buckling critical load) and ALY($\bar{\alpha}_{y}$). The results of the example are given on the next

Table C3. Design Table. Interior T-Ring Stiffened Shell. General Instability Formulation. Material of Construction - High Strength Steel.

ν	Ay	By	Ż		C _y	t t D	ŧ
.300	1.0	•5	1200.0	: 1	L.155	1.41384	x 10 ⁻⁶
α _y		Ŵ		λ _{yy}		m	n
13.0	· · ·	1.19311	· · ·	.17573		1	3
12.8	. *	1.19958	· · · ·	.18162		1	3
12.6		1.20639		.18782		1	3
12.4	· ·	1.21357		.19435		1	3
12,2		1.22116	·· ·	.20125		1	3
12.0		1.22917		.20854	· ·	1	. 3
11.8		1.23765		.21626		1	. 3
11.6		1.24662		.22443	1 . L. 1	1	3
11.4		1.25615		.23309		1	3
11.2	:	1.26626	:	.24230		1	3
11.0		1.27701		.25208		1	3
10.8	•	1.28847		.26251	•	. 1	3
10.6	· · ·	1,30069		.27363	÷ .	1	3
10.4	• • •	1.31375	· · ·	.28551	· ·	1	
10.2	•	1,32773	· ·	.29823		1	3
10.0	· · ·	1.34271	•	.31187		1	3
		· · ·					· .

ENTER VALUES OF ZZ, ELY, BK, X(2), AY, BY, PBCR, ALY 950., 24.75, 23., .31187, 1., .5, 3016.83, 10.

DESIGN RESULTS .

OPERATING DEPTH = 3000. ZZ = 950.0 L = 594.0 R = 198.0X(2) = .31187 , CY = 1.1547WEIGHT PER INCH = 821.73SKIN THICKNESS = 1.78939DEPTH OF WEB = 15.49656WEB THICKNESS = .65296FLANGE WIDTH = 7.74828**FLANCE THICKNESS = .65296** RING SPACING = 24.75000CKYR = 1212.20 M = 1N = 3QSTAR = 2692.82QCR = 125604.04 SRY = 94862.00 PBCR = 3016.83 SX2 = -89348.22 SY2 = -122792.30 QQ = 7831.54SKY = 109953.54GB = .99999 PBC = .89259RBC = .98629RYC = .79052SKYC = .91628

APPENDIX D

BUCKLING OF THIN CYLINDERS UNDER*

This Appendix presents a comparison of buckling loads for thin circular cylindrical shell based on different shell theories. This comparison includes three types of behavior of the lateral loading; 1) load normal to deflected surface (true pressure behavior); 2) load remaining constant-directional, and 3) load acting always toward initial center of curvature. The comparison covers the entire range of cylinder fineness ratios $(L/\pi R)$ and the practical range of radius to thickness ratios. The primary conclusion of this work is that previous belief about the inaccuracy of the Donnell Equations for long

cylinders is incorrect.

*This work is published in the form of a brief note in transaction of the ASME, Journal of Applied Mechanics, Vol. 41, No. 3, September 1974, pp. 827-829.

Nomenclature

Flexural Stiffness

D

Е

Ħ

h.

k_y

L

m

n

R

u, v,

х, у

8

M_{xx}, M_{yy}, M_{xy}

N_{xx}, N_{yy}, N_{xy}

 q^{x}, q^{y}, q^{z}

Young's modulus of elasticity

Radius to thickness ratio

Thickness of shell

Applied load coefficient [= qR^3/D]

Length of shell

Moment resultants

Number of longitudinal half waves

Incremental stress resultants.

Number of circumferential waves

Initial normal surface loading (positive outward)

124

Corrections to surface loading due to load behavior

Radius of shell

Incremental displacements

Lines of curvature coordinates.

 $[=L/\pi R]$

Incremental membrane strains

Poisson's ratio

Incremental rotations

Introduction

Donnell's equations defining small deformations of thin walled circular cylindrical shells have widely been used in the solution of problems of equilibrium and stability. From time to time doubt has been reised as to the accuracy of these equations. Hoff [1]* in 1955 compared and gave the range of basic parameters for which solutions to Donnell's and Flügge's equations are approximately equal. Dym [2] in 1973 compared buckling results obtainable from Donnell's equations with those obtained from Koiter-Budiansky [3-4] equations for cylinders in axial compression. The aim of the present work is to examine the accuracy obtainable from these equations for buckling of cylinders subjected to uniform lateral load.

125

As a basis of comparison, buckling loads obtained from Koiter and Budiansky's equations are used. Donnell's equations are much easier to solve than the Koiter and Budiansky's equations. They are, therefore, preferable in engineering applications if their accuracy is satisfactory. In order to have the complete picture, the comparison includes results based on Sanders [4-5] equations and the Von Mises [5] solution of Flügge's [6] equations. The Sanders equations are used with the assumption that the rotations about the normal are negligibly small.

The comparison is performed for large ranges of cylinder fineness ratios $[1/3 \le L/\pi R \le \infty]$ and radius to thickness ratios [25 < R/h < 1000]. In addition, the effect of load behavior during

*Numbers in square brackets designate references at the end of this Appendix.

the buckling process has been taken into account by studying the following three cases:

Ϊ.

Load normal to the deflected surface (true pressure behavior)

II. Load remaining parallel to the original direction

(a load model that has been used by many investigators for pressure buckling).

III. Load directed toward the original center of curvature.

The Equations of Koiter-Budiansky; Sanders, and Donnell

The Koiter-Budiansky buckling equations have been deduced from those given in the Appendix to Budiansky's paper. In terms of stress resultants, for a circular cylinder loaded by uniform pressure, q, which remains normal to the deflected surface, these equations are

$$\mathbb{N}_{xx,x} + \mathbb{N}_{xy,y} - \frac{1}{2R} \mathbf{M}_{xy,y}^{*} + qR\left(\frac{1}{2} \mathbf{Y}_{xy} - \mathbf{\varphi}_{y}\right)^{*} + q\varphi_{x} + q^{x} = 0$$

$$N_{xy,x} + N_{yy,y} + \frac{1}{R} (M_{yy,y} + M_{xy,x})^{**} + \frac{1}{2R} M_{xy,x}^{*}$$

+ $qR(e_{y,y}^{**} - \frac{\varphi_{y}^{**}}{R}) + q\varphi_{y} + q^{y} = 0$

$$\frac{N}{R} + M_{XX,XX} + 2M_{XY,XY} + M_{YY,YY} - gR(\varphi_{Y,Y} + \frac{\epsilon_{Y}}{R})$$
$$+ q(\epsilon_{X} + \epsilon_{Y})^{*} + q^{Z} = 0$$
(D1)

Here q^{x} , q^{y} , and q^{z} are corrections to surface loading, due to load behavior, being given by the following expressions for the three load cases

I.
$$q^{x} = q^{y} = q^{z} = 0$$

II. $q^{x} = qw, x; \quad q^{y} = q(w, y - \frac{v^{**}}{R}); \quad q^{z} = 0$

III. $q^{x} = q_{w}, ; q^{y} = q_{w}, ; q^{z} = 0$ (D2)

The relations between the stress and moment resultants on one hand and deformation components on the other are given below:

$$\mathbf{W}_{\mathbf{x}\mathbf{x}} = \frac{\mathbf{E}\mathbf{h}}{1-v^2} \left(\mathbf{u}, \mathbf{x} + v\mathbf{v}, \mathbf{y} + v \frac{\mathbf{w}}{\mathbf{R}} \right)$$

$$N_{yy} = \frac{Eh}{1-v^2} \left(v, y + \frac{w}{R} + vu, x \right)$$

$$N_{xy} = \frac{Eh}{2(1+v)} (u, y + v, x)$$

$$M_{xx} = \frac{Eh^3}{12(1-v^2)} \left(-w, _{xx} - vw, _{yy} + v \frac{v, _y}{R}\right)$$

$$M_{xy} = \frac{Eh^3}{12(1+\nu)} \left[-w_{yy} + \frac{v_{x}^{**}}{2R} + \left(\frac{v_{x}}{4R} - \frac{u_{yy}}{4R} \right)^* \right]$$

$$M_{yy} = \frac{Eh^{3}}{12(1-v^{2})} \left(w, _{yy} + \frac{v, _{y}}{R} - vw, _{xx} \right)$$
(D3)

The corresponding boundary conditions are (at x = 0 and x = L)

$$u = 0$$
 or $N_{xx} = 0$

$$v = 0$$
 or $N_{xy} + \frac{3}{2R}M_{xy} = 0$

= 0 or
$$M_{xx,x} + 2M_{xy,y} = 0$$

 $W_{x} = 0 \text{ or } M_{xx} = 0$ (D4)

In the present investigation, the classical simply supported boundary conditions are used. These are

$$w(0,y) = w(L,y) = 0$$

 $M_{XX}(0,y) = M_{XX}(L,y) = 0$
 $N_{XX}(0,y) = N_{XX}(L,y) = 0$

v(0,y) = v(L,y) = 0 (D5)

If terms marked with single asterisk are dropped, Equation (D1) through (D3) will give Sanders equations. In the same way if the terms marked with either single or double asterisk are dropped in these equations, one obtains Donnell's equations. The same convention will be followed throughout this paper.

The buckling Equation (D1) are expressed entirely in terms of displacements by employing Equation (D3). Using the convention discussed above, the equations in terms of displacements for all the three theories are given by Equation (D6). These equations take into account all the load cases also. The elements in the column matrices correspond to cases I, II and III, respectively.
129 $u_{,xx} + \left(\frac{1-\nu}{2} + \frac{1-\nu^{*}}{96H^{2}} + \frac{k_{y}^{*}}{12H^{2}}\right)u_{,yy} + \left(\frac{1+\nu}{2} - \frac{1-\nu^{*}}{32H^{2}}\right)v_{,xy} + \frac{\nu}{R}w_{,x}$ $+\frac{1-v}{24H^2} w_{,xyy}^* - \frac{k_y}{12H^2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0$ $\left(\frac{1+\nu}{2} - \frac{1-\nu^{*}}{32H^{2}}\right) u_{xy} + \frac{1-\nu}{2} \left(1 + \frac{1^{**}}{12H^{2}} + \frac{5^{*}}{48H^{2}}\right) v_{xx}$ + $\left(1 + \frac{1^{**}}{12H^2} + \frac{k_y}{12H^2}\right)v, yy - \frac{k_y}{12H^2}v \begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}^{**}$ $+\frac{\mathbf{w},\mathbf{y}}{\mathbf{R}}-\frac{\mathbf{R}}{12\mathbf{H}^2}\mathbf{w},\frac{**}{\mathbf{y}\mathbf{y}\mathbf{y}}$ $-\left(\frac{R^{**}}{12H^2}+\frac{1-\nu}{2}\frac{R^{*}}{12H^2}\right)w,_{xxy}-\frac{k_y}{12H^2}$ $-\frac{\mathbf{w}_{\mathbf{y}}}{\mathbf{R}} \left| \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} - \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix}^{\mathbf{x}} - \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix}^{\mathbf{x}} \right| = \mathbf{0}$ $\left(v - \frac{k_y}{12H^2}\right)u_{,x} + \left(\frac{1-v}{24H^2}\right)R^2u_{,xyy}^* + \left(1 + \frac{k_y^{**}}{12H^2}\right)v_{,y} - \frac{R^2}{12H^2}v_{,yyy}^{**}$ $-\frac{R^2}{12H^2}\left(1^{**}+\frac{1-v^*}{2}\right)v_{,xxy}+\frac{R^3}{12H^2}v_{,w}^4-\frac{Rk_y}{12H^2}w_{,yy}$ $+\frac{W}{R}=0$ (D6)

(D8)

The solution to Equation (D6) satisfying boundary conditions

(D5) is given by

Where

 $u = A_{mn} \cos \frac{m\pi x}{L} \cos \frac{ny}{R}$ $v = B_{mn} \sin \frac{m\pi x}{L} \sin \frac{ny}{R} \qquad n \ge 2$ $w = C_{mn} \sin \frac{m\pi x}{L} \cos \frac{ny}{R}$

Substitution of Equation (D8) into the differential Equation (D6) yields, with the usual arguments, the characteristic equation

Where $\beta = L/\pi R$

$$a_{11} = \frac{1}{\beta^2} + \left(\frac{1-\nu}{2} + \frac{1-\nu^*}{96H^2}\right)\frac{n^2}{m^2}$$

$$a_{12} = \left(\frac{1+\nu}{2} - \frac{1-\nu^*}{32H^2}\right)\frac{n}{\beta}$$

$$a_{13} = \frac{\nu}{\beta} - \frac{1-\nu}{2^{1}4H^2}\frac{n^2}{\beta}$$

$$a_{22} = \frac{1-\nu}{2}\left(1 + \frac{1^{***}}{12H^2} + \frac{5^{**}}{48H^2}\right)\frac{m^2}{\beta^2} + \left(1 + \frac{1^{**}}{12H^2}\right)n^2$$

$$a_{23} = n + \frac{n^{3***}}{12H^2} + \frac{m^2n^{**}}{12H^2\beta^2} + \frac{1-\nu}{2^{1}4H^2}\frac{m^2n}{\beta^2}$$

$$a_{33} = \frac{1}{12H^2} \left(\frac{m^2}{\beta^2} + n^2\right)^2 + 1$$

(D10)

The characteristic equation is cubic for Koiter-Budiansky theory, it is linear for Donnell's theory and quadratic for Sanders theory except for the load case-II which yields linear equation. Buckling load parameter k_{ycr} is found through minimization with respect to integer values of m and n. The results are given in Tables D1 through D3. The plots, showing the effect of $L/\pi R$ and R/hon buckling load parameter k_{ycr} are given for Koiter-Budiansky's theory.

Infinitely Long Cylinder

When the length of the cylinder approaches infinity, the characteristic determinant reduces to

$$\bar{a}_{11}$$
 0 0
 $\bar{a}_{22} + \bar{b}_{22}$ $\bar{a}_{23} - \bar{b}_{23}$
 $\bar{a}_{23} + \frac{k_y n^{2*}}{12H^2}$ $\bar{a}_{33} + \frac{k_y n^2}{12H^2}$

Where

$$\bar{a}_{11} = \left(\frac{1-\nu}{2} + \frac{1-\nu^*}{96H^2}\right) \frac{n^2}{m^2}$$
 $\bar{a}_{23} = n + \frac{n^{3^{**}}}{12H^2}$

$$\bar{\mathbf{a}}_{22} = \left(1 + \frac{1}{12H^2}\right) n^2$$
 $\bar{\mathbf{a}}_{33} = \frac{n^4}{12H^2} + 1$

$$b_{22} = \frac{\frac{k_y}{y}}{12H^2} \begin{pmatrix} 0\\1\\0 \end{pmatrix} + \frac{k_y n^{2*}}{12H^2}$$

$$\bar{\mathbf{b}}_{23} = \frac{\mathbf{k} \mathbf{n}}{12\mathrm{H}^2} \left[\begin{pmatrix} 1\\0\\0 \end{pmatrix} - \begin{pmatrix} 1\\1\\1 \end{pmatrix}^* - \begin{pmatrix} 1\\1\\1 \end{pmatrix}^{**} \right]$$

133

(D11)

(D12)

Table D1. Comparison of Critical Pressures for Load Case I (Load Remaining Normal to the Deflected Surface).

Table D2. Comparison of Critical Pressures for Load Case II (Load Remaining Parallel to Original Direction).

·		· · · · · · · · · · · · · · · · · · ·					· · ·		
L	r R	• Ky _{cr} (m,n)				- ky _{cr} (m,n)			
πR	6.	RODIANSKY-	SAMIERS	DOMIELL	FLUGGE	BIDIANSKY-	SAMERS	DONNELL	
		KOITER ESS.	ECS. (g=0)	EQ3.	ECS.	KOITER EQS.	EQS.	EQS	
1/3 1 3		$\begin{array}{c} 63.0803 (1,6) \\ 18.5825 (1,4) \\ 4.85714 (1,2) \end{array}$	63:27/9 (1,6) 10.6763 (1,4) 4.90818(1,2)	$\begin{array}{c} 62.2779 (1,6) \\ 16.8466 (1,3) \\ \underline{4}.37979 (1,2) \end{array}$	56.8344 18.3576 4.81969	$\begin{array}{r} 64.6432 (1,6) \\ 19.7704 (1,4) \\ 6.43292 (1,2) \end{array}$	64.8289 (1,6) 19.8677 (1,4) 6.50339(1,2)	63.7369 (1,6) 18.5911 (1,3) 5.45461(1,2)	
5	25	3.64562(1,2) 3.29146(1,2) 3.15581(1,2)	3.67395(1,2) 3.30966(1,2) 3.16848(1,2)	3.62703(1,2) 3.40090(1,2) 3.31170(1,2)	3.63389 3.28612 3.15280	4,84230(1,2) 4,37790(1,2) 4,20074(1,2)	4.88133(1,2) 4.40290(1,2) 4.21800(1,2)	4,52430(1,2) 4,24540(1,2) 4,13574(1,2)	
12 15 18	· · · · .	3.01857(1,2) 3.01016(1,2) 3.00642(1,2)	3.04844(1,2) 3.02203(1,2) 3.01255(1,2) 3.00811(1,2)	3.23366(1,2) 3.21590(1,2) 3.20924(1,2) 3.20607(1,2)	3.04180 3.01832 3.01018 3.00648	4.04399(1,2) 4.02345(1,2) 4.01289(1,2) 4.00822(1,2)	4.06175(1,2) 4.02778(1,2) 4.01572(1,2) 4.01011(1,2)	4.04066(1,2) 4.01893(1,2) 4.01094(1,2) 4.00717(1,2)	
100		3.000 (1,2)	3.000 (1,2)	3.200 (1,2)	3.0000	4.000 (1,2)	4.000 (1,2)	4.000 (1,2)	
1/3 1 3 4 5 6 9	35	$\begin{array}{c} 70.5175 (1,6) \\ 20.0807 (1,4) \\ 6.44560 (1,2) \\ 4.15841 (1,2) \\ 3.50361 (1,2) \\ 3.25877 (1,2) \\ 3.06322 (1,2) \end{array}$	70.6990 (1,6) 20.1739 (1,4) 6.49959(1,2) 4.18717(1,2) 3.52174(1,2) 3.27125(1,2) 3.06884(1,2)	69.2578 (1,6) 19.7320 (1,4) 5.32740(1,2) 3.93360(1,2) 3.40090(1,2) 3.37319(1,2) 3.24160(1,2)	64.2228 19.8485 6.39328 4.14377 3.49730 3.25526 3.06219	72.2586 (1,6) 21.3630 (1,4) <u>8.53618(1,2)</u> 5.52306(1,2) 4.63973(1,2) 4.33747(1,2) 4.08124(1,2)	72.4332 (1,6) 21.4609 (1,4) 8.61205(1,2) 5.56322(1,2) 4.68504(1,2) 4.35481(1,2) 4.06175(1,2)	70.9200 (1,6) 20.9160 (1,4) <u>6.63478</u> (1,2) <u>4.90672</u> (1,2) <u>4.40376</u> (1,2) <u>4.21254</u> (1,2) <u>4.04066</u> (1,2)	
12 15 18 100		3.02521(1,2) 3.01306(1,2) 3.00796(1,2) 3.0000 (1,2)	3.02846(1,2) 3.01518(1,2) 3.00936(1,2) 3.0000 (1,2)	3.21977(1,2) 3.21080(1,2) 3.20684(1,2) 3.2000 (1,2)	3.02479 3.01283 3.00776 3.0000	$\begin{array}{r} 4,03202(1,2) \\ 4,01647(1,2) \\ 4,00822(1,2) \\ 4,000 (1,2) \end{array}$	4.02778(1,2) 4.01572(1,2) 4.01011(1,2) 4.000 (1,2)	4.01893(1,2) 4.01094(1,2) 4.00717(1,2) 4.000 (1,2)	
1/3 1 3 4 5		$\begin{array}{c} 81.2253 (1,7) \\ 23.2624 (1,4) \\ \underline{0,71346}(1,3) \\ 5.24750(1,2) \\ 3.95422(1,2) \end{array}$	81, 4036 (1,7) 23, 3564 (1,4) 8, 73450(1,3) 5, 27774(1,2) 3, 97247(1,2)	$\begin{array}{c} 80.4260 (1,7) \\ 22.5340 (1,4) \\ \underline{7.34105}(1,2) \\ 4.58502(1,2) \\ 3.52776(1,2) \end{array}$	76.5172 23.0165 8.70401 5.22727 3.94605	$\begin{array}{c} \textbf{82,7387} (1,7) \\ 24,7470 (1,4) \\ 9,75229(1,3) \\ \underline{6,96932}(1,2) \\ \underline{5,26435}(1,2) \end{array}$	82.915 (1,7) 24.8465 (1,4) 9.81609(1,3) 7.01218(1,2) 5.28665(1,2)	81.8942 (1,7) 23.8860 (1,4) 9.14258(1,2) 5.71928(1,2) 5.71928(1,2)	
6 9 12 15 18	50	3.47728(1,2) 3.10690(1,2) 3.03909(1,2) 3.01879(1,2) 3.01086(1,2)	3.48967(1,2) 3.11219(1,2) 3.04214(1,2) 3.02075(1,2) 3.01205(1,2)	3.50387(1,2) 3.27216(1,2) 3.22793(1,2) 3.21413(1,2) 3.20849(1,2)	3.47299 3.10553 3.03854 3.01847 3.01049	4.62609(1,2) 4.13924(1,2) 4.05034(1,2) 4.02392(1,2) 4.01354(1,2)	4.64558(1,2) 4.08892(1,2) 4.03636(1,2) 4.01922(1,2) 4.01177(1,2)	4.37573(1,2) 4.05593(1,2) 4.02376(1,2) 4.01289(1,2) 4.00813(1,2)	
700		1 3,000 (1,6)	· 3.0000 (1,2)	3,2000 [1,2]	3.0000	■ 4,000 (1,2)	4.000 (1.2)	4.000 (1,2)	

<u> </u>	<u> </u>	· <u>······</u> ···	<u> </u>					
					· ·	3	-	· · ·
			•	•	-		•	
•	Tab	le Dl (Co	ntinued)		1 - 1 ^{- 1}			· · · · ·
					<u> </u>		(Continue)	d)
4/5		108.2980 (1,8)	108.4540 (1,8)	107.3240 (1,8)	104.617	109.871 (1,8)	110.028 (1.8)	108-860 (1.8)
2	í .	10.2176 (1,3)	10.2393 (1,3)	9.91118(1,3)	32.5114	33.9841 (1,5)		33.4135 (1,5)
5	· ·	6.60377(1.2)	8.77140(1,3) 6.62386(1,2)	8.41691(1,2)	8.75541	9.84883(1,3)	9.86203(1.3)	11.0033 (1,3) 9.69453(1,3)
6	100	4.76085(1,2)	4. 77390(1,2)	4.27270(1,2)	0.50579 4.75375	$\frac{8.78166(1,2)}{6.33591(1,2)}$	8.81186(1,2)	6.72025(1,2)
12	ľ	3.3020(1,2) 3.11991(1,2)	3.36719(1,2)	3.42523(1,2)	3.36047	4.47945(1,2)	4.48645(1.2)	5.33586(1,2)
15	1.	3.05276(1,2)	3.05401(1,2)	3.23405(1,2)	3,11942 3,05164	4.15773(1,2)	4.16150(1,2)	4.09416(1,2)
100		3.02092(1,2) 3.0000(1.2)	3.02740(1,2)	3.21803(1,2)	3.02649	4.03407(1,2)	4.03583(1.2)	4.04195(1,2)
1/2	┠───	160 L000 (0	5.000 (1,2)	3.2000 (1,2)	3.000	4.000 (1,2)	4.000 (1,2)	4.000 (1,2)
~í	. .	46.0042 (1.6)	46.0491 (1.6)	146.8130 (1,10)	145.089	148.888 (1,10)	149.007 (1,10)	148.198 (1.10)
- 2		16.2343 (1,3)	16.2578 (1,3)	14.7208 (1,3)	45.9022	47.2936 (1,6)	47.3399 (1,6)	46.7699 (1,6)
5	· · · .	9.13090(1.3)	10.6938 (1,3)	10.2667 (1,3)	10.6766	12.0100 (1,3)	12.0235 (1.3)	16.3429 (1,3)
6	200	8.56219(1,3)	8.56709(1,3)	<u>7.34714(1,2)</u>	9.12823 8.56120	10.2678 (1,3)	10.2766 (1,3)	10.0178 (1,3)
12		3.44510(1.2)	4.38558(1,2) 3.46548(1,2)	4.03694(1,2)	4.38023	5.83791(1,2)	5.84335(1,2)	9.17532(1,2)
15		3.18545(1,2)	3.18513(1,2)	3.31345(1,2)	3,44295	4.59019(1,2) 4.24453(1,2)	4.59216(1,2)	4.33495(1,2)
100		3.09366(1,2) 3.0000(1,2)	3.09109(1,2)	3.25589(1,2)	3.09052	4.11986(1,2)	4.245 (0(1,2)	4.14118(1,2)
1/2	└╌╌╴╎		0.0000 (1,2)	3.2000 (1,2)	3.000	4.000 (1,2)	4.000 (1,2)	4.000 (1,2)
~í		64.3705 (1.12)	203,2650 (1,12)	202.6430 (1,12)	201.584	204.628 (1,12)	204.719 (1,12)	203.994 (1.12)
3		20.6862 (1,4)	20.6942 (1,4)	20.0935 (1,4)	20.6762	65.6927 (1,7) 22.0579 (1.4)	65.7271 (1,7)	65.0892 (1,7)
5	ļ	12.2990(1.3)	16.8657 (1,4)	16.4148 (1,3)	16.8589	17.9821 (1,4)	17.9865 (1,4)	21.3390 (1,4)
6	400	10.0955 (1,3)	10.1005 (1,3)	9.78543(1,3)	12.2915	13.6294(1,3) 11.3547(1.3)	13.8375 (1,3)	12.6285 (1,3)
22		$\frac{0.40744(1,2)}{4.75158(1,2)}$	8.46824(1,2) 1.73146(1,2)	$\frac{6.48378(1,2)}{5.24178(1,2)}$	8.45927	9.48360(1,2)	9.45811(1,2)	10.8704(1,3) 8.10134(1.2)
15	· ·	3.72294(1,2)	3.71222(1,2)	3.63218(1,2)	4.73706	6.32005(1,2) 4.95645(1,2)	6.30613(1,2)	5.30097(1,2)
100		3.35360(1,2) 3.0000(1,2)	3+33673(1,2)	3.40962(1,2)	3.34664	4.45386(1,2)	4,44820(1,2)	4.53954(1,2)
1/1		312 522 (1.34)	5.0000 (1,2)	3.2000(1,2)	3,000	4.000 (1,2)	4.000 (1,2)	4.000 (1,2)
~ĭ		102.0960 (1,9)	313.569 (1,15)	312.8530 (1,15)	312,420	314.916 (1,15)	314.932 (1,15)	314.207 (1.15)
21		33.0159 (1.5)	33.0000 (1,5)	32.3756 (1,5)	33.0023	103.342 (1,9) 34.4050 (1.5)	103.311 (1,9)	102.789 (1,9)
5		19.5872 (1.4)	25.9950 (1,4)	24,7614 (1,4)	25.9913	27.7359 (1,4)	27.7231 (1,4)	33.0000 (1,5)
6	1000	17.23(2 (1,6)	17.2028 (1,4)	16.9998 (1,4)	19.5422	20.8541 (1,4) 18.3556 (1,4)	20.8439 (1,4)	20.4319 (1,4)
12		8.82115(1.3)	10.5247 (1,3) 8.70812(1,3)	10.1401 (1,3)	10.5494	11.8620 (1,3)	LL.8309 (1,1)	10.0611(1,4) 11.2230(1.3)
25		7. hor nº (1,2)	7. 39791(1,2)	5.833(0(1.2)	7.43017	9.92311(1,3)	9.07723(1,3)	9.7324 (1,3)
100	· ·	5.21707(1,2)	5.20652(1,2)	h. 4(alig 1,2)	5.13949	6.8%061(1,2)	9.33145(1,3) 6.78040(1,2)	7.29077(1,2)
بل ا	للـــــ		2:000 (1:5)	5+2000 (1,2)	3.000	4.000 (1,2)	4.000 (1,2)	1.000 (1.2)

 k_{ycr} is obtained through minimization with respect to integer values of m and n. For this particular case m = 1 and n = 2 lead to the critical load parameters. The values for the three load cases and the three theories are given in Table D4. An order analysis was performed to arrive at these values which are independent of R/H.

Discussion of Results

The characteristic Equation (D9) is solved numerically for all three shell theories (Koiter-Budiansky, Sanders, and Donnell) and for all three load cases through the UNIVAC 1108 High Speed Digital Computer. The results are presented in a tabular form in Tables D1 through D3 and graphically in Figures D2 through D5. In addition to the computed data the results of the Von Mises solution are presented in Table D1 for comparison purposes.

The comparison shows that for all the load cases and the entire range of the parameters considered ($L/\pi R$ and R-h) the results due to the Koiter-Budiansky and Sanders shell theories are virtually the same. The discrepancy is less than 1 percent. If the Donnell results are compared to those of the Koiter-Budiansky theory some discrepancies are observed. For load case I, it is seen from Table 1, that for each R/h value, the Donnell result is smaller than the Koiter-Budiansky result for small values of $L/\pi R$. Depending on the value of R/h as $L/\pi R$ increases a reversal takes place and the Donnell result is higher, with the discrepancy reaching a 6.7 percent at very large values of $L/\pi R$. For example, at R/h = 25 the reversal takes place somewhere between $L/\pi R$ equal four and five, for R/h = 35 the reversal takes place between $L/\pi R$ equal five and six, and in general the value

					· · · · _
L	R	-ky _{cr} (m,n)	<u>R</u>	cr	(m,n)
πR	h	BUDIANSKY- SAND	RS h	BUDIANSKY-	SANDERS
		KOITER EQS. EQ	5.	KOITER EQS.	EQS.
1/3 1 34 5 6 9 12 15 18 100	35	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1,6) (1,4) (1,4) (1,2	$\begin{array}{c} 148.903 & (1,10) \\ 47.3328 & (1,6) \\ 17.7625 & (1,4) \\ 12.2014 & (1,4) \\ 10.4321 & (1,3) \\ 9.78245(1,3) \\ 6.56944(1,2) \\ 5.16476(1,2) \\ 4.77557(1,2) \\ 4.63516(1,2) \\ 4.5000 & (1,2) \end{array}$	$\begin{array}{c} 149.023 & (1,10) \\ 47.3792 & (1,6) \\ 17.7750 & (1,4) \\ 12.2153 & (1,3) \\ 10.4411 & (1,3) \\ 9.78873 & (1,3) \\ 6.57589 & (1,2) \\ 5.16713 & (1,2) \\ 4.77706 & (1,2) \\ 4.63620 & (1,2) \\ 4.5000 & (1,2) \end{array}$
1/3 1 3 4 5 6 9 12 15 18 100	50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1,7) (1,4) (1,3) (1,2	$\begin{array}{c} 204.639 & (1,12) \\ 65.7290 & (1,7) \\ 22.1543 & (1,4) \\ 18.0626 & (1,4) \\ 14.0496 & (1,3) \\ 11.5353 & (1,3) \\ 9.63450(1,3) \\ 7.11114(1,2) \\ 5.57656(1,2) \\ 5.01094(1,2) \\ 4.5000 & (1,2) \end{array}$	204.730 $(1,12)$ 65.7560 $(1,7)$ 22.1659 $(1,4)$ 18.0674 $(1,4)$ 14.0583 $(1,3)$ 11.5409 $(1,3)$ 9.63220 $(1,3)$ 7.09569 $(1,2)$ 5.56759 $(1,2)$ 5.00464 $(1,2)$ 4.5000 $(1,2)$
1/3 1 3 4 5 6 9 12 15 18 100	100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} (1,8) \\ (1,5) \\ (1,3) \\ (1,3) \\ (1,3) \\ (1,2) \\ (1,2) \\ (1,2) \\ (1,2) \\ (1,2) \\ (1,2) \\ (1,2) \\ (1,2) \\ (1,2) \end{array} $	314.880 (1,15) 103.353 (1,9) 34.4646 (1,5) 27.8601 (1,4) 20.9430 (1,4) 18.4372 (1,3) 12.0352 (1,3) 10.0807 (1,3) 9.50111(1,3) 7.70723(1,2) 4.5000 (1,2)	314.938 $(1,15)$ 103.327 $(1,9)$ 34.4488 $(1,5)$ 27.8472 $(1,4)$ 20.9371 $(1,4)$ 18.4302 $(1,3)$ 12.0270 $(1,3)$ 10.0544 $(1,3)$ 9.4608 $(1,3)$ 7.62858 $(1,2)$ 4.5000 $(1,2)$

(Load Directed Toward Original Center of Curvature)

Table D3. Comparison of Critical Pressures for Load Case III.

of $L/\pi R$ at which the reversal takes place increases with increasing R/h. In addition, it is seen that the discrepancy in the two results is appreciable only in a small range of $L/\pi R$ values for each R/hvalue. For example, at R/h = 25, the discrepancy is 12 percent at $L/\pi R \approx 3$ decreases with further increase in $L/\pi R$, and finally after the reversal takes place it reaches a maximum value of -6.7 percent as $L/\pi R \rightarrow \infty$. The value of $L/\pi R$ at which the discrepancy is the largest increases with increasing value of R/h. These critical loads are underlined in Table D1. The largest discrepancies occur at L/nR values for which the circumferential mode changes to n = 2. But the discrepancy is not affected by the fact that n = 2 as seen from increasing values of $L/\pi R$. The maximum discrepancy computed is 24.3 percent at $L/\pi R = 9$ and R/h = 400. Finally, it is observed that for practical engineering uses of thin cylindrical shells, especially of the submarine hull type, for which $1 < L/\pi R < 4$, and 100 < R/h < 400, the accuracy of the Donnell results is very good. It is also observed from Table D1 that the Von Mises solution which is based on Flügge's equations is extremely accurate (discrepancy less than one percent) except for short and relatively thick thin cylindrical shells $(R/h \le 35, L/\pi R < 1)$. For these geometries the discrepancy can be as large as 11 percent.

For load case II, the same conclusion and observations are made, based on the data presented in Table D2. There is only one exception, that there is no reversal taking place. The Donnell results are always smaller than the Koiter-Budiansky results and they become virtually identical for very long cylinders. For load case III no attempt has been made to compare the Donnell results to those of the Koiter-Budiansky theory, because the Donnell equations do not differentiate between load case II and III. Because of this one might say that the Donnell results are in error for this load case.

The plots in Figures D1 through D3 show the effect of R/h and $L/\pi R$ on the critical pressure as obtained from the Koiter-Budiansky theory. It is observed from these plots (Figure D1) and Table D1 that the discrepancy between these results and the Donnell results is the largest when the curves exhibit sharp corners. The same is true for load case II (Figure D2 and Table D2).

Table D ¹ 4.	Comparison of Critics for Infinitely Long (al Pressures Cylinders.
	- ky _{cr}	
DONNELL EQUATIONS	SANDERS EQUATIONS	BUDIANSKY KOITER EQUATIONS
3.2	3.0	3.0
4.0	4.0	4.0
· · ·	4.5	4.5

Figure D4. Effect of Load Behavior on Buckling Load Koiter-Budiansky Equations.

Finally, the plots in Figure D4 show the effect of load behavior on the critical pressures for the entire range of R/h and L/ π R values. It is observed that for short to moderate length cylinders the difference among the results obtained is not appreciable. As the length increases the difference becomes more pronounced, especially for low R/h values, until for extremely long cylinders the difference reaches its maximum value and it is independent of R'h (see Table D4).

Conclusions

Among the most important conclusions of the present investigation one may list the following:

1. For each type of load behavior, the Donnell equations yield results which are within acceptable engineering tolerances, especially in the practical range of R/h and $L/\pi R$ values.

2. Contrary to previous belief, the discrepancy is not associated with the number of circumferential waves. (The previous belief is that when n is very low (n=2) the discrepancy is the largest (of the order of 33 percent)). The authors contend that the fallacy of the above belief is attributed to the load behavior model rather than the Donnell equations.

3. Load case II may be used as a mathematical model for pressure buckling for short and moderate length cylinders. For extremely long cylinders this model is inaccurate and leads to overestimates of 33 percent (see Table D4).

F	lefe	ren	ce	s

	· ·
1.	Hoff, N. J., "The Accuracy of Donnell's Equations," <u>Journal of</u>
	Applied Mechanics, Vol. 22, No. 3, Trans. ASME, Vol. 77, Septem-
	ber 1955, pp. 329-334.
2.	Dym, C. L., "On the Buckling of Cylinders in Axial Compression,"
• .	Journal of Applied Mechanics, Vol. 40, No. 2, Trans. ASME,
· · · . ·	June 1973, pp. 565-568.
.3.	Koiter, W. T., "General Equations of Elastic Stability for
	Thin Shells," Muster, D., ed., Proceedings, Symposium on the
· ·	Theory of Shells, University of Houston, Houston, Texas, 1967.
4.	Budiansky, B., "Notes on Nonlinear Shell Theory," Journal of
	Applied Mechanics, Vol. 35, No. 2, Trans. ASME, Vol. 90,
	Series E, June 1968, pp. 393-401.
5.	Sanders, J. L., "Nonlinear Theories of Thin Shells," Quarterly
	of Applied Mathematics, Vol. 21, 1963, pp. 21-36.
6.	Timoshenko, S. P., and Gere, J. M., Theory of Elastic Stability,
•	McGraw-Hill Book Company, Inc.
7.	Flügge, W., Stresses in Shell, Springer-Verlag, Berlin, 1962.

APPENDIX E

LISTING OF COMPUTER PROGRAMS

Following programs are written in this Appendix:

1. MAIN: Nelder and Mead algorithm employed for minimization of objective function formulated on the basis of general instability. The shell is ring-stringer stiffened.

2. MAINY: Nelder and Mead algorithm employed for minimization of objective function formulated on the basis of skin yielding. The shell is ring-stringer stiffened.

3. MAINR: Golden section search technique employed for minimization of objective function formulated on the basis of general instability. The shell is ring stiffened.

4. MAINP: Golden section search technique employed for checking panel buckling.

5. RSSH: The program is written for designing ring stiffened shell based on the results of Phase I.

6. SUBROUTINE START: This sets up the initial simplex for Program MAIN.

7. SUBROUTINE STARTY: This sets up initial simplex for program MAINY.

8. SUBROUTINE WSR: This defines the objective function for program MAIN.

9. SUBROUTINE WSRR: This defines the objective function for

program MAINR.

10. SUBROUTINE WSRY: This defines the objective function for program MAINY.

11. SUBROUTINE GENST: This program finds the general insta-

147

bility critical load parameter treating m and n as discrete variables.

12. SUBROUTINE CKYR: This gives the expression for \bar{k}_{yy} .

13. FUNCTION Q: This gives expression for \bar{k}_{yy} , treating m as continuous variable.

14. FUNCTION R: This gives expression for \bar{k}_{yy} , treating m as an integer.

The list of program variable names and corresponding mathematical notations are given as follows

Program Variable Name Mathematical Notation DIFER Standard deviation of \bar{W}^* II . Number of iterations KYCR ^kyyer М m N n PO ODS 9_D QY σ* RR or R R WBAR Ŵ WSS or WSL ₩¥ minimum WS(IN) ₩¥ X(1) or X1(KOUNT,1) $\bar{\lambda}_{\mathbf{X}\mathbf{X}}^{\cdot}$ X(2) or X1(KOUNT,2) л уу **X(**3) λ* ZZ or Z Z

ASW	AN I	5¥OPTIM.	MAIN MINIMIZATION OF WEIGHT OF CITTEENED	CTOCHU AD
	1	L L	WINIMIZATION OF WEIGHT OF STIFFENED	ATIC
	3	Č .	DECCHER AND AVIAL SPECE SPOULLIN PROVOUL	ATIC
	- О - Л	, C	NY TE NUMBER OF INDERFNITENT VARIARIE	c
	म्	č	SIEP IS THE INITIAL SIEP SIZE	
•	6	č	X(I) IS THE ARRAY OF INITIAL GUESSES	
	7	č	X(1) IS NONDEMENSIONAL EXTENSIONAL	
	8	č	STIFFNESS PARAMETER FOR STRINGER	
	Ģ	ċ	X(2) IS NONDIMENSIONAL EXTENSIONAL	
	10	Ċ	STIFFNESS PARAMETER FOR RING	
	- 11	с	ZZ IS CURVATURE PARAMETER	
				· · · ·
	12	· C	M OR EM IS NUMBER OF LONGITUDINAL	1
	13 1	С	HALF WAVES	· · ·
		•	-2 , -2 ,	
:	14	c	QDS IS NONDIMENSIONAL DESIGN	
	15	с	LOAD PARAMETER	
	16	c	WS(IN) IS COMPOSITE WEIGHT	
	17	C	FUNCTION	
	18	с	WBAR IS WEIGHT PARAMETER	
	19	Ç	PO IS POISSON RAFIO	
	20	C	AX IS STRINGER FLANGE TO WEB	
	21	C	THICKNESS RATIO	i i i i i i i i i i i i i i i i i i i
	22		AY IS RING FLANGE IU WEB	·.
	20		PARTY IC CTRINCER FLANCE WIRTH	
	24 25		TA WED DEDYN DATIA	
	20	č	RY TO DIALA FLANCE WINTH TO	· .
	20	C	DI 13 MINO I EXHACE MIDHIN IO	
	27	с	WEB DEPTH RATIO	
	28	С	CX IS STRINGER SHAPE PARAMETER	
				· ·
:	29	С	CY IS RING SHAPE PARAMETER	$(x_1, \dots, x_n) \in \mathbb{R}^n$
				· · · ·
	- 30	ç	ALX IS NONDIMENSIONAL RADIUS OF	
	31	C	GIRALION OF STRINGER	
	-	a :		
	32	Ċ	OF GYRATION OF RING	; ž
	30	č	RTO IS RATIO OF LENGTH TO	
	35	Ċ	RADIUS OF SHELL	
	36	č	AFA IS RATIO KXX/KYY	
	37	č	N OR EN IS THE NUMBER OF	
	38	č	CIRCUMFERENTIAL WAVES	

39 40	C BU IS BETABAR IN KYY EXPRESSION
41	C SET AFA ZERO FOR ONLY RESCURE
42	$OIMENSION X1(10,10) \cdot X(10) \cdot WS(10)$
43	COMMON/S/X1, NX, STEP, K1, WS, IN
44	COMMON/SS/ALX, ALY, CX, CY, PO, X, ZZ
45	COMMONZAAAZMIN
. 46	COMMON/PPD/TN
h7	
/	
48	COMMON/XX/AFA,RTO
49	WRITE(6,1000)
. 50	1000 FORMAT(//15X, 'GENERAL INSTABILITY FORMULATION'//)
51	READ(5+110)AX+AY+BX+BY+CX+CY+ODS+AEA-PTO-77
52	NX=2
53	PO=.3
55	A(3)=8. WRITE(6.1100)
56	1100 FORMAT(Z8X+1NUL+3X+1CX1+5Y+1CX1+0X++72+ CX +4X+ 1
+4X+*BX*+	
57	15X, 'BY', 5X, 'QDS')
58	WRIFE(6,1200)PO,CX,CY,ZZ,AX,AY,BX,BY,005
54	1200 FORMAT(6X,F5.3,F6.3,F7.3,3X,F8.2,4F7.4,E15.6//)
60	WRITE(6,1300)
61	1300 FORMAT (6X, TALX + 4X, TAL Y + 3X, TWBART, GY, THYOR - 74
5X+*X(2)*+	THE PROPERTY AND
62	15X, *M*, 4X, *N*, 5X, *WPSTAR*, 4X, *DIFFER*, 5X, *TI*)
63	100 READ(5,110,END=900) ALX, ALY

ថ្ង

110 FORMAT()

	- 		'	· .	· · ·			•				· . . · ·	
	65		C -		START WITH A	SSUM	EO VA	LUE C)F X(L) . ANI) X(2)	•	
	610 617				· K (1) = • 1					• .		· .	
	-107 . - 694 .				X(2) = 6		. •	•			,	·	· · ·
	00 - 40			·	うりじ ビー 4 よう								
· .	09 070 -				057X-105	· · ·				· . ·		•	
	70				CAMA-0.0								
	70				01550-0								•
	73				YNY=NX			•					
· .	74												. •
-	75				CALL WSR	· · ·	· .					5	
	76				K1=NX+1		•					:	
•	77				K2=NX+2						· .		
	78				K3=NX+3			•	· · · · ·	•			
	79		· ·		K4=NX+4		· .						
	80				CALL STARE					•			
		•			age and age of the state of the				•				· · · · ·
	81				00 3 I=1.K1		· ·	· ·		•			
	• .	,				•						2	
	'8 <u>2</u> '	· · ·			D0 4 J=1.NX				·• .		:		
	83			. 4	X(J) = XI(I + J)						· · ·	. ·	
	.				•				÷.		· ·		
	84 -				111=1			•		· .	· · .	•	
		· .					÷ .	•		· · ·			
	85 .			7	CALL WSR								
	00		~	Э	CONTINUE	·				· ·		- 18 18	
	87		C.					·	-	· ·	•	• •	•
	80	•		63	11=0 .						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	09			28	- 1 L - 1 L + <u>1</u> - 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	<u> </u>	TO 20						
	90 01				10 TO 888	60	19 60			;			·
	42		c		00 10 000	•							· .
	07		~. ~				AL 116	AC WO		THE CT			· · ·
	90		C	<i>4</i> 0	SELECT LABOR	151 V	ACUE	QF WS	5,6,1,3	104 240	мецех	· · .	
	94			ອບ	WSH=WS(1)				•				
	·				· · · · ·	· -	:.						
	95				INDEX=1								· .
		•						• • •			· .		
	96		÷.		D0 7 1=2+K1	1							
	07				tream the other	act 14	CO T	5. 					
	97				1F(WS(I).LE	W2H)	· 60 T	0.1		•	· · ·		
•	00		2	•				· · ·		·		·	-
	98-				WSHI=WS(I)								
	77		•		INDEX-I			·		· · · · ·		•	•
	100	• .			CONTINUE								
	100		ć	. 1	CONTINUE CELECT MININ	ACTSAL SA	A1-115			TNE CT			• • •
· · · ·	TOT		C.		SELECT MININ	10 DM V	ALUE	UF WS	5(1)	114 21	ሳቸርር እ	· .	
	100				MCL	· · ·		. •				•	· .
	103				KOUNTE1								
	104				DO 8 1=2.K1					•		·. ·.	
	<u> </u>	•								·			
										· .	• .	÷	
				· •						5- 		·	
						. *							

105 IF(WSL.LE.WS(I)) GO TO 8 106 WSLEWS([) 107 KOUNT=I 108 8 CONFINUE 109 FIND CENTROID OF POINTS WITH I DIFFERENT THAN INDEX С. 110 D0 9 J=1,NX WS2=0. 111 112 DO 10 I=1.K1 10 WS2=WS2+X1([,J) 113 X1(K2,J)=1./XNX*(WS2-X1(INDEX,J))114 115 C FIND REFLECTION OF HIGH POINT THROUGH CENTROID. 116 X1(K3,J)=(1.+ALFA)*X1(K2,J)-ALFA*X1(INDEX,J) 117 IF(X1(K3+J)+LT+0+) X1(K3+J)=0+ 118 9 X(J)=X1(K3,J) 119IN=K3 120 CALL WSR IF(WS(K3).LT.WSL) GO TO 11 121 122 SELECT SECOND LARGEST VALUE IN SIMPLEX C 123 IF(INDEX.EQ.1) GO TO 38 124 WSS=WS(1) 125 GO TO 39 126 38 ₩SS≠₩S(2) 127 39 D0 12 I=1,K1 128 $IF((INDEX-I) \cdot EQ \cdot 0) = GO = TO = 12$ 129 IF(WS(I).LE.WSS) GO TO 12 130 WSS⊆WS(I) 131 12 CONTINUE 132 IF(WS(K3).GT.WSS) GO TO 13 133 GO TO 14 134 . C. FORM EXPANSION OF NEW MINIMUM IF REFLECTION HAS PRODUC ED ONE MINIMUM

135	11 DD 15 J=1+NX
136	X1(K4)J) = (1, -GAMA) * X1(K2, J) + GAMA * X1(K3, J)
1.37	IF (X1(K4+J)+LT+0+) X1(K4+J)=0.
138	15 X(J)=X1(K4+J)
130	IN=K4
144	CALLWSR
141	$\mathbf{I} \in \mathcal{I} \cup $
122	GO = TO = 14
1 <u>4</u> 7	13 TE (NS(K3) GT NSH) GO TO 17
▲ TT	
	10 VICINDER IN-MARKER IN
1. 1. 2	$\frac{10}{17} \frac{10}{10} \frac{1}{10} \frac{1}{10}$
	UT DO 19 DELINA
	$XI(K4+J) = BE + A + XI(INDEX+J) + (I_0 = BE(A) + XI(K2+J)$
	IF (X1(K4+J).LT.0.) X1(K4+J)=0.
	$14 \times (J) = \times 1(K4 \cdot J)$
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	IN=K4
10:	CALL WSR
157	1F (WSH.G1.WS(K4)) GO TO 16
153 C	REDUCE SIMPLEX BY HALF IF REFLECTION HAPPENS TO PRODUC
A LARGER .	
154 C	VALUE THAN THE MAXIMUM
155	DO 20 J=1+NX
156	DO 20 I=1,K1
157	$20 \times 1(I + J) = 0.5 * (\times 1(I + J) + \times 1(KOUN[+J]))$
158	DO 29 I=1.K1
159	DO 30 J=1.NX
160	$30 \times (J) = \times 1(I + J)$
101	n de CALL WSR de la construction de
162	
163	29 CONTINUE

. .

· · · · · · · · · · · · · · · · · · ·	
164	
165	
103	
167	XI(INDEX,J) = XI(K4,J)
107 169	$21 \times (J) = x_1 (INDEx_J)$
100	
160	
10-1	CALL, WSR
170	GO TO 24
- 171	
172	$\frac{1100}{22} = \frac{11100}{21}$
173	22 $X(.) = X1(INDEX.)$
174	IN=INDEX
175	CALL WSR
176	26 DO 23 J=1.NX
177	$23 \times (J) = \times 1 (K_2, J)$
178	IN=K2
179	CALL WSR
180	C. TO TERMINATE THE SEARCH DIFER MUST BE LESS THAN ERSILO
181	DIFER=0.
102	00 24 1=1,K1
100 180	24 DIFER=U1FER+(WS(I)/WS(K2)-1.)**2
195	DIFER=SORT(1./(XNX+1.0)*DIFER)
196	IF (DIEER.0500001) GO 10 28 "
197	$\frac{1}{1} = \frac{1}{1} + \frac{1}$
100	$1 \land 1 \land$
100	WRITELOFIUL) ALX: ALY: WBAR: TN: (X1(KOUNT: J): J=1, NX): M: N: W
189	101000.11
102	i de la contra de la En la contra de la co
IGU	101 FORMAT(1X)F8.1)F7.1,F10.5)F11.2,2F10.5,F5,I5,F10.5,E12
•5•15)	
191	
103 103	FAD
193	na an an ENU an ann an Anna ann an Ann Anna ann an Anna

ASWAN(-M-G*OPTIM,START

ł

:

с	SUBROUTINE START THIS PROGRAM SETS UP THE INITIAL SIMPLEX DIMENSION X1(10,10),X(10),WS(10),A(10,10)
	COMMON/S/X1,NX,STEP,K1,WS,IN
	COMMON/SS/ALX+ALY+CX+CY+PO+X+ZZ
	COMMON/XX/AFA.RTO VN=NX STEP1=STEP/(VN*SQRT(2.))*(SQRT(VN+1.)+VN+1.) STEP2=STEP/(VN*SQRT(2.))*(SQRT(VN+1.)+1.)
1	$\begin{array}{l} 00 & 1 & J=1, NX \\ A(1,J)=0, \\ 00 & 2 & I=2, K1 \\ 00 & 2 & J=1, NX \\ A(I,J) \pm STEP2 \\ L \pm I-1 \\ A(I,L) \pm STEP1 \end{array}$
2	CONTINUE DO 3 [=1;K1 DO 3 J=1;NX
	X1(L)J)=X(J)+A(L)J) RETURN END

ASWANI-M-G*OPTIM.WSR

	SUBROUTINE WSR
C .	THIS SUBROUTINE DEFINESTHE OBJECTIVE
C	FUNCTION FORMULATED ON THE BASIS
C .	OF GENERAL INSTABILITY
	DIMENSION X1(10,10),X(10),WS(10)
	COMMON/S/X1,NX,STEP,K1,WS,IN
	COMMON/SS/ALX, ALY, CX, CY, PO, X, ZZ
С	COMMON/EE/88, EM, CKYR
	COMMON/SR/QDS
·. ·	COMMON/XX/AFA,RTO
· ·	COMMON/PPO/TN

COMMON/AAA/M.N		
00 10 J=1.NX		
10 $\text{TE}(X(J), (T, 0,), X(J) = 0$.	 4	

.10	DO 10 J=1.NX IF(X(J).LT.0.)	x(J)=0.		

	COMPOUNT A A AZ MININ	
	DO 10 J=1+NX	
0	IF(X(J).LT.0.) X(J)=0.	
		· .

•LT.0.) X(J)=0.			:		
NST(PCR)		. : - 0		104	- b -

			÷., .					•				
NETIOCON		•		- i							. •	
NSTUREN					,							
1.0+(X(1)+	X(2))	10	1.	-90)*P())+	10**	XC	3)*	ABS	5 (TA	١
- • - · · - ·												

NSICECRI	۰.	· .
:1.0+(X(1)+X(2))/	(1P0*P0)+10**)	((3)*ABS(TN/(22*

	P CIVI					
[N]=1.0+	(X(1)+X()	2))/(1	P0*P0)+1	0**X(3	3)*ABS(TNZ (Z.
				· .		

	V L 1						
S(IN)=1.0	+(X(1)	+X(2))/(1P0*P0)	+10**	•X(3)*	ABS(TN

CALL	GENSTOPCH	() ⁻	۰.		•
WS(IN	<pre>v) =1.0+(×(</pre>	1)+X(2))/(1F	PO*PO)+10	1**X(3)*AB9	5 (TN,
		and the second			

1Z2)-X(1)*X(2)/((1.-P0*P0)**2*ALY)

RETURN ENO

22)-QDS* 17

 $\mathbf{18}$

14

16

: <u>.</u>	
ASWANI-M-G*OPTIM.	JENST
1	SUBBOULTINE GENSTIFE)
2 C	THIS SUBROUTINE IS FOR FINDING KYYCR
3 C	TREATING M AND M AS INTEGERS
<u>ц</u>	
5	COMMONZEREZEN
6	COMMONZYYZROXX, ROYY, EX, EY
7	IK=0
8	IL=0
9	IR=0
10	1 5=0
11	NL=2
12 102	N=NL
13	JJ=1 Jack and the state of the
14	M=1 hard state of the state of
15 40	NT≖N
16	MT≖M
17	NAIO
18	MA=1
19	NB=8
20	MB=30
21 17	N=N-1
· · ·	
22	IF(N-NA) 42+41+41
23 42	N=N+1
24 41	CALL CKYR (TAPNOMOALDIK)
25	NINTL CALL CKNDATC NUM AL FXI
20	LCALL CNTRATOPNEMERINJ TEETALTON 1.0.0
27	1F(1A-10) 1/2/2 [F(1D) 3.0.3
20 1	
2.2 Z	TEINANDA DE DE DE
31 45	$\Gamma N = \Gamma P$
30 70	N = N = 1
JC 33	60 TO 7
34 46	
54 40	CALC CRIMINERLYIN
	10/TU TON 10 10 11
30 36 4	IF (D= (C) LU+LU+LL N=N=2
37	TETN) 43.444.4/
38 43	TN=FA
39	NSN+1.
40	60 TO 7
41 44	CALL CKYR(TD) MOMONIALO IK)
42	IE(TA-TD) 5,5,6

!

i

157

;

43 5 IN=IA 44 N=9+1 45 GO TO: 7 46 6 NB=N 47 N=(NA+NB)/248 GO TO 8 49 3 IF (2-NB+NA) 6,6,9 9 TN=TA 5051 N=N-1 52GO TO 7 10 TN≍FB 53 54 N=N−1 55 GO [[0] 7 56 11 IF(IR) 15+13+15 57 13 N=N+1 IF (N-8) 48+48+47 5859 47 TN=IC 60 11=11-1 61 GO TO 7 48 CALL CKYR(FD+N+M+AL+IK) 62 63 IF(TC-TO) 14+14+15 64 14 IN=IC 65 N=N-1 GO TO 7 66 15 IF (2-NB+NA) 12, 12, 12, 16 67 68 16 IN⊐IC 69 GO TO 7 70 12 NA=N N=(NA+NB)/271 72 8 IR=IR+1 GO TO 17 73 74 7 IF(IJ) 104+104+103 75 103 T1=TN IJ=0 76 77 NLEN 78 N=3 79 M=5 80IR=0 GO [O 40 : 81 104 M=M-1 82 1 83 [E(M-MA) 49,50,50

ł

84 49 M=M+1 85 50 CALL CKYR(TA, N, M, AL, IK) 86 M=M+1. 87 CALL CKYR(TB,N,M,AL,IK) -88 IF(TA-TB) 19,20,20 19 IF(IS) 21+22+21-89 90 20 M=M+1 IE(M-MB) 51,51,52 91 52 TH=TB 92 M≕M−1 93 GO TO 25 94 51 CALL CKYR(TC+N+M+AL+IK) 95 IF(TB-TC) 28+28+29 96 97 22 M=M-2 IF(M) 53,53,54 98 90 53 TN=TA M=M+1 100 GO TO 25 101 54 CALL CKYR (TD) N. M. AL. IK) 102 IF(TA-TO) 23,23,211 103 104 23 TN=TA M = M + 1105 60 10 25 106 211 MB≭M 107 M = (MA + MB)/2108 GO TO 26. 109 21 IF(2-MB+MA) 211,211,27 110 111. 27 TN=TA ⊴M⊐1 112 GO TO 25 113 28 [N=[B 114 M=M-1 115 60 TO 25 116 29 (F(IS) 33,31,33 117 31 M=M+1 118 IF (M-30) 55,55,56 119 56 TN=FC 120 M=M-1 121 GO TO 25. 122

159

123 55 CALL CKYR(TD+N+AL+IK) 124 IF(TC+TD) 32+32+33 125 32 TN=FC

126 127 M=M-1 GO TO 25 128 33 [F(2-MB+MA) 30,30,34 129 34 TN≑TC 60. TO 25-130 131 30 MA=M M=(MA+MB)/2 132 133 26 IS=IS+1 134 GO TO 7 13525 IF(N-NT) 40,36,40 .136 36 IF(M-MT) 40+37+40 137 37 NB=N+3 138 D0 60 [=1,2 139 NB=NB+2 140 IF(NB) 60,65,65 141 65 IF(NH+8) 61,61,60 142 61 MB≏M+3 143 00 70 J=1+2 144 MB=MB+2 145 [F(MB) 70,70,64 64 IF(M8-30) 62+62+70 146 62 CALL CKYR(TA, NB, MB, AL, IK) 147 IF(TA-TN) 63+63+70 % 148 70 CONTINUE 149 15060 CONTINUE IF(N.EQ.0) GO TO 100 151 IF(N-M) 101,100,100 152 101 NI=N 153154M [≃M IF(T1.LT.IN) GO TO 105 155RETÜRN 156105 TN=T1 157 NENL 158159М=1 160 RE FURN 161 63' N=N8 м≘МВ 162 GO TO 40 163 164 100 IL=IL+1 IF(IL.GT.1) REFURN 165 **16**6 N≃5 167 M=30 -168GO TO 40 169 END

ł

ASWANI-M-G*OPFIM.CKYR SUBROUTINE CKYR(U+N+M+AL+IR) THIS SUBROUTINE DEFINES THE PARAMETER KYYBAR DOUBLE PRECISION A1, A2, A3, A4, A, B, C, E, G 3. DIMENSION X(10) COMMON/SS/ALX+ALY+CX+CY+PO+X+ZZ COMMON/YY/ROXX, ROYY, EX, EY COMMON/XX/AFA, RTO IF(N.EQ.0) GO TO 2 8 **q** IF(IR.EQ.1) GO TO 1 10 IR=1 11 $ROXX = A \in X * A \in X * X(1)$ 12 ROYY=ALY*ALY*X(2)13 EX=-3.14+3.14+SQRT(1.-PO*PO)+(1.+CX+ALX)/(2.0+ZZ) 14 EY = -3.14 + 3.14 + SQRT(1. - PO + PO) + (1. + CY + ALY) / (2.0 + Z/)15 1 XN=N 16 хм=М 88=XN*R[07(3.14*XM) 17 A1=(1,+88*88)**2+X(1)+X(2)*88**4+2,*88*88*(X(1)+X(2)+X 18 (1) * X(2)) /19 1(1.-00) A2=(1.+BB*BB)**2+ROXY+ROYY*BB*74 20 A3=12.*ZZ*ZZ/(3.14**4*(1.-PO*PO)) 21 A4=EX*EX*X(1)+2.0*EX*EX*X(1)*(1.-P0+X(2))*B3*BB/(1.-P0 22)+(EX*EX* 1X(1)*(1.+X(2))+2.0*(1.+P0)/(1.-P0)*EX*EY*X(1)*X(2)+EY* 23. EY*X(2)*(1.+ 2X(1)))*BB*+4+2.0*EY*EY*X(2)/(1.=PO)*(1.=PO+X(1))*BB**6 24 +EY*EY*X(2)

25 3*88**8 26 A=A1*A2+A3*A4 27 A5=-2,*P0*EX*X(1)+2.*(EX*X(1)*(1.+X(2))+EY*X(2)*(1.+X(1)))*88*88 28 1=2.*P0*EY*X(2)*88**4

B=A3*A5 C=A3*((1.+X(1))*(1.+X(2))-P0*P0) F=(RT0/3.14)**2*((1.+B8*B3)*(EX*X(1)+EY*X(2)*88**4)+2.

, Evappapping () ()

E ALLA

*88*88/(1.-P0

29

.52	10/ + (\(1/ + \		
33	G=(RT0/3.1	4)**2*((1.+83*88)*(P0+88*83)+83*89/(1.	-P0)*(
2•*X(1)+	x(2)		
34	1+P0*X(2)+2	2.*X(1)*X(2))+X(2)*88**4)	
35	U ≍(A *XM**4	++B*XM**2+C)/(F*XM**2+G)	
36	RETURN	and the second secon	
37	2 U=1.E+30		
38	RETURN		· · ·
39	END		

			. • .	ч. 		
ACMANT.	-M-G+OUTIM	MATND	· · ·		n na na na Na na n ana an	
ASWANT 1 2 3 4 5	C C C C C	THIS PROGRAM IS OBJECTIVE FUNCT THE BASIS OF GE THE CYLINDER IS	S FOR MINIMI LION FORMULA INERAL INSTA S RING STIFF	ZATION OF ATED ON AHILITY FENED		
6		DIMENSION X(10)	•WS(10)•X10	100) • X2(100) • x 3(100) •	TICIUUS
• Y2(10) 7	0),	10EL(100)				
8		COMMON/S/IN.WS				
9 10		COMMON/S5/ALX+ COMMON/SR/9DS	ALY+CX+CY+P()+X+Z7	· · · · · · · · · · · · · · · · · · ·	
. 13		COMMON/OPP/TN				
12 13		COMMON/XX/AFA+ Common/AAA/M+N	۲o			
14 15 16 17 18 19		PO=.3 ALX=0. X(1)=.0 CX=1. AFA=0 RTO=3.				
20 21		DATA X(3)+AY+B QDS=.141384E-5	Y/8.,1.,.5/			
22 23	;	CY=(1.+2.*AY*B WRITE(6,90)	Y)/SQRT(1.+	4 .* 4 / *87)		
. 24	c	90 FORMAT(6X+'ENT) WRITE(6+1000)	ER VALUES O	F ALY+2217)		

26 LL D-3000IR'	1000	FORMAT(//10X, 'G.I. OPTIMIZATION FOR RING STIFFENED SHE
27	1	(\mathcal{M}) is a set of the set of
28 29	1100	WRITE(6,1100) FORMAT(/,8X,INU1,3X,ICY1,9X,IZ71,6X,IAY1,4X,IBY1,5X,IG
DSt)		
30		WRITE(6+1200)PO+CY+ZZ+AY+BY+QDS
31 32	1200	FORMAT(6X,F5.3,F6.3,4X,F8.2,2F7.4,E15.6//) WRITE(6,1300)
33	1300	FORMAT(6X++ALY++3X++WBAR++9X++KYCR++7X++X(2)++5X++M++4
XIINI		
34	. 1	L+4X++WPSTAR+)
35	555	READ(5+111, END=999) ALY+22
36	111	FORMAT()
37		DATA X1(1), X2(1), X3(1), F1, EP5/, 001, 1, 4, 0, 381966011.
000001/	•	
38		κ=1
39		L=0
40	25	$(X_{1,2}) = X_{2}(K)$
-70 /i1	<i></i>	TN = 1
42		CALL WSRE
43	- 11	$X(2) = X_3(K)$
44	- ÷	IN=2
45	· · ·	CALL WSRR
46		IF(WS(1)-WS(2)) 10,10,20
47	20	$X3(K) = X3(K) + 0.2 \times X3(K)$
48		IF(X3(K).LT.15) GO TO 11
49	•	u _≕L+1 is a state of the second state of th
50		IF(L.LT.10) GO TO 20
51 52	 	X1(1) = 0.01 X2(1) = 4

1000 FORMAT(//10X, 'G.I. OPTIMIZATION FOR RING STIFFENED SHE

BY*•5x•*9
	· · · ·	. •	
			165
•	53	·	$X_3(1) = 12.0$ F(1) = 17.11 60 F(2.5)
· ·	55	10	DEL(K) = X3(K) - X1(K)
	56	12	Y1(K) = X1(K) + F1 * OEL(K)
	57		$Y_2(K) = X_3(K) - F_1 * DEL(K)$
	58		X(2)=Y1(K)
	59		IN=1 the second se
-	60		CALL WSRR
	61		X(2)=Y2(K)
•	63	na an a	CALL WSRR
	64		IF(WS(1)-WS(2)) 30+31+32
	65	30	DEL(K+1) = Y2(K) - X1(K)
	66		X1(K+1)=X1(K)
	67 68	· ·	X3(K+1)≐Y2(K) K=K+1
	69		IF(ABS((X3(K)-X1(K))/X3(K)).LT.EPS) GO TO 40
	570 · ·	31	$\begin{array}{c} 60 T0 12 \\ DE1 (K+1) = Y2(K) = X1(K) \end{array}$
,	72	J1	X1(K+1)=Y1(K)
	73		X3(K+1)=X3(K)
• .	74 75		<pre>K=K+1 IF(AHS((X3(K)-X1(K))/X3(K)).LT.EPS) G0 T0 40</pre>
	76		60 ГО 12
		30	O(1) + (1) = (2) + (1)
	• • • • •	Je	$(\mathbf{U}_{\mathbf{V}},\mathbf{v}_{\mathbf{T}}) = \mathbf{V}_{\mathbf{V}}(\mathbf{V}) = \mathbf{U}_{\mathbf{V}}(\mathbf{V})$
	7 8		X1(K+1)=Y1(K)
	79		X3(K+1)=X3(K)
5 T.	ጸብ	• .	★ = ★ + 1
· ·	81		IF(ABS((X3(K)-X1(K))/X3(K)).LT.EPS) GO TO 40
· ·	82° °		$\begin{array}{c} 60 \ \text{TO} \ 12 \\ \mathbf{x}(2) = (x1)(x) + x3(x) + (2) \end{array}$
•	84	70	(N=1
· .*	85 86		CALL WSRR WSS=WS(1)
•	87		WBAR=1.+X(2)/(1PO*PO)
	-88	• .	WRITE(6,101) ALY, WBAR, TN, X(2), M, N, WSS
	89	.101	FORMAT(1X+F8,1+F10,5+F11,0+F10,5+I5+I5+F10+5)
	90		60 TO 555
	91	999	
	76		
	÷.		
· · ·		· 1 .	

ASWANI-M-G*OPTIM.WSRR

Ċ

Ĉ

1

2

3

5

6

7.

8

g

10 11

12

13 14

Z 7)

SUBROUTINE WSRR

THIS SUBROUTINE DEFINES THE OBJECTIVE

FUNCTION FOR RING STIFFENED SHELL C.

BASED ON GENERAL INSTABLLITY

DIMENSION X(10) + WS(10)

COMMON/S/IN,WS

COMMON/SS/ALX+ALY+CX+CY+PO+X+ZZ

COMMON/AAA/M+N

COMMON/PPP/TN

COMMON/SR/QDS

CALL GENST(PCR)

END.

RETURN

WS(IN)=1.+X(2)/(1.-PO*PO)+10**X(3)*ABS(TN/(ZZ*ZZ)-QDS*)

ACTIVALT M. CH	
45w4NI-m-G*t 1 2	C THE OBJECTIVE FUNCTION FORMULATED
5 5	C OPTIMIZATION BASED ON SKIN YIELD DIMENSION X1(10,10),X(10),WS(10)
0 7 8	COMMON/SZXIINATSTEFTKIIWSTIN COMMON/SS/PO+X+ZZ+AL+R COMMON/SR/QY
• 10	WRITE(6,1000) 1000 FORMAT(//15X,'OPTIMIZATION FOR SHELL D-1000-I-F R-R5'/
()	
11	NX=2
12	STEP=.01
13	P0=.3
14 15	AL=594. R≠198.
16 17	YS=120000. DP=3000.
18 19	GW=.0374 Q=GW*DP*12.
20 21	WRITE(6+1100)
22 23	1100 FORMAT(8X+'NU'+12X+'SIG.STAR') WRITE(6+1200)PO+QY
24 25	1200 FORMAT(6X+F5.3.8X+F11.5) WRITE(6.1300)
26	1300 FORMAT(8x, +H+, 10x, +X(1)+, 8x, +X(2)+, 8x, +WBAR+, 7x, +WSTAR
27	1ER*,5X,*11*)
28	100 READ(5, 110, END=900)77
· · · · · · · · · · · · · · · · · · ·	

1 . . .

ļ

1 : ÷

1

.

:

.

. .

.

29	0 FORMAT()	
30 C 31 32 33 34 35 35	START WITH ASSUMED VALUE OF X(1) AND X(2 X(1)=.2 X(2)=.8 X(3)=8. ALFA=1.0 BETA=0.5	Ď.
36 37 38 39 40 41 42 43 44 45 46	GAMA=2.0 DIFER=0. XNX=NX IN=1 CALL WSRY K1=NX+1 K2=NX+2 K3=NX+3 K4=NX+4 CALL STARTY DO 3 I=1.K1	
47 48 49 50 51 52 C 53 54 55 56 57 C	DO 4 J=1.NX 4 X(J)=X1(I.J) IN=I CALL WSRY 3 CONTINUE 53 II=0 28 II=II+1 IF(II.LT.100) GO FO 60 GO TO 888	
58 C 59 60 61 62	SELECT LARGEST VALUE OF WS(I) IN SIMPLE WSH=WS(1) INDEX=1 DO 7 I=2,K1 IF(WS(I).LE.WSH) GO TO 7	(
63 64	WSH=WS(I) [NDEX=I	
65 66 C 67	7 CONTINUE SELECT MINIMUM VALUE OF WS(I) IN SIMPLE WSL=WS(1)	<pre>control to the second sec</pre>
68 69 70	KOUNT=1 D0 8 I=2+K1 IF(WSL+LE+WS(I)) G0 T0 8	

71 72 73	A	WSL=WS(I) KOUNT=I CONTUNUE
74 75	. C	FIND CENTROID OF POINTS WITH I DIFFERENT THAN INDEX DO 9 J=1.NX
76 77 78 79 80 81	10 C	WS2=0. D0 10 I=1.K1 WS2=WS2+X1(I.J) X1(K2.J)=1./XNX*(WS2-X1(INDEX.J)) FIND REFLECTION OF HIGH PO&NT TH-OUGH CENT-0&D X1(K3.J)=(1.+ALFA)*X1(K2.J)-ALFA*X1(INDEX.J)
82 83	Ģ	IF(X1(K3+J).LT.0.) X1(K3+J)=0. X(J)=X1(K3+J)
84 85 86 87 88		IN=K3 CALL WSRY IF(WS(K3).LT.WSL) GO TO 11 SELECT SECOND LARGEST VALUE IN SRMPLEX IF(INDEX.EQ.1) GO TO 38
89 90 91 92	38 39	WSS=W5(1) GO TO 39 WSS=WS(2) DO 12 T=1+K1
93 94		IF((INDEX-I).E0.0) GO TO 12 IF(WS(I).LE.WSS) GO TO 12
95		WSS=WS(I)
04	1.2	CONTINUE

97

IF (WS(K3).GT.WSS) GO TO 13

	1	
	•	
98		GO TO 14
99 C		FORM EXPANSION OF NEW MINIMUM IF REFLECTION HAS PRODUC
	1.1	
ED ONE MINIMUM	1	
100	11.	DO 15 J=1 MX
101		$X_1(K_4,J) = (1,-GAMA) * X_1(K_2,J) + GAMA * X_1(K_3,J)$
102	15	IF (X1(K4+J).L(.0.) X1(K4+J)=0.
103	10.	X(J)=X1(K4)J) X(J)=X1(K4)J)
105		
106		TECMECCANNUTEMENT EMENTS AND TO 16
107		66 TO 14
109	13	18 (MC/K3) GT MCH1 GO TO 17
100	. 15	DO 18 J-1.NY
110	1.9	$\frac{1}{10} \frac{1}{10} \frac$
111	17	$DA^{*} 10 + 1 \cdot NY$
110	т,	$\mathbf{y}_{1}(\mathbf{x}_{0}, \mathbf{y}_{1}) = \mathbf{H}\mathbf{E}\mathbf{x}_{0} + \mathbf{y}_{1}(\mathbf{x}_{0}, \mathbf{y}_{1}) = \mathbf{H}\mathbf{E}\mathbf{x}_{0} + \mathbf{y}_{1}(\mathbf{x}_{0}, \mathbf{y}_{1})$
112	÷ .	AIRN4FUJ-OEPAGAIRINOCAFUJ+CI.FOCHAJAAIRN2FUJ
4 1 7		
113		IF (XI(K4+0)+L1+0+) XI(K4+0)=0+
1 1 /1	10	
114	19	
115		
110		
1.1-6		CALL MCDY
117		TE (WSH-GT-WS(K4)) GO TO 16
118 C		REDUCE SIMPLEX BY HALE LE REFLECTION HAPPENS TO PRODUC
E A LARGER		
119 C		VALUE THAN THE MAXIMUM
120	•	DO 20 J=1+NX
121		00 20° I=1.K1
122	20	X1(I,J) = 0.5 * (X1(I,J) + X1(KOUNT,J))
123		D0 29 I=1+K1
124		DO 30 U=1+NX
125	30	$X(J) = X1(I \neq J)$
126		CALL WSRY of the state of the s
		이 같은 것이 같은 것이 같은 것이 같은 것이 많은 것은 것이 많은 것이 같이 많이 많이 많이 많이 많이 많이 많이 했다.
	•	
	* • • • •	

-:-

.

1 . . ·

170

_....

1

	100 A	
107		
151		
128	. 29	CONFINUE
129		
130	16	DO 21 J=1,NX
131		X1(INDEX,J)=X1(K4,J)
1.70		
132	21	
133		
134		
135		GO 10 26
136	. 14	DO 22 J=1,NX
:	· · · ·	
137		X1(INDEX,J) = X1(K3,J)
138	22	X(J) = X1(INDEX + J)
130	. — — 	
107		
140		
141	26	00 23 J=1+NX
142	23	(X(J)=X1(K2)J)
143	i a a t	IN=K2
144	•	CALL WSRY
145	C C	TO TERMINATE THE SEARCH DIFER MUST BE LESS THAN EPSILO
146)	DIFER=0.
147	, 7 .	00 24 I=1,K1
148	3 24	DIFER=DIFER+(WS(I)/WS(K2)-1.)**2
149	,	DIFER=SQRT(1./(XNX+1.0)*DIFER)
150		IF. (DIFER.GE.0.00001) GO TO 28
151	88	$3 \text{ WBARR} = 1. + (X1(KOUNT \cdot 1) + X1(KOUNT \cdot 2)) / (1 PO * PO)$
+~+ 1 K 0		H = AI + AI + COPT(1) = PO+PO(1)/(P+77)
1.12		
15.) – Alexandria († 1997) 1. – – – – – – – – – – – – – – – – – – –	
154		
155	5 101	L FORMAT(3X,F10,5,2X,2F11,5,2X,F10,5,2X,F10,5,2X,F10,5,2X,F12,5,1
X+15)		
156	5 - 12 - 12	~ 60 TO 100 . The second state of the state of the second state of the state of the second state of $_{ m m}$ where
157	7 90(B CONTINUE
158	3	a END and a second state of the second state of the test of the second state of the test of the second state of the second s
	• •	
	·	
	. N	

· · · · · · ·				1.1
ASWANI-M-G+OP	TIM.STARTY			
1	SUBROUT	INE STAR LY		•
2 C	THIS SU	BROUTINE SETS UP 1	IN ETTAL	
3 C	SIMPLEX	FOR MAINY		8
4	DIMENSI	ON X1(10,10) .X(10)	+WS(10)+A(10+10))
5	COMMONIZ	S/X1+NX+STEP+K1+WS	S. IN	
6	COMMONIZ	SSZPO X ZZ AL R		· · ·
7	VN≑NX			
8	STEP1=S	TEP/(VN*SQRT(2.))*	*(SQRF(VN+1+)+VN-	-1.)
				·
9	STEP2=S	TEP/(VN*SORT(2.))	*('50RT(VN+1.)-1.)) e - P
10	90 1 J=	1 • NX		
11	1 A(1,J) =	0.		
12	00 8 1=	2•K1		
		· · · · · ·		
13	00.2,0=	1 / N X		
			· · · · ·	· · · . · ·
14	∧([,J)=	STEP2		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
15	L=1-1	en an constant a sub-		· · ·
10	A(1)(1) =	21261		· ·
4 7	ON CONTINUE	-		
1/ 18				
19	00 0 1≞ ≥ 00 3 J=	1.NX		
20	3 X1([.j)	$= x (J) + A (I \cdot J)$		
21	RETURN			
22	END			
	•	· .		

ASWANI-M-G*OPTIM.WSRY

3

12

13

14

15

16

17

18

271

	SUBROUTINE WSRY
C ·	THIS SUBROUTINE DEFINES. THE OBJECTIVE
C	FUNCTION FORMULATED ON THE BASIS
C	OF SKIN YIELDING
	DIMENSION X1(10,10),X(10),WS(10)
	COMMON/S/X1+NX+STEP+K1+WS+IN
· . ·	COMMON/SS/PO,X,ZZ,AL,R
	COMMON/SR/QY
	DO 10 J=1+NX
10	$\mathbf{f} = (\mathbf{Y}_{i}, \mathbf{I}) + \mathbf{T}_{i} \otimes \mathbf{Y}_{i} + \mathbf{I} = 0$

AFA=.2

A=(1.+X(1))*(1.+X(2))-PO*PO

B=2.*PO*X(1)+(1.+2.*AFA)*(X(2)+1.-PO*P))

C=2.*(X(1)+1.-PO*PO)+PO*X(2)*(1.+2.*AFA)

P=SQRT(B*B+C*C-B*C)/A WS(IN)=1.+(X(1)+X(2))/(1.-PO*PO)+10*#X(3)*ABS(P/2.-QY/

RETURN

ASWANI-M-G*OPTIM.MAINP

- C THIS PROGRAM IS FOR PANEL BUCKLING
 - C CHECK EMPLOYING GOLDEN SECTION C SEARCH TECHNICHE
 - C SEARCH TECHNIQUE

DIMENSION X1(100) * X2(100) * X3(100) * Y1(100) * Y2(100) * DEL(

$100) \cdot X(10)$

6

7:

8

9

10

11

12

13

14

15

16

17

18

19

1.0.01/20

2

3

4

5

- 1,M(5),GG(5),Z1(5)
 - COMMON/SS/ALX+ALY+CX+CY+PO+X+Z
- COMMON/CC/A, B, C, F, G COMMON/DD/M, JJ
- COMMON/XX/AFA,RTO
- P0=.3 CX≠1.
- CY=1.
- ALY=0. X(2)=0.
- 100 READ(5,140, END=999) Z, ALX, X(1), EL, RR, AL
- 140 FORMAT()
 - RTO=EL/RR
 - DATA X1(1),X2(1),X3(1),F1,EP5/.00,4.00,5.00,0.38196601

2

- ZZ=Z*EL*EL/(AL*AL)
- 21 WRITE(6,1000) 22 1000 FORMAT(7X, 22', 7X, 'EL', 7X, X(1)', 6X, ALX', 4X, KYCR', 6X
- + 1M1+5X+1

23

1BETA*)

	20			
	05	'		
·.	<u> 20</u>	· · · ·		
	26		11	IF(Q(X2(K))-Q(X3(K))) 10+10+20
	27		20	$X3(K) = X3(K) + 0.2 \times X3(K)$
	28			IF(X3(K),1T,15) GO TO 11
	20		· .	
	20			
	50		• .	
	31		·	×1(1)=0.00001
	32 -	· · · ·		X2(1)=0.8
. · · .	33			$\times 3(1) = 1.0$
	34			IE(1, 1, T, 1)) 60 [0, 1]
	76	~		
	55	5 . C		ATTEMPT A TRIAL VALUE FOR EMILAS I
	36		· · .	EM=1.0
	37	'		GO TO 8
	.38		10	OEL(K) = X S(K) - X I(K)
· .	39		12	Y1(K)=X1(K)+F1*96(K)
			•	
	<u>ц</u> , ∩			Y2(KY=X3(K)=E1*DE1(K)
	<u>ш</u> 1	· .	• •	$IE(O(Y)(K)) = O(Y2(K)) = 30 \cdot 31 \cdot 32$
	1 1/0		` ~ ~	$\mathbf{X} = \{ (\mathbf{x}, \mathbf{x}) \in \mathbf{X} : \mathbf{y} \in \mathbf{Y} \} = \{ (\mathbf{x}, \mathbf{x}) \in \mathbf{Y}$
	42		20	$UEE(K+1) \neq t \geq (K) = k \perp (K)$
· · ·	43		· ·	X1(K+1)=X1(K)
	44	and the second	·.	X3(K+1)=Y2(K)
	45			K=K+1
	46			FELABS/ (X3(K)-X1(K))/X3(K)) 1 F. FRS) GO TO 40
	07			
	47			
-	48		- 91	$OEL(K+1) = f \geq (K) \rightarrow x L(K)$
·	49.	· · · · ·	•	×1(K+1)=Y1(K)
	50^{-1}	1. A A	-	X3(K+1)=X3(K)
	51	•		K=K+1
	80 80			FEARE (1Y3/W)-Y1/W) YY3/W) IT FRS1 GO TO 40
	.72.	÷.,		
	50			
:	54	• .	. 32	$DEL(K+1) = X_3(K) - Y_1(K)$
÷.,	55	6	· ·	X1(K+1)=Y1(K)
. *		· · · ·		
	56			X3(K+1)=X3(K)
	57			K=K+1
		· · ·		
	e 0 .			TELADELLYZIKI MARKINYZKAN LT EDC. CO TO KO
	p8			IF (ABS((X3(K)-X1(K))/X3(K))+L1+EPS) G9 T0 40
	59	•		. 60 TO 12
· · ·	60		40	BB=(X1(K)+X3(K))/2.
		· . ·		
	<i>.</i> .			0/-0/04
	01			NX = N (BB)
	62	1 A. A.		AMIH67F+SQRT(6*57(F*F)+CZA-8*67(A*F))
	63	· .	•	EM=SQRT(AM)
	64			BET=BR*FM
	65			ungu −unungu chun 1 −1
	00) 66		. O	- 10/11 - 11:01:01:01:00:00:00:00:00:00:00:00:00:0
•	00			₩F \CMT14U} 41044100
	67		41	M(JJ)=1
		·		

	사람이 있는 것 같은 것 같
68	GO TO 49
69	42 JJ=JJ+1
.70	M(JJ) ≃EM
71	60 TO 49
72	43 JJ=JJ+1
73	M(JJ) = M(JJ+1) + I
74	60 TO 49
75	μQ Υ1(1) →0.01
	n en ser de la companya de la compa La companya de la comp
70	X2(1)=4,5
	X3(1)=5.U
-	
78	K=1.
	an an an an an an an ann an an an an an
79	
- 1 80 - 1	71 IF (R(X2(K))-R(X3(K))) 72+72+73
81	73 X3(K)=X3(K)+0.2*X3(K)
82	IF(X3(K),LT.15.) GO TO 71
83	u L=L+1 i the second s
84	IF(L_LT.20) GO TO 71
85	WRITE(6+101)
86	101 FORMAT(15X++BETA BAR LOST IN R*)
87	GO. TO 898
90	72 DEL (K) - Y3 (K) - Y1 (K)
89	/4 Y1(K)=XL(K)+F1*DCL(K)
90	
00	VOLUN -VZLUN -CTAINEL LUN
90	
~	75,76,77
	TE (KE(11(K))=KC(12(K)) / (3/70777)
72	
93	X1(K+1)=X1(K)
94	X3(K+1)=Y2(K)
95	
96	IF(ABS((X3(K)-X1(K))/X3(K))+L(+EPS) 60 10 76
97	GO TO 74
98	76 DEL (K+1) \approx Y2(K) $-$ X1(K)
00	
99	$X \perp (N + \perp) = T \perp (N)$
100	AJINT1/→AJIN/ M→M→4
101	N-NTI TRANSCIENTIAL VIEWS WORKS FT FREE CO. TO 79
102	1F(ABS((X)(K)-X1(K))/X3(K))+L1+EFS) 00 10 /0
103	
104	77 DEL(K+1)= $X_3(K) - Y_1(K)$
105	X1(K+1)=Y1(K)
106	X3(K+1)=X3(K) = 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1

107	K±K+1
108	IF(ABS((X3(K)-X1(K))/X3(K)).LT.EPS) G0 T0 78
109	GO TO 74
110 78 111 78	21(JJ)=(X1(K)+X3(K))/2. 66(JJ)=RP(21(JJ))
112 113	IF(JJ.EQ.1) GO TO 51 IF(JJ.EQ.3) GO TO 44
114	GO TO 43
115 44 116 51 117 118	IF((GG(JJ)-GG(JJ-1))) 51,51,52 CKYR=GG(JJ) BB=Z1(JJ) EM=M(JJ)
119 120 52	GO TO. 47 CKYR=GG(JJ-1) BB=Z1(JJ-1)
122 123 47	EM=M(JJ-1) CONTINUE
124 125 126	BET=BB*EM M(JJ)=EM E=3.0E+7
127 128 129	H=RT0*RT0*198.*S0RT(1P0*P0)/2/ Q=3.14*3.14*E*H**3*CKYR/(EL*EL*198.*12.*(1P0*P0)) EN=3.14*BET*198./EL
130	WRITE(6,1001)2/+EL+X(1),ALX+CKYR+M(JJ)+BET
131 1001	FORMAT(5X+F8+2+1X+F6+2+F10+5+F8+1+F9+0+1X+15+1X+F8+3)
132 133 222 134	WRITE(6,222) FORMAT(5X, (EN), 15X, (Q)) WRITE(6,333)EN, Q
135 333 136	FORMAT(3X+F7.1+5X+E14.7) 00=2692.8
137 138 139 909	PBCR=Q0/Q WRITE(6,909)PBCR FORMAT(6X,+PBCR=+,F14,5////)
140	GO TO 100
141 999 142	CONTINUE END

ASWANI-M-G*OPTI	
1	
2	
	DIMENCION V(10)
n an	
6 · · · ·	
7	
Ģ	EX=-3.14*3.14*SQRT(1PO*PO)*(1.+CX*ALX)/(2.0*77)
10 11	EY=+3.14*3.14*SQRT(1.=+0*+0)*(1.+CY*ALY)/(2.0*ZZ) A1=(1.+BB*BB)**2+X(1)+X(2)*BB**4+2.*BB*BB*(X(1)+X(2)+X
(1)+×(0))/	
10	1(1 90)
12	
13	AZ=10, (37, 32, (17, 10, (0, 11, 10))
14	
тарана и стала и стала И стала и стала И стала и стала	A4-CA#EA#A(1)#2.U#EA#EA#A(1)#(1.=PU+A(2))#DB#BB/(1.=PU
)+(EX*EX*	
16	1X(1)*(1.+X(2))+2.0*(1.+PO)/(1PO)*EX*EX*X(1)*X(2)+EY*
EY*X(2)*(1.+	
17	2X(1)))*88**4+2.0*EY*EY*X(2)/(1P0)*(1P0+X(1))*88**6
+EY*EY*X(2)	
18	3*88**8
19	A=A1*A2+A3*A4
20	A5=-2.*PO*EX*X(1)+2.*(EX*X(1)*(1.+X(2))+EY*X(2)*(1.+X(
1))) * 86*88	
21	1-2.*PO*EY*X(2)*BB**4
22	B=A3∗A5
23	C=A3*((1,+X(1))*(1,+X(2))-PO*PO)

v .

END

RETURN.

ASWANI-M-G*OPIIM.R	I-M-G*OPTIM.	R
--------------------	--------------	---

C

FUNCTION R(BB) R IS THE EXPRESSION OF KY WHEN M IS TREATED AS INTEGER DOUBLE PRECISION A1+A2+A3+A4+A5+A+B+C+F+G

	DIMENSION X(10)+M(5)	
· · · ·	COMMON/SS/ALX+ALY+CX+CY+PO+X+ZZ	
	COMMONZODZM+JJ	:
1949 1940 - 1940 1940 - 1940	CUMMON/XX/RTO	
۰. ۲.	COMMON/YY/AFA	
÷ *	ROXX=ALX*ALX*X(1)	
· .	ROYY≓ALY*ALY*X(2)	
÷.	EX==3.14*3.14*SQRT(1.=P0*P0)*(1.+CX*ALX)/(2.0*ZZ)	
	EY=-3.14*3.14*SQRT(1PO*PO)*(1.+CY*ALY)/(2.0*ZZ)	
	A1=(1.+BB*BB)**2+X(1)+X(2)*BB**4+2.*BB*8B*(X(1)+X(2)+	X

(1)*X(2))/

17	A4=EX*EX*X(1)+2.0*EX*EX*X(1)*(1P0+X(2))*B3*BB/(1P0
)+(EX*EX* 18	1X(1)*(1.+X(2))+2.0*(1.+P0)/(1P0)*EX*EY*X(1)*X(2)+EY*
EY*X(2)*(1.+	2X(1)))*88**4+2.0*EY*EY*X(2)/(1P0)*(1P0+X(1))*88**6
+EY*EY*X(2) 20 21 22	3*88**8 A=A1*A2+A3*A4 A5=-2.*P0*EX*X(1)+2.*(EX*X(1)*(1.+X(2))+EY*X(2)*(1.+X(
1)))*88*80 23 24	1-2.*P0*EY*X(2)*B5**4 8=A3*A5
25	$C=A3*((1,+X(1))*(1,+X(2))-PO*PO)$ $E=(PTO/3,10)+(2+(1)+PC*PO)*(1)+E(+Y(1)+PC*PO)*(2)+PC+(1)+2(1)+PC*PO)*(2)+PC+(1)+2(1)+PC*PO)*(2)+PC+(1)+2(1)+PC*PO}*(2)+PC+(1)+PC*PO)*(2)+PC+(1)+PC*PO}*(2)+PC+(2)+(2)+PC+(2)+(2)+(2)+(2)+(2)+(2)+(2)+(2)+(2)+(2)$
*BB*BB/(1P0 27	10)*(X(1)*X(2)*(EX+EY*8B*8B)))+(.5-AFA+8B*8B)*A1
28 2•*X(1)+X(2)	G=(RT0/3.14)**2*((1.+88*88)*(P0+88*88)+88*88/(1P0)*(

29	1+P0*X(2)+2.*X	(1)*)	(2)))+x(2)	*88*	*4)		
30	`R=(A*M(JJ) **4	+B*M(JJJ)	*M(JJ)	+C)/	(F*M()	JJ)*M((JJ) + G)
51	RETURN			. •			a di si		
32	END								

1.		1	1. T	•		1 A.	- 1 - 2		
g	1+P0*	x(2)+	2.*X((1)*X	(2))	+X(2)	.*BB	**4)	
0 ·	R=(/	A*M(JJ)**44	-B*M(JJ) *	M(JJ)	+C).	/(F*M	(ປປ)
1	RET	IRN		· · · .				· · · · .	· ·
`	END					14 - 14 j	- 1 - L		

		6+1	o roiz	3 10	144	2411	1 190	+ Q (Q)	• • • • •		х. нн
VIAU	1.1	9-1	101	0+14	ን ተሳ	47(1)	14400	- 00 i	и т. Ц Г	0100	200 (JE2) J
X(2)		- 1				$(A_{i},A_{i}) \in A_{i}$			1.114		· ·
1	1.1		•	· ·		•		• •			

<*EX*X	(1)*(1	LP0+	X(2)) *834	88 87 (
	· · ·				1994 1994 - 1994 1994 - 1994	
(1.+P0)/(1,+ -	-P0)*E	X*EY	¥Χ(1)	*X(2	2
19 A.	· ·					

A3=12,*ZZ*ZZ/(3.14**4*(1.-P0*P0))

1(1.-P0) A2=(1.+BB*BB) **2+R0XX+R0YY*BB**4

14

15

16

ASWANI-M-G*OPTIM_RSSH 1 C THIS PROGRAM IS FOR DESIGNING RING 2 Ċ. STIFFENED SHELLS 3 C ... SX2 IS STRESS IN SKIN SIGMAXX 4 С SY2 IS STRESS IN SKIN SIGMAYY 5 C CKYR IS KYY CRITICAL **C** : OSTAR IS CRITICAL PRESSURE 6 7 SRY IS STRESS IN THE RING **C** . 8 C QO IS LOAD ON THE RING PER INCH. Ċ. 9 OF CIRCUMPERENCE C . 10 PBCR IS PANEL BUCKLING CRITICAL LOAD OCR IS RING CRITICAL STRESS 11 C 12 SKY IS STRESS IN SKIN -С 13 C. GB IS GEN. INST. COEFFICIENT 14 C PBC IS PANEL BUCKLING COEFFICIENT 15. C RBC IS RING BUCKLING COEFFICIENT RYC IS RING YIELDING COEFFICIENT 16 **C** 17 C SKYC IS SKIN YIELDING COEFFICIENTS **18** C GW IS DENSITY OF IMMERSSION FLUID 19 C DP. IS OPERATING DEPTH. 20 DIMENSION X(10) 21 COMMON/SS/ALX+ALY+CX+CY+PO+X+ZZ 22 COMMON/PPP/TN 23 COMMON/AAA/M,N 24 COMMON/XX/AFA, RTO 25 ALX=.0 26 X(1) = 027 CX=1. 28 1 READ(5,3,END=4)ZZYELY, BKYX(2), AY, BY, PBCR, ALY, CY+R, AYSF

à

AFA+GW+DP+AL

	20	* FORMAT()
	30	RTO=AL/R
	31	an a
•	32	6S=.282
	3.3	Q=12.*GW*DP
	34	E≐.3E+8
•	35	H=AL*AL*SQRT(1PO*PO)/(R*ZZ)
	36	DD=E*H**3/(12.*(1PO*PO))
÷ .	37	AA=Q*Q*R*R/(16.*DD*DD)
	38	
17.	39	$\frac{1000}{00-1} = \frac{1}{10} = \frac{1}$
	90 40	
	41	
	42	
	43 	
	- 15	TB = H + (1 + BK + A / (A S + BK + A S))
	. ч .) µк	
•	ά 7 .	CALL GENST(PCP)
•		
· • .	48	0STAR=TN*3.14*0S7(R*AL*AL)
	49	IF(QSTAR-2.*Q) = 36.16.16
: • .	50	36 X(2)=X(2)+,0001
	51	GO TO 1000
•	52	16 EL=ELY-TR
	:	an 1997 - Anna ann an Aonaichtean A Anna Anna Anna Anna Anna Anna Anna
	55	
	55	0/- 5+C001/F+U/) D/- 5+C001/F+U/)
:	-56	C = SORT(-C+DC)
: •	57	D = SORT(CC+DC)
	58	V=C*EL/2.
	59	Y=D*F1 /2.
	60	A1 = V * V + Y * Y
	61	A2 = SINH(V) + SINH(V) + SIN(Y) + SIN(Y)
	62	A3=V*SIN(Y)*COS(Y)+Y*SINH(V)*COSH(V)
	63	W=-16.*V*Y*A1*A2/(A3*EL**3)
	· •	
	64	A4=V*COSH(V)*SIN(Y)-Y*SINH(V)*COS(Y)
di a	•	
	65	AJO=4.*A1*A4/(A3*EL*EL)
	66	A5=V*SIN(Y)*COS(Y)-Y*SINH(V)*COSH(V)
	b/ .40	AUL74,*AI*AD/(AO*EL*EL)
	00 40	
. •	ייס ז ר:	AO-VASINTIV/AUXSTIJ-TAUVS71V/ASINTIJ 11 AA4CTNH/VY4CTNI/YY4DO4COCH/MY4COC/VY
	10	いに-40+31NUT(V)+31NUT(T)TUO+CU3D1(V)+CU3(T)

71	HU
70	60×10^{-40}
73	$\mathbf{A} = \mathbf{A} + $
70	
74	1 - V+SIN(V)*(U)(V) M- 14 - NOV 7 C (N/V) - C (N/V) - (12-5)
75	
76	AJO=4*AA*A*(214(A)+A*CO2(A))\\(A*EF*EF)
77	AJL#4.*V*V*(SIN(V)*COS(V)-V)/(Y*EL*EL)
78	UO = V * COS(V) + SIN(V)
79	UL = UO * COS(V) + V * SIN(V) * SIN(V)
80	
81	GO TO 100
	이 같은 것 같은
82	7 CC=Q*R/(8,*DD)
83	DC = 5*SORT(F*HZ(DO*R*R))
οu	
04	$\nabla = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} $
100 102	U = SOR(1(CC+UC))
00	
87	Y=D*EL/2.
- 88	B1=Y*Y-V*V
89	B2=SIN(Y)**2-SIN(V)**2
90	B3=V*SIN(Y)*COS(Y)+Y*SIN(V)*COS(V)
91	W=→16, *V*Y*B1*B2/(B3*EL*+3)
00	
92	$\beta 4 = 1 \times 2 \ln (\Lambda) \times COS(\Lambda) + \Lambda \times COS(\Lambda) \times 2 \ln (\Lambda)$
93	AJO=-4,*81*84/(83*EL*EL)
.94	B6=Y*SIN(V)*COS(V)-V*SIN(Y)*COS(Y)
95	Δ.II ==4. ★B1★B57(B3★FL ★FL)
96	
07	
	$D_1 = (V + SIN(V) + CUS(T) + (+CUS(V) + SIN(T)) + SIN(V) + SIN(T)$
<u></u>	
98	UL = B7 + UO * COS(V) * COS(Y)
· · · ·	가지 않는 것 같은 것 같
99	ne en en HH=B3 e la litera de la seconda de la grada de la grada de la grada de la litera que de la seconda de
100	GO TO 100
101	100 AR=A+TR $*H$
102	PP=R*R*W*H**3/(6.*(1PO*PO)*AR)
103	TT=A/(AR*(1, -PP))
104	$\Theta \Theta B = \Theta * (\Gamma B - \Theta \Phi * (AB - \Theta \Phi * AZ -)ZH)$
105	90 = 908 / (112)
106	SRY=00*R/AR
107	IFICHY+TH+2 GT OCHICO TO 200
100	4ΓΙΟΛΙΦΙΝΦζΙ¥ΟΙ¥ΎΟΝΙΟΥ ΙΟ ΖΖΖ ΟΔ. ΤΔ. 733
108	
109	333 IF(SRY.GT.AYS) GO TO 8:
110	GO TO 9
111	8 WRITE(6+10)SRY
	그는 것 같은 것 같

10 FORMAT(6X+*SRY = *+F10.2/) 112 9 SKB0=0*R*R*(1.-P0/2.)*FT*AJ0/(2.*(1.-P0*P0)) 113 114 SKF1=-Q*R/H+Q*R*(1.-P0/2.)*TT*U0/(H*HH) SKF2=-Q*R/H+0*R*(1.-P0/2.)*TT*UL/(H*HH) 115 SKBL=9*R*R*(1.-P0/2.)*TT*AJL/(2.*(1-P0*P0)) 116 117 SX1=SKB0-0*R/(2.*H) 118 SX2=-SKB0-0*R/(2.*H) 119 SY1=SKF1+P0*SKB0 120SY2=SKF1-P0*SKB0 121 SX1L=SKBL-Q*R/(2.*H)122 123 SX2L=-SKBL+0*R/(2.*H) SY1L=SKE2+P0*SKBL 124 SY2L=SKF2-P0*SKBL 125 SKY=S0RT(SX2**2+SY2**2-SX2*SY2) 126 IF (SKY.GT.AYS) GO TO 51 GO TO 13 127 128 51 X(2) = X(2) + .0001GO TO 1000 129 13 RO=R+H/2. 130 RI=R-H/2. 131 RWI=RI-OR 132 133 RFI=RWI-TF 134 VS=AL*(RO*RO-RI*RI) 135 VW=TR*(RI*RI-RWI*RWI)*8K, 136 VF=WF*(RWI*RWI-RFI*RFI)*BK 137 WUL≈GS*3.14*(VS+VW+VF)/AL 138 RYC=SRYZAYS 139 RBC=SRY*TR*2./QCR

œ

140 PBC=2.*Q/PBCR 141 SKYC=SKY/AYS 142 GB=2.*Q/QSTAR 143 WRITE(6,20) 144 20 FORMAT(//25X, D E S I G N R E S U L T S +//)145 WRITE(6,21)DP 146 21 FORMAT(6x, *OPERATING DEPTH = *, F8.0/) 147 WRITE(6,22)ZZ,AL,R 148 22 FORMAT(6X++ZZ = ++F8.1+2X++L = ++F7.1+2X++R = ++F7.1/) 149 WRITE(6+40)X(2)+CY 150"40 FORMAT(6X, +X(2) = +, F10, 5, 8X, +CY = +, F10, 5/) 151 WRITE(6+50)WUL 50 FORMAT(6X, WEIGHT PER INCH = ', F10.2/) .152 153 WRITE(6,23)H 154 THICKNESS = (,F10.5/)23 FORMAT(6X, SKIN 155 WRITE(6,24)DROF. WEB = ! (F10.57)156 24 FORMAT(6X+*DEPTH 157 WRITE(6+25)TR 158 THICKNESS = $! \cdot F10.5/$ 25 FORMAT(6X, WEB 159 WRITE(6,26)WF 160 26 FORMAT(6X+*FLANGE WIDTH = ! F10.5/)161 WRITE(6, 27)TF 162 27 FORMAT(6X, FLANGE THICKNESS = 1, F10.5/) 163 WRITE(6,28)ELY 164 28 FORMAT(6X, *RING SPACING = (F10.5/)165 WRITE(6,41)TN,M,N 166 41 FORMAT($6X_{1}^{+}CKYR=^{+}F11.2+2X_{1}M=^{+}I5+2X_{1}N=^{+}I5/$)

WRITE(6,42)OSTAR

167

	168	•	42	FORMAT(6X, 'QSTAR=', F15, 2/)
	169			WRITE(6,30)QCR, SRY, PBCR
20	170		30	FORMAT(6X+*@CR=*+F10.2+2X+*SRY=*+F10.2+2X+*PBCR=*+F10.
271	171	۰.		WRITE(6,111)SX2,SY2,QQ
F12	172 •2/)	- - -	111	FORMAT(6X, SX2 = ', F10, 2, 2X, SY2 = ', F10, 2, 2X, SQ = ',
·	173 174		29	WRITE(6 ,29)SKY FORMAT($6X$, *SKY = *,F10,2/)
	175 176	·	43	WRITE(6,43)GB FORMAT(6X,*GB = *,F10.5/)
	178- 178-		31	$\frac{\text{WRIFE(6+51)PBC}}{\text{FORMAT(6X+PBC} = (+F10+5/)}$
	180 181		32	FORMAT($6X_{1}$ 'RBC = ' $F10_{5}$) WRITE(6_{3} HBYC
	182	··· .	34	FORMAT(6X, 'RYC = ', F10, 5/)
	183 184		35	WRITE(6,35)SKYC FORMAT(6X,*SKYC= *,F10.5/)
	185 186	. ·	222	GO TO 55 WRITE(6,3000)
	187 188	 	3000 55	FORMAT(6X, 'RING BUCKLING FAILURE'/) GO TO 1
алана Алана	189 190		. 4	END

• .

BIBLIOGRAPHY

- 1. Gerard, G., "Optimum Structural Design Concepts for Aerospace Vehicles", Journal Spacecraft, Vol. 3, No. 1, 1966, pp. 5-18.
- 2. Niordson, F. I., and P. Pederson, "A Review of Optimal Structural Design", Paper Presented at the 13th International Congress of Theoretical and Applied Mechanics, Moscow, USSR, August 1972.
- 3. Schmit, L., "Structural Synthesis: 1959-1969: A Decade of Progress", Recent Advances in Matrix Methods of Structural Analysis and Design (Ed. R. H. Gallagher et al.), University of Alabama Press, 1971.
- 4. Schmit, L., "Structural Engineering Applications of Mathematical Programming Techniques", Symposium on Structural Optimization, AGARD Conference Proceedings No. 36 (Editor R. Gellatly), Advisory Group for Aeronautical Research and Development, NATO, October 1970.
- 5. Schmit, L., "Automated Design", International Science and Technology, June 1966.
- 6. Nickell, E. H., and R. F. Crawford, "Optimum Ring Stiffened Cylinders Subjected to a Uniform Hydrostatic Pressure", Society of Automotive Engineers, Reprint 578F, 1962.
- 7. Crawford, R. F., and A. B. Burns, "Minimum Weight Potentials for Stiffened Plates and Shells", <u>AIAA Journal</u>, Vol. 1, No. 4, April 1963, pp. 879-886.
- 8. Burns, A. B., and B. O. Almroth, "Structural Optimization of Axially Compressed Ring-Stringer Stiffened Cylinders", <u>Journal</u> <u>Spacecraft</u>, Vol. <u>3</u>, No. 1, 1966, pp. 19-25.
- Burns, A. B., and J. Skogh, "Combined Loads Minimum Weight Analysis of Stiffened Plates and Shells", <u>Journal Spacecraft</u>, Vol. 3, No. 2, February 1966, pp. 235-240.
- Block, D. L., "Minimum Weight Design of Axially Compressed Ring Stringer Stiffened Cylindrical Shells", NASA CR-1766, July 1971.

11. Shideler, J. L., M. S. Anderson and L. R. Jackson, "Optimum Mass-Strength Analysis of Orthotropic Ring Stiffened Cylinders Under Axial Compression", NASA TND-6772, July 1972.

12.	Spunt, L., Optimal Structural Design, Prentice Hall, 1971.
13.	Thompson, J. M. T., and G. M. Lewis, "On the Optimum Design of Thin Walled Compression Members", Journal of Mechanics and Physics Solids, Vol. <u>20</u> , 1972, pp. 101-109.
14.	Thompson, J. M. T., J. D. Tulk, and A. C. Walker, "An Experi- mental Study of Imperfection-Sensitivity in the Interactive Buckling of Stiffened Plates". To be published.
15.	Morrow, Wm. M., II, and L. A. Schmit, Jr., "Structural Synthe- sis of a Stiffened Cylinder", NASA CR-1217, December 1968.
16.	Jones, R. T., and D. S. Hague, "Application of Multivariable Search Techniques to Structural Design Optimization", NASA CR-2039, June 1972.
17.	Pappas, M., and A. Allentuch, "Structural Synthesis of Frame Reinforced Submersible, Circular, Cylindrical Hulls", <u>NCE</u> <u>Report No. NV 5</u> , Newark College of Engineering, Newark, New Jersey, May 1972.
18.	Pappas, M., and A. Allentuch, "Optimal Design of Submersible Frame Stiffened Circular Cylindrical Hulls", <u>NCE Report No.</u> <u>NV 6</u> , Newark College of Engineering, Newark, New Jersey, July 1972.
19.	Pappas, M., and A. Allentuch, "Mathematical Programming Procedures for Mixed Discrete-Continuous Design Problems", <u>NCE Report No. NV 7</u> , Newark College of Engineering, Newark, New Jersey, April 1973.
20.	Pappas, M., and A. Allentuch, "Extended Structural Synthesis Capability of Automated Design of Frame-Stiffened, Submersible, Circular, Cylindrical Shells", <u>NCE Report No. NV 8</u> , Newark College of Engineering, Newark, New Jersey, June 1973.
21.	Pappas, M., and A. Allentuch, "Pressure Hull Optimization Using General Instability Equations Admitting More than One Longi- tudinal Buckling Half-Wave", <u>NCE Report No. NV 9</u> , Newark College of Engineering, Newark, New Jersey, June 1973.

22. Pappas, M., and C. L. Amba-Rao, "A Direct Search Algorithm for Automated Structural Design", <u>AIAA Journal</u>, Vol. 2, No. 3, March 1971, pp. 387-393.

23. Simitses, G. J., and V. Ungbhakorn, "Minimum Weight Design of Stiffened Cylinders Under Axial Compression", <u>AIAA Paper No.</u> <u>74-101</u>, Presented at 12th Aerospace Science Meeting, January-February 1974.

- 24. Ungbhakorn, V., "Minimum Weight Design of Fuselage Type Stiffened Circular Cylindrical Shells Subject to Uniform Axial Compression", Ph.D. Thesis, School of Engineering Science and Mechanics, Georgia Institute of Technology, June 1974.
- Nelder, J. A., and R. Mead, "A Simplex Method of Function Minimization", Computer Journal, Vol. 7, 1964, pp. 308-313.
- 26. Courant, R., "Calculus of Variations and Supplementary Notes and Exercises", (Revised and amended by J. Moses) New York University Institute of Mathematical Sciences, New York, 1956-1957, pp. 270-276.
- Wilde, D. and C. S. Beightler, Foundation of Optimization, 1967, pp. 242-245.
- Pappas, M., and C. L. Amba-Rao, "A Discrete Search Procedure for the Minimization of Stiffened Cylindrical Shell Stability Equations", <u>AIAA Journal</u>, Vol. <u>9</u>, No. 11, November 1970, pp. 2093-2094.
- 29. Spendley, W., G. R. Hext, and F. R. Himsworth, "Sequential Application of Simplex Designs in Optimization and Evolutionary Operations", Technometrics <u>4</u>, 1962, pp. 441-461.
- 30. Aswani, M., "Design Charts for the Minimum Weight Design of Circular Cylindrical Shells Subject to Uniform Hydrostatic Pressure", School of Engineering Science and Mechanics, Georgia Institute of Technology, Atlanta, Georgia, 1974.
- 31. Singer, J., and M. Baruch, "Recent Studies on Optimization for Elastic Stability of Cylindrical and Conical Shells", <u>Aerospace</u> <u>Proceedings</u>, 1966.
- 32. Simitses, G. J., "A Note on the General Instability of Eccentrically Stiffened Cylinders", <u>Journal Aircraft</u>, Vol. <u>4</u>, No. 5, 1967, pp. 473-475.
- Timoshenko, S. P., and J. M. Gere, <u>Theory of Elastic Stability</u>, McGraw Hill Book Company, 1961.
- 34. Majumdar, S., "Buckling of a Thin Annular Plate Under Uniform Compression", <u>AIAA Journal</u>, Vol. <u>9</u>, No. 9, September 1971, pp. 1701-1707.
- 35. Yamaki, N., "Buckling of Thin Annular Plate Under Uniform Compression", Journal of Applied Mechanics, June 1958, pp. 267-273.

36. Salereno, V. L., and J. G. Fulos, "Stress Distribution in Cylindrical Shells Under Hydrostatic Pressure Supported by

Equally Spaced Circular Ring Frames", PIBAL No. 171A, Polytechnic Institute of Brooklyn, Brooklyn, New York, June 1951.

Mohan Aswani was born on January 12, 1939 in Nawabshah (W. Pakistan). He received his Bachelor's degree in Civil Engineering from Birla College of Engineering, Pilani (India) in 1962. He was awarded, in 1962, a three year Senior Fellowship under the Technical Teachers Training Program, sponsored by the Government of India. Under this program he received his Master's degree in Structural Engineering from the College of Engineering, Poona (India) in 1965. Thereafter he was appointed as a lecturer in the Department of Civil Engineering, Delhi College of Engineering, Delhi (India) where he served from 1965 to 1970. He entered the Georgia Institute of Technology, Atlanta, Georgia as a doctoral student in the School of Engineering Science and Mechanics in September 1970.

VITA