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SUMMARY 

 

 Inverse modeling has been used in the past to constrain atmospheric model 

parameters, particularly emission estimates, based upon ambient measurements. Here, 

inverse modeling is applied to air quality planning by calculating how emissions should 

change to achieve desired reduction in air pollutants. Specifically, emissions of nitrogen 

oxides (NOx = NO + NO2) are adjusted to achieve reductions in tropospheric ozone, a 

respiratory irritant, during an historic episode of elevated concentrations in urban Atlanta, 

GA. Understanding how emissions should change in aggregate without specifying 

discrete abatement options is particularly applicable to long-term and regional air 

pollution management. Using a cost/benefit approach, desired reductions in ozone 

concentrations are found for a future population in Atlanta, GA. The inverse method is 

applied to find NOx emission adjustments to reach this desired reduction in air pollution. 

An example of how emissions adjustments may aid the planning process in two 

neighborhoods is demonstrated using urban form indicators from a land use and 

transportation database. Implications of this method on establishing regional and market-

based air quality management systems in light of recent legal decisions are also 

discussed.  

Both ozone and secondary particulate matter with diameters of less than 2.5µm 

(PM2.5) are formed in the atmosphere from common precursor species. Recent 

assessments of air quality management policies have stressed the need for pollutant 

abatement strategies addressing these mutual sources. The relative contribution of several 

important precursor species (NOx, sulfur dioxide, ammonia, and anthropogenic volatile 



 xiv

organic compounds) to the formation of ozone and secondary PM2.5 in Atlanta during 

May 2007–April 2008 is simulated using CMAQ/DDM-3D. This sensitivity analysis is 

then used to find adjustments in emissions of precursor species to achieve goal reductions 

for both ozone and secondary PM2.5 during a summertime episode of elevated 

concentrations. A discussion of the implications of these controls on air pollutant 

concentrations during the remaining year follows.



 

CHAPTER 1 

INTRODUCTION 
 

 

 

1.1 Overview of air quality management in the United States 

 The Clean Air Act gives the United States Environmental Protection Agency 

(U.S. EPA) the responsibility to set National Ambient Air Quality Standards (NAAQS) to 

promote public health and protect ecological and environmental well being (42 U.S.C. 

§7409). Metropolitan areas with air pollution concentrations above the NAAQS are 

classified as non-attainment areas. Under the Clean Air Act, states or tribal lands with 

non-attainment areas are required to develop State or Tribal Implementation Plans 

(hereafter referred in short as SIP). These plans contain three elements (NRC 2004):  

• An inventory of major emission sources of air pollution in the non-attainment area 

• An analysis using air quality models and observation studies to find the required 

reductions in emissions needed to bring the non-attainment area into compliance 

with the NAAQS within the Clean Air Act’s deadlines  

• Specific emission control measures which will be implemented  

 The success of the SIP framework has been mixed. The number of nonattainment 

areas for lead, sulfur dioxide, carbon monoxide and nitrogen dioxide has been greatly 

reduced, and national averages of air pollution concentrations in nonattainment areas 

have decreased. However, the SIP process has not been as successful in areas with severe 
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ozone and particulate matter concentrations (U.S. Environmental Protection Agency 

2003).  

In their critical discussion of the SIP process, the National Research Council of 

the National Academies (2004) criticized how air quality models are used to demonstrate 

attainment of the NAAQS (in bullet point two of the list above). Though they noted that 

air quality models are vital in finding the magnitude of emissions reductions that are 

necessary to attain the standards, they found state agencies too often base air quality 

attainment demonstrations on a “one-time robust prediction of how air quality in a given 

areas will evolve over a multiple-year or decadal time scale and does not take into 

account the significant modeling, socioeconomic, and control-technology uncertainties 

implicit in such a process” (NRC 2004). The National Research Council proposed 

replacing the existing SIP process with an integrative approach which would allow state 

and local agencies to update air quality management plans on an ongoing basis. In such a 

system, air quality modeling is separated from emission control strategy design.  Air 

quality modeling is used only to find emission reduction targets that achieve air quality 

goals without specifying emission growth or control methods. Knowing the amount of 

emission changes needed, agencies can then design and implement emission abatement 

strategies based upon current socioeconomic conditions and available control methods. In 

this thesis, a method is developed for finding emission reduction targets and applied to 

several current problems in air quality management. 
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1.2 Inverse Air Quality Modeling for Air Quality Management 

Variables such as population and economic growth, changes in social and cultural 

norms, advances in technology, and the whims of local, national and global politics are 

but a few of the unpredictable factors that will affect future air quality. A typical 

forecasting approach in the development of a SIP would require one to predict changes in 

the independent variables—e.g. population, vehicle miles of travel, and energy 

production—to predict the dependent variable, air quality. By defining a desired air 

quality goal and using an inverse approach, we can identify the minimum changes in 

emissions needed, relative to the present, to achieve the established outcome. In so doing, 

the air quality objective becomes the independent variable, and the factors required to 

achieve the goal are derived from the variable.  

 “Desired air quality” is a subjective value. Stakeholders ranging from the 

mothers of asthmatic children to business executives and their stockholders all have their 

own concept of desired air quality.  Rather than requiring consensus a priori, multiple 

levels of air pollution may be modeled and the required emissions changes can inform 

these stakeholders as they participate in the policy debate on air quality management 

strategies. Application of this method allows planners to shift their focus from the details 

of forecasting future emissions growth to the management of ongoing emissions growth. 

1.3 Scope 

 In this thesis, inverse modeling is applied to a variety of concerns in current air 

quality management. First, I apply inverse methods to a case study in Atlanta, GA 

exploring how a range of desired air quality levels will affect how emissions are adjusted. 
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The inverse model is then applied in a long term air quality planning framework.  

Discussions on how to estimate future desires of air pollution and how urban planning 

may be leveraged to achieve air quality goals is included.  Inverse modeling is used to 

find emission adjustments which can be used to address concerns on recently proposed 

regional emissions trading programs (Tong and Mauzerall 2008; D.C. Cir. 2008). 

Understanding and addressing the effects of emissions on multiple pollutants is seen as a 

critical next step in air quality management (NRC 2004; U.S. Environmental Protection 

Agency 2008). I conducted an inter-seasonal study of the response of ambient pollutants 

to common precursors, and investigated how multiple pollutants may be controlled using 

a single emissions abatement plan by applying inverse modeling.  

The thesis is organized as follows: 

Chapter 2: An inverse modeling approach to air quality planning. Air quality 

modeling is used to find the most effective control strategies to reach compliance with air 

quality standards. The typical modeling approach is extended using inverse methods to 

estimate the minimum change in emissions needed to achieve a desired air quality goal. 

The inverse method is described and applied to the management of NOx emissions to 

reduce concentrations during an historical high ozone episode in Atlanta, GA. 

Chapter 3: A method to prescribe air quality in 2050: Optimizing air pollutant 

emissions towards long-term air quality goals. An economic cost benefit analysis is 

used to predict the desired air quality level of a future population in Atlanta, GA. 

Minimum adjustments to current emissions to achieve this desired air quality level are 
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calculated using inverse modeling techniques. I discuss how these adjustments may 

inform the decisions on the urban form of two neighborhoods. 

Chapter 4: Application of inverse modeling in regional trading programs: Cost 

optimization of future growth. To address air pollution in the eastern United States, the 

Environmental Protection Agency recently proposed a regional emissions cap-and-trade 

system, Clean Air Interstate Rule (CAIR). However, the U.S. Appeals Court for the 

District of Columbia ruled that the EPA’s implementation of the CAIR did not meet the 

requirements of the Clean Air Act. Inverse methods are used to address these concerns by 

developing emission allocations for states based upon their downwind effects during an 

August 1999 episode. Two emission allocation cases are presented; one solely based 

upon interstate transport of pollutants and the other weighted by the costs for emission 

reductions in each state.  

Chapter 5: Multiple Pollutant Responses from Multi-Seasonal Emission Controls. 

Both ozone and secondary particulate matter are formed in the atmosphere from common 

precursor species. To understand the response of emission controls on these pollutants, 

sensitivity modeling was conducted for a full year (May 2007-April 2008) in Atlanta, 

GA.  Inverse modeling is used to find a common emission abatement strategy to reduce 

ozone and secondary particulate matter for a summertime period of elevated air pollution. 

The effect of these controls in other seasons is evaluated.  

Chapter 6: Conclusions and future work  
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CHAPTER 2 

USE OF INVERSE MODELING IN AIR QUALITY PLANNING 

 

 

2.1 Introduction 

The Clean Air Act requires states, air quality management districts, and tribes to 

create plans for addressing air pollution in areas that fail to meet the National Ambient 

Air Quality Standards (NAAQS) (42 UCS 7410). To aid in developing plans to meet 

these standards, the United States Environmental Protection Agency (U.S. EPA) provides 

modeling guidance that describes the acceptable use of emissions based air quality 

modeling for testing strategies and for demonstrating attainment of the NAAQS (U.S. 

Environmental Protection Agency 1997; U.S. Environmental Protection Agency 1999). 

Beyond the basic approach outlined by the U.S. EPA, some have applied air quality 

modeling to conduct a sensitivity analysis to determine the response of ambient air 

pollution to emissions abatement options (Liu and Trb 2003; Cohan, Hakami et al. 2005; 

Chestnut, Mills et al. 2006; Cohan, Tian et al. 2006; Cohan, Boylan et al. 2007; Gilliland, 

Hogrefe et al. 2008). Here, we use a sensitivity analysis in an inverse modeling 

application to find the minimum emission controls required to achieve a desired air 

quality level.  

In forward applications of atmospheric chemical transport models, 

parameterizations of emissions, meteorology, and other variables are used to simulate 

ambient concentrations of pollutants and other constituents of interest. Conversely, in 
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inverse applications, the pollutant concentrations determine one or more of the input 

variables. The inverse methods employed here build upon past work that adjusted 

emissions rates to minimize the differences between modeled pollutant concentrations 

and ambient pollutant measurements. In previous studies, inverse methods were used to 

improve model estimates of regional and global atmospheric gases (Hartley and Prinn 

1993; Mulholland and Seinfeld 1995; Chang, Hartley et al. 1996; Gilliland, Dennis et al. 

2003) and to quantify errors in emissions inventories (Mendoza-Dominguez and Russell 

2000; Hakami, Henze et al. 2005; Napelenok, Pinder et al. 2008) In the application here, 

a desired air quality outcome replaces ambient pollutant measurements as inputs into the 

inverse model. The emission changes necessary to achieve the desired air quality 

outcome are then calculated based upon the simulated chemical and physical transport of 

pollutants in the atmosphere. 

Given how air quality can vary in space and time, determining optimal air quality 

is challenging under the inverse framework. The model may identify targets for emission 

reduction for any level of desired air quality, including the NAAQS. In so doing, 

stakeholders and decision-makers are able to better understand the changes that are 

required to achieve their desired air quality state. Some of these possibilities are explored 

herein through a case study application of the method in Atlanta, Georgia.  

2.2 Method 

2.2.1 The Iterative-Inverse Model 

Mendoza-Dominguez and Russell (2000; Mendoza-Dominguez and Russell 2001) 

used a hybrid forward/inverse model to calculate corrections for emission inventories in 

Atlanta, GA. Our method follows a similar approach here, alternating between an 
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emissions based-forward model which simulates concentrations and sensitivities and an 

inverse method which calculates adjustments to the emissions inputs to minimize the 

difference between the simulated concentrations  and the desired levels. The iterative 

process repeats until simulated pollutant concentrations sufficiently agree with the 

desired goal. A diagram of the procedure is shown in Figure 2.1. The emissions-based 

modeling application is described below and followed by a derivation of the inverse 

method. 

 

 

Figure 2.1: Hybrid model schematic. First, the initial concentration and sensitivities are 
found for the base case. These files are then read into the inverse model and initial 
adjustments to the emission inventory are found. These adjustments are applied to the 
emission files, and CMAQ/DDM-3D is rerun to calculate new concentrations and 
sensitivities. These new concentrations are again compared with the desired 
concentrations using the inverse method. This process continues to iterate until the 
predicted change in emission rate is less than 10% of the original emission rate.   
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2.2.1.1 Description of the Emissions-based Model Application 

In the forward modeling step, an emissions based model is used to simulate 

pollutant concentrations and calculate pollutant sensitivities used in the inverse method. 

Sensitivities describe the change in pollutant concentrations due to a change in precursor 

emissions. In past inverse method applications, indirect brute force methods were used to 

find sensitivities by running the air quality model for two sets of emissions to find the 

change in concentrations due to the known change in emissions (Cunnold, Prinn et al. 

1983; Hartley and Prinn 1993; Mulholland and Seinfeld 1995; Chang, Hartley et al. 1996; 

Chang, Hartley et al. 1997; Gilliland and Abbitt 2001; Gilliland, Dennis et al. 2003). 

Here, the sensitivities are calculated using the Direct, Decoupled Method in three 

dimensions (DDM-3D) which directly calculates sensitivities using the chemistry and 

transport equations of the air quality model. Sensitivities calculated using DDM-3D have 

been shown to be comparable with indirect brute force methods even as the calculation 

time for the sensitivity of multiple pollutant/source relationships requires less 

computational time (Cohan, Hakami et al. 2005; Napelenok, Cohan et al. 2006). 

The Community Multiscale Air Quality model extended by the Direct Decoupled 

Method in three Dimensions (CMAQ/DDM-3D) (Cohan, Hakami et al. 2005; Byun and 

Schere 2006; Napelenok, Cohan et al. 2006) is applied for an historical episode of 

elevated ozone concentrations, August 3-8, 1999, on a 4km domain covering the 13-

county Atlanta, GA metropolitan area (Figure 2.2).  The base emissions inventory and 

meteorological modeling were undertaken as a part of the Fall Line Air Quality Study 

and is extensively documented elsewhere (Chang 2004). The first 36 hours of the 

simulation is discarded to reduce the impact of initial concentrations after emission 
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adjustments. The inverse method is programmed in Matlab (The Mathworks 2007) and 

directly imports the concentrations and sensitivities from the CMAQ-DDM output files 

using the SNCTools and Mexnc tools (Evans 2007). 

 

 

 

Figure 2.2: Mean mobile source NOx emissions in the 4km modeling domain.  The 
county lines represent the 13-county Atlanta1999 ozone nonattainment area. Map 
courtesy of Ann Carpenter.   
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2.2.1.2 Derivation of the Inverse Method 

We begin our derivation of the inverse method by describing the relationship 

between precursor emissions and pollutant concentrations. Conceptually, concentrations 

of atmospheric species are a function of meteorology and emissions. For a modeled 

meteorological episode, the relationship between concentrations and emissions may be 

approximated in its simplest form by a linear function using a sensitivity parameter, S. 

Using the calculated sensitivities from the forward modeling step, we approximate the 

concentration species i at receptor r after a perturbation in emissions of species j from 

source type and location defined by parameter p by the first-order Taylor series (time 

indices are dropped for convenience): 

��,���� = ��,�� + 
��,
�,�,� ∙ ∆��,�� + ��,��              (2.1) 

�ℎ���:  
��,���� = estimated concentration of species i at receptor r after perturbation in emissions 

of species j from source parameter p 

��,�� = initial concentration of species i at receptor j for iteration k 

��,�� = emissions of precursor species j from source parameter p for iteration k 


∆��,
�,�,� = ���,� ���,��  = change in  ��,��  due to a perturbation in ��,��  

��,��  = residual error of the linear approximation 

For small changes in emissions, the linear approximation using DDM-3D 

sensitivities is assumed to accurately model the effects of emission changes on air 

pollutants (Cohan, Hakami et al. 2005). The magnitude and spatial distribution of the 

sensitivity parameters change as emissions sources are adjusted. Since sensitivities used 
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in the inverse method are recalculated using DDM-3D during the forward modeling 

portion of the iteration, nonlinear relationships between precursor emissions and pollutant 

concentrations are captured (Mendoza-Dominguez and Russell 2000). Therefore, the 

residual error from Equation 2.1 is dropped, i.e. ��,�� = 0.  

While the spatial and temporal distribution of emissions will likely change over 

time, in the near term, the spatial change in emissions will be limited by the cost of 

replacing existing infrastructure. The problem is the opposite in the long-term; the 

number of possible emission scenarios is limitless or, at least, difficult to constrain 

beyond basic physical limits. To constrain emissions for these cases and to maintain the 

linear assumption of Equation 2.1, future emissions are assumed to be a scaled product of 

current emission rates. The emissions adjustment factor for a species j from a source 

parameter p is defined as��,�.  

The sensitivity term, S, in Equation 2.1 is defined in terms of the change in 

pollutant concentration due to a small perturbation in the emissions strength of the 

parameter. S can be put into terms of � by multiplying S by the total emissions 

strength, �, from the source parameter:  


��,
�,�,� ∙ ��,�� = �� ,!"���,
" ��,
"# = �� ,!"$�,
 = %��,
�,�,�                (2.2) 

where: 

%��,
�,�,�= sensitivity of the concentration of species i at receptor r to a percent change in 

emissions of species j from parameter p 

��,� =  Δ��,�� ��,��' = unitless emissions adjustment factor for species j from parameter p 
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The scaled sensitivity term P may be seen as the contribution to the pollutant 

concentration at a receptor due to χ percent of emissions from a source 

parameter. Equation 2.1 may be then rewritten in terms of a relative change in emissions 

from the base case emissions (with terms as defined above): 

��,���� = ��,�� + %��,
�,� ∙ ��,�       (2.3) 

The minimal percent changes in the emissions, ��,�, in order to achieve a desired 

air quality distribution are found using a weighted least squares method. First, the 

simulated concentrations, ��,����, from Equation 2.3 can be compared with the desired 

concentrations: 

��,�()*��)( = ��,���� + +�,�� = ��,�� + %��,
�,� ∙ ��,� + +�,��     (2.4) 

where: 

��,�()*��)(= the desired concentration of species i at receptor r after emission control 

+�,��  = difference between estimated concentrations,��,����, and desired concentration 

The number of source parameters is limited by the computational cost of 

calculating sensitivities. Since the number of receptors is only limited by the number of 

simulated grid cells and the definition of the desired concentrations, the inverse problem 

outlined here is highly over-determined (i.e. the error between the simulated and desired 

concentrations at each receptor cannot be brought into perfect agreement by adjusting the 

emission strengths of the source parameters) (Mendoza-Dominguez and Russell 2000). 

Instead, the error between the simulated and desired concentrations is minimized while 

keeping the size of the emission adjustments within a physically meaningful range. We 

use a weighted least squares method to find a solution for the two unknown variables in 
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Equation 2.4 (+�,�and��,�). The following weighted least squares cost function, ,, is 

written for these variables in matrix form (Mendoza-Dominguez and Russell 2000): 

- = ./�01 2../�0 + 3/1233/            (2.5) 

where:  

./�01 = 4����� … �����6 = vector of emission adjustment factors 

3/1 = 4+�,�� … +�,�� 6 = vector of differences between modeled and desired concentrations 

Wx = weighting matrix of the scaling factors 

We = weighting matrix of the modeled differences 

This function is minimized when �,/�� = 0 and may be reduced using Equation 

2.4 to (Mendoza-Dominguez and Russell 2000): 

./�0 = (9/12.9/ + 23);09/12.3/     (2.6) 

where:  

9/ = <%��,=�,�,� ⋯ %��,
�,�,�⋮ ⋱ ⋮%��,=�,�,� ⋯ %��,
�,�,�A = matrix of sensitivity at each receptor to emissions from each 

parameter  

Estimates of ./�0 found using Equation 2.6 are used to scale the emission inputs 

into the next forward model simulation of the concentrations and sensitivities (See 

section 2.2.1.3 for a description of the iterative process).  

The weighting matrix of the adjustment factors, Wx, controls the degree to which 

the emissions from a certain source may vary. For example, if a source cannot be 

changed, then Wx = 0, and inverse optimization equation is reduced to ./�0 = B (Welch 

2004). By setting relative weights between source parameters, sources that are unlikely to 

change may be held relatively constant and others which are foreseen to have high 

        15



 
 

variability in future emissions may be allowed to change freely. Additionally, physical, 

social and economic constraints may be included in this weighting system. For example, 

in the case for a large point source such as a power plant, this weighting matrix may be 

used to limit the emission adjustments to the amount of reductions expected from 

available controls.  

In our application, this matrix is used to ensure that the emission adjustment 

factors are within an acceptable range of values. Two sets of criteria define the acceptable 

range for the adjustment factors.  First, emissions must remain within expected 

limitations of possible emission changes. For the application here, the upper limit of this 

range is the current emissions rate, i.e. emissions are not allowed to increase from current 

levels. The lower limit for this range is zero, as negative sources have no physical 

meaning. The second set of criteria is designed to uphold the linearity assumption of 

Equation 2.1. In the results shown here, sources are not allowed to change by more than 

±30% in a single iteration, the range for which our assumption of linear sensitivities is 

valid (Cohan, Hakami et al. 2005). In tests, larger ranges proved to be unstable. Initially, 

the Wx matrix is set to weight each source parameter equally and independently. If an 

adjustment factor for a source is predicted to be outside the acceptable range, the 

corresponding term in the weighting matrix for that source is reduced. This correction 

inhibits changes to the source parameter relative to changes in the other sources. This 

process is repeated until all the scaling factors fall within the acceptable range.  

The second weighting matrix, We, governs the degree of agreement between the 

desired concentrations and the simulated concentrations. In the case of desired 

concentrations, the matrix allows for ambiguity in the future populations’ desired air 
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quality.  Without this factor, the inversion may become unstable if there is perfect 

agreement to the desired air quality concentrations (We = 0). In this situation, the 

optimization equation is reduced to the simple case ./�0 = 9/3/ (Welch 2004). Under 

such assumptions, the Wx matrix is also dropped leading to no control over x and the 

inversion may predict unrealistic changes in emissions. Here, given how the desired 

concentrations are defined (See Section 2.2.2), the We matrix is constant for all receptors.   

 

2.2.1.3 Iterative Procedure 

The initial emission adjustments are found by setting 3/ to the difference between 

the base concentrations and the desired concentrations. In each subsequent iteration, 

emission adjustments are applied to the CMAQ emission files, and the model is run to 

simulate new concentrations and sensitivities (Figure 2.1). As emissions are adjusted and 

the difference between the simulated and the desired concentrations is reduced, the 

change in emissions decreases. Iterations stop once the amount of predicted change in 

emissions from an iteration is less than 10% of the total initial emissions from the 

parameter, i.e. ./�01 CD,E / < (0.1)CD,E B . 

 

2.2.2 Desired Air Quality 

Reducing concentrations of tropospheric ozone, a respiratory irritant, is a 

challenging problem for air quality managers since it is not emitted directly from 

pollution sources but rather formed in the atmosphere from precursor emissions, 

primarily oxides of nitrogen (NO + NO2 = NOx) and volatile organic compounds (VOC) 

(Haagen-Smit 1952). The primary method for controlling regional ozone concentrations 
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in the Atlanta area has been demonstrated to be through the control of NOx emissions 

(Chameides, Lindsay et al. 1988) though VOC control strategies may be effective for 

reducing ozone in some areas (Cohan 2004; Zavala, Lei et al. 2009),  

A relative change in simulated ozone concentrations during an historical episode 

of elevated concentrations, C0, is the basis for estimating the future desired air quality in 

the application shown here. The desired future concentrations are a scaled percent 

change, λ, from C0: 

��,�()*��)( = I��,�J                   (2.7) 

where: 

λ = the desired percent change from base case concentrations  

Here, a series of λ levels (10%, 15%, and 25%) are modeled. Grid cells with 8 

hour average ozone concentrations above a threshold value, 0.06ppm, are defined as 

receptor cells. The receptor cells are found at every iteration after new concentrations are 

modeled by CMAQ/DDM-3D. The impact of the threshold value on adjusted emissions 

is discussed in Chapter 4.  

One important consideration is the transport of ozone into the domain. The 

domain closely outlines the urbanized area of Atlanta (Figure 2.2), and there are 

significant regional sources which impact ozone concentrations inside this region. 

However, as only emission sources within this domain are optimized by the inverse 

method, ozone from these regional sources is removed in this analysis. DDM-3D was 

used to find the sensitivity of ozone within the domain to transport from the boundary. 

Locally produced ozone concentrations (LPO3) are calculated by subtracting this 

sensitivity from simulated ozone concentrations. Based upon the sensitivity analysis of 
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ozone concentrations to ozone transported from the boundary, LPO3 concentrations in 

Atlanta are approximately 70% of total ozone concentrations on average. 

 

2.2.3 Emission source parameters 

Sensitivities modeled in DDM-3D describe the response of an air pollutant to 

emissions from a source parameter. Emission source parameters are defined by the 

chemical species, a source category from the emissions inventory and a region of the 

model domain. Four source categories are defined (U.S. Environmental Protection 

Agency 2008): Point, Area, Mobile, and Non-road sources. Point sources are large 

stationary sources that are explicitly included in the emissions inventory by name and 

location. They include large industrial facilities and electrical generating units. Area 

sources are small stationary sources that are not explicitly included in the emissions 

inventory as point sources. Area sources also include diffuse sources such as wildfires 

and prescribed burning. Mobile sources include licensed, on-road gasoline and diesel 

vehicles. All other vehicular sources, including construction equipment, which are not 

considered as a part of the mobile source category are included as non-road sources. As 

noted above in the application here only NOx sources are considered. Since the majority 

of the mobile NOx emissions occur in the 13-county 1999 Atlanta ozone non-attainment 

region (Figure 2.2), they are included in the inverse model separately from the remaining 

mobile source emissions. Parameters were defined for the three remaining source 

categories for domain-wide NOx emissions. 
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2.3 Results 

 

To test whether the sensitivity analysis and concentration modeling in 

CMAQ/DDM-3D reproduces a unique response for a given change in air pollution, we 

performed a pseudo-data test (Hartley and Prinn 1993; Chang, Hartley et al. 1997; 

Mendoza-Dominguez and Russell 2000; Gilliland and Abbitt 2001). We generated 

pseudo-data by running the transport model with a specified perturbation of emissions.  

These pseudo-data were taken as the desired air quality concentrations, and the inverse 

method was tested to see if the resulting changes to the emission inventory were equal to 

the initial perturbation used to generate the pseudo-data.  Since the pseudo-data were 

directly generated from the transport model, any discrepancy between the inverse method 

adjustment factors and those used to generate the pseudo-data would indicate errors from 

the CMAQ/DDM-3D model (Chang, Hartley et al. 1997). The five source parameters 

were scaled by random amounts to generate the pseudo-data. Within three iterations, the 

inverse model produced adjustment factors closely resembling those used to generate the 

goal concentrations (Table 2.1).  
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Table 2.1: Cumulative percent change in emissions from each iteration for the pseudo 
data case. The inverse procedure the adjustment factors closely resembles the initial 
perturbations to the emissions inventory used to generate the pseudodata. This result 
indicates that the errors from the linear approximations of the model based upon the 
CMAQ/DDM modeling do not prohibit finding a unique solution. 

 
Mobile 
Sources 

Mobile 
Sources 

Area 
Sources 

Nonroad 
Sources 

Point 
Sources 

Iteration 
13 

counties 
Outside of 
13 counties 

Whole 
Domain 

Whole 
Domain 

Whole 
Domain 

1 74.13% 84.78% 77.20% 77.35% 80.97% 
2 72.17% 85.98% 88.67% 75.28% 82.96% 
3 72.01% 86.00% 89.86% 75.04% 83.00% 

Goal 72.00% 86.00% 90.00% 75.00% 83.00% 
 

 

With the pseudo-data validation of the model complete, the iterative inverse 

model was run for goal cases of 10%, 15%, and 25% reductions in ozone concentrations 

using the iterative inverse model. The adjustment factors resulting from each reduction 

case are listed in Table 2.2. In the 10% and 15% cases, reductions in area and point 

source emissions exceeded 50%. For each of the cases, we found increasing reductions of 

mobile source emissions from within the 13-county region, ranging from 29.8% in the 

10% case to 66.1% in the 25% case. Mobile sources outside the 13-county region and 

nonroad emissions were relatively unchanged for the 10% and 15% cases. In the 25% 

case, all source parameters were reduced by more than 50%. 

Non-road sources are reduced by less than 1% in the 10% and 15% reduction 

cases. The Atlanta Hartsfield-Jackson Airport dominates emissions in this category and is 

located directly upwind of the main ozone plume during the modeled episode. Within the 

plume, ozone concentrations are VOC-limited. That is, ozone concentrations are 

dependent on the products of VOC oxidation.  Since reducing NOx concentrations would 

result in more VOC oxidation, the sensitivities of ozone to NOx emissions are negative in 
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Table 2.2: Results for the test cases. Cumulative scaling factors are given for the final change in emissions from the optimization plan. 
Goal 

Percent 
Reduction 

Cumulative Percent Reduction in Emissions 
Number of 

receptor grid 
cellsa 

Average Concentrationb 
(ppb) 

Root mean 
squared errorb 

(ppb) 

-- 

Mobile, 
13-

county 
regionc 

Mobile, 
outside 

13-county 
region 

Area, 
whole 
domain 

Nonroad, 
whole 
domain 

Point, 
whole 
domain 

Base Optimized Base Optimized Goal Base Optimized 

10% 29.8% 15.4% 58.6% 0.5% 57.1% 6501 3828 66.83 60.97 60.15 6.7 2.1 

15% 47.5% 9.7% 58.1% 0.7% 75.8% 6501 2629 66.83 57.18 56.80 10.0 2.5 

25% 66.1% 59.7% 64.3% 54.2% 65.0% 6501 700 66.83 48.39 50.12 16.7 3.1 

a – Defined as cells with LPO3 greater than with concentrations greater than 60ppbv 
b – Given for base case receptors with optimized concentrations greater than goal concentrations 
c – Cherokee, Clayton, Cobb, Coweta, Dekalb, Douglas, Fayette, Forsyth, Fulton, Gwinnett, Henry, Paulding, Rockdale  
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these regions. With negative sensitivities, the inverse calculation attempts to increase 

emissions of NOx to achieve the desired ozone concentration reductions. However, since 

an increase in emissions is not allowed by our a priori assumptions, the weighting value 

in the Wx matrix corresponding to the non-road source is reduced to near zero, and the 

final inverse optimization did not reduce emissions in this category. However, in the 25% 

reduction case, the plume of NOx and ozone were reduced enough for the ozone to 

become NOx limited and non-road sources were accordingly adjusted.  

Increased point source emission reductions were the main difference in 

adjustment factors in the 15% reduction case in comparison with results from the 10% 

case. With the more equally distributed reductions required by the 25% reduction case, 

point sources were not as stringently controlled as they were in the 15% case.  

Total emissions were reduced in increasing amounts as the percentage of desired 

concentration reductions increases (37.9%, 50.5%, and 63.3% respectively) (Figure 2.3). 

Moreover, as NOx emissions are decreased, ozone concentrations become more sensitive 

to NOx. The average sensitivity of LPO3 to total NOx emissions for each of the cases was 

0.10 ppb LOP3/ton NOx, 0.12 ppb LOP3/ton NOx, and 0.19 ppb LOP3/ton NOx. This 

indicates that once NOx emissions are reduced by ~50%, the returns in terms of ozone 

reduction for additional reductions of NOx increases. 
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Figure 2.3: Daily NOx emissions for each case. Emissions decrease as the goal reduction 
case increases.  

 

 

A measure for the 

receptors (i.e. cells with initial concentrations above the threshold

mean square error was reduced

three reduction goals, the hourly average LPO

concentrations after the

the average LPO3 at these receptors are reduced below the desired 

majority (89%) of the grid

are no longer considered as receptors by

inversion included only the highe

reductions beyond the goal concentrations in receptors with base LPO

close to the threshold value

 

: Daily NOx emissions for each case. Emissions decrease as the goal reduction 

A measure for the error between the desired and simulated LPO

receptors (i.e. cells with initial concentrations above the threshold value)

s reduced after the emissions were adjusted (Table 

the hourly average LPO3 in the base case reduce

the emissions were adjusted (Figure 2.4). In the 25% reduction case,

at these receptors are reduced below the desired LPO

of the grid cells fall below the 60ppb threshold in the final iteration

considered as receptors by the inversion calculation (Table 

only the higher concentrations in the final iterations, leading

reductions beyond the goal concentrations in receptors with base LPO

hreshold value.  

 

: Daily NOx emissions for each case. Emissions decrease as the goal reduction 

LPO3 in the base case 

value), the overall root 

Table 2.2). For all 

reduced to the desired 

In the 25% reduction case, 

LPO3 since the 

in the final iteration and 

Table 2.2). The 

in the final iterations, leading to 

reductions beyond the goal concentrations in receptors with base LPO3 concentrations 
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Figure 2.4: Hourly Average 8hr-average LPO3 Concentrations in grid cells with base 
concentrations above the threshold level, 0.06ppm. In each case, the final modeled 
concentrations are nearly reduced to the goal concentrations. As concentrations fall below 
the threshold value, grid cells are no longer considered in the inversion model though 
they are included in the averages shown here.  

 

To qualitatively observe the spatial convergence between the optimized and 

desired LPO3, the episode peak hour 8 hour LPO3 are shown in Figure 2.5. Though the 

spatial distribution of the final iteration simulated LPO3 and the desired LPO3 was not 

identical at each grid cell, on average, the majority of cells showed reductions 

comparable with the goal concentrations. This is consistent with the expectation of the 

method reducing the overall error between the simulated and desired concentrations but 

not achieving a perfect fit. 
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Figure 2.5: Local 8-hour average ozone concentrations at the episode peak hour (20:00 
August 5, 1999). Concentrations for each reduction case are optimized 
goal levels (b, d, and f). The op
similar to that of the goal concentrations. Since the emissions are only scaled in quantity 
and not changed in time and space, the optimized concentrations do not perfectly 
replicate the goal concentrations which are generated without regard for atmospheric 
chemistry or transport. 

 

hour average ozone concentrations at the episode peak hour (20:00 
August 5, 1999). Concentrations for each reduction case are optimized 

f). The optimized results (c, e, and g) are all reduced to levels 
r to that of the goal concentrations. Since the emissions are only scaled in quantity 

and not changed in time and space, the optimized concentrations do not perfectly 
replicate the goal concentrations which are generated without regard for atmospheric 

istry or transport.  

hour average ozone concentrations at the episode peak hour (20:00 
August 5, 1999). Concentrations for each reduction case are optimized to achieve the 

) are all reduced to levels 
r to that of the goal concentrations. Since the emissions are only scaled in quantity 

and not changed in time and space, the optimized concentrations do not perfectly 
replicate the goal concentrations which are generated without regard for atmospheric 
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Figure 2.5 continued 
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2.4 Discussion 

 

 The modeling method outlined here was able to find adjustments to emissions 

that achieve a series of air quality goals. These general emission adjustments provide air 

quality managers with an understanding of how existing emissions sources should change 

without specifying emission control options. The method can be applied to a particular 

representative episode to reveal how emissions should change within a non-attainment 

area for compliance of the NAAQS. Using emission models that incorporate predictions 

of emissions growth and the impact of available emission controls, air quality managers 

can develop emission abatement policies for adjusting emissions to achieve compliance 

with the NAAQS. Because specific control options are not defined as a part of the air 

quality modeling process, air quality managers are free to update emission abatement 

policies as new emission control options become available without having to discretely 

model the air quality impact of each control option. 

The cases modeled here assume NOx emissions can be selectively removed 

without reducing emissions of any other species. This is possible with some control 

technologies, such as catalyst-based emission controls (Heck 1999). Control options such 

as decreasing vehicle miles traveled or increasing home heating and cooling efficiency, 

lead to ancillary reductions in other pollutants.  The CMAQ-DDM system calculates the 

sensitivities of all pollutants to emissions of a certain precursor. Emission adjustments 

may be found using this method that achieves a desired reduction in a mixture of 

pollutants. Additionally, multiple precursor species can be defined as source parameters 

and included in this method to find the relative effectiveness of species-specific controls.  
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CHAPTER 3 

A METHOD TO PRESCRIBE AIR QUALITY IN 2050: OPTIMIZING AIR 

POLLUTANT EMISSIONS TOWARDS LONG-TERM AIR QUALITY GOALS 

 
 

3.1 Introduction 

Title I of the Clean Air Act specifies a planning and implementation phase for 

areas failing to meet National Ambient Air Quality Standards that typically spans a time 

period of 3 to 9 years for all but the most severe or extreme nonattainment areas. Recent 

court decisions and government findings define greenhouse gases as air pollutants 

(Massachusetts v. EPA 2007; U.S. Environmental Protection Agency 2009) and several 

studies describing the effect of climate change on air quality (Turner, Baglio et al. 1991; 

Liao, Tagaris et al. 2007; Tagaris, Manomaiphiboon et al. 2007; Dawson, Racherla et al. 

2009; Jacob and Winner 2009) suggest that longer air quality planning horizons of 25, 50, 

or even 100 years into the future may be forthcoming. The array of options available to 

manage air quality over these longer time periods is greatly expanded over what has been 

possible under Title I of the Clean Air Act. However, relating decisions today to air 

quality in the far off future is not straightforward. Most of the previous efforts at long-

term air quality planning have relied on forecasts of future emission inventories by 

making assumptions of future economic, technological, and population development 

(Nakicenovic, Alcamo et al. 2000; Woo, He et al. 2008). While such forecasts are 

accurate in the short-term, under long-term planning horizons, they become increasingly 

uncertain. In its report on emission scenarios, the International Panel on Climate Change 

(IPCC) noted that uncertainties in such predictions arise “from inadequate scientific 
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understanding of the problems, data gaps and general lack of data to inherent 

uncertainties of future events in general” (Nakicenovic, Alcamo et al. 2000). To 

overcome these uncertainties, often multiple assumptions of future development are 

simulated. As the impacts of these assumptions are analyzed, a satisfactory path of 

development may be chosen. But at the conclusion, one is unable to determine if other 

plans not considered could have provided better air quality outcomes or lower costs. 

Here we describe and demonstrate a method for prescribing a desirable future air 

quality and the minimal changes needed to attain that desired state. Changes may include 

the regulation of stationary and mobile sources of pollutants and pollutant precursors that 

are the traditional mainstays of air quality management. But given the longer time 

horizons, change may also include modifications to elements that, until now, have not 

been considered to be pliant. For example, unless told that there are explicit 

redevelopment plans in the offering, air quality planners have traditionally assumed that 

land uses that are currently industrial will remain industrial, or that the hardscaped 

transportation network is unyielding. As such, land use is a fixed amenity that determines 

air quality.  

The method outlined here reverses the traditional approach. Given a desirable 

future state of air quality, we derive the land uses that suit it – taking into consideration 

that land use is already presently defined and that any changes to this state will incur 

costs, which can be minimized. The computed emissions changes are then linked to 

actual land use characteristics in a tangible way that is more readily communicated to 

planners and decision-makers.     
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3.2 Desired future air quality 

 

 From practical concerns about impacts on health or economic well being, to more 

ethereal qualities like altruism or aesthetics, air quality can be valued in different ways. 

Some studies have surveyed populations for the willingness to pay for cleaner air 

(Mansfield, Reed Johnson et al. 2006); others have used hedonic modeling, observing 

changes in wages or housing prices in response to measured air quality within a 

community (Dickie and Gerking 1991; Smith and Huang 1995; Chattopadhyay 1999; 

Zabel and Kiel 2000; Gabriel, Mattey et al. 2003; Chay and Greenstone 2005).  

In our analysis regarding desirable air quality for the residents of Atlanta in the 

year 2050, we make no claim as to the uniqueness of the method or the truthfulness of the 

result. Instead, the intent of this effort is to produce a seed “air quality state” from which 

the demonstration of the larger inverse concept is made possible. We recognize that any 

arbitrary air quality state would be sufficient for the demonstration. Nonetheless, a 

rational approach to estimate a desirable long-term air quality state is presented here if 

only to avoid criticism over the selection of an arbitrary goal. The rationally derived state 

we provide here is intended as an abbreviated substitute for a more complex approach 

with extensive time for public comment that we imagine would be necessary to create a 

consensus around a common, future goal like air quality in Atlanta in the year 2050.  

3.2.1 Partial Equilibrium Modeling 

Here, we use cost-benefit analysis to determine the optimal desired future air 

quality (F) by maximizing the net benefit function:  
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F(Q) = B(Q) - C(Q)              (3.1) 

Where B(Q) and C(Q) are the total benefits and costs for a prescribed air quality (Q). In a 

partial equilibrium model, the net benefit function is maximized when the marginal 

benefits (MB) are balanced by the marginal costs (MC) : 

  MB(Qeq) = MC(Qeq)                (3.2) 

and the second order conditions verify that there is a global maximum at Qeq. This 

implies that society would pay for improved air quality until the cost for the next 

increment of emission abatement exceeds the benefits that would result from the next 

incremental reduction in pollution.  

As there is yet no direct market for air quality that sets prices or defines the value 

of a unit of air quality improvement, it is necessary to use nonmarket valuation methods 

(Gabriel, Mattey et al. 2003; Mansfield, Reed Johnson et al. 2006) to account for 

improvements in air quality. Several methods are used to estimate contemporary marginal 

costs and benefits of air pollution reductions which are then projected to a 2050 future.  

Over the next 50 years it is likely that there will be a variety of shifts in the 

marginal costs and benefits of air quality leading to a Qeq that will be different from 

today. Across this period of time, changes in a variety of factors will affect the relative 

value of the MC and MB, among others, population, income, technology, and tastes.  A 

description of our future projection of each of these factors to Atlanta, GA in 2050 

follows. 
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 According to the 2000 U.S. census the population of the metropolitan area of 

Atlanta was 4.3 million persons and 1.6 million households. By 2030, the region’s 

primary planning agency, the Atlanta Regional Commission, estimates that these values 

will grow to 6 million personse and 2.3 million households based upon the current 

average household size. If the 1.025% yearly growth rate predicted by the ARC continues 

from 2030 to 2050, 3.7 million households would be expected in metro Atlanta by 2050. 

The MB and MC curves are assumed to scale with population, as both marginal benefits 

and costs are shared by each individual equally.  

 The median household income level in metropolitan Atlanta was $51,654 in 2000 

(U.S. Census Bureau 2007) (all dollars are given as 2000$ adjusted by the consumer price 

index).  This is projected to the year 2050 by applying a 1.4% annual growth rate in 

income, a rate based on Harrison and Pearce (2000). At this rate, the (real) per household 

income is expected to reach $96,563 by 2050.  The forecasted income for 2050 is used in 

the benefits transfer method described in section 3.2.3. The MC curve is assumed to be 

insensitive to income.   

 Central to estimating future marginal costs is the rate of technological growth and 

innovation. Since the progress in abatement technologies is closely tied to the political 

and economic costs of controls, they are responsive to when, how, and to what degree 

future stakeholders decide to control emissions.  As noted earlier, long term predictions 

over the future development of any specific technology are understandably unreliable. In 

this analysis, only a general baseline for the rate of change in air pollution abatement is 

considered. A relatively optimistic rate of 1.5% per year (relating to the historical change 

in energy efficiency of central air conditioners from Newell et al. (1999)) is set here as 

        36



 

 

the technological growth rate. Lower growth rates were also studied, however, the effects 

were not shown to significantly change the optimal level of air quality suggested by this 

analysis. Breakthrough technologies which would greatly alter this rate are not 

considered here. 

 How preferences for cleaner air based on likes and dislikes will change over long 

time periods is difficult to predict given that they are intrinsically unobservable 

determinants of economic value. More akin to style than substance, the effect of future 

taste on desired air quality is inherently different than education or the passing of time or 

other prime determinants of demand for environmental protection, such as income and 

population, which are accounted for directly elsewhere in the model.  Because, however, 

we have no reasonable way to predict future air quality tastes, we restrict tastes in the 

model to reflect the current population’s preferences.  That is, tastes are not assumed to 

change between now and 2050. However, this assumption is not a requirement. 

Variations in the desired air quality may be found by applying a specific segment of the 

population’s desires (e.g. those of highly sensitive children or the elderly) as the main 

constraint on future desires.  An example of this is presented below by basing our 

analysis on parents’ willingness to pay for clean air.  

3.2.2 Transferring marginal costs to 2050 

 Two baselines for marginal costs are drawn from the Fall Line Air Quality Study 

(FAQS) – a detailed and regionally specific study of abatement costs in central Georgia 

(Chang 2004). In addition to being specific to Georgia, this study uses the results of air 

quality sensitivity studies to relate emission abatement costs directly to improvements in 

air quality. Using sensitivity analysis, a list of available control options for the Macon, 
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GA area and the surrounding areas was sorted and ranked in order of cost effectiveness to 

produce MC curves.  

Chang (2004) developed a MC curve that corresponds to the least-cost controls 

from within the Macon, GA area needed to reduce daily maximum 8-hour ozone within 

the city based on average sensitivities for two episodes in August 1999 and 2000.  

Because the 2000 episode showed a larger response in ozone concentrations to reductions 

in local NOx emissions, the air quality improvements from this analysis are termed 

“lower cost” solutions. We assume these cost estimates to be similar to those expected 

with new technologies creating significant air quality improvements without large costs. 

An alternative MC curve is developed from the August 1999 modeling episode when 

modeled ozone concentrations in Macon, GA were less responsive to local controls. This 

can be seen as a “higher cost” MC curve where future costs increase as abatement options 

are exhausted. 

 The baseline 2005 MC curve is projected to 2050 based upon the factors 

identified above. This involves scaling the costs proportionally up with the population 

increase and also scaling them proportionally down due to technological advances. This 

assumes the costs of additional controls will be proportional to the population size.  It 

also assumes the benefit from technological advances will be similarly proportional to 

population.  The marginal cost curves for the higher cost scenario projected to 2005 and 

2050 are shown in Figure 3.1. 
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Figure 3.1: The marginal cost and benefit curves for 2005 and 2050. Marginal cost curves were 
developed from the modeled effects of pollution abatement options on air quality (Chang 2004) 
and were transferred to the future case assuming population and technology growth rates (Newell, 
Jaffe et al. 1999). The marginal benefit curves are based on the compensating variations analysis 
and are projected to an expected population size. The optimal percent reduction in air pollutions 
is at the intersection of each set of MB and MC curves. Currently, to maximize net benefits, 
emissions controls should be installed to reduce air pollution by 9.1%. This value is raised to 
10.0% when the curves are shifted for our 2050 projections.  

 

3.2.3 Transferring marginal benefits to 2050 

 Three methods were employed to determine the 2050 MB curve for Atlanta. The 

first two methods arrived at a similar result despite using different data and methods to 

estimate the benefit of cleaner air for the general public. The third focused on valuing air 

quality based upon the most sensitive members of the population which may be 

representative of an upper limit on the benefits from clean air. Each is described in detail 

below.  
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The first method for estimating MB relies on a cohort of 21 previous studies 

(listed in the footnotes of Table 3.1) which measure how much individuals are willing to 

pay for air quality improvement or be compensated for poor air quality. These values are 

elicited via surveys from individuals in carefully constructed hypothetical scenarios or 

“contingent” markets.  The studies yielded 62 valuation estimates for a variety of air 

pollution species. Each of these valuations was then rendered into a comparable 

compensating variation (CV) measure which relates value placed on avoiding (or being 

compensated for) an additional increment of unspecified air pollution. Income elasticity 

consistent with the literature was assumed whenever the original study did not report 

such information.  The annualized CV relied on a 5% discount rate.   

To transfer the benefit estimates to the future Atlanta case, a parametric model of 

the variation in CV values across and within studies was devised using a random effects 

regression model (with errors clustered by study, for those studies with multiple valuation 

estimates).  The regression used the following covariates:  log income, log population, 

annual precipitation, average high temperature, ∆Q, a dummy variable for whether the 

study site was within the US or foreign, and ∆Q interacted with the foreign dummy 

variable.  After restricting the sample to those observations without missing variables, the 

regression was based on 32 observations.  All of the covariates were significant at the 

10% level, except for log population and the foreign dummy variable.  The R-square of 

the model was 0.83, suggesting that the regression explains a large amount of the 

variation in benefit estimates.  Alternative models were estimated controlling for 

valuation method (CVM or not), other combinations of population and income, and other 

specifications for Q or ∆Q, but the best fit was achieved in the preferred model.   
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The benefit transfer function is linear in ∆Q, meaning that the change in CV 

valuation is constant across marginal changes in ∆Q.  Alternative specifications were 

explored, but they did not fit the data in our sample of benefit estimates.  Furthermore, 

because the specification did not include interaction between the ∆Q variable and other 

covariates (except for the foreign dummy), the MB (but not gross CV level) is 

independent of other variables such as income, population, and weather. Such 

interactions were tested but found insignificant. Therefore, the MB estimates are not 

sensitive to projections of future income. While the marginal effect of ∆Q on CV is also 

independent of population, the MB estimation is sensitive to population growth because 

the CV measure is given in per-household terms and must be scaled up to the appropriate 

regional population. The benefit transfer method yields an estimated MB(Q) of $88.28 

million per year per ppb of ozone for the Atlanta region in 2050.   

The second method focuses on empirical data instead of survey information. 

Gabriel et al. (2003) offers a robust application of a compensating differentials approach 

to determine the impact of air quality on wages and rents. We take the implicit price of 

$37.58 per household per year for 1 ppb of ozone improvement from this study as the 

MB of improvements to Q.  This MB value is scaled up to the regional population of the 

projected Atlanta 2050 scenario, yielding a MB(Q) = $87.14 million per year.  Consistent 

with the reported values in Gabriel et al. (2003), this value is also constant across all 

changes in Q, implying that the benefits of each additional increment of Q are the same, 

i.e. no matter how much air quality improves, people will be willing to pay the same 

amount for an additional increment of Q. 
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In the previous derivations of the MB curve, the analysis focused on establishing 

the benefits of clean air on the population as a whole. However, individual sensitivity to 

air pollution varies significantly. The third method attempts to estimate the marginal 

benefits of air pollution abatement to a future population that is highly sensitive to air 

pollution. Mansfield et al. (2006) asked parents’ willingness to pay to avoid restricted 

outdoor activity time for their child. Since children are more sensitive to air pollution’s 

effects, parents may value clean air more greatly than the general population.  Under this 

case where the average resident’s demand for cleaner air will be the same as that of 

present-day parents of asthmatic children, the MB(Q) would rise by 55% over the 

estimates for a typical population.   

In each of these cases, MB is scaled based on the projected population size in 

2050. MB curves from the first benefit transfer method, projected to 2005 and 2050 are 

shown in Figure 3.1.  

3.2.4 Economically Optimal Reductions 

 In Figure 3.1, net benefits are maximized at the intersections of both sets of the 

MC and MB curves for 2005 and 2050. The cost curves shown in Figure 3.1 are for the 

higher MC scenario outlined above. The MB curves are from the compensating variations 

transfer analysis. In 2005, based upon our cost and benefit analysis, air pollution 

concentrations should be reduced by 9.1% from current concentrations. By 2050, the 

optimal reduction in air pollution will be 10.0% based upon projected population, income 

and technology growth.   
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The 2050 projected optimal air pollution reductions for each combination of cost 

and benefit assumptions are shown in Table 3.1. Using the lower MC scenario where air 

quality is highly sensitive to inexpensive emission controls, the desired reduction is 

greater than the higher MC scenario where effective abatement costs remain high as 

emission control options are eliminated.  The MB estimates from both the compensating 

variations and the compensating differentials analysis are very similar. This is an 

unexpected coincidence, given the markedly different methods employed. Consequently, 

the optimal reductions in air pollution are equivalent between the benefit transfer 

methods. Though, by assuming that the entire future population will have tastes similar to 

that of contemporary sensitive populations, the estimated MB curve increases. This MB, 

in effect, estimates a maximum level of benefits from less air pollution, and accordingly, 

when these preferences are applied, more air pollution reductions are called for than with 

the other benefit transfer methods. 

  

        43



 

 

Table 3.1: Percent reduction in air pollution desired in 2050 Atlanta under different 
benefit valuation and cost assumptions 

 
Higher costsa Lower costsb 

Contingent Variationc 10.0% 12.3% 

Compensating Differentialsd 9.9% 12.3% 

Sensitive Populationse 10.5% 12.6% 
a – Table 3.6, Section IV, Part 2 Chang (2004) 
b – Figure 3.4, Section IV, Part 2 Chang (2004) 
c – 21 study cohort (Brookshire, d'Arge et al. 1982; Berger, Blomquist et al. 
1987; Brucato, Murdoch et al. 1990; Dickie and Gerking 1991; Shechter 1991; 
Halvorsen 1996; Pearce 1996; Alberini, Cropper et al. 1997; Beron, Murdoch et 
al. 1999; Chattopadhyay 1999; Palmquist and Israngkura 1999; Sieg, Smith et al. 
1999; Carlsson and Johansson-Stenman 2000; Kumar and Rao 2001; Kwak, Yoo 
et al. 2001; Srivastava and Kumar 2002; Kim, Phipps et al. 2003; Mahesh D. 
Pandey and Jatin S. Nathwani 2003; Li, Guttikunda et al. 2004; Rozan 2004; 
Dziegielewska and Mendelsohn 2005) 
d – Gabriel et al. (2003) 
e – Mansfield et al. (2006) 

 
 

Regardless of the assumptions or methods used, the economic analysis produced 

optimal air pollution reductions within a relatively narrow band of 10-12%. In the next 

section, we select the optimal air quality reduction from the higher cost scenario to 

calculate emission inventory adjustments necessary to achieve a 10% reduction in air 

pollution  

3.3 Inverse method for adjusting emission inventories 

 

Having an air quality goal, it is the task of air pollution managers to determine a 

plan of action to achieve the goal. Some pollutants which are directly released into the 

atmosphere, such as lead or carbon dioxide, are relatively straightforward to control 

(though the controls still may be costly). Other pollutants such as ozone and secondary 
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particulate matter are more difficult to control, as they are not emitted directly into the 

atmosphere but instead form in the atmosphere from a mixture of precursor species under 

certain conditions.  Air quality managers must first identify the conditions at which these 

pollutants form and then understand the relative importance of precursor species in order 

to create effective control strategies.  Atmospheric modeling plays a key role in this 

process. 

Since air quality planning is dominated by short term goals, modeling studies 

often focus on determining the effectiveness of immediate control solutions for reducing 

air pollution. However, longer term approaches like applying smart growth initiatives that 

affect land use or altering individual travel behavior can lead to significant gains in 

reducing air pollution (Kessler and Schroeer 1995; Liu and Trb 2003; Stone, Mednick et 

al. 2007; Stone 2008). The model outlined here does not specify control strategies. It 

calculates the necessary changes in emissions of precursor species to achieve the desired 

reductions in air pollution. By knowing how emissions must change in aggregate, 

managers can implement long-term solutions or challenge the marketplace of ideas for 

finding a solution which reduces precursor emissions to the requisite amounts.  

In the economic analysis, estimates of MC and two of the three methods for 

estimating MB are based upon the benefits and costs of managing tropospheric ozone 

(the remaining MB method used the compensating variation measure and is applicable to 

any atmospheric pollutant). Accordingly, ozone is considered in our inverse method 

analysis. Ozone is a respiratory irritant and has been shown to cause and exacerbate a 

number of respiratory illnesses and shorten lifespans (Jerrett, Burnett et al. 2009). The 

primary precursors of ozone are nitrogen oxides (NO + NO2 = NOx) and volatile organic 
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compounds (VOCs).  In the southeast United States, the majority of emissions of VOCs 

are derived from biogenic sources which are difficult to control (Chameides, Lindsay et 

al. 1988; Sillman 1999; Cohan, Tian et al. 2006). Historically, NOx controls have been 

the focus of air quality managers for addressing ozone control in the southeast 

(Kasibhatla, Chameides et al. 1998; Cohan, Tian et al. 2006). While vegetation may 

change over the course of 50 years (Turner, Baglio et al. 1991; Woo, He et al. 2008) and 

some control options over the anthropogenic fraction of VOC emissions may be effective 

(Cohan, Tian et al. 2006; Zavala, Lei et al. 2009), they are not subject to our analysis 

here.  Here, we focus on NOx emissions reductions to reduce ozone concentrations in 

Atlanta, GA. Though efforts have been made for several decades to reduce ozone 

concentrations, Atlanta, GA has continued to be out of attainment of the National 

Ambient Air Quality Standard and is subject to the regulatory requirements set forth in 

the Clean Air Act (U.S. Environmental Protection Agency 2008). 

3.3.1 Modeling Description 

The approach used here is similar in form and scope to other inverse methods that 

have been deployed to assess emission inventories from ambient air observations (e.g. 

Mulholland and Seinfeld 1995; Mendoza-Dominguez and Russell 2000; Schichtel, Malm 

et al. 2006). That is, an air quality model, instead of entering emissions as inputs and 

receiving atmospheric concentrations of pollutants or pollutant precursors as output, is 

inverted in the sense that ambient concentrations are input and emissions are output. The 

difference with previous applications is that instead of observations driving the inversion, 

here a proposed or desired future air quality concentration state is the progenitor.  

        46



 

 

The method outlined here closely follows the method used in Mendoza-

Dominguez and Russell (2000) and Napelenok et al. (2008). Though the derivation that 

follows is specific to the case of ozone concentrations and NOx emissions, any 

pollutant/precursor combination may be substituted. A more detailed derivation of 

method is presented in Chapter 2. 

3.3.2 Inverse model 

The desired future ozone concentrations, Cdesired, at receptor r may be seen simply 

as a change in the concentrations, ∆C, from the base concentrations, Cbase.  

���,����	��� = ���,����� + ∆���,�            (3) 

This change in concentrations may be described using a linear model based upon the first 

order sensitivity, S (Cohan, Hakami et al. 2005). 

∆���,� = �����,�
��,� ∙ ∆����,�                          (4) 

where: 

�����,�
��,� = ����,� �����,��  = response of  ozone concentrations at r to changes in 

NOx emissions from a particular source parameter p 

Since future emissions within each source parameter are assumed to change from 

the base case emissions, Ebase, only in magnitude and not place nor time, a relative 

adjustment factor, ��, from Ebase is found. The sensitivities are calculated in terms of the 

total contribution of ozone from Ebase, and the previous equation may be rewritten to find 

the adjustment factors: 
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∆���,� = ���,����,� ∙ ��                           (5) 

where: 

�����,�
��,� = �����,�

��,� ∙ ����,�����   = total contribution of ozone at receptor r due to NOx 

emissions from source parameter p 

�� = ∆����,�
����,� �����  = relative adjustment factor for emission parameter p 

Equation 3 may be rewritten as: 

���,����	��� = ���,����� + �����,�
��,� ∙ �� + ���,�        (6)  

where: 

���,� = the remaining difference between the desired concentration change and the 

simulated concentrationsnot accounted for by the linear model 

Since the number of receptor cells is greater than the number of source parameters, the 

inversion problem is overdetermined and no solution can be found which reduces the 

residual to zero at all receptors (Mendoza-Dominguez and Russell 2000). We find a 

solution which minimizes the residual error, however, between desired and simulated 

ozone concentrations in a least square sense, and produces physically meaningful 

emission adjustments. The following cost function,  , is written in matrix form 

(Mendoza-Dominguez and Russell 2000): 

 = xTWxx + eTWee          (7) 
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where: 

xT = !�" … ��$ = vector of emission source adjustment factors 

Wx = weighting matrix of the source parameters 

eT = !���," … ���,�$ = vector of differences between modeled and desired concentrations 

We = weighting matrix of the residual error 

This function is minimized when � /�� = 0 and may be reduced to (Mendoza-

Dominguez and Russell 2000): 

x = (PTWxP + We)
-1PTWxe           (8) 

The model iteratively optimizes the adjustment factors by adjusting emissions and 

regenerating concentrations and sensitivities until the emissions adjustments converge.  

The weighting of the source parameters, Wx, limits the amount that a source may 

change over the course of the next 50 years. In theory, the matrix defines the future 

uncertainity in the emission strength of a source. Effectively, it limits emission 

adjustments to a phyisically meaningful amount. First, it restricts sources from increasing 

beyond their current emission levels and being reduced below zero. The latter condition 

is to prevent the creation of NOx sinks in place of sources. While it is possible that NOx 

emissions will increase in the future, the former condition restricts the model from using 

high NOx emissions to titrate oxidant species in VOC-limited areas. Second, by limiting 

the change in emissions from any parameter in a single iteration to 30%, the weighting 

matrix supports the use of the first order sensitivities between ozone and NOx (Cohan, 

Hakami et al. 2005). In other applications, the matrix could contain a priori information 
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of the uncertainty of future emissions changes based upon regulations, growth, or 

technical innovation.  

For the case of desired future concentrations, the weighting of the residual error, 

We, may be seen as measuring the consensus over what constitutes a desirable future air 

quality (or the lack thereof). There are significant differences of opinion over what 

qualifies as “clean air.”  As the economic analysis suggests, there is a range of possible 

optimal concentrations. Though as the goal concentrations are defined here, weights are 

assumed to be uncorrelated and constant.  

3.3.3 Forward Model System and Domain 

 The Community Multiscale Air Quality Model (CMAQ) extended with the Direct 

Decoupled Method in three dimensions (DDM-3D) was used to generate the 

concentration and sensitivity fields (Dunker 1984; Yang, Wilkinson et al. 1997; Hakami 

2003; Cohan, Hakami et al. 2005; Napelenok, Cohan et al. 2006). The model was run for 

August 3-8, 1999 episode on a 4km domain covering the 13-county Atlanta, GA 

metropolitan area (Figure 3.2). Meteorology fields, emissions fields, boundary conditions 

and initial conditions for this domain and episode were generated and extensively studied 

as a part of the Fall Line Air Quality Study (Chang 2004).  To remove the effect of static 

initial conditions after emissions were changed the first 36 hours of modeling time is 

discarded. Since local planners may only regulate emissions within their jurisdiction, 

ozone concentrations sensitive to transport into the domain are removed, leaving only the 

locally produced ozone (LPO3) to be optimized. The inverse model is programmed in 

Matlab, and uses the SNC and Mexnc toolboxes to interact with the CMAQ-DDM output 

and emission input files (Evans 2007; Matlab(R) 2007).  
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The DDM-3D 

2006)(Cohan, Hakami et al. 2005; Napelenok, Cohan et al. 2006)(Cohan, Hakami et al. 

2005; Napelenok, Cohan et al. 2006)

2006)provides spatially explicit sensitivities of an atmospheric chemical species to a 

specific source parameter more efficiently than by brute force methods

Cohan, Hakami et al. 2005; Napelenok, Cohan et al. 2006)

Figure 3.2: Comparison between the FAQs and SMARTRAQ emission inventory. The 
FAQs study assigns emissions based upon where they occur on roads (a). The 
SMARTRAQ study assigns emissions to the location of the responsible households (b). 
Both systems are measurements of
future case. Since the results from the inverse model are set as reductions for the entire 13 
county area and the majority of trips in the SMARTRAQ database begin and end inside 
this region, where the emi
measures must be reduced by the same relative amount. 

 method (Cohan, Hakami et al. 2005; Napelenok, Cohan et al. 
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Cohan, Hakami et al. 2005; Napelenok, Cohan et al. 2006). 

Comparison between the FAQs and SMARTRAQ emission inventory. The 
FAQs study assigns emissions based upon where they occur on roads (a). The 
SMARTRAQ study assigns emissions to the location of the responsible households (b). 
Both systems are measurements of mobile source emissions and must be reduced in the 
future case. Since the results from the inverse model are set as reductions for the entire 13 
county area and the majority of trips in the SMARTRAQ database begin and end inside 
this region, where the emissions are assigned is irrelevant in our application.
measures must be reduced by the same relative amount.  Maps courtesy of Ann Carpenter
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 Source parameters are defined by three attributes: chemical species, a specific 

area of the domain, and the emission inventory source category. Five parameters are 

defined: mobile sources inside and outside the 13-county metropolitan area and emissions 

from the whole domain for area, nonroad, and point sources separately. A detailed 

description of these source categories may be found in Chapter 2. As mentioned 

previously, only NOx emissions are considered in the analysis presented here. 

3.3.4 Emission adjustment results 

 Because the desired change in air quality from our economic modeling is in terms 

of the relative change from present levels, any metric may be used to generate the 

desired, or goal, air quality concentrations. Here, the desired future ozone concentrations 

are generated by applying a 10% reduction in cells with LPO3 above 60ppb. This set of 

cells incorporates concentrations which are currently seen as undesirable and includes 

elevated peak hour concentrations (Henderson 2008).  The inverse model is assumed to 

have converged once the model does not adjust emissions beyond 10% of Ebase in a single 

iteration (Figure 3.3). 
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Figure 3.3: Total NOx 
road, and area sources include emissions domain
two areas: 1) inside the 13
domain. While reductions are distributed across the parameters in the first iteration, after 
recalculating sensitivities with this new emissions distribution in the second and later 
iterations, the inverse method readjusted the reductions so that area and point sources ar
reduced further and non
reduced by nearly 40% in the optimized case. 

 

Emission adjustments for each parameter and the change in emission rates are 

shown in Table 3.2. Significant reductions are called for in both area and point sources 

while little reduction is called for from non

over control costs is assumed here, the differences in the adjustment factors between 

source categories are solely based upon the timing and location of emissions and the fate 

of those emissions in the atmosphere. The non

emissions which are largely negatively sensitive to ozone

 emissions by source type and region for each iteration. Point, non
road, and area sources include emissions domain-wide. Mobile emissions are split into 
two areas: 1) inside the 13-country metro area and 2) the surrounding area within the 

ductions are distributed across the parameters in the first iteration, after 
recalculating sensitivities with this new emissions distribution in the second and later 
iterations, the inverse method readjusted the reductions so that area and point sources ar
reduced further and non-road emissions reductions are relaxed. Total NO
reduced by nearly 40% in the optimized case.  

Emission adjustments for each parameter and the change in emission rates are 

Significant reductions are called for in both area and point sources 

while little reduction is called for from non-road sources. Since no a priori information 

over control costs is assumed here, the differences in the adjustment factors between 

gories are solely based upon the timing and location of emissions and the fate 

of those emissions in the atmosphere. The non-road category is dominated by airport 

emissions which are largely negatively sensitive to ozone due to the airport’s proximity

 

emissions by source type and region for each iteration. Point, non-
wide. Mobile emissions are split into 

country metro area and 2) the surrounding area within the 
ductions are distributed across the parameters in the first iteration, after 

recalculating sensitivities with this new emissions distribution in the second and later 
iterations, the inverse method readjusted the reductions so that area and point sources are 

road emissions reductions are relaxed. Total NOx emissions are 

Emission adjustments for each parameter and the change in emission rates are 

Significant reductions are called for in both area and point sources 

road sources. Since no a priori information 

over control costs is assumed here, the differences in the adjustment factors between 

gories are solely based upon the timing and location of emissions and the fate 

road category is dominated by airport 

due to the airport’s proximity  
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Table 3.2: Emission adjustment factors from the inverse analysis  

 

Final 
Percentage of 

Initial 
Emissions 

Initial Daily 
Average NOx 

Emissions Rate 
(tons/day) 

Adjusted Daily 
Average NOx 

Emissions Rate 
(tons/day) 

Mobile emissions 
13-county region 

70.2% 43.34 30.42 

Mobile emissions 
outside 13-county region 

84.6% 13.69 11.58 

Area Sources 41.4% 8.81 3.64 

Non-Road Sources 99.5% 20.60 20.50 

Point sources 42.9% 65.29 28.02 

Total 60.1% 151.73 94.17 

 

to the urban core. Therefore, the model does not reduce emissions from the non-road 

parameter since any reduction would result in an increase in emissions. 

 The total NOx emissions reduction from all sources is 39.1%. While reductions in 

point sources comprise the majority of the NOx reductions, significant reductions are also 

required from the mobile source category (Table 3.2). By distinguishing emissions from 

the 13-county core area from the rest of the domain, the results suggest that mobile 

source reductions (~30%) should be concentrated inside the 13-county area as opposed to 

the surrounding rural areas.  

 The emission reductions given by the inverse model largely achieve the goals set 

forth by the desired air concentrations. As noted above, because  inversion problem is 

overdetermined, the desired concentrations cannot be perfectly replicated by adjusting the 
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source parameter emissions 

between the simulated and desired concentrations

hourly average concentrations show good agreement with the desired concentrations, 

particularly for the days with the most elevated concentrations 

Figure 3.4: Hourly Mean Concentrations in Cells with O
60ppb in the base case. Concentrations are shown for the base case, desired 
concentrations, and final iteration. The reduced emissions case in the final case, achieves 
the desired concentration reductions for most of the hours 
on August 6th when concentrations reach their peak concentrations for the episode. 

 

As a specific example of the 

adjusted, the base 8-hou

episode are shown in Figure 3.

(Figure 3.5b) closely resemble

many regions achieving 

concentrations between the base and final iteration
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Figure 3.5: The local 8-hour ozone concentrations for the a) base case, b) final iteration, 
and c) desired concentrations at 20:00:00 August 5, 1999 EDT. After the emission 
adjustments are applied, the concentrations in iteration 5 closely resemble the desired 
concentrations.  

 

 

Figure 3.6: Total modeled ozone concentrations for the a) base case and b) final iteration 
at 20:00:00 August 5, 1999 EDT.  Even including ozone transported into the area from 
the boundary, the majority of cells above 0.06ppm are reduced by 10%. However, 
reduced NOx titration of oxidant species causes ozone concentrations to increase in some 
regions with concentrations below 0.06ppm in the base case. 
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3.4 Land Use Modeling 

  

By themselves, the aggregated changes in emissions given by the inverse method 

are only the starting point for planners. Aggregated changes only provide guidelines upon 

which planners may evaluate potential changes in emissions as to their impact on 

achieving future desired air quality. We apply these guidelines to indicators of urban 

form to understand how emission adjustments may inform the urban land use planning 

process. 

Several studies have linked land use indicators with mobile source emissions. 

Chapman et al. (2004) showed that residential density, intersection density, and land use 

mix have a significant inverse association with per capita NOx emissions. In addition, a 

single index of walkability (incorporating land use mix, street connectivity, net 

residential density, and retail floor area ratios) has been found to be significantly and 

negatively associated with per capita NOx emissions (Frank, Sallis et al. 2006). Also, 

residential density has been found to have a significant negative relationship with 

household vehicle emissions (Frank, Stone et al. 2000). Knowing the relationship 

between these land use parameters and emissions, it is possible to estimate possible 

changes in land uses to achieve the emission reductions suggested by the inverse model. 

 We use the Strategies for Metropolitan Atlanta's Regional Transportation and Air 

Quality (SMARTRAQ) study is to understand how land use impacts mobile source 

emissions in the Atlanta region (Chapman and Frank 2004). Studying the 13-county 

Atlanta, GA area, the SMARTRAQ database contains a 1.2 million parcel land use 

database and the results of an 8,000 household, 17,000 person, two day travel survey 
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conducted in 2001-02. To compare with the inverse modeling results, the SMARTRAQ 

parcel information is aggregated to the same 4-km grid used here (Figure 3.2a & b).  

A set of grid cells was chosen with similar locations relative to the city core and 

access to transportation but with different amounts of per capita NOx emissions (Figure 

3.2a, Table 3.3). The grid cells are both near the perimeter of the inner city and are 

accessible by the major interstates in the area (Figure 3.2b).  The western cell, roughly 

corresponding to the city of Sandy Springs, has approximately 28% less per capita mobile 

NOx emissions than the eastern cell, which contains the Chamblee neighborhood.   In 

accordance with the results of the inverse modeling, which indicated that mobile source 

emissions must change by ~30%, the per capita mobile emissions in the Chamblee grid 

cell should change to one similar to the present day Sandy Springs grid cell.  By 

comparing land use patterns within these grid cells, it is possible to see how different land 

uses may be associated with differing emissions.  
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Table 3.3: Mobile NOx emissions, transportation access and urban form measurements 
for Sandy Springs and Chamblee 

 Sandy Springs Chamblee 

NOx per capita per weekday 19.06 26.32 

Normalizing factors 

Distance to central business district 24.6 km 27.9 km 

Length of highway road 0.0 km 0.0 km 

Distance to nearest highway ramp 5.8 km 6.0 km 

Distance to nearest rail station 6.4 km 7.2 km 

Number of bus stops 3.6 stops/sq km  3.4 stops/sq km 

Urban form factors 

Mixed use index 0.34a 0.11a 

Net residential density 3.23 units/ac 1.41 units/ac 

Intersection density 15.75 int/km2 21.88 int/km2 

a) Ratio of residential, commercial and office land use in the area. A value of 1 
means a perfectly mixed area while 0 mean only a single type category of land 
use is present. 

 

There are numerous factors in each of these cells that determine per capita emission rates. 

Demographics, incomes, and tastes all play an important role in an individual’s mobility 

choice and travel behavior, and we control for these factors as we consider the land use in 

each area. Various demographic and trip data for each grid cell is shown in Table 3.4. 

While the demographic data between the two cells is similar, the main difference is the 

length of trips made by motor vehicle. It is possible that these distances are purely due to 

the location of the cells in the region. Although this is unlikely since they have similar 

access to highways and are a similar distance from the central business district.  Chapman 

et al. (2004) concluded that urban form is a predictor of automobile  

 

        59



 

 

Table 3.4 Mean demographic and travel behavior data for Sandy Springs and Chamblee 
based on SMARTRAQ database. The number of participants is given in parenthesis 

  Sandy 
Springs 

Chamblee 

Demographic 
Data 

Age 41.0 (50) 43.5 (48) 

Percent female 48.0 (50) 41.7 (48) 

Percent with driver’s license (16+ yr) 97.8 (45) 100.0 (39) 

Number of persons per household 2.3 (50) 1.9 (48) 

Number of vehicles per household 2.5 (50) 2.2 (48) 

Average vehicle age (years) 6.8 (41) 6.1 (38) 

Travel 
Behavior 

Mean number of miles traveled by motor 
vehicle (per capita weekday) 20.3 (46) 30.3 (46) 

Mean number of trips made by motor 
vehicle (per capita weekday) 

3.4 (46) 3.5 (46) 

Percent weekday trips by transit (all 
modes) 

0.3 (50) 0.0 (48) 

Percent weekday trips by walking 0.0 (50) 0.0 (48) 

 

 

trip length. Here, we consider three urban land use indicators: diversity of land uses, 

residential land use density, and intersection density. 

The diverse land uses in each grid cell are grouped into three land use categories: 

residential, commercial, and office (including governmental buildings). We calculate an 

indicator of the relative amount of each land use type from square footage information 

from each county’s circa-2000 property tax parcel database. The details of how the index 

is calculated is presented in detail elsewhere (Chapman and Frank 2004). A grid cell with 

only a single type of land use has a value of zero while a value of one represents an 

equally mixed cell. Increasing the mixed land uses in an area should reduce the amount of 
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mobile NOx emissions as trips are shortened between land use types. Accordingly, the 

Sandy Springs cell has a higher mixed use index value than the Chamblee cell (Table 

3.3). A hypothetical planner in Chamblee may need to increase the diversity of land use 

types through zoning laws or other means.  

Residential land use density is measured as the number of residential units per 

residential acre.  This data is taken from the 1999 Atlanta Regional Commission LandPro 

database (Atlanta Regional Commisssion 1999) and the 2000 U.S. Census (U.S. Census 

Bureau 2000).  In general, areas with low residential density (i.e. areas with large lot 

sizes) result in high levels of emissions as residents are more dependent on automobiles 

for longer travel distances.  The Sandy Springs cell has over twice the residential density 

of the Chamblee cell. Therefore, in addition to encouraging more diverse land use, the 

Chamblee planner may seek to lower mobile source emissions by encouraging higher 

density residential developments. 

The last indicator of urban form, intersection density (the number of intersections 

of at least three streets per square kilometer), is also a measure of the walkability of an 

area. Areas with high intersection density generally create a more welcome pedestrian 

environment by slowing traffic, enabling more opportunities for crosswalk access and 

provide more direct trips for all transportation modes including cars. The intersection 

density is calculated using information from the Georgia Department of Transportation 

road network (Georgia Department of Transportation 1997).  In the case of these two grid 

cells, the expected result that an increase in intersection density leads to a decrease in 

mobile NOx emissions is not validated.  This is not wholly unexpected as each area has 

unique properties, and solutions expected to reduce NOx emissions may not work in all 
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cases. It is possible that intersection density in Chamblee and Sandy Springs have both 

reached a threshold level in intersection density, where further emissions reductions are 

dependent on adjusting the other urban form measures. Therefore, the first priority of the 

Chamblee planner may not be increasing the intersection density of the area. Instead, the 

planner’s focus would be on creating dense residential areas and well mixed land uses 

without which the relatively high level of intersections is not as effective at reducing 

mobile source emissions. Moreover, even though it is considered the “goal” here, 

planners in Sandy Springs will need to go through a similar process for finding solutions 

for reducing its emissions since the 30% reductions are called for across the entire 13-

county region.  Increasing intersection density may be a part of a solution for reducing 

emissions in Sandy Springs. 

This illustrates the point that there will not be a single solution to improving air 

quality across the 13-county region. While each of the three urban form measures was 

discussed individually above, their effects are intertwined and synergistic. For example, a 

location which only has a high density of housing, without nearby destinations and street 

designs which encourage walking and bicycling, or offer transit service, is not likely to 

encourage shorter trips and/or trips made by less polluting transportation modes. A 

suburban, large apartment complex located off a major arterial road is an example of this.  

Similarly, locations with a high degree of mixed uses in close proximity can be very 

unwalkable if they are separated by fences and each facility has its own entrance point. 

Understanding this synergy is an important consideration for any plan to reduce mobile 

source emissions. With the guidelines provided by the inverse modeling, solutions and 
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changes to these factors may be evaluated and implemented due to the unique 

circumstances in each area. 

 

3.5 Discussion 

 

With rising populations and greater awareness of the health effects of air pollution 

at lower concentrations, air pollution management is not going to get easier. Only with 

more effective solutions for air pollution abatement will a desired air pollution level be 

achieved. Further research into control strategies for air pollution will be central to this 

struggle. The process outlined here will help illustrate where the development of these 

technologies could be more effectively focused. Additionally, should this method be 

adopted broadly, there will also need to be a change in the regulatory approach of air 

pollution control. While the requirements of the Clean Air Act to provide clean air as 

quickly as possible should remain a priority, a greater awareness of the long-term trends 

in emissions can ensure that future emissions inventories are easier to control, or in the 

least, not working against future air pollution mitigation efforts. 

Such a system will require communities to proactively address emission source 

control and incorporate air quality considerations into their development plans. In an 

ideal world, planners would find and implement changes to the emission distribution until 

the future desired air quality is realized.  Realistically, planners have other costs and 

benefits to consider as they make decisions regarding emission sources.  It is unlikely that 

the desired air quality will be achieved via a single path. As abatement options are 

proposed, they may be evaluated based on their contribution towards the community’s air 

quality goal. Through smaller changes over a long period of time, it is possible for 
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planners to leverage the inevitable change in cityscape over time to move towards a 

desired air quality goal. As there likely will be little consensus over what future air 

quality level is considered desirable or which sector of emissions should be reduced first, 

individual stakeholders may apply the model using their own desires. The knowledge of 

how emissions should change to achieve their desires may inspire a more informed 

debate among these stakeholders over possible development options. 

The case study results presented here are merely one possible application of the 

method. Future applications may explore other options for desired air quality outcomes, 

optimal emissions reduction scenarios, and development options for emissions 

abatement. To improve the estimates of the desired future air quality, the proposed 

changes in emissions may be endogenized into the economic analysis to determine how 

they affect the desired level of air quality. In the inverse modeling, a weighting regime to 

incorporate a priori information of likely areas for emissions reductions may be included 

or relative control costs between parameters may be included to alter the proposed 

emission adjustments. The results of the model may be used to inform a variety of 

emissions abatement options. For example, the proposed reductions in point sources may 

be used in a market based system to allocate emissions to various facilities and to set the 

eventual cap on emissions. Beyond this, such a system needs not be limited to air quality 

planning – applications may be made to various other long-term environmental problems 

such as climate change or water resource use.   
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CHAPTER 4 

APPLICATION OF INVERSE MODELING IN REGIONAL TRADING 

PROGRAMS: COST OPTIMIZATION OF FUTURE GROWTH 

4.1 Introduction 

Noting the need for regional reductions in air pollutant precursor emissions and 

the success of the acid rain emissions trading program under Title IV of the Clean Air 

Act, the U.S. Environmental Protection Agency (US EPA) proposed an emissions trading 

system for the Eastern United States under the Clean Air Interstate Rule (CAIR) (U.S. 

Environmental Protection Agency 2008). When implemented, the EPA predicted that 

CAIR would lead to significant reductions of sulfur dioxide (SO2) and nitrogen oxides 

(NOx) at less cost than the traditional command and control method. CAIR sets a region-

wide cap on SO2 and NOx emissions and distributed emission allowances to sources 

throughout the region. If a source does not have enough emission allowances to cover its 

emissions, it can choose to either install emission controls or purchase allowances from 

sources with excess allowances. Over time, the overall cap would decrease, increasing 

the scarcity of emission allowances and increasing their market price. As the price for the 

emission allowances increases, more firms will choose to install emissions controls. In 

theory, such controls would lead to reductions in both ground level ozone and particulate 

matter, two pollutants for which many areas are out of attainment of the National 

Ambient Air Quality Standards (NAAQS) (U.S. Environmental Protection Agency 2008). 

The rule was wholly vacated by the US Appeals Court for the District of 

Columbia for several fundamental reasons (D.C. Cir. 2008).  In particular, CAIR sets 

uniform region-wide emission reduction targets and allocated state allowances based on 

        71



 

 

the Title IV program without regard to the contribution of a specific state’s emissions to 

pollutant concentrations in downwind areas. Additionally, recent studies have shown 

large differences in the health effects of air pollution based upon the location of 

emissions (Mauzerall, Sultan et al. 2005). Since emissions sources could potentially 

purchase emission allowances through the trading program in lieu of installing controls, 

the Court ruled that CAIR does not adequately ensure that downwind areas will meet the 

Clean Air Act requirements for attainment of the NAAQS in all areas.  In a later ruling, 

the Court granted a stay of its mandate allowing the EPA to apply CAIR, deciding that 

the rules were acceptable temporarily in lieu of having no regional air quality 

management policy at all, though it warned that the case may be reopened if the issues 

found in the original ruling are not addressed by a new policy (D.C. Cir. 2008). 

Here, we propose a method using air quality modeling and sensitivity analysis to 

address the Court’s concerns over the spatial distribution of emissions from a trading 

system.  Spatial emission reductions are calculated using an iterative inverse method 

which to find the minimum change in precursor emissions needed to achieve a desired 

reduction in downwind air pollution. Applied on a multi-state scale, the method finds a 

region-wide emissions cap and further allocates adjustments to state level emissions. The 

method addresses some of the concerns of the Court by linking changes in emission 

source regions to specific downwind air pollution effects.  

In addition to calculating how emissions must change based upon downwind 

effects, we propose an alternative scenario where emission reductions in each state are 

weighted by their costs. In effect, instead of finding the minimum amount of emissions 
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adjustments needed to reach a desired reduction in air pollutants, we find emissions 

adjustments which minimize overall control costs.  

While the Court listed other problems with the implementation of CAIR in its 

ruling, a method such as ours allows the EPA to respond in part to the Court’s decision 

by including the specific contributions of upwind sources in a future rule. Furthermore, as 

this method does not require an explicit listing or modeling of possible control strategies 

in each state, it is especially suited for a market-based approach where the exact methods 

for air pollution control are determined by methods other than regulators specifying 

controls.  

4.2 Methods 

As the name implies, the iterative inverse method iteratively calculates the 

concentrations and sensitivities using a forward model while adjusting emissions using a 

least squares inverse method. The method is described in detail in Chapter 2. A summary 

follows here. 

4.2.1 Forward modeling 

  Simply, air quality models describe air quality concentrations as a function of 

meteorology and emissions. We assume that meteorology during the modeled episode is 

descriptive of conditions that typically lead to elevated air pollution. While an historical 

episode of elevated concentrations is presented here as a demonstration of the method, in 

practice care would be taken to ensure that the modeled episodes are representative of 

future climates and the range of conditions which lead to elevated air pollution 

concentrations. We approximate the relationship of ambient air pollution concentrations 

to changes in precursor emissions by: 

        73



 

 

∆��,� = ��	,


�,� ∙ �
,�     (4.1) 

where: 

∆��,�= concentration of species i at receptor r 

��	,


�,� = ���,� ��
,�⁄ ∙ �
,�= total sensitivity of species i at receptor r to emissions from 

source species j from source parameter p 

�
,� = ∆�
,� �
,�⁄  = percentage change in emissions of species j from source parameter p 

We use the Community Multiscale Air Quality Model extended with the Direct 

Decoupled Method in three dimensions (CMAQ/DDM-3D) (Cohan, Hakami et al. 2005; 

Byun and Schere 2006) to model air pollution concentrations and find their sensitivity to 

changes in emissions. This modeling suite has been shown to be efficient at calculating 

sensitivities for multiple species from source areas of varying size (Cohan, Hakami et al. 

2005). 

4.2.2 Inverse modeling  

  Inverse methods, as applied in air quality modeling, calculate adjustments in the 

input parameters (e.g. source emissions) of a forward model needed to produce a desired 

change in simulated air pollutant concentrations. Previous studies have defined the 

desired change in concentrations as the difference between modeled concentrations and 

measurements taken from air quality monitoring stations (Hartley and Prinn 1993; Chang, 

Hartley et al. 1996; Mendoza-Dominguez and Russell 2001; Gilliland, Dennis et al. 

2003) or field campaigns (Mulholland and Seinfeld 1995).  In these studies, inverse 

methods have been used to model adjustments to global and regional fluxes of 
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atmospheric components (Chang, Hartley et al. 1996; Mendoza-Dominguez and Russell 

2000), source apportionment (Hartley and Prinn 1993; Gilliland, Dennis et al. 2003), and 

to correct model assumptions (Mulholland and Seinfeld 1995; Mendoza-Dominguez and 

Russell 2001). In the context of using inverse methods for air quality planning, the 

desired concentrations are used in the place of observed measurements.  

By taking the inverse of the sensitivity matrix P, Equation 4.1 may be converted 

to find the equivalent change in emissions to offset a residual difference in concentrations 

(Equation 4.2).  

�
,� = � ∙ (��,�
������� − ��,�

���������)            (4.2) 

where: 

G = inverse gain matrix relating changes in concentrations to shifts in emissions 

(��,�
������� − ��,�

���������) = the model residual of species i at receptor r – here defined as 

the difference between the desired and simulated air quality. 

The number of receptors included in the model is only limited by the description of the 

desired concentrations, yet the number of source parameters considered in the inverse 

model is limited by the calculation cost of finding sensitivities of air pollution to 

emissions. Since the number of residuals is more than the parameters to be adjusted, 

simply converting Equation 4.1 to find the gain matrix, G = (PTP)-1PT, cannot find an 

exact solution.  A solution may be found using a weighted least squares objective 

function to minimize both the model residual and the percent change in emissions 

(Mendoza-Dominguez and Russell 2000): 
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J = xTWxx + eTWee      (4.3) 

where: 

xT = !�" … ��$ = vector of percent changes in emissions from each emission source 

parameter, p 

Wx = (p x p) weighting matrix of the emission adjustment factors. In this application, the 

weighting matrix controls the amount a source parameter may change, preventing 

negative sources and increases in emissions.  

eT = %&" … &�' = model residual at every receptor r 

We = (r x r) weighting matrix of the receptors. In this application, this represents the 

uncertainty surrounding the modeled concentration at a single receptor and the 

consensus over what change in pollutant concentrations is desired. 

Equation 4.3 is minimized when �(/�� = 0, and the equation is solved to the form of 

Equation 4.2. The resulting gain matrix is found as:(Mendoza-Dominguez and Russell 

2000) 

�+ = (,+
-./,+ + .1)23,+

-./           (4.4) 

where: 

,+ = matrix of sensitivity values with rows relating the kth iteration of the modeled 

sensitivities of to emissions from each emission source 1 to p 

For each iteration, the concentrations and sensitivities are modeled by 

CMAQ/DDM and emissions are adjusted by the inverse method.  The process iterates 
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until the change in emissions is less than ten percent of the original emissions. See 

Chapter 2 for a discussion for how the weighting matrices, ./ and .1, are determined. 

4.2.3 Model Domain and Episode 

 The example application shown here reduces locally produced ozone 

concentrations (LPO3) by adjusting emissions of NOx from across the southeast United 

States. The other main precursor for ozone, volatile organic compounds was not 

considered as a part of the CAIR emissions trading system. LPO3 concentrations are 

calculated by subtracting ozone concentrations by the sensitivity of ozone to ozone 

transported into the domain. The modeling period is Aug 3-8th, 1999, an historic episode 

that has been shown to be representative of elevated ozone concentrations in the Atlanta, 

GA area (Cohan, Tian et al. 2006). The domain covers Georgia and portions of 

neighboring states with a 12-km resolution (Figure 4.1). The emission inventories for this 

domain and meteorology modeling for this episode were originally developed for the Fall 

Line Air Quality Study (Chang 2004).  
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Figure 4.1: 12km Modeling Domain, Fall Line Air Quality Study (57x60). The Atlanta, 
GA region is highlighted in grey. Map courtesy of Ann Carpenter. 

 

4.2.4 Cost-weighted Inversions  

 While the inverse method does not require prior knowledge of specific control 

options, estimates of the costs or availability of possible abatement solutions may be used 

in the method to develop more economically or politically viable emission adjustments. 

As an example of this, we weight the inverse model by the relative abatement costs 

between source regions to minimize the total cost for the emission adjustment scenario. 

In effect, the sensitivity values which relate concentration changes to emission changes 
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are converted to cost sensitivities which relate concentration changes to dollars spent on 

emission controls: 

45	,


�,� (�) =
67	,


8,9  �	,

:;<=>

5	,
(?)
       (4.5) 

where: 

45	,
,@

�,�  = Cost-weighted sensitivity of the concentrations of species i at receptor r based 

on dollars spent for a �% reduction of emissions of species j at source p  

�
,�
5BCD = total mass of emissions of species j at source p in the CMAQ modeled episode 

�
,�(�) = average cost per ton for reducing species j at source p by �% 

The cost-weighted sensitivities are then substituted into Equation 4.4, creating a gain 

matrix which relates changes in concentrations to dollars spent on emissions reductions. 

Once the adjustments from the inverse calculation are within the acceptable range (see 

the discussion of the We matrix in Chapter 2 for a description of this range), the 

sensitivities are weighted by the costs. Because the average cost for emission abatement 

is dependent on the percentage of emissions reductions, the cost-weighted sensitivities 

are iteratively solved along with the reductions in emissions. If a source has high costs for 

reductions, Q is reduced relative to another source which has less impact on downwind 

concentrations. This iterative process captures the non-linearity of the cost assumptions. 

Relative emissions abatement costs for each state were found using a database of 

emission controls, AirControlNET v4.1(E. H. Pechan & Associates 2005) which  

contains costs of specific emissions control measures along with their expected reduction 
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in air pollution emissions. Using the AirControlNET software, least cost reduction 

scenarios were found to reduce emissions by multiple levels for each source parameter. 

The controls included in these scenarios were then ranked in terms of cost per ton of 

emission reductions, and the percent reductions for each abatement option was found in 

reference to the total controllable emissions included in the AirControlNET database for 

the source. Emission abatement costs vary by state (Figure 4.2). The costs for reducing 

emissions up to 30% are similar in Alabama, South Carolina, North Carolina, and 

Tennessee. Beyond 30% emission reductions are primarily made in mobile sources and 

therefore vary between states based upon population. Due to the relatively larger quantity 

of emissions in Florida and Georgia, the percentage control costs are larger as reducing 

emissions by one percent requires a greater absolute amount of emission reduction. The 

control options included in these cost estimates may correspond to the same facility and 

do not directly correlate with sources included in the air quality modeling. However, on a 

relative basis, this is sufficient for our purposes to demonstrate the effect of a cost-

weighting factor in the inverse method. Were cost-weighting to be applied to develop an 

emissions reduction strategy with specific recommendations on abatement options, least 

cost curves for each of the source regions similar to Cohan et al. (2006) could be 

developed. 
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Figure 4.2: Theoretical east cost curves for each state. The abatement costs for a series of 
goal reductions in emissions are taken from the least cost module of the AirControlNET 
database (E. H. Pechan & Associates 2005). Theoretical total abatement costs were found 
using these values. While these values are originally tied with actual emission abatement 
solutions, the feasibility of applying these solutions in the domain are not accounted for 
in the total costs shown here. The costs are used here to demonstrate how the method 
may be weighted to include control costs, if known.  
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4.3 Results 

 

For the results shown here, the receptor cells are defined as any cell-hour with 

locally produced 8-hour average ozone concentrations above 0.060ppm. It is possible to 

set a higher threshold value to control peak concentrations. However, since elevated 

concentrations are reached during peak hours in limited areas, they are highly dependent 

on the meteorological patterns during those hours. In tests where only concentrations 

within Atlanta are considered and the threshold value is increased to 0.08ppm, the state-

by-state adjustments have high variability with some states being called to achieve 

significant reductions while others have little or no emissions adjustment. Such results 

are due to including only a relatively small number of hours in the inversion.  By 

including areas with moderate concentrations in the inversion, the emission adjustments 

are distributed more evenly. Although current NAAQS focus solely on peak 

concentrations, alternative standard metrics including moderate values have been 

proposed to reduce chronic long-term human exposure (Lippmann 1993) and ozone 

effects on vegetation (Lefohn and Foley 1992). In addition, by structuring the CAIR 

replacement rule as a method to reduce regional baseline concentrations, the EPA may 

avoid some of the Court’s criticism yet still allow many marginal regions to avoid 

reaching nonattainment status. 

Desired concentrations are set here as a percentage shift in current concentrations, 

though explicit limits or reductions can be set as the air quality outcome goal. While it is 

possible to set specific reductions in each area, having a blanket reduction in all areas is 
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consistent with reducing chronic exposure throughout the region. The desired 

concentrations are set at ten percent less than the base case concentrations.  

 Sensitivity fields for the episode hour with the highest simulated ozone 

concentrations (19:00EST August 7, 1999; Figure 4.3) indicate very little sensitivity to 

interstate NOx transport though a large fraction of ozone is transported into the area from 

the northern and southern boundaries. Sensitivities are dominated by emissions from the 

Atlanta region including a few areas with negative sensitivities to NOx directly downwind 

of large sources. During this hour, ozone concentrations in Montgomery, AL, 

Birmingham, AL and Columbia, SC are most sensitive to NOx emissions within their 

states. Ozone concentrations in Nashville, TN are negatively sensitive to local NOx 

emissions due to large amounts of ozone being transported across the northern border of 

the domain and local scavenging by fresh NOx emissions. 

 LPO3 is above the threshold primarily in central Alabama, Georgia and South 

Carolina (Figure 4.4), though high total ozone concentrations are reported in Tennessee 

and North Carolina (Figure 4.5). The majority of this area also shows high sensitivity to 

NOx emissions from Atlanta (Figure 4.3a). The highest LPO3 concentrations occur over 

Atlanta, GA, Macon, GA and Birmingham, AL during this hour. 
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Figure 4.3: Peak hour (19:00EST August 7, 1999) ozone sensitivity to NOx for each state 
(a-f) and ozone concentrations sensitive to ozone transport across the boundaries (g). 
Values shown are estimated from a 100% change in emissions from the state or 
boundary. The amount of interstate sensitivity is limited though NOx emissions from 
Georgia have the greatest interstate effects during this hour, impacting ozone 
concentrations in south Alabama and western South Carolina. Ozone concentrations in 
three major cities, Atlanta, GA, Columbia, SC and Birmingham, AL have large 
sensitivities to NOx emissions from within their respective states.  Ozone transported 
from the boundaries dominates concentrations in Tennessee, North Carolina and Florida. 
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Figure 4.3 continued 
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Figure 4.4: LPO3 concentrations simulated at 19:00EST August 7, 1999. Atlanta and 
Macon, GA have the highest simulated LPO3 concentrations (a). While the peak values in 
these areas are not reduced after adjustment (c – unweighted, d – cost-weighted) to the 
levels set in the goal (b), areas with lower concentrations (primarily in southeast Alabama 
and western Georgia) closely match the goal concentrations.  
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Figure 4.5: Total O3 concentrations simulated at 19:00EST August 7, 1999. With the 
domain wide emission reductions, concentrations in Tennessee and North Carolina are 
reduced even though they were not included in the inversion model directly. Peak 
concentrations in Atlanta and Macon, GA are not reduced to the goal levels though areas 
outside these regions show lower concentrations after emissions adjustment.
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In the case where cost-based weighting was not used, the inverse method calls for 

a 23.6% reduction in domain-wide NOx emissions. The inverse results and final emission 

totals are listed in Table 4.1. The unweighted adjustments in state-by-state NOx emissions 

fall into a narrow band with reductions of 20-24% with the exception of Florida (31.7%). 

On average, domain-wide NOx emissions are reduced by 23.6%. 

In the cost-weighted case, emissions are equitably reduced based on calculated 

abatement costs, averaging $150 million per year (1999$US) spent on emission 

abatement in each state. Since costs for controls in Florida are higher than other states 

(Figure 4.2), the higher level of emissions reductions in Florida called for in the 

unweighted case is reduced by half after cost-weighting is applied. To compensate for 

less emission abatement in Florida, the cost-weighted adjustments in other states increase 

on average by 6.9%. Emissions reductions in Georgia do not increase as further 

reductions will likely lead to ozone reductions beyond the 10% goal in moderate 

downwind areas. Overall, the cost-weighted regime calls for more total emissions 

reductions than the unweighted case, however at lower theoretical cost overall (Table 

4.1).  
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Table 4.1: Adjustment factor results with total adjusted emissions rates and cost estimations 

 Adjustment Factors 
 

Total Emissions (tons/day) 
 

Cost for Adjustment  
(millions 1999$) 

 
Unweighted 

Cost-
weighted 

 Base Unweighted 
Cost-

weighted 
 Unweighted 

Cost-
weighted 

AL -23.1% -29.0% 
 

236.7 182.0 168.0  
$87.8 $141.1 

FL -31.7% -16.5% 
 

154.0 105.1 128.5  
$528.2 $148.5 

GA -23.2% -22.7% 
 

429.1 329.5 331.9  
$153.5 $152.5 

SC -20.7% -29.4% 
 

149.8 118.8 105.8  
$75.7 $153.4 

NC -24.1% -27.8% 
 

154.1 117.0 111.3  
$102.6 $150.0 

TN -20.4% -29.7% 
 

193.6 154.2 136.2  
$63.2 $152.6 

Total -23.6% -25.5%  1317.3 1006.6 981.8  $1,011.0 $898.0 
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After emissions are adjusted by the inverse procedure, average domain-wide 

hourly concentrations in grid cells with base case concentrations above 0.06 ppm closely 

match those of the desired concentrations in both the unweighted and cost-weighted cases 

(Figure 4.6). The root mean squared error, measuring the average residual between the 

desired and simulated LPO3 concentrations at any one cell-hour, is reduced from  

7.2 x10-3 ppm initially to 2.4x10-3 ppm and 2.5 x10-3 ppm in both the unweighted and 

cost-weighted cases, respectively.  Since the goal concentrations are scaled from the base 

concentrations, the initial mean bias is equal to the root mean square error, 7.2 x10-3 ppm. 

After the inverse method adjustments, the error is minimized and the mean bias is 

reduced to near zero (1.6x10-3 ppm in the unweighted case and 7.5 x10-4 ppm in the cost-

weighted case). 
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Figure 4.6: Hourly Average LPO3 Concentrations. After adjustment, the average concentration in cells with initial LPO3 
concentrations over 0.06 ppm converges on the desired concentration
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Considering peak hour concentrations, ozone over most of the domain is reduced 

by the goal amount in both the unweighted and cost-weighted cases. Exceptions include 

the peak concentrations in downtown Atlanta and Macon, GA which do not achieve a full 

10% reduction from base levels. These downtown locations show negative ozone 

sensitivity to NOx reductions in Georgia (Figure 4.3). At regions of extremely high 

ozone, NOx emissions can destroy more ozone through NO scavenging than they 

produce. Further reductions in Georgia NOx emissions will cause an increase in ozone 

concentrations at these locations. This indicates that VOC reductions will be needed to 

reduce the peak concentrations for this hour.   

 

4.4 Discussion 

 

The method outlined here shows the potential for inverse air quality modeling to 

address the concerns of the DC Circuit on the EPA’s proposed CAIR. By using such an 

approach, it is possible to include the downwind impacts to develop an understanding of 

how each state’s emissions should change to achieve reductions in air pollution in areas 

across the region. While a representative test case is shown here for a series of cities in 

central Georgia and neighboring states, regional modeling on an expanded domain can 

find optimal emission reductions for all of the CAIR states to reduce ozone and 

particulate matter below the ambient standard levels.  
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With specific emissions adjustments for each state, the EPA can regulate emission 

trades to prevent allowances from being transferred to areas where emissions have a 

worse impact on air quality, though such oversight of trades may lead to increased 

regulatory costs (Tietenberg 1995; Bryner 1999). Because the method does not specify 

how emissions can be controlled, emissions sources may be transferred between states, as 

long as these transfers occur to regions where emissions are below the caps established 

by the inverse method. If a broad regional approach is abandoned, the emissions 

adjustments may be used to set state specific caps in trading programs at the state level. 

In the past, several states have implemented such trading programs with success (Bryner 

1999).  

 One of the benefits of this approach is that it does not require the a priori 

specification of emission abatement solutions. The method produces aggregate 

adjustments in emissions by state, leaving the identification and implementation of 

specific emission controls to local air quality managers. It is possible to achieve the 

suggested emission reductions by a traditional command and control method, where state 

and local governments mandate specific emission reductions based upon technical 

feasibility. However, more sophisticated market-based solutions may be adopted to allow 

firms to find the least costly abatement methods to reach the air quality improvement 

targets. In the place of the traditional command-and-control methods, effluent charging 

systems may be implemented where polluters or end users pay a fixed rate based on the 

amount of environmental impact. Such charges are theoretically most efficient when 

polluters (or end users) pay fees based on the social cost of their emissions. Regulators 

may use spatial emission reduction targets in optimally setting these fees (Stavins 2003).  
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With an understanding of how much emissions should change in a region, more 

unconventional methods for finding emission reductions may be proposed. Sales of 

emission permits or a taxation scheme may be used to raise funds from existing sources 

to incentivize firms to make initial emission reductions. If reductions from the taxation 

scheme are not sufficient to reach the reductions proposed by the inverse method, these 

funds may be disbursed to fund further emission reductions. Alternative emission sources 

in an area may place bids for this funding if they can verifiably reduce emission levels at 

cheaper rates than others. Alternatively, a bounty, similar to the X-prize seen in the 

aerospace industry, may be set for finding new solutions which reduce emissions by a 

certain amount. Such programs may include groups that are not traditionally a part of the 

CAIR system. For example, if members of a local community organization or 

neighborhood school are able to verifiably reduce their personal emissions, they may 

make a bid for tax funds or compete in the bounty competition.  

As recent debate of the creation of a carbon trading program has shown, the 

allocations of emission permits and the effects of increasing abatement costs on specific 

industries is a highly political topic. With estimates of how emissions should change 

within each area, this legislative process may be better informed to prevent local political 

interests from creating emission hotspots. Moreover, the inverse results may be weighted 

to include costs as was shown in the cost-weighted case here preventing too much burden 

on a single state or region. 

While in the cases modeled here, a blanket percentage reduction in ozone 

concentrations is set as the goal, it is possible to include variations in the goal air quality 

endpoints (e.g. reductions required to meet a set of standards). These can be linked with 
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integrated assessment modeling to calculate exposure and health effects from a spatial 

distribution of ozone concentrations (Mauzerall, Sultan et al. 2005; Tong, Muller et al. 

2006). By linking these exposure models to the inverse method presented here, regional 

emission adjustments may be found to maximize positive health outcomes in the eventual 

replacement of CAIR. 
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CHAPTER 5 

MULTIPLE POLLUTANT IMPACTS FROM SEASONAL EMISSIONS 

CONTROLS  

 

5.1 Introduction 

 The United States Congress set criteria under the Clean Air Act for limiting air 

pollution to protect human health and environmental wellbeing. Six air pollutants are 

regulated under these criteria by the United States Environmental Protection Agency 

(U.S. EPA): nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide, lead, 

particulate matter, and ozone. The first four criteria air pollutants are directly emitted into 

the atmosphere. Managing these pollutants has been largely successful, as emission 

sources of these “primary” pollutants have been identified and reduced using available 

control technology (U.S. Environmental Protection Agency 2003). The last two, ozone 

and a portion of fine particulate matter (i.e., PM2.5, particulate matter with aerodynamic 

diameters less than 2.5 microns), are considered “secondary” pollutants since they are not 

directly emitted and instead are formed in the atmosphere from emissions of other 

precursor species. Therefore, designing management strategies for ozone and secondary 

PM2.5  relies on controlling precursor species emissions (U.S. Environmental Protection 

Agency 1997).  

Since ozone and PM2.5 have precursors in common, precursor controls should be 

evaluated for their effects on both pollutants. In their 2004 report on air quality 

management in the United States, the National Research Council recommended that the 
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U.S. EPA and states consider an integrated multipollutant approach to air pollution 

control using these common dependencies to reach reductions in both pollutants and to 

ensure that controls for one pollutant do not hamper efforts to reduce concentrations of 

other pollutants (National Research Council of the National Academies 2004). Studies 

have found that more cost effective solutions for air quality management may be 

developed by including ancillary benefits of emissions reductions (Chestnut, Mills et al. 

2006).  

Additionally, there is recent evidence that the health impacts from multiple air 

pollutants exceed those seen from an individual air pollutant (Tolbert, Klein et al. 2007; 

Mauderly and Samet 2009).  A study by the NARSTO currently under review attempts to 

go beyond the typical emphasis on managing ambient air quality concentrations by 

linking the risk from air pollution mixtures directly to emissions of common precursors 

(Brook, Demerjian et al. 2009). To mitigate health damage from exposures of mixtures of 

pollutants, it will be necessary to first understand how precursor emissions impact 

multiple pollutants.  

 Air quality models (AQM) simulate  how possible precursor controls will affect 

air pollution and are used by air quality managers to ensure that the proposed emission 

reductions will lead to the desired air quality outcomes (U.S. Environmental Protection 

Agency 1997; U.S. Environmental Protection Agency 1999). Cohan et al. (2007) 

demonstrates the use of AQM for calculating both the cost efficiency and health benefits 

from reducing the common precursors of ozone and PM2.5. Liao et al. (2008) used air 

quality modeling to study how climate change and future emission controls will affect the 

production of secondary pollutants from emissions of precursor species.  
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Here, we calculate the sensitivity of ozone and particulate matter species to 

domain-wide emissions of several emission precursors: Anthropogenic Volatile Organic 

Compounds (AVOC), Nitrogen oxides (NOx), and SO2. Implications for emission 

controls on each of these species are compared in regards to how they affect pollutant 

concentrations in multiple seasons. An inverse modeling case is used to develop a 

multipollutant reduction strategy for an episode of elevated ozone and PM2.5 

concentrations. The effect from basing a strategy on this summertime episode on the 

remaining year is evaluated for the annual average PM2.5 concentrations and the 

maximum ozone concentrations. 

5.2 Methods 

 The Community Multiscale Air Quality Model version 4.5 (CMAQ) (Byun and 

Schere 2006) was applied to May 2007-April 2008 on a 12-km domain covering the 

southeastern United States centered on Atlanta, GA (Figure 5.1). Sensitivities were 

calculated using the Direct, Decoupled Method in three dimensions (DDM-3D) (Cohan, 

Hakami et al. 2005; Napelenok, Cohan et al. 2006).The meteorology and emission input 

files for the simulation were originally developed to forecast ozone and particulate matter 

to aid in the issuing of air quality advisories (Odman, Hu et al. 2007) and have been 

applied to model the impact of prescribed fires in the southeast (Hu, Odman et al. 2008). 

Meteorology inputs were calculated using the Weather Forecasting and Research model 

(WRF, version 2.2), with initial and boundary conditions taken from the 84 hour 00Z 

forecast from the North American Mesoscale (nomads.ncdc.noaa.gov) model. In addition, 

NAM analysis data was assimilated by WRF at 6 hour intervals. The Sparse Matrix 

Operator Kernel Emissions model version 2.3(Carolina Environmental Program 2003) 
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was used to produce the gridded emissions using a 2007 inventory projected from a 2002 

“typical” year inventory  

 

Figure 5.1: Model domain: The 36-km black box shows the 36 km mother domain. The 
12 km domain is outlined in red. Atlanta, GA is shown within the inner red box. Map 
courtesy of Dr. Yongtao Hu, 
 

(MACTEC 2005).  To produce initial and boundary air quality concentrations for the 

12-km domain, CMAQ was first run with clean boundaries for a 36-km mother domain 

covering the eastern United States with the meteorology and emissions inputs prepared 

using the same way as for the 12-km domain. CMAQ was updated for strict mass 

conversation (Hu, Odman et al. 2006) and included the SAPRC-99 chemical mechanism 

(Carter 2000). 
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5.2.1 Sensitivity Analysis 

 Sensitivities found by the DDM-3D model estimate the effects of precursor 

emissions on the modeled pollutant concentrations: 

��� = ∆��∆�	 
�       (5.1) 

where: 

��� = Total sensitivity of pollutant species i to emissions of precursor species j 

∆�� = Concentration of pollutant species i 

∆�� = Perturbation in emissions of species j 


�= Total emissions of precursor species j 

DDM-3D calculates these sensitivities concurrently with simulating the chemistry and 

transport of the atmosphere, and multiple sensitivities may be calculated for a variety of 

precursor species during a single simulation. Further details of the DDM-3D 

implementation in CMAQ may be found in Cohan et al. (2005) and Napelenok et al. 

(2006). As presented here, these sensitivities may be interpreted as the amount of 

pollution reduction that will occur from a total removal of emissions of a precursor 

species and, in effect, as the total contribution of a pollutant from a precursor species. 

Negative sensitivity values indicate that a reduction in precursor emissions will lead to an 

increase in pollutant concentrations. These sensitivity values estimating the contributions 

or reductions of air pollutants from precursor emission controls may then be compared to 

find which emission controls will be the most effective. 
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5.3 Model comparison with observed concentrations 

 The Georgia Environmental Protection Division measures ambient ozone and 

particulate matter at several locations around the Atlanta, GA metropolitan area (Georgia 

Environmental Protection Division http://www.gaepd.org/air/amp/). Observations from 

three of these monitor locations are compared with the simulated concentrations. Two 

urban monitors, South Dekalb and Confederate Avenue, are located in a single 12-km 

grid cell and were averaged together for comparison with the simulated concentrations. 

Additionally, simulated concentrations are compared with observations from a rural 

monitoring site, at Yorkville, approximately 70 km WNW of Atlanta.  

Ozone concentrations reach a daily maximum during the summertime months due 

to increased photochemistry due to longer periods of sunlight and warmer temperatures. 

Two-month averages of the simulated maximum daily 8-hour average ozone 

concentrations for the grid cells containing the urban and rural monitors are shown in 

Table 5.1a-b. Ozone observations at the rural monitor are higher than those for the urban 

monitors on average, though the urban site observed more days with concentrations 

above 80 ppb. To describe concentrations across the Atlanta area, two month average 

values are given based on the daily maximum 8-hour average ozone concentration 

simulated in any grid cell over Atlanta, GA (Table 5.1c). The average maximum 8-hour 

ozone concentration simulated anywhere in Atlanta was 0.017 ppm higher than the 

average simulated values at either monitor site. 

The composition of particulate matter changes between seasons. In the winter, 

lower mixing heights combined with higher levels of biomass burning and heating 

        103



 

combustion, particulate matter concentrations are higher than summertime levels (Tian, 

Hu et al. 2008). With relatively low photochemistry, the oxidation of SO2 and organic 

compounds is reduced and primary aerosol becomes a larger fraction of the simulated 

PM2.5 concentrations (Table 5.1), reaching up to 65.7% of total PM2.5 mass for the 

maximum simulated values in Atlanta in January-February 2008. In the summer, with 

highly active photochemistry, secondary pollutants such as sulfate and secondary organic 

aerosol (SOA) become a greater fraction of the simulated PM2.5. In the summer, the 

dominate secondary PM2.5 species is sulfate, reaching up to 59.3% of secondary PM2.5 in 

July-August 2007. Aerosol nitrate is a minor fraction in the summer, but they comprise a 

larger (25.5-26.6%) fraction in the winter due to lower temperatures. The urban site has 

larger simulated fractions of primary aerosols than the rural site during the year (47% at 

the urban monitor versus 39.4% at the rural monitor).   

Comparisons between the simulated maximum daily 8-hour average ozone 

concentrations with the observations at the urban monitors show a positive bias in the 

modeled concentrations during periods of  low ozone and negative bias during periods 

with the highest concentrations (Figure 5.2b, Table 5.2a) The overall model performance 

was similar for the rural monitor and urban monitors. The rural site monitor did not report 

ozone concentrations during the peak hours for several days in July-August 2007. These 

values skew the error and bias estimates (Table 5.2b). Ozone was not monitored during 

the winter months (November – February). 
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Table 5.1: Average Concentrations 
Table 5.1a: South Dekalb and Confederate Ave 

 
ANH4 ANO3 AORGA AORGB ASO4 PM2.5 Primary PM2.5 

 
O3 NH3 SO2 NOx 

 
(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) 

 
(ppm) (ppm) (ppm) (ppm) 

May-Jun 2007 1.200 0.137 0.052 2.012 3.319 11.341 4.622 
 

0.060 0.004 0.004 0.023 
Jul-Aug 2007 1.402 0.071 0.043 1.863 4.199 12.403 4.826 

 
0.065 0.004 0.005 0.029 

Sept-Oct 2007 1.433 0.391 0.092 2.646 3.672 14.356 6.122 
 

0.054 0.006 0.005 0.029 
Nov-Dec 2007 1.720 2.116 0.165 1.698 3.076 17.935 9.159 

 
0.038 0.004 0.008 0.048 

Jan-Feb 2008 1.452 1.981 0.211 1.347 2.455 17.890 10.444 
 

0.041 0.003 0.009 0.048 
Mar-Apr 2008 1.369 1.162 0.136 1.673 2.804 14.372 7.228 

 
0.052 0.004 0.006 0.033 

             Table 5.1b: Yorkville 

 
ANH4 ANO3 AORGA AORGB ASO4 PM2.5 Primary PM2.5 

 
O3 NH3 SO2 NOx 

 
(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) 

 
(ppm) (ppm) (ppm) (ppm) 

May-Jun 2007 1.264 0.165 0.053 2.599 3.630 11.662 3.950 
 

0.061 0.004 0.008 0.014 
Jul-Aug 2007 1.464 0.066 0.025 1.796 4.882 11.828 3.594 

 
0.065 0.004 0.011 0.011 

Sept-Oct 2007 1.517 0.428 0.109 2.990 4.036 14.316 5.237 
 

0.057 0.005 0.006 0.017 
Nov-Dec 2007 1.552 1.869 0.136 1.898 2.860 14.442 6.127 

 
0.042 0.004 0.007 0.020 

Jan-Feb 2008 1.230 1.703 0.172 1.421 2.142 13.921 7.253 
 

0.044 0.002 0.009 0.020 
Mar-Apr 2008 1.396 1.135 0.108 1.760 2.986 12.501 5.117 

 
0.053 0.004 0.007 0.014 
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Table 5.3 Continued 
Table 5.1c: Atlanta 

 
ANH4 ANO3 AORGA AORGB ASO4 PM2.5 

Primary 
PM2.5  

O3 NH3 SO2 NOx 

 
(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) 

 
(ppm) (ppm) (ppm) (ppm) 

May-Jun 2007 1.777 0.507 0.130 3.792 5.250 23.940 12.485 
 

0.074 0.025 0.020 0.059 
Jul-Aug 2007 2.075 0.283 0.110 3.402 6.795 25.912 13.249 

 
0.082 0.025 0.023 0.061 

Sept-Oct 2007 2.037 0.946 0.192 4.476 5.409 27.486 14.427 
 

0.067 0.030 0.019 0.065 
Nov-Dec 2007 2.333 3.623 0.228 3.355 4.130 33.371 19.702 

 
0.049 0.018 0.020 0.092 

Jan-Feb 2008 2.019 3.174 0.274 2.516 3.541 33.587 22.062 
 

0.050 0.011 0.023 0.097 
Mar-Apr 2008 2.016 2.321 0.214 2.903 4.105 27.915 16.356 

 
0.059 0.021 0.019 0.065 

ANH4 = Aerosol Ammonium; ANO3 = Aerosol Nitrate; AORGA = Secondary Organic Aerosol from Anthropogenic Volatile 
Organic Compounds; AORGB = Secondary Organic Aerosol from Biogenic Volatile Organic Compounds; ASO4 = Aerosol Sulfate; 
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Figure 5.2: Comparison of observed concentrations and simulated concentrations.  
  

        107



 

Table 5.2:Performance Evaluation: Ozone 
Table 5.2a: South Dekalb and Confederate Avenue 
 N RMSE ME MB MNE MNB 
  (ppm) (ppm) (ppm) % % 
May-June 2007 58 0.0114 0.0090 -0.0003 16.84 3.49 
July-August 2007 61 0.0177 0.0141 0.0034 29.03 16.42 
September-October 2007 60 0.0151 0.0125 0.0108 37.99 35.59 
November-December 2007 2 0.0260 0.0239 0.0239 138.75 138.75 
January-February 2008 4 0.0132 0.0128 0.0128 42.73 42.73 
March-April 2008 57 0.0113 0.0088 0.0066 24.44 20.52 
  

     
Table 5.2b: Yorkville 
 N RMSE ME MB MNE MNB 
  (ppm) (ppm) (ppm) % % 
May-June 2007 58 0.0084 0.0070 -0.0031 11.38 -3.66 
July-August 2007 61 0.0206 0.0163 0.0136 50.05 46.43 
September-October 2007 55 0.0131 0.0105 0.0096 26.48 24.99 
November-December 2007 27 0.0085 0.0071 0.0055 20.86 17.89 
January-February 2008 0 -- -- -- -- -- 
March-April 2008 57 0.0086 0.0064 0.0028 14.91 9.00 
N = Number of days with observations, RMSE = Root Mean Square Error, ME = Mean Error, MB = Mean 
Bias, MNE = Mean Normalized Error, MNB = Mean Normalized Bias 

 

Simulated daily average PM2.5 concentrations at the monitoring sites have positive bias in 

the winter and negative bias in the summer months when compared with observations 

(Figure 5.2, Table 5.3). Several extremely high PM2.5 concentrations observed in May-

June 2007 are due to large wildfires on the Georgia-Florida border that were not included 

in the emissions inventory and are therefore severely underestimated by the simulations 

(Figure 2; Hu, Baek et al. 2008). The low simulated values in the summertime are likely 

due to underestimations of the SOA production from biogenic VOC (BVOC) within the 

CMAQ model (Hu, Baek et al. 2008; Kroll and Seinfeld 2008). The overestimated PM2.5 

concentrations in winter are likely due to errors in the emission inventory for primary 

organic aerosol from residential wood burning (Tian, Hu et al. 2008). 
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Table 5.3: Performance Evaluation: PM2.5  
Table 5.3a: South Dekalb and Confederate Avenue 
 N RMSE ME MB MNE MNB 
  (µg/m3) (µg/m3) (µg/m3) % % 
May-June 2007 52 14.91 11.38 -10.99 47.34 -39.95 
July-August 2007 60 15.53 13.38 -13.34 49.02 -48.71 
September-October 2007 57 5.94 4.30 -2.27 25.40 -7.68 
November-December 2007 58 6.58 4.97 3.22 39.17 25.81 
January-February 2008 56 8.78 6.71 6.22 55.25 51.37 
March-April 2008 55 6.02 4.33 -0.46 29.39 -1.84 
  

     
Table 5.3b: Yorkville 
 N RMSE ME MB MNE MNB 
  (µg/m3) (µg/m3) (µg/m3) % % 
May-June 2007 53 16.12 10.81 -10.06 43.55 -33.55 
July-August 2007 53 11.07 8.52 -8.12 37.44 -33.58 
September-October 2007 46 6.18 4.81 0.98 47.45 28.13 
November-December 2007 56 7.90 6.12 5.07 100.16 91.25 
January-February 2008 52 9.14 7.53 7.49 129.73 129.22 
March-April 2008 52 6.65 5.26 2.29 58.29 34.77 
N = Number of days with observations, RMSE = Root Mean Square Error, ME = Mean Error, MB = Mean 
Bias, MNE = Mean Normalized Error, MNB = Mean Normalized Bias 

 

5.4 Pollutant sensitivities to precursor emissions 

5.4.1 Sensitivities to NOx emissions 

Nitrogen oxide (NO) and NO2 are grouped together for analysis as NOx since they 

are rapidly interconverted in the atmosphere. NOx is formed from the reaction of N2 with 

O2 at high temperatures during combustion of fossil fuels. Surface NOx emissions are 

predominately from mobile sources in urban areas. Emissions of elevated NOx is mostly 

due to point sources such as electrical generating units (Heinsohn and Kabel 1999). NOx 

can be a respiratory irritant at high concentrations and contributes to acid deposition.  
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In the summertime, the photolysis of NO2 by sunlight produces ozone. However, 

under certain conditions, NOx emissions may scavenge ozone (NO + O3 → NO2 + O2). 

Tropospheric ozone build up in the summer is due to the conversion of NO back into NO2 

through alternative reactions with VOC and other radicals (Haagen-Smit 1952; Duncan 

and Chameides 1998). In July-August 2007, total NOx contributed 21.0% of the ozone at 

the urban site and 20.4% at the rural site based on the sensitivity analysis. The sensitivity 

analysis indicates that NOx controls are effective at reducing aerosol nitrate 

concentrations though nitrate is only a minor component of secondary PM2.5 in summer 

(<1% in July-August 2007) (Figure 5.3, Table 5.4). Concentrations of organic and sulfate 

aerosols are sensitive to NOx emissions since there will be less production of oxidants 

from NO2 photolysis.  

In the winter with shorter periods of sunlight for NO2 photolysis, ozone 

concentrations show a negative sensitivity to NOx as the NO scavenging reaction 

dominates (Figure 5.3, Table 5.4). At the urban site, based on the sensitivity analysis, 

total removal of NOx emissions reductions would increase ozone by 19.0%. Though the 

concentrations remain below the NAAQS, studies have indicated that health risks from 

ozone exposure are present even at low concentrations (Bell, Peng et al. 2006). Aerosol 

nitrate is sensitive to NOx emissions though it is more sensitive to ammonia (NH3) (see 

section 5.4.4). Due to its competition for oxidants, emissions of NOx in winter decrease 

the available oxidants to react with VOC and SO2 leading to less SOA and aerosol sulfate 

though these interactions are small (Napelenok, Cohan et al. 2006; Liao, Tagaris et al. 

2008).  
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Figure 5.3: Total sensitivity of 
organic compounds, oxides of nitrogen, sulfur dioxide, and ammonia.

Total sensitivity of ozone and secondary PM2.5 to anthropogenic volatile 
organic compounds, oxides of nitrogen, sulfur dioxide, and ammonia.

 

 
anthropogenic volatile 

organic compounds, oxides of nitrogen, sulfur dioxide, and ammonia. 
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Table 5.4: Average sensitivity to NOx emissions 
 Table 5.4a: South Dekalb and Confederate Ave 

 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 2.40 0.11 0.01 0.05 0.30 0.58  0.0087 -0.0001 -0.0001 0.0039 
Jul-Aug 2007 0.10 0.06 0.01 0.07 0.35 0.59  0.0136 0.0000 -0.0001 0.0040 
Sept-Oct 2007 0.16 0.31 0.01 0.03 0.21 0.73  0.0050 0.0000 0.0000 0.0045 
Nov-Dec 2007 0.20 0.88 -0.04 -0.26 -0.14 0.64  -0.0095 -0.0001 0.0000 0.0125 
Jan-Feb 2008 0.11 0.61 -0.08 -0.22 -0.22 0.20  -0.0093 0.0000 0.0000 0.0112 
Mar-Apr 2008 0.13 0.50 -0.03 -0.18 -0.06 0.35  -0.0033 0.0000 0.0000 0.0065 
            
Table 5.4b: Yorkville 
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 0.13 0.15 0.01 0.25 0.27 0.81  0.0095 -0.0001 -0.0001 0.0027 
Jul-Aug 2007 0.10 0.06 0.01 0.21 0.36 0.73  0.0131 0.0000 -0.0001 0.0032 
Sept-Oct 2007 0.17 0.36 0.01 0.27 0.22 1.03  0.0067 -0.0001 -0.0001 0.0040 
Nov-Dec 2007 0.15 0.67 -0.03 -0.13 -0.14 0.52  -0.0054 0.0000 0.0000 0.0073 
Jan-Feb 2008 0.12 0.58 -0.05 -0.13 -0.16 0.37  -0.0057 0.0000 0.0000 0.0066 
Mar-Apr 2008 0.19 0.68 0.00 0.04 -0.10 0.81  -0.0009 0.0000 0.0001 0.0044 
            
Table 5.4c: Atlanta            
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 0.20 0.33 0.01 0.35 0.42 1.30  0.0138 -0.0002 -0.0002 0.0120 
Jul-Aug 2007 0.15 0.21 0.01 0.31 0.54 1.23  0.0212 -0.0002 -0.0003 0.0119 
Sept-Oct 2007 0.22 0.57 0.01 0.43 0.24 1.47  0.0093 -0.0002 -0.0001 0.0178 
Nov-Dec 2007 0.32 1.48 -0.05 0.03 -0.19 1.59  -0.0025 -0.0003 0.0000 0.0328 
Jan-Feb 2008 0.13 0.75 -0.08 -0.11 -0.21 0.49  -0.0032 -0.0002 0.0001 0.0341 
Mar-Apr 2008 0.24 1.22 -0.03 0.14 -0.23 1.35  0.0010 -0.0001 0.0001 0.0201 
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 5.4.2 Pollutant sensitivities to anthropogenic volatile organic compound emissions 

 Volatile organic compounds (VOC) are non-methane hydrocarbons with boiling 

points below 100°C. Anthropogenic VOC (AVOC) emission are primarily from their use 

as solvents in many industrial applications (Heinsohn and Kabel 1999). Though bigenic 

sources have greater emission rates than anthropogenic sources in Atlanta, air quality 

management policies can only control the anthropogenic fraction easily (Chameides, 

Lindsay et al. 1988). As they are degraded by radicals in the atmosphere, VOC play an 

important role in both ozone and PM2.5 production. In the case of ozone, VOC oxidation 

products convert NO to NO2 without the destruction of ozone, creating more NO2 to 

photolyze and net ozone production. In the absence of VOC, the destruction of ozone by 

NO would inhibit high ozone concentrations in urban areas. VOC oxidation products tend 

to be less volatile and can condense increasing particulate matter mass. The variety of 

organic species and the number of possible reactions makes characterizing the formation 

of SOA from VOC difficult in air quality models and they contribute to the uncertainty 

between simulated and observed concentrations of PM2.5 (Kroll and Seinfeld 2008).  

 Ozone concentrations are positively sensitive to AVOC emission controls 

throughout the year (annually 2.2% for the urban site), though more so in the winter 

season (3.2%) (Figure 5.3, Table 5.5). For particulate matter in the summer, reductions in 

AVOC emissions reduce the fraction of SOA that is formed from these compounds. 

However, anthropogenic SOA comprises a small fraction of the total PM2.5( < 1% by 

mass) in our simulation due to known problems the model’s simulations of SOA 

formation in summer (Morris, Koo et al. 2006). In the results presented here, the net 

sensitivity of secondary PM2.5 to AVOC is slightly negative in the summer through its 
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Table 5.5: Average sensitivity to Anthropogenic Volatile Organic Compounds (AVOC) emissions 
Table 5.5a: South Dekalb and Confederate Ave 
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 1.20 0.00 0.05 0.00 -0.06 -0.02  0.0007 0.0000 0.0000 -0.0001 
Jul-Aug 2007 -0.01 0.00 0.04 0.00 -0.04 -0.02  0.0003 0.0000 0.0000 0.0000 
Sept-Oct 2007 -0.02 0.00 0.07 -0.01 -0.06 -0.01  0.0005 0.0000 0.0000 -0.0001 
Nov-Dec 2007 0.02 0.05 0.14 0.01 0.02 0.25  0.0016 0.0000 0.0000 -0.0003 
Jan-Feb 2008 0.04 0.10 0.20 0.02 0.04 0.39  0.0020 0.0000 0.0000 -0.0004 
Mar-Apr 2008 0.00 0.03 0.12 0.01 -0.02 0.14  0.0020 0.0000 0.0000 -0.0003 
Table 5.5b: Yorkville 
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 -0.02 0.00 0.05 -0.02 -0.06 -0.05  0.0008 0.0000 0.0000 -0.0001 
Jul-Aug 2007 -0.01 0.00 0.02 -0.01 -0.05 -0.05  0.0005 0.0000 0.0000 0.0000 
Sept-Oct 2007 -0.02 0.00 0.09 -0.03 -0.07 -0.04  0.0014 0.0000 0.0000 -0.0002 
Nov-Dec 2007 0.02 0.05 0.11 0.00 0.02 0.20  0.0012 0.0000 0.0000 -0.0003 
Jan-Feb 2008 0.03 0.06 0.14 -0.01 0.03 0.25  0.0014 0.0000 0.0000 -0.0003 
Mar-Apr 2008 -0.01 0.00 0.09 -0.01 -0.03 0.03  0.0015 0.0000 0.0000 -0.0002 
Table 5.5c: Atlanta            
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 -0.02 0.00 0.05 -0.02 -0.06 -0.05  0.0008 0.0000 0.0000 -0.0001 
Jul-Aug 2007 -0.01 0.00 0.02 -0.01 -0.05 -0.05  0.0005 0.0000 0.0000 0.0000 
Sept-Oct 2007 -0.02 0.00 0.09 -0.03 -0.07 -0.04  0.0014 0.0000 0.0000 -0.0002 
Nov-Dec 2007 0.02 0.05 0.11 0.00 0.02 0.20  0.0012 0.0000 0.0000 -0.0003 
Jan-Feb 2008 0.03 0.06 0.14 -0.01 0.03 0.25  0.0014 0.0000 0.0000 -0.0003 
Mar-Apr 2008 -0.01 0.00 0.09 -0.01 -0.03 0.03  0.0015 0.0000 0.0000 -0.0002 

ANH4 = Aerosol Ammonium; ANO3 = Aerosol Nitrate; AORGA = Secondary Organic Aerosol from Anthropogenic Volatile Organic 
Compounds; AORGB = Secondary Organic Aerosol from Biogenic Volatile Organic Compounds; ASO4 = Aerosol Sulfate;  
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interactions with other species, particularly sulfate, though the effect is not significant (< 

1% of secondary PM2.5 mass). In the winter, secondary PM2.5 is positively sensitive to 

AVOC, but again, the total sensitivity is low from 3.75% at the rural site to 5.23% at the 

urban site. 

5.4.3 Pollutant sensitivities to Sulfur Dioxide Emissions 

 While there are significant natural sources of SO2, the majority of SO2 in urban 

areas comes from sulfur compound impurities released during coal combustion (Amar, 

Senior et al. 2009). SO2 emissions are oxidized in the atmosphere either in the gas phase 

or after absorption into water droplets, forming aerosol sulfate. Aerosol Sulfate is the 

largest component of secondary particulate matter during summertime (55.4% at the 

urban site and 59.3% at the rural site). During times where the concentrations of oxidant 

species are reduced, a significant fraction of the SO2 may be removed from the 

atmosphere through dry and wet deposition (Heinsohn and Kabel 1999).  

 At the rural site, nearly 25% of the secondary PM2.5 is sensitive to SO2 emissions 

in summer (Table 5.1) mostly due to its effect on aerosol sulfate. Aerosol nitrate is 

negatively sensitive to SO2 emissions throughout the year, as less sulfate formation frees 

ammonia to form ammonium nitrate aerosol (Liao, Tagaris et al. 2008). In summer the 

increase in aerosol nitrate (0.05 µg/m3 at the urban site) for a 100% reduction in SO2 

emissions is small in comparison with the amount of sulfate reduction (1.63 µg/m3 for the 

same site and conditions).  In winter, the negative sensitivity of nitrate to SO2 emissions 

plays a larger relative role. At the urban site nitrate concentrations increase by 0.17 µg/m3 

at the urban site while sulfate is reduced by only 0.62 µg/m3 for a 100% change in 
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Table 5.6: Average sensitivity to SO2 emissions 
Table 5.6a: South Dekalb and Confederate Ave 
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 1.20 -0.05 0.00 0.00 1.06 1.28  -0.0001 -0.0002 0.0019 0.0000 
Jul-Aug 2007 0.29 -0.05 0.00 0.00 1.38 1.63  0.0000 -0.0002 0.0018 0.0000 
Sept-Oct 2007 0.28 -0.08 0.00 0.00 0.97 1.17  0.0000 -0.0002 0.0017 0.0000 
Nov-Dec 2007 0.14 -0.20 0.00 0.00 0.65 0.59  0.0000 -0.0001 0.0029 0.0000 
Jan-Feb 2008 0.10 -0.18 0.00 0.00 0.53 0.46  0.0000 -0.0001 0.0036 0.0000 
Mar-Apr 2008 0.22 -0.15 0.00 0.00 0.80 0.86   0.0001 -0.0002 0.0025 0.0000 
            
Table 5.6b: Yorkville 
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 0.26 -0.04 0.00 0.00 1.21 1.38  0.0001 -0.0002 0.0060 0.0000 
Jul-Aug 2007 0.28 -0.03 0.00 0.00 1.77 2.02  0.0002 -0.0002 0.0091 0.0000 
Sept-Oct 2007 0.31 -0.09 0.00 0.00 1.25 1.48  0.0001 -0.0003 0.0048 0.0000 
Nov-Dec 2007 0.13 -0.15 0.00 0.00 0.60 0.58  0.0000 -0.0001 0.0039 0.0000 
Jan-Feb 2008 0.08 -0.10 0.00 0.00 0.39 0.36  0.0000 -0.0001 0.0048 0.0000 
Mar-Apr 2008 0.22 -0.18 0.00 0.00 0.93 0.98   0.0001 -0.0003 0.0046 0.0000 
            
Table 5.6c: Atlanta            
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 0.40 -0.08 0.00 0.00 1.60 1.80  0.0003 -0.0005 0.0105 0.0000 
Jul-Aug 2007 0.41 -0.07 0.00 0.00 2.04 2.38  0.0002 -0.0006 0.0125 0.0000 
Sept-Oct 2007 0.35 -0.11 0.00 0.00 1.31 1.55  0.0002 -0.0004 0.0087 0.0000 
Nov-Dec 2007 0.17 -0.20 0.00 0.00 0.73 0.70  0.0000 -0.0002 0.0093 0.0000 
Jan-Feb 2008 0.13 -0.17 0.00 0.00 0.62 0.57  0.0000 -0.0001 0.0112 0.0000 
Mar-Apr 2008 0.30 -0.23 0.00 0.00 1.16 1.24   0.0001 -0.0003 0.0097 0.0000 

        116



 

emissions. The sensitivity results show SO2 controls will be effective at reducing 

secondary PM2.5 throughout the year (Figure 5.3). Ozone concentrations show a very 

slight positive sensitivity to SO2 emissions (<0.5% at all sites) in the summer and are 

insensitive to SO2 emissions in the winter (Figure 5.3, Table 5.6).  

5.4.4 Pollutant Sensitivities to Ammonia Emissions 

 NH3 is emitted into the atmosphere mostly from biological decay though 

anthropogenic sources, primarily from agriculture, contribute to NH3 emissions as well 

(Heinsohn and Kabel 1999; Gilliland, Dennis et al. 2003) . While NH3 has no interaction 

with ozone chemistry, it plays a significant role in the production of aerosol sulfate and 

nitrate. Ammonia also reacts with nitric acid in the gas phase to form ammonium nitrate 

particulate (Seinfeld and Pandis 1998) though to the vapor pressure of ammonium nitrate, 

this process is only significant in winter (Liao, Tagaris et al. 2007). In the aqueous phase, 

NH3 dissolves in water droplets as NH4
+ where it reacts with SO4

2- and NO3
- to form 

particulate matter (NARSTO 2004).  

 According to the sensitivity analysis, reductions in NH3 do not affect aerosol 

sulfate concentrations greatly (~1% decrease due to 100% NH3 control). Aerosol nitrate 

is positively sensitive to NH3 emissions throughout the year. In winter, PM2.5 is most 

sensitive to NH3 controls (23.5% decrease in secondary PM2.5 due to 100% NH3 control 

in January-February 2008) (Figure 5.3). 

5.5 Multi-pollutant Inverse modeling 

 In previous chapters, inverse methods have been shown to be able to identify 

optimal adjustments to emissions of a single precursor species to reduce ambient 
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Table 5.7: Average Sensitivity to NH3 emissions 
Table 5.7a: South Dekalb and Confederate Ave 
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 0.18 0.14 0.00 0.00 0.02 0.35  0.0000 0.0011 0.0000 0.0000 
Jul-Aug 2007 0.31 0.12 0.00 0.00 0.02 0.45  0.0000 0.0009 0.0000 0.0000 
Sept-Oct 2007 0.19 0.30 0.00 0.00 0.05 0.59  0.0000 0.0018 0.0000 0.0000 
Nov-Dec 2007 0.41 1.10 0.00 0.00 0.01 1.51  0.0000 0.0012 0.0000 0.0000 
Jan-Feb 2008 0.47 1.23 0.00 0.00 0.05 1.75  0.0000 0.0007 0.0000 0.0000 
Mar-Apr 2008 0.27 0.68 0.00 0.00 0.06 1.01   0.0000 0.0012 0.0000 0.0000 
            
Table 5.7b: Yorkville 
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 0.25 0.14 0.00 0.00 0.01 0.41  0.0000 0.0009 0.0000 0.0000 
Jul-Aug 2007 0.36 0.09 0.00 0.00 0.01 0.46  0.0000 0.0007 0.0000 0.0000 
Sept-Oct 2007 0.20 0.32 0.00 0.00 0.03 0.63  0.0000 0.0019 0.0000 0.0000 
Nov-Dec 2007 0.38 0.96 0.00 0.00 0.01 1.35  0.0000 0.0013 0.0000 0.0000 
Jan-Feb 2008 0.36 0.92 0.00 0.00 0.01 1.29  0.0000 0.0006 0.0000 0.0000 
Mar-Apr 2008 0.31 0.66 0.00 0.00 0.06 1.03   0.0000 0.0013 0.0000 0.0000 
            
Table 5.7c: Atlanta            
 ANH4 ANO3 AORGA AORGB ASO4 PM2.5  O3 NH3 SO2 NOx 
 (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)  (ppm) (ppm) (ppm) (ppm) 
May-Jun 2007 0.22 0.22 0.00 0.00 0.02 0.47  0.0000 0.0062 0.0000 0.0000 
Jul-Aug 2007 0.40 0.19 0.00 0.00 0.01 0.60  0.0000 0.0067 0.0000 0.0000 
Sept-Oct 2007 0.28 0.45 0.00 0.00 0.08 0.80  0.0000 0.0102 0.0000 0.0000 
Nov-Dec 2007 0.40 1.14 0.00 0.00 0.03 1.57  0.0000 0.0059 0.0000 0.0000 
Jan-Feb 2008 0.43 1.14 0.00 0.00 0.03 1.60  0.0000 0.0032 0.0000 0.0001 
Mar-Apr 2008 0.31 0.88 0.00 0.00 0.06 1.25   0.0000 0.0061 0.0000 0.0000 
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concentrations of a pollutant to a desired level. This approach may be extended to a 

multipollutant case to find adjustment factors for several precursor species which reduces 

multiple pollutant concentrations (here, ozone and secondary PM2.5) by a desired amount. 

Mendoza-Dominguez et al. (2001) used inverse methods to adjust emission inventory 

estimates of both primary particulate matter and precursor species based on observed 

concentrations.  The inverse method used here for development for the multipollutant 

case is identical to that presented in Chapter 2 except multiple pollutants are included in 

the residual error vector, e, and the corresponding sensitivity values for each pollutant-

precursor emission parameter pair are listed in the total sensitivity matrix, P: 


��� = (����
�� + ��)������
��             (5.2) 

where:  

 
���� = ������ … ������ = [1 x p] = vector of emission adjustment factors 

 ��� = ���,�� … ��,!� � = [1 x i · r] =  vector of differences between modeled and desired 

concentrations for all species i at all receptors r 

�� = "�#$,$�,�,� ⋯ �#	,&�,�,�⋮ ⋱ ⋮�#$,$�,!,� ⋯ �#	,&�,!,� ) = [i · r x j · p] =  matrix of sensitivity for each pollutant at each 

receptor location to emissions of each precursor species from 

each parameter  

Wx  = weighting matrix of the scaling factors 

We = weighting matrix of the modeled differences 

The algorithm for finding weighted least square solution from Equation 5.2 is identical to 

that presented in Chapter 2. Concentrations and sensitivities are modeled using 

CMAQ/DDM-3D. Equation 5.2 is then used to calculate the change in emissions 
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necessary to minimize the residual error between the desired and simulated PM2.5 and 

ozone concentrations. 

Due to the computational time required for running the sensitivity analysis, the 

inverse method is applied for a short episode (August 1-8, 2007) of elevated ozone and 

PM2.5 concentrations. Pollutants transported across the boundaries are removed and only 

locally produced pollutant concentrations are included in the inverse calculation. Based 

on 2007 design values (U.S. Environmental Protection Agency 2009), peak ozone 

concentrations will need to be reduced by 21% to reach attainment of the new 8-hour 

ozone standard of 0.075 ppb, and secondary PM2.5 concentrations will need to be reduced 

by 7.4% to be in attainment of the annual standard of 15µg/m3. Ozone concentrations 

above 0.06 ppm and all PM2.5 concentrations are included in the model. 

The domain-wide emissions of NOx, SO2, AVOC, and NH3 were set as separate 

source parameters in the inverse model analysis. For the locations and times considered 

by the inverse analysis, ozone is positively sensitive to NOx and AVOC emissions, and 

peak ozone concentrations are sensitive to NOx reductions (Figure 5.4). Particulate matter 

is positively sensitive to NOx, SO2, and NH3 emissions (Figure 5.5; Napelenok, Cohan et 

al. 2006).  While it is not a contributor to ozone production, NH3 controls may play a role 

in attaining the annual NAAQS for PM2.5 given its positive sensitivity to secondary PM2.5 

throughout the year (Figure 5.3). 

Most of the emissions adjustment in the proposed multipollutant reduction 

strategy for the summertime episode was in NOx and AVOC emissions (reductions of 

17.5% and 26.0%, respectively). Emission adjustments for SO2 and NH3 were smaller 
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(reductions of 8.51% and 8.13%, respectively) since the desired change in PM2.5 

concentrations can be mostly achieved by the adjustments in both NOx and AVOC 

emissions (Figure 5.5).  
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Figure 5.4: Sensitivities of secondary ozone to precursor emissions in cells with base 
concentrations greater than 0.060 ppm for Aug 1-8, 2007. Ozone concentrations are most 
sensitive to NOx and AVOC emissions with only marginal sensitivities to changes in SO2 
and NH3 emissions. Peak concentrations of ozone are sensitive to NOx reductions. 
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Figure 5.5: Sensitivities of Secondary PM to precursor emissions in all grid cells for Aug 
1-8, 2007. Secondary PM2.5 is sensitive to emissions of NOx, SO2 and NH3. 
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Figure 5.6: Average concentrations for base, goal and simulated cases: 8-hour average 
Ozone values in grid cells with base case concentrations above 0.06ppm (upper graph) 
and twenty-four hour average secondary PM2.5 concentrations for the entire domain 
(lower graph). Concentrations after emissions adjustment (open circles) are closely match 
the desired concentrations (crossed lines) for ozone but are reduced beyond the goals for 
secondary PM2.5. 
 

Emission adjustments necessary to reduce a pollutant in one grid cell may lead to 

reductions beyond the desired levels in other cells and/or pollutants. The inverse method 

attempts to minimize this error, though it is unavoidable given the overdeterminedness of 

the inverse problem (Mendoza-Dominguez and Russell 2000). It may even be desirable if 

health or environmental benefits continue beyond  the set goal amount. For the episode 

modeled here, to reach the ozone reduction goal, secondary PM2.5 is reduced beyond the 

desired concentrations (Figure 5.6). 

5.6 Multi-seasonal effects episode controls 

Without running CMAQ for the entire year with the adjusted emissions, the effect 

of the emission adjustments obtained using the summer episode on PM2.5 or ozone during 
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other seasons may be estimated by using the sensitivities from the rest of the year in a 

first order Taylor approximation: 

��*+�,-./+ = ��0*-/ + ∑ 2�,� ∙ ��,� ��             (5.3) 

where: 

��*+�,-./+=Adjusted species i concentration 

���5�.�*6= Base species i concentration 2�=Sensitivity of PM2.5 to emissions of precursor species j from parameter p ��=Adjustment factor from summertime episode for precursor species j from parameter 
p 

Although this approximation neglects possible nonlinear relationships of ozone and 

particulate matter concentrations to precursor emissions, previous studies show that, for 

ozone, the sensitivities are linear within the range of emission adjustments produced by 

the inverse run here (Cohan, Hakami et al. 2005), or, for PM2.5, the nonlinear interactions 

tend to be small (Napelenok, Cohan et al. 2006).  

When applied to the entire year, the emission adjustments based upon the 

summertime episode reduce secondary PM2.5 concentrations by an average of 3.4% 

averaged across monitoring locations (Table 5.8). The reduction percentage of secondary 

PM2.5 was constant across seasons. Similarly, ozone concentrations decrease from 3.1-

3.8% between the monitor grid cells.  Ozone concentrations are reduced in the summer 

though wintertime concentrations are not reduced significantly or show slight increases in 

some cases. 
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Table 5.8: Annual response of secondary PM2.5 and ozone to emission adjustments 

Bi-monthly Mean 
Daily 24-hr 

Secondary PM2.5  
Concentration 

South Dekalb &  

Confederate Avenue  
Yorkville 

 
Atlanta Daily Highest Simulated Value  

Base Adjusted Percent 
Change 

 
Base Adjusted Percent 

Change 
 

Base Adjusted Percent 
Change (µg/m3) (µg/m3) 

 
(µg/m3) (µg/m3) 

 
(µg/m3) (µg/m3) 

May-Jun 2007 6.86 6.63 -3.4% 
 

8.02 7.68 -4.3% 
 

11.91 11.32 -5.0% 

Jul-Aug 2007 7.65 7.37 -3.6% 
 

8.44 8.11 -3.9% 
 

12.95 12.49 -3.5% 

Sept-Oct 2007 9.26 8.97 -3.2% 
 

10.20 9.83 -3.6% 
 

14.77 14.29 -3.2% 

Nov-Dec 2007 10.90 10.55 -3.2% 
 

10.48 10.17 -2.9% 
 

17.28 16.76 -3.0% 

Jan-Feb 2008 9.50 9.19 -3.3% 
 

8.73 8.46 -3.1% 
 

14.85 14.47 -2.5% 

Mar-Apr 2008 8.89 8.62 -3.0% 
 

9.07 8.73 -3.8% 
 

14.63 14.13 -3.4% 

May 2007-Apr 2008 8.84 8.56 -3.2% 
 

9.16 8.83 -3.6% 
 

14.40 13.91 -3.4% 

 

Bi-monthly 
Maximum Daily 8-hr 

Ozone  
Concentration 

South Dekalb &  

Confederate Avenue   
Yorkville 

 
Atlanta Daily Highest Simulated Value  

Base Adjusted Percent 
Change 

 
Base Adjusted Percent 

Change 
 

Base Adjusted Percent 
Change (ppm) (ppm) 

 
(ppm) (ppm) 

 
(ppm) (ppm) 

May-Jun 2007 0.1026 0.0974 -5.1% 
 

0.0833 0.0791 -5.0% 
 

0.1083 0.1022 -5.6% 

Jul-Aug 2007 0.0915 0.0858 -6.2% 
 

0.1129 0.1086 -3.8% 
 

0.114 0.1086 -4.7% 

Sept-Oct 2007 0.0859 0.0805 -6.3% 
 

0.0865 0.0822 -5.0% 
 

0.0931 0.089 -4.4% 

Nov-Dec 2007 0.0541 0.0539 -0.4% 
 

0.0577 0.0573 -0.7% 
 

0.0625 0.0613 -1.9% 

Jan-Feb 2008 0.0537 0.0536 -0.2% 
 

0.0555 0.0551 -0.7% 
 

0.0578 0.059 2.1% 

Mar-Apr 2008 0.0726 0.0718 -1.1% 
 

0.0715 0.0701 -2.0% 
 

0.0805 0.0799 -0.7% 

May 2007-Apr 2008 0.0767 0.0738 -3.8%  0.0779 0.0754 -3.2%  0.0860 0.0833 -3.1% 
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5.7 Discussion 

Annual measures of air pollution were not reduced to the goal values set in the 

inverse case for either pollutant. This discrepancy may be due to the choice of modeling 

period or how the concentration reduction goals were set. For the episode included in the 

inverse analysis, PM2.5 concentrations were reduced more than the goal percentage. Since 

this was not the case for the entire year, additional modeling episodes are needed to find 

adjustment factors which achieve the desired reduction in annual mean secondary PM2.5 

concentrations during different conditions. The discrepancy can be expected in the case 

of ozone since the inverse model included all cells with ozone concentrations greater than 

0.06 ppm and not the daily maximum simulated ozone concentrations averaged in Table 

5.8.  

Depending on the time of year, secondary pollutant concentrations are sensitive to 

different precursor emissions. For example, in the case of ozone, summertime ozone 

concentrations are most sensitive to NOx emission controls. However, wintertime NOx 

reductions increase ozone concentrations which, though still below the current ozone 

standard, may have an effect on public health if a safe threshold for ozone is below 40 

ppb (Bell, Peng et al. 2006).  On the other hand, NOx emission reductions during January 

and February reduce secondary PM2.5 concentrations which may be of greater importance 

to policy makers than the increase in ozone. The case for NOx emission controls 

illustrates the need for a multi-seasonal analysis of emission control options. By using an 

inverse method on multiple seasons these balancing and competing influences may be 

incorporated in finding an emissions reduction plan which mutually reduces air 

pollutants.  
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The analysis presented here considers changes in precursor emission to be 

independent of one another. This is not the case in reality, as many sources emit multiple 

primary pollutants or precursor species (U.S. Environmental Protection Agency 2007). 

For example, coal fired electric generation produces SO2, NOx, primary PM2.5, and 

carbon dioxide. While some controls, such as catalyst based controls, may selectively 

target specific species for capture and removal, other control strategies such as increasing 

home efficiency would decrease the electrical demand and reduce the amount of coal 

being burned. By reducing the use of coal power altogether, multiple pollutants are 

reduced (Amar, Senior et al. 2009). Similar proposals may be made for reducing and 

controlling other fossil fuel combustion sources though increases in efficiency or 

substitutions of alternative energy sources. These interactions will need to be included as 

control strategies are developed to achieve the emission adjustments identified by the 

inverse analysis. Correlations between the emissions of multiple pollutants may be 

directly included in the inverse method optimization through the use of the adjustment 

factor weighting matrix (Wx in Equation 5.2) or by defining multiple-species source 

parameters for specific industries or source categories. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Inverse modeling in air quality management 

Air quality management in the United States has historically focused on reducing 

the ambient concentrations of six criteria pollutants: lead, sulfur dioxide, carbon 

monoxide, nitrogen dioxide, ozone and particulate matter. In areas where these pollutants 

are determined to be dangerous to public health and environmental well being, air quality 

managers have used modeling to develop emission abatement plans to reduce 

concentrations of these pollutants to safer levels. Since these plans take anywhere from 

years to decades fully implement, they are often based on uncertain predictions of future 

socioeconomic and technological conditions. Once the proposed emission strategy is 

simulated to achieve the National Ambient Air Quality Standard (NAAQS), it is 

implemented without a review of whether the underlying predictions used in the 

development of the plan occur. In its report evaluating air quality management in the 

United States, the National Research Council of the National Academies has suggested 

that the current air quality management process be replaced with an integrative, iterative 

one where emission strategies are continually reevaluated for their effectiveness 

(National Research Council of the National Academies 2004).  
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Figure 6.1 Proposed integrative air quality management system. The system is divided 
into two iterative processes. The first uses the iterative inverse model to find optimal 
emission adjustments. The second iterates to find the most 
strategy to reach the optimal emission adjustments.
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Proposed integrative air quality management system. The system is divided 
iterative processes. The first uses the iterative inverse model to find optimal 

emission adjustments. The second iterates to find the most effective emissions abatement 
strategy to reach the optimal emission adjustments. 

As outlined in this thesis, inverse air quality modeling can play a significant role 

uch an integrative process. Emissions adjustments produced 

are not linked to specific control options, so choices on how to implement these

can be evaluated separately. Air quality management can then be split into two 

processes, one calculating the optimal emissions adjustments based upon 

ty, the other searching for a feasible emissions abatement strategy to 

reach the emission adjustment goal (Figure 6.1). 

The emission adjustments depend on an estimate of the desired air quality in a 

region. As new information about the health effects of air pollution is uncovered and as 

Proposed integrative air quality management system. The system is divided 
iterative processes. The first uses the iterative inverse model to find optimal 

effective emissions abatement 

can play a significant role 

issions adjustments produced by the inverse 

on how to implement these 

Air quality management can then be split into two 

, one calculating the optimal emissions adjustments based upon 

emissions abatement strategy to 

The emission adjustments depend on an estimate of the desired air quality in a 

region. As new information about the health effects of air pollution is uncovered and as 
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air pollution concentrations change, the desired (or known safe) level of air pollution may 

change. As our economic analysis in Chapter 3 shows, there are a number of ways to 

estimate how individuals value healthy air. Planners may use the inverse model approach 

described here to find the mathematically optimal change in total emissions for each of 

these levels.  

The inverse air quality modeling approach here builds upon past proposals to use 

sensitivity analysis in such an air quality management system (e.g. Cohan, Boylan et al. 

2007).  The inverse air quality model distributes adjustments to emissions based upon 

their spatial and temporal impact on simulated pollutant concentrations. Additional 

information over the control costs and health effects of air pollution may be included in 

the inverse model, as was shown in Chapter 4 where theoretical costs for controls are 

included to minimize the total dollars spent for controls. 

The applications presented in this thesis demonstrate the versatility of inverse 

modeling in air quality management. They have been applied on the urban scale to 

calculate emission reductions in specific source types and spatial regions. The adjustment 

factors produced by inverse modeling can be used to understand the necessary changes in 

long-term trends in air pollution – informing decisions over land use that are not typically 

a part of air quality management. At the regional scale, they can be used to mitigate the 

problem of interstate transport of pollution by addressing complications that arise when 

creating emissions trading programs, specifically, that the location of emissions is 

significant. In multi-pollutant abatement optimizations, inverse modeling may be used to 

ensure that the controls for one pollutant do not negatively impact concentrations of other 

pollutants.  
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The emission adjustments then provide the basis for planners to develop and 

evaluate a specific emissions abatement strategy. In each of the cases presented here, 

different issues will arise. In the case of applying emission adjustments as a part of a 

determination of attainment of the NAAQS process, careful limits must be placed on the 

amount current sources may change based on feasible short-term emission control 

options. In a long term framework, planners will have to adopt new approaches to alter 

long-term trends in land use and infrastructure management to achieve emissions 

reduction goals. In the case of a regional market based system, emission planners will 

need to develop emission trading plans which promote innovation within the marketplace 

to find cost effective solutions and while ensuring an equitable (and desireable) reduction 

in pollution exposure. By considering the total effect of a precursor species on air quality, 

air quality managers may find common solutions to address multiple pollutants. 

Designing such a system will require managers to account for how emission controls 

affect multiple precursors, and choose strategies that best fit the optimal emission 

adjustments. 

After an emissions abatement strategy is chosen and implemented, a review 

process using ambient measurements, specific source monitors, or other evaluating data 

can be used to assess the effectiveness of the abatement strategy on reducing emissions to 

the aggregate adjustment amount. If the review process determines that the abatement 

strategy was not successful, air quality managers can revise the existing plan or develop a 

new plan based upon new information or technology. This emissions review process can 

be used to update the emissions inventory of the inverse air quality modeling system. 

With a better estimate of the existing emissions, the inverse modeling approach can 
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develop more accurate emission adjustments. The two iterative processes can continually 

evaluate and update air quality management plans based upon both changing desires in 

air pollution or changing conditions in emissions abatement technologies. 

6.2 Future Work 

 

6.2.1 Application of inverse methods in air quality management 

Though they are based on a representative historical episode of elevated ozone 

concentrations and a recent accounting of emissions, the desired concentration reductions 

modeled in this thesis are used to demonstrate the applicability of the iterative, inverse 

method in air quality management. Applications of inverse methods to achieve specific 

air quality standards will require additional information: 

1. Well defined goal concentrations. In Chapter 2, we defined goal 

reductions as series of relative changes in from currently simulated 

concentrations. Goals are similarly defined to demonstrate attainment of 

the NAAQS in modeling simulations (U.S. Environmental Protection 

Agency 1997; U.S. Environmental Protection Agency 1999). While 

statutory requirements will keep the NAAQS as the primary goal of air 

quality managers, multiple stakeholders, from business leaders to 

environmental groups to government leaders, can use the inverse air 

quality model to be better informed in the debate over emissions 

abatement.  
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2. Expanded/Representative Modeling Episode. Inseparable from defining 

the goal concentrations is determining a representative modeling episode. 

Because meteorology plays a large role in determining the relationship 

between precursor emissions and ambient concentrations of pollutants, it 

is essential to choose a modeling period which represents typical 

conditions leading to elevated air quality levels. It should be noted that a 

variety of conditions lead to elevated air pollution and multiple episodes 

may need to be modeled to ensure that emission adjustments are sufficient 

to reduce air quality under all conditions. Multiple episode concentrations 

and sensitivities may be included in a single inversion application to 

capture these effects. 

3. Accurate emissions inventory. The inverse method relies on adjusting 

emissions as determined by the inputs into the air quality model. Without 

an accurate emissions inventory, adjustments produced by the inverse 

method would be meaningless. Additionally, while a benefit of the inverse 

method application is that it does not require a priori definition or 

forecasting of emissions growth, information of available control options 

is essential for designing control strategies based on the adjustment factors 

produced by the inverse analysis.  

Outlined below are several specific possible applications of emission adjustments 

on air quality at differing scales.  
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6.2.1.1 Urban scale: Land use planning and air quality 

 Additional study is needed to relate and quantify how emissions may be changed 

based upon urban land use design. In Chapter 3, we show one way of quantifying this 

relationship. We compared the urban structure of two neighborhoods to find indicators of 

why households in two neighborhoods with similar demographic makeup and physical 

location have different driving habits. By understanding the relationship between hard 

infrastructure and emissions, air quality considerations may be included in decisions on 

long-term development of an area, lessening the need for retroactive control measures. 

For example, an urban design that introduces clean transportation alternatives to 

automobile use can prevent the need for finding new solutions for increasing automobile 

efficiency or producing alternative fuels.  

6.2.1.2 Regional scale: Air quality management: Cap-and-trade market systems 

The application of inverse models on regional emissions is demonstrated in 

Chapter 4. While our application included a limited number of states, an expansion of the 

modeling domain to include all Clean Air Interstate Rule states is necessary to understand 

how emissions must change under the proposed rule (or its successor) to achieve the air 

quality goals in multiple areas. Additional research is needed to develop a regional 

market-based system which maintains the spatial emission reduction goals produced by 

the inverse modeling. 

6.2.1.3 National and international scale: Implications on climate change legislation  

 With the recent court ruling against the U.S. EPA’s Clean Air Interstate Rule, the 

U.S. EPA is currently writing a new rule to address regional emissions of NOx and SO2. 
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Concurrently, Congress is debating new legislation to limit and reduce emissions of 

carbon dioxide. Both programs will likely establish cap-and-trade emissions reduction 

programs. Since both seek to adjust emissions from common sources, particularly in the 

energy sector, care should be taken that the design of one system does not impact the 

goals of the other. Properly applied, the two systems may work together to preferentially 

reduce common sources and find an overall economically optimal solution. 

6.2.2 Possible methods for defining desired air quality 

 The application of this method raises the question of how to define a regionally 

appropriate measure of air quality and what level of air quality is acceptable to the public. 

Extensions of the method may be made to define desired air quality based on current 

regulatory requirements and new understanding of the dangers posed by air pollution 

6.2.2.1 Understanding the regulatory effects of proposed national standards 

The current process in the Clean Air Act stipulates specific criteria for setting the 

National Ambient Air Quality Standards (NAAQS) based upon protecting public health 

and the environment. The U.S. EPA is charged with reviewing whether the NAAQS 

satisfy these criteria every 5 years. The process of reviewing the standard is a contentious 

one with many stakeholders proposing different standards. Given that the inverse method 

can be applied to any of these proposed standards, future applications of inverse 

modeling may assess the regulatory impact of each proposed standard.  
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6.2.2.2 Addressing air quality in multiple areas 

 The regional application in Chapter 4 set a goal of a 10% reduction in ambient 

ozone concentrations from the entire domain. However, some areas have worse air 

quality than others, and this general goal may not define an air quality that is optimal for 

each area of the region. Therefore, future applications may define a desired air quality 

reduction for specific areas of the domain. For example, when the model is applied on a 

regional multi-state domain, a spatial distribution of desired concentrations can be created 

by averaging the reductions needed for reaching attainment of the NAAQS in multiple 

non-attainment areas in the domain.  

6.2.2.3 Population weighting 

 In the results presented here, ambient air concentrations were weighted equally 

across the modeling domain. However, the actual exposure from ambient concentrations 

is highly dependent on the spatial distribution of the air pollutant and the population of 

the area. This may be addressed by scaling the desired reductions relative to the 

population, effectively making the desired scaling factor, λ, from Chapter 2 a function of 

population. 

6.2.2.4 Exposure modeling 

 Population weighting of the desired air quality concentrations can be taken a step 

further with the application of an exposure model. Mauzerall et al. (2005) integrated an 

exposure analysis with a regional air quality model to understand the regional health 

outcomes of different spatial distributions of emissions. Using such a model, sensitivities 

for ambient concentrations may be converted to health outcomes, i.e. sensitivity values 
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which are currently in terms of the concentration change due to a change in emissions 

may be rewritten in terms of a change in health outcomes due to a change in emissions. 

Additionally, applying such sensitivities in the inverse method would require desired air 

quality to be restated in terms of health outcomes, potentially allowing for a more 

relatable indicator of future air quality than the ambient concentrations employed in this 

thesis. 

6.2.2.5 Net-benefit weighting 

 In Chapter 4, the sensitivities used in inverse method were weighted based on the 

control costs of each source parameter. In future applications, the benefits of the change 

in concentrations may be included to offset these costs. As emission changes are 

calculated by the inverse model, the expected monetary benefits in avoided health effects 

from the resulting change in concentrations can be calculated. Therefore, instead of 

distributing the costs equally between source parameters, the net-benefits (or costs) can 

be distributed. Since health benefits of reducing ozone concentrations may be seen below 

the 0.06 ppm threshold used in the inverse modeling (Bell, Peng et al. 2006), such a net-

benefit approach will include areas (mostly rural and nighttime urban) that are not 

addressed in the applications modeled here. 

6.2.2.6 Marginal cost  

The cost-weighted case shown in Chapter 4 equalizes the total emission control 

cost burden between the states. Under an emissions trading system, the total costs are not 

necessarily equalized. Instead, the marginal costs for reducing emissions are equalized 

across the states since trading occurs based upon the relative price of purchasing 
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additional emission allowances and the costs of additional emissions abatement. This 

constraint can be included in the inverse method by including marginal costs in the place 

of total costs in Equation 4.5. 

6.2.3 Effects of emission uncertainty in the use of inverse modeling for air quality 

planning 

A major limitation of inverse air quality models is the reliance on accurate 

representations of current emissions. Any error in current emissions inventories will be 

reflected in the adjustments produced by the inverse analysis. If these errors are large 

enough, the emissions adjustment results may not lead to the expected results. Since 

implementing and accounting for the effectiveness of emissions controls requires a 

thorough knowledge of the sources present in the area, work must continue to be done to 

ensure that estimates of the current state of emissions are as accurate as possible. Inverse 

air quality modeling can aid in this process. Observations of ambient pollutant 

concentrations can be used in an inverse air quality model to adjust emission inventories 

for possible deficiencies (e.g. Mendoza-Dominguez and Russell 2001).  The adjusted 

emissions may then be used as a starting point for additional inverse model runs for air 

quality management planning.  

 As noted in Chapter 3, the weighting matrix of the emission adjustment factors 

can contain a priori information of the expected growth or change in a source. If future 

emissions from a source are generally well known (such as those from a power plant with 

limited control options) the emission adjustments from the inverse model can be 

constrained to the expected amount. If the future strength of a source has a high degree of 
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uncertainty, it can be relatively unconstrained by the weighting matrix, and the inverse 

method results may be used then to inform policies on how the emission source will 

change in the future.  

Therefore, in future applications of the method, a thorough accounting of the 

uncertainty of both the current state and the future state of emission should be made to 

ensure that the results of the method are valid. Defining these uncertainties can be 

incorporated in the process of developing and applying an emissions control strategy as 

outlined in Figure 6.1. 

6.2.4 Use of inverse modeling in air quality forecasting 

 With reduced computational times for simulating air pollution concentrations, 

forecasts of daily air pollution levels by air quality models have become a useful tool in 

advising the public of potential danger from air quality (Odman, Hu et al. 2007; Hu, Baek 

et al. 2008). In these model applications, meteorology inputs are adjusted and modeled on 

a daily basis based upon observations, yet emissions inventory data remains relatively 

static. Using observations of air pollution from the previous day, inverse modeling may 

be used to identify daily trends in the emission inventory to produce more accurate air 

quality forecasts. Additionally, if air pollution is forecasted to reach dangerous levels 

during the next day, inverse modeling can be used to identify the best measures to lower 

concentrations based on the forecasted meteorology. For example, currently, power 

plants alter their daily electrical generation based upon expected power load. With 

information over the day-to-day impact of their facilities, energy companies may choose 

to alter their activity based upon their downwind impacts. 
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