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CHAPTER 1

INTRODUCTION

1.1 Motivation

The proliferation and uptake of integrated circuits has contributed significantly to what

we recognize as our modern lives. It has allowed for unprecedented access to computation,

information, and tools for communication. It is an enabler for the advancement culture, and

science. This proliferation is underpinned by an industry of semiconductor manufacturers

producing at the volume and cost that allow widespread availability.

The semiconductor manufacturing industry is uniquely characterized by Moore’s Law.

This was an observation made in 1965 that the complexity of semiconductor products in-

creased exponentially and a prediction that this would continue [1]. This was revised a

decade later to complexity doubling every two years [2], and it became a self-fulfilling

prophecy as manufacturers strove to stay the course [3]. There is a debate to be had about

this single-minded strategy for growth, as the industry approaches fundamental limits to

device miniaturization, and Moore’s law looks to be revised again to complexity doubling

every three years [4]. For now the result is that semiconductor manufacturing is governed

by short product life cycles and by the need for increasingly large capital expenditure for

the increasingly sophisticated PP&E required to produce semiconductor products [5]. This

places pressure on manufacturers to innovate quickly on products, and also to maintain

high yields, throughputs, efficiencies, and overall equipment effectiveness (OEE) [6].

Happening alongside and as a result of this increased complexity and performance of

semiconductor products is the increased complexity and performance of the fabrication

equipment used to make these same products. Semiconductor products are manufactured

through a series of chemical and physical fabrication processes performed upon a semicon-

ductor substrate, typically a wafer of silicon. These fabrication processes and the equip-

ment performing them have evolved faster than the science that can be used to explain them
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[7] and thus cannot be characterized fully from first principles. Therefore, process devel-

opment, investigation, and optimization has historically been carried out using statistical

and experimental methods [7, 8] and “art and know-how” [9]. However, manufacturers are

keen to do even better than this by leveraging the increasing amounts of data generated by

fabrication equipment and collected in the typical semiconductor fabrication environment.

The nature of the data makes this task non-trivial and one that warrants academic re-

search. Some aspects of this data, as enumerated very well in [8], are its high dimen-

sionality in terms of observations and variables, highly non-linear relationships, noise,

outliers, missing data, unusual distributions, and mixtures of categorical and numerical

data. The desire of semiconductor manufacturers to unearth useful information and knowl-

edge about their fabrication processes from these fab databases, containing large difficult

datasets, formed the impetus for this research.

1.2 Summary of work

Manufacturers address the distinct operational objectives of product innovation and manu-

facturing efficiency by having separate fabrication facilities (“fabs”) for development and

manufacturing. Additionally, the industrial manufacture of a semiconductor product pro-

ceeds through several stages of production. These are typically a research and development

(R&D) stage, a ramping stage, and a manufacturing stage. These production stages are dis-

tributed over the different fabs.

These differences in fabrication environment and stage of production result in differ-

ences in the characteristics of production of a semiconductor product over its manufactur-

ing lifetime. Some examples of these differences are device yield, breadth of processing

conditions, throughput, number of reaction chambers operating in parallel, metrology, and

data collection. These differences are reflected in the data available in the fab databases.

This research explores the use of a neural network modeling and genetic algorithm

optimization method with these different datasets. The focus is on a high-aspect-ratio etch
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process across the different fabs and production stages. Models are built from process input

variables to post-process metrology, and from process input variables to yield metrics. In

the latter case, there can be tens of processes occurring between the model input and output

variables.

I demonstrate the usefulness and industrial application of neural network process mod-

eling and genetic algorithm recipe optimization by performing a reaction chamber match-

ing exercise on a manufacturing line. The performance of a reaction chamber can deviate

from target, either in terms of its post-process metrology or its associated yield metrics. The

method developed herein generated an optimized recipe that brought the outlying behavior

of a chamber closer to target and closer to that of the other chambers (“chamber match-

ing”). This is one of many possible applications. It was chosen because it demonstrates

both the fidelity of the process models and the effectiveness of the optimization algorithm.

1.3 Thesis organization

Chapter 2 presents some background about the semiconductor manufacturing industry, and

some theoretical background for the primary data mining tools and algorithms employed

in this research. Chapter 3 details the use of neural networks to model three dry etch

processes in a R&D fab. Chapter 4 details the use of neural networks to model a high-

aspect-ratio etch process that has recently been introduced to a manufacturing fab for a

product that is being ramped to manufacturing volumes. Chapter 5 details the use of neural

networks to model a high-aspect-ratio etch process that has reached a level of maturity in

a manufacturing fab. Chapter 6 details a chamber matching exercise, which is a potential

industrial application of neural network modeling. Chapter 7 presents a comparison of the

performance of the neural network models to that of linear regression models. Chapter 8

presents a comparison of the performance of the neural network models to that of support

vector regression models. Chapter 9 presents some concluding thoughts and a discussion

on possible future research.
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CHAPTER 2

BACKGROUND

2.1 Semiconductor manufacturing industry

Manufacturers address the distinct operational objectives, of product innovation and manu-

facturing efficiency, by having separate fabrication facilities for development and commer-

cial scale manufacturing. See Figure 1. This concept became widespread in the mid-1970s

[7] and has been cited in [9] as the most effective management tool for bringing new pro-

cesses to manufacturing. New process introduction is important because product innovation

is dependent on process innovation in semiconductor manufacturing. This is so to a greater

degree than in other manufacturing industries like automotive [7].

A firm’s ability to develop and introduce new processes to manufacturing forms part

of its competitive advantage. According to the model created in [5], the time at which a

manufacturer starts ramping to production volumes is the largest contributer to profitability.

Thus methods that accelerate characterization of fabrication processes, yield learning, or

ramping of production are very valuable to a manufacturer.

2.2 Neural networks

Artificial neural networks are empirical modeling tools. They are non-linear computational

systems that can “learn” from data presented to them. These properties make them attrac-

tive for representing complex semiconductor manufacturing processes, as they can be used

to create sophisticated models even when deep knowledge of the underlying physics and

chemistry of a process is unavailable.

An artificial neural network is made up of simple processing units called “neurons”,

which are interconnected through weighted connections. A neuron performs a simple

mathematical procedure: summing its inputs and passing that result through a sigmoidal

function to form its output. Interconnection in these networks enables certain functionality
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Figure 1: Overview of manufacturers response to demands of the market for semiconductor
products. The arrow can be thought of as process of knowledge transfer between R&D and
manufacturing fabs. The bullet points provide a comparison of the priorities of the two
fabrication environments.
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[10]. The rules determining how these neurons are positioned and connected to each other

determine the network architecture. Network architectures have significant effect on the

performance of the network and the type of function the network is best suited for. Several

different architectures have been studied in terms of their use toward semiconductor man-

ufacturing including: multilayer feed-forward neural networks [11], self-organizing maps

[12], and radial basis function networks [13].

Feed-forward neural networks were used for this research. The feed-forward neural

network architecture is commonly used for data fitting. In a feed-forward neural network,

the neurons are arranged in layers: an input layer, one or more hidden layers, and an output

layer. Figure 2 depicts a feed-forward neural network. Neurons in a feed-forward net-

work can pass their output to neurons in a subsequent layer only. A feed-forward neural

network with a single hidden layer with enough neurons can approximate any measurable

function to the desired level of accuracy [14]. Thus, a large enough neural network can

accurately represent the complex mapping between the input variables and output variables

of a fabrication process. The number of input and output layer neurons are determined by

the number of input and output variables to the model respectively.

Training is the process of adjusting the network parameters (connection weights), using

process data (empirical knowledge [15]), so that network behavior matches that of the

process being modeled. The error back-propagation algorithm is used to train the network

in this study. In this algorithm, the weights are initially randomized. Data is presented to the

network in input-output pairs (measured data). The input data is presented to the input layer

of the network, where the input layer neurons perform their calculations and propagate the

results to the subsequent layer (hidden layer) through the weighted connections. Similarly

the hidden layer neurons then perform their calculations and propagate the results to the

next layer through weighted connections, and so on and so forth until the information

reaches the output layer. The resulting network output is compared to the measured output

data. The network weights are adjusted so as to decrease this error. This is repeated until
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the error reaches an acceptable level or until the error converges to some asymptote. A

detailed description of the error back-propagation algorithm can be found in [16].

The majority of the data collected (∼90%) was used for training the neural network

models. The remaining subset was used for testing. The test data is used to gauge the

predictive abilities of the neural network models on datasets they have not been trained on.

The resulting output (predicted output) is then compared to the real world data obtained by

experiment (the output of the testing dataset). In this way, a judgment can be made about

how well the models are performing [17].

2.2.1 Neural Networks Applied to Semiconductor Manufacturing Issues

The literature provides several investigations into the use of neural networks for semicon-

ductor manufacturing. For example, neural networks have been used for process character-

ization, recipe generation, control, failure detection, failure diagnosis, and circuit design.

They have also been used across the many process modules like etch, implant for exam-

ple. The type of neural network and the kinds of data used to train them, vary across the

different applications. In many instances, the methods using neural networks as part of the

solution equal or outperform more traditional approaches.

2.2.1.1 Process Characterization, Process Modeling, and Recipe Generation

Process characterization refers to how well a firm understands a fabrication process in terms

of its response to its input variables [7]. Neural networks have been used to characterize

a variety of fabrication processes, and have found particular use in modeling plasma etch

processes [18]. Several examples of their use with plasma etch processes are cited in a

literature review by Ringwood et al. [19].

In [17], Himmel and May use the data from an earlier project, that modeled the removal

of a polysilicon film with plasma etch using response surface methodology (RSM). They

used the data to make neural network models of the same process and compared modeling

and prediction errors to those for the RSM models. They found that the experimental errors
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were 38.3% lower for the neural network models. They also found that neural networks

outperformed the RSM models when trained with a smaller dataset. The reason cited for

this increased predictive capability was the non-parametric nature of neural network mod-

eling.

Once there is a model of a process, from its manipulatable input variables to its out-

put, it can be used for recipe generation. In [20], Han and May model a plasma enhanced

chemical vapor deposition process with neural networks, then use the model with genetic

algorithms to generate an optimal process recipe. Training data was created for the model

using a fractional factorial experiment. The genetic algorithm (GA) searched the input

space to the model to find the settings for the five input variables that resulted in the op-

timal process responses. In [21], they verify experimentally a recipe created in this way.

They also compared recipes generated with genetic algorithms to those created with other

optimization routines like Nelder and Mead’s simplex method, Powell’s algorithm, and

hybrid algorithms (GA + simplex or GA + Powell). The recipes generated by genetic

algorithms had the best performance, as determined by the quality of the resulting films.

In [22], Rietman and Frye also use genetic algorithms with neural network models for

recipe generation. They use production data, not data generated from designed experi-

ments, to train the neural network models.

There are also some examples of researchers using the same methodology, but with

different methods. For example they might use neural network models, but with particle

swarm optimization (PSO) for recipe generation. Or they may use a different type of neural

network for the process model. In [23], Ahn et al. describe software they created that

facilitates the creation of neural network models, and recipe generation using PSO with

those models. In [24], Bay et al. apply the methodology to solar cell fabrication. They

used both PSO and GAs. They made two models. The first model was for an amalgam

of a texturing and drive in process. The results of that process are reflectance and sheet

resistance, which are known to affect solar cell efficiency. They form the input variables
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to the second model, whose output is efficiency. This is an example of using a cascade

of neural networks, where the output of one neural network becomes the input to another.

They found that PSO performed more consistently than GAs for their optimization task.

This meant that there was less variance in the suggested values for the input variables, over

multiple optimization runs, when using PSO as compared with GAs.

In the research mentioned so far, manipulatable process input variables were used as

input to the model and some kind of downstream metrology was used as model output.

However, online sensor data can also be used to characterize a process. This data tends

to have a much higher dimensionality. It is usually preprocessed with a data dimension-

ality reduction method, like principal component analysis (PCA) or autoencoder neural

networks (AENN), before being used for process modeling with neural networks.

In [25], Hong et al. modeled etch rate, uniformity, and anisotropy of a reactive ion etch

(RIE) using optical emission spectroscopy (OES) data. OES-data dimension was reduced

with PCA and AENNs, and then the smaller dimension dataset was used as neural network

model input. The models using the AENN-reduced input data made slightly better predic-

tions. One of the possible reasons for this is cited to be that AENNs do not discard any

information during the data compression whereas PCA does. The AENN methods require

more computation, however.

In [26], Triplett et al. made models where the ouput was the electron mobility at the

“inverted interface” of a high electron mobility (HEMT) device created by molecular beam

epitaxy (MBE). The HEMT device does not use silicon but uses InAs and AlSb. The

inverted interface is the first interface created by MBE. They made two models, the first

with growth conditions as model input and the second with reflection high energy electron

diffraction (RHEED) data for input. They used PCA to reduce the dimensionality of the

RHEED data before modeling, achieving a 100:6 reduction ratio. Both models performed

well, achieving prediction accuracies of over 90%.
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2.2.1.2 Control

Historically, control in semiconductor manufacturing consisted of statistical process control

(SPC) [18]. Means and variances were calculated with historical fab data to define control

limits. Then the Western Electric Rules were applied to more current data, collected from

the processes, to generate an alarm for those that were out of control [6, 27]. SPC only

draws attention to processes that may be out of control. It does not suggest corrective

actions [6]. In the late 1980s and the 1990s the industry evolved the concept of advanced

process control (APC) [6, 18]. The aim of APC was to use data to suggest corrective actions

[6].

APC can subdivided by function into fault detection, fault classification, fault progno-

sis, and process control [18]. APC can also be subdivided in the time-domain into real-time

control, and run-to-run (R2R) control [19]. Real-time control requires in situ data, or data

collected as the process is happening. This data is used to adjust manipulatable input vari-

ables as the process is happening. The collection of this data is dependent on the availability

of sensors that can function in the prohibitive environments found in many semiconductor

manufacturing processes [6]. Run-to-run control uses measurements made downstream of

a process, to adjust the input variables for the next wafer of batch [19]. Neural network

models have been used across these functional and time-domain subdivisions for APC.

Run-to-run In [28], Rietman and Patel developed artificial neural network model

based controller for a plasma etch process. They used production data from about 6000

wafers from a MOS fabrication line to train the model. They did not remove any outliers in

the data. The plasma etch consisted of three etch steps. The first step was a timed etch. The

second had a different (slower) etch chemistry with higher selectivity and OES endpoint

detection. The third etch step is a timed over-etch step. The third etch step is the one to

be controlled. The established method was for an operator to determine etch time based on

the etch time for the previous cassette. The model fused data from many additional data

sources, for both the previous cassette and the current wafer up to the second etch step, to
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make predictions for the ideal etch time for the third etch step. The use of historical data to

determine etch time for the current wafer “closes the loop,” in contrast to traditional SPC.

The controller was tested in a production environment and reduced the standard deviation

of remaining oxide thickness after the third etch step by 40%.

In [29], Card et al. create a cascade neural network model of a plasma etch with 15

months of data from Digital Equipment Corp. The paper presents a feasibility analysis.

They chose input variables for the model that were independent of each other, because the

control algorithms might need to change each independent of the others. Model variables

were categorized as continuous, and replacement or calibration. The outputs were etch rate,

standard deviation of the etch rate across the wafer, and etch selectivity. Predictive ability

was mixed, 73% and 76% for standard deviation and selectivity, and better than 87% for

the rest. They present two optimization algorithms, one for least cost (LC) and one for

least effort (LE). Least cost uses cost functions and the predictive model to find the lowest

total cost solution. Least effort favors using inputs that have the most impact on achieving

desirable output values, and uses as few as possible. They analyzed the optimization off

line by comparing the optimization method’s suggestions with what was actually done at

the fab. LC agreed more often with fab behavior, and LE highlighted that the model had

learned certain relationships that had taken the fab team a while to utilize.

Real-time In [30], Davis and May use neural networks for the control of variable

frequency microwave (VFM) curing of polymer dielectrics. They use a neural network

for system identification, which is similar to the models used in the research mentioned

earlier. But they also use a neural network to model an inverse of the “plant” or process.

Plant modeling proceeds with the familiar factorial experiment to generate training data,

then using the error back-propagation algorithm to train the model. They used the distal

learning method [31] to train the inverse plant model. They implemented the controller and

found it was able to regulate the temperature set point with about 7% error.

In [32], Stokes and May use neural networks for the control of reactive ion etching.
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The control scheme is labeled indirect adaptive control. It is similar to the Davis and May

paper [30], in that it uses an inverse model of the plant for the controller and uses the

distal supervised learning approach for training it. They compared the neural controller to

a more traditional LQG/LTR controller in software simulations and found that the neural

controller performed faster, in terms of tracking and reacting to sudden changes in process

parameters.

Failure Detection and Diagnosis Traditionally SPC has been used for failure detec-

tion, and the expertise of the fab engineers was used for diagnosis. The literature provides

examples of how neural networks in conjunction with the theory of evidence can perform

these same functions.

In [27], Hong and May perform real-time malfunction diagnosis for a plasma etch using

neural networks and Dempster-Shafer (D-S) theory. They use OES and residual gas anal-

ysis (RGA) data for input to the model, and the input settings for the etch process as the

output to the model. The dimensionality of the OES data is reduced with PCA before use

with the model. They pick six atomic masses for the RGA data. The evidential reasoning

works on the principal that if the neural-network-predicted input settings differ from the

settings in reality, then there is evidence of malfunction. They compared diagnostic perfor-

mance when using OES data only, RGA data only, and both OES and RGA data (sensor

fusion). The method worked well for detecting and diagnosing faults in the RF sytem when

using OES data alone. The method worked well for detecting and diagnosing faults in the

gas flows when using RGA data alone. The method performed better when using both OES

and RGA data than when using either separately.

In [33], Setia and May use a similar method (neural network models and D-S theory) as

[27] for failure detection and diagnosis for via creation with excimer laser ablation. There

was interesting data preprocessing for one of the neural network inputs. They performed a

logarithmic transformation on this input and it improved the detection accuracy.

In [34], Setia and May use the same data as they did for the previous study, but this
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time used an adaptive neuro fuzzy inference system (ANFIS) for detection and diagnosis.

An ANFIS model uses neural network theory to parameterize a fuzzy system. The ANFIS

model performed well, with 100% accuracy in detection and 90% in diagnosis (versus 95%

for the neural network and D-S method).

Virtual Metrology There is a delay between when a process occurs and when its

results are measured. This delay can be in the order of days with typical inline metrology.

Virtual metrology (VM) uses process data that is measured in situ to make predictions about

the wafer as soon as its processed [35]. Neural networks are a useful tool to create these

predictive models for virtual metrology.

In [35], Lynn et al. compare the use of neural network models to that of multipile

linear regression models for virtual metrology for an industrial plasma etch process. They

do so with different variable selection techniques and data disaggregation methods. There

were three variable selection techniques. These were PCA, correlation methodology, and

stepwise selection. Correlation methodology compares the correlation input of each input

and the powers of each input to the output. The most correlated variables are used as model

input. Stepwise selection comprises both forward and backward selection. These work by

adding a variable to a minimal model or removing a variable from an all inclusive model,

based on an F-test of the improvement of adding or removing the respective variable. They

found that the neural network model with inputs chosen by the correlation methodology

performed best. The data disaggregation that attempted to address the effects of process

drift and preventative maintenance did not help the modeling.

In [36], Lynn et al. use design of experiments (DOE) to generate data for neural net-

works and other modeling methods to make VM models of plasma electron density and

etch rate for a plasma etch. They use a model-based predictive control scheme to control

these two responses that are difficult to measure. The input for the model is taken from a

plasma impedance monitor (PIM), that provides information about the power supply to the
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plasma etch chamber. They also use an invasive “hairpin resonator” to collect plasma elec-

tron density response data during their designed experiments. Control is achieved using the

VM models and predictive functional control (PFC). They found that the neural networks

were the most accurate VM models with test data. They also found that they could perform

setpoint tracking for the plasma electron density with time constants of less than a second

and could perform setpoint tracking for etch rate to within 1% of the desired etch rate.

In [37], Lynn et al. use six months of industrial data to make VM models for a plasma

etch. They compared three modeling methods, including neural networks, partial least

squares (PLS) regression, and Gaussian process (GP) regression. Another level of compar-

ison was global versus local modeling. The three local modeling schemes were regional,

clusters, and windowed methods. PM cycles change chamber behavior, so local models

might prove more accurate in certain “operating regimes.” Regional modeling meant di-

viding the data between PM events into regions, and making models using data from a par-

ticular region only. Regional modeling did not improve upon global modeling but added

complexity. The cluster method meant using PCA on the PIM data to find clusters that

could be labeled “operating regimes.” They used data from a cluster to make predictions

when operating in that cluster. They could not conclude that it is better than global model-

ing. Windowed modeling meant using data from the 30 to 300 previously processed wafers

to make predictions about the next wafer. They found that this method performed best, out

of the local methods and global modeling, but that if the window became too small it was

detrimental to the neural network model predictions.

2.2.1.3 Summary

The literature has shown that neural network models have been used with data from a

variety of fabrication processes, and for a variety of manufacturing tasks. They have been

used for process characterization, recipe generation, real-time process control, and virtual

metrology.

However, the literature has not examined how the usefulness of neural network models
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might change over the different stages of production for a semiconductor product. There

is also a lack of granularity in the depiction of industrial fabrication environment and the

data collected across the different environments. Furthermore, there is little investigation

of how the research presented, that use neural networks on upstream processes, affect yield

metrics. This thesis will attempt to address some of these issues, and do so in particular

with regards to process characterization, process modeling, and recipe generation.
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CHAPTER 3

RESEARCH AND DEVELOPMENT FAB MODELS

3.1 Introduction

Neural network models have been developed and tested for fabrication processes at an in-

dustrial research-and-development (R&D) fab. The models predict post-process metrology

from process input variables. The models were built with data obtained from the databases

already present at the industrial fabrication facilities, as opposed to from experiments de-

signed to generate modeling data.

The operational objective of the fabrication environment determines the nature of the

data available for modeling. To illustrate with an example, first note the trade-off between

throughput and metrology. Fewer wafers pass through the production line if more time

is spent examining each one. At the R&D stage, a greater value is placed on process

understanding, thus a greater value on process metrology. This in turn is reflected in the

amount of metrology data collected in an R&D fab. A manufacturing environment places

more weight on throughput. Thus some forms of process metrology, like cross-section

SEMs, are eliminated. Differences in the data available mean differences in the models that

can be made and differences in how they can be best used.

There were three processes modeled. The first two processes create a hardmask that

is used during the third process, a high-aspect-ratio etch. The combined effect of these

three processes is to create an array of high-aspect-ratio cylindrical holes in an oxide layer,

see Figure 3. They act like a mold for device structures created in subsequent fabrication

processes. Thus, their dimensions are important. Of particular importance are the dimen-

sions between these holes in the x-direction and y-direction. These are referred to as the

x-direction CD and y-direction CD respectively. These particular processes were chosen

because of the challenges they presented and because they were the most likely to ben-

efit from optimization and tighter control (the high-aspect-ratio etch, in particular). An
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Figure 3: Schematic of an array of high aspect ratio holes in an oxide layer.

overview of the process flow appears in Fig. 4.

The hardmask is a layer of dielectric anti-reflective coating (DARC ®) that is etched

to reveal the openings through which the cylindrical holes are subsequently etched. The

hardmask is created by first etching a set of parallel trenches in the DARC® layer that

are not deep enough to reveal the underlying material. These trenches are then filled with

a conformal layer of bottom anti-reflective coating (BARC). Then another set of parallel

trenches are etched, but this time with the trenches running perpendicular to the first set

of trenches. This etch, through the BARC and DARC® layers, continues deep enough to

reveal the underlying material (an oxide layer) in the areas where the two sets of trenches

overlap. These are the openings through which the cylindrical holes are etched. Figure 5

presents an overview of the creation of the hardmask. Figure 6 presents a top down view

of the hardmask that results.
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Hardmask etch 1
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High-aspect-ratio
etch

Manipulatable inputs 
to Hardmask etch 1
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to Hardmask etch 2
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to High-aspect-ratio 
etch

x-direction CD in 
hardmask

x-direction CD & 
y-direction CD in 
hardmask

x-direction CD & 
y-direction CD in 
oxide layer

Figure 4: An overview of the process flow used to create the array of high-aspect-ratio
holes in the oxide layer.

(a) Hardmask etch 1 (b) Conformal BARC layer added (c) Hardmask etch 2

Figure 5: Overview of the creation of the hardmask
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= BARC 

= DARC 

= Oxide 

Figure 6: A top down view of the hardmask that is created.

3.2 Data collection

The data was gathered from a preexisting database. The data comes from experiments

designed to understand the processes under investigation, but not specifically designed for

modeling. Thus, it is possibly not the most thorough exploration of the input space, but the

data contains information about process behavior over a larger subspace of the input space

than in a manufacturing environment.

The majority of the data collected ( 90%) was used for training the neural network

models. The remaining subset was used for testing. The test data is used to gauge the

predictive abilities of the neural network models on datasets they have not been trained on.

The resulting output (predicted output) is then compared to the real world data obtained by

experiment (the output of the testing dataset). In this way, a judgment can be made about

how well the models are performing [17].
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3.3 Processes modeled
3.3.1 Hardmask etch 1

Hardmask etch 1 creates the first set of trenches. Its purpose is to define the distance

between cylindrical holes in the x-direction. Thus, the x-direction CD forms the output

of the model (Fig.7). Wafer location was known to have an effect on the x-direction CD,

and thus it is included among the model inputs (Wafer X and Wafer Y). Additionally,

adding wafer location as an input allows the models to make predictions across the wafer,

allowing the user to judge the model’s ability to predict uniformity. The x-direction CD in

the photoresist, the inner and outer chuck temperatures, and the DARC® etch time were

included as inputs. Inputs were chosen based on their availability in the database, and on

the expertise of the fab engineers as those known to affect x-direction CD in the hard mask.

1 

Wafer location, x 

Wafer location, y 

x-direction CD 
(photoresist) 

Inner chuck 
temperature 

Outer chuck 
temperature 

DARC etch time 

x-direction CD 
(hardmask) 

Neural 
network 
model of 
hardmask 

etch 1 

Figure 7: Overview of model for hardmask etch 1.
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3.3.2 Hardmask etch 2

Hardmask etch 2 creates the second set of trenches, running perpendicular to the first set.

Its purpose is to define the distance between the cylindrical holes in the y-direction. Thus

y-direction CD forms part of the model output (Fig. 8). The etch is not perfectly anisotropic

and thus has an effect on the x- direction CD, which is also part of the output. The inputs

were chosen because they all affect the output.

Wafer location, x 

Wafer location, y 

y-direction CD 
(photoresist) 

x-direction CD 
(hardmask) 

BARC etch time 

DARC etch time 

x-direction CD 
(hardmask) 

Neural 
network 
model of 
hardmask 

etch 2 

y-direction CD 
(hardmask) 

CH2F2 Flow 

CF4/HBr 
concentration 

Figure 8: Overview of model for hardmask etch 2.

3.3.3 High-aspect-ratio etch

The overall etch is made of three etch steps, each with its own gas flow and etch time.

These, together with two measurements of the critical dimension in the masking layer and
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Etch step 3 gas flow 

Etch step 3 time 
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y-direction CD 
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high-
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Figure 9: Overview of the model for the high-aspect-ratio etch.

the wafer location of these measurements, form the model input. The outputs are the x-

direction and y-direction CD between the cylindrical holes. An overview of the high-

aspect-ratio etch is presented in Fig. 9.

3.4 Results
3.4.1 Hardmask etch 1

The model for the first hard mask etch was created with a 6-6-1 network. There were 368

data points in the training dataset and 30 in the testing dataset. The model was trained with

the error back-propagation algorithm, with a learning rate of 0.001 and a momentum of

0. Modeling results are presented graphically as contour plots. This allows comparison of

both the values of the output (x-direction CD in the hardmask) and its variation across the

wafer (Figure 10). CD was measured at 15 wafer locations. The model was used to try
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(a) Measured CD (b) Predicted CD

Figure 10: Comparison of measured (left) and predicted (right) CD (CDs were normalized).
The x-axis and y-axis represent wafer location in mm.

and predict CDs at these same 15 wafer locations. The contour plots are created using the

normalized CD values at the 15 wafer locations and by interpolating the normalized CD

values between these 15 wafer locations. There is no extrapolation of CD values to the

wafer edges, and for this reason the results presented are not circular like the wafer. The

results presented are the average values over two wafers. This helps to mitigate the effect

of the occasional outlier from the experimental data.

The model has accurately captured the input-output relationship for Hardmask Etch 1,

as seen from the similarity between the output measured from experiment (left) and the

output predicted by the model (right). This is further illustrated by a contour plot of the

percentage error, which quantifies the differences between measured and predicted values

of the output at different places on the wafer. Figure 11 presents the contour plot for

absolute percentage error for the neural network predictions. It is calculated for each wafer

location as

M =
1
n

n∑
t=1

∥∥∥∥∥At − Pt

At

∥∥∥∥∥ ∗ 100%, (1)

where At is the actual or measured value, Pt is the model predicted value, and n is the
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Figure 11: The absolute percentage error for the neural network predictions. The legend
on the right presents the different levels of mean absolute percentage error.

number of observations for that wafer location in the data set. As can be seen in Figure 11,

error remained below 2% across most of the wafer.

3.4.2 Hardmask etch 2

The model for the second hard mask etch was created with a 8-8-2 network. There were

403 data points in the training dataset and 48 in the testing dataset. The model was trained

with the error back-propagation algorithm, with a learning rate of 0.001 and a momentum

of 0. Results are again presented as contour plots and are the average results of four wafers.

Because there are two outputs to Hardmask Etch 2, two sets of results are presented. The

model has captured the variation of the x-direction CD across the wafer (high in the middle

low at the edges), as seen in Figure 12. There is a deviation between measured and pre-

dicted values for the critical dimension at the bottom of the wafer. This is also reflected in

the error plot shown in Figure 13.

The results for the y-direction critical dimension are presented in Figure 14. The error

remained low, with slight deviations in the center and at the bottom of the wafer, as seen in

Figure 15.
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(a) Measured CD (b) Predicted CD

Figure 12: Comparison of measured (left) and predicted (right) output for x-direction CD
in the hardmask (CDs were normalized). The x-axis and y-axis represent wafer location in
mm.

Figure 13: Absolute percentage error for neural network predictions.
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(a) Measured CD (b) Predicted CD

Figure 14: Comparison of measured (left) and predicted (right) output for y-direction CD
in the hardmask (CDs were normalized). The x-axis and y-axis represent wafer location in
mm.

Figure 15: Absolute percentage error for neural network predictions.

27



3.4.3 High-aspect-ratio etch

The model for the high aspect ratio etch was created with a 10-10-2 network. There were

639 data points in the training dataset and 45 in the testing dataset. The model was trained

with the error back-propagation algorithm with a learning rate of 0.001 and a momentum

of 0. These results presented are the average results of two wafers. Two sets of results

are presented below because there are two outputs to the high-aspect-ratio etch. The first

(Figure 16) is for the x-direction critical dimension between holes. The model accurately

captures the variation. The shape of the graph is slightly different from previous results

because of missing or incomplete data in the database (i.e., there were data points missing

for the lower left portion of the wafer). The images for x-direction CD were created using

eleven data points on each wafer. The percentage error is presented in Figure 17.

(a) Measured CD (b) Predicted CD

Figure 16: Comparison of measured (left) and predicted (right) output for x-direction CD
in the oxide layer (CDs were normalized). The x-axis and y-axis represent wafer location
in mm.

The results for the y-direction critical dimension are presented in Figure 18. The images

were created with ten data points on each wafer. There is correlation between measured

and predicted CD uniformity, particularly in the top part of the wafer. The error remained

low, with the largest deviation coming near the right edge of the wafer (see Figure 19).
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Figure 17: Absolute percentage error for neural network predictions.

(a) Measured CD (b) Predicted CD

Figure 18: Comparison of measured (left) and predicted (right) output for y-direction CD
in the oxide layer (CDs were normalized). The x-axis and y-axis represent wafer location
in mm.

Figure 19: Absolute percentage error for neural network predictions.
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3.5 Sensitivity analysis

A neural network model that has accurately captured the input-output relationship of a pro-

cess can be used to see how the output of a process responds to changes in input at various

points in the input space. One way of studying these responses is sensitivity analysis, in

which a small change is made in one of the input variables. A small change would be 10%

(or less) of the total variation of that input variable in the input space, for example. All

other input variables are kept constant. The modified input vector and the unmodified input

vector are passed through the network, and their outputs compared. The ratio of the per-

centage difference of the outputs to the percentage difference in the modified input variable

is defined as the sensitivity [38].

The analysis can be repeated for all input variables in a process step, allowing their

relative effects on the output to be studied. This analysis is not ideal because of the non-

linearities of semiconductor manufacturing processes, but can still provide some insight

[11]. The relationship between the input variables and the output is typically nonlinear. In

addition, there are typically interaction effects between the input variables. These are not

accounted for in the sensitivity analysis. However, when examining a specific point in the

input space, a particular process recipe for example, a sensitivity analysis can provide an

insight into the process in a local region around the point of interest. An example might be

an instance where minor adjustments are needed for an established process recipe.

A sensitivity analysis was performed on each of the processes modeled. A representa-

tive example would be to look at the relative effects the inputs of Hardmask Etch 2 have on

the x-direction critical dimension in the hard mask (see Fig. 20).

3.6 Summary

The neural network models were proven to be accurate and flexible in this study. They

were able to accurately predict post-process metrology of fabrication processes in an R&D

environment, using data that preexisted in the fab database. Thus this study highlights
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Figure 20: Sensitivity analysis for hard mask etch 2. Results are for x-direction CD in the
hard mask.

how neural networks can be used to extract more value from this large, complicated, but

underutilized resource that is the fab database.

However, neural networks were not as successful in predicting yield metrics from fabri-

cation process input variables, in such an environment. Yield can be quite low, 40-50% die

yield for example, when a product is transitioned from an R&D environment to a manufac-

turing one. When yields are at these levels and below, there is less clarity in identifying or

assigning upstream fabrication processes as causes for sub-optimal yield metrics. This is

because there are fabrication errors at too many levels of the product as illustrated in Figure

21. Each blue square in Figure 21 represents a fabrication process. Each row is a lot that

undergoes the same set of fabrication processes. It is difficult to find lots where there is a

clear causal link between the fabrication process to be modeled and the yield metric. Thus

using the input variables from one fabrication process in a model does not provide enough

information to make predictions for yield metrics.

Chapter 5 presents the exploration and evaluation of the use of the neural network mod-

eling method in a manufacturing fabrication environment, and highlights some contrasts

with its use in the R&D fabrication environment. The focus was on a high-aspect-ratio
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Figure 21: A schematic of the data available for model building in a research and develop-
ment fabrication environment. The fabrication process to be modeled is in the dashed blue
rectangle.
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plasma etch process.
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CHAPTER 4

RAMPING STAGE MODELS

4.1 Introduction

As illustrated in Figure 1, manufacturers address their two distinct organizational objec-

tives of product/process innovation and manufacturing efficiency by having a fab for each.

Because the product/process development must happen first, there must be a period of tran-

sition whereby knowledge and production move from the R&D fab to manufacturing. The

complexities inherent in semiconductor manufacturing and the precision it requires mean

that this is not as trivial as handing over process recipes.

In the context of this work, this period of transition when production has begun to

happen in the manufacturing fab but volumes and yields have not reached their plateau is

referred to as the ramping stage. The time at which the stage starts and the steepness of the

ramp are very important to a manufacturers profitability, given the rate of price decay for

semiconductor products [5].

The distinct nature of this phase of the production process is observable in the fab

database. Given that product is being manufactured, there are larger volumes of data than

available in the R&D fab. Failure rates are also decreasing to the point where failures may

be ascribable to upstream processes. Also variation is greater in the datasets, in terms of

recipes used and process outcomes, than for more mature products/processes. This mid-

dle ground between development and manufacture, in terms of size and variation of fab

datasets, could prove fruitful for model building and recipe optimization.

This chapter will test this theory by building neural network models of the high-aspect-

ratio plasma etch process. First the model inputs were chosen using a variety of feature

selection algorithms. Models were built with the different datasets and their prediction

accuracies compared. Then using the most accurate model, an optimized process recipe

was found using a genetic algorithm.
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4.2 Method
4.2.1 Feature selection

The fab database contains data for several hundred features (variables) pertaining to any

fabrication process. A subset of these is relevant for modeling. The process of finding

this subset is called feature selection. The assumption is that the total dataset contains

redundant, or irrelevant variables. Removing these from the dataset, results in a simpler

model that can be parameterized using fewer observations.

Feature selection algorithms can be roughly divided into three categories. These are

wrapper, filter, and embedded methods [39, 40, 41]. Wrapper methods ‘wrap’ a modeling

algorithm with the search for a feature subset. A model is built for many different feature

subsets. Subsequently the subset whose associated model performs best among these is

chosen. This process is computationally intensive as a model needs to be created and

trained for each feature subset.

Filter methods calculate a score for each feature in the dataset. Subsequently, the high-

est scoring features - the top ten percentile for example - are chosen as inputs to the model.

The correlation-coefficient between a feature and the output variable is an example of a

scoring function. Filter methods cannot account for the model that will subsequently be

created, or feature interactions, or redundancies when picking a subset [40]. They are,

however, less computationally intensive than wrapper methods.

Embedded methods are those where feature selection is embedded in the process of

creating a model. This is not the case with neural networks. A combination of the filter and

wrapper methods were used to find the input variables for the models in this chapter.

4.2.1.1 Correlation based filter method, followed by SVM modeling

A filter method with correlation-coefficient scoring function was used to create a feature

subset of a specified number of features. A support-vector-machine (SVM) model was

then built with this subset. This process is repeated for several feature subsets containing

different numbers of features. The reduced dataset associated with the model with the

35



minimum prediction errors was chosen for further analysis. Pseudocode to represent this

process is presented below.
Feature Selection Pseudocode

# Start with entire feature set.

entire_feature_set = import(data_from_database)

# Build a model for a range of feature subsets with

# different numbers of features.

for num_features in range(1,50):

reduced_feature_set = filterMethod(entire_feature_set)

model = buildModel(reduced_feature_set)

error = error.append(model.meanSquareError())

# Choose the feature subset that resulted in the

# model with minimum prediction error.

size_of_best_feature_subset = returnMinIndex(error)

A plot of model prediction error versus the number of features in the model is presented

in Figure 22. Prediction error drops rapidly from a model having one input to having ten.

Prediction error remained relatively flat beyond ten features, with the minimum occurring

at 26 features.

The dataset can possibly be pared down even further. Looking at a plot of the correlation

matrix for the input variables, Figure 23, one can see that there are some variables are highly

correlated and therefore perhaps do not contain any extra information.

4.2.1.2 Stepwise regression

Stepwise regression is a wrapper method that incrementally adds or removes variables from

a linear regression model, based on a performance measurement of the resulting models.

It starts by making single variable regression models for all possible input variables in the

dataset. After picking the best of this initial set, variables are added or removed incre-

mentally from the model, based on whether their addition or removal improves the Akaike

36



1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
Nu

m
be

r o
f f

ea
tu

re
s 

in
 m

od
el

0.
75

0.
76

0.
77

0.
78

0.
79

0.
80

0.
81

Mean absolute percentage error

Figure 22: Mean of the absolute percentage error for models with different numbers of
input variables.

37



Correlation matrix for tranformed feature set

Feature number

F
ea

tu
re

 n
um

be
r

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

−0.5

0.0

0.5

1.0

Figure 23: A plot of the correlation matrix for the reduced feature set.
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Information Criterion (AIC) [42]. The process stops when the addition or removal of a

variable makes a negligible difference to the AIC. The formula for AIC is

AIC = N ∗ ln(
S S error

N
) + 2K (2)

where N is the number of observations, and K is one more than the number of parameters

fit.

Neural network models created and trained with a variable subset chosen by stepwise

regression performed more accurately than those created and trained with variable subsets

chosen by the other feature selection algorithms used in this study. Stepwise regression

also performed well in [35], and as noted there, the variables in the resulting feature subset

are less correlated than those chosen with a correlation filter method. See Figure 24 and

compare to Figure 23.

4.2.1.3 Minimum redundancy maximum relevance (mRMR)

Minimum redundancy maximum relevance (mRMR), is an information theoretic approach

to feature selection developed in [43, 44]. It uses a measure of the information shared

between two random variables known as mutual information:

I(X; Y) =
∑
x∈X

∑
y∈Y

p(x, y)log
(

p(x, y)
p(x)p(y)

)
(3)

where I(X; Y) is the mutual information for X and Y, p(x, y) is the joint probability dis-

tribution, and p(x) and p(y) are the marginal probability distributions. The advantage of

using mutual information is that no assumption is made about the nature of the dependence

between the variables, as is the case with correlation [40].

Features that share a lot of information with the output variable are relevant. However,

if they share a lot of information with other relevant variables, then they are redundant.

The algorithms searches for the feature subset where the average mutual information be-

tween individual features and the output variable is maximized, and the average mutual

information between individual features and other features is minimized.
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Figure 23
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4.2.2 Modeling

Neural network models were created using MATLAB’s Neural Network toolbox. The

datasets supplied by the feature selection algorithms contained differing numbers of input

variables. Hence, the input layers of the models created for each were of different sizes.

Models with varying numbers of hidden layer neurons were created and trained with the

Levenberg-Marquardt algorithm, as it converges quickly. The performance of the different

models, as measured by RMSE, was then compared as in Figure 25.

The model with the best performance was then retrained with Bayesian regularization

as the training algorithm. This resulted in models with better fit, as seen in Figure 26. The

errors for the model trained with Bayesian regularization were more concentrated around

zero, although the algorithm typically needs more time to converge.

4.2.3 Genetic algorithm for optimized process recipe

A genetic algorithm was used to search for an input recipe that produced the desired output

in the model. Assuming the model is an accurate reflection of reality, this input recipe

should result in the desired output when applied to the actual fabrication process.

If one thinks of the neural network as a function f : Rin → R where in is the dimension

of the input space, then the genetic algorithm can be thought of as a search for the vector

X that minimizes a predefined fitness function:

f itness(X) = (d − f (X))2. (4)

This is a measure of the distance between network output f (X) and the desired output d.

The MATLAB Global Optimization toolbox was used to implement the genetic algorithm.

4.3 Results
4.3.1 Correlation based filter method, followed by SVM modeling

Figure 27 presents graphs of neural network model output against the measured data for the

model trained with features chosen by the correlation + SVM feature selection algorithm.
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Figure 25: A plot of the number of neurons in the hidden layer versus the RMSE for
respective model. Graph is for the dataset chosen by stepwise regression. The testing
RMSE trends upward with the addition of hidden layer neurons.
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Figure 26: Density plots of the prediction errors of the same model, trained with different
training algorithms.
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There is a plot for the training data, validation data, testing data, and the combination of

the three.

The graph for training data shows how close the model could get to the relationship

in the data presented to it. The R value of 0.64148 above the graph represents the sample

correlation coefficient between measured and predicted values.

The validation data set is not used to train the models (adjust model parameters), but is

used to stop the training process. The model prediction error for the validation dataset is

calculated after every training epoch. This error typically decreases early on as the training

algorithm adjusts model parameters to reflect the relationship in the training data. It reaches

a minimum then begins to increase as the algorithm starts to overfit the training data. Model

parameters are set to be the values where the validation error was at its minimum. This is

illustrated in Figure 28. The green line shows the validation error as the training progresses.

The graph for the testing data provides information about how generalizable the model

is. The correlation coefficient between model predictions and measurements is 0.54567

for testing data. Figure 29 shows a histogram for the prediction errors of the network.

The errors are centered around zero. The mean absolute percentage error (MAPE) was

0.6534%.

4.3.2 Stepwise regression

The graphs in Figure 30 plot the output of the neural network model against the target

(measured) data, for the model trained with features chosen by the stepwise regression

feature selection algorithm. There is a plot for the training data, testing data, and the

combination of the two.

The sample correlation coefficient of 0.72595 for the training data is higher than it is

for the dataset chosen with the correlation + SVR method. The sample correlation coeffi-

cient of 0.5571 for the testing data is also higher than it is for the dataset chosen with the

correlation + SVR method.

Figure 31 shows a histogram for the prediction errors of the network. The errors are
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Figure 27: Correlation + SVR. Plots of network output versus measured (Target) output for
the training, testing, and their combination datasets.
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Table 1: Comparison of the average prediction errors for neural network models trained
with datasets chosen by the three different feature selection algorithms. The dataset chosen
by stepwise regression resulted in models with the most accurate predictions.

MAPE RMSE
Corr + SVR 0.6534% 4.5450
Stepwise 0.6473% 4.4332
mRMR 0.6877% 4.6503

centered around zero. The mean absolute percentage error (MAPE) was 0.6473%.

4.3.3 Minimum redundancy maximum relevance (mRMR)

The graphs in Figure 32 plot the output of the neural network model against the target

(measured) data, for the model trained with features chosen by the mRMR feature selec-

tion algorithm. There is a plot for the training data, validation data, testing data, and the

combination of the three.

The sample correlation coefficient of 0.59418 for the training data is lower than that

for the models trained with data chosen by the other two feature selection algorithms. The

sample correlation coefficient of 0.49651 for the testing data is also lower than it is for the

other two datasets.

Figure 33 shows a histogram for the prediction errors of the network. The errors are

centered around zero. The mean absolute percentage error (MAPE) was 0.6877%.

4.3.4 Genetic algorithm for optimized process recipe

The graphs in Figure 34 depict how the genetic algorithm evolved towards an acceptable

solution. The fitness value versus generation graph plots both the average fitness value of

the population and the best (smallest distance between predicted and desired output) fitness

of any individual in the population. It can be seen that there existed, from the outset, at

least one individual with a fitness close to zero. The average fitness value of the population

quickly decreased, becoming almost zero in nearly twenty generations.

The second graph plots the average distance between individuals as the algorithm pro-

gresses. The population can be seen to evolve towards and become concentrated around an
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optimum.

The score histogram shows the distribution of the scores for the individuals in the final

population. Most of the scores are seen to be close to zero. The last graph plot the fitness

for each individual in the population. The x-axis shows that there were 200 individuals in

the population. It can be seen that all individuals have a fitness value below 0.004.

4.4 Discussion

Model performance was similar for datasets chosen by all feature selection algorithms.

One possible explanation could be that only a few features contributed the majority of

information needed to model the variation in CD. Thus differences in features chosen by the

different algorithms would not contribute significantly to differences in model performance

if the most relevant features are present in every dataset.

In the best case, where the feature subset was chosen by stepwise regression, the model

explained about 53% of the variance (R2 = 0.5270). See Figure 30. Ideally this would be

higher.

The time taken to run the feature selection algorithms ranged from a few minutes to

many hours. For the data set used in this work there was no correlation between the running

time of an algorithm and its performance. Stepwise regression chose the feature subset that

resulted in the most accurate predictions, and took the least amount of time to run. Given

this result, and how common it is to find implementations of this algorithm in different

software packages, it is a good starting point for feature selection.

The genetic algorithm converged very quickly and definitively to a solution. This is

impressive given the dimensionality of the solution space and heuristic nature of the algo-

rithm. The solution represents a process recipe that brings the value of the process output

for the model closest to its desired value. Given an accurate model, this recipe should also

bring the value of the output of the actual process to its desired level. Searching in the realm

of a computer model, as opposed to experimenting on a manufacturing line, represents a
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significant savings in cost, time, and effort for a manufacturer.

4.5 Conclusion

Model performance, in terms of the sample correlation coefficient between measured and

predicted data, reached a plateau across the datasets chosen by the different feature selec-

tion algorithms. Given the breadth of feature selection algorithms and model sizes used,

one could conclude that the dataset did not contain enough information to build a more

accurate model. But this is valuable information in itself. It points to need for more, or

adjusted metrology for this process step. For example, there might be some unmeasured

influence on the CDs that is worth searching for. Or perhaps an algorithm for extracting

CDs from the raw data could be modified.
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CHAPTER 5

MANUFACTURING FAB MODELS

5.1 Introduction

This chapter will present an exploration and evaluation of the use of the neural network

modeling method in a manufacturing fab. The different nature of the data available in a

manufacturing fab database, as opposed to that in a development one, presents a set of

trade-offs.

In a manufacturing environment at steady state, yields are typically much higher than

in a research and development environment. Fab engineers are more able to analyze and

identify which upstream processes are responsible for faulty yield metrics. Thus the right

data, from lots where faulty yield metrics were caused by fabrication process of interest,

can be isolated and used for model building as illustrated in Figure 35. Accurate models of

several yield metrics were created from input variables to a high-aspect-ratio etch process.

Models were also made of the post-etch metrology from input variables to the high-aspect-

ratio etch.

5.2 Data collection

Data collection is an important part of the modeling process. The quality and amount

of training data used greatly affects the performance of neural network models. In past

studies, the data used typically originated from designed experiments [17, 20, 45], and

only occasionally from industrial fabrication processes [11, 46]. Ironically, the operations

of semiconductor fabs generate very large amounts of useful data. Although the data is

typically generated for purposes other than process modeling [47], some of it like on-line

sensor data (gas flows, RF power, in-line CD measurements, etc.) is nevertheless relevant.

The data generated are usually stored in large databases that can be queried [11].

The advantage of using production data for modeling is that it saves the cost and time
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Data for yield models during manufacture 

Yield metric 

Lo
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Yield metric 

Yield metric 

Yield metric 

= Fabrication process = Fabrication error 

Figure 35: A schematic of the data available for model building in a manufacturing en-
vironment. The fabrication process to be modeled is in the dashed blue rectangle. The
lots whose data can be used to build a model for the yield metric are in the dashed red
rectangles.
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spent to carry out designed experiments [47]. However, there are some disadvantages.

Artificial neural network models are much better at interpolating than extrapolating [48].

With production data, there is much less variation in the process variables. The resulting

models thus may not be as useful for optimization purposes, as one has to assume that

the optimal recipe for a process is within that narrow range of inputs [48]. The other

problem with using production data is the effort needed to get the data in a format ready for

modeling. There can be inconsistencies in the way the data is collected, labeled, stored, etc.

[48]. Training neural network models with designed experiments provides more variation

in the training inputs, but incurs additional cost and will typically generate less training

data. Less training data potentially limits the accuracy of the network models that can be

created.

5.3 Modeling

The models were created with the Object Oriented Neural Network Simulator (ObOrNNS),

a program developed by the Intelligent Semiconductor Manufacturing Group at Georgia

Tech. It allows for rapid creation, training and testing of neural network models [49]. The

choice of inputs for all the models evolved iteratively through the creation of several models

of each type. Results presented are from those that performed best.

5.3.1 High-aspect-ratio etch

Similar to that in the R&D fab, the purpose of the high-aspect-ratio etch is to create an array

of high-aspect-ratio holes in an oxide layer. These holes act like a mold for device struc-

tures created in subsequent fabrication steps. Therefore, the dimensions of these holes are

important. Of particular importance are the distances between these holes in the x-direction

and y-direction. They are the CDs we are interested in controlling and thus they form the

output of the model. The overall etch is made of three smaller etches each with its own set

of process parameters like gas flows, RF powers, bias powers, and charge species tuning

unit (CSTU) settings. These, together with the measurements of the critical dimensions in
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Figure 36: An overview of the model created for the high-aspect-ratio etch in the manufac-
turing fab.

the masking layer, the wafer location of these measurements, and the chamber in which

the wafer is processed, form the model inputs. An overview of the model is presented in

Figure 36.

A 16-16-2 network was created to model the process. Data from approximately 1100

wafers was used to train the model and data from another 50 wafers was used to test it.

5.3.2 Yield metrics

There were two models created to predict yield metrics. In-line CD measurements, the

location of these in-line CD measurements, and an indicator of the process chamber form

the inputs to these models (Figure 37). The in-line CD measurements are the same as those

in the output to the oxide etch model. This fact is important for future work involving the

optimization for yield because the models can be connected as in Figure 38.
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Figure 37: An overview of the models created to predict yield metrics from inline measure-
ments.
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Figure 38: Sequential neural network model.
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5.3.2.1 Defect counts

The first of the yield models predicts defect counts on the wafer. The model makes separate

predictions for defects that are caused by over-etch and under-etch during the high aspect

ratio etch step.The model was created with a 5-6-12 neural network. Data from approxi-

mately 650 wafers was used to train the model and data from another 50 wafers was used

to test it.

5.3.2.2 Probability of die failure

The second of the yield models predicts the probability that a die will fail a test of function-

ality at probe as a result of non-ideality in the high aspect ratio etch step. A larger amount

of preprocessing had to be performed for this model. This is because the probabilities of

failure were not directly available from the database and had to be calculated and arranged

properly into the modeling datasets. The model was created with a 5-5-6 neural network.

Data from approximately 650 wafers was used to train the model and data from another 27

wafer was used to test it.

5.4 Results
5.4.1 High-aspect-ratio etch

The model performed very well with an average prediction error of 3.9%. Results are

presented graphically as error contour plots. This allows comparison of both the values of

the output and its variation across the wafer. Figure 39 shows the results for x-direction

CD. The CD values have been normalized using the range of the measured CD values. The

results presented are the average over 47 wafers. The contour plot for absolute percentage

prediction error for x-direction CD is presented in Figure 40.

Figure 41 presents a similar comparison of measured and predicted CDs, but this time

for the y-direction CD. The contour plot for absolute percentage prediction error for y-

direction CD is presented in Figure 42.

In both cases, the model has accurately captured the distribution of the CDs as seen
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(a) x-direction CD (b) Neural network predictions for x-direction CD

Figure 39: Comparison of measured (left) and predicted (right) CDs. The x-axis and y-axis
represent wafer location in mm.

Figure 40: Absolute percentage error for neural network predictions for x-direction CD.
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(a) y-direction CD (b) Neural network predictions for y-direction CD

Figure 41: Comparison of measured (left) and predicted (right) CDs. The x-axis and y-axis
represent wafer location in mm.

Figure 42: Absolute percentage error for neural network predictions for y-direction CD.
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(a) Under-etch defect counts (b) Neural network predictions for under-etch defect
counts

Figure 43: Comparison of measured (left) and predicted (right) under-etch defect counts.
The x-axis and y-axis represent wafer location in mm.

from the similarity between the plots of measured CDs and the model-predicted CDs in

Figures 39 & 41.Also, as can be seen from figures 40 & 42, the error remained below 5%

across most of the wafer for both sets of predictions.

5.4.2 Yield metrics
5.4.2.1 Defect counts

The average prediction error for defect counts was 14.9%. Figure 43 shows the results

for defects as a result of under-etch. The model accurately captured the distribution of

the defects as seen in the similarity between the plots of actual defects (left) and predicted

defects (right). The prediction error remained mostly below 15% as seen in Figure 44.

Figure 45 shows the results for defects as a result of over-etch. The model accurately

captured the distribution of the defects as seen in the similarity between the plots of actual

defects (left) and predicted defects (right). The prediction error remained mostly below

25% as seen in Figure 46.

5.4.2.2 Probability of die failure

The average prediction error for probability of die failure was 21.8%. Figure 47 shows the

results for probabilities of die failure as contour plots. The model captured the distribution
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Figure 44: Absolute percentage error for neural network predictions for under-etch defect
counts.

(a) Over-etch defect counts (b) Neural network predictions for over-etch defect
counts

Figure 45: Comparison of measured (left) and predicted (right) over-etch defect counts.
The x-axis and y-axis represent wafer location in mm.

Figure 46: Absolute percentage error for neural network predictions for over-etch defect
counts.
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(a) Probability of die failure. (b) Neural network predictions for probability of die
failure.

Figure 47: Comparison of measured (left) and predicted (right) probability of die failure.
The x-axis and y-axis represent wafer location in mm.

of the defects as seen in the similarity between the plots of actual defects (left) and predicted

defects (right). There was a deviation in the predictions for area of high probability of

failure on the right part of the wafer. Its location is predicted to be slightly higher up on

the wafer than in the actual distribution (left). The prediction error remained mostly below

30% as seen in the Figure 48.

5.5 Sensitivity analysis

A sensitivity analysis was performed for the for both process models and yield models.

Performing a sensitivity analysis for a mature manufacturing process is perhaps more use-

ful than it is for one in development. Because of the costs associated with lost product,

costs that are increasing with the tendency toward larger wafer sizes and smaller product

geometries, manufacturers are very conservative in the changes they make to any process

in a manufacturing line. This includes changes they make for the sake of experimentation.

A sensitivity analysis is a systematic way for a manufacturer to explore opportunities for

process improvement in the narrow window around the current operating point for a pro-

cess. A representative example would be to look at the relative effects the inputs of the
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Figure 48: Absolute percentage error for neural network predictions for probability of die
failure.

defect counts model have on under-etch related defects (see Figure 49).

5.6 Discussion and summary

The contrast between development and manufacturing data presented trade-offs for model-

ing. There is less input variance in manufacturing data. However, there is much more data

to work with. The models were able to handle the increased complexity and the reduced

input variance of the manufacturing data and were able to model the high-aspect-ratio etch

process well.

What was not clear from modeling using R&D fabrication data was the neural networks

ability to predict yield. With development data, it was difficult to attribute yield metrics to

fabrication processes, or process parameters, or in-line measurements. It was difficult to

collect enough yield data with enough accuracy for modeling.

There was dramatic improvement in the predictions for yield using manufacturing data,

with the neural networks being able to make predictions about yield using in-line CD mea-

surements. They captured the uniformities of the fails across wafer particularly well.
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Figure 49: Sensitivity analysis. The bars represent the percentage change in under-etch
defects in response to a uniform change in their respective inputs
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CHAPTER 6

CHAMBER MATCHING EXERCISE

6.1 Introduction

Semiconductor manufacturing, whether it is for memory or microprocessors, is high vol-

ume manufacturing. The manufacturing process is comprised of hundreds of distinct steps

performed by sophisticated pieces of equipment. In order to realize high volume, there

are typically several reaction chambers operating in parallel in which the same fabrication

process can occur. There is unavoidable variation in a particular fabrication process step

across chambers, even if the chambers are the same (manufacturer, model, configuration)

and running the same recipe.

One critical process in modern semiconductor manufacturing is plasma etching. It uses

an ionized gas (plasma) that is created in the reaction chamber using an RF electric field.

The plasma reacts with the areas of the wafer surface that are exposed. The reaction prod-

ucts then diffuse away from the surface leaving a void. The plasma allows the reactions to

occur at a lower temperature than they normally would, and plasma etching affords more

etch anisotropy than wet etch methods [50].

The process variation between plasma etch chambers can have different effects that can

occur anywhere downstream [51]. Process variation is reflected in the immediate post-

process metrology, or it is observable in yield metrics which are calculated after possibly

hundreds of downstream fabrication processes. This variation affects yield, product perfor-

mance and reliability [52].

The purpose of this chapter is to explore the use of artificial neural networks and ge-

netic algorithms to reduce chamber-to-chamber variation. Artificial neural networks are

empirical modeling tools capable of modeling the complex nonlinear relationships found in

many semiconductor manufacturing processes [53]. A genetic algorithm is a global search

heuristic [54] that will be used to search the input space to the plasma etch model to find
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the recipe that makes the chamber performance of the outlying chamber more consistent

with the performance of the other chambers. The new recipe is subsequently verified on

the production line. The method used is generally applicable to a wide range of fabrication

steps.

This study focuses on a chamber matching exercise for a high-aspect-ratio 1 etch. A

chamber is identified as an outlier by a comparison of the moving averages of the post-

process metrology of all the chambers. An artificial neural network is used to model the

plasma etch process in the outlying chamber. Genetic algorithms are then used to generate

a process recipe that brings that outlying chambers 2 performance closer to target and thus

reduce the process variation across chambers.

6.2 Method
6.2.1 Identifying the outlying chamber

Chambers were identified as outliers based on moving average charts of the post-process

metrology and moving average charts of several yield metrics (see Figure 50). The yield

metrics used were identified by fab engineers as those being affected by the process being

modeled. The moving average chart contained data from a 45 day window. This guaranteed

that the chart would contain data across a preventative maintenance (PM) event for each

chamber. PM events need to be considered for plasma etch modeling, as addressed in

the literature [37, 55], because chamber behavior can change across these events. A PM

event is a step change in the chamber environment, in contrast to the slow drift in chamber

environment that occurs due to accumulation of reaction by-products on the chamber walls

[18]. The large data window helps to choose a chamber that is an outlier across PM events.

The choice of the chamber to be modeled was corroborated using an analysis of means

(ANOM) chart, created with JMP®.
1Aspect-ratio is the ratio of the depth of a structure to its width. A high-aspect-ratio etch could have a

40:1 ratio of etch depth to etch width for example.
2This method can be applied to any chamber. An outlying chamber was chosen for proof of concept to

demonstrate the efficacy of the method more clearly.

71



Figure 50: Moving average chart of post-process metrology. The different lines represent
the moving averages of the different chambers. Chambers whose lines were furthest from
the target CD were candidates for modeling.
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6.2.2 Chamber modeling

A plasma etch process to etch high-aspect ratio features was modeled. The overall process

was comprised of three etch steps, each with a different etch time and chemistry. The result

of the overall process was to create an array of high-aspect-ratio holes. These holes act as

molds for device structures that are fabricated downstream in the production sequence. The

distances between the holes in the x and y direction, and their profiles (anisotropy of the

etch) are important to product yield.

The distances between the holes in the x and y direction are measured post process, and

are the responses to be modeled. These are labeled as the x-direction CD and y-direction

CD respectively, and are also the variables to be controlled. There is no measurement of

the profile of the etch that takes place in the production line. This is because of the inherent

trade-off between metrology and throughput, and because measuring the profile of the etch

would require cross sections (breaking wafers) and negatively impact yield. Issues with the

etch profiles are reflected in yield metrics.

There are thirteen inputs for this model. These are the plasma source powers for each

of the three etch steps, the O2 flows for the second and third etch steps, the charged species

tuning unit (CSTU) settings 3 for the second and third etch steps, CD measurements in

the masking layer, and the wafer location (x and y) of these CD measurements. CD mea-

surements in the masking layer and the wafer locations of these measurements cannot be

directly controlled, but they improve model predictions when included as inputs. The other

inputs can be manipulated directly. Figure 51 is an overview of the model.

These input variables were chosen by examining the dataset available and using the

expertise of process engineers. Process recipes are fairly unchanging in a manufacturing

environment, where a single recipe may be used for months. When a recipe does change, a

small subset of all possible etch-inputs is changed. Model input variables were chosen from

3The Charged Species Tuning Unit allows control over the distribution of the plasma ions across the
chamber and affords some control over the uniformity of the etch across the wafer. The CSTU settings are
set points for current in an inner and outer ring.
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Figure 51: Overview of the model of the high-aspect-ratio etch. Numbers following the
input description indicate etch step.
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this small subset using the expertise of the process engineers. There are other heuristics for

choosing model input variables as outlined in [35, 56]. The process of selecting input

variables for a model is commonly referred to as feature selection or attribute selection.

6.2.3 Process recipe optimization with Genetic Algorithms

Given a trained model, a forward pass (input presented to the input layer and its effects

propagated) through the network is a simulation of the plasma etch. The output of a forward

pass is the model prediction for the results of the etch. One can study the plasma etch

response, assuming an accurate model, by running many simulations at different points

in the input space. One way to automate this process is a genetic algorithm. A genetic

algorithm is a global search heuristic. It was used to search the input space to the model

to find the optimal combination of inputs (process recipe), i.e. one that produces a desired

output.

Genetic algorithms are inspired by natural evolution and borrow its nomenclature. Any

point in the input or solution space is represented by a binary string, and is labeled an

individual (see Figure 52). An initial population consists of randomly chosen individuals,

see Figure 53. Each individual is evaluated for fitness, which is how close its corresponding

network output is to the desired output in terms of mean squared error. Fitter individuals are

selected to breed the next generation of solutions. This involves crossover and mutation.

Crossover is the operation in which two individuals or binary strings exchange some portion

of their data, see Figure 54. Mutation is the operation in which the bits in an individual’s

data are flipped based on some low probability, see Figure 55. This process, of finding

the fit individuals or solutions and letting them have greater representation in subsequent

generations of solutions, continues until an acceptable solution is found or a maximum

number of generations is reached. The aim is for the population of solutions to evolve to a

global optimal solution [54]. A flowchart for the overall process is presented in Figure 56.
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1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 

Time Temperature Pressure Etc. 

Figure 52: Example of a point in the input space encoded as a binary string. Points like
these are labeled “individuals.”

Figure 53: A collection of possible solutions, encoded as binary strings, is labeled a popu-
lation.
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Crossover 

Figure 54: Illustration of crossover. The two individuals exchange their data to the right of
the arrow.

1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 0 

1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 

Mutation 

Figure 55: An example of mutation where one bit is “flipped.”
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Figure 56: Flowchart of a genetic algorithm.
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6.2.4 Dataset

The model was made using measured in-situ and post-process data from 431 days of man-

ufacturing. These data came from about 2900 wafers in 723 different lots. The fidelity of a

neural network model is tested on data that has not been used to train it. Therefore 20% of

the data was randomly chosen and separated from the larger dataset for testing.

In contrast to the research and development setting for semiconductor products, pro-

cess recipes change infrequently in a manufacturing setting. Thus the measured data for

the input variables may not cover the entire input space possible, but only a subset of this.

The genetic algorithm searches this subspace for the ideal process recipe because neu-

ral network models are better at interpolating than extrapolating [48]. The assumption is

therefore that an optimal process recipe exists within the input space circumscribed by the

measured data.

6.2.5 Verification of the experimental recipe on the production line

Running the genetic algorithm on the neural network process model returns several process

recipes ranked in order of fitness. Recipes whose output has smaller deviation from the

target output are ranked higher. The best of these recipes (experimental recipe) was chosen

and used on the actual production line.

The experimental recipe was run on 16 wafers. These 16 experimental wafers were

contained in two different lots, with eight wafers in each lot. The nominal (or “control”)

recipe was run on 28 wafers in those same two lots, 17 wafers in one lot and 11 in the other.

6.3 Results
6.3.1 Modeling results

Model fidelity was evaluated by comparing the response of the actual process to that of the

neural network model, given the same input from the test data set. The test data set provides

the output response of the actual process in the form of post-process measurements. The

neural network model response is obtained by passing the values of the input variables in
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Figure 57: Contour plots using measured and predicted data for the x-direction CD.

the test data set as inputs to the model. Model output is labeled predicted data. A percentage

prediction error was calculated for each point in the test data set and then averaged. The

average prediction errors for the x-direction CD and y-direction CD were 2.6% and 3.8%,

respectively.

Contour plots of normalized measured and predicted data were used to evaluate model

performance. They provide visual corroboration that the model captured the behavior of

the process - etch uniformity across the wafer in particular. The contour plot for measured

and predicted data for x-direction CD is shown in Figure 57. A contour plot of prediction

error for x-direction CD, as seen in Figure 58, shows how prediction error was distributed

across the wafer and the range of these errors. Similarly, a contour plot for measured and

predicted data for y-direction CD is shown in Figure 59, and a contour plot of prediction

error for y-direction CD appears in Figure 60.
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Figure 58: Contour plot of the percentage prediction error for x-direction CD.

6.3.2 Verification of experimental recipe

An experimental etch recipe was generated using genetic algorithms. The experimental

recipe was evaluated by comparing the post-process metrology and yield of the wafers

running the experimental recipe to those of the wafers running the control recipe. (Due to

the proprietary nature of the process and data, we are unable to publish the details of the

experimental recipe).

There was an improvement in average x-direction CD, which was 0.2 nm above target

for the experimental group contrasted with 0.7 nm above target for the control group. There

was also an improvement in average y-direction CD, which was 0.2 nm above target for the

experimental group contrasted with 0.4 nm below target for the experimental group.

There was an improvement in yield (number of die yielding per wafer) for the experi-

mental group of about 0.52%. This was not statistically significant. However, there were

statistically significant changes in certain yield metrics that are affected by the high-aspect-

ratio etch process that was optimized. Two of these metrics reflected failures occurring

in individual high-aspect-ratio holes, and therefore a failure of the etch to penetrate to the

underlying layer. These metrics were reported as the number of die with the defect. The

third metric reflected failures occurring with two adjacent holes, and therefore a failure in

etch anisotropy because the two holes have merged somewhere along their profile. This
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Figure 59: Contour plots using measured and predicted data for the y-direction CD.

metric was reported as the total number of fails per wafer. There was a statistically signifi-

cant improvement in all three metrics. The p-values for the single-hole failure metrics were

0.0157 and 0.0488. The p-value for the two adjacent holes failure metric was 0.0455 [57].

6.4 Discussion

The average model prediction errors of 2.6% and 3.8% for x-direction CD and y-direction

CD are reasonably low, and are evidence that the model has captured process behavior.

These errors are comparable to other studies, see [35, 58, 59, 60, 61, 62], that have em-

ployed neural network to model fabrication processes. The similarity in the contour maps

for measured and predicted output variables for the test data set provide further evidence

of modeling accuracy. This shows the model can accurately predict CD uniformity across

the wafer. Thus the neural network has modeled the high-aspect-ratio etch satisfactorily.

The experimental recipe resulted in improvements in the post-process metrology, thus

bringing the CDs for the outlying chambers closer to target. Additionally, the recipe
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Figure 60: Contour plot of the percentage prediction error for y-direction CD.

brought statistically significant improvements to yield metrics that are affected by the high-

aspect-ratio etch. Thus, the genetic algorithm optimization process performed satisfacto-

rily.

The improvement in the CDs measured post-process was small. The product had been

in high volume production for enough time that the high-aspect-ratio etch had become

tightly controlled in terms of post-process metrology. This makes it difficult to make im-

provements to the recipe such that process improvements are statistically significant. The

method would be more suited to optimize post-process metrology at earlier stages in the

development or manufacturing of a semiconductor product.

The new recipe did make statistically significant improvements to yield metrics known

to be affected by the etch process. This reveals an opportunity to use the modeling and

optimization methodology for yield metrics. The method would be more suited to optimize

yield metrics in the later stages of the manufacturing lifecycle of a semiconductor product.

This is because yield metrics are more clearly assignable to upstream processes at these

later stages. Reference [63] investigated modeling yield metrics from controllable inputs

to an upstream process.

The chamber matching method might provide most benefit somewhere in the middle

of the two manufacturing stages mentioned above. A product in the ramp up stage would

have room for improvement in the post-process metrology, and enough yield that defects
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are assignable to upstream processes. Applying the neural network modeling and genetic

algorithm optimization method with a product in its ramping stage is explored in Chapter

4.

6.5 Summary

In this study, we modeled a high-aspect-ratio etch process with artificial neural networks

and found an optimal process recipe for this etch using genetic algorithms. The aim was

to reduce chamber-to-chamber variation in the post-process metrology for the etch. This

was achieved. There were improvements in yield metrics affected by the etch as well. The

results could be stronger for a fabrication process that was not as mature. Both modeling

and optimization methods are automatable and work on a time scale acceptable for run-to-

run control, and could form the groundwork for an automatic controller.
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CHAPTER 7

COMPARISON TO LINEAR REGRESSION MODELS

7.1 Introduction

It is worth verifying that neural network models of the fabrication processes have greater

prediction accuracy than more established modeling methods. There is an inertia in the

uptake of new methods within most manufacturing. This is a result of the opportunity costs

associated with the effort of introducing something new. Additionally, there are certain

trade-offs to using neural networks. Their black-box nature is commonly cited as the rea-

son for their slow uptake within industry [64]. Using neural networks has also been cited

as being more computationally intensive than more traditional statistical modeling meth-

ods, but practically, with modern computational speeds, this is not an issue. Empirically

demonstrating the superior prediction abilities of neural networks might reduce the unease

about their use within the industry.

There have already been several comparisons of the predictions abilities of neural net-

works to those of other modeling methods [17, 37]. Those results however, are not neces-

sarily generalizable to the various models made in this study. Therefore this section will

focus on comparing the predictive performance of linear regression models to those of

neural network models, for the processes of concern.

7.2 Method

Linear regression models were made for the two hardmask etches, and the high-aspect-

ratio etch. These models were created using the same training data that was used to train

the neural network models. The prediction abilities of the regression models were tested

using the same testing data that was used to test the neural network models. This allowed

an apples-to-apples comparison of the prediction abilities, as judged by the prediction error,

of the two types of models.
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The inputs and outputs to linear regression models for hardmask etch 1, hardmask etch

2, and the high-aspect-ratio etch were chosen to be the same as those for the neural network

models already created.

The regression models were created in the R software environment [65].

7.2.1 Linear regression

Linear regression is an approach to data modeling where the dependent variable (y) is

modeled as a linear combination of the explanatory or dependent variables (x1, x2, . . . , xp).

A linear regression model might look like

yi = β0 + β1xi1 + β2xi2 + · · · + βpxip + εi, i = 1 . . . n (5)

where β1 . . . βp are the parameters to be estimated, n is the number of observations in the

data set to be modeled, and εi ∼ N(0, σ2) is a random error term. The equation in matrix

form is

y = Xβ + ε. (6)

The most commonly used method to fit such a model to a data set is least squares

estimation, whereby the parameters (β1 . . . βp) are estimated by minimizing the sum of the

squared residuals. Residuals are the deviations of the model estimated values from the

observed values.

The least squared estimation method results in a closed-form estimate for β,

β̂ = (X′X)−1X′y. (7)

7.2.2 Hardmask etch 1

The linear regression model for hardmask etch 1 was fitted to the dataset that was used to

train the neural network model for hardmask etch 1. This was done so that a fair compar-

ison could be made between the two modeling methods. The linear regression model for
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hardmask etch 1 took the form:

[
x-direction CD (hardmask)

]
=



1T

Wafer location, xT

Wafer location, yT

x-direction CD (photoresist)T

Inner chuck temperatureT

Outer chuck temperatureT

DARC etch timeT



T 

β0

β1

β2

β3

β4

β5

β6



+ ε. (8)

After having fitted the linear regression model to the training data set, it was tested

using the same testing data set used with the neural network model of hardmask etch 1.

The prediction errors for the 2 models were then compared

7.2.3 Hardmask etch 2

The linear regression model for hardmask etch 2 was fitted and tested following a similar

procedure to that for hardmask etch 1. There were two outputs for hardmask etch 2 how-

ever, and thus two models were created to predict each separately. The linear regression

models for hardmask etch 2 can be represented in matrix form as:

x-direction CD (hardmask)T

y-direction CD (hardmask)T


T

=



1T

Wafer location, xT

Wafer location, yT

y-direction CD (photoresist)T

x-direction CD (hardmask-in)T

BARC etch timeT

DARC etch timeT

CH2F2 flowT

CH4/HBr concentrationT



T 

β0x β0y

β1x β1y

β2x β2y

β3x β3y

β4x β4y

β5x β5y

β6x β6y

β7x β7y

β8x β8y



+ ε.

(9)
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7.2.4 High-aspect-ratio etch

The high-aspect-ratio etch, like hardmask etch 2, has two outputs. The linear regression

models for the high-aspect-ratio etch can be represented in matrix form as:

x-direction CD (oxide)T

y-direction CD (oxide)T


T

=



1T

Wafer location, xT

Wafer location, yT

y-direction CD (hardmask)T

x-direction CD (hardmask)T

Etch step 1 gas flowT

Etch step 1 timeT

Etch step 1 gas flowT

Etch step 1 timeT

Etch step 1 gas flowT

Etch step 1 timeT



T 

β0x β0y

β1x β1y

β2x β2y

β3x β3y

β4x β4y

β5x β5y

β6x β6y

β7x β7y

β8x β8y

β9x β9y

β10x β10y



+ ε. (10)

7.3 Results

This section presents the regression summaries, plots for regression diagnostics, and com-

parisons to neural networks for each of the regression models. The regression summaries

include the estimated values for the model parameters (β0, β2, . . . , βp), the statistical signif-

icance of these estimates, and measures of the goodness of fit for the model. The plots for

regression diagnostics provide a visual way to evaluate the goodness of fit of the models.

They are commonly used plots of the residuals. Lastly, the comparison of the regression

models to their neural network counterparts was made by both comparing the individual

prediction errors, and the average prediction error for each model.

7.3.1 Hardmask etch 1
7.3.1.1 Regression summary

The regression summary for hardmask etch 1 can be seen below.
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> summary(train_results)

Call:

lm(formula = xCDhrdmsk ˜ ., data = train)

Residuals:

Min 1Q Median 3Q Max

-45.143 -10.496 0.258 10.846 47.984

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.174e+03 3.991e+02 2.942 0.00348 **

x -7.534e-09 1.210e-08 -0.623 0.53385

y -2.130e-08 1.147e-08 -1.856 0.06426 .

xCDphoto 9.203e-01 3.980e-02 23.121 < 2e-16 ***

Innertemp -1.233e+01 4.421e+00 -2.788 0.00558 **

Outertemp -1.466e+01 5.496e+00 -2.668 0.00797 **

DARCt NA NA NA NA

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 16.28 on 362 degrees of freedom

Multiple R-squared: 0.6236, Adjusted R-squared: 0.6184

F-statistic: 120 on 5 and 362 DF, p-value: < 2.2e-16

The Estimate column lists the fitted β values, or the model parameters for hardmask etch

1. Substituting these values for the β’s gives a regression model that looks like:

̂x-direction CD =



1.174e+03

-7.534e-09

-2.130e-08

9.203e-01

-1.233e+01

-1.466e+01



T



1

Wafer location, x

Wafer location, y

x-direction CD (photoresist)

Inner chuck temperature

Outer chuck temperature

DARC etch time



. (11)
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The F-statistic of 120 with (5, 362) degrees of freedom is the result of an overall F-test for

regression where,

H0 : β0 = β1, . . . , βp = 0

H1 : β j , 0, for some j ∈ (1, 2, . . . , p).
(12)

A p-value of less than 2.2e-16 is small enough to reject the null hypothesis with α = 0.01.

Thus at least one of the parameters must be greater than 0, which means that at least one of

the input variables has an effect on the output variable (x-direction CD in the hardmask).

7.3.1.2 Regression diagnostics

There are several assumptions made when creating linear regression models. One of these

assumptions is the homogeneity of variance of error (homoscedasticity). This means that

the standard deviation of the observed values of the dependent variable from some true

value for that variable, is constant across the range of values of the independent variables.

Or stated another way, there is some true function, from which our observed values for the

dependent variable have a constant standard deviation. Another assumption is that error

is normally distributed with a mean of zero. A third assumption is that the relationship

between the dependent variable and the independent variables is linear. The validity of

these assumptions can be tested by examining the residuals.

The residuals, or the deviations of the observed values of the dependent variable from

the model predicted values of that variable, provide an estimate for the errors. The residuals

are analyzed graphically. Figure 61 provides some graphs commonly used for regression

diagnostics, and was created using the data from the model for hardmask etch 1.

The “Residuals vs Fitted” graph plots the residuals for each of the data points versus

the fitted values for the dependent variable, in this case the x-direction CD in the hardmask.

This graph allows one to check visually that the residuals are distributed around zero. One

would expect also, that this graph could be used to check the assumption of homoscedas-

ticity. If this assumption is true one would expect the residuals to form a rectangular cloud

90



about the horizontal axis. Residuals are not a perfect proxy for error however. Linear re-

gression tends to fit the endpoints better than the points closer to the center of the domain.

Therefore the residuals need to be “standardized” or “studentized”, so that their distribu-

tion approximates that of the errors. The “Scale-Location” graph uses the standardized

residuals and is used to judge homoscedasticity.

The “Normal Q-Q” plot is used to check the assumption that the random errors are

normally distributed. The “Q” stands for quantile. A Q-Q plot is used to compare two

distributions by plotting the quantiles of one distribution against the quantiles of the other.

If the distributions are similar then the plotted quantiles should fall on the diagonal. In

Figure 61, the quantiles for the standardized residuals are plotted against the same quantiles

for the standard normal distribution. The observations for the model for hardmask etch 1

lie on the diagonal. Thus it can be concluded that the standardized residuals are normally

distributed and therefore the assumption that error is normally distributed is valid.

The “Residuals vs Leverage” plot is used to detect outlying data points that have a

strong effect on the regression model. Leverage is a measure of the influence that an ob-

servation has on the least squares line. If a point with high leverage is far from the general

trend of the data (outlier), then the cause for the outlying nature of such a data point should

be investigated, and one must consider removing this data point from the analysis. If this

cause is something like a measurement error then the point should be removed from the

analysis because of the large influence it has on the results. The three points with high

leverage that are outliers are labeled “293”, “295”, “299” in the figure. As seen from the

solid red line, that remains relatively flat, the effects of these outliers cancel each other out

and no points need to be removed.
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Figure 61: Residual plots for diagnosis of regression for hardmask etch 1
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Table 2: Comparison of the average prediction errors for the linear regression and neural
network models.

Percentage Error
Linear regression Neural network

x-direction CD y-direction CD x-direction CD y-direction CD
Hardmask etch
1

2.48 % 1.27 %

Hardmask etch
2

4.92 % 11.36 % 4.42 % 3.06%

High-aspect-
ratio etch

3.15 % 4.54 % 3.50 % 4.41%

7.3.1.3 Comparison to neural network predictions

The prediction errors for the linear regression model is compared to those for the neural

network models in Figure 62. The errors for each model are calculated using the formula

Percentage prediction error =

∣∣∣∣∣Observed value −Model predicted value
Observed value

∣∣∣∣∣ ∗ 100%. (13)

The x-axis is the percentage prediction error. The pink curve represents the density

of the distribution for prediction errors of the linear regression model. The blue curve

represents the density distribution of the prediction errors for the neural net model. The

blue curve is more concentrated towards the left of the graph than the pink one, indicating

that the prediction errors for the neural network models tended to be smaller than those for

the linear model. The figure was created with the ggplot2 package [66].

The average prediction errors for the linear regression models and the neural network

models for each of the fabrication processes are presented in Table 2. The neural network

model has a smaller average prediction error (1.27 %) than the linear regression model

(2.48 %) for hardmask etch 1.

7.3.2 Hardmask etch 2

Hardmask etch 2 has two outputs. Two linear regression models were created, one to

predict the values of each of the process outputs.
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Figure 62: Comparison of the residuals for regression and neural network models of hard-
mask etch 1.
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7.3.2.1 Regression summaries

The regression summary for the model created to predict values of x-direction CD after

hardmask etch 2 is presented below.

> summary(model_CD1)

Call:

lm(formula = xCDhrdmskout ˜ ., data = train_CD1)

Residuals:

Min 1Q Median 3Q Max

-126.570 -16.935 0.634 15.761 101.838

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.595e+02 7.097e+01 3.656 0.000291 ***

x 2.264e-08 1.988e-08 1.139 0.255377

y 2.066e-08 1.993e-08 1.037 0.300435

yCDphoto 1.920e-01 4.778e-02 4.017 7.06e-05 ***

xCDhrdmskin 5.120e-01 4.672e-02 10.957 < 2e-16 ***

BARCt -4.224e+00 1.504e+00 -2.809 0.005218 **

DARCt -2.390e+01 1.010e+00 -23.653 < 2e-16 ***

HBr 1.058e+01 5.666e-01 18.679 < 2e-16 ***

CH2F2 9.208e+00 8.479e-01 10.860 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 29.41 on 394 degrees of freedom

Multiple R-squared: 0.657, Adjusted R-squared: 0.6501

F-statistic: 94.35 on 8 and 394 DF, p-value: < 2.2e-16

All of the inputs, except for the x-direction CD and y-direction CD, are significant at a level

of α = 0.01.

The regression summary for the model created to predict values of y-direction CD after

hardmask etch 2 is presented below.

> summary(model_CD2)

Call:

lm(formula = yCDhrdmsk ˜ ., data = train_CD2)
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Residuals:

Min 1Q Median 3Q Max

-98.208 -12.998 -0.384 14.993 70.397

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.185e+02 5.518e+01 5.772 1.59e-08 ***

x 1.423e-08 1.546e-08 0.921 0.357726

y -5.409e-08 1.549e-08 -3.491 0.000535 ***

yCDphoto 3.722e-01 3.715e-02 10.019 < 2e-16 ***

xCDhrdmskin 4.050e-01 3.633e-02 11.149 < 2e-16 ***

BARCt -1.386e+01 1.169e+00 -11.856 < 2e-16 ***

DARCt -7.233e+00 7.855e-01 -9.208 < 2e-16 ***

HBr 6.648e+00 4.406e-01 15.089 < 2e-16 ***

CH2F2 4.251e+00 6.593e-01 6.448 3.32e-10 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 22.87 on 394 degrees of freedom

Multiple R-squared: 0.6457, Adjusted R-squared: 0.6385

F-statistic: 89.74 on 8 and 394 DF, p-value: < 2.2e-16

All of the inputs, except for the x-direction CD, are significant at a level of α = 0.001.

7.3.2.2 Regression diagnostics

The regression diagnostics for the model made to predict x-direction CD after hardmask

etch 2 are presented in Figure 63. There data is more concentrated near the higher end

of the range of fitted values, as can be seen in the “Residuals vs Fitted” graphs and the

“Scale-Location” graphs. The deviations from the dashed line in the “Normal Q-Q” graph

suggest that the distribution of residuals has wider tails than a normal distribution. The

“Scale-Location” graph shows that the residuals are larger for fitted values at the lower end

of the scale. This violates the assumption of homoscedasticity and is worth investigating.
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Figure 63: Residual plots for diagnosis of regression model for x-direction CD for hard-

mask etch 2.

Figure 64. shows the distribution of the x-direction CDs in the training dataset for the

model. The data from index value 122 to 132, the points in red, fall outside the range of

the remaining data. The deviation is the result of mis-processing, probably over-etch, of a

wafer in the training dataset. The reason for this is not evident in the training data. Perhaps

there was an issue with the process chamber. This explains why the “Scale-Location” graph

in Figure 63 looks like it does. One can consider removing this mis-processed wafer’s data
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from the training dataset before building the linear regression model.
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Figure 64: Distribution of the values of x-direction CD in the training dataset.

The regression diagnostics for the model made to predict y-direction CD after hard-

mask etch 2 are presented in Figure 65. This set of regression diagnostics is immediately

perceived as more favorable than those for x-direction CD. The “Residuals vs Fitted” graph

is a rectangular cloud around the Residuals = 0 line, and the data in the “Normal Q-Q” plot

remains mostly on the normal line.
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Figure 65: Residual plots for diagnosis of regression model for y-direction CD for hard-

mask etch 2.

7.3.2.3 Comparison to neural network predictions

The neural network models had better prediction accuracy than the linear regression models

as evidenced in Figure 66. For both x-direction and y-direction CDs, the blue curve is

higher than the pink on the left of the graph, indicating that percentage prediction error

tended to be smaller for the neural network models.
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Figure 66: Comparison of the distributions of the residuals for regression and neural net-

work models for the hardmask etch 2

7.3.3 High-aspect-ratio etch

The high-aspect-ratio etch also has two outputs, x-direction CD and y-direction CD. Sepa-

rate linear regression models were created to predict each output.

7.3.3.1 Regression summaries

The regression summary for the model created to predict values of x-direction CD after

high-aspect-ratio etch is presented below.

> summary(lm11)

Call:

lm(formula = xCDox ˜ ., data = tr11)

Residuals:

Min 1Q Median 3Q Max

-0.0071186 -0.0011628 -0.0000062 0.0011437 0.0080069

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 3.514e-02 6.106e-03 5.756 8.80e-09 ***

x 1.039e-06 2.190e-07 4.746 2.10e-06 ***

y 1.425e-06 2.125e-07 6.703 2.13e-11 ***

chamber -1.736e-05 3.412e-06 -5.087 3.70e-07 ***

xCDhrdmsk 1.551e-01 7.113e-03 21.800 < 2e-16 ***

yCDhrdmsk 5.511e-02 4.868e-03 11.320 < 2e-16 ***

ME1O2 -1.362e-04 2.903e-05 -4.693 2.72e-06 ***

X2sourceavg -9.451e-05 3.161e-05 -2.990 0.002791 **

X3sourceavg 1.075e-04 3.091e-05 3.478 0.000508 ***

X3sourcestd -2.309e-04 9.361e-05 -2.466 0.013669 *

X2maginavg -5.326e-03 1.615e-03 -3.299 0.000974 ***

X3maginavg 5.224e-03 1.752e-03 2.981 0.002875 **

X2maginstd -4.758e-03 9.209e-04 -5.166 2.42e-07 ***

X3maginstd -1.203e-02 5.278e-03 -2.279 0.022709 *

X2magoutavg 1.818e-03 2.080e-03 0.874 0.382285

X3magoutavg -1.880e-04 2.038e-03 -0.092 0.926498

X1bias1std -3.112e-06 2.785e-06 -1.117 0.263894

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.001767 on 13171 degrees of freedom

Multiple R-squared: 0.1124, Adjusted R-squared: 0.1113

F-statistic: 104.2 on 16 and 13171 DF, p-value: < 2.2e-16

The regression summary for the model created to predict values of y-direction CD after

high-aspect-ratio etch is presented below.

> summary(lm12)

Call:

lm(formula = yCDox ˜ ., data = tr12)

Residuals:

Min 1Q Median 3Q Max

-0.0170555 -0.0018830 0.0000115 0.0018757 0.0138306

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.482e-02 1.013e-02 1.463 0.143586

x 1.386e-06 3.634e-07 3.815 0.000137 ***

y 1.393e-06 3.528e-07 3.950 7.86e-05 ***

chamber -2.435e-05 5.664e-06 -4.298 1.73e-05 ***

xCDhrdmsk 1.820e-01 1.181e-02 15.417 < 2e-16 ***

yCDhrdmsk 1.735e-01 8.081e-03 21.470 < 2e-16 ***
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ME1O2 -3.196e-05 4.818e-05 -0.663 0.507162

X2sourceavg -1.552e-04 5.246e-05 -2.959 0.003094 **

X3sourceavg 1.911e-04 5.131e-05 3.725 0.000196 ***

X3sourcestd 2.533e-04 1.554e-04 1.630 0.103061

X2maginavg -7.977e-03 2.680e-03 -2.976 0.002924 **

X3maginavg 8.812e-03 2.909e-03 3.030 0.002452 **

X2maginstd -4.394e-03 1.529e-03 -2.874 0.004055 **

X3maginstd -2.649e-02 8.760e-03 -3.023 0.002504 **

X2magoutavg 8.860e-04 3.453e-03 0.257 0.797524

X3magoutavg -5.752e-04 3.383e-03 -0.170 0.865012

X1bias1std -6.091e-06 4.623e-06 -1.318 0.187685

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.002934 on 13171 degrees of freedom

Multiple R-squared: 0.1094, Adjusted R-squared: 0.1083

F-statistic: 101.1 on 16 and 13171 DF, p-value: < 2.2e-16

7.3.3.2 Regression diagnostics

Figure 67 (x-direction) and Figure 68 (y-direction) present the regression diagnostics for

the high-aspect-ratio etch models. There was more data available to create the high-aspect-

ratio models as is evident by how dark the clouds of data points are. For both models

the residuals are normally distributed about 0, satisfying the assumptions of the regression

analysis.
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Figure 67: Residual plots for diagnosis of regression model for x-direction CD for high-

aspect-ratio etch.
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Figure 68: Residual plots for diagnosis of regression model for y-direction CD for high-

aspect-ratio etch.

7.3.3.3 Comparison to neural network predictions

A comparison of the prediction accuracy of the models to those of neural networks is pre-

sented in Figure 69. Once again the pink and blue curves represent the percentage error of

the linear regression models, and neural network models respectively. The graph for Figure

69 (a) shows the one result where the linear regression model error was smaller.

104



0.00

0.05

0.10

0.15

0 5 10 15
Percentage error for x−direction CD

de
ns

ity

Model_type

Linear model

Neural net model

(a) x-direction CD

0.00

0.05

0.10

0.15

0 10 20 30
Percentage error for y−direction CD

de
ns

ity

Model_type

Linear model

Neural net model

(b) y-direction CD

Figure 69: Comparison of the distributions of the percentage prediction error for regression

and neural network models for the high-aspect-ratio etch

A contour plot for the distribution of x-direction CDs across the wafer can be seen in

Figure 70.
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Figure 70: Contour plot of x-direction CDs measured after the high-aspect-ratio etch

Contour plots for the x-direction CDs predicted by the linear regression model and the

neural network model can be seen in Figure 71. In comparing these plots of predicted

distributions to that of of the measured distribution in Figure 70., it is clear that the neural

network model presents a closer visual match. Thus although the average prediction error

is higher for the neural network predictions, it has better captured the way x-direction CD

is distributed across the wafer.
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Figure 71: Contour plots for the x-direction CDs after the hardmask etch as predicted by

the linear regression and neural network models.

7.4 Discussion

The neural network models performed better, in terms of average percentage prediction

error, than the linear regression models. The exception was the model for x-direction CD

after the high-aspect-ratio etch.

It might be possible to bring the linear regression models performance up to the level

of the neural network’s with better feature selection and a thorough investigation of inter-

actions between input variables. With neural networks, however, the creations of sophisti-

cated non-linear models is relatively simple.
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CHAPTER 8

COMPARISON TO SUPPORT-VECTOR-REGRESSION MODELS

8.1 Introduction

Support vector machines (SVM) are a set of models and algorithms that can be used for

both classification and regression. They were first developed by Vapnik in 1963 [67], and

attracted greater interest within the research community in the 1990s. They are considered

by many to be among the best supervised learning algorithms [68]. Thus it is a useful

exercise to compare the performance of the neural network models created in previous

chapters to that of SVMs created using the same data.

The impetus for their creation was the problem of the bias-variance trade-off [69]. Pre-

diction error can be decomposed into a noise component, a bias component, and a variance

component. The best predictor performance is achieved, for a given training dataset, by

balancing the bias and variance components of the prediction error. This is achieved by

balancing the prediction accuracy on the training data and the “capacity” of the predictor.

The concept of “capacity” is central to the study of SVMs. Capacity is the ability of a

learning machine to learn any training dataset without error. For a given dataset, using a

predictor with a large “capacity” reduces the bias component of error because the predic-

tor is more able to capture the complexities of the function from which the training data

is derived. But this also increases the variance component of the error as model predic-

tions become more dependent on the training dataset (over-fitting). Conversely, a predictor

with a small capacity will increase the bias component of error, and reduce the variance

component possibly capturing too little of the peculiarities of the data set (under-fitting).

8.1.1 Support vector regression

Although originally developed for classification tasks, with a particular focus on OCR (op-

tical character recognition) [70], the support vector algorithm has been modified to perform
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regression.

Suppose training data looks like: {(x1, y1), . . . , (xl, yl)} ⊂ X × R, where X ∈ Rd. Thus

the input is a vector of dimension d and the output is a scalar, and there are l observations.

In the simple linear case the function to be parameterized is

f (x) = 〈w, x〉 + b, with w ∈ X and b ∈ R. (14)

The objective/cost function needs to balance the bias and variance components of the error.

This is achieved in two ways. The first is the use of an ε tube. Any prediction that is less

than a distance of ε away from the respective measured value does not affect the parame-

terization of the model, thus preventing overfitting. The second is by minimizing the norm

of w. Thus the parameterization problem can be posed as

minimize
1
2
‖ w ‖2 (15)

subject to |yi − 〈w, xi〉 − b| ≤ ε, (16)

based on the assumption such a function exists. Slack variables ξ, ξ∗ were introduced to the

algorithm in [71], to extend its application to problems where this assumption may not be

true. The parameterization problem then becomes

minimize
1
2
‖ w ‖2 +C

l∑
i=0

(ξi + ξ∗i ) (17)

subject to


yi − 〈w, xi〉 − b ≤ ε + ξi

yi − 〈w, xi〉 − b ≥ ε − ξ∗i

ξi, ξ
∗
i ≥ 0

, (18)

where C is a user manipulated variable to control the bias-variance trade-off.

This is a quadratic programming problem, whereby a quadratic function has several

linear constraints, and for which there exists a foundation of mathematical theory to provide

a solution [70].

Support vector regression can be further extended to solve nonlinear problems using

the ‘kernel trick.’ Kernel functions are used so that the algorithm can operate in very
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high dimensional, possibly infinite dimensional, spaces without having to actually map the

training vectors to that space. The RBF kernel was used in this work:

e−γ|x−x′ |2 (19)

where γ is another user manipulated parameter.

8.2 Method

Support vector regression models were made for the two hardmask etches and the high-

aspect-ratio etch. These models were created using the same training data that was used to

train the neural network models. The prediction abilities of the support vector regression

models were tested using the same testing data that was used to test the neural network

models. This allowed an apples-to-apples comparison of the prediction abilities, as judged

by the prediction error, of the two types of models.

The inputs and outputs to the support vector regression models for hardmask etch 1,

hardmask etch 2, and the high-aspect-ratio etch were chosen to be the same as those for

the neural network models already created. The models were created and trained using the

Python library scikit-learn [72]. Hyper-parameters C and γ are selected via a grid search.

8.3 Results
8.3.1 Hardmask etch 1

The graph of residuals versus fitted values is presented in Figure 72. The residuals appear

to be normally distributed around zero across the range of fitted values. Therefore this does

not negate the assumption of homoscedasticity.

Contour plots for measured and support-vector-machine predicted data are presented in

Figure 73. One can see that the contour plots are very similar. There is an area of low CD,

represented by blue, on the left half of the wafer and an area of high CD in red on the lower

right part of the wafer.

The contour plot for absolute percentage prediction error is presented in Figure 74. It
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Figure 72: Plot of the residuals versus the fitted values for the dependent variable, for each
of the data points in the training dataset.
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Figure 73: Comparison of measured (left) and predicted (right) output for x-direction CD
in the hardmask. The x-axis and y-axis represent wafer location in mm.
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Figure 74: Contour plot for absolute percentage error of the support-vector-regression pre-
dictions.

can be seen that most predictions had errors of less than 5%. Figure 75 presents a plot of the

densities of absolute percentage prediction errors for both the neural network model and

the support vector regression model created for hardmask etch 1. The pink curve represents

neural network error and the blue the support vector regression error. It can be seen that in

this instance the neural network outperformed the support vector machine as its prediction

error is more concentrated near zero.

8.3.2 Hardmask etch 2

The graph of residuals versus fitted values for x-direction CD for hardmask etch 2 is pre-

sented in Figure 76. The model did a good job of predicting the many outliers on the lower

end of the range of fitted values. The variance of the residuals does seem to be slightly

larger when normalized x-direction CD is 0. This might indicate a slight bias in the model.

This can be corrected by increasing the γ hyper-parameter [73].

Contour plots for measured and support-vector-machine predicted data for x-direction

CD are presented in Figure 77. Again, it can be seen that the contour plots are very similar,

with areas of high CD at the center and bottom of the wafer, and the lower CDs spread
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Figure 75: Plot of the densities of absolute percentage prediction errors for both the neural
network model and the support vector regression model created for hardmask etch 1.
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Figure 76: Plot of the residuals versus the fitted values for the dependent variable, for each
of the data points in the training dataset.
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around them. This indicates that the support vector machine was able to accurately model

the uniformity of CD across wafer.
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Figure 77: Comparison of measured (left) and predicted (right) output for x-direction CD
in the hardmask. The x-axis and y-axis represent wafer location in mm.

The contour plot for absolute percentage prediction error for x-direction CD in Figure

78. The error is below 10% across the wafer and below 5% for about three-fourths of the

wafer.

Figure 79 presents a plot of the densities of absolute percentage prediction errors for

both the neural network model and the support vector regression model created for x-

direction CD for hardmask etch 2. The pink curve represents neural network error and

the blue the support vector regression error. It can be seen that in this instance the support

vector machine outperformed the neural network as its prediction error is more concen-

trated near zero.

The graph of residuals versus fitted values for y-direction CD is presented in Figure 80.

The variance of the residuals seems higher for fitted values near 1.

Contour plots for measured and support-vector-machine predicted data for y-direction

CD are presented in Figure 81. Again it can be seen that the contour plots are very similar,

with areas of high CD at the center and bottom of the wafer, and the lower CDs spread

around them. This indicates that the support vector machine was able to accurately model
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Figure 78: Contour plot for absolute percentage error of the support-vector-regression pre-
dictions.

the uniformity of CD across wafer.

The contour plot for absolute percentage prediction error for y-direction CD is pre-

sented in Figure 82. The prediction errors remained below 4 % across the wafer. Figure

83 presents a plot of the densities of absolute percentage prediction errors for both the neu-

ral network model and the support vector regression model created for y-direction CD for

hardmask etch 2. The pink curve represents neural network error, and the blue the support

vector regression error. It can be seen that in this instance too, the support vector machine

outperformed the neural network as its prediction error is more concentrated near zero.

Table 3 provides a comparison of the mean absolute prediction error for the neural

network and support vector regression models created.

8.3.3 High-aspect-ratio etch

The graph of residuals versus fitted values for x-direction CD for high-aspect-ratio etch is

presented in Figure 84. The variance of the residuals remains constant through the range

of fitted values, as is witnessed by rectangular cloud of observations.

Contour plots for measured and support-vector-machine predicted data for x-direction
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Figure 79: Plot of the densities of absolute percentage prediction errors for both the neural
network model and the support vector regression model created for x-direction CD for
hardmask etch 2.

Table 3: Comparison of the mean absolute percentage prediction errors for neural network
and support vector regression models.

Neural network Support vector regression
Hardmask etch 1 1.2787% 1.9904%
Hardmask etch 2 x-CD 4.4235% 3.5695%
Hardmask etch 2 y-CD 3.0641% 2.2015%
HAR etch x-CD 3.5016% 3.0628%
HAR etch y-CD 4.4060% 4.3850%
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Figure 80: Plot of the residuals versus the fitted values for the dependent variable, for each
of the data points in the training dataset.
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Figure 81: Comparison of measured (left) and predicted (right) output for y-direction CD
in the hardmask. The x-axis and y-axis represent wafer location in mm.
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Figure 82: Contour plot for absolute percentage error of the support-vector-regression pre-
dictions.

CD for the high-aspect-ratio etch are presented in Figure 85. The plots are not as similar in

this instance as they were for the models presented earlier in this chapter.

Figure 86 presents a plot of the densities of absolute percentage prediction errors for

both the neural network model and the support vector regression model created for x-

direction CD for the high-aspect-ratio etch. The pink curve represents neural network error

and the blue the support vector regression error. It can be seen that in this instance too,

the support vector machine outperformed the neural network as its prediction error is more

concentrated near zero.

The graph of residuals versus fitted values for y-direction CD for high-aspect-ratio etch

is presented in Figure 87. The variance of the residuals remains constant through the range

of fitted values, as is witnessed by rectangular cloud of observations.

Contour plots for measured and support-vector-machine predicted data for y-direction

CD for the high-aspect-ratio etch are presented in Figure 88. Again these plots are not

as similar as for the hardmask etches. There are some similarities between measured and

predicted data however. In both contour plots the lower CDs run along the edge of the
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Figure 83: Plot of the densities of absolute percentage prediction errors for both the neural
network model and the support vector regression model created for y-direction CD for
hardmask etch 2.
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Figure 84: Plot of the residuals versus the fitted values for the dependent variable, for each
of the data points in the training dataset.
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Figure 85: Comparison of measured (left) and predicted (right) output for x-direction CD
in the oxide layer. The x-axis and y-axis represent wafer location in mm.
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Figure 86: Plot of the densities of absolute percentage prediction errors for both the neural
network model and the support vector regression model created for x-direction CD for the
high-aspect-ratio etch.
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Figure 87: Plot of the residuals versus the fitted values for the dependent variable, for each
of the data points in the training dataset.
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wafer and there is an area of lower CD in the center of the wafer.
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Figure 88: Comparison of measured (left) and predicted (right) output for y-direction CD
in the oxide layer. The x-axis and y-axis represent wafer location in mm.

Figure 89 presents a plot of the densities of absolute percentage prediction errors for

both the neural network model and the support vector regression model created for y-

direction CD for the high-aspect-ratio etch. The pink curve represents neural network

error and the blue the support vector regression error. It is ambiguous which model per-

formed better because the neural network error is more concentrated near zero but the mean

absolute percentage error for the neural network is higher.

8.4 Discussion & conclusion

The support vector machine models outperformed the neural network models in terms of

MAPE for four cases out of five. This is not conclusive evidence that support vector ma-

chines are better than neural networks to model semiconductor fabrication processes. There

were differences between the uniformities of measured and SVR predicted CDs for the

high-aspect-ratio etch. It is subjective, but there is more similarity in the uniformities of

the neural network predictions, Figures 57 and 59, and the measured data for this process

than there is for the support vector regression predicted data, Figures 85 and 88.

Both methods involved some level of trial and error in picking training parameters
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Figure 89: Plot of the densities of absolute percentage prediction errors for both the neural
network model and the support vector regression model created for y-direction CD for the
high-aspect-ratio etch.
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for the models. While generally training times were comparable, in certain instances the

SVMs did not converge to a solution in a reasonable amount of time. This can happen

for large datasets, as noted by the authors of the implementation used in this study [74].

Although, training of SVMs always converges to a global minimum, unlike training for

neural networks [69].

One can conclude that support vector machines show promise as a modeling method for

semiconductor fabrication data, and delivered performance comparable to neural networks.

There are also some situations where they might be preferable. In [75] they conclude that

SVM’s performance increases relative to that for neural networks as the size of the dataset

decreases. Therefore SVMs might be a better choice for modeling from smaller datasets.
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CHAPTER 9

CONCLUSION

The aims of this research were to present and explain the use of artificial neural networks

and other machine learning algorithms to model and optimize the complex manufacturing

processes used by a semiconductor manufacturer. Another goal was to do so across their

various fabrication environments and stages of manufacturing, using actual industrial data

that exists in their databases.

A fabrication process like plasma etch may have dozens of controllable inputs (gas

flows, pressures, tempratures, voltages, currents), and require a level of precision measured

in nanometers. At the same time, such a process may not be fully understood by the man-

ufacturer because the mathematic or scientific theory are not yet existent. Manufacturers

arrive at a recipe (a list of settings for the dozens of process inputs) through tweaking and

experimentation. Given the complexities being dealt with, one can see that process de-

velopment requires extensive time and effort on the part of the manufacturer. Given the

cost of materials used and the cost of the manufacturing equipment process development

is expensive as well. Given the rate of obsolescence for semiconductor products, manufac-

turers are very keen to shorten their process development times. How does a manufacturer

increase actionable information about a process, decrease the development time for that

same process, and do so without spending more resources on its development?

One way to do this is too extract more value from the resources available. A large, grow-

ing, and largely underutilized resource for manufacturers is the fab database. Advances in

machine learning provide manufacturers a toolbox to make better use of this resource. A

notable aspect of this research is the use of actual manufacturing datasets, as opposed to

experimentally generated ones, that existed in the fab databases as a result of the normal

operation of the facility.
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The literature provides examples of the use of neural networks to perform process char-

acterization, recipe generation, real-time process control, and virtual metrology. However,

the literature has not examined how the usefulness of neural networks might change over

the different stages of production for a semiconductor product, given how the characteristics

of the datasets change over these different stages. Furthermore, there is little investigation

of how these activities affect yield, as this is often impossible when studying a process that

is not part of a set of manufacturing steps for a semiconductor product. Therefore two

other notable aspects of this research are that it does consider the changing characteristics

of the datasets across fabs and manufacturing stages, and that it does investigate how the

use of machine learning algorithms to model and optimize upstream processes affect yield

metrics.

Three processes were modeled in a R&D fab. The first two created a hardmask that is

used during the third: a high-aspect-ratio etch. Their combined effect is to create an array of

high-aspect-ratio cylindrical holes in an oxide layer. The separation between holes in the x

and y direction were the dimensions of interest and to be controlled. Neural networks were

able to accurately model each of these processes, with mean absolute prediction errors

(MAPE) remaining below 5% for all models. Given the low yields and the difficulty of

attributing yield issues to upstream processes that are characteristic of R&D fabs, the neural

network models to predict yield metrics from upstream process input did not perform as

well. A sensitivity analysis provided insight about the effects of varying individual process

inputs at an important point in the input space, like the process recipe of record.

The high-aspect-ratio etch was modeled during the ramping stage. A variety of feature

selection algorithms were used to search for the best model inputs. This included the first

use of the minimum redundancy maximum relevance (mRMR) algorithm with semicon-

ductor manufacturing data to the author’s knowledge. Stepwise regression produced the

dataset that resulted in the models with the lowest MAPE of 0.6473%. The coefficient of

determination was 0.5270. Ideally this would be higher.
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A genetic algorithm was used to generate a new process recipe. The genetic algorithm

converged very quickly and definitively to a solution, which was impressive given the di-

mensionality of the solution space and the heuristic nature of the algorithm.

Neural network models were also made for a more mature high-aspect-ratio etch pro-

cess in the manufacturing fab. There was a lot more product and hence a lot more data to

model with. However, there was less variation in the process settings which was also re-

flected in the modeling dataset. It was still possible to build accurate models of the process,

with MAPE remaining below 5%.

Another result of a mature process and product was that yield issues were ascribable

to upstream processes. This allowed one to find dataset where there was a causal link

between the inputs to the high-aspect-ratio etch and various yield metrics. Thus a models of

the relationship between process inputs and yield could be built. These had larger MAPEs

than the models of post-process metrology. Perhaps this is to be expected given the distance

between the process and final yield measurements. However the model captured the across-

wafer distribution of the yield metrics very well.

A chamber matching exercise was performed as a real world test for these successes

in neural network modeling and recipe generation with genetic algorithms. Manufactur-

ers typically operate several reaction chambers in parallel to achieve their desired product

volumes. There will be performance variation across chambers even if they are identical

(manufacturer, model, configuration) and running the same recipe. This is undesirable and

can affect product performance and reliability. A neural network was used to model the

etch process of a reaction chamber whose performance was outlying. Then a genetic algo-

rithm was used to search for a recipe that brought performance back in line. This recipe

was then tested on an actual manufacturing line, and it improved both post-process and

yield metrics for the outlying chamber. Both modeling and optimization methods can be

automated and work on a time scale acceptable for run-to-run control.

Lastly, the performances of the neural network models were compared to those of more
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traditional and more modern modeling methods. The more former was linear regression

and the result of this first comparison was clear. The neural networks outperformed linear

regression.

The comparison to support vector regression is more ambiguous, however. SVR out-

performed the neural networks in terms of MAPE for four out of the five models created.

However, the neural networks were better able to model the CD distributions for the high-

aspect-ratio etch.

Thus this work has demonstrated that neural networks can be used to model the plasma

etch process across a manufacturer’s different fabs and stages of manufacturing using pre-

existing data (no added costs for experimentation), and can bring improvements to the etch

process and yield when used in conjunction with genetic algorithms.

9.1 Future work

Performing this research brought to the attention many avenues of inquiry that are worthy

of future research. Some of these are presented in this section.

One would be modeling how the inputs to an upstream process affect yield, especially in

an R&D fab where yields are low. This is even more true when the effects are not reflected

in the post-process metrology. Could these machine learning tools unearth information

about effects a process has after several subsequent processes have been performed?

Investigating what metrology could be added or adjusted for the high-aspect-ratio etch

during the ramping stage so that the dataset could produce models with higher coefficients

of determination is also interesting. Or more generally, an investigation of how machine

learning could be used to determine the types and amounts of metrology to perform could

be fruitful. It is costly to store the amounts of data generated by metrology, and the types

of information collected for a process are not constant. Could the models help in deciding

what information to collect?

Incorporating the models into an automatic controller for a process, and comparing
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performance to what is currently employed would be an area interesting to manufacturers.

Performing a quantitative analysis of the time and cost savings, and the revenue in-

creases that could be achieved if the modeling and optimization methods are incorporated

into the manufacturing line is also very interesting. Comparing this to the investment that

would be needed perform such an incorporation would provide information about the mon-

etary value of these tools to a manufacturer.

And lastly, SVR showed promise as a modeling method with semiconductor fabrication

data. Further exploring their use with such data, and comparing it to the use of neural

networks, would be an interesting area for future work.
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