FINAL REPORT

PROJECT NO. 194

THE NORMAL COMPONENT OF THE INDUCED VELOCITY IN THE VICINITY OF A LIFTING ROTOR AND SOME EXAMPLES OF ITS APPLICATION

By
Walter Castles, Jr. and Jacob Henri De Leeuw
-0-0-0-0 =
CONTRACT NO. NAW - 6124
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

$=0-0-0-0=$

APRIL 1952

FINAL REPORT
PROJECT NO。 194

THE NORMAL COMPONENT OF THE INDUCED VELOCITY IN THE VICINITY OF A LIFTING ROTOR AND SOME EXAMFIES OF ITS APPLICATION

By
Walter Castles, Jr . and Jacob Henri De Leeuw

- $0-0-0=0=$

CONTRACT NO. NAW $=6124$
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

$$
=0-0-0 \infty 00
$$

APRII 1952

TABLE OF CONTENTS

Page

SUMMARY \perp
INTRODUCTION. 1
NOTATION. 3
AMALISIS: 6
A. The Velocity Induced by a Vortex Ring 6
B. The Normal Component of the Induced Velocity in the Vicinity of a Lifting Rotor 8
RPSUITS 12
APPLICATION OF RESULIS. 12
A. The Determination of the Mean Value of the Normal Component of the Induced Velocity Over the Front and Back Rotors of a Tandem-Rotor Helicopter 12
Bo The Determination of the Longitudinal Variation of the Normal Component of the Induced Velocity over the Front and Back Rotors of a Tandem-Rotor Helicopter 14
C. The Determination of the Induced Flow Angle at a Horizontal Tailplane. 15
CONOLUDTNG DISCUSSION 16
REPERENCES 19
APPENDIX. 20

LIST OF TABLES

Page
I. NONDIMENSIONAL VALUES OF THE NORRAL COMPONENT OF THE INDUCED VELOCITY IN THE VICINITY OF A VORTEX RING。 21
II. NONDIMENSIONAL VALUES OF THE NORMAL COMPONENT OF THE INDUCED VELOCITY IN THE LONGITUDINAL PLANE OF SYMMETRY OF A LIFTING ROTOR FOR 90° 29
III. NONDIMENSIONAL VALUES OF THE NORMAL COMPONENT OF THE INDUCED VELOCITY ON THE LATERAL AXIS OF A LIFTING ROTOR. 36
LIST OF FIGURES

1. COORDINATES FOR VORTEX RING AND TABLE I. 37
2. NONDIMENSIONAL ROTOR COORDINATES 38
3. GEOMETRY OF WAKE 39
4. ISO INDUCED VEIOCITY LINES FOR $X=0^{\circ}=\tan ^{-1} 0$. 40
5. ISO INDUCED VELOCITY LINES FOR $x=14.0^{\circ}=\tan ^{-1} 1 / 4$ 41
6. ISO INDUCED VELOCITY LINES FOR $x=26.5^{\circ}=\tan ^{-1} 1 / 2$ 42
7. ISO INDUCED VELOCITY LINES FOR $x=45.0^{\circ}=\tan ^{\infty 1} 1$ 43
8. ISO \sim INDUCED VELOCITY LINES FOR $x=63.4^{\circ}=\tan ^{-1} 2$ 4
9. ISO \propto INDUCED VELOCITY LINES FOR $X=76.0^{\circ}=\tan ^{-1} 4$ 45
10. ISO-INDUCED VELOCITY LINES FOR $x=90.0^{\circ}=\tan ^{-1}$ 46
11. ISO \sim INDUCED VELOCITY LINES FOR $x=104.0^{\circ}=\tan ^{\circ 1}-4$ 47
12. ISO INDUCED VELOCITY LINES FOR $x=116.6^{\circ}=\tan ^{\infty 1}-2$ 48
13. INDUCED VELOGITY DISTRIBUTIONS ALONG THE LONGITUDINAL AXIS. 49
14. INDUCED VELOCITY DISTRIBUTIONS ALONG THE LATERAL AXIS 50

Final Report, Project 194

THE NORMAL CONPONENT OF THE INDUCED VELOCITY IN THE VICINITY OF A LIFTING ROTOR
AND SONE EXAMPLES OF ITS APPLICATION

SUMMARY

This paper presents a practical method for computing the approximate values of the normal component of the induced velocity at points in the flow field of a lifting rotor. Tables and graphs of the relative magnitudes of the normal component of the induced velocity are given for selected points in the logitudinal plane of symmetry of the rotor and on the lateral rotor axis. These are presented in the appendix.

A method is also presented for utilizing the tables and graphs to determine the interference induced velocities arising from the second rotor of a tandem or side $\omega \mathrm{bymide}$ rotor helicopter and the induced flow angle at a horizontal tailplane。

INTRODUCTION

This work, sponsored by the National Advisory Committee for Aeronautics and the Georgia Institute of Technology State Engineering Experiment Station, was undertaken in an attempt to obtain a better understanding of the induced flow in the vicinity of a lifting rotor.

Previous investigations, such as those of references 1 and 2g demonstrated that the solution of the integral for the normal component of the induced velocity at the center of the rotor could be obtained in an elementary form provided certain approximations were made as to the distribution of vorticity in the wake. However, the value of the integral for the induced velocity component at an arbitrary point in
the rotor flow field cannot, in general, be expressed in terms of elementary functions. Its numerical evaluation for a specific case presents considerable difficulty.

The junior author, in reference 3 , investigated the feasibility of calculating the induced velocity at arbitrary points in the vicinity of the rotor by an alternative method which consisted of (1) numerically integrating the increments induced by the vortex ring wake elements within a given distance of the point and (2) summing up the effect of the remainder of the wake by an approximate integral. This approach is quite general in that it can be applied to any wake which can be approximated by an assembly of vortex rings. It was found that the method afforded satisfactory accuracy with the expenditure of a ream sonable amount of effort, since the values of the normal induced vew locity component for the isolated rings may be precomputed and tabulated for repeated use.

The scope of the present paper is limited principally to a con sideration of the values of the normal component of the induced vew locity at points in the longitudinal plane of symmetry and within the region likely to be occupied by the second rotor of a tandem-rotor helicopter. In addition, the values of the normal component of the induced velocity were calculated for points on the lateral axis of the tipopath plane over the distance of interest for the case of a helicopter with laterally disposed rotors.

In view of the present lack of experimental evidence as to the actual wake distribution of vorticity, the calculations for the present paper were based on the same assumptions for the wake shape as those
found in references 1 and 2. These assumptions were that the wake vortex distribution consists of a straight eliptic cylinder formed by a uniform, continuous distribution of vortex rings of infinitesimal strength, lying in planes parallel to the tip-path plane and extending downstream to infinity.

NOTATION
$a_{1} \quad$ coefficient of the cosine term of the Fourier series for the blade flapping angle $\beta=a_{0} \infty a_{1} \cos \psi-b_{1} \sin -\ldots$
b_{1} coefficient of the sine component of the flapping angle $C_{T} \quad$ thrust coefficient $\quad T \quad R^{2} R^{4}$
nondimensional shortest distance from a point P to a vortex ring (figure 1) $\sqrt{z^{2}+(x-1)^{2}}$
d_{2} nondimensional largest distance from a point P to a vortex ring (figure 1) $\sqrt{z^{2}+(x+1)^{2}}$
$D_{f} \quad$ drag of the fuselage
$E(\tau)$ complete elliptic integral of the first kind
$K(\tau) \quad$ complete elliptic integral of the second kind
r nondimensional radius vector in the rotor xy plane
$\mathbb{F} \quad$ radius of vortex ring radius of the rotor
$R_{P} \quad$ radial distance of a point P from the axis of a vortex ring (figure 1)
v normal component of the induced velocity at the center of the rotor
$V_{r} \quad$ radial component of the velocity induced at a point P by a vortex ring

Final Report, Project 194

v_{Z} axial component of the velocity induced at a point P by a vortex ring

V velocity of helicopter along flight path
V_{i} normal component of the velocity induced at a point P by the whole wake
ΔV_{i} increment of the normal component of the velocity induced at a point P by that portion of the wake which is beyond the range of table I
w slope of the longitudinal variation of the nondimensional in duced velocity in the plane of the rotor

W gross weight of the helicopter

X nondimensional radial distance of a point P from the axis of a vortex ring $\left(x=R_{p} / R\right)$, (figure 1)
$X^{8}, Y^{\prime}, Z^{\prime}$ nondimensional coordinates of a point P with respect to rotor axes (figure 2)
$X, Y, Z \quad$ rotor axes (figure 3)
y slope of the lateral variation of the nondimensional induced velocity in the plane of the rotor nondimensional distance of a point P from the plane of a vortex ring, positive in the direction of $v_{z}\left(z=Z_{P} / R\right)$, (figure 1)
Z_{P} distance of a point P from the plane of a vortex ring
$\infty \quad$ angle of attack of the plane of zero feathering
$\propto_{i} \quad$ induced angle of attack
$\propto_{f} \quad$ fuselage angle of attack
$\propto_{v} \quad$ angle of attack of the tipopath plane

ANALYSIS

A。 The Velocity Induced by a Vortex Ring

It is shown in reference 4 that the stream function at a point P (figure 1) in the flow field of a vortex ring of strength Γ and radius R may be expressed as

$$
\begin{equation*}
\psi=\infty \frac{\Gamma R}{2 \pi}\left(d_{1}+d_{2}\right)[K(\tau)-E(\tau)] \tag{1}
\end{equation*}
$$

where R is the radius of the vortex ring, $d_{2} R$ and $d_{2} R$ are the least and greatest distances of the point P to the vortex ring,

$$
\begin{equation*}
\tau=\frac{d_{2}-d_{1}}{d_{2}+d_{1}} \tag{2}
\end{equation*}
$$

and $K(\tau)$ and $E(\tau)$ are the complete elliptic integrals of the first and second kinds, respectively.

The flow field of a vortex ring is axially symmetric and thus the axial and radial velocity components, ∇_{z} and v_{r}, at a point P, having axial distance Z_{P} from the plane of the vortex ring and a radial distance R_{P} from the axis of symmetry, are given by

$$
\begin{equation*}
v_{z}=-\frac{1}{R_{P}} \frac{d \psi}{d R_{P}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{r}=\frac{1}{R_{P}} \frac{d \psi}{d Z} \tag{4}
\end{equation*}
$$

It is shown in reference 3 that equations 3 and 4 may be ex pressed as
and

$$
\begin{align*}
& \mathrm{v}_{\mathrm{z}}=\frac{\Gamma}{2 \pi \times R}(\mathrm{AB}+\mathrm{CDF}) \tag{5}\\
& \mathrm{v}_{\mathrm{r}}=\frac{-\Gamma}{2 \pi \times R}\left(\mathrm{AB}^{\mathrm{y}}+\mathrm{CDF}{ }^{1}\right) \tag{6}
\end{align*}
$$

where

$$
\begin{align*}
& A=K(\tau)-E(\tau) \tag{7}\\
& B=\frac{x-1}{d_{1}}+\frac{x+1}{d_{2}} \tag{8}\\
& C=d_{1}+d_{2} \tag{9}\\
& D=\frac{\tau E(\tau)}{1-\tau^{2}} \tag{10}\\
& F=1 \infty \frac{\left(1+x^{2}+z^{2}\right)-d_{1} d_{2}}{2 x^{2}}=\frac{(1+x) d_{1}^{2}+(1-x) d_{2}^{2}}{2 x d_{1} d_{2}} \tag{11}\\
& B^{\prime}=z\left[\frac{1}{d_{1}}+\frac{1}{d_{2}}\right] \tag{12}\\
& F^{\prime}=\frac{z}{x}\left[1-\frac{1+x^{2}+z^{2}}{d_{1} d_{2}}\right] \tag{13}\\
& d_{1}=\sqrt{z^{2}+(x-1)^{2}} \tag{14}\\
& d_{2}=\sqrt{z^{2}+(x+1)^{2}} \tag{15}
\end{align*}
$$

and $\quad x=R_{P} / R=$ nondimensional radial distance of P from axis of vortex rings

$$
\begin{aligned}
z=\mathbb{Z}_{\mathrm{P}} / R= & \text { nondimensional distance of } P \text { from plane of vortex } \\
& \text { ring, taken positive in direction of } v_{z} \text { on ring } \\
& \text { axis. }
\end{aligned}
$$

The values of v_{z} and v_{r} given by equations 5 and 6 become indetermio nate for points on the vortex ring axis where $x=0$ 。 In this case, it follows from the symmetry of the flow that the radial component of induced velocity is zero, and the axial component of induced velocity is shown in reference 5 to be

$$
\begin{equation*}
\left(v_{z}\right)_{x=0}=\frac{-\Gamma}{2 R}\left[\frac{1}{\left(1+z^{2}\right)^{3 / 2}}\right] \tag{16}
\end{equation*}
$$

Numerical values of $\frac{v_{z} R}{\Gamma}$, which is a nondimensional factor expressing the normal component of the induced velocity, v_{z}, in the vicinity of a vortex ring, are given in table $I_{\text {。 }}$. The table includes a range of nondimensional axial distances of $-4.2 \leqq z \leqq 4.2$, and nondimensional radial distances of $0 \leqq x \leqq 500$. The increments of z at which the values of $\frac{v_{z} R}{\Gamma}$ are given are suitable for numerical integration by Simpson's rule. The tabulated values in the underlined columns were obtained by calculation; with the exception of those points which are close to the circumference of the vortex ring, they are accurate to four places. The remainder of the values in table I were obtained by interpolation.
B. The Normal Component of the Induced Velocity in the Vicinity of a

Lifting Rotor
It was assumed in this report, as in references 1 and 2, that the rotor wake vortex distribution consists of a straight elliptic cylinder formed by a uniform distribution of an infinite number of vortex rings of infinitesimal strength, lying in planes parallel to the tip-path plane and extending downstream to infinity. The above-described vortex distribution is equivalent to a vortex sheet of uniform finite strength per unit length, $\mathrm{d} \Gamma / \mathrm{d} Z$, measured in the Z direction. This sheet forms a straight elliptic cylinder coinciding with the boundary of the wake。

Within the limitations of the initial assumptions, it may be shown from the results of references 1 and 2 that

$$
\begin{equation*}
\frac{d T}{d Z}=\frac{\Omega R C_{T}}{\lambda_{V}\left(1-\frac{3}{2} \mu_{V}^{2}\right)} \approx \frac{\Omega R C_{T}}{\lambda\left(1-\frac{3}{2} \mu^{2}\right)} \tag{17}
\end{equation*}
$$

where the subscript v denotes values with respect to tip-path plane coordinates.

The increment of the normal component of velocity at a point P in the vicinity of the rotor, induced by the wake vortex rings within the distance from P covered by table I, may thus be found by graphical or numerical integration. This increment constitutes about 95 per cent of the total value of the normal component at the center of the rotor and a large part of the total value for all points within the region considered in this paper.

The contribution of the vortex rings beyond the range of table I to the induced velocity at P may thus be summed, with small error in the final result, by an approximate expression which is integrable.

The value of the velocity potential $\Delta \phi_{\rho}$ at P due to a closed vortex element of strength Γ is shown in reference 6 to be

$$
\begin{equation*}
\Delta \phi_{p}=\frac{\Gamma}{4 \pi} \omega \tag{18}
\end{equation*}
$$

where $\omega=$ solid angle subtended at P by the closed vortex element.
It is a good approximation for those wake vortex rings at distances from P beyond the range of table I that the subtended solid angle at P is equal to three times that volume cut off the cone, determined by P and the ring, by a plane which is parallel to the plane of the ring and which is located a unit distance from P. It follows that

$$
\begin{equation*}
\Delta \phi_{p} \approx \frac{1}{4} \frac{d \Gamma}{d z} \frac{z x^{2} R \mathrm{~d} z}{\left(z^{2}+x^{2}\right)^{3 / 2}} \tag{19}
\end{equation*}
$$

Consequently, the increment to the normal component of velocity induced at P by that portion of the wake extending from the limit of table I_{s} at

Final Report, Project 194

$z=z_{1}$, to $z=\infty$ may be obtained from the integral

$$
\begin{equation*}
\Delta V_{1}=\frac{1}{\pi} \frac{\partial \phi_{p}}{\partial z}=\frac{\partial}{\partial z} \int_{z_{1}}^{\frac{1}{4}} \frac{d \Gamma}{d z} \frac{z x^{2} d z}{\left(z^{2}+x^{2}\right)^{3 / 2}} \tag{20}
\end{equation*}
$$

It is shown in reference 3 that equation 20 may be integrated to obtain the value of ΔV_{i} at a point P having coordinates X^{\prime}, Y^{8}, and z^{\prime} from the center of the rotor, and that the result is

$$
\begin{equation*}
\Delta \nabla_{i}=\frac{1}{2} \frac{d \Gamma}{d Z}\left[\left(\frac{2 \sqrt{c}}{q} \infty \frac{2 c z_{2}+b}{q \sqrt{K}}\right)\left(1-\frac{4 a c+b^{2}}{c q}\right)+\frac{\left(b^{2}-2 a c\right) z_{2}+a b}{c q K^{3 / 2}}\right] \tag{21}
\end{equation*}
$$

where $a=\left(x^{i} \infty z^{1} \tan \chi\right)^{2}+y^{{ }^{8}}$

$$
\begin{align*}
& \mathrm{b}=-2 \mathrm{x}^{8} \tan x \tag{23}\\
& \mathrm{c}=1+\tan ^{2} x \tag{24}\\
& \mathrm{q}=4 \mathrm{ac}-\mathrm{b}^{2}
\end{align*}
$$

$$
\begin{equation*}
K=a+b z_{c}+c z_{2}{ }^{2} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{2}=z_{1} \infty z^{\prime} \tag{27}
\end{equation*}
$$

For the point $P(0,0,0)$ the value of ΔV_{i} given by equation 21 becomes indeterminate. It is possible, however, to substitute the zero coordinates in the equation before integrating. Doing so yields

$$
\begin{equation*}
\left(\Delta V_{i}\right)_{O_{2} O_{2} O_{2}}==\frac{1}{8 z_{1}^{2}} \frac{d \Gamma}{d Z} \cos ^{3} x\left(3 \cos ^{2} x-1\right) \tag{28}
\end{equation*}
$$

The normal component of the induced velocity at any point $P\left(x^{p}, y^{p}, z^{p}\right)$ may thus be found in terms of $d \Gamma / d Z$ by adding the increment obtained from the numerical integration of the values induced by the

Final Report, Project 194

wake vortex rings within the range covered by table I to ΔV_{i}, obtained from equation 21 or 28 .

It may be seen from figure 3 that, for $\chi<90^{\circ}$, or $\lambda_{\nabla}=\lambda \cos a_{1}+$ $\mu \sin a_{1}<0$ or negative,

$$
\begin{equation*}
x=\tan ^{-1}\left(\frac{-\mu_{v}}{\lambda_{v}}\right)=\tan ^{-1}\left(\frac{-\mu}{\lambda}\right)+a_{1} \tag{29}
\end{equation*}
$$

and, for $\chi>90^{\circ}$, or $\lambda_{v}=\lambda \cos a_{1}+\mu \sin a_{1}>0$ or positive,

$$
\begin{equation*}
x=\cot ^{-1}\left(\frac{-\mu_{v}}{\lambda_{v}}\right)=\cot ^{-1}\left(\frac{-\mu}{\lambda}\right)-a_{1} \tag{30}
\end{equation*}
$$

In the above equations a_{1} is the coefficient of the cosine term of the Fourier series for the blade flapping angle

$$
\beta=a_{0}-a_{1} \cos \psi-b_{1} \sin \psi-\ldots
$$

where β is measured from the plane of zero feathering.
For $\chi=90^{\circ}$, equation 21 may be used by replacing $\mathrm{d} \Gamma / \mathrm{dZ}$ by its equivalent $(\mathrm{d} \Gamma / \mathrm{dX}) \tan X$, where, for $X=90^{\circ}$,

$$
\begin{equation*}
\frac{\mathrm{d} \Gamma}{\mathrm{dX}}=-\frac{\Omega R C_{T}}{\mu_{\mathrm{V}}\left(1-\frac{3}{2} \mu_{V}^{2}\right)} \approx=\frac{\Omega R C_{T}}{\mu\left(1-\frac{3}{2} \mu^{2}\right)} \tag{31}
\end{equation*}
$$

RESULTS
The results are presented in the form of tables and graphs of the ratio of the normal component of the induner velocity, V_{i}, at any point $P\left(\beta_{F}, X / R\right.$ or $\left.\beta_{P}, Y / R\right)$, as in Figure 3 , to the normal component of the inco duced velocity v at the center of the rotor. It is shown in reference 2 that

$$
\begin{equation*}
\mathrm{v} \approx \frac{\frac{1}{2} \Omega R C_{T}}{\left(1-\frac{3}{2} \mu_{V}^{2}\right) \sqrt{\lambda_{V}^{2}+\mu_{V}^{2}}} \approx \frac{\frac{1}{2} \Omega R C_{T}}{\left(1-\mu^{2}\right) \sqrt{\lambda^{2}+\mu^{2}}} \tag{32}
\end{equation*}
$$

Consequently, the value of V_{i} at P may be easily computed from the values of V_{i} / v in the tables and graphs.

Table II gives the values of V_{i} / v for $-3.2 \leqq x / R \leqq 3.2$ and $\beta_{p}=$ $\tan ^{\infty 1}(\infty 1 / 2,-1 / 4,0,1 / 4, I / 2)$. Table III gives the values of V_{i} / v along the lateral axis of the tipmpath plane. Figures 4 through 12 show the lines of constant values of ∇_{i} / v in the longitudinal plane of symmetry for wake angles having tangents of $0_{2} 1 / 4,1 / 2,1,2,4, \infty,-4$, and -2 . Figures 13 and I_{4} show the variation of V_{i} / v with χ for points on the longitudinal and lateral axes of the tip-path plane.

APPLICATION OF RESULTS

Ao The Determination of the Mean Value of the Normal Component of the Induced Velocity Over the Front and Back Rotors of a Tandem-Rotor

Helicopter

Making the approximation that the mean values of the induced velocity are the values at the centers of the respective rotors, and being given the flight path velocity, climb angle, gross weight, fusem lage drag, fuselage angle of attack, thrust and tip speed of the front and rear rotors and the geometry of the helicopter, the mean values of the induced velocities may be found as follows:

The angles of attack, α_{v}, of the tipmpath planes of the front and rear rotors are very nearly

$$
\begin{equation*}
\alpha_{v}=\phi_{c}-\frac{D_{f} \cos \phi_{c}}{W D_{f} \sin \phi_{c}} \tag{33}
\end{equation*}
$$

where $\phi_{c}=$ angle between flight path and horizontal, positive below horizontal,

$$
D_{f}=d r a g \text { of fuselage }
$$

and

$$
\mathrm{W}=\text { gross weight. }
$$

Denote values of the parameters of the front rotor by the subscript F and of the back rotor by the subscript $B_{\text {。 }}$

Then
and

$$
\begin{align*}
& \mu_{V_{F}}=\left(\frac{V}{\Omega R}\right)_{F} \cos \alpha_{V} \tag{34}\\
& \mu_{V_{B}}=\left(\frac{V}{\Omega R}\right)_{B} \cos \alpha_{V} \tag{35}
\end{align*}
$$

As a first approximation, the interference induced velocity at the front rotor due to the thrust of the back rotor may be neglected. Then

$$
\begin{equation*}
\lambda_{v_{F}}=\left(\frac{V}{\Omega R}\right)_{F} \sin \alpha_{v}-\frac{\nabla_{F}}{(\Omega R)_{F}} \tag{36}
\end{equation*}
$$

Where the value of v_{F} is given by equation 32 or, for $\mu_{v_{F}}>0.15$,

$$
\begin{equation*}
\frac{v}{\Omega R} \approx \frac{\frac{1}{2} C_{T}}{\mu_{v}\left(I-\frac{3}{2} \mu_{v}^{2}\right)} \tag{37}
\end{equation*}
$$

The value of χ_{F} may then be obtained from equations 29 or 30 . When $\chi_{s} \alpha_{\mathrm{V}}{ }^{3} \propto_{\mathrm{f}}, \mathrm{v}_{\mathrm{F}}$ and the geometry of the helicopter are known, the position of the center of the rear rotor with respect to the front rotor can be determined. Then the nondimensional velocity, V_{i} / v, induced at the center of the rear rotor, because of the thrust of the front rotor, may be obtained by interpolation from one of figures 4 through 12 for the appropriate value of x_{F}. The approximate value of v_{B} total is then

$$
\begin{equation*}
v_{B} \text { total }=\left(v_{i} / v\right) v_{F}+v_{B} \tag{38}
\end{equation*}
$$

Final Report, Project 194

where V_{B} can be obtained from equations 33 or 37 . The approximate values of $\lambda_{v_{B}}{ }^{\prime} \chi_{B}$ and, thus, the interference induced velocity at the front rotor may be found to evaluate v_{F} total. In general, it will be necessary to iterate v_{B} total for an accurate result, because of the rapid variation of the interference induced velocity at the rear rotor with change in the wake angle of the front rotor and with position of the rear rotor with respect to the tipopath plane of the front rotor.

For a tandemळrotor helicopter, having approximately equally loaded rotors of equal size spaced approximately a rotor diameter apart with small vertical offset and operating in the high speed flight range, it is seen from figures 9 and 10 that

$$
\begin{equation*}
\frac{v_{F} \text { total }}{\Omega R} \approx \frac{.47 \mathrm{C}_{\mathrm{T}}}{\mu_{\mathrm{v}}\left(1-\frac{3}{2} \mu_{\mathrm{V}}{ }^{2}\right)} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{v_{B}^{\text {total }}}{\Omega R} \approx \frac{1.25 C_{T}}{\mu_{v}\left(1-\frac{3}{2} \mu_{v}{ }^{2}\right)} \tag{40}
\end{equation*}
$$

Bo The Determination of the Longitudinal Variation of the Normal
Component of the Induced Velocity over the Front and Back Rotors of a Tandem-Rotor Helicopter

If the normal component V_{i} of the induced velocity at $P(r, \psi)$ be approximated by the expression

$$
\begin{equation*}
\frac{V_{i}}{\Omega R}-\infty \frac{v}{\Omega R}+y r \quad \sin \psi+w r \cos \psi \tag{41}
\end{equation*}
$$

it may be shown from the results given in reference 2 that, for a single rotor,

$$
\begin{equation*}
w \approx-\frac{4}{3}\left[\left(1-1.8, \mu_{v}{ }^{2}\right) \sqrt{1+\left(\frac{\lambda_{v}}{\mu v}\right)^{2}}-\sqrt{\left(\frac{\lambda v}{\mu v}\right)^{2}}\right] \frac{v}{\Omega R} \tag{42}
\end{equation*}
$$

The increments in warising from the second rotor of a tandem-rotor helicopter, to be added to the values given by equation 42 for the front and rear rotors, may be obtained in the general case from the values of V_{i} / v from the figures at $r=0.75$ and $\psi=0$ and π on the respective rotors. Thuss

$$
\Delta w=-\left[\begin{array}{rl}
\left(\frac{V_{i}}{V}\right)_{\psi} & =0 \quad-\left(\frac{V_{i}}{V}\right)_{\psi} \tag{43}\\
\psi=\pi \\
r & =0.75
\end{array} \quad \begin{array}{rl}
& \\
& =0.75
\end{array}\right.
$$

For high speed flight and small overlaps between the rotor disks

$$
\begin{equation*}
\Delta w_{F} \approx \frac{7}{6} \frac{v_{B}}{\Omega /} \tag{4}
\end{equation*}
$$

and, with less accuracy,

$$
\begin{equation*}
\Delta w_{B} \approx \frac{1}{4} \frac{v_{F}}{\bar{\Omega} R} \tag{45}
\end{equation*}
$$

C. The Determination of the Induced Flow Angle at a Horizontal

Tailplane

When the values of $\alpha_{v^{2}} \frac{V}{\Omega \mathrm{~F}^{2}} \lambda$ and α_{f} for the rotor or rotors in question have been determined and when the helicopter flight condition under consideration is known $_{9}$ the geometric position, and thus the values of Z / R and X / R, of the horizontal tailplane may be calculated, and the value or values of V_{i} / v found from the figures. Then the induced angle $\alpha_{i_{\text {tail }}}$ at the tailplane is approximately

$$
\begin{equation*}
\alpha_{i_{t a i l}} \approx-\frac{\left(\frac{V_{i}}{v} v\right)_{F}+\left(\frac{V_{i}}{v} v\right)_{B}}{V \cos \alpha_{f}} \tag{46}
\end{equation*}
$$

Final Report, Project 194

CONCLUDING DISGUSSION

The assumption that the planes of the wake vortex rings remain parallel to the tipmpath plane is the only one of the various initial assumptions as to the wake distribution of vorticity which appears likely to affect the engineering accuracy of these results at the higher flight speeds. It is the opinion of the senior author that the present investigation and that of reference 1 indicate that the planes of the wake vortex rings must be tilted to the rear as they leave the rotor, possibly approaching a tilt angle in the ultimate wake of half the wake angle $\boldsymbol{\chi}$. The quantitative effects of such a tilting of the wake vortex rings may not be large, as the increments of the radial components of the induced velocity introduced because of the tilt of the wake vortex rings will tend to compensate for the decrease in the normal component.

At the center of the rotor, where the values of the induced velocity calculated by the method presented in this report could be compared with the values obtained from the exact integral, the error was in every case less than one per cent. However, for those points in the flow field that lie close to the wake vortex sheet, there are irregularities in the tabulated values of V_{i} / v caused by difficulties with the interpolations in the table of the values of the normal component of the induced velocity for the vortex rings.

In order to construct figures 4 through 14 it was necessary to compute a large number of values of $\mathrm{V}_{\mathrm{i}} / \mathrm{V}$ in addition to those listed in
table II. However, as these additional points were at scattered locations, and consequently of little use for any other purpose, they have been omitted from the Final Report.

Since the wake angles of the rotors of helicopters operating in the upper half of their speed range fall in a narrow band between 80 and 85 degrees, an attempt was made to compute the induced velocity distribution for a wake angle of approximately 82 degrees. These computations proved to be impractical unless a large number of additional values of the induced velocity of the vortex ring, for the region within two tenths of a ring radius from the plane of the ring, were first computed. The additional labor did not appear to be justified because of the approximations involved in the initial assumptions.

It appears from the results of this investigation that the interference induced velocity at the rear rotor of a tandem-rotor helicopter in high-speed flight, due to the thrust of the front rotor, is of the same order of magnitude and of the same sign as the selfinduce velocity. Consequently the interference induced velocity should be taken into account in longitudinal stability calculations and in computing the equilibrium values of the mean blade angle and torque coefficients. The interference induced velocity at the front rotor of a tandem-rotor helicopter in highospeed flight is of the order of seven per cent of the selfeinduced velocity and opposite in sign.

The longitudinal gradient of the interference induced velocities at both rotors of a tandem-rotor helicopter in high-speed flight is of opposite sign to the longitudinal gradients of the selfoinduced velocities,
and consequently will have the effect of reducing the required equilibrium values of b_{1}, the coefficient of the sine component of the flapping angle.

For sidemby-side rotor helicopters in high-speed flight the mean values of the interference induced velocities are of the order of 15 per cent of the selfminduced velocities and are opposite in sign. The lateral gradients of the mutual interference induced velocities are large for the adjacent portions of the rotors. These large gradients may cause early tip stall if the rotor rotation is such that the retreating blades are in this adjacent rotor position.

The normal component of the induced velocity inside the wake of a helicopter rotor in high-speed flight appears to reach its maximum and final value of about twice the value at the center of the rotor at a distance of about one rotor radius downstream. For hovering and the lower forward speeds the induced velocity inside the wake reaches its final value of about twice that at the center of the rotor at a distance of about two rotor radii downstream.

Approved by
Donnell W, Dutton, Director Daniel Guggenheim School of Aeronautics

REFERENCES

I. Coleman, Robert $P_{\circ s}$ Feingold, Arnold Mos and Stempin, Carl Wo: Evaluation of the Induced Velocity Fieid of an Idealized Helicopter Rotor. WRL No. 126, NACA, 1945.
2. Meijer Drees, Jroi A Theory of Airflow Through Rotors and its Application to some Helicopter Problems. The Journal of the Helicopter Association of Great Britain 3, No. 2, 79-101 (July AugusimSepte ember 1949).
3. de Leeuw, Jacob Henri: The Normal Component of the Induced Velocity Near a Vortex Ring and its Application to Lifting Rotor Problems. Master ${ }^{\text {'s }}$ Thesis, Daniel Guggenheim School of Aeronautics, Georgia Institute of Technologys 1951。
4. Lamh, Horace: Hydrodynamics. Sixth Edition. Dover Publications, New York, 1945, Ch. VII, Sec. 161_{9} p. 237.
5. Glauert, $\mathrm{H},:$ On the Contraction of the Slipstream of an Airscrew. R and M 1067, British A.R.Cog Feb. 1926.
6. Lamb, Horace: Hydrodynamics. Sixth Edition. Dover Publications, New York, 1945 , Ch VII, Sec. 150 , p. 212.

Final Report, Project No. 194

APPENDIX

TABLE I-Section 1

NONDIMENSIONAL VALUES OF THE NORMAL COMPONENT OF THE INDOCED VELCCITY IN THE VICINITY OF A VORTEX RING

$\frac{v_{z} R}{\pi}$							
$x=\frac{R_{p}}{R}=$	0.0	O.I	0.2	0.3	0.4	0.5	0.6
$\mathrm{z}=\frac{ \pm \mathrm{Z}_{\mathrm{P}}}{\mathrm{R}}$							
0.0	0.5000	0.5038	0.5156	0.5369	0.5707	0.6228	0.7053
0.1	0.4926	0.4961	0.5070	0.5264	0.5569	0.6025	0.6711
0.2	0.4724	0.4712	0.4827	0.4974	0.5193	0.5494	0.5881
0.4	0.4002	0.4010	0.4032	0.4064	0.4093	0.4098	0.4034
0.6	0.3153	0.3147	0.3128	0.3089	0.3022	0.2911	0.2735
0.8	0.2381	0.2370	0.2338	0.2281	0.2196	0.2076	0.1919
1.0	0.1768	0.1758	0.1728	0.1677	0.1604	0.1508	0.1391
1.3	0.1133	0.1127	0.1106	0.1073	0.1027	0.0969	0.0900
1.6	0.0744	0.0740	0.0728	0.0708	0.0681	0.0647	0.0608
2.1	0.0397	0.0396	0.0391	0.0382	0.0371	0.0357	0.0341
2.6	0.0231	0.0231	0.0228	0.0225	0.0220	0.0213	0.0206
3.4	0.0112	0.0112	0.0171	0.0110	0.0109	0.0106	0.0104
4.2	0.0062	0.0062	0.0062	0.0061	0.0061	0.0060	0.0059

Note: Values in underlined columns were obtained by calculation, the others by interpolation.

TABLE I-Section 2

NONDIMENSIONAL VALUES OF THE NORMAL COMPONENT OF THE INDUCED VELOCITY IN THE VICINITY OF A VORTEX RING

Note: Values in underlined columns were obtained by calculation, the others by interpolation.

TABLE I-Section 3
NONDTMENSIONAL VALUES OF THE NORMAL COMPONENT OF THE INDUCED VELOCITY TN THE VICINITY OF A VORTEX RING

$\frac{\mathrm{v}_{\mathrm{z}}^{\mathrm{R}}}{\Gamma}$							
$x=\frac{\mathrm{R}_{\mathrm{P}}}{\mathrm{R}}=$	1.4	1.5	1.6	1.7	1.8	1.9	2.0
$z=\frac{ \pm Z_{P}}{R}$							
0.0	-0,2010	$\sim_{0} 01424$	$\infty 0.1060$	-0.0817	-0.0647	0.0524	-0.0431
0.1	00.1833	-0.1336	0.1011	-0.0788	-0.0629	-0.0511	-0.0423
0.2	0.1411	-0.1112	-0.0882	-0.0709	-0.0577	-0.0477	0.0398
0.4	-0.0559	-0.0567	-0.0527	-0.0471	00.0414	00.0362	-0.0315
0.6	$=0,0076$	-0.0175	-0.0218	-0.0241	-0.0247	-0.0230	-0.0215
0.8	+0.0141	+0.0038	-0.0031	-0.0076	-0.0103	-0.0117	$\bigcirc 0.0122$
1.0	0.0226	0.0141	+0.0073	+0.0026	-0.0009	$=0.0034$	-0.0050
1.3	0.0249	0.0190	0.0141	0.0100	+0.0067	+0.0040	+0.0020
1.6	0.0226	0.0187	0.0153	0.0122	0.0096	0.0074	0.0060
2.1	0.0171	0.0151	0.0132	0.0115^{\prime}	0.0099	0.0085	0.0072
2.6	0.0124	0.0113	0.0103	0.0093	0.0084	0.0075	0.0067
3.4	0.0075	0.0070	0.0066	0.0062	0.0058	0.0054	0.0050
4.2	0.0047	0.0045	0.0043	0.0041	0.0039	0.0037	0.0035

Note: Values in underlined columns were obtained by calculation, the others by interpolation。

TABLE I-Section 4
NONDIMENSIONAL VALUES OF THE NORMAL COMPONENT OF THE INDUCED VELOCITY IN THE VICINITY OF A VORTEX RING

$\frac{v_{z} R}{\Gamma}$							
$x=\frac{R_{p}}{R}=$	2.1	2.2	2.3	2.4	2.5	2.6	2.7
$\mathrm{z}=\frac{ \pm Z_{P}}{\mathrm{R}}$							
0.0	-0.0358	-0.0300	-0.0254	$\infty 0.0219$	-0.0191	$=0.0170$	-0.0151
0.1	-0.0350	-0.0292	-0.0250	-0.0216	-0.0189	-0.0169	-0.0150
0.2	$\infty 0.0334$	$=0.0283$	-0.0241	-0.0209	-0.0183	-0.0164	-0.0146
0.4	-0.0272	-0.0238	-0.0208	-0.0183	-0.0164	-0.0147	-0.0132
0.6	-0.0199	-0.0181	-0.0163	00.0149	-0.0136	-0.0123	-0.0112
0.8	-0.0121	0.0119	-0.0115	-0.0108	-0.0101	-0.0095	-0.0089
1.0	00.0056	00.0059	00.0062	$=0.0067$	-0.0068	$\cdots 0.0067$	-0.0066
1.3	*0.0008	-0.0006	-0.0016	-0.0022	$=0.0029$	-0.0032	0.0 .0034
1.6	0.0045	+0.0031	+0.0021	\%0,0012	+0.0002	-0.0005	-0.0009
2.1	0.0062	0.0052	0.0043	0.0035	0.0028	+0.0020	+0.0015
2.6	0.0059	0.0052	0.0046	0.0040	0.0034	0.0029	0.0025
3.4	0.0046	0.0042	0.0039	0.0036	0.0033	0.0030	0.0027
4.2	0.0033	0.0031	0.0029	0.0027	0.0025	0.0024	0.0023

Note: Values in underlined columns were obtained by calculations the others by interpolation。

Final Report: Project No. 194

TABLE I $x \times$ Section 5
NONDIMENSIONAL VALUES OF THE NORMAL COMPONENT OF THE INDUCED VELOCITY IN THE VICINITY OF A VORTEX RING

$\mathrm{v}_{\mathrm{z}} \mathrm{R}$							
$x=\frac{R_{p}}{\frac{R}{R}}=$	2.8	2.9	3.0	3.1	3.2	3.3	3.4
$\mathrm{z}=\frac{\mathrm{z}_{\mathrm{p}}}{\mathrm{R}}$							
0.0	0.0135	-0,0121	$\propto 0.0109$	-0.0097	-0.0086	-0.0077	-0.0070
0.1	-0.0133	-0.0120	-0.0108	-0.0096	-0.0085	-0.0076	-0.0069
0.2	-0.0129	-0.0117	-0.0105	~ 0.0095	0.0084	-0,0075	=0.0068
0.4	0.0119	-0.0107	$=0.0098$	-0.0089	-0,0079	-0.0072	-0.0065
0.6	00.0102	00.0094	-0.0087	-0.0079	-0.0071	-0.0065	-0.0059
0.8	-0,0082	-0.0076	-0.0070	00.0065	-0.0061	-0.0056	0.0051
1.0	00.0063	-0.0061	-0.0058	$\bigcirc 0.0054$	-0.0050	-0.0047	-0.0044
1.3	00.0036	-0.0038	0.0037	-0.0036	-0.0034	-0.0032	$=0.0031$
1.6	00.0012	-0,0016	00.0017	-0.0018	-0.0019	-0.0019	$=0.0019$
2.1	+0.0011	$+0.0007$	+0.0004	\$0.0001	-0.0001	-0.0003	-0.0004
2.6	0.0022	0.0019	0.0016	0.0013	+0.0010	+0.0008	$+0.0007$
3.4	0.0024	0.0021	0.0019	0,0017	0.0016	0.0014	0.0013
4.2	0.0022	0.0021	0.0020	0.0019	0.0019	0,0017	0.0016

Note: Values in underlined columns were obtained by calculation, the others by interpolation.

TABLE ImSection 6
NONDIMENSIONAL VALUES OF THE NORMAL COMPONENT OF THE INDUCED VELOCITY IN THE VICINITY OF A VORTEX RING

$\frac{y_{z}{ }^{R}}{\Gamma^{\top}}$							
$x=\frac{R_{P}}{R}=$	3.5	3.6	3.7	3.8	3.9	4.0	4.1
$z=\frac{ \pm Z_{P}}{\mathrm{R}}$							
0.0	-0.0064	-0.0058	00.0053	-0.0049	-0.0045	-0.0042	-0.0039
0.1	-0.0063	00.0058	-0.0053	-0.0049	-0.0045	-0.0042	-0.0039
0.2	-0.0062	-0.0057	-0.0052	-0.0048	-0.0044	-0.0041	-0.0038
0.4	-0,0060	-0.0055	-0.0051	0.0047	00.0043	-0.0040	-0.0037
0.6	-0.0054	$=0.0050$	-0.0046	-0.0043	-0.0040	-0.0037	-0.0035
0.8	-0.0047	-0.0044	$=0.0042$	-0.0039	0.0 .0036	-0.0034	-0.0032
1.0	00.0041	$=0.0038$	-0.0036	$=0.0034$	00.0032	-0.0030	-0.0028
1.3	-0.0029	-0,0028	-0.0027	-0.0026	-0.0025	-0.0024	$\infty 0.0022$
1.6	-0.0020	=0.0019	-0.0019	-0.0019	-0.0018	-0.0018	0.0017
2.1	-0.0005	-0.0006	-0.0007	-0.0008	-0.0008	$=0.0009$	-0.0009
2.6	$+0.0005$	$\% 0.0003$	+0.0002	+0.0001	0.0000	-0.0001	-0.0002
3.4	0.0011	0.0010	0.0009	0.0007	0.0006	0.0005	+0.0004
4.2	0.0015	0.0014	0.0012	0.0012	0.0010	0.0009	0.0008

Note: Values in underlined columns were obtained by calculation, the others by interpolation。

TABLE I=Section ?
NONDTMENSTONAL VALUES OF THE NORMAL COMPONENT OF THE INDUCED VELOCITY TN THE VICINITY OF A VORTEX RING

$\underbrace{\mathrm{v}_{\mathrm{z}}^{\mathrm{R}}}_{\sim}$							
$x=\frac{R_{p}}{R}=$	4.2	4.3	4.4	4.5	4.6	4.7	4.8
$z=\frac{\star Z_{p}}{R}$							
0.0	-0.0037	-0.0034	-0.0032	-0.0030	-0.0028	-0.0026	-0.0024
0.1	$\propto 0.0037$	-0.0034	$=0.0032$	-0.0030	-0.0028	-0.0026	-0.0024
0.2	-0.0036	-0.0033	-0.0031	-0.0029	-0.0027	-0.0025	-0.0024
0.4	-0.0035	-0.0032	-0.0030	-0.0028	-0.0026	-0.0024	-0.0023
0.6	-0.0033	$\therefore 0.0030$	-0.0029	-0.0027	-0.0025	-0.0023	-0.0022
0.8	-0.0030	-0.0028	-0.0026	-0.0025	-0.0023	-0.0022	-0.0020
1.0	-0,0026	-0.0025	-0.0023	-0.0022	$=0.0021$	-0.0020	-0.0019
1.3	-0.0021	-0.0020	-0.0020	-0.0019	-0.0018	-0.0017	-0.0017
1.6	- 0.0017	-0.0016	± 0.0015	$=0.0015$	-0.0015	-0.0014	-0.0014
2.1	-0.0009	≈ 0.0009	-0.0009	-0.0009	-0.0009	-0.0009	-0.0009
2.6	-0.0003	-0.0004	00.0004	-0.0005	-0.0005	-0.0005	-0.0005
3.4	+0.0003	+0.0002	+0.0002	+0.0001	+0.0001	0.0000	0.0000
4.2	0.0007	0.0006	0.0005	0.0005	0.0004	0.0004	0.0003

Note: Values in underlined columns were obtained by calculation, the others by interpolation.

TABLE I-Section 8

NONDIMENSIONAL VALUES OF THE NORMAL COMPONENT OF THE INDUCED VELOCITY IN THE VICINITY OF A VORTEX RING

	$\frac{\mathrm{v}_{\mathrm{z}}^{\mathrm{R}}}{\Gamma}$	
$x=\frac{R_{p}}{R}=$	4.9	5.0
$z=\frac{ \pm Z_{p}}{R}$		
0.0	-0.0022.	-0.0021
0.1	-0.0022	-0.0021
0.2	0.0 .0022	$\infty 0.0021$
0.4	00.0021	-0.0020
0.6	-0.002.1	-0.0020
0.8	-0.0019	0.0018
1.0	-0.0018	$\infty 0.0017$
1.3	-0.0016	-0.0015
1.6	-0.0013	-0.0013
2.1	-0.0009	-0.0008
2.6	-0.0005	-0.0005
3.4	0.0000	0.0000
4.2	0.0003	0.0002

Note: Values in underlined columns were obtained by calculation, the others by interpolation。

TABIE II
NONDIMENSIONAL VALUES OF THE NORMAL COMPONENT OF THE INDUCED VELOCITY IN THE LONGITUDINAL PLANE OF SYMMETRY OF A LIFTING ROTOR FOR $\chi \leqslant 90^{\circ}$

For the flight conditions for which $x>90^{\circ}$ and a developed wake exists， the values of V_{i} / v for the condition $\left(X, X / R_{g} \beta_{P}\right)$ are the same as for the condition（ $180^{\circ}-X, X / R,-\beta_{p}$ ）。

Section 1

V_{i} / v for $X=0^{\circ}$					
	$\tan \beta_{P}$				
X／R	－1／2	$-1 / 4$	0	$1 / 4$	1／2
0.00	1.000	1.000	1.000	1.000	1.000
0.40	1.220	1.112	1.000	0.888	0.780
0.80	1.555	1.368	1.000	0.632	0.445
0.90	1.643	1.495	工。000	0.505	0.357
1.00	$\pm \infty$	\cdots	0.500	0.363	0.282
1.10	$=0.224$	－0．253	0.000	0.253	0.224
1.20	－0．180	－0．180	0.000	0.180	0.180
1.60	\％0．088	－0．067	0.000	0.067	0.088
2.00	－0．053	－0．038	0.000	0.038	0.053
3.20	－0．019	－0．012	0.000	0.012	0.019

Notes：l_{0} ．Value of V_{i} / v changes $2^{0} 000$ units in passing through boundary of the wake．

2．Values of V_{i} / v are axially symmetric about rotor axis．
3．Values of Z_{f} / v are anti－symmetric about the tip－path plane， and the value about which they are anti－symmetric is 1.000 for $X / R<1$ and 0.000 for $X / R>1$ ．

TABLE II- Section 2

v_{i} / v for $X=14.04^{\circ}(\tan X=1 / 4)$					
	$\tan \beta_{\mathrm{P}}$				
X/R	-1/2	$-1 / 4$	0	1/4	I/2
-3.20	0.011	0.001	-0.010	-0.020	-0.023
-2.00	0.028	0.012	00.027	-0,061	-0.063
-1.60	0.057	0.026	-0.046	-0.101	$\infty 0.105$
-1.20	0.132	0.099	-0.108	$=0.232$	$=0.200$
$=0.80$	0.363	0.521	0.860	1.245	1.406
$\triangle 0.40$	0.729	0.835	0.948	1.059	1.170
0.00	1.000	1.000	1.000	1.000	1.000
0.40	1.262	1.161	1.052	0.940	0.828
0.80	1.626	1.479	1.139	0.746	0.526
1.20	+om	-0.036	0.150	0.281	0.242
1.60	\cdots	0.004	0.079	0.121	0.126
2.00	-0.013	0.007	0.046	0.073	0.077
3.20	00.001	0.004	0.016	0.034	0.028
2.40	$=0.042$	\cdots	\cdots	-	-

Note: Value of V_{i} / v changes 1.940 units in passing through boundary of
the wake。

TABLE II $=$ Section 3

V_{i} / v for $X=26.56^{\circ}(\tan X=1 / 2)$					
X/R	$\tan \beta_{P}$				
	-1/2	$=1 / 4$	0	$1 / 4$	$1 / 2$
-3.20	0.005	=0.004	$=0.016$	-0.024	-0.026
-2.00	0.019	-0.006	-0.044	-0.067	-0.065
-1.60	0.034	-0.016	-0.073	-0.120	-0.109
-1. 20	0.089	0.038	-0.180	-0.261	-0,198
-0.80	0.305	0.426	0.738	---	--*
$=0.40$	0.687	0.788	0.899	1.046	1.126
0,00	1.000	1.000	1,000	1.000	1.000
0.40	1.314	1.211	1.101	0.987	0.874
0.80	1.692	1.582	1.261	0.860	0.604
1.20	1.803	-	0.328	0.403	0.305
1,60	0.113	0.125	0.167	0.191	0.166
2.00	0.088	0.084	0.105	0.115	0.105
3.20	0.038	0.037	0.041	0.044	0.040

Note: Value of V_{f} / v changes $l_{0} 789$ units in passing through boundary of
the wake.

TABLE II - Section 4

V_{i} / v for $X=45.00^{\circ}(\tan X=1)$					
X / R	$\tan \beta_{P}$				
	-1/2	-1/4	0	$1 / 4$	1/2
-3.20	$\infty 0.002$	$\infty 0.010$	-0.019	-0.025	-0.023
$=2.00$	-0.001	00.028	0.060	± 0.071	-0.060
$=1.60$	0.006	0.039	00.107	-0.122	-0.096
-1.20	0.036	00,039	-0.265	-0.249	-0.172
-0.80	0.217	0.285	0.535	---	-0.142
$\infty 0.40$	0.622	0.719	0.824	0.927	1.046
0.00	1.000	1.000	1.000	1.000	1.000
0.40	1.381	1.283	1.176	1.062	0.947
0.80	1.782	1.711	1.465	1.048	0.740
1.20	1.957	1.866	0.683	0.593	0,423
1.60	1.829	0.467	0.410	0.332	0.247
2.00	-	0.372	0,272	0.215	0.164
3.20	0.307	0.165	0.113	0.087	0.066

Note: Value of $V_{\mathcal{I}} / v$ changes $I_{0} L_{4} H_{4}$ units in passing through boundary of the wake.

TABLE II- - Section 5

$\mathrm{V}_{\mathrm{i}} / v$ for $X=63.43^{\circ}(\tan x=2)$					
X / R	$\tan \boldsymbol{\beta}_{P}$				
	∞ - $1 / 2$	-1/4	0	1/4	$1 / 2$
-3.20	-0,008	$\cdots 0.021$	-0.022	-0.020	-0.020
-2.00	-0.015	-0.043	-0.064	-0.069	-0.051
-1.60	-0.020	-0.067	-0.119	-0.116	-0.083
-1.20	-0.012	-0.105	-0.294	-0.238	0.140
-0.80	0.124	0.140	0.326	-0.320	-0.144
-0.40	0.550	0.639	0.746	0.858	---
0.00	1.000	1.000	1.000	1.000	1.000
0.40	1.460	1.366	1.254	1.144	1.032
0.80	1.886	1.849	1.674	1.265	0.911
1.20	2.022	2.098	1.240	0.900	0.600
1.60	2.030	2.098	0.878	0.582	0.384
2.00	2.026	\cdots	0.653	0.401	0.262
3.20	2.017	0.776	0.278	0.181	0.100

Note: Value of V_{i} / v changes 0.894 units in passing through boundary of
the wake.

TABLE II-Section 6

V_{i} / v for $X=75.97^{\circ}(\tan X=4)$					
X/R	$\tan \beta_{P}$				
	-1/2	-1/4	0	1/4	1/2
-3.20	-0.011	-0.019	-0.026	-0.022	-0.014
-2.00	-0.025	-0.052	-0.072	-0.065	-0.043
-1.60	-0.035	$=0.084$	-0.124	-0.101	-0.067
- 1.20	-0.043	00.136	-0.309	-0.213	-0.110
-0.80	0.062	0.054	0.166	-0.193	-0.087
-0.40	0.485	0.549	0.675	---	0.483
0.00	1.000	1.000	1.000	1.000	1.000
0.40	1.494	1.427	1.325	1.165	1.096
0.80	1.576	1.942	1.834	1.436	1.053
1.20	1.895	2.150	\cdots	1.183	0.763
1.60	1.250	2.086	1.384	0.869	0.530
2.00	0.967	2.063	1.187	0.623	0.377
3.20	0.735	2.022	0.785	0.328	0.169

Note: Value of V_{i} / v changes 0.485 units in passing through boundary of
the wake.

TABLE II--Section 7

V_{i} / v for $X=90.00^{\circ}$					
	$\tan \beta_{P}$				
X/R	$-1 / 2$	$=1 / 4$	0	$1 / 4$	1/2
-3.20	-0.016	-0.022	-0.026	-0.022	-0.016
-2,00	-0.035	-0.060	-0.078	-0.060	-0.035
-1.60	-0.052	-0.097	-0.137	-0.097	-0.052
-1.20	-0.076	-0.182	$\infty 0.331$	-0.182	-0.076
-0.80	-0.010	-0.057	-0.075	-0.057	-0.010
-0.40	0.474	0.519	0.564	0.519	0.414
0.00	1.000	1,000	1.000	- 1.000	1.000
0.40	1.193	1.312	1.436	1.312	1.193
0.80	1.266	1.664	2.075	1.664	1.266
1.20	1.046	1.602	2.331	1.602	1.046
1.60	0.804	1.354	2.137	1.354	0.804
2.00	0.619	1.175	2.078	1.175	0.619
3.20	0.318	0.774	2.026	0.774	0.318
-1.00	\cdots	\cdots	-0.621	\cdots	--

Note: $l_{\text {。 }}$ Values of V_{i} / v are symmetric about the tipapath plane.
2. Values of V_{i} / v for $\beta_{\mathrm{P}}=0$ are antiosymmetric about a value of $V_{i} / v=1$ at $X=0$ 。
3. Values of V_{i} / v for $\beta_{P}=0$ were obtained by extrapolation.

TABLE III

NONDIMENSTONAL VALUES OF THE NORMAL CONPONENT OF THE INDUCED VELOCITY ON THE LATERAL AXIS OF A LIFTING ROTOR

∇_{i} / v					
$\pm \mathrm{Y} / \mathrm{R}$	$\tan \chi$				
	0	1	2	4	∞
0.00	1.000	1.000	1.000	1.000	1.000
0.40	1.000	2.000	1. 0000	1.000	1.000
0.60	1.000	-	-->	--	0.978
0.80	1.000	--	\cdots	-	0.904
1.10	1.000	\pm	-0.702	-1.071	-1. 399
1.20	0.000	-0.235	$\infty 0.548$	-0.693	-0.809
1.40	0.000	-0.158	-0.319	-0.401	-0.128
1.60	0.000	-0.114	-0.239	-0.256	-0.281
2.00	0.000	-0.068	-0. 119	-0.114	-0.1.54
3.20	0.000	-0.026	-0.041	-0.049	-0.053

VORTEX RING AXIS

Figure 1. Coordinates for Vortex Ring and Table I.

Figure 2. Nondimensional Rotor Coordinates.

Figure 3. Geometry of Wake.

Figure 4. ISO-Induced Velocity Lines for $X=0^{\circ}=\operatorname{TAN}^{-1} 0$

Figure 5. ISO-Induced Velocity Lines for $X=13.0^{\circ}=\operatorname{TAN}^{-1} 1 / 4$.

Figure 6. ISO-Induced Velocity Lines for $X=26.5^{\circ}=\operatorname{TAN}^{-1} 1 / 2$.

Figure 7. ISO-Induced Velocity Lines for $X=45.0^{\circ}=\operatorname{TAN}^{-1} I$.

Figure 8. ISO-Induced Velocity Lines for $X=63.4^{\circ}=\mathrm{TAN}^{-1} 2$.

Figure 9. ISO-Induced Velacity Lines for $X=76.0^{\circ}=T A N^{-1} 4$.

Figure 10. ISO-Induced Velocity Lines for $X=90.0^{\circ}=\mathrm{TAN}^{-1} \infty$.

Figure 11. ISO-Induced Velocity Lines for $X=104.0^{\circ}=\operatorname{TAN}^{-1}-4$.

Figure 12. ISO-Induced Velocity Lines for $X=116.6^{\circ}=T A N^{-1}-2$.

Figure 13. Induced Velocity Distributions Along the Longitudinal Axis.

Figure 14. Induced Velocity Distributions Along the Lateral Axis.

