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Abstract

We introduce Segmental Switching Linear Dynamic Systems (S-SLDS), which improve on standard
SLDSs by explicitly incorporating duration modeling capabilities. We show that S-SLDSs can adopt
arbitrary finite-sized duration models that describe data more accurately than the geometric distributions
induced by standard SLDSs. We also show that we can convert an S-SLDS to an equivalent standard
SLDS with sparse structure in the resulting transition matrix. This insight makes it possible to adopt
existing inference and learning algorithms for the standard SLDS models to the S-SLDS framework. As
a consequence, the more powerful S-SLDS model can be adopted with only modest additional effort in
most cases where an SLDS model can be applied. The experimental results on honeybee dance decoding
tasks demonstrate the robust inference capabilities of the proposed S-SLDS model.

1 Introduction

Switching Linear Dynamical System (SLDS) models have been studied in a variety of problem domains.
Representative examples include computer vision [5, 19, 26, 20, 21], computer graphics [33], speech recog-
nition [28], econometrics [14], machine learning [16], and statistics [30]. An SLDS model represents the
nonlinear dynamic behavior of a complex system by switching among a set of linear dynamic models over
time. In contrast to HMM’s, the Markov process in an SLDS selects from a set of continuously evolving
linear Gaussian dynamic models, rather than from a fixed Gaussian mixture density. SLDS models have
become increasingly popular in the vision and graphics communities as they provide an intuitive framework
for describing the continuous but non-linear dynamics of real-world motion.

Nevertheless, the modeling capabilities of a standard SLDS are limited by the Markov assumption which
is imposed upon the switching process. This process governs the transitions between LDS models and makes
it possible for an SLDS to represent nonlinear dynamics. As a consequence of the Markov assumption,
however, the probability of remaining in a given switching state follows a geometric distribution with the
property that a duration of one time step has the largest probability mass.

Hence, if we perform inference with standard SLDSs, the results suffer from the restriction to geometric
distributions. In previous work [20] we used Markov chain Monte Carlo sampling (MCMC) to approximate
the true posterior over label sequences. However, the reported results still had several over-segmentations
due to the increased importance attached to short durations in the geometric distribution induced in the
standard SLDS model, especially in the presence of high levels of noise.

These same problems were previously addressed by the HMM communities, and several extensions to
HMM models which provide enhanced duration modeling are described in [10, 17, 23]. The current paper
applies some of the same ideas to arrive at SLDS models with enhanced duration modeling capabilities.
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Figure 1: (a) A bee dance is in three patterns : waggle, left turn, and right turn. (b) Green box is a tracked
bee.

1.1 Biotracking

The application domain which motivates this work is a new research area which enlists visual tracking and AI
modeling techniques in the service of biology [1, 2]. The current state of biological field work is still dominated
by manual data interpretation, a time-consuming and error-prone process. Automatic interpretation methods
can provide field biologists with new tools for the quantitative study of animal behavior. A classical example
of animal behavior and communication is the honey bee dance, depicted in a stylized form in Fig.1(a). Honey
bees communicate the location and distance to a food source through a dance that takes place within the
hive. The dance is decomposed into three different regimes: “turn left”, “turn right” and “waggle”. The
length (duration) and orientation of the waggle phase corresponds to the distance and the orientation to the
food source. Figure 1(b) shows a dancer bee that was tracked by a previously developed vision-based tracker
[13]. After tracking, the obtained trajectory of the dancing bee is manually labeled as “turn left” (blue),
“turn right” (red) or ”waggle” (green) and is shown in Figure 2.

The research goals in this application domain are two-fold. First, we aim to learn the motion patterns of
honey bee dances from the obtained training dance sequences. Second, we should be able to automatically
segment new dance sequences into three dance modes reliably, i.e., the labeling problem. Note that labels
are initially unknown.

Figure 2: An example honey bee dance trajectory. The track is automatically obtained using a vision-based
tracker and manually labeled afterward. Key : waggle (green), right-turn (red), left-turn (blue).

1.2 A Model-Based Approach

We take a model-based approach, in which we employ a computational model of behavior in order to interpret
the data. In our case the motions are complex, i.e. they are comprised of sub-behaviors. The model we use
should be expressive enough to accurately model the individual sub-behaviors, while at the same time able
to capture the inter-relationships between them.
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Hence, the basic generative model we adopt is the Switching Linear Dynamic System (SLDS) model
[25, 24, 26]. In an SLDS model, there are multiple linear dynamic systems (LDS) that underly the motion,
one for each behavioral mode that we assume. We can then model the complex behavior of the target by
switching within this set of LDSs. In contrast to an HMM, an SLDS provides the possibility to describe
complex temporal patterns concisely and accurately. SLDS models have become increasingly popular in the
vision and graphics communities as they provide an intuitive framework for describing the continuous but
non-linear dynamics of real-world motion. For example, it has been used for human motion classification
[25, 24, 26, 27] and motion synthesis [33].

1.3 Background

1.3.1 Linear Dynamic Systems

Figure 3: A linear dynamic system (LDS)

An LDS is a time-series state-space model consisting of a linear Gaussian dynamics model and a linear
Gaussian observation model. The graphical representation of an LDS is shown in Fig.3. The Markov chain
at the top represents the state evolution of the continuous hidden states xt. The prior density p1 on the
initial state x1 is assumed to be normal with mean µ1 and covariance Σ1, i.e., x1 ∼ N (µ1,Σ1).

The state xt is obtained by the product of state transition matrix F and the previous state xt−1 corrupted
by zero-mean white noise wt with covariance matrix Q:

xt = Fxt−1 + wt where wt ∼ N (0, Q) (1)

In addition, the measurement zt is generated from the current state xt through the observation matrix H,
and corrupted by zero-mean observation noise vt:

zt = Hxt + vt where vt ∼ N (0, V ) (2)

Thus, an LDS model M is defined by the tuple M
∆= {(µ1,Σ1), (F,Q), (H,V )}. Exact inference in an LDS

can be done exactly using the RTS smoother [3], an efficient belief propagation implementation. For further
details on LDSs, the reader is referred to [3, 18, 29].

1.3.2 Switching Linear Dynamic Systems

In an SLDS we assume the existence of n distinct LDS models M
∆= {Ml|1 ≤ l ≤ n}. The graphical model

corresponding to an SLDS is shown in Fig.4. The middle chain, representing the hidden state sequence
X

∆= {xt|1 ≤ t ≤ T}, together with the observations Z
∆= {zt|1 ≤ t ≤ T} at the bottom, is identical to

an LDS in Fig.3. However, we now have an additional discrete Markov chain L
∆= {lt|1 ≤ t ≤ T} that

determines which of the n models Ml is used at every time-step. We call lt ∈M the label at time t and L a
label sequence.
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Figure 4: Switching linear dynamic systems (SLDS)

In addition to a set of LDS models M , we specify two additional parameters: a multinomial distri-
bution π(l1) over the initial label l1 and an n × n transition matrix B that defines the switching behav-
ior between the n distinct LDS models. In summary, a standard SLDS model is defined by the tuple
Θ ∆=

{
π,B,M

∆= {Ml|1 ≤ l ≤ n}
}

.
Switching linear dynamic system (SLDS) models have been studied in a variety of research communities

ranging from computer vision [25, 24, 26, 19, 5, 31], computer graphics [31, 33, 27], tracking [4], signal
processing [9, 8] and speech recognition [28], to econometrics [14], visualization [34], machine learning [16,
11, 20, 21, 22, 12], control systems [32] and statistics [30]. While one can find several versions of SLDS in
the literature, our work is most closely related to the model structure and extensions described in [25, 24,
26, 20, 21, 22].

1.3.3 Learning and Inference in SLDS

The EM algorithm [6] can be used to obtain the maximum-likelihood parameters Θ̂. The hidden variables in
EM are the label sequence L and the state sequence X. Given the observation data Z, EM iterates between
the two steps:

• E-step : Inference to obtain the posterior distribution

f i(L,X) ∆= P (L,X|Z,Θi) (3)

over the hidden variables L and X, using a current guess for the SLDS parameters Θi.

• M-step : maximize the expected log-likelihoods with respect to Θ:

Θi+1 ← argmax
Θ

〈log P (L,X, Z|Θ〉fi(L,X) (4)

Above, 〈·〉W denotes the expectation of a function (·) under a distribution W . Note that the exact E-step in
Eq.3 is proved to be intractable [15]. Thus, there have been research efforts to derive efficient approximate
inference methods, e.g.,GPB2 [3, 5], pseudo-EM algorithm [30], a variational approximation [11, 24, 26, 22],
an approximate Viterbi method [25, 24, 26], expectation propagation [34], iterative Monte Carlo methods
[8], sequential Monte Carlo methods [9], Gibbs sampling [28] and Data-Driven MCMC [20].
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2 Contributions and Related Work

In this paper, we address an important limitation of the standard SLDS model : limitations in duration
modeling. We propose a novel solution to address this problem : a segmental SLDS model which improves
the limited duration modeling power of standard SLDSs. In the sections below we discuss our approach
along with the related work that provided the inspiration for them.

2.1 Improved Duration modeling

The duration modeling capabilities of a standard SLDS are limited by the Markov assumption which is
imposed upon the transitions at the discrete switching states. As a consequence of Markov assumption, the
probability of remaining in a given switching state follows a geometric distribution :

P (d) = ad−1(1− a) (5)

Above, d denotes the duration of a given switching state and a denotes Markov transition probability to
make a self-transition which has a value between zero and one. As a consequence, a duration of one time-step
come to possess the largest probability mass.

In contrast, many natural temporal phenomena exhibit patterns of regularity in the duration for which a
given model or regime is active. In such cases the standard SLDS model would be inappropriate to effectively
encode the regularity of durations in data. A honey bee dance is an example: a dancer bee will attempt to
stay in the waggle regime for a certain duration to effectively communicate a message. In such cases, it is
clear that the actual duration diverges from a geometric distribution.

Figure 5: A realistic Gaussian (blue) and a limited geometric duration model (red). Models are learned from
data.

For example, we learned a duration model for the waggle phase using a realistic Gaussian density and
a conventional geometric distribution from one of the manually labeled dance sequences depicted in Figure
10. Figure 5 shows the learned geometric (red) and Gaussian (blue) distributions for comparison. It can be
observed that the learned geometric duration model does not exhibit any pattern of regularity in durations.
Hence, standard SLDS models are inappropriate for data which exhibits temporal patterns that deviate from
geometric distributions.

2.2 Related Work

The limitation of a geometric distribution was also previously addressed by the HMM communities, and HMM
models with enhanced duration capabilities were introduced [10, 17, 23]. HMMs has been widely studied by
the speech recognition and the machine learning communities to enhance its duration modeling capabilities.
The variable duration HMM (VD-HMM) was introduced in [10]: state durations are modeled explicitly in a
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variety of PDF forms. Later, a different parameterization of the state durations was introduced where the
state transition probabilities are modeled as functions of time, which are referred to as non-stationary HMMs
(NS-HMM) [17]. It has since been shown that the VD-HMM and the NS-HMM are duals [7]. Ostendorf
et.al. provides an excellent discussion on segmental HMMs [23].

We adopt similar ideas to arrive at SLDS models with enhanced duration modeling. The resulting
segmental SLDS model is described in Section. 3.

3 Segmental SLDS

We introduce the segmental SLDS (S-SLDS) model, which improves on the standard SLDS model by relaxing
the Markov assumption at a time-step level to a coarser segment level. The development of S-SLDS model is
motivated by the regularity in durations being exhibited by the honey bee dances. As discussed in Section
2.1, a dancer bee will attempt to stay in the waggle regime for a certain duration to effectively communicate
a message. In such a case, the geometric distribution induced in standard SLDSs is not an appropriate
choice to model the duration patterns. Fig. 5 shows that a geometric distribution accords the highest
probability on the duration of only one time step. As a result, the inference in standard SLDSs is susceptible
to over-segmentation due to the noise in data.

In an S-SLDS, the durations are first modeled explicitly and then non-stationary duration functions are
derived from them. Both of them are learned from data. As a consequence, the S-SLDS model has more
descriptive power in modeling duration, and more robust inference capabilities than the standard SLDS.
Nonetheless, we show that one can always convert a learned S-SLDS model into an equivalent standard
SLDS, operating in a different label space. Hence, as a significant advantage we are able to reuse the large
array of approximate inference and learning techniques developed for SLDSs.

3.1 Conceptual view on the generative process of S-SLDS

Figure 6: A schematic sketch of an S-SLDS with explicit duration models.

Conceptually, in an S-SLDS, we deal with segments of finite duration, i.e. each segment si
∆= (li, di) is

described by a tuple of label li and duration di. Within each segment a fixed LDS model Ml is used to generate
the continuous state sequence for the duration di. Similar to SLDSs, we take an S-SLDS to have an initial
distribution π(l1) over the initial label l1 of the first segment s1, and an n× n semi Markov label transition
matrix B̃ that defines the switching behavior between the segment labels. The tilde denotes that the matrix
is a semi-Markov transition matrix. Additionally, however, we associate each label l with a fixed duration
model Dl, represented as a multinomial. We denote the set of n duration models as D

∆= {Dl(d)|1 ≤ l ≤ n},
and refer to them in what follows as explicit duration models. In summary, an S-SLDS is defined by a tuple
Θ ∆=

{
π, B̃,D

∆= {Dl|l = 1..n},M ∆= {Ml|l = 1..n}
}

.
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A schematic depiction of an S-SLDS is illustrated in Fig.6. The top chain in the figure is a series of
segments where each segment is depicted as a rounded box. In the model, the current segment si

∆= (li, di)
generates a next segment si+1 in the following manner: first, the current label li generates the next label li+1

based on the label transition matrix B̃; then, the next duration di+1 is generated from the duration model
for the label li+1, i.e. di+1 ∼ Dli+1(d). The dynamics for the continuous hidden states and observations are
identical to a standard SLDS : a segment si evolves the continuous hidden states X with a corresponding LDS
model Mli for the duration di, then the observations Z are generated given the labels L and the continuous
states X.

3.2 Graphical Representation of S-SLDS

In this section we present a graphical representation of S-SLDSs, transforming the conceptual generative
model described in Section 3.1 into a concrete model that uses conventional model switching at every time-
step. To maintain the same duration semantics, we introduce counter variables C

∆= {ct|1 ≤ t ≤ T}. The
resulting graphical model of S-SLDS is illustrated in Fig.7, and is identical to the graphical model of an
SLDS in Fig.3(b), but with additional top-chain representing a series of counter variables C.

Figure 7: Graphical representation of an S-SLDS

The counter chain C maintains an incremental counter which evolves based on a set of non-stationary
transition functions (NSTFs) U

∆={Ul(c)|1 ≤ l ≤ n}. An NSTF Ul for the current label lt defines the
conditional dependency of the next counter variable ct+1 given the current counter variable ct and the label
lt :

Ul(ct) = P (ct+1|ct, l)

The system can either increment the counter, i.e. ct+1 ← ct + 1, or reset it to one, i.e. ct+1 ← 1. If the
counter variable ct+1 is reset, then a label transition occurs, i.e. a new segment is initialized. A new label
lt+1 is chosen based on the label transition matrix B. If the counter simply increments, then the new label
is set to be the current label lt, i.e. lt+1 ← lt.

While the explicit duration models D introduced in Section 3.1 are more understandable and readily
obtained from the labeled data, it is necessary to transform the explicit duration models D into an equivalent
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Figure 8: Evaluating an NSTF (blue) from an explicit duration model (red).

NSTFs U to incorporate the knowledge in durations into a framework based on graphical models. To do
this, we can observe that the explicit duration models D and the NSTFs U are analogous to the duration
models of VD-HMMs [10] and NS-HMMs [17] respectively. Hence, we can exploit the duality between the
VD-HMMs and NS-HMMs, which appeared in [7]. The equivalent NSTFs U are exactly evaluated from the
explicit duration models D as follows :

Ul(ct) = 1−

Dl(ct)/
Dmax

l∑
d=ct

Dl(ct)

 (6)

Above, Dmax
l denotes the maximum duration allowed for the l th model. Intuitively, the latter composite

term on the r.h.s. denotes the probability to reset the counter variable ct+1. It represents the ratio of the
probability of current duration ct over the sum of durations equal or greater than ct in the corresponding
duration model Dl.

In summary, an S-SLDS model is completely defined by a tuple
Θ ∆=

{
π, B̃, U

∆= {Ul|1 ≤ l ≤ n},M ∆= {Ml|1 ≤ l ≤ n}
}

where the NSTFs U are obtained from the explicit
duration models D.

3.3 Learning in Segmental SLDS

Learning in S-SLDS is analogous to learning in SLDS, using EM. The initial distribution π, and LDS
model parameters M are learned in exactly the same manner as in SLDS. However, it is necessary to learn
the additional duration models D and the semi-Markov transition matrix B̃. These two additional model
parameters only influence the label sequence L, and hence the ML estimates of these two parameters can be
evaluated from a segmental representation of the label sequence L, i.e., L = ∪|s|j=1sj . The specific functional
forms of ML estimation depends on the choice of duration models. An example is demonstrated in Section
2.1 where we learn the duration models from the honey bee dance sequences.

3.4 Inference in Segmental SLDSs

Below we demonstrate that an S-SLDS can be always converted to an equivalent SLDS. This is an important
advantage as it allows us to readily reuse the large array of approximate inference algorithms discussed in
Section 1.3.3. In other words, the inference in S-SLDS is identical to that of the standard SLDS, simply with
additional conversion from an S-SLDS to its corresponding SLDS.

The overall idea of inference is depicted in Figure 9. In step 1, we convert an S-SLDS model into
an equivalent SLDS model. Then, we perform step 2 (inference) using any of the approximate inference
algorithms for the standard SLDSs. Once the parameters of the equivalent standard SLDS are learned via
EM, the obtained SLDS model is converted back to S-SLDS model and the inference in S-SLDS concludes.

The model conversion from an S-SLDSs to an equivalent SLDS is possible by applying the standard
technique of merging multiple discrete variables into meta variables. Specifically, all possible pairs of a label
lt and a counter value ct are merged and form a set of “lc” variables where LC ∆= {(l, ci)|1 ≤ l ≤ n, 1 ≤ ci ≤
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Figure 9: Inference in S-SLDS.

Dmax
l }. To obtain a complete SLDS model, an equivalent n′×n′ transition matrix B′ where n′ ∆=

∑n
l=1 Dmax

l

is constructed from the semi-Markov transition matrix B̃ and the NSTFs U , as follows :

B′
(li,ci),(lj ,cj)

=


Uli(ci) increment

B̃li,lj (1− Uli(ci)) reset
0 otherwise

(7)

In Eq. 7, the three cases differ as follows : (increment) li = lj and cj = ci +1. (reset) cj = 1. (otherwise) all
other cases. In addition, the initial label distribution π′ for the equivalent SLDS can similarly be constructed
from the S-SLDS initial distribution π :

π′(li, ci) =
{

π(li) if ci = 1
0 otherwise

Nonetheless, it is important to note that the naive reuse of the learning and inference algorithms for SLDS
to S-SLDS may induce substantial increase in computational overhead. The issues regarding computational
considerations are presented in the next section.

3.5 Computational Considerations

As mentioned in Section 3.4, an equivalent SLDS can always be constructed from an arbitrary S-SLDS.
However, if we reuse the original learning and inference algorithms for SLDSs in a naive manner the cost
of inference will be on the order of O(TD2

max|L|2) for S-SLDSs, while it takes O(T |L|2) for SLDSs without
duration models, where Dmax

∆= max{Dmax
l }nl=1, i.e. the number of all meta variables. Thus, there is a con-

siderable computational overhead, by a factor of O(D2
max). This increased asymptotic running time overhead

applies to the approximate inference algorithms with HMM-type components in general, e.g. approximate
Viterbi [26] and a variational method [26, 11, 22], as they require the computations between all possible
state pairs from the previous time-step to the next time-step.

Nonetheless, we can still maintain linear efficiency w.r.t. the maximum duration Dmax by exploiting
the sparseness of the constructed SLDS matrix B′. It can be observed from Eq.7 that the SLDS matrix
B′ is mostly sparse, i.e. only a few transitions are allowed between the states in LC. In fact, only |L| + 1
transitions allowed for every lc state. The allowable transitions include the resets to |L| labels and one
increment transition. Hence, we can achieve an overall performance of O(TDmax|L|2) via exploiting this
fact, which results in reduced overhead by a factor of O(Dmax). The number is derived from the fact that
there are total O(Dmax|L|) states at time t − 1, and the number of transitions allowed for each state to
time t reduces to O(|L|) from O(Dmax|L|). This reduction in complexity allows us to incorporate a duration
model with a large Dmax and maintain computational efficiency. As a consequence, we can adopt the more
powerful duration modeling capabilities of an S-SLDS at the cost of a modest complexity increase over the
standard SLDS model.
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Figure 10: Bee dance sequences used in the experiments. Each dance trajectory is the output of a vision-
based tracker.

4 Experimental Results

The experimental results below show that S-SLDSs provide superior behavior interpretation capabilities over
standard SLDSs.

For the experiments, we used total six real-world dancer honeybee tracks, which are shown in Fig.10.
They were obtained using a vision-based tracker [13] from videos of bees dancing inside the beehive. We re-
parametrize the output of the tracker as a time-series sequence of vectors zt = [xt, yt, cos(θt), sin(θt)]

T where
xt,yt and θt respectively denote the 2D coordinates and the heading angle at time t. The red, green and
blue colors in Fig.10 represent manually marked right-turn, waggle and left-turn phases. The lengths of the
sequences were 1058, 1125, 1054, 757, 609 and 814 frames, respectively. The ground-truth sequences are
labeled manually for purposes of comparison and learning. The dimensionality of the continuous hidden
states was set to four.

Given the relative difficulty of obtaining this data, which has to be labeled manually to allow for a
ground-truth comparison, a leave-one-out strategy is adopted. The parameters are learned from five out
of six datasets, and the learned model is applied to the left-out dataset to perform inference on the label
sequence. Both standard SLDS parameters and S-SLDS parameters are learned from the training data. For
the S-SLDS we use a Poisson distribution model for the duration, and converted that into the NSTFs used
in the S-SLDSs implementation.

For inference, an approximate Viterbi method [26] and a structured variational inference method [26, 22]
are used for both a standard SLDS and a segmental SLDS. The variational method was initialized using the
approximate Viterbi results. The label inference results on sequence 1 and sequence 2 are shown in Fig.11.
The five color strips in each figure respectively show the ground-truth, S-SLDS Viterbi, S-SLDS variational,
SLDS Viterbi, SLDS variational method labels, from top to bottom. The x-axis represents time flow and
the color is the corresponding label at that corresponding video frame. On other four datasets, the S-SLDS
results were superior or comparable to SLDS results.

From the experimental results, it can be observed that the inference results of S-SLDSs agree well with
the ground truth, and S-SLDSs yield more accurate results than standard SLDS model. In particular, most
of the over-segmentations in standard SLDSs (4th and 5th from the top) that occur in noisy segments,
disappear in the S-SLDS results (2nd and 3rd from the top). The superior interpretation capabilities of S-
SLDSs over SLDSs demonstrate the benefits of incorporating accurate duration models that can be learned
from the data.
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(a) Sequence 1

(b) Sequence 2

Figure 11: Label inference results on two tracker sequences: Ground-truth, S-SLDS Viterbi, S-SLDS varia-
tional, SLDS Viterbi, SLDS variational method results from the top to the bottom.

5 Conclusion

We presented a segmental switching linear dynamic systems (S-SLDS), which incorporates duration models
that can be learned from the data. It overcomes the limitations of the simple geometric duration models
induced in standard SLDSs. We introduced the graphical representation of S-SLDSs and the associated
non-stationary transition functions. The concrete formulation of the S-SLDS is derived by incorporating
additional counter variables to the standard SLDS model.

An S-SLDS can be converted to an equivalent SLDS by creating meta states, and consequently a large
array of approximate inference and learning algorithms for standard SLDSs can be readily adopted in the new
S-SLDS framework. Additionally, computational efficiency is maintained by exploiting the sparse structure
of the resulting transition matrix. In summary, the proposed S-SLDS framework provides more powerful
duration modeling capabilities over the standard SLDSs at a modest cost, and does not necessitate developing
new inference and learning algorithms. Its benefits were experimentally validated by means of the bee
behavior recognition task, using both approximate Viterbi and a variational inference methods.
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