
DATA VISUALIZATION ON TABLET DEVICES

A Dissertation
Presented to

The Academic Faculty

by

Ramik Sadana

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

Georgia Institute of Technology
May 2017

Copyright c© 2017 by Ramik Sadana

DATA VISUALIZATION ON TABLET DEVICES

Approved By:

Dr. John Stasko, Advisor
School of Interactive Computing
Georgia Institute of Technology

Dr. James D. Foley
School of Interactive Computing
Georgia Institute of Technology

Dr. Rahul Basole
School of Interactive Computing
Georgia Institute of Technology

Dr. Alex Endert
School of Interactive Computing
Georgia Institute of Technology

Dr. Steven Drucker
Principal Researcher
Microsoft Research, Redmond

Date Approved: April 4th, 2017

To my family,

and Vasudhara, the love of my life!

iii

ACKNOWLEDGEMENTS

My most heartfelt gratitude goes out to my advisor John Stasko. The past five years

has been a journey of immense growth, both intellectually and personally. Through

his continued support and guidance, I have felt truly valued. He has challenged me to

explore things that thoroughly excite me and given me the freedom to excel at them

in a manner that feels most fulfilling. For that, I am forever grateful.

Thank you also to my dissertation committee, Jim Foley, Steven Drucker, Rahul

Basole and Alex Endert, for their insightful and critical feedback on my disserta-

tion. I especially want to thank Steven Drucker for his constant words of advice and

encouragement throughout my PhD.

Thank you to my good friends at Georgia Tech — my lab mates in the VIS lab,

friends who I took courses with, and faculty I took courses under. I look back fondly

at the time spent learning with and from you. I feel that I am a better person for it.

A sincere thanks to my family — mom, dad, brother, and sister-in-law, for their

understanding and the ‘He’s fine, he’ll figure it out!’ approach. Their love, encour-

agement, and support has been extremely inspiring.

Finally, all my love and gratefulness to my partner, Vasudhara. She has had the

biggest influence on the work that I have done and the person that I have become. I

am most excited about the new journey that begins now!

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . xi

SUMMARY . xv

I INTRODUCTION . 1

1.1 Thesis statement and contributions 3

1.2 Opportunities and Challenges with Touch 4

1.3 Variations of Multitouch Devices . 6

1.3.1 Smartphones . 7

1.3.2 Large-touch displays . 8

1.3.3 Tablets . 9

1.3.4 Target Device Type . 10

1.4 Themes . 10

1.4.1 Novice Users . 11

1.4.2 Simplicity . 12

1.4.3 Delight . 13

1.5 Organization . 14

II RELATED WORK . 16

2.1 Interaction in Visualization . 16

2.2 Interaction on Touchscreens . 18

2.2.1 Issues with precise selection 20

2.2.2 Limited Vocabulary for Specifying Commands 21

2.3 Visualization on touchscreens . 24

2.3.1 Research Tools . 24

2.3.2 Commercial Tools . 28

v

III TANGERE: A TABLET SYSTEM FOR INFORMATION VISU-
ALIZATION . 31

3.1 Introduction . 31

3.2 Envisioning a visualization tool for tablets 31

3.2.1 Identifying the right configuration 33

3.3 System Overview . 35

3.4 System Summary . 40

IV SCATTERPLOT . 42

4.1 Scatterplot . 42

4.1.1 Classifying Tasks . 43

4.1.2 Design and Implementation 44

4.1.3 Evaluation . 51

4.1.4 Modifications to Tangere . 55

V MULTI-COORDINATED VIEWS 58

5.1 Multi-Coordinated Views . 58

5.1.1 Visualization Techniques . 59

5.1.2 Layout of Visualizations in the Canvas View 60

5.1.3 Interactions within Views . 61

5.1.4 Interaction Across Views . 63

5.1.5 Handling Occlusion . 63

VI ADVANCED SELECTION . 67

6.1 Advanced Selection . 67

6.1.1 Techniques for Advanced Selection 68

6.1.2 The Clutch Modifier Technique for Tablets 69

6.1.3 Generalized Selection . 74

VII ADVANCED LAYOUT TECHNIQUES 78

7.1 Introduction . 78

7.1.1 Layout Options . 80

vi

7.2 Relevant Layout Techniques . 85

7.2.1 Fixed Canvas Sizes . 85

7.3 Selected Layout Technique . 89

7.3.1 Configuring Fixed-canvas Juxtaposition Layout 92

7.3.2 The Selected Layout Specification 95

7.3.3 Rationale . 98

VIIIEVALUATING EFFECTIVENESS OF TANGERE 100

8.1 Introduction . 100

8.2 Designing Experiments to Evaluate Tangere 101

8.2.1 Evaluation Techniques . 102

8.3 Evaluation 1: Measuring Simplicity 104

8.3.1 Methodology . 104

8.3.2 Participants . 109

8.3.3 Results . 110

8.3.4 Modifications to Tangere . 119

IX EVALUATION 2: COMPARISON WITH AN EXISTING TOOL122

9.1 Designing a Comparative Study . 122

9.2 Methodology . 125

9.3 Participants, Tasks, and Datasets 125

9.4 Results . 128

9.4.1 Discoverability . 128

9.4.2 Performance . 131

9.4.3 Accuracy . 132

9.4.4 Ease of Learning and Ease of Use 137

9.4.5 System Preference . 137

9.4.6 Qualitative Observations . 138

X EVALUATION 3: TRAINED USER WORKFLOW ANALYSIS 147

10.1 Participants and Data . 148

vii

10.2 Deliverable . 149

10.3 Methodology . 151

10.4 Results . 153

10.4.1 Data Analysis . 153

10.4.2 Memorability . 155

10.4.3 Qualitative Observations . 157

10.5 Reflection . 161

10.5.1 What does Tangere excel at? 161

10.5.2 What would a redesigned system look like? 163

10.6 Conclusion . 165

10.6.1 Reflection on the design of the studies 166

XI CONCLUSION . 169

11.1 Summary . 169

11.2 Future Work . 170

11.2.1 Visualization pipeline . 170

11.2.2 Multi-modal input . 173

11.2.3 Other extensions . 176

APPENDIX A — STUDY DATASET AND TASKS 179

REFERENCES . 182

viii

LIST OF TABLES

1 Primary Interaction Tasks and their categorization 43

2 Scores from qualitative questions in Study 1. 52

3 Summary of the advanced selection operations and their corresponding
gestures. The selection operations are add-to-selection (ATS), modify
existing selection (MES) and duplicate selection (DS) 70

4 The discoverability of the features in Tangere, classified under high,
medium, and low categories. 114

5 The memorability scores for Tangere’s features. The scores represent
the number of participants (out of 8) who could recall the feature and
the average stage (out of 3) when they recalled the feature. 115

6 Participants’ response to the ease of learning and ease of use likert-
scale questions. The scale used was 1: Strongly Agree to 5: Strongly
Disagree. 116

7 Discoverability score for features in Tangere. The visual cue column
represents if the presence of the feature is indicated by a UI control.
The interaction type column represents the type of interaction the
feature utilizes. Basic interactions are tap, pan, & pinch, whereas
compound interactions are all gestures that use a combination of the
basic interactions. The count column represents the number of partic-
ipants (out of 16) who discovered the feature. OE: discovered during
open-ended exploration. TA: discovered during task analysis. 126

8 Discoverability score for features in Vizable. The visual cue column
represents if the presence of the feature is indicated by a UI control.
The interaction type column represents the type of interaction the
feature utilizes. Basic interactions are tap, pan, & pinch, whereas
compound interactions are all gestures that use a combination of the
basic interactions. The count column represents the number of partic-
ipants (out of 16) who discovered the feature. OE: discovered during
open-ended exploration. TA: discovered during task analysis. 127

9 Participants’ average time taken and standard deviation (in seconds)
for each question across the two interfaces. While the differences stand
out for a few questions (highlighted in color), the standard deviation
is too high for the results to be meaningfully interpreted. V: Vizable,
T: Tangere . 132

ix

10 The number of questions attempted (out of 12) on each system and the
number of questions answered correctly. While the number of questions
attempted on both the systems were the same, participants’ scores for
these questions were lower on Vizable, irrespective of which system
they used first . 133

11 Average score of participants on the 12 questions they solved with the
two systems. I assigned one point for each task participants completed
correctly, a half point for tasks attempted, and zero otherwise. . . . 133

12 Ease of use and ease of learning metrics for the two interfaces (T:
Tangere, V: Vizable). The table highlights the overall scores and the
scores adjusted for the order effects. Scale used: 1: Strongly Disagree,
5: Strongly Agree . 136

13 Participants’ preference for the two systems. The value in the cells
represents the number of participants who answered Tangere or Vizable
for the specific question. 138

14 Order effects in the discoverability metric. The value represents the
number of participants (out of 8) who discovered the feature when the
system was used first or second. 140

15 The five datasets that participants brought for analysis with Tangere.
The second column represents the number of rows in the dataset. . . 150

16 The number of questions created and answered by participants over
the course of the study. P3 decided against constructing questions and
instead explored the data in an open-ended manner. 154

17 Memorability scores of a subset of features in the second and third
sessions. Scores are the number of participants (out of 5) who could
recall the feature. 157

x

LIST OF FIGURES

1 Buxton’s three state model of graphical input [18]. 19

2 The LinearDragger selection technique. [5]. 21

3 The Pin-and-Cross marking menu [75]. 22

4 The FastTap menu technique [42]. 23

5 Cambiera: Collaborative document analysis on a tabletop [59]. 24

6 Using pen and touch for data exploration on whiteboards [123]. . . . 25

7 Gesture-driven and WIMP-driven interfaces for analyzing data with
barcharts [29]. 26

8 Kinetica: naturalistic multi-touch data visualization. [102] 27

9 Vizable interface a) Swiping horizontally changes the attribute. b)
Two-finger pinch adds another attribute. 29

10 Vizable interface a) Swiping down on a barchart sorts the bars. b)
Swiping left on a bar filters it out. Swiping right filters all other bars
out. 29

11 Vizable interface a) Tapping on the linechart reveals a selection win-
dow. The window can be extended using the handles. b) Snapshot of
the view can also be exported. 30

12 The Tangere application. On the interface, the canvas is the central
component. The panel for adding views is to the left, data table is at
the bottom, and the filter menu is to the right. The panels stay beyond
the screen and can be brought in with a gesture. 34

13 A subset of possible layout configurations. The canvas is a 2x3 grid
and can fit upto 6 views. 35

14 Several interactions are common to all visualizations. Here, axis-based
selection is performed on the four chart types. 36

15 Attribute (green arrows) and sub-attribute (red arrows) dropdown con-
trols. Attribute dropdown presents the options of variables that can
be plotted on the axis. Sub-attribute dropdown presents options for
the level of a hierarchical attribute to use as the attribute, or the type
of aggregation to use (sum, average, or count). 37

16 Keep-only & exclude controls for filtering selected glyphs. Activating
a filter presents a filter badge on the right. The badge can be tapped
to toggle the filter, or swiped towards the right to remove the filter. . 38

xi

17 Layout badges in the add-view panel resemble the layout of views added
on the canvas. The badges can be swiped left or right to remove the
corresponding views from the canvas. 39

18 A subset of advanced selection actions. The left thumb clutches while
the right hand performs selection operations. 40

19 The scatterplot visualization system running on an Apple iPad. . . . 45

20 Interaction techniques used for primary tasks in the prototype running
on an Apple iPad. 46

21 Time taken by participants to perform terms. A) Broken down by each
question. B) Broken down by each participant. 54

22 The evolution of the edit-selection feature. a) The selection rectangle
with circular handles. The handles can be dragged to edit the edges.
b) Each finger in a pinch gesture controls the movement of an edge of
the selection rectangle. Here, movement of the fingers in x-direction
controls the edges. c) The entire space adjacent to an edge outside the
rectangle controls the edge. 57

23 The Tangere system interface. The panels are placed beyond the screen
and can be brought in with a gesture. 60

24 User begins a drag gesture on the y-axis to begin selection and sub-
sequently moves away from the axis while continuing to control the
selection. 65

25 User begins a two finger pinch on the x-axis and then moves away.
Notice that user’s fingers do not need to stay horizontal. 66

26 Clutch-modified gestures and their mapping to operations. The clutch-
ing action is highlighted using a blue halo. a) Clutch + tap gesture
activates the generalized selection operation. b) Clutch + drag for
single selections scrubs the selection on neighboring points. c) Clutch
+ drag inside a rectangular selection creates a duplicate. d) Clutch
+ drag on the axis creates a new rectangular selection that intersects
with existing selections. Notice the color difference in selected and
non-selected portions. e) Clutch + pinch for multiple glyphs grows
or shrinks the are of selection. f) Clutch + drag + pinch for single
selections reveals a lens with zoomed in region. 71

xii

27 Generalized selection. a) User taps on the screen with two fingers
to activate the generalized selection menu. b) To scroll through the
list of attributes, user drags a finger vertically. c) For hierarchical
attributes, user drags horizontally to access other levels of hierarchy.
d) For quantitative attributes, the scented widget displays the selected
and overall range of selection. Using a two finger pinch, user can modify
the extents of the selection. 76

28 Components of Tangere. 78

29 Desktop metaphor proposed by Alan Kay [67]. 80

30 Digital ‘book’-like interface [35] . 81

31 Smalltalk [39] . 81

32 Rooms interface [49] . 82

33 TaskGallery [99] . 83

34 Bumptop [2] . 83

35 Tiled juxtaposition style. 85

36 Overlapping superimposition style. 87

37 Tiled with scrolling. 88

38 Overlapping with scrolling. 88

39 Mac OS Exposé . 90

40 HUD in SublimeText . 90

41 A subset of possible layouts for views on the canvas. 96

42 Layout of tags in the Add View menu matches that of the views. . . . 97

43 A view being repositioned. Green zone depicts the resulting frame if
the dragged view is dropped. 98

44 Tangere’s features that received high discoverability scores. 112

45 Tangere’s features that received low discoverability scores. 113

46 Brushing in barcharts. Participants had difficulty interpreting the
highlighted portions of the bars in the lower barchart. 120

47 A handle was added to the top of the filter menu to make the menu
more discoverable. The panel could be brought into view by dragging
with the handle or tapping on it. 121

48 A majority of the participants could not locate or interpret the labels
representing the size of the active data in the two systems. 135

xiii

49 Similarity between Vizable’s (a) filter panel and (b) change attribute
panel. Both panels appear in the same location on the left and with
the same slide-in animation. They also use the same visual style, and
contain the same list of attributes. Thus, participants often mistook
one for the other. 144

50 Linechart view in a) Tangere b) Vizable. In Vizable, the linechart uses
semantic zooming, thus the view at each state displays aggregated
values. In Tangere, the linechart displays each event individually, ag-
gregating only at the level of each day. Thus, the view is noisy, and
ended up being less useful for participants. 145

51 A chart can be removed by dragging the corresponding badge in the
add-chart panel towards the right or left. Participants did not find this
interaction to easily discoverable . 146

52 A snapshot of the questions created by P5 for the video games sales
dataset. 154

53 A snapshot of insights identified by P5 on the video games sales dataset.155

54 The two axis-based operations that used swipe. Hold + swipe activated
the sort operation, while simply swiping activated the rectangular se-
lection. 158

55 Filter menu. Participants were concerned with the usability of the
menu. For quantitative sliders, the handles were difficult to move to a
specific value. For categorical values, it was cumbersome to find one
option from the large list of options. 159

56 The visualization pipeline describing the (step-wise) process of creating
visual representations of data. 170

57 Sample movies dataset . 181

xiv

SUMMARY

Multitouch input is now ubiquitous and the popularity of devices using it has

grown tremendously in recent years. The ability to directly touch and manipulate

data on the screen without using any intermediary devices is very appealing to people.

This has resulted in a new generation of applications that are developed entirely for

touch screens. However, one area with only a limited exposure to touch-based input

is information visualization. This is in part due to the constraints of designing for

touch: the absence of keyboard and mouse, typically small screen size of handheld

devices, and the dependence of visualization applications on widgets such as buttons,

sliders, menus, and dialog boxes.

Touch input raises interesting questions for information visualization: What does

it mean for visualization tools to exist and be effective in a cursor-less world? How

do visualization techniques designed over the past 30 years adapt to interfaces devoid

of mouse-input? Conversely, does touch input lead to increased efficiency or affect

the way we understand data with visualizations? Through my work, I address these

questions and others.

Specifically, I understand, design, and develop capabilities for analyzing data

within an information visualization system for tablet devices. I explore appropri-

ate and effective visualization schemes for exposing crucial insights from data on

tablets. I also develop new interaction techniques to support the rich set of opera-

tions, including advanced capabilities such as multiselection and layout, that people

expect from information visualization systems. Through three evaluations, I capture

the strengths of the system’s utility and usability, both in short-term and long-term

usage, and in comparison with a publicly available system.

xv

CHAPTER I

INTRODUCTION

With the advances in human-computer interaction in the Post-PC era, the direct

input modality of multitouch has been brought to consumers to deliver amazing new

experiences. Multitouch is now ubiquitous and the popularity of devices using it for

input has grown tremendously in recent years. Devices such as smartphones and

tablets constitute a significant portion of all computer sales today1. The widespread

proliferation of these devices raises the question: What made this adoption feasible?

Clearly, mobility has a significant role to play. The handheld devices combine sub-

stantial processing power and considerable battery life in a form factor that is light

and convenient. Moreover, unlike desktops, these devices are untethered from the

constraints of fixed wires and connections.

But perhaps a big reason for a successful widespread adoption is the nature of the

input — multitouch. The ability to directly touch and manipulate data on the screen

without using any intermediary devices has a very strong appeal to users [12]. In

particular, novices benefit most from the directness of touch screens. Touch input is

easy to learn, and for certain tasks, far more effective than cursor-based input [108].

This has resulted in a new generation of applications that are developed entirely for

touch screens. At the same time, a significant percentage of new users are embracing

these touch-based devices as their first and only device.

A prominent effort from the past decade has been to bring the wide range of

applications that people use on desktops to touch devices. These include websites,

1Gartner: “By 2018, More Than 50 Percent of Users Will Use a Tablet or Smartphone First for

All Online Activities”, http://www.gartner.com/newsroom/id/2939217

1

desktop publishing applications, word-processing applications, programming environ-

ments, and other similar domains. As a result, applications that gained prominence

on desktops, such as Microsoft Office, Autocad, and the suite of Adobe applications,

are now available for the touch platforms.

Early work in this space centered around replicating the functionality available on

desktops. However, the resulting experiences were often restrictive and did not fully

leverage the set of gestural interactions that touch-based interfaces provide. Subse-

quently, web designers and developers crafted the responsive web design paradigm

that allowed websites to automatically reconfigure based on the type of device. Since

the results were effective, desktop-class applications began using similar techniques,

though with limited success. However, as the adoption and capabilities of touch

devices progressed further, more nuanced and tailored programming styles were de-

veloped for them. Today, a vast majority of applications are developed specifically

for touch devices, often before desktop applications [135] and, in several cases, only

for touch devices.

One area that has only had a limited exposure to touch-based input is information

visualization. This is in stark contrast to the range of systems available on desktops,

including Tableau2, Spotfire3, Qlik4, PowerBI5 and Microsoft Excel. Some initial

explorations do exist, including complementary applications for Tableau and Spotfire

on tablets. However, these systems have largely been second-screen experiences for

the desktop versions, focusing more on visualization consumption than visualization

creation or analysis.

The limited development of information visualization applications for touchscreens

results from the challenge of designing and implementing the interface. The size of

2Tableau, www.tableau.com
3Spotfire, spotfire.tibco.com
4Qlik, www.qlik.com
5PowerBI, powerbi.microsoft.com

2

handheld touch-devices is a limitation for data visualization. Perhaps more impor-

tantly, information visualization applications generally have many small visual objects

to select and manipulate, and they contain many interactive widgets such as buttons,

sliders, menus, and dialog boxes. Desktop information visualization applications typ-

ically make extensive use of a WIMP (window, icon, menu, pointer) interface. Trans-

lating visualization interfaces and interactive operations to a finger-directed multi-

touch interface without a keyboard and mouse is a challenging problem [72].

Touch input raises interesting questions for information visualization: What does

it mean for visualization tools to exist and be effective in a cursor-less world? How

do visualization techniques designed over the past 30 years adapt to interfaces devoid

of mouse-input? Conversely, how does touch input affect our interaction with visu-

alization tools? Does it lead to increased efficiency or affect the way we understand

data with visualizations?

“Going beyond mouse and keyboard” has been identified as a a topic worthy of

further research within the field of information visualization [72]. Isenberg et al. [60]

discuss the visualization space specifically for touch-based surfaces, highlighting three

main types of challenges: a) the technical challenges of understanding, using, and ef-

fectively combining novel displays and their interaction capabilities; b) the challenges

of understanding how to best design data representations and interactions with them;

and c) the social challenges associated with the use of visualization applications in

novel contexts such as museums, meeting rooms, or other non-work settings.

Through this work, I address the first two challenges. Specifically, the goal of

my work is to understand, design, and develop capabilities for analyzing data with

visualizations on touch-based devices.

1.1 Thesis statement and contributions

My research is captured by the following thesis statement:

3

Through an appreciation of the opportunities and constraints of

touch input, it is feasible to design an information visualization

system for tablets that replicates the analytical capabilities of

desktop-class visualizations, and is simple and effective for users.

My work makes three main contributions.

• I identify appropriate and effective visualization schemes for exposing crucial

insights from data on a touch-device.

• I explore interactive interfaces that are effective for these visualization schemes,

and coordinate their design across techniques.

• I identify and develop new interactions to support the rich set of operations on

these techniques that people expect from information visualization systems.

1.2 Opportunities and Challenges with Touch

Understanding the behavior of touch-input is a complex task since touch-input is

a nuanced technology. Research on multi-touch interfaces dates back to the early

1980s at IBM, Bell Labs, the University of Toronto, and other research centers [100].

These efforts produced a variety of devices that demonstrated the potential for input

technologies that rely on hand and finger gestures. The research also produced several

variants of the touch technology. Touch screens were introduced that differed on the

number of simultaneous touch-points detected, types of input detected (touch vs.

pen), precision of location returned, and hand postures detected (fingers vs. whole

hand), among others.

With the commercial introduction of multitouch, the technology has matured and

stabilized. Apple introduced the first mass-market consumer multitouch device in the

form of iPhone. For a majority of the devices people use today, the technology is sim-

ply that — a multitouch screen that can detect more than one (often up to 10) touch

4

points that are indistinguishable from each other. Recently, other capabilities such as

pressure-sensitive pen and touch input have also been integrated into touchscreens.

However, these capabilities are currently limited to a few device models.

Considering the multitouch screens that are standard today, one faces several

challenges when designing for them.

1. Screen size and input size: Compared to desktops, touch devices have both a

smaller screen and larger sized input — a finger. For visualization applications,

this restricts the space for presenting data views. The imprecision of touch [56]

adds more constraints, e.g., the minimum size of a glyph, further restricting

data density.

2. Lack of Hover : Touch interactions do not provide a hover state in the way mouse

pointers do. As a result, certain features are not available, such as cursors that

change to depict available actions or tooltips with data labels.

3. Occlusion: Occlusion of the screen caused by fingers, hands, and arms when

interacting with a touch screen is a nuisance [120]. The drawbacks amplify for

visualizations since the view contains glyphs that are small, and can be easily

occluded.

4. Lack of keyboard input : In the absence of a physical keyboard, acquiring user

input becomes difficult. The on-screen keyboard is an option, but it causes

significant occlusion of other views. Absence of a keyboard affects performance

of widgets that might need direct specification of values, such as sliders.

5. Tactile user feedback : The absence of tactile feedback is a big differentiator

between multitouch interactions and those with mouse and keyboard. Tactile

feedback can improve performance and decrease error rates [55]. Technological

alternatives include using vibration and acoustic feedback, or providing visual

5

response at touch location. But these are ineffective substitutes that cause equal

amounts of distractions.

6. Grip: On mobile touch-devices such as smartphones and tablets, while the

dominant hand is used to operate the view, the non-dominant hand is primarily

restricted to holding the tablet. Thus, while it is possible to use two-handed

gestures, employing them constrains the user to place the device on a fixed

surface.

Conversely, touch devices provide several opportunities for as well. Mobility is an

obvious benefit, since it holds the promise of increasing the utility of these devices

to new usage scenarios and locations. Touch-based gestural input also presents an

interesting opportunity in being more direct and natural compared to cursor-based

input. That is, gestures can be more expressive. Thus, a system leveraging touch

in an effective manner could potentially support a wider variety of features with

fewer UI elements than possible on desktops. Additionally, while the screen size of

touch devices is a constraint, it is also an opportunity for visualization systems. In

general, consumer applications designed for tablets tend to be much simpler than their

desktop counterparts. This change is achieved by stripping down the functionalities

of these applications to a minimum, resulting in applications that are much more

approachable for novice users. For complex applications such as visualization, I see

this as an opportunity that could lead to a wider audience.

1.3 Variations of Multitouch Devices

Consumer touch devices can broadly be categorized into three types - smartphones

and wearables, tablets, and large-touch displays. The chief basis for this differentia-

tion is the size of the displays. Smartphones and wearables typically have a less than

7” screen. Tablets extend between 7” and 15” screen sizes, with the 10” screen being

6

the typical display. All devices with a screen greater than 15” are categorized under

large-touch displays.

Although the screen size affects the use cases associated with each device type,

all three categories of devices have a unique relevance for the visualization domain.

Differences in the screen sizes result in each device offering very distinct affordances.

These affordances can make a particular surface more amenable to certain types of

visualizations.

1.3.1 Smartphones

An exponential adoption of smartphones has occurred in the last decade. During this

time, these devices also evolved tremendously, both physically and technologically.

Smartphones of today are faster, thinner, and lighter than the ones from last year.

People carry their smartphones at all times and in all places. They are also more

powerful than before — a typical smartphone today supports a breadth of sensors,

trackers, and connectivity options. Further, they now connect to a constantly in-

creasing web of peripherals, such as smartwatches, head-mounted displays, activity

trackers, and others.

The web of sensors and connectivity provide a great opportunity both for collecting

data locally and accessing data from other sources. This amount of available data

promotes the need for solutions to analyze it. Among others, one benefit of analyzing

data in the context it was collected in is the significant reduction in latency. [1].

With this motivation, researchers have explored the area of mobile visualizations in

the past. Buering et al. [16] conducted a study where they explored interaction with

scatterplots on small screens devices. Karstens et al. [66] used hierarchical graphs and

networks to visualize the World Wide Web on a mobile phone. Yoo and Cheon [138]

use a circular radial layout to display hierarchical data on a small screen.

However, a big limitation of any smartphone for visualization related tasks is the

7

screen size. The form-factor and ergonomics of the phone are not capable enough to

support rich visualization analysis of the type I intend to focus on in this work. This

includes features such as multiple simultaneous visualizations, brushing and linking,

detail-on-demand views, and filter widgets. I observed these limitations in an initial

exploration of visualizations on handheld mobile devices. The aspect ratio of the

screen of these devices is typically 3:2. As a result, in portrait orientation, the screen

cannot accommodate a visualization in full, while in landscape orientation, the screen

lacks sufficient space needed to place necessary widgets.

Thus, while it is feasible to design applications with limited analytical capability

for smartphones, it is difficult to envision a system that would effectively replicate

the capabilities of the desktop-class visualization systems.

1.3.2 Large-touch displays

Touch devices in this category span between screen sizes of 15 to 80 inches. Screens of

this size appear either as large horizontal surfaces or as vertical flat screen televisions.

These devices are currently sold by Microsoft6, Samsung7, and Tabler8. Ever since

the first prototypes were introduced, the large surface area available for interaction

piqued the interest of researchers across a diverse set of domains, including infor-

mation visualization. The scientific visualization community has since employed the

screens for application for astronomy [37], geology [117], maps and geospatial, and

3D scientific data [139]. These screens have also been explored as parts of museum

and other public displays.

These devices afford two key opportunities for information visualization. First,

they provide a larger, discretized display space for analysis, so users can visualize

more data at a given time. Second, they allow the distribution of visualization tasks

6Microsoft Surface Hub, www.microsoft.com/microsoft-surface-hub
7Samsung 65-inch Smart Display, www.samsung.com/us/business/digital-signage-solutions
8Tabler Large Multi-Touch Screen TV Monitor, tabler.tv

8

across individuals so that they can work independently when required. These oppor-

tunities have been leveraged in the past. Cambiera [59] is a collaborative, document

visualizer than runs on a multi-touch tabletop display. Group members can individ-

ually search for documents, browse through search results, and read documents, or

use collaborative brushing and linking features to view where others have found or

read similar documents. Similarly, Bohemian Bookshelf [118] is a tool that supports

serendipitous discoveries in the context of digital book collections. The tool runs on

a large vertical multitouch display and consists of five interlinked visualizations that

offer unique overviews of the collection.

These examples highlight the potential of large high-resolution displays for more

effective and engaging ways of interacting with visualizations. Introducing visualiza-

tions in public and collaborative settings can promote visualization use to a broad

range of users beyond the traditional audience of data analysis experts.

1.3.3 Tablets

Tablets are handheld touchscreen devices with a display size between 7 and 15-inches.

The history of tablets dates to early 1990s when Microsoft, Apple, and IBM intro-

duced early versions of these devices. These versions were designed to “imitate” a

notebook, and used pen-based input for interaction. This style of input continued for

more than a decade, and devices such as hybrid pen+touch laptops were also intro-

duced. The first commercial device to completely transition to multitouch input was

the Apple iPad that was released in 2010. Since then, the worldwide sales of tablets

has reached 195 million (2013) and is projected to reach 370 million by the end of the

next year9.

This massive adoption can in large parts be attributed to the ergonomics of the

9Gartner: “By 2018, More Than 50 Percent of Users Will Use a Tablet or Smartphone First for

All Online Activities”, http://www.gartner.com/newsroom/id/2939217

9

device. As with smartphones, the transition to touch encouraged a rethinking and

redesigning of the interface on tablets. Consequently, the number of useful apps avail-

able to people grew tremendously. The increase in availability of these applications

brought more people to the tablet platform. When compared to smartphones, tablets

have a larger screen that increases the versatility of the device to more advanced tasks.

Further, compared to wall-sized displays, tablets are mobile and portable, providing

the opportunity for the devices to be used across locations and usage scenarios.

1.3.4 Target Device Type

The principles for designing applications for each of the three device types vary sub-

stantially and results of a design exploration on one device only partially permeate

to the other devices. Thus, to narrow the focus for this work, I chose tablets as the

platform to focus on. Tablets offer the right combination of computational power,

screen size, types of input, and mobility. The focus of my research is to create rich

and powerful capabilities for data analysis with visualizations. Because I intend for

this experience to be designed for a single user, the goal is not to explore features such

as multi-user collaboration and cross-device interactions. Tablets serve this use-case

as they are inherently personal and intended for a single person’s use.

Tablets offer one additional benefit. From my experience with building and using

visualization systems on desktops, I have a good understanding of the effectiveness

of these tools. Among touch-devices, tablets are most analogous to desktops and

laptops because of their comparable screen-size and processing capabilities. I can

leverage this similarity both as a reference for designing the features of the tablet

application and to evaluate them once the design is complete.

1.4 Themes

For my exploration of visualizations on touch devices, I identified research themes to

steer the design of Tangere. Similar to guidelines, these themes assisted me in taking

10

decisions when multiple options were feasible. However, unlike guidelines, I intended

for the themes to affect the design at a much higher level. I believe that the role of

these themes was vital in the design-centric research that I undertook. Because of

the open-ended nature of the project, often several possible directions were feasible

for the system that I was building. Themes provided one way to tie the exploration

into one consistent block. They also provided a means to evaluate the system that

resulted from this exercise. For this work, I leveraged three themes that I present

below.

1.4.1 Novice Users

I targeted my research at people who do not have any prior experience using visual-

izations or visualization tools. The system needed to, thus, be designed to support

uncertain, inconsistent, and distracted [17] behaviors. The topic of designing for ex-

pert versus novice users has been debated in several domains, and designers have

adopted various approaches. The standard approach is to target only one of the two

groups of users. Another approach is to develop two independent applications, mar-

keted as the Basic and the Pro version. A third approach is to integrate the two in

one single application as two separate modes. In Photoshop, for example, one can

activate a mode where the workspace displays advanced editing features.

A fourth approach uses the same principle of supporting both novice and ad-

vanced users within one interface. However, instead of providing separate modes, the

functionality is carefully fused together. The premise is that the system provides spe-

cific mechanisms for the user to systematically transition from a novice to an expert.

This can also be described through the concept of threshold and ceiling: the system

has a low threshold, so the users with low proficiency are able to use it effectively.

Simultaneously, the system also has a high ceiling, so that users with expertise can

complete a larger number of tasks too. The features, however, are designed such that

11

novices use only the basic functionality without being distracted or discouraged by

the advanced functionality that may exist.

In desktop-based visualization applications, the prevailing trend is to target the

expert users. These applications provide a rich set of operations, often at the expense

of more complexity. The need for a high number of features is partly expected —

analyzing data is a complex task, and a large operation set is necessary. However,

current versions of the applications such as Tableau and Spotfire take the form where,

although the ceiling is sufficiently high, the threshold of user expertise required to use

them is fairly high as well. The application interfaces are complex and feature dense.

New users are often unable to use the system right away and require considerable

training to grasp the functionality provided.

The move to touch devices provides a great new opportunity to rethink the design

of these applications. Rather than viewing this simply as a transition from the desktop

to tablets, the visualization interface can be architected and designed in a careful

manner so as to accommodate both the novice and the advanced users in equal

measures. By leveraging the theme of targeting novice users, I was able to embark

on a strategic path that would encourage the development of solutions which achieve

this goal.

1.4.2 Simplicity

The second theme for my work is Simplicity. A simple interface is one where a user

is able to achieve her goals in such a way that the interface is invisible to her [84].

Simple interfaces avoid unnecessary elements and are clear in their message. In this

regard, simplicity relates closely with the previous theme.

However, simplicity is not just a function of things absent from an interface, but

equally of things present on it. Simplicity is derived from how one explains the

presence of an element on the interface and how she understands how to use it.

12

Since the interface drives our behavior, operating an interface that we do not fully

understand generates a feeling of dissonance and lack of control. Complex software

takes away control by forcing people into unplanned interactions, confusing pathways,

and surprising outcomes.

To achieve simplicity, the designer must fully understand the usefulness of the

system, and the usefulness of its every constituent10. In his book, Maeda describes

the ten laws of achieving simplicity, which include reducing, organizing, saving time,

and adding emotions [77]. Using these principles, I hope to design an interface that

is simple. It is unclear if simplicity can be accurately measured. However, adapting

best practices, such as keeping users in control by regularly surfacing system status

and consistently giving then insight into what to expect, would certainly lead the

design of the system in the right direction.

1.4.3 Delight

This theme caters to the role of an application to affect emotional change. The feeling

of delight comes from subjecting users to an unexpected reaction. The instruments

available to visualization systems are graphics and animation.

Graphics consist of the playful and friendly user of colors and shapes that afford

approachability. They also provide character to the interface. One example is the

design strategy employed by Android called Material Design11. The specification

recommends the use of specific color palettes and visual effects such as shadows that

give the interface a distinct identity. An interesting mix of visual feature that appear

consistently across the operating system are pleasing and comforting for the user.

Animations are used for responding to user actions on the interface. Motion has

been shown to be highly effective at attracting attention, facilitating transformations

10Buchanan [15] defines usefulness as a product’s clarity of its own content and purpose.
11Google Material Design, material.google.com

13

of position, size, shape, and color, and for communicating causality and intentional-

ity [45]. In visualizations, the role of animations has been studied in detail. Robert-

son et al. [98] explored the effectiveness of animation in trend analysis. Heer and

Robertson [45] presented the DynaVis framework for transitioning between different

visualization techniques. They also introduced key concepts on staging the charac-

teristics of glyph motion for maximum effect. Other work has explored best practices

for encoding attributes to the properties of the animation [57, 119].

However, animation plays another key role — that of emotional engagement [119,

126], engendering increased interest and enjoyment. Animations add character and

fun, making a product feel unique and helping users relate to it more. However, more

importantly, animations engage users. More time spent engaging with an interface is

more time spent learning how to use it. In a complex design environment, such as

ones visualization applications tend to be, motion and animations can be useful in

attracting and connecting with users.

Graphics and animation are critical pieces of the user experience. In the system

I designed, I employed these features extensively. Using these features, I intended to

increase the emotional appeal of the interface and, consequently, the approachability

of the system.

1.5 Organization

The rest of this dissertation is organized as follows.

In Chapter 2, I provide a detailed literature review of related work and discuss how

my thesis relates to and builds on existing work. Since my work lies at the intersection

of information visualization and natural user interfaces, I organize the chapter into

the key themes of interaction in visualization, interaction on touch interfaces, and

visualization on touch interfaces.

Chapter 3 outlines the space of possible solutions that are relevant to my research

14

and provides a high-level summary of the system that I have built, called Tangere. The

subsequent chapters provide a detailed description of the system. The chapters map

to the different stages of my research, beginning with Chapters 4 and 5 that describe

my initial explorations of the Scatterplot technique and the subsequent expansion to

Multiple Coordinated Views.

In Chapters 6 and 7, I present the advanced interactive features for selection and

layout that I designed for Tangere. Chapter 8, 9, and 10 detail the three evaluations

that I conducted to measure the effectiveness of Tangere and the degree to which it

succeeds in achieving the goals I set out with. The three studies have been designed

with unique objectives, and capture very different facets of the system.

Finally, in Chapter 11, I summarize my research and the contributions that I

make. I also discuss future plans for Tangere and propose new research directions,

including addressing the entire visualization pipeline, and integrating multimodal

forms of input.

15

CHAPTER II

RELATED WORK

Since my research is situated at the intersection of visualization and natural interfaces,

the related work for this thesis broadly covers three topics of research — interaction

in visualizations, interaction with touchscreens, and visualizations on touch devices.

2.1 Interaction in Visualization

The research exercise of bringing visualizations to touch interfaces is similar to work

done initially to develop visualizations for desktops and cursor-based interfaces. The

method used then was to study visualizations through the three building blocks of

representation, presentation, and interaction [114]. Decades of research has produced

a rich understanding of the principles and challenges of representing data. Over this

period, we have assembled a wide variety of visualization techniques. Heer et al. [47]

present this in their survey of the commonly used visualizations.

With the switch to non-traditional inputs, however, it is interaction that becomes

the critical centerpiece. The role of interaction has been well explored and researchers

have presented several lists of the types of interactions one encounters in information

visualization. Dix and Ellis [28] list the activities of highlighting and focus, accessing

extra information – drill down and hyperlinks, overview and context, changing pa-

rameters, changing representation, and linking representation, among others. Wilkin-

son [130] provides the broad categories of filtering, navigating, manipulating, brushing

and linking, animating, rotating, and transforming, each with specific sub-categories

and examples. Other similar characterizations have also been proposed by Ward &

Yang [125], and Keim [68].

In developing the notion of a “science of interaction”, Pike et al. [95] categorized

16

interactions into two groups: 1) the low-level interactions between a user and the

controls of a specific user interface and 2) the higher-level interactions between a

user and the information space. They described the role of interaction as that of a

reasoning aid for exploring various attributes of the data space as one develops models

and better understanding of the underlying data.

Interaction has also been analyzed through the lens of people’s tasks and goals. Yi

et al. [137] studied a wide range of interaction techniques in information visualization

research. They categorized the interactions within these techniques into seven main

user intents:

1. Select: mark something as interesting

2. Explore: show me something else

3. Reconfigure: show me a different arrangement

4. Encode: show me a different representation

5. Abstract/Elaborate: show me more or less detail

6. Filter: show me something conditionally

7. Connect: show me related items

These taxonomies are relevant for my work since they serve as a starting point

for designing the functionality of a visualization tool. Since touch devices provide

a constrained environment, the taxonomies also help steer the prioritization of the

different aspects of design. This includes guidance on interactions that are specifically

germane to and particularly useful within information visualization, such as dynamic

query for filtering [112], brushing and linking [20], drill-down, and various forms of

selection [46], among others.

17

Finally, a notion particularly relevant to touch-based visualizations is fluid in-

teractions. Elmqvist et al. [32] define “fluid interactions” through three components.

First, interaction should promote staying in the flow. Here flow is a state of immersion

in an activity where the participant has a high degree of involvement and concentra-

tion, is at a loss of self-consciousness, and is engaged in productive and rewarding

outcomes. Second, interaction must provide direct manipulation of the objects (in

this case, data) at hand. Third, fluid interaction should minimize Norman’s [87] gulf

of evaluation (difference between the system’s state and the user’s perception of that

state) and gulf of execution (difference between the allowable actions for a system

and the users intentions).

2.2 Interaction on Touchscreens

Interaction with touchscreens has been a topic of significant research for over two

decades, though devices with touch-based input have only become mainstream in

the past few years. Early work focused on studying the benefits of touch-based in-

teraction over cursor-based interaction, with studies finding touch interaction to be

faster [65, 92]. Sears and Shneiderman [108] showed that for a single target selec-

tion task, direct touch input outperformed indirect mouse input. These studies were

conducted on touchscreens that detected a single point of contact. Later, Diamond-

Touch [26] technology pioneered multifinger and multiuser detection, and eventually

culminated into the development of the Microsoft Pixel-Sense (formerly Surface) dis-

plays. These devices were instrumental in early research on the guidelines for usability

on multitouch screens.

Special emphasis has also been put on guidelines for both the design of user

interfaces and the use of gestures on touchscreens. Benko et al. [12] presented three

guidelines for touchscreen design — (a) keeping the interface simple, (b) providing

18

an offset to the cursor when needed, and (c) enabling the user to modify the control-

display ratio. Hinckley & Wigdor [54], in a detailed discussion on the requirements

of a touch system, mention that a designer must consider the sensor, the feedback,

the device, and interplay between all the interaction techniques.

Figure 1: Buxton’s three state model of graphical input [18].

For touchscreen interactions, Hinckley et al. [53] adapted the three-state interac-

tion model (out-of-range, tracking, and dragging) for cursor-based input presented

by Buxton [18] (Figure 1) to a two-state model (out-of-range and dragging) for touch

screens. Wigdor & Wixon [129] provide guidelines for both gesture recognition and

the use of gestures, and outline the fat-finger problem — inability of fingers to achieve

the precision of a cursor. Yee [136] suggested guidelines for finding suitable gestures:

systems should use appropriate metaphors, and the gestures should be easy for a sys-

tem to recognize. Wobbrock et al. [133] extend the guidelines by gathering gestures

from users through a guessability study. Morris et al. [80] found that participants

preferred a user-created set of gestures to an expert-created set for standard tasks.

Considerable attention has also been paid to two subareas of touchscreen interac-

tion — improving selection and expanding gesture vocabulary.

19

2.2.1 Issues with precise selection

Selecting objects in a dense area is a critical task in techniques such as scatterplot and

linechart. However, selection in a dense area requires very precise finger action and is

considerably difficult due to the inherent imprecision of touch input. The imprecision

arises as a result of the fat-finger problem [56] and the occlusion that results from

it [96]. These issues of imprecise selection have been well documented in the past, and

researchers have presented several techniques to mitigate them. Early work included

take-off [96] that placed the cursor at a fixed offset from the location of the touch, and

zoom-pointing [11], where the touch area was scaled up to allow precise selection of

the target. Esenther and Ryall presented DTMouse [34], a technique that positioned

the cursor at the centroid of two fingers. Dragging the fingers on the screen moved the

cursor, whereas tapping with a third finger toggled mouse-down mode that allowed

an object to be dragged.

Over the years, several other techniques have been proposed. Moscovich [81]

presented precise selection techniques for closely placed widgets by enhancing the

pointer activation areas. Benko et. al. [12] performed a comparative evaluation of

several unimanual and bimanual techniques. While certain techniques performed

better than others in specific configurations of use, the overall results suggested that,

unlike cursor-based interfaces, no ideal technique for precise selection on touch-screens

existed. The effectiveness varied based on the ergonomics of the device (smartphone

vs. tablets), number of fingers used, and the application context (e.g. sketching

requires very precise movement).

More recently, Au et al. [5] presented the LinearDragger technique for selecting an

item from a dense cluster of items, closely resembling the selection task in a scatterplot

(Figure 2). Users begin by initiating a drag gesture at the position of the target object.

This reveals a zoomed-in view of the target area, with the object nearest to touch

location selected. As the user drags the finger away, the system sequentially scrubs

20

Figure 2: The LinearDragger selection technique. [5].

through each of the neighboring objects. Lifting the finger commits the selection.

Benko et al. [12] recommend that selection should be simple, since the ability

to directly touch an object to select it is a very appealing aspect of touch screens.

Adapting this principle is fundamental to designing appropriate selection mechanisms,

specifically for techniques such as scatterplots and linecharts.

2.2.2 Limited Vocabulary for Specifying Commands

The predominant trend when designing systems for touch-devices is to adopt the

standard vocabulary of gestures that people employ in their everyday use, i.e. a com-

bination of tap, pan, pinch, and rotate gestures. While this approach has obvious

benefits, namely leveraging people’s familiarity with the gestures, a limited vocabu-

lary limits the number of features that can be supported in an application. Such a

limitation is particularly pronounced in the case of visualization applications due to

the general feature-richness of these applications [72].

To address these limitations, researchers in HCI have explored several alternative

methods for augmenting the input to the system. The methods have often aligned to

one of two main categories — multitouch menus and touch overloading.

2.2.2.1 Multitouch Menus

As the number of gestures increase, the cognitive overhead of memorizing the gestures

also increases. Menus help in reducing this overhead by encouraging recognition over

recall. Recent literature has proposed several menu designs on touch screens. The

21

Figure 3: The Pin-and-Cross marking menu [75].

common thread between these designs is the use of an explicit gesture to reveal a

menu around the location of the fingers.

Marking menus are the most common example of menu design on touch screens.

Originally designed for cursor and stylus-based input, Lepinski et al. [73] adapted the

technique to touchscreens, using finger-chords (combination of fingers making contact

with the screen) for interaction. Bailly et al. [7] extended the design to bimanual

interaction and replaced chords with number of fingers. Recently, Damaraju et al.

presented Multi-Tap sliders [23], a chorded-menu design that combined the above

technique to also allow parameter adjustment using index finger movement. Finally,

Luo and Vogel [75] presented a unique marking-menu design wherein the user selected

an option by crossing it with the nearest finger (Figure 3).

2.2.2.2 Touch Overloading

A second class of solutions for augmenting touch-input involves touch overloading:

discriminating between different type of touches to enable distinct actions. This

discrimination can be made based on the properties that a touch instance reveals,

such as location on the screen, direction of movement, velocity, angle of finger, input

22

Figure 4: The FastTap menu technique [42].

type (finger vs. stylus), duration, number of simultaneous fingers, and more recently,

shear and pressure. A combination of these used together can potentially result in an

extensively large vocabulary of gestures.

1. Location: Although every touch instance on the screen is differentiated by its

location, it is also feasible to associate high level actions to specific locations on

the screen. For example, in the BiTap technique [122], buttons are positioned

nearest to the location where the non-dominant hand grabs a touch-device.

2. Multiple, sequential touches: While simultaneous-touches are often used for

zooming and rotating, sequential-touches have also been used as potential de-

limiters for command invocation. For example, Heo et al. [50] used consecutive

distant taps patterns such as Ta-Tap (2 distant taps) and Ta-Ta-Tap (multiple

distant taps) to trigger commands. Similarly, the FastTap technique [42] used

thumb-and-finger touches to actuate commands in a spatially-stable grid-based

menu (Figure 4). The technique supported the novice to expert transition since

a quick thumb-and-finger tap invoked the command without revealing the menu.

3. Pressure, Roll and Shear: Researchers have successfully differentiated touch

events based on pressure, roll and shear. Heo and Lee [51] differentiated strong

23

tap from a gentle tap using phone’s existing hardware. Roudaut et al. [101] used

finger roll to demonstrate 16 elementary gestures, e.g. rolling left was different

to rolling right. Harrison and Hudson [43] used shear, which is a force that is

tangential to a screens surface, to create five classes of advanced interactions.

2.3 Visualization on touchscreens

2.3.1 Research Tools

The importance of information visualization on touch screens has long been recog-

nized but has only recently seen an increased emphasis. Early data visualization

research for computers other than desktop PCs includes systems designed for mobile

devices. Buering et al. [16] presented a zoomable user interface (ZUI) based scatter-

plot visualization for a PDA that used a stylus for input. In a user study comparing

two scatterplot applications, one displaying both a detail view and an overview and

the other displaying only the detail view, participants solved search tasks on a phone

faster with the version without the overview.

As multitouch devices became more common, several research efforts targeted

Figure 5: Cambiera: Collaborative document analysis on a tabletop [59].

24

visualizations on touch-based tabletops, especially the collaboration aspects. Cam-

biera [59] is a visualization system that supports collaborative brushing and linking of

search results (Figure 5). Heilig et al. [48] describe ScatterTouch, a two-dimensional

scatterplot visualization technique that used the concept of multi-focus regions to

support simultaneous, multi-user interactions. Schmidt et al. [107] explore ways to

use multi-touch for link manipulation and graph interaction, while North et al. [88]

compared how people manipulate node-link diagrams on a touch-based tabletop and

a mouse-based desktop. Frisch et al.’s study [36] used the guessability study ap-

proach [133] to obtain user-elicited pen and touch gestures for manipulating node-link

diagrams on a tabletop.

Figure 6: Using pen and touch for data exploration on whiteboards [123].

SketchVis is a system that allows users to sketch visualizations on a whiteboard [14].

The user draws representative visualization constituents such as the coordinate sys-

tem, labels on axes, and some initial glyphs; the system responds by filling in the

chart correspondingly. Walny et al. [123] investigated the use of both pen and touch

for data exploration on whiteboards (Figure 6). Their study explored the interaction

styles people employ, in particular the role of pen and touch for representations and

25

linking.

Within information visualization focused on small-to-medium size screens, only

a few systems have appeared. Baur et al. [8] examined the stacked graph for their

TouchWave system, and developed a new set of multi-touch gestures for scaling,

scrolling, providing context, extracting layers, and many other activities. They noted

that the four design goals of supporting kinetic manipulation, creating integrated in-

teractions, avoiding complex gestures, and considering the viability of the interaction

set drove their interaction designs.

Figure 7: Gesture-driven and WIMP-driven interfaces for analyzing data with bar-
charts [29].

Drucker et. al. [29] highlight the difference between gesture-driven and WIMP-

driven interactions for information visualization applications. They compared two

different interfaces that use a barchart to present the same data (Figure 7). Both

interfaces provided the same functionality. However, the first interface (WIMP) used

interface elements such as menus and buttons for interaction while the second interface

(FLUID) used gestures. In their experiment, participants performed a series of tasks

using both interfaces. Results showed that the FLUID interface performed better

than WIMP. Participants were faster at performing tasks using gestures and also

demonstrated fewer errors. A majority of participants also expressed preference for

the gesture interface.

Rzeszotarski and Kittur [102] present Kinetica (Figure 8), a scatterplot visual-

ization system for tablets that employs zoom lens and razor filter interactions. The

26

Figure 8: Kinetica: naturalistic multi-touch data visualization. [102]

authors enhance the playfulness of the interface using physics-based interactions and

gravity. They compare the performance of the tablet application with Microsoft Ex-

cel for basic data exploration and sensemaking tasks. Study results indicate that

their tablet-based tool was more satisfying for participants, and led to a more holis-

tic understanding of the data they were exploring. The focus is more on exploring

the physics-based affordances and interactions metaphor than on the broader design

space of multi-touch interactions for visualizations.

Recently, interest in understanding the theoretical foundations for visualizations

on non-desktop based interfaces has also grown. In an article that explores existing

research and outlines directions for future work, Lee et al. [72] advocate strongly

for moving past mouse and keyboard interactions for information visualization. The

authors survey multiple forms of post-mouse/keyboard interaction, not just touch and

gesture. They specify the interaction design considerations for the new modalities,

eliciting four principle dimensions: the individual, the technology, social aspects of

interactions between people, and the interspace between a person and the technology.

They specifically identify “going beyond mouse and keyboard” as an opportunity and

27

a topic worthy of further research.

Isenberg et al. [60] discuss the visualization space specifically for touch-based

surfaces, highlighting the technical, design and social challenges in supporting vi-

sualization on touch devices. For touch interaction in particular, they outline the

creation of a gesture vocabulary that is both global to various visualization types and

low in complexity as a central research topic. Jansen and Dragicevic [61] describe

a modification of the infovis pipeline to accommodate beyond-the-desktop visualiza-

tion systems. They suggest unifying the infovis pipeline and instrumental-interaction

model [9] for post-WIMP interfaces that include touch-based interfaces as well as

physical, fabricated visualizations.

2.3.2 Commercial Tools

The space of visualization on tablets has also been populated by commercial applica-

tions, available on operating systems such as Android and iOS. The target domain for

these applications is business analytics, and thus they typically provide dashboard-

based solution. Both Spotfire 1 and QlikView 2 provide second-screen companion

apps for their desktop clients. Users can view their data in standard techniques such

as linechart, barchart and scatterplots. Domo 3 and Roambi 4 are other similar stan-

dalone tools made only for tablets and smartphones. While the techniques within

these tools are interactive, they support only low-level data analysis, targeting users

who view fixed-format data in a static dashboard representation.

An exception to this is Vizable by Tableau 5. Vizable is a data analysis applica-

tion that runs on an Apple iPad. In Vizable, users can import their own data and

1Spotfire, spotfire.tibco.com
2QlikView, www.qlik.com
3Domo, www.domo.com
4Roambi, www.roambi.com
5Vizable, vizable.tableau.com

28

view it using two visualization techniques — linechart and barchart. The two tech-

niques appear in two separate containers titled CategoryWorld and TimeWorld. In

CategoryWorld, data is displayed with bar charts, with data aggregated using sum,

average, minimum, maximum, count unique, or percent of total. In TimeWorld, one

can compare data points across days, weeks, months, and years.

Figure 9: Vizable interface a) Swiping horizontally changes the attribute. b) Two-
finger pinch adds another attribute.

Figure 10: Vizable interface a) Swiping down on a barchart sorts the bars. b) Swiping
left on a bar filters it out. Swiping right filters all other bars out.

The application makes heavy use of gestures and animations. In the Category-

World, the quantitative or the categorical attributes can be changed by dragging them

horizontally (Figure 9a). Dragging vertically changes the type of aggregation used

(sum, average, median). Tapping on the attribute shows a list of all attributes on

the left. Attributes can also be selected from within this menu. Additional attributes

29

(both categorical and quantitative) can also be added by using a pinch gesture (Fig-

ure 9b). Pinching out adds an additional attribute while pinching in removes it.

Finally, quantitative attributes can be converted into categorical attributes by drag-

ging the corresponding attribute from the right and placing it on the left.

The bars can be sorted by swiping down on them (Figure 10a). Dragging a

bar towards the left filters it out, while dragging right filters all the other bars out

(Figure 10b). The filtered items appear in a list on the left, from where they can

brought back in with a swipe. Tapping on them reveals a filter menu where the

properties of the filter operation can be configured.

Figure 11: Vizable interface a) Tapping on the linechart reveals a selection window.
The window can be extended using the handles. b) Snapshot of the view can also be
exported.

In the TimeWorld, the data appears as a continuous linechart. The chart can be

zoomed in with a pinch gesture. Zooming is semantic, so the data aggregation switches

from years to months to, ultimately, individual dates. Tapping on a bar selects the

bar and reveals a selection window. The size of the window can be increased or

decreased using handles on either sides (Figure 11a).

Considerable emphasis has also been placed on features such as importing, ex-

porting, printing, and sharing the visualization views (Figure 11b). Various features

of the system cater specifically to that.

30

CHAPTER III

TANGERE: A TABLET SYSTEM FOR INFORMATION

VISUALIZATION

3.1 Introduction

In this chapter, I present Tangere, an information visualization system that I built for

tablet devices. When I commenced this research, tools for information visualization

on tablets were entirely absent. This strongly influenced my design process as my

goal was not to build on existing research to improve the contribution, but instead

to construct an experience from the grounds up. My aim, thus, was to design a new

interface that supported intuitive, powerful, and useful suite of touch-based interactive

operations on data visualizations. I intended for these operations to be housed within

a tablet system that was similar in concept and outcome to ones we use for data

analysis on desktops.

In the following sections, I provide a high-level summary of the system that I

have built. I begin with presenting the motivations for targeting an analytical tool

over other potential visualization tools. Subsequently, I present Tangere and describe

its different parts. This description helps guide the conversation that follows in the

subsequent chapters, where I provide a detailed account of the different stages of my

design process.

3.2 Envisioning a visualization tool for tablets

What need does a visualization tool for tablets serve and how to target that need?

The domain of visualization-based data analysis tools is very broad. Existing tools

vary extensively in the analytical tasks they serve and on the data types, data sizes,

31

user types, and contexts of use they target. Each category of tools serves a particular

purpose and is, thus, relevant for specific scenarios. However, given the general usage

of tablets and the profile of the users using them, certain tools are more relevant than

others on these devices.

To better identify these tool types, below I list their different categories. The tools

are differentiated based on two factors – usage scenario and data type.

Usage Scenario: In terms of usage scenario, visualization tools can broadly be

classified into three types.

1. Visualization building: The focus of these tools is to allow people to create a

visual representation of their data, with the goal of ultimately exporting or shar-

ing the representation. Over the course of constructing the representation, the

user may gain new insights. For the most part, however, the user is versed with

the insight s/he wants to represent. Extra emphasis, consequently, is placed on

features such as styling and exporting the visualizations.

Examples: Microsoft Excel1, Google Charts2, Plotly3

2. Dashboard - These tools focus primarily on providing quick overview of fixed

format streaming data or data that is constantly updating. Stock market or

company sales numbers are good examples. The dashboard representations are

fine-tuned to be very effective for summarizing data for a time period, but is

not designed for deep analysis.

1https://products.office.com/en-us/excel
2https://developers.google.com/chart/
3https://plot.ly

32

Examples: Google Analytics4, PowerBI5, Domo6

3. General purpose visualization tools - These tools serve the entire pipeline of data

analysis tasks, from importing and cleaning data to exporting findings. How-

ever, the primary emphasis is on enabling people to identify insights through a

diversity of representations and interaction mechanisms. Some advanced tools

in this category can also be used for visualization building and dashboards.

Examples: Tableau7, Spotfire8, Jigsaw [115]

Dataset: Visualization tools can also be differentiated based on the data they are

designed for, with differences existing both in the type and the size of the dataset

that they work with. On one end are niche tools designed to visualize very specific

types of data formats or visualization types, e.g. Gephi9 & Ploceus [74] for network

visualizations and Parvis [44] for parallel coordinates. On the other end are general

purpose tools, such as Tableau and Spotfire, that accept data in a multitude of

formats. However, the predominant format that these tools are optimized for and

excel at is tabular data, existing as spreadsheets or within relational databases.

3.2.1 Identifying the right configuration

From among the possible options of types of visualization tools for tablet devices, the

one I chose was the tabular data analysis tool. The choice was fairly straightforward

as it was the most challenging option. Analysis tools are more complex than the

other options and require considerably more user interaction, which is a challenge to

4https://www.google.com/analytics
5https://powerbi.microsoft.com/en-us/
6https://www.domo.com
7https://www.tableau.com
8http://spotfire.tibco.com
9https://gephi.org

33

Figure 12: The Tangere application. On the interface, the canvas is the central
component. The panel for adding views is to the left, data table is at the bottom,
and the filter menu is to the right. The panels stay beyond the screen and can be
brought in with a gesture.

get right on handheld-touch devices. Consequently, the problem is tougher to solve.

Although visualization building is also an interesting problem, the focus of the

problem, and hence the challenge, is different. For analysis tools, a vast body of

literature exists that investigates how people use representations to analyze data.

Designing tools for visualization creation, however, builds less on such literature.

Instead, the general principles of HCI are more relevant. Lately, there has been

considerable interest in this space, including explorations that target touch-based

devices.

Finally, I did not target a dashboard system as I consider dashboards to be a

subset of the more general analytics tools. Dashboards offer more constrained work

environments, particularly in terms of interactions. There are several differences as

34

Figure 13: A subset of possible layout configurations. The canvas is a 2x3 grid and
can fit upto 6 views.

well. For example, since dashboards are typically used for streaming data, a stronger

emphasis is placed on highlighting the new data and differentiating with the older

data. However, besides a few differences, features within dashboard tools are a subset

of those in analytics tools.

Designing an analytics system serves a broader need. While iPads and other

tablets have not yet gained the prominence in the professional workspace, they are

ideal for personal use. People are also increasingly consuming a large amount of per-

sonal and small-scale data, either generated through personal tracking on wearables

or personal portals such as point of sale terminals. Such use cases serve as a fertile

ground for exploring visualization applications as the need for advanced and deeper

analysis is low, datasets are typically smaller, and the analysis can be conducted with

only a few basic visualizations. Consequently, systems can be designed that contain a

restricted set of features initially, but mature over time to add more advanced features

and serve complex use-cases.

3.3 System Overview

In my research, I used the above argument to design a tablet-based visualization

system for analyzing tabular data. I call this system Tangere10. Tangere is aimed

at novice users unfamiliar with both touch-based interfaces and data visualization

tools. The tool provides a set of intuitive controls to represent and manipulate data.

10Tangere in latin translates to ‘to touch’ and ‘to elicit an emotional response’.

35

Figure 14: Several interactions are common to all visualizations. Here, axis-based
selection is performed on the four chart types.

Figure 12 provides a snapshot of the system. The system consists of an array of

components that work together to support an analytical process. At the core of the

system is a canvas component that contains the visualization views. Four types of

views can be added to the canvas - Scatterplots, Barcharts, Linecharts, and Parallel

Coordinate views. At a time, the canvas can contain one or more of these views, with

up to six views maximum. It consists of a 3x2 grid, where each slot can house a view,

resulting in a total of 14 possible view layouts (e.g. Figure 13), and more than 400

different view configurations.

The visualization views support a range of interactive operations such as selection,

zooming, filtering, and brushing & linking. For several of these, Tangere provides

multiple methods to achieve the desired effect. The methods differ on the instrument

used for specifying the operation and the number of glyphs that are affected as a result.

For operations that are common across visualizations, the interactions employed are

the same. Therefore, selecting and filtering glyphs in barcharts behaves in the same

manner as in scatterplots, linecharts, and parallel coordinate views (Figure 14).

36

Figure 15: Attribute (green arrows) and sub-attribute (red arrows) dropdown con-
trols. Attribute dropdown presents the options of variables that can be plotted on the
axis. Sub-attribute dropdown presents options for the level of a hierarchical attribute
to use as the attribute, or the type of aggregation to use (sum, average, or count).

Each visualization exposes dropdown controls to change the attributes being vi-

sualized. For hierarchical attributes such as date, an additional control presents sub-

categories such as Month, Day of Week, etc. The additional control is also present

in charts that present aggregated data, such as barchart and linechart. This control

lets the user change the type of aggregation used between sum, average and count

(Figure 15).

Apart from the views, the canvas presents a count label at the top right depicting

the number of data items being visualized. When glyphs are selected, the canvas

presents ‘Keep-only’ and ‘Remove’ buttons at the top for filtering the selected glyphs.

If data is filtered in this manner, filter-badges representing each filter operation show

up on the bottom right of the canvas. The badges are colored green and red for

‘keep-only’ and ‘remove’ operations, respectively (Figure 16). The badges are also

interactive — tapping on a badge enables and disables it (and the corresponding

filter operation), and swiping on it towards the right removes it from the view.

37

Figure 16: Keep-only & exclude controls for filtering selected glyphs. Activating a
filter presents a filter badge on the right. The badge can be tapped to toggle the
filter, or swiped towards the right to remove the filter.

A second component, specific to systems that provide flexibility in choice of visu-

alizations (also called Level 2 systems [90]), is a menu widget for selecting the view to

add to the canvas (Figure 12). The four chart types are present as icons that can be

tapped to add a chart. When the application is first launched, the menu is visible on

the screen. When a chart is added, the menu closes and places itself outside the view

area. It can be brought back into view by right-swiping on the left edge. For each

chart that is added to the canvas, a chart-badge with the name of the chart appears

at the top of the menu. When multiple charts are present on the canvas, the layout of

the menu resembles that of the views on the canvas (Figure 17). The badges can be

tapped to highlight the corresponding chart, and swiped towards the right to remove

the chart.

I included two other components that are frequently found in visualization sys-

tems. The first is a set of dynamic query filter controls that allow a person to in-

teractively change the data being shown. These filter options are different from the

‘keep-only’ and ‘remove’ controls as these filters are data-driven and present options

to filter the data based on the range of attribute values. The filter options are housed

38

in a menu that is placed outside the right edge of the screen. A draggable handle on

the top right of the screen can be used to bring the control onto the screen.

The other component is a table presenting the details of the underlying data being

visualized. If no glyphs are selected, the table presents details for all unfiltered data.

In case glyphs are selected, the table presents the data for only the selected glyphs.

The columns of the table can be sorted in ascending or descending order by tapping

on the column header. Tapping on a row highlights the glyphs that correspond to

that row. Similar to the filter pane, the data table can be dragged into view using the

handle placed at the top right of the view. Alternatively, swipe-up and swipe-down

gestures can also be used to summon or dismiss the menu.

Figure 17: Layout badges in the add-view panel resemble the layout of views added
on the canvas. The badges can be swiped left or right to remove the corresponding
views from the canvas.

One operation that I have explored in depth in the context of visualizations is

selection. Across all the chart types, glyphs can be selected in three ways — directly

tapping the glyph, enclosing the glyph within a lasso selection, and selecting a range

of values on the axis11. But these selection operations provide a basic selection mode

where performing new selections overrides existing selections. An advanced state of

11A fourth, indirect mode of selection through brushing and linking also exists.

39

Figure 18: A subset of advanced selection actions. The left thumb clutches while the
right hand performs selection operations.

selection, one that permits modes such as add-to-selection and remove-from-selection,

also exits within the system. The interactions for these advanced selections are the

same as basic selection, but each interaction is preceded by a modifier action called

Clutch. Clutch is the action of placing a finger from the non-dominant hand on an

edge of the screen (Figure 18).

3.4 System Summary

In summary, Tangere contains four components (Figure 12).

C1. Canvas (primary): The canvas contains the visualizations. Initially empty, it can

be populated with one or more views, up to six.

C2. View-gallery (secondary): The gallery shows the available views that can be

added to the canvas. It also indicates views already added to the canvas, and

allows for removing a view from the canvas.

C3. Tools (secondary): The tools component contains features such as “dynamic

query” filter widgets, and options for scaling axes and assigning color.

C4. Details-on-demand (DoD) (secondary): The DoD component presents the un-

derlying data in a tabular form.

The system I described above is a culmination of a series of research explorations.

Since tablet-based tools for data analysis were non-existent at the time I commenced

40

this research, several research challenges existed, stemming primarily from touch as

input (Section 1.2). I have addressed these challenges by phasing them as different

stages of my research.

Overall, I conducted my research in four stages. Each stage presents solutions to

critical portions of the overall problem and provides a platform for the subsequent

stages to be addressed. In the first stage of my research, I focus on a single visualiza-

tion technique and explore it in depth on tablet devices. In the second stage, I extend

Tangere to include a broader set of visualization techniques. The key challenge of

this stage of research is to identify interactions that are consistent across visualization

types. In the third and forth stages of my research, I extend my work to include ad-

vanced features and operations, leveraging complex and novel interaction techniques.

In the following chapters, I describe the four stages of my research in detail.

41

CHAPTER IV

SCATTERPLOT

4.1 Scatterplot

For the first stage of Tangere’s design, I identified scatterplot as the technique to

focus on. A salient feature of a scatterplot’s representation is that it displays every

data item in the view individually. As a result, scatterplots excel at highlighting clus-

ters, outliers, and trends. Decreasing the size of the glyphs and employing opacity

to manage overlap helps achieve a high data density. Small glyph sizes work reason-

ably well for mouse-based interaction because a precise cursor is able to address and

identify individual glyphs. However, this precise resolution is not feasible in the case

of finger-based interaction (the so-called “fat finger” problem [56]), which was one of

the primary challenges for scatterplots on tablets.

Since I focused on a single technique at this stage, I omitted the view-gallery

(C2, Figure 12) component in this stage of the system. To help construct a feature-

complete implementation of scatterplots on a tablet, I examined two widely used

visualization systems available on desktop computers: Spotfire and Tableau. The

purpose of this examination was to identify a set of interactive tasks/operations that

support exploration with scatterplots. Analyzing the two systems generated a list of

35 tasks, that I pruned to a more concise set of 9 “primary tasks”.

Primary tasks are those that are central to data exploration with scatterplots.

Fundamental tasks such as selection and filtering are included, while others which

are useful for some analysis but not used as commonly are excluded, such as showing

trend lines and highlighting clusters. I also excluded other operations such as “swap

variables on axes” that could be achieved using a short set of primary operations.

42

Table 1: Primary Interaction Tasks and their categorization

Task Interaction Intent [137] Categorization

Assign x and y Encode Data-centric, Essential

Assign color Encode Data-centric, on-demand

Assign size Encode Data-centric, on-demand

Find detail Abstract/Elaborate View-driven

Select Select View-driven

Zoom Abstract/Elaborate View-driven

Filter on points Filter View-driven

Filter on values Filter Data-centric, on-demand

Change axis scale Reconfigure Data-centric, on-demand

The resulting set of primary tasks is shown in Table 1. I categorized each task using

the visualization interaction intent framework [137] to ensure that most aspects of

interaction are covered and redundancy across the tasks is minimized.

4.1.1 Classifying Tasks

The design space of interactions for the set of primary tasks can follow one of two

styles — WIMP-based and gesture-driven. The former consist of elements such as

menus, buttons, and toolbars on the touch screens. These elements are familiar and

hence easily discoverable to the users, but occupy valuable screen space on the device.

Conversely, gesture interactions provide direct access to the objects of interest [60]

and free up screen space, but do not support feature discovery or learnability as well

as WIMP elements.

Ultimately, a useful solution is one that combines these interaction styles as they

are both appropriate for specific category of tasks. The mapping of these styles can be

better understood by classifying the tasks into two categories based on their context:

data-centric and view-driven.

1. Data-centric tasks are motivated by users’ need to change (aspects of) the un-

derlying data and are independent of the visualization. Examples of these tasks

43

are filtering and changing the axis attribute. To perform these tasks, the user

typically needs to pick an option from a set of options or a range. For instance,

to filter data by an attribute, the user needs to view the entire range of values

as well as the currently active range. Similarly, to change the attribute of an

axis, the user needs to view all the attributes to pick one. Since these tasks

require presentation of options, they are natural candidates for WIMP-style

interactions.

2. View-driven tasks are motivated by users’ desire to interact with the visual-

ization or modify it, and do not affect the underlying data. Zoom, sort, and

selection are examples of view-driven tasks. The selection task, for instance,

is independent of whether the data attributes being selected are quantitative

or nominal. Since these operations do not require a presentation of options,

gestures can be used to implement interactions for them.

A subcategorization of data-centric tasks further divides them based on frequency

of use into essential and on-demand tasks. This categorization helps position the

interactions and their interface elements onto either the main view or in menus &

submenus. Essential tasks are frequently used and there is value in making them

available to users on the main view. Examples are selection, changing attribute on

an axis, and showing data details. Conversely, on-demand tasks are applied by users

infrequently and do not need interaction elements on the main view. Examples are

changing the axis scale from linear to log and adding jitter to the glyphs.

4.1.2 Design and Implementation

Using the above classification of tasks, I explored the design space of multi-touch

operations for each task, examining multiple potential gestures in a prototype in-

teractive scatterplot application for the iPad. I implemented Tangere on an Apple

iPad using iOS’s Cocoa Touch framework. The application is optimized for a 9.7 inch

44

Figure 19: The scatterplot visualization system running on an Apple iPad.

screen with a 2048 x 1536 resolution. The initial view of the application presents a

scatterplot using a random pair of variables from the dataset. The main view con-

sists of data points, the two axis lines, and axis labels placed next to each line. The

application reads data from a csv file where the first row contains attribute names.

Below I describe the interactions I selected for each of the 9 primary tasks. Figure

20 highlights some of these interactions

1. Assign x and y-axis variables - Tapping on a small down arrow icon next to the

currently shown attribute displays a scrolling menu of the other variable choices

(Figure 20e). The menu also includes a region to the right where a finger slide

over a variable generates a preview of that variable’s values in the display area.

2. Assign glyph color and size - Placing a finger at the right edge and swiping

in reveals a control panel with touchable widgets for setting the color and the

glyph size.

45

Figure 20: Interaction techniques used for primary tasks in the prototype running on
an Apple iPad.

3. Find data case details - Swiping upwards on a handle in the lower right region

of the view displays a table showing the selected data’s attribute details.

4. Select (data case) - The application included two alternatives: A) Drawing a

“lasso” around a set of data cases (Figure 20a); B) Tapping and dragging a finger

to select all the data cases in the highlighted rectangular region (Figure 20c).

Both of these methods also can be used when the view has been zoomed in.

5. Zoom - The application included four ways to zoom into the data view: A)

Placing two fingers on an axis and pinching out or in to zoom in and out,

respectively (Figure 20b), B) Highlighting a region along an axis via a tap-drag,

then double-tapping in that region to zoom into it, C) A person performs a pinch

gesture in the data area which opens a zoom lens on that area (Figure 20d), D)

The user double-taps on the data display area and invokes a smart zoom that

zooms into the data cases centered in that area.

6. Filter glyphs - When a set of data items is selected, two buttons appear toward

the top of the view to “Keep only” or “Exclude” the selected items.

46

7. Filter on values - A person swipes their finger in from the right edge to re-

veal a filters panel with interactive widgets for selecting either quantitative or

categorical values (Figure 20f).

8. Change axis scale - A person places their finger at the right edge and swipes in

to reveal a control panel with touchable widgets for setting the axis scale.

To design these interactions, I explored the research literature to examine how

similar operations were implemented in other applications. For a majority of the

tasks, I designed and implemented different variations of interactions for performing

these tasks and experimented using them within a custom application. Below, I

briefly highlight the options that I considered for two task types — selection and

zoom. I implemented most of the options in order to gain a “feel” of what they are

like in practice.

4.1.2.1 Selection

Selection is a core task in any visualization system. In traditional desktop systems,

selection can be realized both through hover and click-to-select actions. A selection

task predominantly constitutes the following use cases:

• A user identifies a data point and wants to learn its details.

• A user wants to highlight a point and track it across views, such as a change in

axis attributes.

• A user identifies a point and wants to include it in or exclude it from subsequent

operations.

Each of these tasks is applicable to a single point or a set of points. Moreover, the

set of points can be located close together or at diverse locations in the visualization.

In the case of closely located points, the points could be non-overlapping, partially

47

overlapping, or completely overlapping with each other. On a touch screen, this

causes considerable usability problems because large finger sizes do not match well to

the typically small size of scatterplot glyphs.

Similar issues of selection on touch screens have been carefully studied in the past.

Several solutions, such as enhancing pointer activation areas [81, 12] and offsetting

the cursor [96] have been proposed in the past. The breadth of options previously

presented suggest that there is no ideal selection technique for touchscreen interaction

as there is for cursor-based interactions. The options that I explored for selection on

scatterplots in my work were:

S1. Rubber band: User drags on the view to draw a rectangular area containing the

point(s) of interest. This is likely faster but less precise than lasso selection.

S2. Zoom view: User taps-and-holds near the data points. This reveals a zoom lens

(similar to the iOS text correction view). User taps to select the data point inside

the lens and hides the lens by tapping outside.

S3. Swipe+Lens: User swipes on the intended point to select it. If system detects

multiple points with the swipe, a lens opens with a magnified view to assist in

precise selection [78].

S4. Off-centered pointer: User taps-and-holds the screen to reveal a cursor positioned

n-pixels above and to the left of the touch location. The user drags the cursor

over the intended point. Dragging over the point reveals details and lifting the

finger performs selection [121].

S5. Axis Pan: User slides a finger each on the two axes simultaneously. This creates

a horizontal and vertical reference line. The glyph under the intersection of the

two lines is selected.

48

In my experimentation with these options, I identified issues with a number of

them. Off-centered pointer (S4) had the limitation that certain positions on the

view, such as the bottom edge, were inaccessible because of the way the cursor was

placed. Axis pan (S5) necessitated bimanual input that, though feasible on tablets,

required the user to first place the tablet on some surface. Zoom view (S2) and

swipe+lens (S3) used a zoomed-in lens view. Selection inside a lens created issues for

scatterplots since the shapes and colors of the glyphs are often the same. As a result,

switching between the lens and non-lens modes caused a loss of target.

From among the list of possibilities, I found lasso (S1) to be most effective for

selection since it gives users finer control during selection. To provide the user with

feedback while drawing a path, I highlighted the area formed by completing the path

between the start and the current point.

4.1.2.2 Zoom

Zooming is another vital operation for visualizations. The operation modifies the

viewport to increase clarity of data points that lie too close to each other. Below I

highlight some potential ways to perform zooming:

Z1. Pinch-to-zoom: User performs a pinch operation using two fingers. The visual-

ization scales depending on finger movement.

(a) Fixed aspect ratio: The visualization scales up or down uniformly in both

x & y directions.

(b) Flexible aspect ratio: The visualization scales up or down independently in

the x & y directions.

(c) Critical angle: If the angle between the x-axis and the line that connects

the two fingers is less than 45 degrees, the visualization scales on X. If the

angle is greater than 45 degrees, the visualization scales on Y.

49

Z2. Axis-based zoom: Instead of performing a gesture on the view, the user performs

the pinch operation directly on the axis that s/he wants to scale.

Z3. Select + zoom: The user highlights a region on the axis or a set of points on the

view. The user then double-taps to scale the view to the selected points.

Z4. Zoom lens: The user performs a pinch operation to reveal a lens containing the

magnified view of the region between fingers. The user can select the data within

the lens and modify its magnification [70].

Z5. Automatic zoom: The user double taps on the view to magnify the region around

the touch location. The view is automatically magnified by an amount that

minimizes the number of overlapping points in the region.

On touch-based devices, the pinch-to-zoom (P2Z) gesture (Z1) has been employed

extensively to perform zoom across applications, such as maps, documents, and so on.

The gesture employs a fixed aspect ratio constraint and maintains the aspect ratio of

the underlying content being scaled. However, in a scatterplot, the two dimensions,

i.e. axes, are largely independent. It is fairly common for the data to be densely

packed in such a manner that zooming in only one direction is required. In such

situations, a P2Z with fixed-aspect ratio is not as effective.

I modified the P2Z gesture by relaxing the fixed-aspect ratio constraint (Z1.b).

However, I found this modified gesture to be fairly difficult to use as it needed fingers

to move very precisely in one direction. The other variations to P2Z (Z1.c) had

the downside that the default behavior of pinch-to-zoom that users have learned

and expect was modified. To counter issues of P2Z applying to both dimensions

simultaneously, I introduced Axis-based zoom (Z2) that permitted each axis to be

scaled individually using a pinch gesture. Alternatively, the user could tap-and-drag

to highlight a range on the axis and select the zoom action (select+zoom: Z3). These

50

options permit precise zooming into a region or range of values. Since both axis-based

zoom and select+zoom were effective for zooming, I supported both in my prototype.

In lieu of the P2Z scaling, I added zoom-lens (Z4) that uses the same P2Z gesture

and is particularly useful when users want to view glyphs around a dense area without

losing the overall context. The lens supports repositioning, changing zoom level and

selection of points inside. Finally, I also incorporated automatic zooming (Z5). On

double tapping in a dense area, the system automatically calculates an appropriate

zooming amount in order to minimize overlaps among the glyphs in that area.

4.1.3 Evaluation

A natural follow up to this work was a user evaluation of the prototype Tangere

system. The primary research question I wanted to address with the evaluation was

identifying whether a multi-touch information visualization tablet application, such

as a dynamic scatterplot, can be an effective data exploration tool. I explored this

question by conducting two user studies.

The first study was a qualitative examination. I demonstrated the features of

Tangere to the participants and had them perform a set of data analysis tasks using

it. I observed their interactions with the system, recorded any usability issues that

arose, and examined their ability to successfully answer analytical questions with

the system. I also gathered feedback and suggestions from the participants about the

system. I then used these findings to refine the application’s interface and multi-touch

interactions.

In the second study, I employed the improved application in a direct comparison

with an existing desktop scatterplot visualization application using a traditional GUI-

style interface with mouse and keyboard. I conducted a within-subjects study in

which participants performed a series of data analysis tasks using the two systems.

I recorded task correctness, performance time, and errors made. I also carefully

51

Table 2: Scores from qualitative questions in Study 1.

Question Average Rating Min. Rating Max. Rating

Fluidity of the interface

(1: Very clumsy; 7: Very fluid)
6.1 5 7

Learnability of interactions

(1: Very difficult to learn;

7: Very easy to learn)

5.5 4 7

Overall rating, on a scale of 7 6.3 6 7

observed how participants performed the tasks to gather further qualitative input

about the multitouch interactions that were employed.

4.1.3.1 Study 1: Participants, Tasks, and Results

The goal of the first evaluation was to refine the interactions in the scatterplot tech-

nique. I wanted users to perform the different operations in the application and pro-

vide qualitative feedback on how well the interactions worked for them. I recruited 11

participants (2 Female) - 10 graduate students and 1 faculty member. All had some

experience using visualization system such as Tableau or Spotfire, thus ensuring that

their performance was primarily a measure of the quality of the interaction.

During the study, participants were first trained on the various features in Tangere.

Subsequently, they performed a set of tasks independently without any assistance.

The tasks were based on those used by Drucker et al. [29] in their comparison of

WIMP-based and gesture-based interfaces for barcharts on tablets1. At the end,

they answered subjective questions about their overall impressions of Tangere. They

identified the features that they liked in the system along with ones they either did

not like, found missing, or considered superfluous. Finally, they rated the system

on a likert scale for three dimensions – the fluidity of the system, difficulty of the

interactions, and overall rating of the system.

1Appendix A.1 presents a snapshot of tasks used for a movies dataset

52

Results: Participants generally viewed Tangere favorably. On a scale of 1 to 7,

participants rated the system 6.3. Other ratings from the study are presented in

Table 2. Some of the qualitative comments provided by the participants include:

P2: I think the preview with scrolling was a very good use of the gesture.

With touch, you just scroll past something to preview it, which is nice.

With mouse, moving and clicking each option is tedious.

P7 (UX-designer): While you were giving a demo, at least twice I felt

“Woah, that’s exactly how I would have built it”. That obviously felt great.

P1: I felt that the interface was very direct. I can directly choose every-

thing I care about. It’s almost the same on desktops, yet somehow this felt

direct.

P6: The interactions were not obvious in some cases. But I think it

wouldn’t have taken too long for me to discover them.

4.1.3.2 Study 2 - Desktop Application Comparison

For the second stage of evaluation, I evaluated the effectiveness of the scatterplot

technique within Tangere by comparing it to an existing, well known commercial

visualization system – TIBCO Spotfire. The goal was to measure if a Tangere can

achieve a comparable level of performance and utility as the desktop system. Spotfire

provides a large number of visualization features and controls. For the purpose of the

study, I only utilized Spotfire’s scatterplot visualization technique.

A total of eight people (four of each gender) participated in the study. The study

was implemented as a within-subjects design; each participant used both interfaces

and with different datasets for each. The entire study took 75 minutes for the fastest

participant and 110 minutes for the slowest. At the end of the second session, par-

ticipants answered questions regarding their overall impressions of the two systems,

53

Figure 21: Time taken by participants to perform terms. A) Broken down by each
question. B) Broken down by each participant.

differences between the two systems, features that they found better in one over the

other, and their preference between the two.

Results: Broadly, I found that participants’ performance was similar on the two

interfaces. On average, participants took 803 seconds to answer all questions using

Tangere and 840 seconds with Spotfire. Figure 21 presents this data, broken down

by each question as well as each participant. Five of the eight participants expressed

that, for a similar set of tasks, they would use the Tangere over Spotfire. Two users

expressed preferring Spotfire while one did not have a preference. Below I explore

different dimensions of comparison in more detail.

Control Three of the eight participants mentioned that they felt more in control

with Tangere. The participants expressed that on the tablet, they felt more connected

with the data.

P5: “In general, [I] don’t prefer touch interfaces, but in this case I felt

comfortable and in control, maybe because it was easy to match and asso-

ciate interactions”

P4: “I am quite surprised at how well it worked and felt. Very different

from how I had expected it to be.”

Expectations Participants expressed that Tangere felt easy to use because many

of the features worked in an expected manner.

54

P4: “The interactions felt very natural. Even before you showed me a

demo of swiping the badge, that was exactly what I was planning to do.”

Visibility Participants voiced conflicting opinions regarding the visibility of fea-

tures. Three participants found the Spotfire interface to be intimidating and preferred

Tangere’s simplicity and aesthetics. Conversely, two participants found dragging in

the menu and table in Tangere to be cumbersome and preferred the always-available

features of Spotfire.

Precision For slider-based filters, all participants unanimously preferred Spotfire’s

version to Tangere’s. They found Spotfire’s slider control to be more precise, partic-

ularly the manual text entry that is supported for specifying exact values.

4.1.4 Modifications to Tangere

Although the results of the two studies were encouraging, both studies were admit-

tedly small and relatively informal. It is, thus, difficult to draw many significant

quantitative inferences from them. However, both studies uncovered a rich set of

qualitative insights about the scatterplot technique within Tangere and the touch

gestures provided in it. Below I highlight the changes I made to the system based on

my observations from the study and feedback received from the participants.

C1. Tap-and-pan: Participants had difficulty using the tap-and-pan gesture and it

took them a significant number of attempts to become accustomed to it. Thus,

I replaced the tap-and-pan gesture with a direct pan gesture. Panning on either

axis activated the rectangular-selection.

C2. Tap-to-select : In the study, participants employed the lasso-selection tool ex-

tensively and found the continuous feedback of the path’s texture to be very

beneficial. However, for selecting a single point, participants preferred to simply

55

tap instead of panning around it. As a result, I implement tap gesture for select-

ing single points. For taps on densely populated regions, the operation selects

the single data item that is closest to the touch location.

C3. Data-table: Another requested feature was to have a way to sort each column in

the data table. I support this feature by making the column labels interactive.

Also, in the previous version of the tool, the data table opened to a fixed height

irrespective of the number of selected items. In the current version, I allow the

user to drag and control the height to any intermediate level.

C4. Filter-menu feedback : Filtering with the “Keep only” or “Exclude” options re-

sulted in a persistent badge depicting the filter action. However, there was no

such persistent feedback if filter menu widgets were used and the menu was

dismissed. In certain situations, this led to participants beginning a new task

without realizing that the data had been filtered. To prevent such situations, I

now present a ‘Filters On’ label on the main view when the menu is hidden.

C5. Object Count : Many participants requested a simple way to view the count of

selected items. Previously, they had to drag the detail table on the view, and

scroll to the bottom to read the index of the last row. I now display a label at

the top right of the screen. This label shows the number of selected points or

the total number of points, based on whether points are selected or not.

Rectangular Selection The rectangular selection feature had a drawback that

selecting a precise range was often inaccurate. The inaccuracy was a result of the

gesture-recognition delta — the distance moved by the finger before the system cor-

rectly identifies the movement as a pan gesture. As a result of this delta, the selected

range was always smaller than the desired range.

To counter this issue, I added two components (Figure 22a) — a label to both

56

Figure 22: The evolution of the edit-selection feature. a) The selection rectangle with
circular handles. The handles can be dragged to edit the edges. b) Each finger in
a pinch gesture controls the movement of an edge of the selection rectangle. Here,
movement of the fingers in x-direction controls the edges. c) The entire space adjacent
to an edge outside the rectangle controls the edge.

ends of the selection rectangle displaying the range of the selection and thumbs on

the edges of the rectangle to allow editing the range of a selection. Together, the two

modifications made it easier to select a precise range. However, even with a generous

touch area, it was often cumbersome to place a finger directly on a thumb due to its

small size. To eliminate the need to touch inside a small zone, I further iterated on

the design of this interaction and implemented two techniques to edit the selection in

this new configuration:

1. Pinch to edit (Figure 22b) - Since the rectangle has two manipulatable edges,

the movement of each finger in a pinch operation is mapped to the translation of

an edge. The two fingers independently control an edge using either their x or y

movement, depending on the axis used for selection. The direct mapping allows

the gesture to be position agnostic. Within the bounds of the visualization, the

user is free to perform the gesture anywhere away from the rectangle.

2. Exterior pan to edit (Figure 22c) - To edit the position of an edge, the entire

area adjacent to the edge outside the rectangle is used as a trackpad. Similar

to pinch to edit, the x or the y movement of the finger is used to translate the

edge. Since the effective size of the target area becomes very large compared to

the handles, there is a considerable performance improvement.

57

CHAPTER V

MULTI-COORDINATED VIEWS

5.1 Multi-Coordinated Views

Designing the scatterplot technique gave a glimpse into a rich interaction space. Pos-

itive user response to the system also created a platform to further the work by incor-

porating more visualization techniques into the system. Every visualization technique

serves a special role in data analysis and tools rarely exist using a single isolated tech-

nique. Adding more techniques to Tangere was, thus, a natural next step.

To achieve this goal, the system needed to provide people the flexibility to use one

or more visualization techniques in a coordinated configuration. For these configura-

tions, identifying the layout of the workspace is critical as the layout plays a central

role in knowledge discovery and efficiency within a multi-coordinated view (MCV0

system. It is for this reason that desktop tools such as Photoshop offer a variety of

layout options, each optimized for a specific type of task. With respect to layout

issues, I identified four goals for MCV systems on tablets:

G1. Maximize the size of each visualization on the canvas

G2. Minimize occlusion of visualizations by tools or fingers

G3. Strive to keep all visualizations in view (prevent scroll, pagination, or tabs)

G4. Exclude any need for end-user customization of layouts

Goals 1 and 2 directly emerge from the screen and input size constraints that

tablets impose on visualization. The two goals seek to counter these limitations by

ensuring that each view is usable. Goals 3 and 4 help limit the complexity of the

interface, furthering the objective of targeting novice and non-expert users.

58

5.1.1 Visualization Techniques

All MCV systems provide multiple visualization techniques for presenting different

perspectives on data. To select the other techniques to include in Tangere, I consid-

ered them along three dimensions: rich support for interactive operations, familiarity

to users, and potential for cross-vis interactions with brushing and linking. I ulti-

mately identified three techniques that offered rich variation in terms of representation

and interaction:

1. Barchart : A canonical visualization technique that has been used extensively

across a wide variety of domains. Barcharts are very effective at representing a

categorical variable on one axis and a quantitative variable on the other.

2. Linechart : Another canonical, widely used technique. Linecharts excel at rep-

resenting a quantitative variable on one axis and an ordinal, ideally temporal,

variable on the other.

3. Parallel coordinates : A well-known and an often used technique that uses par-

allel axes and polylines for displaying multivariate data. A defining property of

this representation is that it encapsulates all attributes of every data-item in a

single view.

The techniques typically represent the same general type of data — combinations

of categorical and quantitative attributes. It was necessary to include visualizations

built for the same type of data since I intended to design coordinated views that

support brushing and linking. This precluded the use of other types of data, such

as networks, trees, and text in this initial prototype. Additionally, I chose these

techniques because at least three should be familiar to many people: scatterplot, bar-

chart, and linechart. Those three share many visual properties, often appear together

59

in dashboards, (e.g. Roambi 1) and support a rich set of interactive operations.

The Parallel Coordinates Plot (PCP) offers an important visual and interactive

diversity to the group. PCP is a substantially more dense representation technique

than the other three. This has important implications for the sizing and layout of

each view. PCP also raises interesting questions regarding the within-vis and cross-vis

interactions in the system.

Figure 23: The Tangere system interface. The panels are placed beyond the screen
and can be brought in with a gesture.

5.1.2 Layout of Visualizations in the Canvas View

To maximize the size of each visualization, the canvas view spans the entire screen

with the secondary views placed off-screen. Since the view contained multiple tech-

niques, the view-gallery (C2) component is also present in the system. A further

consideration was identifying the layout of views within the canvas. These layout

1Roambi, www.roambi.com

60

configurations can be classified into four styles - juxtaposition, superimposition, over-

loading, and nesting [62].

With the layout design goals in mind, I utilized the simplest and most common

of these styles — juxtaposition. In this style, views appear side by side and each

view is fully visible to the user. Within juxtaposition, two alternative layout styles

are possible — vertical stacking and grid-based layouts. While grid-layouts result in

compact side-by-side views, they also require end-user controls for adjusting the width

and height of the views, which conflicts with goal G4 above. Thus, I constrained the

system to a vertical layout.

When the system starts, the canvas is empty. The view-gallery is initially open

and contains the list of available chart types. Tapping on a chart’s icon adds it to

the canvas. If the canvas already contains charts, they compress vertically and the

newest chart is inserted at the bottom. Adding a chart also adds a corresponding

badge at the top of the view-gallery (Figure 23). To remove the chart, the user can

slide this badge horizontally towards the left or right. As the corresponding chart

exits the view, the other charts expand to fill up the remaining space.

The number of charts that can be added to the canvas is constrained to three

in order to ensure that all charts are always visible (goal G3). Given the space

constraints, moving beyond three charts on the canvas made each chart too small to

be useful. Furthermore, this number is constrained to two if one of the charts is a

PCP since that visualization requires even more vertical space. This ensures that the

view is tall enough to be usable.

5.1.3 Interactions within Views

All four visualization techniques support rich and varied interactive operations, sev-

eral of which are unique to that view. This is particularly evident for parallel coordi-

nate plots, which differ substantially from the other techniques and include operations

61

such as angular brushing and axis flipping. Many interactive operations, though, are

common to all four techniques, e.g. selection, zooming, and filtering. Therefore, it

was vital to identify interactions for these operations that would be usable and consis-

tent across the techniques. Consistency is critical as it feeds directly into the usability

and learnability of the system, with inconsistent interactions adversely affecting user

performance [124, 129].

Table 1 presents the operations common to all four visualization techniques and

the interactions employed to implement them. Achieving cross-visualization compat-

ibility was challenging. For instance, many gestures useful for one technique did not

translate well to other techniques. A specific example of this is sorting on barcharts.

A simple method for activating sort involves placing a finger on an axis and swiping

in the direction of desired sort (ascending or descending). This axis-swipe gesture

has been used with good results in previous work on touch-based barcharts [29]. For

scatterplots, however, this gesture was used for a different operation — axis-based se-

lection [104]. In fact, I adapted this interaction on linecharts and parallel coordinates

as well.

To ensure barcharts are consistent with other charts, I did not use the axis-swipe

gesture on barcharts for sorting, and instead used axis-swipe to perform the same

operation as in other charts — selecting items in a range. For sorting, I employed

the long-press + swipe gesture — the user places a finger on an axis and holds for

a short period of time before swiping in the direction of sort. I selected this gesture

since it builds on familiarity from other applications and does not require additional

UI elements on the screen.

Another example of consistent interaction is the ‘Tap to select’ interaction. On

barcharts, it is natural to use the tap gesture to select an individual bar. However,

tap-to-select was missing in the original scatterplot implementation [104]. Tapping

on a scatterplot is complex since it results in ambiguous selections when tapping in a

62

dense area. However, for consistency I extended tap-to-select to scatterplots as well

as linecharts and parallel coordinates.

5.1.4 Interaction Across Views

Brushing and linking features are crucial to effective MCV applications. In Tangere,

brushing and linking between charts operates as one would typically expect for visual-

ization applications. Selections made in one view are automatically reflected in other

views. For example, selecting individual glyphs in a scatterplot shades the portion of

bars they represent within the barchart.

Filtering data in any view updates all other views, including the dynamic query

filters in the tools panel. Similarly, the dynamic query filters affect all views on the

canvas and not just a single view. Views are not coordinated on navigation, however,

and view-specific changes such as zooming or panning are not percolated to other

views [89].

5.1.5 Handling Occlusion

A significant number of design decisions made during the prototyping phase were

directly impacted by issues of occlusion. For example, even though the expected

location of labels in a parallel coordinates plot is at the top, I placed them at the

bottom since any interaction with them would otherwise occlude the entire view. For

other occlusion-related issues I encountered, I examined the utility of the solutions

previously presented in HCI literature[121, 127], but found their applicability for

Tangere to be limited. This raised the question whether occlusion in visualization

interfaces is different from occlusion in regular, non-visualization user interfaces. I

speculate that the answer to this question is yes. I explain this below using the ideas

of the instrumental-interaction model [9].

63

Low degree of indirection In the instrumental interaction model, Beaudouin-

Lafon introduces the concept of domain objects and instruments [9]. Users act on an

instrument, which in turn affects attributes of the object-of-interest. One property

of these instruments is the degree of indirection, which encodes the distance between

the logical part of an instrument and the object it operates on.

Most gestures described above have a low degree of indirection, which I speculate

is largely due to the underlying domain and not just a result of the design decisions

I took. The same observation can made for the interactions used in TouchWave

[8], or the gesture-based interface by Drucker et al [29]. Information visualization

operations lend themselves appropriately for direct interactions with the glyphs, with

the instrument and the domain-object tightly coupled with each other. Unfortunately,

this also means that for a majority of gestures, the instrument (a finger) overlaps with

the domain-object, thus occluding it. Since the movement of the fingers are highly

dependent on the underlying glyphs being manipulated, the gestures becomes very

inefficient.

Many solutions for countering these types of issues suggest translating the ob-

structed views to locations that are not hidden [121, 127]. There are two downsides

to these solutions. First, the position of glyphs in a visualization are based on at-

tributes of the underlying data as well as the properties of the visualization. Second,

the glyphs typically look the same as their counterparts. Translating a few glyphs

to a different position would sever the relationship between the glyphs and the axes,

and would lead to loss of context.

Occlusion-aware continuous gestures As I encountered issues of occlusion, I

developed strategies for modifying interactions to counter them. Gestures such as

dragging, pinching, and rotating are continuous gestures since they require a stream

of event data and the response occurs while the user is performing the action. With

64

these gestures, fingers stay on the view for longer than discrete gestures, increasing the

possibility of occluding views. To minimize this occlusion, I employed two strategies.

1. Actuator-continuous gestures : In this configuration, a specific location is defined

for the user to initiate a continuous gesture, but this restriction is revoked as

soon as the gesture is activated. The user is then free to move her fingers away

while maintaining control of the operation. Examples from Tangere include:

Figure 24: User begins a drag gesture on the y-axis to begin selection and subsequently
moves away from the axis while continuing to control the selection.

• Pan gesture (Figure 24): Dragging on an axis requires the user to place her

finger at a precise 2d location. However, the dragging operation itself is one

dimensional. An actuated dragging of, say, the vertical y-axis allows the

user to drag her finger away horizontally after the gesture is registered. The

vertical position of the finger continues to control the selection. Moving the

finger away horizontally, however, means that the finger is not occluding

the axis itself. Actuated dragging is similarly useful for moving the handles

of a slider bar or filtering a parallel coordinates axis.

• Pinch gesture (Figure 25): I also use an actuated two-finger pinch gesture.

To zoom an axis, the user begins the pinch operation directly on the axis

and then simply drags her fingers away. The distance between the fingers

continues to map to the amount of scaling. In fact, the user does not even

65

Figure 25: User begins a two finger pinch on the x-axis and then moves away. Notice
that user’s fingers do not need to stay horizontal.

need to keep her fingers in a strictly horizontal or vertical configuration.

Consequently, the axis being scaled is not occluded by the fingers.

2. Location-independent gestures : For specific states, I also relax the requirement

to initiate gestures at a precise location. Instead, gestures can be initiated

anywhere in a larger, unbounded space. Increasing this space increases user

efficiency [76]. Both the pinch to edit and exterior pan to edit operations I

described earlier (Section 4.1.4) are examples of location-independent gestures.

Handling occlusion on data visualizations is one of the biggest challenge that

designers face when designing for touch. Unfortunately, not enough attention has

been paid to this phenomenon. This is primarily because most of the research on

visualization for multi-touch has centered around large touch tables, where occlusion

problems are less ardent. In future work, it is important to revisit the topic within

the context of tablets and small displays.

66

CHAPTER VI

ADVANCED SELECTION

6.1 Advanced Selection

Selection is a fundamental operation in interactive visualization applications [137].

It is a vital intermediary step for several important tasks such as filtering, brushing,

and details-on-demand. As a result, having effective methods to specify selections to

the system is central to any visualization application.

While basic techniques for selection such as clicking (or tapping) and lassoing

(dragging a curved boundary around a set of items) are robust and employed across

domains, making a selection often requires expressing more complex and detailed

queries to the system than is possible with these basic techniques. A common exam-

ple is the group-selection set of operations—add to selection, remove from selection,

intersect with selection, replace selection, and toggle selection [132]. Wills [132] per-

haps best captures the complexity of the selection operation in the domain of data

visualization. Another style of complex selection, often represented with the query

“select items like these,” is generalized selection [46].

Performing complex selections such as these often requires the use of specialized

instruments in a system. On desktop computers, such aids could be the modifier keys

(such as Ctrl, Shift, and Alt) or modes (which applications such as Photoshop employ

extensively). Desktop-based visualization tools such as Tableau and Spotfire, conse-

quently, extend the use of these instruments to visualizations, thus making complex

selections possible across different visualization techniques.

In Tangere, I thus far omitted methods to perform complex selections. In fact,

they are noticeably absent across other tablet-based visualization systems as well,

67

such as Kinetica [102], Vizable 1, and TouchWave [8]. One potential reason for such

an absence is the difficulty of identifying appropriate interactions for performing the

operations. These systems predominantly restrict the interaction set to only the

standard vocabulary of touch gestures — a combination of tap, pan, pinch, and rotate,

extending it to only include gestures such as tap-and-pan and long-press. However,

advanced selection operations are a cornerstone of interaction within visualization

systems.

Thus, to support these operations, I addressed the constraints introduced by a lim-

ited vocabulary of interactive gestures and introduced a new approach for providing

more powerful selection capabilities within Tangere.

6.1.1 Techniques for Advanced Selection

The advanced selection operations that I target in this work can be classified into

three categories based on their behavior:

• Modify existing selection

• Add to selection

• Duplicate selection

The relevance of any of these categories depends on the state of the existing selection

within a system. The state captures characteristics such as the type of selection

(view-based vs data-driven) and the number of selected glyphs. Depending on the

state, one or more of the categories may be applicable.

To integrate these three categories of selection into a system, one needs to identify

appropriate interactions for each. Instead of adapting entirely unique and complex

interactions, I favored extending the vocabulary via incremental modifications to

existing gestures. I achieved this by leveraging the concepts of quasimodes for tablets.

1Roambi, vizable.tableau.com

68

Quasimodes on Tablets Quasimodes [97], or transient modes, are temporary

states a system enters wherein all user actions pertain to a specific category of tasks.

Unlike persistent modes that stay in effect until cancelled or changed, quasimodes

stay in effect only as long as the user maintains the action required to activate the

mode. On desktops, most common examples of such actions are modifier keys, such

as Shift, Ctrl, and Alt. Quasimodes provide an easy and reliable way to return to

the default application state and have shown to significantly reduce mode errors as

compared to persistent modes [109].

I sought to replicate the behavior of the desktop-based quasimodes on tablets.

The key concept here is that by introducing a unique modifier action to activate

the quasimode, I am able to employ a standard gesture in the execution stage of

the quasimode. The use of the modifier, however, differentiates the standard gesture

performed without the modifier from the gesture with the modifier.

6.1.2 The Clutch Modifier Technique for Tablets

Because tablets do not have keyboards with shift and control keys, a different modifier

is needed. I leverage the use of a person’s non-dominant hand in this work. On tablet

devices, the non-dominant hand is often restricted to holding the tablet. As a result,

the range of movement available to the non-dominant hand is severely constrained.

Based on the way the tablet is held, people can only perform basic tap, hold, and

drag gestures at the edges of the screen using either the thumb or the fingers.

Although these gestures are inadequate for performing complex tasks, they are

sufficient for behaving as modifier actions. Since modifiers only act as precursors to

the primary action, only a single bit of information is needed—whether the modifier

was performed or not. The tap, hold, and drag gestures can adequately provide this

information.

Employing the non-dominant hand for modifier actions has several benefits. First,

69

it conforms with the division of labor model—the role of the non-dominant hand is

that of framing the detailed action that the dominant hand performs. Second, shifting

the modifier to the non-dominant hand relieves the dominant hand from needing to

perform a complex sequence of actions. Finally, the non-dominant hand provides

additional, albeit limited, degrees of freedom that can potentially be leveraged to

increase the expressiveness of the interaction.

I define Clutch as the action of the non-dominant hand performing a hold (or

long-press) gesture on the screen. The action can be performed by placing and holding

a finger within a 100 pixels wide zone running on all four edges of the screen. The

Clutch action is feasible for people holding tablets in any grip or configuration [122].

When a Clutch is detected, a bright blue halo image placed beneath the clutching

finger provides visual feedback denoting the change in mode.

I added the Clutch action to the Tangere system described earlier. Using Clutch as

a modifier, I reused all the primary gestures originally employed in the system. This

provided the opportunity to introduce additional new operations. It was important

to carefully select the operations to support with Clutch since using gestures with

a common modifier for disparate tasks had the potential to be confusing to users.

Thus, I applied Clutch-modified gestures to a single category of operations: advanced

Table 3: Summary of the advanced selection operations and their corresponding ges-
tures. The selection operations are add-to-selection (ATS), modify existing selection
(MES) and duplicate selection (DS)

Operation Type Gesture

Select/Deselect Single Glyph ATS Clutch + Tap

Select Neighboring Glyph(s) ATS Clutch + Drag

Precisely Select Neighboring Glyph MES Clutch + Drag + Pinch

Duplicate Rectangular Selection DS Clutch + Drag

Add Another Rectangular Selection ATS Clutch + Drag

Increase/Decrease Selection MES Clutch + Pinch

70

Figure 26: Clutch-modified gestures and their mapping to operations. The clutching
action is highlighted using a blue halo. a) Clutch + tap gesture activates the general-
ized selection operation. b) Clutch + drag for single selections scrubs the selection on
neighboring points. c) Clutch + drag inside a rectangular selection creates a dupli-
cate. d) Clutch + drag on the axis creates a new rectangular selection that intersects
with existing selections. Notice the color difference in selected and non-selected por-
tions. e) Clutch + pinch for multiple glyphs grows or shrinks the are of selection. f)
Clutch + drag + pinch for single selections reveals a lens with zoomed in region.

71

selection. Table 3 summarizes the specific operations and the gesture used to invoke

each.

6.1.2.1 Clutch + Tap

The Clutch + tap gesture selects individual glyphs located at the position of the tap

(Figure 26a). Whereas non-clutched tap selects a new glyph and deselects all previ-

ously selected glyphs, clutched tap adds glyphs to the selection without deselecting

other glyphs. In case the tapped glyph is already selected, clutched tap deselects that

glyph without affecting the other selected glyphs.

6.1.2.2 Clutch + Drag

Clutch + drag activates different operations depending on the state of selection in

the system.

Single glyph selected — In this case, Clutch + drag provides a method for rapidly

alternating through glyphs located in a dense area (Figure 26b). The technique works

in the following manner: with one glyph selected, the user activates the Clutch and

begins dragging a finger on the view. The system detects this movement and projects

it forward to identify a target glyph that is nearest to the selected glyph in the di-

rection of the movement. Once identified, the system holds for the user to move

the finger by the same amount as the distance between the two glyphs. When the

magnitude of the movement exceeds the distance, the selection snaps to the other

glyph, deselecting the original glyph (Figure 26b). The overall effect of the operation

resembles that of using a trackpad wherein user’s movements map to the movement

of a cursor.

Multiple glyphs selected — When multiple glyphs are selected, the Clutch + drag

gesture draws a lasso selection path and select all glyphs that lie within the path.

72

However, unlike the standard lasso, this gesture does not deselect the glyphs already

selected. In other words, the gesture strictly provides the add-to-selection operation

and not remove-from-selection.

Rectangular selection— If a view contains an active selection rectangle on any

axis, dragging inside the selection with Clutch activated moves a copy of the selection

along the axis, thereby replicating the selection. (Figure 26c). The glyphs that lie

within either of the rectangles (i.e. union of the area) are selected. Tapping outside

dismisses both the selections.

Clutch + drag on the axis — The Clutch + drag gesture performed directly on an

axis creates a new rectangle selection without dismissing existing selections (Figure

26d). If a new rectangle is created on the same axis as an existing rectangle, the union

of the two is used for selecting the glyphs. For the case when the new rectangle is on

the other axis, the intersection operation is used and only those glyphs that belong

to both the rectangle areas are selected. Color variation is used for differentiating the

selected region from the unselected region (Figure 26d).

6.1.2.3 Clutch + Pinch

The Clutch + pinch gesture is utilized for increasing and decreasing the size of the

selection area. If the view contains lasso selected glyphs, the Clutch + pinch gesture

increases or decreases the selection by scaling the size of a convex hull that encloses

all the selected glyphs (Figure 26e). If, instead, the view contains rectangle selections,

Clutch + pinch scales the rectangle by mapping to the ends of the active rectangle

to the movement of two fingers.

73

6.1.2.4 Clutch + Drag + Pinch

The Clutch + drag + pinch gesture is a special configuration of the Clutch + drag

gesture, where the user begins by dragging a finger and, without lifting that finger,

performs a pinch gesture using another finger. This gesture augments the single glyph

selection operation presented in section 6.1.2.2. Executing a pinch in a densely packed

region reveals a lens at that location with the region zoomed in (Figure 26f). With

the second finger lifted, dragging the first finger cycles through the glyphs in the

scaled up view. The user can close the lens by either pinching-in or lifting all the

fingers.

6.1.2.5 Relaxing Clutch

In the current implementation of the Clutch-modified gestures, it is unnecessary to

keep the Clutch active for the entire duration since the Clutch info is only utilized

at the start of the gestures. I thus utilize a low-tension modifier [52]—users can lift

the Clutch immediately after they begin the gesture with their primary hand (Fig-

ure 26f). This is similar to the actuator-continuous configuration for single-stroke

gestures presented earlier. The low-tension modifier significantly reduces the discom-

fort that may occur in manipulating the screen with both hands simultaneously, while

also supporting the tablet with one hand.

6.1.3 Generalized Selection

A different type of advanced selection operation is generalized selection. Generalized

selection predominantly operates on the data-domain, differentiating it from the view-

driven advanced selections presented so far. Here, the user identifies a target using a

visual property, e.g. position or color, and subsequently intends to select other items

that are similar to this item based on certain attributes of the data. For example,

in a scatterplot showing rating vs profit of movies, the user selects the highest rated

movie and wants to know if the other movies by the same director have done equally

74

well.

Heer et al. [46] described it as a “select objects like this” query, and presented

a method to perform it in scatterplots on desktops. In their system, users invoke

a context menu on a selected glyph and pick an attribute from a list. This selects

all other glyphs in the view with the same value for the attribute as the originally

selected glyph. Generalizing a selection in the absence of a specialized method such

as context-menu is fairly cumbersome and involves several steps, such as switching

attributes and introducing additional views. Each change of view alters the context

of the application for the user, which is undesirable. Thus, I developed a specialized

method to perform generalized selection in Tangere. I achieve this by designing a

novel interaction technique that provides fluid access to attributes of data. The

implementation expands the operations originally presented in [46] by applying it to

other attribute types and adding methods for users to control the parameters of the

selection.

Generalizing a selection consists of two steps: the user begins by selecting a glyph

and subsequently specifies the generalization criteria to the system. The outcome

of generalizing a selection varies based on the size of the existing selection and the

attribute used for generalizing it. For example, for categorical attributes, the selection

expands to include all data points that have the same value for the attribute as the

selected glyph. (e.g., director = ‘Christopher Nolan’). For attributes with hierarchical

properties, selection expands to the data points that match the value of the selected

glyph at the lowest level of the hierarchy. Finally, for quantitative attributes, the

selection expands to data points that fall within a neighborhood around the value of

the selected glyph. (e.g., profit ∈ [90, 110]).

Design of Generalized Selection Technique For the generalized selection op-

eration, the solution consists of a list control that appears in the periphery of the

75

Figure 27: Generalized selection. a) User taps on the screen with two fingers to
activate the generalized selection menu. b) To scroll through the list of attributes,
user drags a finger vertically. c) For hierarchical attributes, user drags horizontally
to access other levels of hierarchy. d) For quantitative attributes, the scented widget
displays the selected and overall range of selection. Using a two finger pinch, user
can modify the extents of the selection.

selected data glyph(s). The control is hidden by default, and can be introduced on

demand. To circumvent the need for a persistent UI element to initialize the opera-

tion, I utilized a gesture — two-finger tap. If a chart contains one or more selected

glyphs, a two-finger tap gesture performed anywhere within the bounds of the chart

activates the operation and presents the control.

The control for the operation consists of a single label that, initially, gives a

description of the operation (Figure 27a). In the background, the control contains

a vertically scrollable list of options, the majority of which remains hidden from the

user. To interact with the control and select a different option, I emulate trackpad

input—the user can place her finger anywhere on the screen and simply drag vertically

up or down to scroll through the list of options (Figure 27b). As each option appears

76

within the visible bounds of the control, the glyphs in the chart update to reflect the

selection that is generalized with respect to the attribute the option represents. When

the user identifies a suitable option, she commits the selection by simply tapping

outside the list.Alternatively, to cancel the operation and return to the original state,

she can either scroll to the first item in the list or simply perform a two-finger tap

gesture away from the list.

The second step in generalizing a selection is controlling the parameters of the

chosen attribute, which are dependent on the type of the attribute. The options

for modifying the parameters are displayed in a separate control that appears below

the original control (Figure 27c). This additional control only appears when the

user halts on a particular option for more than 500 ms (i.e., scrolls to an option

and lifts her finger). For attributes that have hierarchical properties, the secondary

control presents the level of hierarchy (beginning with the lowest) that is being used

for expanding the selection. The other levels appear as columns of a horizontally

scrollable list that the user can switch to by swiping left or right (Figure 27c).

For quantitative attributes, the secondary control contains a slider bar that depicts

the range of values of the attribute used for selecting other data points (Figure 27d).

For single glyph selections, I use a 10 percent threshold around the value of the at-

tribute. For multiple glyphs, the range extends from the minimum to the maximum

values of the attribute for the selected glyphs. Further, the widget is embellished

with the distribution of the values for the attribute using the scented-widgets tech-

nique [131]. The user can extend the range of selection by manipulating the position

of the handles using a two-finger pinch operation (Figure 27d).

77

CHAPTER VII

ADVANCED LAYOUT TECHNIQUES

7.1 Introduction

Tying the design of Tangere to the goal of simplicity has provided several benefits. For

example, Tangere supports only a limited set of critical operations for each technique.

The restricted nature of this set has made it feasible to employ the same interactions

for operations common to the different techniques. This is very useful for users’

onboarding and overall experience with the system. But simplicity has also resulted

in features that may be restrictive to users’ workflow, providing less flexibility and

freedom than they expect or need. One such feature is the layout of the views.

Tangere initially constrained the views to be stacked and permits only three views to

appear. However, several other layout styles are feasible that can assist the user in

being more effective or productive with the interface.

In this chapter, I explore customizable, non-static layouts for visualizations that

can be adapted to tablets. These advanced layouts are accompanied by operations

for modifying the positions and sizes of views. Such features are currently absent

from any tablet-based visualization application.

Figure 28: Components of Tangere.

78

Tangere initially used a simplistic, juxtaposition layout style (Figure 28). Charts

were stacked vertically; new charts only appeared at the lowest position; and only

three charts can be added to the view at one time. The reasons for supporting such

a constrained layout were twofold. As discussed earlier, key themes for Tangere were

targeting novice users and ensuring simplicity. Employing a simple layout model

helped this cause by minimizing complexity. The second main reason was a restricted

gesture vocabulary. Given the standard suite of gestures that I employed in Tangere,

there were only a limited number of interactions available to use for layout modifica-

tion tasks. A complex layout mechanism would inadvertently require advanced and

more expressive interactions than were used within the application.

While these restrictions continue to hold true, well-designed layout techniques

also hold the potential to vastly amplify user-performance and efficiency. And this

increase in efficiency can ably compensate for the added complexity. Further, ad-

vanced interaction techniques, such as Clutch-based gestures that I described earlier,

are now also available, and these offer possible interaction alternatives that can be

repurposed for layout operations.

This opened a possibility for exploring two topics — 1) Identifying an appropriate

layout technique to adapt to tablet devices, and 2) Integrating the layout in Tangere

and designing interactions for manipulating it. Although the design exercise needed

for the second topic plays a critical role, the overall solution is also highly pertinent

on finding an effective layout technique for the first topic. In the following sections,

I explore the layout techniques that are commonly adopted in visualization systems.

Subsequently, I present the one that I incorporated within Tangere along with the

design guidelines that led to the decisions.

79

7.1.1 Layout Options

Multiple coordinated views gained prominence as combining visualizations effectively

led to new ways of representing data at a time when novel visual representations had

become difficult to design. The premise of the technique was that users understand

their data better if they view it and interact with it through different representations.

Making interactive, multiple visualization systems that are usable is a difficult

challenge, due to the limited screen size that is typically available. Layout, thus,

plays a central role in enabling the user in understanding the data. Key charac-

teristics of a layout are the associated spatial and temporal costs of accessing and

coordinating multiple views and the cognitive effort required to perceive relationship

between views [62]. To balance and minimize these costs, a range of layout tech-

niques can be implemented that permit the user to perform their tasks better. It is

notable that this exploration of layout styles for MCVs on tablets resembles the ear-

lier research on visualization layouts on desktops, and preceding that, on windowing

systems for desktops.

Figure 29: Desktop metaphor proposed by Alan Kay [67].

80

7.1.1.1 Desktop Window Management

Early versions of desktops consisted of a single window. With the introduction of win-

dow managers, separate activities could be put in physically separate parts (windows)

of the computer screen. Early window managers followed either a “desktop” metaphor

(proposed by Alan Kay [67], Figure 29), allowing windows to overlap each other like

sheets of paper piled up on a physical desk, or used a “tiling” model (demonstrated

by Engelbart [33]), arranging windows so that no overlap occurs.

The overlapping ‘desktop’ model allows for more freedom. Users can rearrange

the windows, change the size, location and/or degree of overlap. Windows can also

extend partially off screen so that only part of the window is visible on the screen.

However, the desktop can become messy when the number of windows is large, and

managing the windows may require effort.

In tiling systems, the system is typically in charge of managing the window place-

ment and size. Whenever a new window is created or an old window destroyed, the

system adjusts the sizes of windows based on constraints. The constraints and tiling

styles can vary and windows can appear in single-column, multi-column, hierarchi-

cally, or non-hierarchically [22]. The downsides of tiling are that it takes a while

for windows to finish adjusting after a change. For each window added or removed,

Figure 30: Digital ‘book’-like interface [35] Figure 31: Smalltalk [39]

81

Figure 32: Rooms interface [49]

windows all over the screen need to readjust.

Bly and Rosenberg [13] compared user performance of tiled and overlapping win-

dow strategies. Their results supported tiled windows for regular tasks. For irregu-

lar tasks, however, expert performance was faster in overlapping windows, whereas

novice performance was faster in tiled windows. However, by the mid-1980’s, Unix

and MacOS, the two main operating systems, converged on the desktop metaphor

with overlapped windows [82]. Microsoft’s original window managers were tiled, but

eventually transitioned to the overlapping style.

A different, and popular, approach was to group windows based on tasks that were

likely to be used together. One early example used a book-like metaphor for arranging

projects into chapters [35] (Figure 30), while another provided hierarchical nesting

of project spaces for Smalltalk [39] (Figure 31). Henderson and Card [49] presented

the Rooms virtual desktop system (Figure 32). Workspaces (or rooms) were created

containing windows of similar tasks. Users could transition to other rooms using

doors. However, the main goal was to prioritize interaction between windows of the

same workspace by providing mechanism for easily switching between them.

Other windowing approaches were also explored. Beaudouin-Lafon [10] presented

the “tabbed windows” interactions for desktops where arbitrarily many standard win-

dows could appear, and each was assigned a tab. Robertson et al. [99] presented the

82

Task Gallery (Figure 33), a 3D window manager where windows appears as artwork

hung on the walls of a virtual art gallery, with the selected task on a stage. Others

also explored the 3D desktop metaphor [2, 25] (Figure 34), but the metaphor did not

garner mainstream acceptance, and studies found 3D desktops to be less efficient and

more confusing than 2D desktops [21].

Rather than scale down windows, an alternative approach was also to scale up

the workspace 1. Rather than scale down the windows, these systems provide a large

virtual workspace that could be panned (dragged), such that the user may arrange

windows over a continuous area much larger than his monitor. In some cases, these

systems let the user zoom out to see an overview of his larger workspace.

7.1.1.2 Layouts in Visualization Systems

While a host of desktop-based visualization systems employ MCVs, including Tableau

and Spotfire, there is surprisingly little work on guidelines and principles for layout

management in visualization systems. Early work by North & Shneiderman [89]

mostly provided a case for using coordinated views in visualization systems. Later,

Baldonado et al. [124] presented eight principles for both identifying when to use

MCVs and how to use them. However, their usage principles aim primarily at man-

aging perceptual and cognitive capabilities, such as rules of Space/Time Resource

1Beryl Linux, www.beryl-project.org

Figure 33: TaskGallery [99] Figure 34: Bumptop [2]

83

Optimization, Consistency, and Self-Evidence.

One relevant work that explored the different layout styles was a survey on com-

posite visualizations conducted by Javed and Elmqvist [62]. The authors presented

four broad styles of layout that visualization tools employ.

1. Juxtaposition2 - The most common and flexible design pattern is based on the

tiled layout, with views either stacked, placed side-by-side, or both. The vari-

ation may exist in whether views are placed within the bounds of the screen

or extend outside the screen. The layout manipulation can be manual or auto-

mated, though generally applications provide techniques to modify some aspects

of the layout.

2. Superimposition3 - This flexible layout also contains arbitrarily sized views that

can, again, be placed within or beyond the bounds of the screen. Views appear

above or below other views, overlapping with them either wholly or partially.

3. Overloading - In this layout style, one visualization (client) is rendered inside

another visualization (host) using the same spatial mapping as the host. Like

superimposition, the client visualization is overlaid on the host, but unlike Su-

perimposition, there exists no one-to-one spatial linking between the two visu-

alizations.

4. Nesting - Nested views are also based on the notion of host and client visualiza-

tions. In this style, one or more client visualizations are nested inside the visual

marks of the host visualizations, based on the relational linking between the

points. An example of this would be a scatterplot where the individual marks

are barchart glyphs [79].

2Resembles the tiling style of window management.
3Resembles the overlapping style of window management.

84

7.2 Relevant Layout Techniques

From the range of styles I present above, ones I believe merit an exploration on tablets

are juxtaposition (tiling), superimposition (overlapping), and scaled-up views 4. Each

of these styles can generate multiple layout configurations for tablets, as I discuss

below. I discarded the other styles due to the limitations that I identified with

them. For example, 3D layouts require complex interactions to be effective and are

also inefficient with utilizing the screen space. Tabbed windows could be feasible,

as evident in Vizable 5, but views in separate tabs cannot be visible at the same

time, making brushing and linking between views impossible. Finally, overloading

and nesting styles alter the default representations of visualizations. Supporting the

standard visualization techniques was a deliberate decision because these techniques

are applicable to a wide variety of data sets. The same, however, is not true for the

hybrid views of overloaded and nested styles. These views are complex and may not

be applicable to and effective for all datasets. Below, I explore the three selected

layout styles in detail.

7.2.1 Fixed Canvas Sizes

Figure 35: Tiled juxtaposition style.

4Beryl Linux, www.beryl-project.org
5Vizable, vizable.tableau.com

85

Tiled layouts (Juxtaposition) Tiled layouts (Figure 35) have a tremendous po-

tential for tablet-based visualization systems. Within a grid, views can appear in

any configuration [22]. The rows and the columns can contain an arbitrary number

of views. In a typical implementation, the number of elements in a row or column

is decided by the density of data the views are presenting. For example, barcharts

can be compressed to small sizes since the thickness of the bars permits the view to

be usable at small sizes. The space made available by compressing a chart can be

allocated to other views.

The layout style is efficient, and is used in dashboard applications such as Google

Analytics 6 and Roambi 7. In these applications, the size of the data is largely fixed,

and thus the layout remains predominantly static. However, in situations where the

data is constantly updated, such as through use of filters, the layout requires careful

use of controls and options to manipulate the layout [82]. Some of the operations

that require controls are:

1. Scaling views - A standard operation with tiled layouts is the one for scaling

the views. Since a view’s size is not independent and depends on other views,

the sizing control is shared among views, often appearing at the shared bound-

aries. Alternatively, users can expand or contract any view. Once the scaling

is complete, the system sizes and repositions the other views optimally using

predefined rules and constraints.

2. Swapping views - Controls for swapping views and moving them on the screen

are also common in tile-based layouts. Since tiled layouts often cover the entire

space of the screen, these operations are particularly relevant when new views

are introduced or existing ones removed. Such modifications result in ineffective

configurations that often require user manipulation.

6Google Analytics, www.google.com/analytics
7Roambi, www.roambi.com

86

3. Connecting views - Connecting or constraining [6] views is another behavior

associated with tiled layouts. Here, the position (or size) of one view is bound

to the position (or size) of another view. As a result, users can introduce

constraints to ensure that a view always appears above or to the right of a view

(and dragging one also drags the other), or is of the same width as another

view8.

Figure 36: Overlapping superimposition style.

Overlapping (Superimposition) The second style I identified is overlapping (Fig-

ure 36). Views can overlap with each other, and can be scaled up or down when

required. Since views do not need to be realigned to fit within a grid or a structure,

the layout is highly flexible. Example operations needed within this style are:

1. Scaling views - Similar to the tiled layout style, operations for expanding and

contracting views are important. Since the size of one view does not affect the

size of any other view, views usually do not share a common boundary. Thus,

scaling controls appear individually for each view. A typical approach is to

provide a control at the top or bottom right corner of the view. Alternatively,

8Hutchings and Stasko [58] present the limitations of constraint-based layouts, including user

forgetfulness, need for defining relationships every session, and unpredictability.

87

pinch and pan gestures can be used to change the size of views. A third option

is to provide an explicit mode for layout control. When the mode is enabled,

standard gestures can be used for modifying the layout.

2. View order - Since this layout allows views to overlap, operations are also needed

for managing the relative ordering of views on the screen. A typical implemen-

tation consists of four controls — ‘Bring forward’, ‘Send Backward’, ‘Bring to

front’ and ‘Send to back’. While these controls are sufficiently expressive, there

are two limitations. First, the options require the user to first select a view

on the hierarchy. On touch screens, selecting views that are completely hidden

and blocked by other views is non-trivial. On desktops, this is often achieved

by using the TAB key, which sequentially selects all the available views. Sec-

ond, when the number of views on the screen is high, controlling the order of

one view can be considerably cumbersome. This issue has been addressed in

previous work, and various alternates have been proposed in the scientific vi-

sualization domain [139]. However, these solutions usually consist of complex

multi-handed interactions that are more feasible on the large tabletops than on

small tablet devices.

7.2.1.1 Flexible Canvas Size

Figure 37: Tiled with scrolling. Figure 38: Overlapping with scrolling.

88

In this style, a part or the whole of a view may be placed outside of the screen.

Also described as Zoomable User Interfaces, such configurations are dependent on

easy access to operations for scaling and panning the view. Bederson and Hollan [11]

presented the earlier work in ZUIs and since then the technique has been in use in

various systems [19]. ZUIs are particularly relevant on touch screen since multitouch

gestures are naturally conducive for panning and zooming tasks. The user is able

to import a large number of views on the screen at any time and manipulate them

more easily than on desktops. Views that are not relevant can be easily be placed off

screen.

Within ZUIs, both juxtaposition and superimposition styles are feasible. More-

over, the advantages are compounded since the effective size of canvas increases sub-

stantially. This means that when a view is scaled up, little reconfiguration is required

since the other views can simply translate their positions without needing to change

their size. However, along with the advantages, there are also several disadvantages

of ZUIs. Most importantly, the actions of panning and zooming take precedence over

any other layout operation, such as scaling and swapping of individual views. Further,

since adding and ignoring a view is fairly inexpensive, the layout of the canvas can

become complicated fairly quickly. In a populated canvas, locating and identifying

relevant views can become a complex task on its own. Some methods of countering

this include adding overviews such as heads-up displays (HUD). But these introduce

a different kind of complexity to the interface which may be equally undesirable.

7.3 Selected Layout Technique

The layout technique I ultimately adopted for Tangere is fixed-canvas juxtaposition.

Below I highlight the reasons why I considered this technique to be the most relevant

for Tangere.

1. Simplicity: Simplicity in the context of layout can be understood in two ways.

89

The first is simplicity of the interactions that are employed to control the config-

uration of the layout, such as position, size and order. Here, the juxtaposition

style without scrolling requires the minimum number of controls and user in-

tervention for effective operation.

The second is the simplicity of the physical characteristics of the views — how

easy is it to understand the layout of the views? For instance, if the user opened

the app and landed at a screen with several views arranged in a layout, is s/he

able to comprehend the structure without interacting with the screen? With

the juxtaposition style, a grid-based configuration enables easy understanding

of the state of the system since there is a familiar structure to the views.

One could argue that overlapping resizable windows model is simpler, given it

is a metaphor we understand from use on desktops. However, our familiarity

is precisely what makes adapting overlapping model on tablets complex. This

is because our expectations of the features does not change, but providing the

same level of customizability we have on desktops is extremely difficult.

2. Visibility: In juxtaposition style without scroll behavior, all views are visible at

all times. While this constrains the number of views that can be placed on the

canvas, the benefit is that users have a comprehensive visibility into the system

at all times. Placing views outside of the screen, or behind other views, requires

Figure 39: Mac OS Exposé Figure 40: HUD in SublimeText

90

additional interactions. For example, the system has to provide cues to inform

the user of all views on the screen. These include HUD or minimap available in

applications such as SublimeText (Figure 40) or features such as Spotlight and

Expose (Figure 39) available within the Mac OS.

3. Feasibility to Constrain: The more customization a layout affords, the more

likely it is that a user configures it into an unusable state. Constraints help

to ensure that the likelihood of such configurations is reduced significantly and

that there is a minimum threshold to how usable the interface is. Juxtaposition

supports constraints in the form of the maximum number of views that can be

added to each row and column, the minimum size of each view, and relative

positions of each view.

4. Adaptability & Extensibility: The juxtaposition style is extremely flexible — a

grid-based layout can be adapted to any screen size. Across screen sizes, the de-

signer only needs to reconfigure the number of views permitted in each row and

column. With the views laid out, juxtaposition also more easily accommodates

changes in orientation of the device. Since the views are positioned relative to

each other and not relative to the edge of the screen (such as in superimposi-

tion), it is easy to locate them in the updated layout. The behavior, thus, more

closely matches users’ expectations. This adaptability is relevant because touch

devices are available across a variety of screen sizes. For example, Apple iPad is

available in three sizes today. Due to the adaptive nature of the juxtaposition

style, the layout behaves in a similar manner across all the screen sizes.

5. Effective defaults: With juxtaposition, it is easy to ensure that the default lay-

out the system generates is effective. Users can add several views to the canvas

without worrying about or needing to modify the layout. This, in turn, empow-

ers the designer as the threshold of operation for the system is low and only a

91

limited number of controls are required to operate the system. Consequently,

the system is also operable by novices.

7.3.1 Configuring Fixed-canvas Juxtaposition Layout

Earlier in this chapter, I presented the features that make up the specification for a

juxtaposition layout style. These include, among others, the number of views in each

row and column, how views are positioned, sized and swapped, and the flexibility

that the layout is permitted. These features need to be supported within the system

by either specifying the parameters (e.g. views in rows and columns), or identifying

operations to control them. Similar to the design options in the earlier chapters,

each of these features have several different ways in which they can be supported. I

enumerate the options below.

7.3.1.1 Number of rows and columns

This specification relates to the maximum number of views that can be added to each

row and column. Maximizing views in rows and columns is relevant as techniques

such as small-multiples and trellis can be supported this way. However, there are

limitations to the number of views that can be accommodated. The limitations are

not physical, as any number of views can be adjusted vertically or horizontally. Even

at small sizes, people can perceive relevant aspects of the visualization, such as in

sparklines.

It is in terms of interaction, however, that the small size of the views imposes a

restriction. At such sizes, it is difficult to allocate the space around visual elements

to accommodate an imprecise touch. Elements such as glyphs and axes need to be

packed tightly, which further restricts the number of interactions each of them can

individually support.

These usability limitations can be addressed in two ways. Either the number of

views in each row and column is restricted, or below a certain size, the views are

92

made non-interactive and read-only. While the latter is a reasonable option, it needs

interactive and non-interactive views to be represented differently, which is likely to

increase the complexity of the system.

7.3.1.2 Adding and removing views

Since the number of views on the canvas is not constant, some mechanism is needed

for adding and removing views from the canvas. Here, several approaches make sense.

The default approach is one where views are added one at a time and take up any

available position on the view. The canvas consists of a predefined number of posi-

tions, and these are ordered based on a rule, e.g. maximize the size of each view, or

order views top-to-bottom or left-to-right. This approach is simple to implement and

easy for users to comprehend. However, there are two downsides. First, since new

views appear at fixed positions, inserting a view in a specific slot requires multiple

steps and a mechanism to move or swap views. Second, the approach is less accom-

modating to changes in size of existing views. If the size of a view on the canvas

is modified, identifying the right position for a new view to fit is non-trivial for the

system and difficult for user to predict.

An alternate approach allows more flexibility by permitting users to specify the

position they want the views to appear at. There are several ways to achieve this.

For instance, views can be dragged from the menu and placed at a specific position.

Alternatively, in a two-step action, users can first tap on a view in the menu and

subsequently pick the desired position from ones highlighted on the canvas. Another

technique is to first create space in the layout and then place the desired view at the

location. The approach to specify the end position, as highlighted by these methods,

is more flexible than the default approach. Moreover, users have more control on the

expected output. However, the action itself takes longer to complete, particularly in

situations when the canvas only contains a few views.

93

A similar variation in options also exists for removing views from the canvas. In

the existing system, the layout of the views is replicated at the top of the add-view

menu. This approach can certainly scale to more views. However, other options also

exist. For instance, a ‘remove’ icon can show up if the user performs an action, such

as tap-and-hold, on the view directly. Alternatively, the view can be dragged and

dropped on the edge of the canvas or on a drop zone such as a recycle bin.

7.3.1.3 Repositioning and swapping views

The capability central to an advance layout mechanism is of repositioning views on

the canvas. Ad-hoc configurations in support of specific analytical queries can be

generated by placing views above and below, or next to each other. Repositioning

also promotes recycling and reuse as views that are less important can easily be placed

at the side so as not to disrupt the usage of other views, and brought back in when

needed. The methods for repositioning views are similar to those for adding views

that I described above. Views can be dragged and placed at a new position or, using

a mechanism to initiate repositioning, the user can select a position from a list of

highlighted positions.

Swapping is another operation for modifying the layout. Swapping can be con-

sidered a special case of repositioning since, in most cases, views can be swapped by

repositioning each individually. There are two exceptions to this, however. First, if

two views are placed side-by-side they can be swapped in a single step by dragging

the left view and placing it to the right of the other view. Second, if all rows and

columns contain the maximum permissible number of views, the repositioning oper-

ation is inaccessible. The swapping operation is still valid, however, but cannot be

achieved using two repositioning steps.

94

7.3.1.4 Resizing views

Similar to repositioning, the ability to resize a view improves the flexibility of a

system tremendously. Views may be resized to reflect an increase or decrease in

their relevance to the task being performed, or to create space for accommodating

new views. There are several techniques for resizing views. On touch surfaces, the

expected method involves the use of the two-finger pinch gesture. Pinching in and

pinching out can scale the view down and up, either by maintaining the aspect ratio

or mapping the ratio to movement of the fingers in the two directions. As one view

scales, the surrounding views can respond and resize to release or take up additional

space.

However, there are a few drawbacks of the pinch gesture. For instance, using the

pinch gesture within the bounds of a view is not feasible because the gesture is already

employed for scaling content within the views. (An alternate is to use modified pinch

gestures, such as Clutch + pinch). Another limitation is the ambiguity of the pinch

operation — how does the system respond if the two fingers used for pinching land

on different views?

Other methods for scaling views include marquee-based resizing, where each view

reveals a control with an 8 degree-of-freedom resizing behavior. This approach is

useful for the juxtaposition style as the controls show up at the shared boundaries

between views. Dragging the control for one view resizes multiple views at once,

ensuring that there is no empty space on the canvas. In a similar approach, all

boundaries between views can also be made draggable.

7.3.2 The Selected Layout Specification

From the above presented options for features in juxtaposition, I identified ones that

seemed most relevant for Tangere. Below I describe the selected specification and the

rationale for my decisions.

95

Figure 41: A subset of possible layouts for views on the canvas.

1. Grid count: The canvas now consists of a 3x2 matrix. Three rows containing

views can be added to the canvas, and each row can fit two views. Figure 41

presents some possible configurations of the selected layout.

2. Adding and removing views: The views are added one at a time. If the canvas

contains less than three rows, the added view appears in its own row at the

bottom. If three rows are already present, the view is added to the first available

slot in the second column. Views are added by tapping on the label in the menu

on the left.

The layout of the badges representing the added views resembles the layout of

the views themselves (Figure 42). The views can be removed by dragging the

badge sideways, either left or right.

3. Modifying layout: The views can be repositioned using a tap-and-swipe gesture.

Upon initiating the gesture, a small snapshot of the view is generated and

attached to the touching finger. The snapshot can be dragged across the screen.

96

Figure 42: Layout of tags in the Add View menu matches that of the views.

With each movement, the position of the finger is evaluated for feasibility as

a drop spot. If the new position changes the resulting configuration, a blue

rectangle highlights the new bounds of the dragged view, and the other views

move to their new position. As a result, the feedback on the resulting layout is

always provided to the user (Figure 43).

4. Resizing: I omitted features for selectively resizing the views that are placed on

the canvas. Within the permutations of views on the screen, a view can appear

in one of six different sizes, corresponding with two levels of width and three

levels of height. However, within each configuration, the size of a view is fixed

and I refrained from adding features for changing the size of an individual view.

97

Figure 43: A view being repositioned. Green zone depicts the resulting frame if the
dragged view is dropped.

7.3.3 Rationale

Although several factors played a role in the decision to adapt the above specification,

the predominant feature was simplicity. The goal was to provide users with the

maximum capability at the minimum interaction cost. Simplicity has been an ongoing

theme in the design of Tangere, and has influenced most of the concepts I have used.

Here, again, keeping interaction as simple as possible was the central tenet.

For instance, to add a view, user taps on the icon and the view appears in the

canvas at a specific, predefined position. Other options I considered were drag-to-add

— users drag a view from the menu and place it wherever they want, and two-tap-to-

add — users tap on the icon in the menu → the system highlights possible locations

for the view to be placed → user taps on the preferred location. The drawback of

these options was that they made adding a view a multi-step process. For a novice

users, it adds complexity and latency to the interface.

98

Instead, my overall goal was to ensure that the advanced layout specification did

not come in the way of a user using Tangere for the basic features. In other words, if a

user does not know about the layout operations, the tool should still be effective and

fully usable. This rationale also motivated my decision to omit features for resizing

the views. With views whose size can be modified, there is likelihood that users

generate unusable and ineffective layout configurations, which is undesirable.

The advanced layout solution is, relatively, complex to operate. However, the

overall solution is congruent to the existing design philosophy of Tangere. In summary,

the solution can be described using the following properties.

1. Optional - For a user, managing layout is not mandatory. The default layout

should be sufficiently usable without any user input.

2. Feedback - While manipulating the views, Tangere displays the resulting layout

consistently throughout the period of the operation.

3. Secondary Action - The advanced layout operations are secondary features in

Tangere. Thus, the interactions for all other primary features take precedence

over those for controlling layout. Consequently, it is easier to apply filters on

the glyphs than to change the layout.

4. Simplistic - Continuing with the overall theme of my work, controls for manip-

ulating layout have been designed to be as simple to operate as possible, within

the constrains of the possible advanced layout mechanisms.

99

CHAPTER VIII

EVALUATING EFFECTIVENESS OF TANGERE

8.1 Introduction

The focus of my research has been on exploring the utility, effectiveness, and usability

of tablet-based tools for analyzing data using multiple coordinated visualization views.

My explorations of these areas has resulted in a feature-rich tablet-based system called

Tangere. In exploring these areas, I have used simplicity as a theme guiding my

research by making assumptions at various stages of the design. These assumptions

have pertained to the expertise of the end-users, nature of data that they would import

in the tool, and the type and complexity of questions they would ask of such data. In

turn, the assumptions have guided the design of Tangere, the visualization techniques

it provides, and the breadth of operations each technique supports. While I made

these assumptions with careful perusal and through informal feedback I received from

colleagues, these assumptions have not been examined rigorously. Thus, one critical

aspect that remains is a thorough and in-depth evaluation of Tangere with actual

users.

In the following chapters, I describe the user studies that I have conducted to

understand the effectiveness of the Tangere system. The three studies capture very

different facets of the system, with each study progressively informing design alter-

ations and refinements for the next. Although the design space of possible evaluations

for Tangere is large, with these studies I assess characteristics of the system that were

most reflective to my design process.

100

8.2 Designing Experiments to Evaluate Tangere

One of the themes for the Tangere system was targeting novice users. I define novice

users as people who belong to one of the following three groups:

1. People who do not have previous experience with touch-based interfaces.

2. People who do not have previous experience with visualizations or visualization

systems for data analysis.

3. People in both groups 1 and 2.

An understanding of the requirements of each of these three groups played a crucial

role in specifying the guidelines important for designing Tangere. Designing for the

first group suggested employing only the standard suite of gestures that can be easily

learned, including through use in other applications. Although I do introduce novel

and more complex interactions in the latter stages of my research, these advanced

interactions are supplementary to the system and employed for behavior that can

already be achieved using a combination of existing interactions.

Similarly, designing for the second group requires using the standard visualization

techniques that are easy to understand and use, and applicable to a wide variety of

data sets. Additionally, the explicit constraints placed in the system, such as stacking

views vertically and only permitting a limited number of views at a time, further help

in simplifying the interface for novice users and limiting the complexity they may face.

Finally, for both groups, once the novices are past the initial learning phase, the

design of the system reflects the frequency with which I expect them to use the

features in the system. While task importance and frequencies have been studied

in the past, the mapping of the tasks to the controls and the layout of the controls

remains unverified.

These assumptions about the users of Tangere and their usage behavior have

certainly assisted in the design of the tool. However, verification of the validity of

101

these assumptions is clearly required. Several approaches to evaluation are relevant

and can be employed. I discuss these below.

8.2.1 Evaluation Techniques

The evaluation of information visualization systems remains a deeply challenging

problem. While several evaluation techniques are feasible, no one technique stands

out as being the most effective. Lam et al. [71] provided a comprehensive review of

360 information visualization research papers that included some form of evaluation.

They identified seven prototypical evaluation scenarios, four under the idea of “un-

derstanding data analysis” and three under the notion of “evaluating visualizations”.

Within each of these scenarios, the authors described three descriptive characteristics:

1) goals and outputs, 2) evaluation questions, 3) methods and examples.

At a high level, my goals for the evaluation of Tangere are aligned with the Evalu-

ating Visual Data Analysis and Reasoning (VDAR) and the Evaluating User Perfor-

mance (UP) scenarios, and to a lesser degree, the Evaluating User Experience (UE)

scenario. However, for each of these scenarios, several evaluation strategies are fea-

sible. Identifying the optimal strategy for tablet-based visualization devices remains

a challenge because very little actual development of visualization systems for this

platform has occurred.

One example of relevant previous work is Kinetica [102]. In evaluating Kinetica,

the authors compared the performance of the tablet application with Microsoft Excel

for basic data exploration and sensemaking tasks. However, adopting this approach

for evaluating Tangere has several drawbacks. First, there exists a big gulf in the num-

ber of features supported by Excel and Tangere. In fact, the two applications have

been designed with very different goals — Excel is primarily a tool for spreadsheet

creation and not analysis. Second, it would be difficult to contextualize any observa-

tions made during the comparative evaluation. The observations could be resulting

102

from the difference in the techniques, types of features, or simply the difference in

the platforms (desktop vs. tablet).

Other evaluation approaches may be more relevant. While designing Tangere,

each decision required examining multiple choices and subsequently choosing the one

that I considered ideal. Although I sought to be objective in my analysis, it is not

clear if the options I chose are the actual best options. Thus, a potential evaluation

strategy is to perform a comparative analysis of the different alternatives for each

operation with participants. The goal is to identify if the interactions chosen by a

majority of the participants match the ones I chose.

An alternate study design targets the original goal of promoting simplicity and

creating a system for novices and unfamiliar users. Several of my design choices were

heavily based on reducing complexity in Tangere. Identifying how successfully the

system achieves this goal is another possible strategy for evaluation.

Although elaborate to perform, a long term evaluation is another relevant strat-

egy for an application like this. Users develop proficiency with tools, particularly

those with novel interactions, over time and repeated use. A longer-term evaluation,

preferably conducted in a realistic setting, is an ideal method for capturing issues

that participants might have with the discoverability and learnability of the tool, and

their satisfaction with it over time.

Finally, a comparative evaluation is also feasible. During early stages of my re-

search, commercial visualization tools for tablet devices were absent. However, this

has changed with the availability of Tableau’s Vizable tool that I described in detail

in the chapter 2.3.2. The fundamental goals and targets of the Vizable system are

similar to Tangere — the tool employs standard visualization techniques, and targets

novice users. But the two tools take a fairly different approach towards visualization-

based analysis. For instance, Vizable shows multiple techniques disjointedly instead

of showing them in a coordinated configuration. The combination of a similar goal

103

and a difference in approach make a comparative evaluation of the two tools highly

relevant.

All the evaluation strategies I mention above are feasible, with each highlight-

ing unique insights about the system. However, to scope the evaluation process, I

identified three evaluation strategies as being most useful based primarily on my de-

sign process for Tangere. These were an evaluation of the simplicity of design of

the system, an evaluation to compare the performance of the system to that of an-

other tablet-based visualization system, and an evaluation to understand how the

tool supports the workflow of trained users.

8.3 Evaluation 1: Measuring Simplicity

Simplicity of a system can be captured by measuring two usability metrics — discov-

erability and memorability.

1. Discoverability - To what extent (in terms of the number of features) can users

discover the system on their own without receiving any prior training?

2. Memorability - When users return to a system after a gap (e.g., a few days),

how accurately can they recall the system and its different features?

These metrics are commonly used in HCI for evaluating the usability of sys-

tems [83]. In general, the metrics are dependent on each other — interfaces high

on one tend to also be high on the others. However, the metrics are evaluated us-

ing different methods, each of which reveals specific and distinct insights about the

interface.

8.3.1 Methodology

I conducted this evaluation in two phases. In the first phase, I focused on the discov-

erability metric. In the second phase, I evaluated the memorability of the features

and captured the general effectiveness of the interactions in the tool. The second

104

phase was conducted at least four days after the first phase. Below, I describe the

methodology in detail.

Phase One - Discoverability Discoverability of an interface can be captured by

observing how people approach and use the system for the first time. If first time users

find the interface relatable and are easily able to connect to aspects of it by virtue of

its resemblance to other existing applications they use, it is a win for the interface. To

capture participants’ reaction to the interface and measure discoverability, I engaged

participants in an open-ended exercise. I gave the participants an iPad with an

instance of Tangere running, and asked them to spend twenty minutes exploring

the application on their own. To contextualize this exploration, I gave them a brief

overview of the goals of my research as well as the evaluation, i.e. my goal is to

advance the usage of visualization-based analytical tools on touch-enabled devices,

and the evaluation tries to capture how far this exploration takes us in that regard.

In the twenty minute period, I monitored their interactions without participat-

ing in the exploration in any direct way. My role was twofold: I kept a track of

the different features they were able to discover, and I interfered in situations when

Tangere encountered a bug. Although I invested heavily in quashing the bugs that

existed in the system, I could not ensure that all were addressed. Olsen labels the

limitation of ensuring a bug-free evaluation environment as the fatal flaw fallacy [91].

It is virtually impossible to examine all eventualities of a system and flaw analysis is

frequently a barrier to new systems research. Since participants were unequipped to

discern features from bugs, and would likely interpret the system response incorrectly,

it was important to limit the negative implications. Thus, in situations when a bug

was encountered during evaluation, I stepped in and addressed it by restarting the

system. As a consequence of this, the number of bugs went down significantly over

the course of the experiment.

105

The number of features participants explored in the twenty-minute period gave

a measure of the discoverability of the interface. Clearly, participants’ expectation

strongly influenced this measure. Participants who had used other visualization tools

in the past expected features such as filters and data table to be present. This

influenced their exploration in two ways: first, if they expected and did not find a

feature, they looked for it more aggressively; second, once they found an expected

feature, they spent less time operating it and proceeded ahead in search of other

feature faster compared to participants who found an unexpected feature. I captured

participants past experience with visualization tools in the qualitative questionnaire

at the start.

In the next stage of the study, participants completed a series of predefined tasks

with Tangere. The tasks were presented to them as questions on a sheet of paper.

The questions were based on the dataset loaded in the system. To find answers

to the questions, participants had to perform a set of operations on the interface.

To gather richer data, I asked participants to think-aloud for each question. This

way I could better catch instances when they correctly identified the operation they

need to use, but could not locate the operation on the screen. I captured both their

intentions to perform a task (“I want to multiselect on the table”) and their confusion

in interpreting the response of the system (“why is the top of bar chart changing?”)

It was important that the tasks required participants to access all features in the

system at least once. Since participants only had a limited time, I paired several

features together within a single task. For example, selecting all glyphs within a

range of values (rectangular selection) and filtering to those glyphs (keep-only) was

combined into a single task. Overall, I created 18 tasks, and participants had roughly

50 minutes to complete these tasks1. The tasks resembled those described in the

study in Section 4.1.3 and were modeled on ones used by Drucker et al. [29] in their

1Appendix A presents a snapshot of the tasks and dataset I used in this study.

106

comparison of WIMP and gesture interfaces for tablets. The tasks were laid out in a

random order of difficulty, but all participants were given the tasks in the same order.

I estimated the difficulty of each task based on the number of steps and time needed

to complete it.

Participants completed the tasks in one continuous session. I only interrupted

them if Tangere encountered a bug and had to be restarted. After 45 minutes, I

asked participants to complete the task they were performing and ended the session.

For these sessions, I did not collect quantitative data such as time taken to complete a

task, number of tasks completed, or number of tasks completed correctly. I communi-

cated the same to the participants at the start of the study so that their interactions

would not be biased by efficiency constraints.

I did not collect quantitative data, such as performance time and accuracy, since

other sources that I could compare this data to were absent. The data itself would

give little insight into discoverability and learnability of the system. Instead, I only

made qualitative observations. This included noting the features that participants

successfully discovered and were able to operate while performing the tasks. Further,

participants were encouraged to think-aloud. This provided insight into how they were

interpreting the application and was particularly useful for highlighting situations

when their actions on the screen did not respond in a manner they expected.

I also collected a more detailed feedback at the end of the session. Each participant

completed an online survey, providing feedback on their perceived ease-of-learning and

ease-of-use of the system. The survey consisted of 22 likert-scale questions largely

based on the questionnaire generated by Elliott [31].

Phase Two - Memorability In the second phase, I studied the memorability of

the features in Tangere. For this phase, a subset of participants from the first phase

were invited back after a few days. Over the course of the study, I measured how well

107

participants remembered the features of the system and how to operate them.

The central activity of the experiment was a case-study. The experiment was run

in pairs where participants were paired based on availability. The experiment design

allowed several different mechanisms to capture the memorability of the system. At

the start of the study, participants were given two tasks to complete. One, they had

to enumerate all the features of Tangere that they could remember from using it the

last time. Two, they had to generate a series of questions based on a specific dataset

that they would subsequently solve using the system. For every pair in a session,

I randomly assigned one person to complete task one first and the other person to

complete task two first.

For task one, I captured memorability in three steps. Initially, participants were

asked to recall Tangere from the previous session and verbally describe all of its

features that they could remember. Next, for the features they could not recall, the

experimenter provided verbal hints to encourage recall. These included statements

such as “Do you remember if there was a way to filter data?”. Finally, to stimulate

the visual memory, the experimenter provided participants with a snapshot of the

interface. As expected, certain features were easier to recall once the interface was

made available.

For task two, participants were shown a sample of the coffee dataset and asked

to spend ten minutes crafting questions based on the dataset. They completed this

exercise on their own. I did not give any instructions regarding the style of questions

they should construct except inform them that they would solve the questions with

the interface.

Half the participants completed the system recall task first, while the other half

crafted the questions first. After completing the two tasks, participants spent the

remaining time trying to answer the questions they had crafted. They did this in pairs

and were free to structure their process as they wanted. This included controlling the

108

use of the iPad — participants were given their own iPads, but were free to use only

one and analyze the data together. In that case, one participant would take the lead

and operate the interface while the other participant observed.

Similar to phase one, I did not collect quantitative data in this phase such as the

number of questions participants generated or solved in the study. Instead, I observed

how participants used the features of the system over the course of the experiment.

Since my focus was on measuring memorability, another useful data point was the

difference between the features they could recall earlier and ones they ultimately

used. For the features they used but could not recall earlier, I wanted to identify the

affordances that assisted them in this recollection.

8.3.2 Participants

In the first phase of the study, a total of 14 people participated (2 pilot). For the

second phase, 10 of the 14 people participated (2 pilot). The total pool comprised

of 7 men and 7 women, all of whom were graduate students in Computer Science

at Georgia Tech. Similar to the study described in section 4.1.3, I sought to recruit

participants who were subsequent learners [24], i.e. people who are novices to a specific

software system, but experienced with a similar system. This ensures that they not

only have the required domain knowledge, but also a general understanding of which

tools and functions will be available. This also guarantees that their performance is

primarily a measure of the quality of the interaction and not of their subjective lack of

understanding of the underlying features. The experience I sought was with systems

such as Tableau or Spotfire. Thus, I recruited participants through the roster of past

courses on Information Visualization taught at our school.

I asked participants to rate their knowledge and experience with visualization

systems in general and tablet-based visualizations systems in specific. Five out of

twelve participants stated that they had a good understanding of visualization systems

109

(“I am very familiar with the idea of information visualization and have used several

applications”), whereas the other seven mentioned that only had a fair knowledge(“I

have used applications like Tableau, Excel, QlikView etc. occasionally (less than 10

times in the past year)”). Further, majority of the participants (9 out of 12) had low

or no experience with tablet-based visualization systems, while one participant had

used Roambi 2 on an iPad in the past.

8.3.3 Results

Tangere is fairly feature dense. It contains a total of 45 different features that can be

distinctly classified under the seven task categories presented by Yi et al. [137].

Discoverability Table 4 presents the discoverability classification for the key fea-

tures in Tangere. Figures 44 & 45 present snapshots of these features. The discover-

ability of the features was dependent on several factors.

1. Interaction type: The features used either gestural interactions, interface ele-

ments, or both for operation. Interface elements clearly performed better at

discoverability than gestural interactions. Gestural interactions, however, were

more promising for serendipitous exploration. Accidental interactions revealed

features participants did not know about or did not anticipate.

2. Past experience: As discussed earlier, participants who have previous experience

using visualization systems expected certain features in Tangere. The same

was true for people who had past experience with iPad and iOS. For instance,

participants were versed with the ‘Keep only’ and ‘Remove’ options from using

the Tableau system. Similarly, participants could discover the swipe action

to remove the ‘Keep only’ and ‘Remove’ filter badges as it is a part of the

vocabulary of gestures used by apps on iOS.

2Roambi, www.roambi.com

110

3. Workflow: Perhaps the biggest factor that led to participants discovering fea-

tures was expectation and need. If a feature was not needed, participants would

not seek it. For instance, the interface contains a label on the top right that

depicts the number of data items in the dataset. Since this information was not

relevant during the open-ended exploration, most participants missed it, even

though the label occupied a prominent position.

I found the results of discoverability to be as I had expected. A majority of features

achieved medium or high scores in discoverability, which was encouraging. However,

it was also concerning to observe the performance of some features that achieved

lower scores than preferable. Most notably, only a few participants discovered sorting

on barchart and the filter menu. As I mentioned in section 4.1.4, the gesture I used

for sorting (tap-and-hold) is unique both to Tangere and iOS in general. In fact, the

gesture is more common on the Android operating system, and this was evident in

the study too as the participants who discovered sorting were Android users.

The filter menu suffered from discoverability issues due to a lack of visibility and

a relevant affordance for it. This absence was particularly detrimental in light of the

affordances in place for the other two side-views. The data-table view at the bottom

had a handle that was always visible, and while the add-chart view did not, it was

open by default. The settings view had neither. Taking cue from this result, I added

a handle to the filter menu for the subsequent studies.

Memorability Table 5 presents the memorability classification from the second

phase of the study for a subset of features in Tangere. Overall, I consider the perfor-

mance on memorability to be promising. Over the course of the three steps through

which I captured memorability, participants were able to recall most of the features

they had discovered during the previous session. However, assisted recall of the second

and third steps clearly helped the overall memorability, as highlighted in Table 5.

111

(a) Add chart panel that can be dragged
in using an edge-swipe gesture.

(b) Rectangular selection activated by
dragging on an axis.

(c) Lasso selection. Drawing a path on
the canvas selects glyphs within the path.

(d) Data table panel that can be dragged
in view from the bottom.

(e) Keep-only and remove options that
are revealed at the top when glyphs are
selected.

(f) Keep only and remove badges that can
be enabled/disabled by tapping and re-
moved by swiping.

Figure 44: Tangere’s features that received high discoverability scores.

112

(a) Bars can be sorted with a hold+drag
gesture on an axis.

(b) Attributes can be previewed by drag-
ging a finger on the red region.

(c) Filter panel contains categorical and
quantitative filters. The panel can be
dragged in from the right.

Figure 45: Tangere’s features that received low discoverability scores.

113

Table 4: The discoverability of the features in Tangere, classified under high, medium,
and low categories.

Discoverability score Features

High (Figure 44)

1. Add Charts

2. Change X or Y attribute and aggregations

3. Select by tapping, lasso, rectangular window

4. View data table

5. Pinch to zoom chart

6. Keep/Remove filters

7. Toggle filter badge

Medium

1. Remove a chart

2. Unselect by tapping outside

3. Sort table column

4. Interpret data count

5. Remove filter badge

6. Open Filter menu

Low (Figure 45)

1. Preview X or Y axis graph

2. Pinch to zoom axis

3. Double tap to zoom out

4. Two finger drag to scroll

5. Sort barchart

6. Use filters in filter menu

7. Use reset all button

Below I highlight the interesting observations from the memorability analysis.

1. Memorable features: Features that all the participants could recall were the

three visualization types present in Tangere (scatterplot, barchart, linechart),

ability to place them as multiple coordinated view, data table, keep/remove

filters, lasso selection, and rectangular selection.

2. Accurate guessing: Several features had low discoverability and memorability

scores. This was mainly because participants did not originally expect the fea-

ture in the system. However, upon asking them to elicit the gesture they expect

114

Table 5: The memorability scores for Tangere’s features. The scores represent the
number of participants (out of 8) who could recall the feature and the average stage
(out of 3) when they recalled the feature.

Feature
of recalls

(out of 8)

Avg. recall stage

(lower is better)

Scatterplot, Barchart, Linechart 8 1

Add charts 8 1

Remove a chart 7 2.1

Change X or Y axis 8 1.4

Change subattribute or aggregation 6 2

Select by tapping 7 1.9

Select by lasso 7 1.4

Select through rectangular window 8 1.4

View data table 8 1.1

Sort data table column 5 2.4

Interpret data count label 5 2

Pinch to zoom chart 5 1.2

Pinch to zoom axis 2 2

Two-finger drag to scroll 3 1.3

Brushing and Linking 8 1.6

Sort barchart 0 -

Split line chart into categories 2 3

Keep only/ Exclude 3 1.3

Toggle filter badge 1 1

Remove filter badge 2 1.5

Use filters in filter menu 4 1.25

Use reset all button 1 2

115

Table 6: Participants’ response to the ease of learning and ease of use likert-scale
questions. The scale used was 1: Strongly Agree to 5: Strongly Disagree.

Question Mean Median SD

1. The system was easy to learn 3.67 3.5 0.78

2. I liked learning the system 4 4 0.79

3. I felt comfortable learning the system 4 4 1.04

4. I found the system easy to understand
(higher is better)

3.5 4 0.9

5. The ideas behind the system were easy to
appreciate (higher is better)

3.92 4 1.08

6. The system is no more difficult than other
information visualization systems

3.5 4 1.09

7. I often became confused learning the sys-
tem (higher is better)

2.83 2.5 1.03

8. It took too much time to learn the system
(higher is better)

3.58 3 0.79

9. The time and effort learning the system
were well spent

3.92 4 0.9

10. It was easy to use the system 3.5 3.5 1

11. I liked using the system 3.92 4 0.9

12. I had no difficulty understanding how to
use the system

2.92 2.5 1.08

13. The set of operations one needed to use
were easy to remember

4.25 4 0.62

14. It was obvious what to do next 3 3 0.95

15. I became confused trying to complete the
tasks (higher is better)

2.92 3 1

16. The system made it difficult to complete
the tasks

3.83 4 0.94

17. I felt frustrated using the system (higher is
better)

3.42 4 1.16

18. I felt comfortable using the system 3.58 3.5 0.9

19. The system was fun 4.33 5 0.98

20. It took too much time to use the system
(higher is better)

3.58 4 1

116

the operation to use, participants often accurately guessed the interaction. Ex-

amples include axis preview and barchart sorting. In both cases, participants

described a hold-and-drag gesture for the operations, which is the gesture ac-

tually employed in Tangere.

3. Recall spike: In the first recall step, participants had an initial spike in how

much of the system they could could recall on their own. However, since they

could not track what they had recalled and what remained, they would often

conclude by saying “I think that is all there was on the interface”, only to

remember several others as soon as the experimenter provided a hint.

An example is removing a view. When describing how views were added, par-

ticipants recalled both how to open the menu and how to add multiple views.

But they did not describe how views are removed until the experimenter either

provided a verbal hint (“Can a view be removed?”) or an image of the add-view

panel. For this reason, I believe that the importance of features recalled in step

one should not be over-emphasized in comparison with those recalled later.

4. Feature obviousness: Some features were difficult to provide hints for. For

example, when participants were asked how they would focus on a portion of

the view, they always responded that they would use the pinch-to-zoom gesture.

Similarly, when asked how they would order data in the table, their response

was always to tap the column header. In both these cases, it did not matter if

participants had attempted the operation in the first session. When given the

hint, participant simply described the most obvious method or the method they

remembered from other contexts.

5. Tap & Double tap: The use of tap and double-tap was particularly interesting.

In both the first and the second sessions, tap and double-tap gestures were used

extensively. Tap deselected any selected glyphs. Double-tap reset the zoom

117

if the view was zoomed in, and defaulted to deselection if the view was not.

Across several participants, the use of these two interactions was frequent and

fairly non-deliberate. They would attempt the gestures almost unconsciously

when they were distracted with another thought or activity away from the

iPad. However, in spite of the frequency of use, those participants entirely

missed the interactions when recalling the systems. Participants’ familiarity

with and dependance on the gestures underlines the importance for the interface

to support these interactions. Further, their confusion in using the two gestures

highlights the need to support them in an inexpensive manner.

6. Linechart split-by attribute: In a linechart, the view could be split into multiple

lines based on a categorical attribute. Most participants missed this description

in the recall steps, including when the experimenter provided the hint. How-

ever, with an image, participants immediately pointed to the third attribute

dropdown on the top right, irrespective of whether they used it in the first

phase or not.

The above factors describe the observations both in the performance on memo-

rability and the process used to collect the data. Below, I highlight the key factors

that affected the memorability scores.

1. Frequency of use - Operations that were used more frequently were remembered

better. Typically, these were either low level operations such as selection, or

others that were critical to the workflow, such as adding and removing views.

2. Ease of use - Features that participants found easy to operate, particularly those

that matched their expected behavior, were also more memorable. Examples

include selecting glyphs with lasso and filtering with ‘keep-only’ and ‘remove’

options.

118

3. Delight - People remember a feature or an interaction that instills an emotional

connection [86]. The connection emerges as a result of finding the feature fun

and novel (such as animations and transitions) or by discovering it serendip-

itously. This was also evident in Tangere, specifically for interactions with

keep/remove filter badges and rectangular selection on the axis.

Key observations Over the course of the study, beyond learnability and memora-

bility of the features, various other observations stood out. Below, I summarize the

ones that emerged across several participants.

1. In a barchart, participants wanted to put quantitative attributes on the x-axis.

2. They were confused by the line chart only allowing time/date on the x-axis.

3. They had difficulty interpreting brushing in barcharts when only a portion of

the bars was highlighted (Figure 46).

4. They searched for the undo feature, and the ability to specify exact value for

the range slider filters.

5. They expected selection of multiple rows on the data table.

8.3.4 Modifications to Tangere

As a result of the filter menu’s low discoverability observed in the study, I made two

changes to the design of the feature.

1. Filter menu handle (Figure 47): The filter menu on right was the least discov-

erable feature in Tangere. To account for this, I added a handle to the view.

The handle was visually similar to the one for the data table at the bottom and

could be dragged or tapped to bring the view on the canvas.

119

Figure 46: Brushing in barcharts. Participants had difficulty interpreting the high-
lighted portions of the bars in the lower barchart.

2. Filter menu peek: To provide additional feedback for the filter menu, I added

a peek animation. The first two times users try to add a chart, a portion of

the filter menu animated into the view briefly before sliding out again. This

notified users of the existence of an additional view to the right.

120

Figure 47: A handle was added to the top of the filter menu to make the menu more
discoverable. The panel could be brought into view by dragging with the handle or
tapping on it.

121

CHAPTER IX

EVALUATION 2: COMPARISON WITH AN EXISTING

TOOL

In the second evaluation I conducted, I compared Tangere to an existing visualization

tool for iPad — Vizable.

9.1 Designing a Comparative Study

There are several ways in which two tools can effectively be compared. The com-

mon approaches center around comparison of systems’ usability, which encompasses

metrics such as performance time, accuracy, utility, learnability, and safety [27]. Of

these, quantitative metrics of performance, such as time and accuracy, have been used

extensively in the past. Qualitative comparisons have also been made using metrics

such as discoverability and learnability.

Besides usability-based evaluation, the other method is to compare systems on

their user experience goals. These goals take into account how memorable, fun,

enjoyable, and engaging the experience of using the system is. Recently, there has

been a growing interest in using these metrics to evaluate visualization systems [106].

For comparing Tangere to Vizable, both usability and user experience evaluation

approaches could be adapted. However, the relevance of each metric was dependent

on the differences between the applications that were important to study and critical

to highlight. By examining the two applications, I identified the following points of

similarity and departure:

1. Novice users: Both the systems have been designed with novice users in mind.

Consequently, being learnable and discoverable has been an important design

122

goal for both.

2. User flow: Both systems visualize tabular datasets and require cleanly format-

ted data. They both also support barchart and linechart, but Vizable omits

scatterplot. Vizable allows only one visualization on the screen at a time, while

Tangere supports multiple coordinated views.

3. Task support: The two systems support a wide range of visualization tasks,

such as filtering, sorting and zooming. Simultaneously, there are several tasks

that are also missing from both systems, e.g. neither tool provides methods for

editing the data or adding attributes to it. Crucial task support differences also

exist between the systems. An example is selection — Vizable does not support

selection whereas Tangere provides multiple methods for selecting glyphs.

4. Feature richness: Vizable supports certain features that are critical for com-

mercial applications, but are currently missing from Tangere. Basic examples

are sharing and bookmarking of visualizations, where more significant examples

include undo and search. For novices, the presence of undo can significantly al-

ter the initial exploration and freedom with which they experiment with the

system.

5. Interface and interaction design: The two systems differ considerably in terms

of the interface design. Several of these differences are high level. For example,

in Tangere, the emphasis is on presenting the overview. Thus, in a barchart

with a very large number of categorical attributes, the bars appear extremely

thin. Users have to zoom in to select an individual glyph, which adds steps.

Conversely, in Vizable, bars are always of the same thickness and are placed

in a scrolling view that may require substantial dragging. Therefore, ensuring

usability of each glyph is preferred over providing overview.

123

Another example concerns the type of interactions used. Although my goal was

to keep the interactions simple, some operations do require a combination of the

basic interactions (e.g. drag + tap for filter or hold + drag for sort). In Vizable,

however, the goal of single-step interactions is preferred over expressiveness.

Thus, advanced behaviors are mostly not supported. For instance, multiple

items cannot be selected and thus multiple bars cannot be filtered together in

one step. Instead, each bar has to be filtered out individually.

There are several low-level differences in the interface as well. The systems

employ a very different color schema, with Vizable using a white background

and Tangere using a black one. These variations, while subtle, together alter

users’ impressions of the tool.

This examination is useful for defining the goals of the comparative study as it

highlights the factors that need to be compared. Only the features that are common

to both systems could be a part of the study since one system may have an unfair

advantage otherwise. For instance, tasks given to the participants must not require

the use of scatterplots or multiple coordinated views. Exceptions include the use of

features such as undo and search that, in this case, were present in and inherent to

Vizable.

Comparing the features present in both systems is a useful exercise since the sys-

tems approach the features differently. For instance, both tools provide methods for

filtering and sorting data, but the implementations are fairly different. Similarly, sev-

eral usability goals are also common, e.g. both systems target novice users. However,

the effectiveness with which each system achieves these goals, I speculate, is different.

To address these differences between the systems, I selected the following metrics

for comparison:

A. Discoverability

124

B. Performance time

C. Accuracy

D. Ease of Learning & Ease of Use

9.2 Methodology

The study was conducted in one phase. The study followed a within-subjects design

where all participants used both the systems. The study began with each participant

being provided a short overview of the goals. Subsequently, they were given an iPad

with one of the two applications running. Similar to the previous study, I wanted to

capture participants’ natural response to the systems. Therefore, participants were

not given any training on either system. Instead, participants were given five minutes

to explore the system on their own.

Next, they were given a series of tasks to complete with the system. These tasks

were modeled on the ones present in the previous study. The number of tasks, how-

ever, was fewer (twelve) and participants had 25 minutes to complete the tasks. Once

completed, participants completed a survey capturing their perception of the inter-

face for ease of learning and ease of use. Next, participants repeated the same steps

on the second application that presented a different dataset.

At the end of the study, I asked participants to provide feedback on their ex-

perience with the two tools. Specifically, I encouraged them to elicit how the tools

were similar and how they differed, and what the strengths and weaknesses of each

were. I also asked them to describe scenarios in which they would prefer one tool

over another.

9.3 Participants, Tasks, and Datasets

For this study, I recruited 16 participants (10 male, 6 female) with similar background

and experience as the previous study. They were also recruited in the same manner

125

Table 7: Discoverability score for features in Tangere. The visual cue column rep-
resents if the presence of the feature is indicated by a UI control. The interaction
type column represents the type of interaction the feature utilizes. Basic interactions
are tap, pan, & pinch, whereas compound interactions are all gestures that use a
combination of the basic interactions. The count column represents the number of
participants (out of 16) who discovered the feature. OE: discovered during open-ended
exploration. TA: discovered during task analysis.

Operation
Visual

Cue

Interaction

Type

Count

(OE/TA)

High

Add charts y basic 16 (16/0)

Change attribute y basic 16 (16/0)

Filter through menu y basic 16 (16/0)

Access data table y basic 15 (15/0)

Change aggregation y basic 15 (9/6)

Select by lasso n basic 13 (11/2)

Select by tap n basic 13 (9/4)

Toggle filter badge n basic 13 (9/4)

Brushing and Linking – – 12 (10/2)

Filter through selection y basic 12 (7/5)

Medium

Remove a chart n basic 11 (6/5)

Reset all filters y basic 10 (7/3)

Remove filter badge n basic 10 (2/8)

Select by rectangular window n basic 9 (6/3)

Low

Zoom n basic 6 (4/2)

Data count y – 5 (4/1)

Split line chart by category y basic 5 (1/4)

Zoom by axis n basic 4 (4/0)

Pan chart n compound 1 (1/0)

Sort bar chart n compound 1 (1/0)

Preview X or Y axis graph y basic 0

126

Table 8: Discoverability score for features in Vizable. The visual cue column rep-
resents if the presence of the feature is indicated by a UI control. The interaction
type column represents the type of interaction the feature utilizes. Basic interactions
are tap, pan, & pinch, whereas compound interactions are all gestures that use a
combination of the basic interactions. The count column represents the number of
participants (out of 16) who discovered the feature. OE: discovered during open-ended
exploration. TA: discovered during task analysis.

Operation
Visual

Cue

Interaction

Type

Count

(OE/TA)

High

Access both charts y basic 16 (16/0)

Open filter menu y basic 14 (14/0)

Change attribute from menu y basic 14 (11/3)

Change aggregation from menu y basic 14 (6/8)

Medium

Select on Linechart n basic 11 (8/3)

Filter from menu y basic 11 (7/4)

Undo y basic 10 (9/1)

Filter with swipe n basic 10 (8/2)

Zoom Linechart n basic 10 (5/5)

Data count y – 10 (9/1)

Sort bars n compound 7 (6/1)

Toggle filter badge n basic 7 (4/3)

Low

Remove filter badge n basic 6 (4/2)

Change attribute with swipe n basic 5 (3/2)

Add column with menu y basic 5 (0/5)

Add column with pinch n basic 4 (2/2)

Sort by multiple columns n compound 3 (2/1)

Change aggregation with gesture n basic 1 (0/1)

Switch attribute type (Q ↔ C) n compound 0

127

as the previous study and consisted of graduate students from Georgia Tech who had

previously completed a course in visualization. The study took about one hour to

complete average. I video recorded the sessions for later perusal. For their time,

participants were compensated with a $20 Amazon gift card.

To balance the two interfaces, I used two publicly available Tableau datasets —

Coffee sales and Superstore sales. I designed the study following a latin square design.

I divided the participants into four groups of four and assigned each group a unique

combination of dataset, interface, and order. Half the subjects experienced coffee-

sales dataset with Tangere and half experienced it with Vizable; half the subjects

used Tangere first, while half the subjects used Vizable first. For the two datasets,

I created a set of matching, synonymous tasks. The tasks resembled those I used in

the previous evaluation1.

Similar to the first study, I also captured participants’ knowledge and experience

with visualization systems in general and tablet-based visualizations systems in spe-

cific. Seven out of sixteen participants mentioned that they had a good understanding

of visualization systems, whereas the other nine stated a fair knowledge. In terms of

the systems, most of them had used Tableau and Excel in the past year, while a few

had used D3, Spotfire, and QlikSense. Finally, fifteen of the sixteen participants had

low or no experience with tablet-based visualization systems.

9.4 Results

9.4.1 Discoverability

Tables 7 & 8 present the discoverability results for a subset of features for the two

systems. Each table lists a count of the number of participants who discovered the dif-

ferent operations provided by a system. For Tangere, a majority of features achieved

1Appendix A presents a snapshot of these tasks.

128

medium or high scores. The outcome matches that from study one, with the excep-

tion of the filter menu. I added a handle to the filter menu and as a consequence,

most participants could discover the menu.For Vizable, the results were similar with

most of the key features achieving medium or high discoverability.

WIMP vs. gesture In examining the attributes of the design that assisted or ham-

pered discoverability for novices, the results were fairly expected. Unsurprisingly, the

primary factor to positively affect discoverability was simplicity. Operations that

used basic interactions (tap, pan, and pinch) or had clear visual cues were easily dis-

coverable. Conversely, features that were invisible (e.g. filter menu), those that used

complex interactions (e.g. hold+drag), or ones that required contextual operation

(e.g. drag directly on axis) were difficult to discover.

If designing for novice users, the results seem fairly obvious. However, these re-

sults conflict with those observed in another study [29], where trained participants

were both better at and preferred gesture-based operations over WIMP-based. As

that study’s authors point out, efficiency with gestures may not translate into discov-

erability and learnability. An implication of these observations is the emphasis needed

for designers to establish early on whether users are expected to receive training or

not.

Familiarity Features adopted from existing applications fared well with discover-

ability. For instance, in Tangere, participants versed with Tableau could comprehend

and typically attended to the ‘Keep only’ and ‘Remove’ options that appeared when

glyphs were selected, while participants without such experience tended to ignore

these options. Similarly, removing a view or filter by swiping on a badge was easy

to discover in both systems for participants who had experience with applications on

iOS.

129

Contextual gestures Features that required contextual actions did not perform

well on discoverability. A common example for both system includes contextualized

drag gestures. These gestures require touch to occur at specific locations, followed

with movement in specific directions. In Vizable, people can switch the attribute

in a barchart by swiping left on the column header or change the aggregation by

swiping down on it. In Tangere, people can drag a finger on the axis to create a range

selection. Both these features had low discoverability, and were often discovered only

serendipitously. The corresponding visual elements in both systems do not contain

affordances that indicate the presence of these features.

The design of such affordances is a non-trivial task, however. Further, as I ob-

served, once discovered, the operations are easy to learn and operate, further reducing

the incentive for more explicit affordance. The solution Vizable adopts is to add re-

dundancy — both the attribute and the aggregation can be changed from within a

menu. Performing this action takes more number of steps, but certainly supports the

use case of novices.

Although redundancy is an option, the feature density in visualization systems

makes supporting it difficult to achieve comprehensively. It would, perhaps, be more

suitable to improve the design of the operations with better affordance and more

appropriate feedback.

Complex action In Tangere, only a few participants could discover sorting on

barchart. The gesture I used for sorting was hold-and-drag on the axis [103], and

participants likely did not discover it because of its uniqueness within Tangere and to

iOS in general. Instead, some participants tried to sort the bars by sorting the data

table, while others attempted to manually drag the tallest bars to one end (i.e. by

demonstration [105]).

130

Posture and grip I also recorded how participants held the tablets and operated

them over the course of the session. Participants exclusively used the fingers on

only one hand to perform gestures and touch operations. For much of the sessions,

they used the tablet by placing it on a table. However, they also spent a significant

time holding the tablet with their non-dominant hand. Both systems supported one-

handed operations. In Tangere, I had selectively accounted for one-handed input and

carefully designed the interactions for the same [103].

Exploration approach I observed two approaches in which participants explored

the system. The first category of participants spent a majority of their time inter-

acting with features that they anticipated would exist, and found working the way

they expected. Such features included lasso-based selection and filters. The second

category of participants were more experimental. They quickly moved beyond what

they already knew and tried to discover the other features of the systems. While the

second category ultimately discovered more of the systems, the first category provided

better insights into what people expect in such a system and how they translate their

existing knowledge to the new environments.

9.4.2 Performance

Table 9 presents participants’ performance on each question across the two interfaces.

On average, participants took slightly lesser time to answer questions on Tangere

compared to Vizable. However, large individual differences emerged in the time taken

by the participants, resulting in a high variance (sd = 27.03s) in the data. For this

reason, the data cannot be analyzed at the question level to understand where the

difference stems from.

131

Table 9: Participants’ average time taken and standard deviation (in seconds) for
each question across the two interfaces. While the differences stand out for a few
questions (highlighted in color), the standard deviation is too high for the results to
be meaningfully interpreted. V: Vizable, T: Tangere

Question
V

time

V

std. dev.

T

time

T

std. dev.
Difference

Q1 73.75 73.49 66.20 72.26 7.75

Q2 57.75 37.83 51.42 50.93 6.33

Q3 44.10 28.87 65.82 52.33 -21.72

Q4 89.40 47.86 98.75 80.90 -9.35

Q5 91.30 47.49 37.17 27.87 54.13

Q6 115.92 66.32 91.25 49.63 24.67

Q7 66.73 73.05 58.27 51.99 8.46

Q8 104.22 77.47 77.36 36.26 26.86

Q9 76.30 81.28 94.20 36.09 -17.7

Q10 30.20 36.85 75.22 68.95 -45.22

Q11 31.13 38.11 30.88 21.61 0.25

Q12 28.40 35.12 27.71 31.39 0.70

Average 67.42 53.65 64.49 48.35 2.93

Average when first 60.69 58.50 2.19

Average when second 70.42 68.55 1.87

9.4.3 Accuracy

I used a scoring system where I assigned one point for each task participants completed

correctly, a half point for tasks attempted, and zero otherwise. Table 10 presents the

number of questions participants attempted and answered correctly using the two

interfaces. While the number attempted is roughly the same for the two interfaces, the

number answered correctly is lower in Vizable. Also interesting are the results when

the order is taken into consideration. I originally speculated that, due to learning

effects, participants’ performance on the interface they used second would be better

than the one they used first. However, the results are to the contrary. In both orders

of interfaces, the performance on Vizable was lower than that on Tangere.

132

Table 10: The number of questions attempted (out of 12) on each system and the
number of questions answered correctly. While the number of questions attempted on
both the systems were the same, participants’ scores for these questions were lower
on Vizable, irrespective of which system they used first

Interface Questions attempted
(out of 12)

Questions correctly
answered (out of 12)

Vizable 9.3 5.4

Tangere 9.3 6.7

Vizable first 8.6 4.4

Tangere first 9.5 8.0

Vizable second 9.9 6.4

Tangere second 9.1 5.3

Table 11: Average score of participants on the 12 questions they solved with the two
systems. I assigned one point for each task participants completed correctly, a half
point for tasks attempted, and zero otherwise.

Score

Question V T ∆

Which specific product type has most number of transactions

with sales of 500$ or more?
0 0.72 -0.72

Is there a relation between the profit and sales? 0.6 0.96 -0.36

For the year 2014, what were the total number of transactions made? 0.63 0.89 -0.26

Which product was sold in the transaction that generated

maximum profit?
0.48 0.73 -0.25

On which date did California’s highest sales transaction occur? 0.35 0.59 -0.24

Which year was the most profitable?

Which month within that year in particular?

Does the same month tend to be the most profitable across all years?

0.56 0.7 -0.14

How many products are of type coffee? What are their names? 0.83 0.96 -0.13

Which product types have sold the most and the least number of times?

How about in August?
0.48 0.5 -0.02

How have the sales for the different regions changed over time? 0.75 0.67 0.08

On an average, how much profit was earned from each transaction

of the products of type ‘herbal tea’?
0.93 0.79 0.14

Is there a product type whose sales have been increasing over time? 1 0.75 0.25

Is there an yearly pattern to the profits? 0.75 0.43 0.32

133

Table 11 presents the scores broken down at the question level. The table only

presents the questions for one dataset; questions for the other dataset were synony-

mous and similarly worded. The difference in scores is notable for seven different

questions. Below, I examine these questions in detail.

• Which specific product type has most number of transactions with sales of $500

or more? ∆ = -0.72

Participants did better for this question on Tangere because Vizable does not

provide quantitative filters. As a result, restricting the data to only items with

sales higher than 500 was considerably difficult to achieve. The current method

to do this in Vizable is to convert the quantitative attribute to categorical

attribute and sequentially filter out all the bars with value less than 500. In

Tangere, one can either use the scatterplot to select all values higher than 500

and press ‘keep-only’ or use the range slider in the filter menu.

• For the year 2014, what were the total number of transactions made? ∆ =

-0.26

Filtering the data to contain items for only 2014 was fairly easy for participants

to achieve on both interfaces. Counting the number of items that remained

in the dataset, however, was a step that caused confusion. Both interfaces

contained UI labels to depict the count of items in the dataset. On Vizable, the

label was presented at the bottom left (Figure 48b), while in Tangere, the label

was in the top right (Figure 48a). For both systems, participants either did not

see the label or did not register it. In Tangere, however, participants made use

of the alternate method of count — scrolling to the bottom of the data table to

use the index of the last row. Vizable did not contain such a table, and there

was no other alternate for count.

• Which product was sold in the transaction that generated maximum profit? ∆

134

= -0.25

On which date did California’s highest sales transaction occur? ∆ = -0.24

Is there a relation between the profit and sales? ∆ = -0.36

For each of these three questions, it was considerably easy to find the answer on

a scatterplot present in Tangere but absent in Vizable. That said, the questions,

specifically the first two, could also be solved using a barchart. Given the very

typical nature of these questions, I deemed it important to include them in

the study. However, Vizable was at a clear disadvantage due to a missing

scatterplot, and thus I believe the emphasis on the difference in scores should

be low.

• Is there an yearly pattern to the profits? ∆ = 0.32

Is there a product type whose sales have been increasing over time? ∆ = 0.25

For these two questions, the answer could be found using the linechart. The

implementation of linechart in Vizable was better and considerable more usable

than ours, which biased the result in Vizable’s favor. I discuss this in detail in

Section 9.4.6,

(a) Count label appears on the top right
in Tangere.

(b) Count label appears on the bottom
left in Vizable.

Figure 48: A majority of the participants could not locate or interpret the labels
representing the size of the active data in the two systems.

135

Table 12: Ease of use and ease of learning metrics for the two interfaces (T: Tangere,
V: Vizable). The table highlights the overall scores and the scores adjusted for the
order effects. Scale used: 1: Strongly Disagree, 5: Strongly Agree

Questions Overall When 1st When 2nd

T V T V T V

Ease of use:

The system was easy to learn 4.00 2.81 4.25 2.75 3.75 2.88

The system was easy to understand 3.88 2.63 4.00 2.50 3.75 2.75

I liked learning the system 4.25 3.25 4.75 3.50 3.75 3.00

I felt comfortable learning the system 4.06 3.25 4.38 3.25 3.75 3.25

The system is no more difficult than
other visualization systems

3.19 2.94 3.25 3.13 3.13 2.75

I often became confused learning the
system (higher is better)

3.38 2.44 3.75 2.38 3.00 2.50

It took too much time to learn the
system (higher is better)

3.75 2.94 4.00 2.63 3.50 3.25

The ideas behind the system were
easy to appreciate (High good low
bad)

4.13 3.25 4.25 3.13 4.00 3.38

The time and effort learning the sys-
temwere well spent

3.75 3.06 4.25 3.00 3.25 3.13

3.82 2.95 4.10 2.92 3.54 2.99

Ease of learning:

It was easy to use the system 3.75 3.13 4.25 3.25 3.25 3.00

I liked using the system 4.00 3.25 4.63 3.50 3.38 3.00

I had no difficulty understanding how
to use the system

3.25 2.44 3.50 2.50 3.00 2.38

The set of operations one needed to
use were easy to remember

4.00 3.19 4.00 3.00 4.00 3.38

It was obvious what to do next 3.19 2.75 2.88 2.63 3.50 2.88

I became confused trying to complete
the tasks (higher is better)

3.31 2.44 3.63 2.50 3.00 2.38

I felt frustrated using the system
(higher is better)

3.63 2.38 3.75 2.50 3.50 2.25

I felt comfortable using the system 3.88 3.00 4.13 3.25 3.63 2.75

The system was fun 4.06 2.94 4.63 3.00 3.50 2.88

It took too much time to use the sys-
tem (higher is better)

3.63 3.00 3.75 3.25 3.50 2.75

3.65 2.84 3.91 2.94 3.39 2.74

136

9.4.4 Ease of Learning and Ease of Use

Table 12 presents participants’ responses to a subset of questions on the ease of

learning and the ease of use of the two systems. Overall, participants seemed to find

Tangere easier to use and easier to learn than Vizable. This is better evident in the

comparison of the scores participants gave to the tools they used first (column 4 &

5).

From my observations of participants’ usage of the two systems, the difference in

scores can be attributed to two factors — how the systems respond to low-level inter-

actions, and how they support low-level tasks. In Vizable, not every element on the

screen responds to actions such as taps and swipes, which tend to be the predominant

actions participants perform when experimenting with an interface. Conversely, in

Tangere, interactions such as tap, double-tap and swipe are operable on most of the

elements. As a result, the interface feels more responsive and accessible.

Similar differences also exist between how the tools support low-level tasks. For

instance, Vizable does not support selection of glyphs. Vizable’s primary view is a

barchart, but since selection is not supported, the only interactions possible on the

bars is swipe. Consequently, most of participants’ time and interactions were spent

on the filter menu on the left. This impressed a higher relevance of the filter menu

to the workflow than the tasks demanded, i.e. the interaction design assigned an

importance to the features that may not match the actual relevance of the features.

Further, with support for simpler operations missing, such as tap and double-tap, the

system felt more complex to use.

9.4.5 System Preference

At the end of the study, I collected data on how participants compared the two tools.

Table 13 presents their preference on ease of learning, use, and complexity. Overall,

participants preferred Tangere to Vizable, finding it to be both easier to learn and

137

Table 13: Participants’ preference for the two systems. The value in the cells rep-
resents the number of participants who answered Tangere or Vizable for the specific
question.

Question Tangere Vizable

Which system was easier to learn? 14 2

Which system was easier to use? 13 3

Which system was easier to
understand and interpret?

11 5

Which system has a more complex
interface ?

6 12

easier to use.Participants primarily differentiated the system on intuitiveness and

aesthetic appeal, as illustrated in the comments below.

P13: “I liked Tangere better because it was easier to use and I understood

faster how to use it. Vizable was prettier but wasn’t very useful. It was

also less intuitive than Tangere.”

P1: “I felt like (Vizable) compromised aesthetics for function. Often times

I wasn’t sure what I could or should do next.”

P9: “I liked the intuitive interface and flexibility of Tangere. I was able

to quickly learn how to navigate the features, and was able to find a way

to answer all the questions in the task.”

9.4.6 Qualitative Observations

Hacking discoverability A key factor that affects discoverability is familiarity.

Familiarity leads to people seeking an expected operation or attempting a known

interaction in a new environment. I typically use this property to replicate common

behavior. However, it can also be used as a “hack” to force a desired outcome.

For instance, in Vizable, the designers opted to use a pinch-to-zoom gesture to add

columns to a barchart. Such a use of the gesture is fairly unconventional, since the

degree of compatibility between the pinching action and add-column behavior is very

138

low [9]. I argue that the resulting design suffers from low usability, as it lacks any

affordance or indication that the pinch gesture would result in the addition or removal

of a column of bars. Participants’ confusion with the operation was apparent. P5

mentioned “The zoom-in/zoom-out feature for barchart is really weird. I understood

it is used to get more insight on sub-column (category→ subcategory) but sometimes I

got new unwanted columns”. It is notable that the participant describes the operation

as ‘zoom-in/zoom-out’ instead of ‘pinch gesture’.

Ultimately, Vizable attempts to leverage people’s familiarity with the pinch inter-

action. By combining it with an outcome that should be fairly comprehensible, the

goal is to result in a feature that can be serendipitously discovered. Given sufficient

operation, the behavior can also be learnt. However, it is difficult to argue for this

style of design. The use for add-column is both different from the form of the actual

gesture (the pinch action), and from the familiar and accepted use of the interaction.

Consistency Consistency is often cited as a theme essential to good design [85].

However, Tangere and Vizable adopt very different approaches to consistency. For

Tangere, maintaining consistency between techniques was fundamental to my design

process [103]. The three visualization techniques in the system support the same

set of operations, and use the same interactions throughout. Vizable’s approach to

consistency is considerably different. The two techniques, barchart and linechart,

exist independently in separate tabs and do not share any common operations or

interactions. While linechart supports selection and zoom through tap & drag and

pinch, the barchart does not support either of these operations and instead provides

filtering, sorting, and adding a column or bars using a similar combination of gestures.

Naturally I were interested in assessing if the two approaches resulted in a dif-

ferent experience. My analysis suggests that the lack of consistency within Vizable

negatively affected participants’ perception of the system. It was also one of the key

139

Table 14: Order effects in the discoverability metric. The value represents the number
of participants (out of 8) who discovered the feature when the system was used first
or second.

Order

First Second

Vizable

Filter with swipe 3 7

Remove filter badge 1 5

Toggle filter badge 2 5

Change attribute with swipe 1 4

Tangere

Select by tap 8 5

Select by lasso 8 5

Interpret data count 5 0

reasons participants found the interface to be complex, non-intuitive, and difficult to

learn (P14: “Learning period in the Vizable system is a lot. Some of the features are

not apparent immediately and intuitively.”).

Inconsistency also has other drawbacks besides complexity and reduced learnabil-

ity. An inconsistent behavior introduces a perception of dissociation or disjointedness

between the fragments of the system, wherein people might understand the views as

separate subsystems. For instance, participants were unclear if operations such as

selection or filtering translated across the views. Such limitations would only amplify

when the system is expanded to more techniques, or views that are colocated and

coordinated, such as in Tangere.

Order effects In capturing discoverability, I observed interesting order effects. Ta-

ble 14 presents features that were discovered by at least three (∼20%) additional

participants in one order condition. Results indicate that the difference occurred ex-

clusively in the condition when Tangere was used first. In other words, using Tangere

140

first improved the number of features participants discovered in Vizable. Conversely,

using Vizable first reduced the number of features a participant discovered in Tangere.

The difference, in all likelihood, emerges from the change in user expectations.

Using Tangere first primed participants to expect certain features and interactions

within Vizable. For instance, the filter badges in Tangere were interactive and could

be tapped and horizontally swiped to toggle and remove the filter, respectively. Con-

sequently, more participants attempted these interactions on the filter badges in Viz-

able. In general, Tangere more broadly supports interactions directly on glyphs.

I hypothesize that this led to participants more easily discovering features such as

filtering and changing attributes by swiping on interface elements. Using Vizable

first similarly affected scores for Tangere. Since Vizable does not support selection,

fewer participants attempted to select glyphs within Tangere, negatively affecting its

discoverability.

The change in discoverability scores underscores the need for the features to be

designed better, and with more clear affordances. While we can leverage people’s

familiarity with existing interfaces, it would be detrimental to assume it. The re-

sponsibility of priming a user to expect a feature, instead, lies with the interface

itself.

Undo One of the biggest differences that I could perceive in participants’ experience

with the two systems stemmed from the presence of the undo operation in Vizable.

As results suggest, participants found Tangere to be easier to understand and operate.

The design of Vizable is fairly different from the visualization tools we use on desktops

such as Tableau and Spotfire. This difference was apparent in participants’ initial

unfamiliarity with Vizable.

However, it was interesting to observe that this complexity of interface rarely

translated into frustration for the participants. A big contributor to this was the

141

presence of the undo operation. Participants used undo at will, mostly when the

interface did not operate the way they expected it to. Undo easily fixed all the gaps

that existed in their comprehension of the system. Tangere did not have that benefit

since undo was not available. As a result, each accidental activation of a feature

required careful actions to undo its effects.

In an earlier discussion on the need to support undo, one argument I had made was

that if the operations are designed such that they are truly reversible (as stated in the

definition of Direct Manipulation [111]), the need for undo is substantially reduced

as users can simply reverse their actions. This model fails, however, for novice and

untrained users. To get people trained on the interface, the interface needs to support

exploration by encouraging mistakes. Undo helps with that tremendously.

Application specific observations Below I present other lower-level qualitative

observations I made about the two systems.

• Vizable

1. Participants were confused between Vizable’s filter panel and change at-

tribute panel. They appeared at the same location and with the same

slide-in animation, used the same visual style, and contained the same list

of attributes. Thus, it was easy to mistake one for the other (Figure 49).

2. The stability and polish of Vizable certainly helped with the overall im-

pressions. The system rarely crashed, even with very large datasets. The

experience was fluid and responsive. Tangere clearly missed the polish,

and this was particularly apparent in observations of participants who

used Tangere second.

3. In the linechart, Vizable uses bars as glyphs for representation, with the

line in the chart connecting the top of the bars (Figure 50b). The bars in

142

the linechart, however, confused several participants as there already was

a bar chart.

• Tangere

1. Participants appreciated being able to brush between views, even though

the questions were designed such that they did not need to use the feature,

given it was missing in Vizable.

2. Since the filter panel on the right had a handle, participants expressed a

need for a similar handle for the ‘add-chart’ panel on the left. Although

they could operate the panel using the swipe-in gesture, they found the

handle missing.

3. Some participants found removing a chart to be cumbersome (Figure 51).

While roughly half of the participants did not discover the feature, of those

that did, several expressed that the operation could be made simpler, for

example by using a gesture directly on the chart.

4. A subset of the participants also complained about the choice of colors

in Tangere, expressing that they would prefer a white background over a

black one (Figure 50). This feedback was missing in the first study, so was

clearly influenced by the Vizable system.

5. The implementation of linechart in Vizable was different from the imple-

mentation that I had in Tangere. In Vizable, the linechart used semantic

zooming, thus the view at each state displayed aggregated values. In Tan-

gere, the linechart displayed each event individually, aggregating only at

the level of each day. Thus, the view was too noisy, and ended up be-

ing less useful for participants. Vizable’s implementation is certainly more

user-friendly, even if it is difficult to observe the noisiness of the data in

the overview (Figure 50).

143

Figure 49: Similarity between Vizable’s (a) filter panel and (b) change attribute
panel. Both panels appear in the same location on the left and with the same slide-in
animation. They also use the same visual style, and contain the same list of attributes.
Thus, participants often mistook one for the other.

144

Figure 50: Linechart view in a) Tangere b) Vizable. In Vizable, the linechart uses
semantic zooming, thus the view at each state displays aggregated values. In Tangere,
the linechart displays each event individually, aggregating only at the level of each
day. Thus, the view is noisy, and ended up being less useful for participants.

145

Figure 51: A chart can be removed by dragging the corresponding badge in the add-
chart panel towards the right or left. Participants did not find this interaction to
easily discoverable

146

CHAPTER X

EVALUATION 3: TRAINED USER WORKFLOW

ANALYSIS

In the first two studies, my goal was to evaluate the design and functionality of Tan-

gere by capturing how novice users would approach the tool. In the final study, my

goal was to understand how a user who is trained on Tangere uses it for analyzing

data. As people gain experience, a well-designed interface often ceases to exist indi-

vidually and instead blends seamlessly into the workflow. Conversely, poorly designed

interfaces hinder this smooth functioning. With this study, I wanted to capture how

well the system aids in letting users complete a workflow smoothly. A user profile

that I intended to target was that of an early adopter - someone who willingly and

excitedly agrees with the motivation of the tool, gains proficiency on it, and buys into

using it despite the flaws that may exist.

To this end, I designed a study where I captured people’s usage of the system

several times over separate days. My objectives were threefold. First, I wanted to

understand the workflow of a user operating the system and determine the aspects of

the system that make or break it. This analysis of the workflow is relevant because it

helps me validate my assumptions regarding people’s use of the system. For instance,

when designing the system I assumed that the user would be trained and familiar

with the tool. In the earlier study that I conducted, this was not ensured. In fact,

users were specifically not given any training. As a result, the observations I made

were devoid of any insight into how the behavior of a user changes after spending a

significant amount of time with the system.

Second, I want to better define the immediate next steps for the design of the

147

system. Here, I was specifically not seeking new features to add. Instead, my goal

was to extract behaviors that already exist within the tool, but are cumbersome to

perform. For instance, if a task currently requires several steps to complete, and the

user performs the task several times in one session, there is value in simplifying that

workflow and optimizing it.

Third, by observing how participants incorporate system’s features for completing

analytical tasks, I wanted to capture the memorability of the system for a trained

user. A three-phase study with phases spread across several days helps with capturing

this detail. Unlike the previous studies, participants in this study would be given

ample training on the system. Thus I expected the amount of learnt behavior and

recallability to differ compared to the previous studies.

10.1 Participants and Data

I loosely modeled this experiment on the MILC evaluation technique described by

Shneirderman and Plaisant [113]. The study consisted of three sessions and between

3-4 hours spent with each participant. Since significant time was to be spent with

each participant, I elected to have a small number of them. Unlike the previous

studies, at the end of this study, participants were expected to deliver an artifact —

a report summarizing their findings.

One other difference from previous studies was the type of data used. In the first

two studies, I chose the dataset (i.e. Movies, Coffee sales, and Superstore sales) and

used the same across all the participants. The datasets were generic so that their

contexts were familiar to the participants. However, the relevance of the data to

the participants was low. This, in turn, affected the quality of analytical questions

participants asked of the data.

For this study, since participants had to spend several hours working with a

148

dataset, it was important that the data was relevant to them. Thus, I asked par-

ticipants to bring their own datasets. For a better likelihood of participants having a

dataset they are familiar with, I recruited participants from the business and analytics

programs at Georgia Tech.

At the time of my initial correspondence, I shared sample data files with the

participants and prompted them to send me options of datasets they would prefer to

work with ahead of time. When we agreed on the dataset to use, I advised them to

spend time with it before the first session to gain familiarity with it.

Overall, five people participated in the study (3 men and 2 women). Three par-

ticipants were students in the MBA program, while the other two were enrolled in

the MS in Analytics program. Participants had past experience with handheld touch

devices, with all of them having used either iOS or Android-based smartphone as

their main device for at least five years. As a result, they were versed with the basic

interactions that these operating systems provide. They also had previous experience

with visualization and analytics systems. All five participants had previously used

Excel for plotting graphs. Three of the five had also used Tableau in the past.

The datasets they used included public health, public education, crime, human

development, and video games. All the datasets had more than ten attributes, with

at least four categorical and five quantitative attributes. The size of the data ranged

from minimum 500 rows to maximum 1000 rows. Table 15 provides a summary of

the type and size of each dataset.

10.2 Deliverable

The deliverable of this study was a report that participants had to create by the end

of the final session. At a high level, the report summarized the key insights, findings,

and takeaways from their analysis of the dataset within Tangere. Participants were

free to use any form of documentation — they could enumerate high-level insights or

149

Table 15: The five datasets that participants brought for analysis with Tangere. The
second column represents the number of rows in the dataset.

Dataset Size

Public Health 886

Crime 968

Public Education 481

Human Development 527

Video Games Sales 921

write short summary sentences with additional detail.

My goal with the study was not to gather feedback on the design of Tangere. I

also did not intend to compare the effectiveness of the tool to other existing tools, or

assess whether it is an accessible ‘introduction to data analysis’ tool. In other words,

I was neither evaluating the system, nor measuring participants’ effectiveness in using

it. Having a report as a deliverable helped as it communicated to the participants

that their performance was not being evaluated. The report acted as a tool to en-

courage earnest participation as it framed participants’ approach to constructing and

answering questions. I did not, however, intend to use the reports for any quantitative

or qualitative measurement.

I expected the participants to generate relevant insights for the report over the

course of the three sessions. However, since there was no means for saving or book-

marking the state of the system, the insights across sessions had to be manually

recorded in a document. I informed the participants about the discontinuity between

the sessions at the beginning.

At the time of designing this study, I considered incorporating screenshots as a

part of the report participants generated. For each insight that emerged, partici-

pants could take a screenshot of the view and attach it with the description within

the report. However, on further exploration, I identified that the shortcut for taking

screenshots on an iPad (i.e. pressing the power and home button simultaneously)

150

can be problematic because uncoordinated button presses lock the device. Further,

the shortcut requires changing how the tablet is held, which is disruptive. Another

challenge with screenshots was annotation. While it might be feasible to take screen-

shots, just a collection of images are not useful to a person unless they are able to

differentiate them. That requires annotating the screenshots with notes or shapes.

However, elaborate snapshot annotation would require a detailed feature on its own,

and using the feature would also disrupt the flow of the existing system. Thus it

seemed sensible to omit screenshots from the final report.

10.3 Methodology

The agenda of the sessions broadly mapped to training, analysis, and reflection. I

describe the three sessions of the study below.

First session (Day 0) The aim of the first session was to get participants versed

with the goals of the study and familiarize them to the interface. The session be-

gan with me providing the participants with an overview of the study plan and the

expected outcome. Subsequently, I gave participants a thorough walkthrough of Tan-

gere. The walkthrough consisted of detailed demonstration of each feature. After

each feature, I gave participants a chance to operate the feature. They were free to

ask any question they had of the interface or the feature.

Once all the features were demonstrated, participants were given time to operate

the system on their own. At this stage, I used a dummy dataset. I observed how

they were adapting to the system, ensuring that by the end, they had tested all the

features.

In the remaining time in this session, participants used Tangere to explore the

dataset they brought. This was an open-ended exploration with no predefined tasks

or goals. They were free to explore the data in any depth they preferred. I encouraged

participants to take notes any time they found an insight.

151

I interrupted participants in situations where I observed them performing an op-

eration incorrectly or if I felt confidently that they did not remember a feature. In

such situations, I demonstrated the correct behavior in the system to them. However,

I did not indulge participants in any dialogue or discussions on their process and the

design of the system.

Second session (Day 4-6) The second session was designed for participants to

mostly spend time analyzing their data. At the start of the session, I gave participants

the iPad with Tangere running and asked them to recall everything they remembered

about the system. To ensure they recalled the features accurately, I nudged them

to talk out loud what they expected each action to result in. At the end, if they

had skipped a feature, I brought it to their attention and asked them if they could

remember how to perform it.

To help structure and streamline their exploration of the dataset in the rest of the

session, participants spent five minutes crafting a series of questions of the dataset

that they would want to answer. I did not direct this process, but I expected their

experience with Tangere from the first session and the feature-recall exercise to have

a bearing on the type of questions they generated.

For the next 45 minutes, participants used Tangere to answer the questions they

created. The exploration session was, again, open-ended, and participants were free

to approach it in any manner they wanted. I also answered any questions they had of

the interface. Participants typically asked questions regarding specific features, such

as trend lines or search, that they sought but could not find in Tangere.

Third session (Day 9-15) The final session was centered around creating the

report. The session began with a similar recall exercise as the one at the start of

the second session. Next, I encouraged participants to spend fifteen minutes perusing

their notes from the earlier sessions and answering any questions that remained.

152

Subsequently, they compiled their results as a report. For the final twenty minutes,

I gathered feedback on participants’ impressions of Tangere and the process of using

it for analysis. Specifically, I gathered qualitative feedback on how their analytical

process with the system differed from their process with other applications such as

Excel and Tableau. I also asked them to highlight aspects of the system that they

liked, did not like, and found missing.

10.4 Results

The overall outcome of the study was fairly positive. Participants could successfully

use Tangere to answer the vast majority of the questions they crafted. Those that

they could not were primarily ones that had the relevant functionality missing from

the system.

Participants also provided an encouraging feedback at the end. They expressed

a clear liking for the tool. Compared to the other tools they had experience with,

such as Excel, Tableau, and Spotfire, participants appreciated the simplicity and

low-barrier to entry of Tangere.

10.4.1 Data Analysis

I encouraged participants to initially define as many questions as they could. They did

so while perusing the data spreadsheet that was open in front of them on a computer.

Overall, each participant generated more than 16 questions. Table 16 summarizes

this data for each participant.

The questions they generated were similar in nature to the ones I designed for

participants in the first two studies. They contain a mix of both low-level and high-

level tasks, including retrieve value, filter, compute derived value, find extremum,

sort, determine range, and identify clusters. Figure 52 presents a snapshot of the

type of tasks one of the participants created.

Over the course of the study, participants were able to answer the vast majority of

153

Table 16: The number of questions created and answered by participants over the
course of the study. P3 decided against constructing questions and instead explored
the data in an open-ended manner.

Participant # Questions Created Questions Answered

1 20 20

2 19 14

4 16 14

5 17 16

the questions they created. Table 16 presents the summary of the number of questions

each participant answered. For those questions that were not answered, the leading

reason was a lack of support for specific features in Tangere. For example, both P2

and P4 had questions that looked to identify correlation or trend between specific

attributes (“What is the correlation between type of crime and hour of day”). P2’s

data also contained geographical information, but Tangere did not provide any geo-

views. Thus, P2 was also unable to accurately answer questions that were based on

latitude and longitude positioning (“What is the distribution of crimes by latitude

Figure 52: A snapshot of the questions created by P5 for the video games sales
dataset.

154

Figure 53: A snapshot of insights identified by P5 on the video games sales dataset.

and longitude”).

Ultimately, participants collected all the insights and summarized them in a re-

port. Figure 53 presents a snapshot of the report created by a participant.

10.4.2 Memorability

Perhaps the most encouraging observation from this study was the performance of

features of Tangere on the memorability metric. I collected memorability scores

for the different features in the first study (Section 8.3). In this study, however,

participants were given training on the system. I expected training to have an effect

on memorability since the exposure participants received to features was precise and

accurate. Conversely, when there is no training, participants are tentative about

the features they discover and verifying each feature requires repeated trials. In

several cases, the repeated trials simply do not occur over the course of an open-

ended exploration.

Ultimately, with training, the features performed really well on memorability.

155

Table 17 presents the scores for a subset of features. Most notable is the performance

of the features that did not gain a high memorability score in the first study (Table 5).

Critical features that received low scores earlier were sort in barchart, rectangular

selection, and data count label. All of these features performed well in this study,

with participants successfully recalling them in the second and third sessions.

The improvement in memorability is notable for two reasons. First, there are clear

advantages of training in a system such as this. Not only does training accelerate the

comprehension of the system, participants also remember the system better. This

might certainly be limited by the complexity of a system, i.e. beyond a certain

number of features, participants might not recall the system even with training. But,

for a system as complex as the one I designed, training clearly has benefits.

Second, the features that did not do well earlier but did well in this study can

certainly be designed better. I assert this based on the observation that features

were easier to remember simply because participants could comprehend them better.

We can aspire to achieve that level of comprehension without training, and simply

through a better designed feature.

The differences in the performance of the features across the two studies can

also be explained using Norman’s gulf of evaluation [85] — the difference between

what the user thinks happened in the system and what actually happened. In the

first study, through accidental activation, participants were able to discover many

features in Tangere. However, often they were unable to comprehend exactly which

part of their action caused the operation to occur, and what the resulting changes

to the interface denoted. For instance, rectangular selection by dragging on the axis

was often discovered by accident, usually when participants tried to drag panels into

view from the left or below. Since this was an unexpected behavior, with the resulting

output being difficult to comprehend, rectangular selection was often not remembered

as well, even if it was discovered by several participants. With training, however, the

156

Table 17: Memorability scores of a subset of features in the second and third sessions.
Scores are the number of participants (out of 5) who could recall the feature.

Feature
2nd session

(out of 5)

3rd session

(out of 5)

Add Charts 5 5

Change X or Y attribute and aggregations 5 5

Select by tapping and lasso 5 5

View data table 5 5

View filter menu 5 5

Remove a chart 5 5

Brushing and linking 5 5

Keep only/Exclude filters 5 5

Rectangular selection 5 5

Sort column 5 5

Split line chart for categorical variables 5 5

Zoom 4 5

Sort barchart 4 5

‘Reset all’ in filter menu 4 4

Toggle filter badges 3 5

Pinch to zoom axis 3 4

confusion in comprehension was almost eliminated and the gulf of evaluation was

reduced. As a result, participants could also remember the feature better.

10.4.3 Qualitative Observations

Design of barchart sort gesture Since participants were given training in this

study, I was able to understand how well the barchart sort interaction performed.

This was not the case in the previous studies as participants could not discover the

operation.

The barchart sort gesture uses a hold+swipe gesture. To sort bars based on

height, the user has to place a finger on the y-axis and hold it for 500 ms. Once

past this threshold, the system enables the sort mode. Swiping the finger up sorts

the bars in ascending order and swiping it down sorts them in descending order. The

157

sort feedback is given using gray, translucent preview bars that animate to the final

positions.

At the start of the study, I found that participants learnt the gesture fairly easily

and quickly. They were also able to recall it in subsequent sessions. However, in-

teresting patterns emerged when they used the gesture for their exploration. While

the hold+swipe gesture sorted the bars, swiping alone activated rectangular selec-

tion (Figure 54). I observed that participants used the two gestures interchangeably.

Irrespective of the intended action, they would often try the basic swipe gesture first.

Figure 54: The two axis-based operations that used swipe. Hold + swipe activated
the sort operation, while simply swiping activated the rectangular selection.

The similarity between the swipe and hold+swipe interactions, which is also the

drawback of the design choice, is obvious. Swiping alone is clearly the fallback in-

teraction in the two. This combination of gestures has been successfully employed

in applications in general, particularly on Android OS. It was interesting to note,

however, that the participants did not bring this out in their qualitative feedback.

Even though they faced the problem repeatedly, they did not express a discomfort

or suggest that either the gestures be changed or one operation be preferred for the

basic swipe over the other.

Filter Menu The filter menu was a feature that saw considerable usage (Figure 55).

Although participants used it repeatedly, it also garnered substantial feedback, both

positive and negative. Participants appreciated the access to the filter widgets, both

158

for managing the data and for viewing the range of values for each attribute. There

were several concerns too, however. Specifically, the sliders were difficult to operate.

For quantitative attributes with a wide data range, accessing a specific value on

the slider was extremely cumbersome. Some gesture-based techniques have been

employed in other applications to make access to specific values feasible. However,

participants overwhelmingly preferred to have a numerical input available on the

control for specifying the exact value.

Figure 55: Filter menu. Participants were concerned with the usability of the menu.
For quantitative sliders, the handles were difficult to move to a specific value. For
categorical values, it was cumbersome to find one option from the large list of options.

A similar concern also arose for categorical attributes that had a large number of

values. Since the values were listed individually in a vertically scrolling list, it took

considerable effort to find one specific value. In such cases, filtering one value by

selecting it on the chart and using ‘keep-only’ and ‘remove’ filters was often faster

than using the filter widgets.

Another concern was regarding the usability of the filter menu as a whole when the

159

number of attributes was large. This resulted in a very long panel, and searching for

an attribute in the panel took a while. Similarly, identifying which filter was currently

active also required considerable scrolling. There are several methods to optimize this

behavior. One method is to adopt the design used within Vizable. There, the filter

menu is condensed to initially show only the list of attributes. The filter controls are

instead shown when an attribute is tapped. Clearly, filtering takes more touches, but

the usability of the menu is improved.

Brushing and Linking Participants made considerable and clever use of brushing

and linking (B&L) between coordinated views. B&L is a feature that was difficult to

test in the previous studies. Those were controlled experiments where participants

had limited time to learn and spend on the interface. To fully utilize B&L, one

needs to gain proficiency with the workflow of the system. After proficiency with the

system, the feature can be used for a multitude of effects, e.g. quick selection and

filtering. These behaviors are infused into the usage only over time.

This study gave participants sufficient time with Tangere to be able to do that.

They were also given training initially during which I spent some time highlighting the

feature and encouraging its importance. Ultimately, participants used B&L in more

effective ways than I had expected. In several scenarios, participants used the features

serially to narrow their exploration to a selective point. (e.g. to answer questions such

as ‘Which is the highest grossing movie from the most profitable director of action

films?’).

Latency with large datasets In situations when the dataset being visualized

contained a large number of rows, the response time of the system was affected. This

was specifically true for features that operated on the glyphs, e.g. lasso selection.

This is because with each movement of the finger, the system had to reevaluate the

touch position with respect to every glyph on the screen. For a very large number

160

of glyphs, processing the response took longer than the 30ms needed for real-time

feedback.

In such situations, presenting visual feedback, such as tap ripples [128], would be

beneficial. Per-contact feedback can be supported at a hardware level, or only within

the application. The feedback may be distracting in situations when it is not needed,

particularly since it is visually similar to the glyphs in a chart. However, the user

currently receives no feedback at all, which has drawbacks when the system is not

responsive.

10.5 Reflection

10.5.1 What does Tangere excel at?

To design Tangere, I began with a hypothesis on who the target user is and scenario

in which the system is useful to them. Over the course of the three studies, I was

able to test and refine this hypothesis. Since participants were subjected to a prede-

fined scenario in each study, insights on the hypothesis emerged from two sources —

observations to identify the exact characteristics the system excels at, and remarks

made by participants in the qualitative feedback at the end of the sessions.

Looking back, the properties of Tangere that stood out for the participants, and

which in turn help define the ideal usage scenario, are:

1. Speed of access - Tangere excels at the ‘pick-up-and-use’ scenario. The thresh-

old of effort required at the start is low, and people are quickly able to dive right

into data. Opening the application places the user in the middle of the analy-

sis. Although this rapid access assumes that the dataset to load is known and

cleanly formatted, the ease and simplicity of system’s start up was particularly

appealing to the participants.

The rapidness of the experience is clearly in line with the behavior expected on

mobile operating systems such as iOS and Android. Most iPad applications,

161

including Vizable, provide a similar experience. However, while expected, the

reduced latency improves visualization application experience.

2. Quick overview - In reflecting on their experience with Tangere, several par-

ticipants acknowledged that they would use the system in the first stage of a

data analysis workflow. For instance, if they had a dataset that they were not

familiar with, exploring the data in this system would be a good starting point.

The tool provides most of the features necessary for an initial exploration.

One feature in specific that participants appreciated was the data table. A data

table is very useful for getting familiarized with the data, but is often missing in

visualization tools, including Vizable. In others that include it, such as Tableau

and Spotfire, the view is not very accessible.

3. Open-ended exploration - Participants often cited that exploring data with the

tool was fun and gave them ideas while they were using it. Such a feedback

loop, where the interface drives progress by providing cues for the next steps,

is beneficial for open-ended exploration.

Aiding open-ended analysis is a characteristic of any tool that is designed for

data exploration. However, the benefit of touch-based input is that the ex-

ploration seems more immersive and direct. In line with the conversation of

low degree-of-indirection of touch-based visualization interfaces (Section 5.1.5),

users can feel more involved and more in control of the interface than with

cursor-based systems.

4. Infrequent usage - While certain features in Tangere could be better designed,

e.g. barchart sorting, a majority of the critical features needed for exploring

data are robust and fairly easy to discover and operate. The accessibility of these

features is a strength for people who would use the system only infrequently.

162

Since participants found most aspects of Tangere to be intuitive, there is less

expectation for them to remember the system long term.

10.5.2 What would a redesigned system look like?

Over the course of the studies, I was able to address several issues with the design of

Tangere. Thus, the system in study 2 was more stable than the one in study 1, and

the one in study 3 was more improved than the one in study 2. However, there were

several other observations that were more difficult to integrate since the design of the

Tangere had already matured to a certain degree.

All the feedback serves the question — what would a redesign of Tangere look

like? Which features would change and which would not? Which other scenarios

would the system be able to address that it currently does not and how? Here are

my thoughts on how I would redesign the system if I had to.

Aspects of Tangere that work well and I would keep

1. Three interface components: In a system with the four visualization types,

the three components (canvas, filter menu, and data table) encapsulate a large

number of features and offer an experience that is easy to comprehend.

2. Selection: Tap-to-select, lasso selection, and rectangular selection are robust

and fun to operate, and cover the vast majority of the (basic) selection scenarios

well.

3. Keep only & exclude filters: Filtering with ‘Keep only’ and ‘Exclude’ is very

accessible. It drives the exploration with glyphs alone. Used in conjunction

with selection, it reduces the usage of the data-driven filters in the filter menu.

4. Data table interaction: Easy access to data in a spreadsheet is very handy,

particularly since selection and filtering brushes to the table view.

163

Aspects of the system that need improvement/revision

1. Filter menu: Although the component is useful, interaction with the widgets

within the menu needs to be rethought. Specifically, three situations that cur-

rently are not well supported need to be addressed — precise selection of values

from quantitative attributes, faster access to values of categorical attributes,

and improved usability if the number of attributes is large.

2. Adding and removing charts: Tangere provided good affordances for adding

charts. Consequently, participants could perform the operation fairly effectively.

The same, though, was not true for the remove-chart operation. However,

while the remove operation clearly needs to be rethought, I believe that the

add-chart feature could also be refined further. The number of steps required

can be reduced and the workflow can be tightened. Currently, there is also a

disconnect between the views on the canvas and the views in the panel. When

the user selects a view to add, there is no feedback on which location and in

which configuration the view would be appear.

3. Zooming: Although participants could discover and operate the feature, the

ease of learning and use was primarily built on past knowledge of the pinch-

to-zoom interaction. In practice, though, the zooming feature saw very little

usage. This is true for both zooming on the chart and zooming on the axes. Part

of the reason was that the experience was jarring. On desktop-based systems,

zooming is often performed with buttons. The scaling can, thus, be controlled

and anchored around the center of the visualization. With touch-based pinch-

to-zoom, however, the view scales around the centroid of the touch points.

Scaling symbolic shapes such as scatterplots and linecharts is considerably dif-

ferent from scaling iconic content, such as pictures and maps. We are less

effective at the former for two reasons. First, choosing an appropriate position

164

to zoom around is difficult. Only a small portion of the total area of a chart

is typically covered by content such as lines, dots, and labels. Moreover, to

minimize occlusion, we typically place fingers in areas that are empty. Con-

sequently, zooming-in tends to result in mostly blank views. Reorienting the

views requires a combination of panning and zooming out, which is slow and

undesirable.

Second, when the view scales up, it is very easy to lose context of the areas of

interest. This is because the size of the glyphs do not change, but the distances

between them increase and, thus, the noticeable patterns that glyphs collectively

form are lost. The situation is further exacerbated when the zooming is semantic

and the view switches entirely.

To fix zoom, additional smarts need to be integrated within the interaction.

Scaling the view can be made contextual such that in lieu of simply scaling the

view based on user’s finger movement, user’s intention can be modeled and the

view can be scaled based on an understanding of which content is critical and

needs scaling.

4. Linechart: As discussed in Section 5, the linechart needs to be redesigned with

the goal of making it more useful and usable. Currently, the chart does not

provide as rich an experience as scatterplot and barchart provide. In fact,

the implementation within Vizable is considerably more effective and should

certainly influence the redesign of linechart within Tangere.

10.6 Conclusion

Overall, the three studies generated useful insights on the design of Tangere, high-

lighting specific features that were well-received and others that need further thought

for future revisions. The combination of quantitative and qualitative metrics, coupled

with a post-hoc analysis of the sessions, revealed the strengths and weaknesses of the

165

system. Overall, I believe that the results on discoverability, memorability, and the

ease of use and learning from the three studies reflect fairly positively on the overall

usability of Tangere.

10.6.1 Reflection on the design of the studies

Over the course of the studies, I also made several observations regarding the design

of the studies themselves.

Implications of Training In reflecting on the studies, both approaches to train-

ing resulted in useful findings. While studying the usage patterns of trained users

was beneficial in modeling the workflow that the system affords, understanding how

untrained users approach the system generated better insights regarding the design

of the system. Ultimately, gathering data using both approaches gave me the op-

portunity to benchmark the results against one another. Training improved usage of

Tangere by providing the benefit of both accelerated comprehension and improved

recall. Without training, participants were tentative about some features they dis-

covered and verifying what each feature did required repeated trials. With training,

they interpreted the features accurately without needing to verify.

It is important to consider, however, that neither of these conditions resemble

how people typically receive training in the wild. For publicly available applications,

people usually are not personally trained by an expert. Instead, training is provided

through interface annotations on the application at first launch, or through how-to

videos in the help section1. Leveraging such methods is important for evaluations

since results would better map real-world situations. However, the challenge would

be to standardize the quality of the tutorial content, given the content would differ

across vendors and would be difficult for experimenters to generate on their own.

1Previous work [69] has explored how to make this content effective.

166

Ultimately, however, it is important to understand the implications of training

in light of the prevailing practices in visualization system design. For desktop-class

systems, often it is assumed that the end-user would receive some form of training.

This has resulted in solutions that novice users often find difficult to operate and

interpret [40]. In building systems for tablets, we must agree on whether a similar

approach should be replicated. However, if novice users are the target audience, a

promising goal for tablet-class applications, our evaluation practices need to reflect

the same.

Discoverability A challenge I faced in measuring discoverability was agreeing on

cues to use to mark a feature discovered. Often, features were discovered serendip-

itously either through accidental or imprecise touches on the screen. For example,

one could drag within a chart to activate lasso selection, drag on the axis to enable

axis-based selection, and drag on the edges to bring in side-view panels. Since the

activation regions were connected, participants would often accidentally activate one

operation when attempting another.

In such situations, it was unclear if I should mark the accidentally activated feature

as discovered. I initially considered requiring an acknowledgement from the partic-

ipants, such a reattempting the feature or through verbal confirmation that they

recognize the feature. This appeared to be only semi-effective, however. It was useful

for unfamiliar features, such as axis-based selection or sorting, for which participants

would often reattempt the operation. For familiar features such as tap-to-select or

lasso-select, however, participants would not necessarily reattempt the action, but

it was difficult to ascertain if that was due to familiarity with the operation or lack

of acknowledgment of it. Ultimately, I marked a feature as discovered either when

participants consciously acknowledged it after the first use, or used it again over the

course of the exploration.

167

Memorability In the third study, I captured memorability by asking participants

to perform all the operations within the system running on an iPad. In the first

study, I had used a different tactic to measure memorability — verbal recall with

hints ((Section 8.3). In reflecting on the results from the first study, verbal recall

highlighted features that participants seemed to remember existed in the system,

but it did not provide insight on whether they remembered how to operate them.

Participants’ memory and description was mostly feature-level as they would make

statements such as (“I could select glyphs between values” or “there was brushing

between views”), as opposed to interaction-level description (“I could swipe on the

axis to select glyphs between values”).

I found that the in-system recall surfaced the interaction-level memory in a much

better way. Observing participants operate the features provided a clear indication on

the extent to which they remembered the system. The downside of in-system recall,

however, is that it measures participants’ memory of the system that is conflated

by the cues and affordances that the system provides. However, regardless of this

restriction, I found that in-system recall offered a better methodology than verbal

recall as it more closely mapped to the need for memorable features in the real world,

i.e. people using a system after a gap of some time.

168

CHAPTER XI

CONCLUSION

11.1 Summary

The goal of this dissertation was to provide a novel visualization solution to explore

multidimensional tabular data on a multitouch-enabled tablet device. In Chapter

3, I discussed the space of possible visualization systems that are feasible on tablet

devices. Subsequently, I provided a walkthrough of the system that I have built.

In the subsequent chapters, I provided a detailed description of the Tangere sys-

tem. Addressing the different stages of my research, I presented my initial explo-

rations of the scatterplot technique and the subsequent expansion to multiple coordi-

nated views. In the following chapters, I presented the advanced interactive features

for selection and layout modification that I designed for Tangere.

Finally, chapters 8, 9, & 10 detailed the three evaluations that I conducted to

measure the effectiveness of the system. The studies qualitatively capture how well

the design of the system performs individually in short and medium-term usage, and

in comparison to a publicly available tool.

To conclude, the goal of this work was to design an information visualization

system for tablets that replicates the analytical capabilities of desktop-class visual-

izations, and is simple, effective, and delightful for users. During this process, I made

the following contributions to the information visualization research community:

• A classification of the opportunities and challenges for visualization on touch-

based tablet devices.

• Identification of a set of appropriate and effective visualization schemes for

exposing crucial insights from data on a touch-device.

169

• Exploration of the design space of multi-touch interactions for data-driven op-

erations in visualizations.

• Implementation of an iPad application for novice users for analyzing data using

multiple coordinated visualizations, designed to deliver simplicity and delight.

• Design of novel Clutch-based interactions for performing advanced selection on

visualizations in a tablet system.

• Examination of the key differentiating features affecting user performance on

tablet-based and desktop-based visualization system, and those affecting discov-

erability, learnability, and memorability on tablet-based visualization systems.

• Exploration of the design space of layout configurations for tablet-based multi-

view visualization systems.

11.2 Future Work

11.2.1 Visualization pipeline

In their seminal work on scoping the field of Information Visualization, Card et al. [19]

defined a Visualization Pipeline, describing the steps that data undergoes as it is

trans- formed from raw formats into final visualizations. The input data exists in

four states and undergoes four types of transformations to eventually result in a

visual image. Figure 56 presents the different stages of the pipeline.

Figure 56: The visualization pipeline describing the (step-wise) process of creating
visual representations of data.

In Tangere, the first two stages are currently missing. The system expects the

input data to be formatted in a clean tabular structure. Missing data values are not

170

managed and substructures in spreadsheets, e.g. subtables and reference cells, are

ignored. However, in the scenario that I hope to address with the tool, i.e. semi-

professional or business users looking to analyze data on the go, expecting cleanly

formatted data is a limiting requirement to have. Thus, methods for cleaning data

before importing it are clearly needed. And for the experience to be streamlined,

methods for cleaning data should be available on the tablet itself.

Tasks involved in cleaning include selecting appropriate attributes, identifying and

correcting erroneous or missing values, and selecting subsets of larger data sources.

Traditionally on PCs, much of this process is done in spreadsheet tools such as Excel,

OpenOffice, etc. The same process, however, is not streamlined in the case of tablets

for two reasons. First, spreadsheet tools on tablets have not matured enough to be

as proficient as their desktop counterparts. Second, tablet operating systems do not

provide the fluid access to application multitasking that is often needed by users to

make incremental changes. Applications tend to exist in silos where they operate on

independent data sources. A data solution would, thus, need to integrate within the

visualization application to be effective.

In acknowledging this need, one goal for the future is to design a methodology

for reformatting data that integrates directly into my visualization application. By

integrating directly within the application, people would have ready access to the

tool when they need it, even at later stages of visualization (addressing reason 2).

Also, by scoping the feature set specifically to include only those that are central to

visualization tasks, the design problem of interacting with spreadsheets with touch

can be more effectively solved (addressing reason 1).

The analyst can be expected to use the tool either at the start of the application

before moving to the visualization stage, or during the visualization stage to edit

properties of data. Moreover, it might be feasible to integrate the tool within the

details-on-demand data table view.

171

Process steps Integrating data cleaning in the current system would require three

steps:

1. List of transformations: The first step is to identify the key tasks users per-

form on raw data files/tables before importing them into the next stage. This

step would involve surveying any previous research that enumerates the data

transformations and/or understand the usage of existing tools such as Data

Wrangler [64] and Tableau.

The goal is the identify a list of primary transformations conducted on a spread-

sheet that are specifically relevant to visualization. Potential transformations

include:

a. Edit Row

b. Delete Row/Column

c. Assign Row as

d. Filter on values

e. Select Subtable

f. Join subtable

g. Create Aggregations

h. Adding randoms

i. Combine sheets

j. Generalized Selection

2. Identify key transformations: Rank the tasks in order of importance and how

appropriate they are for a tablet system. Once ranked, identify a subset of

the most relevant tasks to eventually support in the tool. Identifying the right

feature set is critical for two reasons:

172

a. Interactions: Only a limited set of features can be optimized in terms of inter-

actions, given the restrictions of the interface. Not all features are necessary,

but finding interactions that “blend in” with the feature density/design of

the rest of the application is crucial.

b. Complexity: Certain tasks on spreadsheets require analysis that is not ap-

propriate for tablets. These might be tasks that require too many steps

(e.g. combining sheets by matching columns) or those that require higher

processing power, screen space or multi-application dependency.

3. Design interactions: This stage would eventually resemble the process I followed

in building Tangere. For each task that is identified, interactive operations

would need to be designed and prototyped. Broadly, the tool might adopt the

look and feel of a spreadsheet. If, however, the workflow is integrated within

an existing tool, the interaction design can simply be adapted from the existing

tool.

11.2.2 Multi-modal input

Integrating multiple forms of input is another piece of future work that would be

extremely relevant to explore. The input in Tangere currently is strictly touch-based.

The devices, however, are capable of accepting several forms of input, including voice-

based, motion-gesture based, and camera-based. Each has been explored in the past,

with voice-based (or natural language based) input gaining particular momentum on

handheld devices [94] and in the context of visualization [38, 110].

Several efforts exploring the usage of speech for interacting with visualizations

are currently underway. The platforms being explored mainly are desktops and large

touchscreen displays, with limited exploration of small, handheld touchscreen devices.

The exploration on large screens differs from that on small screens since display size

affects how speech is integrated with touch input, just as it would even if the input

173

was only touch-based.

More specifically, the division of labor between touch and speech on a large-display

touchscreen would be different to the division on a small-display touchscreen. Due

to the lack of screen space on small screens, a larger share of tasks can be performed

using speech. Conversely, due to the size of large displays, and thus the need for

the user to view the screen from a distance, the need for speech-based input is more

paramount.

Consequently, even though speech input is being explored already, exploring it

selectively within the context of small tablet devices is important. A fully functioning

speech-based interface is certainly challenging to build. However, using an engine that

builds on a vocabulary of possible choices may be a good first step. The scenario below

highlights what such an interaction might resemble.

Dave receives a data file from his office that contains the company’s sales informa-

tion for the past month. Dave imports the data into the tablet visualization system.

He places a scatterplot onto the screen and configures it to show profit versus quan-

tity. To compare the weekend sales to all sales, Dave says “highlight items whose sell

date was a Saturday or Sunday”.

Dave taps on the screen to cancel the selection and subsequently plots a linechart

with inventory on the y-axis. He taps on the line at the point showing a steep drop.

A tooltip displaying the date of the event shows up. Dave says “Change the label to

show the day of sell date”. The label now displays ‘Tuesday’. Dave says “Highlight

other points with sell date ‘Tuesday’”.

With all Tuesdays selected, Dave taps on the ‘Keep only’ button. He adds a

barchart and maps the x-axis to store. Two stores stand out — Midtown and 32nd

Street. He lasso selects the two bars and brings the data table into view. To view all

details about the Midtown store, Dave says “Export a linechart with sales on y axis

and store as Midtown”. A share screen with the image of a linechart shows up. Dave

174

chooses the mail app and emails the image to his team.

The above scenario presents capabilities that can be targeted initially. It also

highlights a way in which tasks can be distributed among touch-based and speech-

based input. Here, the distinction is based on ease of performance, number of steps

required, and context.

1. Ease: Tasks that are otherwise straightforward to perform should be performed

with touch. The accuracy of speech detection may be low. Therefore, the

drawbacks of inaccurate detection are high. For example, selecting glyphs with

tapping or lasso is simple to perform. Communicating the intention accurately

to the system through words is nontrivial, however.

2. Number of steps: Tasks that require considerable number of steps to complete

can be substituted with speech, granted natural language expression is unam-

biguous. An example is the command “Highlight other points with sell date

‘Tuesday’”.

3. Context: Some operations may not be very difficult to perform, but may switch

user’s context considerably. Ideally, such operations should execute in the back-

ground with little distraction to the user. Speech-based commands are ideal for

these operations because they require minimum interaction. Once an unam-

biguous command is provided to the machine, all processing can occur in the

background and simply the result can be presented to the user. An example is

“Export a linechart with sales on y axis and store as Midtown”.

The division of labor between speech-based input and direct manipulation (DM)

input, including touch-based, has been explored in the past [93]. In the summative

study for Eviza [110], the authors identified user preference for natural language

interfaces for three reasons — the DM interface required many clicks to complete the

task, the user did not know how to do the task or where to find the control in the DM

175

interface, or the user did not know where to find the control for the function. While

these reasons differ slightly from the three highlighted above, these emerge from user

preference for one interface over another. Conversely, the ones listed above emerge

out of the designer’s requirements for why natural-language input must be integrated.

In summary, considerable promise exists in exploring alternate forms of input

to supplement touch-based input on a tablet. The most promising is speech-based

natural language input that builds on top of the ever-improving architectures of Siri

and Google Now. A sufficiently advanced version of natural language interface should

allow most visualization tasks to be completed with speech alone. However, for an

initial exploration, speech could be integrated within the interface designed for touch.

By identifying an appropriate division of roles, the multimodal interface consisting

of speech and touch based interactions should be more efficient than three interface

with touch-input only.

11.2.3 Other extensions

1. Integrating additional techniques — The four visualization techniques Tangere

currently supports are a subset of a much larger set of techniques that peo-

ple typically use. Other commonly used techniques include pie chart, treemap,

histogram, geo-maps, choropleth map, node-link diagrams, and others. Com-

prehensive analytical tools such as Tableau support a majority of these tech-

niques. Since each technique excels at highlighting unique patterns in the data,

a broader set of supported techniques result in a more powerful system.

The challenges are the same as the ones discussed in Chapter 5 — introducing

other representations raises concerns regarding existing gestures and interactive

operations transferring from the currently supported techniques to the new ones.

Adding other techniques would, perhaps, require revisiting some of the design

choices I have already made within the system. However, a rigorous design

176

process that includes modifying some of the previous design decisions, although

tedious, would ultimately enrich the experience within the system while ensuring

that usability is maintained.

2. Cross-platform and cross-device — I designed Tangere specifically for a tablet

running the iOS operating system. Several design decisions I took along the way

were directly influenced by these two factors. For instance, I used gestures that

are common to and typically found on other iOS applications. Similarly, the

requirement to use only one-handed interactions was influenced by the tablet

form factor and the goal to not require participants to place the device on a

table.

Both the decisions, however, reveal interesting directions for future work. How

does the design of Tangere change if the operating system is changed? Do the

results of discoverability and memorability differ on an Android-based device?

I partly captured this in the three studies as several participants were using

Android devices as their main device. Testing the system with them did not

reveal significant performance differences compared to others who used iOS.

However, if the app I designed is housed within an Android environment, I

speculate that several aspects of the design would need adjusting to better map

to the guidelines stipulated by the operating system.

Similarly, another important direction for future work is to explore the impli-

cations on the design if the platform is switched from tablets to smartphones

or large-sized displays. Clearly, the constraints of these platforms are consid-

erably different. In that regard, the underlying question is not how well the

system fares when adapted to the other platforms. Instead, the more pertinent

question is — how is the system redesigned to provide people with the most

consistent experience across devices. A prominent trend in consumer devices

177

in recent years has been to seamlessly transition a user’s scenario and activity

across devices. For example, if a user is drafting an email on a desktop and

opens her smartphone, she is able to continue drafting the email within the

email app on the phone.

It is valuable to explore how such an experience would behave for the domain

of visualization. Several challenges exist —

• How does each visualization scale up or down to adjust to different device

sizes while maintaining the same general design and interaction capabili-

ties?

• Do the constraints of the device affect the configurations being used? For

instance, do views show up in a coordinated configuration across all devices

or only those with a minimum display size? Further, does the number of

views allowed in a row or column change with screen size?

• When transitioning from one device to the other, how is the current state

of the system, such as selection and filtering, maintained?

• How does the system behave if it is operated upon on multiple devices

simultaneously?

All these questions point to the richness of the solution space and the need

to conduct an in-depth exploration. However, given the pace at which we are

transitioning to a ubiquitous presence of computing devices around us, the need

for these solutions might arise sooner than we think.

178

APPENDIX A

STUDY DATASET AND TASKS

A.1 Sample Tasks from Study 1

1. Which movie has grossed the most money at the box office?

2. What is the average length of horror movies?

3. How many movies has Steven Spielberg made? What are their names?

4. Is there a relation between the budget and length of the movies?

5. What was the budget and profit of The Dark Knight?

6. How many movies were released in 2010?

7. Do the top rated movies (IMDb ratings >8) come from a specific genre? What

about the most profitable movies (profit % >2000 or profit >$2000M)?

8. Which genre is the most profitable in terms of $? Is it different for US markets

and overseas markets?

9. Which year was the most profitable? Which month within that year in partic-

ular? Does the same month tend to be the most profitable across all years?

10. Do the profits follow a trend every year?

11. Is the movie budget going up over time?

12. Between 2006 & 2010, which genre had maximum movies rated higher than 8

on IMDb?

179

13. What was the most money making and least money making movie in US and

outside US?

14. Does the runtime of a movie have an effect on the profit or the rating?

15. Do the highest rated movies (>8 IMDb rating) stand out in any other category?

16. I’m interested in watching a big-budget action movie. But I would also like it

if it had a higher IMDB rating. How many options do I have? Are there more

options from recent years than earlier years?

A.2 Sample Dataset

180

Figure 57: Sample movies dataset

181

REFERENCES

[1] Abowd, G. D., “What Next, Ubicomp?: Celebrating an Intellectual Disap-
pearing Act,” in Proceedings of the 2012 ACM Conference on Ubiquitous Com-
puting, UbiComp ’12, (New York, NY, USA), pp. 31–40, ACM, 2012.

[2] Agarawala, A. and Balakrishnan, R., “Keepin’ It Real: Pushing the
Desktop Metaphor with Physics, Piles and the Pen,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’06, (New
York, NY, USA), pp. 1283–1292, ACM, 2006.

[3] Ahlberg, C., “Spotfire: An Information Exploration Environment,” SIGMOD
Rec., vol. 25, pp. 25–29, Dec. 1996.

[4] Amar, R., Eagan, J., and Stasko, J., “Low-level components of analytic
activity in information visualization,” in IEEE Symposium on Information Vi-
sualization, 2005. INFOVIS 2005, pp. 111–117, Oct. 2005.

[5] Au, O. K.-C., Su, X., and Lau, R. W., “LinearDragger: A Linear Selector
for One-finger Target Acquisition,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’14, (New York, NY, USA),
pp. 2607–2616, ACM, 2014.

[6] Badros, G. J., Nichols, J., and Borning, A., “SCWM: An intelligent
constraint-enabled window manager,” in Proceedings of the AAAI Spring Sym-
posium on Smart Graphics, 2000. 00034.

[7] Bailly, G., Mller, J., and Lecolinet, E., “Design and evaluation of finger-
count interaction: Combining multitouch gestures and menus,” International
Journal of Human-Computer Studies, vol. 70, pp. 673–689, Oct. 2012.

[8] Baur, D., Lee, B., and Carpendale, S., “TouchWave: Kinetic Multi-touch
Manipulation for Hierarchical Stacked Graphs,” in Proceedings of the 2012 ACM
International Conference on Interactive Tabletops and Surfaces, ITS ’12, (New
York, NY, USA), pp. 255–264, ACM, 2012.

[9] Beaudouin-Lafon, M., “Instrumental Interaction: An Interaction Model for
Designing post-WIMP User Interfaces,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’00, (New York, NY,
USA), pp. 446–453, ACM, 2000.

[10] Beaudouin-Lafon, M., “Novel interaction techniques for overlapping win-
dows,” in Proceedings of the 14th annual ACM symposium on User interface
software and technology, pp. 153–154, ACM, 2001.

182

[11] Bederson, B. B. and Hollan, J. D., “Pad++: A Zoomable Graphical
Interface System,” in Conference Companion on Human Factors in Computing
Systems, CHI ’95, (New York, NY, USA), pp. 23–24, ACM, 1995.

[12] Benko, H., Wilson, A. D., and Baudisch, P., “Precise Selection Tech-
niques for Multi-touch Screens,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’06, (New York, NY, USA),
pp. 1263–1272, ACM, 2006.

[13] Bly, S. A. and Rosenberg, J. K., “A comparison of tiled and overlapping
windows,” in ACM SIGCHI Bulletin, vol. 17, pp. 101–106, ACM, 1986.

[14] Browne, J., Lee, B., Carpendale, S., Riche, N., and Sherwood, T.,
“Data Analysis on Interactive Whiteboards Through Sketch-based Interaction,”
in Proceedings of the ACM International Conference on Interactive Tabletops
and Surfaces, ITS ’11, (New York, NY, USA), pp. 154–157, ACM, 2011.

[15] Buchanan, R., “Good design in the digital age,” AIGA Journal of Design for
the Network Economy, vol. 1, no. 1, pp. 1–5, 2000.

[16] Buering, T., Gerken, J., and Reiterer, H., “User Interaction with Scat-
terplots on Small Screens - A Comparative Evaluation of Geometric-Semantic
Zoom and Fisheye Distortion,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 12, no. 5, pp. 829–836, 2006.

[17] Burigat, S. and Chittaro, L., “Geographic Data Visualization on Mobile
Devices for Users Navigation and Decision Support Activities,” in Spatial Data
on the Web Modelling and Management, Springer, 2007.

[18] Buxton, W., “A Three-state Model of Graphical Input,” in Proceedings of
the IFIP TC13 Third Interational Conference on Human-Computer Interaction,
INTERACT ’90, (Amsterdam, The Netherlands, The Netherlands), pp. 449–
456, North-Holland Publishing Co., 1990.

[19] Card, S. K., Mackinlay, J. D., and Shneiderman, B., eds., Readings in
Information Visualization: Using Vision to Think. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1999.

[20] Chen, H., “Compound Brushing Explained,” Information Visualization, vol. 3,
pp. 96–108, June 2004.

[21] Cockburn, A. and McKenzie, B., “Evaluating the Effectiveness of Spatial
Memory in 2d and 3d Physical and Virtual Environments,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’02,
(New York, NY, USA), pp. 203–210, ACM, 2002.

[22] Cohen, E. S., Smith, E. T., and Iverson, L. A., “Constraint-based tiled
windows,” IEEE computer graphics and applications, vol. 6, no. 5, pp. 35–45,
1986.

183

[23] Damaraju, S., Seo, J. H., Hammond, T., and Kerne, A., “Multi-tap Slid-
ers: Advancing Touch Interaction for Parameter Adjustment,” in Proceedings
of the 2013 International Conference on Intelligent User Interfaces, IUI ’13,
(New York, NY, USA), pp. 445–452, ACM, 2013.

[24] Davis, S. and Wiedenbeck, S., “The effect of interaction style and training
method on end user learning of software packages,” Interacting with Computers,
vol. 11, no. 2, pp. 147–172, 1998.

[25] Deaton, K. and Gedeon, S. A., “Method and system for creating
and distributing collaborative multi-user three-dimensional websites for a
computer system (3d Net Architecture),” Sept. 2006. 00077 U.S. Clas-
sification 715/836, 715/850, 715/848, 707/E17.111; International Clas-
sification G06T19/00, G06F3/048, G06F3/033, G06F13/00, G06F17/30;
Cooperative Classification G06F17/30905, G06F17/30873, G06T19/00,
G06F3/04815, G06T2219/024; European Classification G06F17/30W9V,
G06T19/00, G06F3/0481E, G06F17/30W3.

[26] Dietz, P. and Leigh, D., “DiamondTouch: A Multi-user Touch Technology,”
in Proceedings of the 14th Annual ACM Symposium on User Interface Software
and Technology, UIST ’01, (New York, NY, USA), pp. 219–226, ACM, 2001.

[27] Dix, A., Human-computer interaction. Springer, 2009. 05758.

[28] Dix, A. and Ellis, G., “Starting Simple: Adding Value to Static Visualisation
Through Simple Interaction,” in Proceedings of the Working Conference on
Advanced Visual Interfaces, AVI ’98, (New York, NY, USA), pp. 124–134, ACM,
1998.

[29] Drucker, S. M., Fisher, D., Sadana, R., Herron, J., and schraefel,
m., “TouchViz: A Case Study Comparing Two Interfaces for Data Analytics
on Tablets,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’13, (New York, NY, USA), pp. 2301–2310, ACM,
2013.

[30] Dusan, S., Gadbois, G. J., and Flanagan, J. L., “Multimodal interaction
on PDA’s integrating speech and pen inputs.,” 00031.

[31] Elliott, G., Jones, E., and Barker, P., “A grounded theory approach to
modelling learnability of hypermedia authoring tools,” Interacting with Com-
puters, vol. 14, no. 5, pp. 547–574, 2002.

[32] Elmqvist, N., Moere, A. V., Jetter, H.-C., Cernea, D., Reiterer, H.,
and Jankun-Kelly, T. J., “Fluid interaction for information visualization,”
Information Visualization, vol. 10, pp. 327–340, Oct. 2011.

[33] Engelbart, D. C., “Conceptual Framework for the Augmentation of Man’s
Intellect,” 1963. 00000.

184

[34] Esenther, A. and Ryall, K., “Fluid DTMouse: Better Mouse Support for
Touch-based Interactions,” in Proceedings of the Working Conference on Ad-
vanced Visual Interfaces, AVI ’06, (New York, NY, USA), pp. 112–115, ACM,
2006.

[35] Feiner, S., Nagy, S., and Van Dam, A., “An experimental system for
creating and presenting interactive graphical documents,” ACM Transactions
on Graphics (TOG), vol. 1, no. 1, pp. 59–77, 1982.

[36] Frisch, M., Heydekorn, J., and Dachselt, R., “Investigating Multi-touch
and Pen Gestures for Diagram Editing on Interactive Surfaces,” in Proceedings
of the ACM International Conference on Interactive Tabletops and Surfaces,
ITS ’09, (New York, NY, USA), pp. 149–156, ACM, 2009.

[37] Fu, C.-W., Goh, W.-B., and Ng, J. A., “Multi-touch Techniques for Explor-
ing Large-scale 3d Astrophysical Simulations,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’10, (New York,
NY, USA), pp. 2213–2222, ACM, 2010.

[38] Gao, T., Dontcheva, M., Adar, E., Liu, Z., and Karahalios, K. G.,
“Datatone: Managing ambiguity in natural language interfaces for data visual-
ization,” in Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology, pp. 489–500, ACM, 2015.

[39] Goldberg, A. and Robson, D., Smalltalk-80: the language and its imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., 1983. 06631.

[40] Grammel, L., Tory, M., and Storey, M.-A., “How information visualiza-
tion novices construct visualizations,” IEEE transactions on visualization and
computer graphics, vol. 16, no. 6, pp. 943–952, 2010.

[41] Gunn, T. J., Zhang, H., Mak, E., and Irani, P., “An Evaluation of One-
handed Techniques for Multiple-target Selection,” in CHI ’09 Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA ’09, (New York,
NY, USA), pp. 4189–4194, ACM, 2009.

[42] Gutwin, C., Cockburn, A., Scarr, J., Malacria, S., and Olson, S. C.,
“Faster Command Selection on Tablets with FastTap,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, (New
York, NY, USA), pp. 2617–2626, ACM, 2014.

[43] Harrison, C. and Hudson, S., “Using Shear As a Supplemental Two-
dimensional Input Channel for Rich Touchscreen Interaction,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12,
(New York, NY, USA), pp. 3149–3152, ACM, 2012.

[44] Hauser, H., Ledermann, F., and Doleisch, H., “Angular brushing of ex-
tended parallel coordinates,” in IEEE Symposium on Information Visualization,
2002. INFOVIS 2002, pp. 127–130, 2002.

185

[45] Heer, J. and Robertson, G., “Animated Transitions in Statistical Data
Graphics,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, pp. 1240–1247, Nov. 2007.

[46] Heer, J., Agrawala, M., and Willett, W., “Generalized Selection via In-
teractive Query Relaxation,” in Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’08, (New York, NY, USA), pp. 959–
968, ACM, 2008.

[47] Heer, J., Bostock, M., and Ogievetsky, V., “A tour through the visual-
ization zoo,” Commun. ACM, vol. 53, pp. 59–67, June 2010.

[48] Heilig, M., Huber, S., Demarmels, M., and Reiterer, H., “Scatter-
Touch: A Multi Touch Rubber Sheet Scatter Plot Visualization for Co-located
Data Exploration,” in ACM International Conference on Interactive Tabletops
and Surfaces, ITS ’10, (New York, NY, USA), pp. 263–264, ACM, 2010.

[49] Henderson Jr, D. A. and Card, S., “Rooms: the use of multiple virtual
workspaces to reduce space contention in a window-based graphical user in-
terface,” ACM Transactions on Graphics (TOG), vol. 5, no. 3, pp. 211–243,
1986.

[50] Heo, S., Gu, J., and Lee, G., “Expanding Touch Input Vocabulary by Using
Consecutive Distant Taps,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’14, (New York, NY, USA), pp. 2597–2606,
ACM, 2014.

[51] Heo, S. and Lee, G., “Force Gestures: Augmenting Touch Screen Gestures
with Normal and Tangential Forces,” in Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, UIST ’11, (New York,
NY, USA), pp. 621–626, ACM, 2011.

[52] Hinckley, K., Baudisch, P., Ramos, G., and Guimbretiere, F., “Design
and Analysis of Delimiters for Selection-action Pen Gesture Phrases in Scriboli,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’05, (New York, NY, USA), pp. 451–460, ACM, 2005.

[53] Hinckley, K., Czerwinski, M., and Sinclair, M., “Interaction and Mod-
eling Techniques for Desktop Two-handed Input,” in Proceedings of the 11th
Annual ACM Symposium on User Interface Software and Technology, UIST
’98, (New York, NY, USA), pp. 49–58, ACM, 1998.

[54] Hinckley, K. and Wigdor, D., “Input Technologies and Techniques,” in The
Human-Computer Interaction Handbook Fundamentals, Evolving Technologies
and Emerging Applications, Third Edition (Jacko, J., ed.), Taylor & Francis,
2012.

186

[55] Hoggan, E., Brewster, S. A., and Johnston, J., “Investigating the ef-
fectiveness of tactile feedback for mobile touchscreens,” in Proceedings of the
SIGCHI conference on Human factors in computing systems, pp. 1573–1582,
ACM, 2008.

[56] Holz, C. and Baudisch, P., “Understanding Touch,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, (New
York, NY, USA), pp. 2501–2510, ACM, 2011.

[57] Hudson, S. E. and Stasko, J. T., “Animation Support in a User Interface
Toolkit: Flexible, Robust, and Reusable Abstractions,” in Proceedings of the
6th Annual ACM Symposium on User Interface Software and Technology, UIST
’93, (New York, NY, USA), pp. 57–67, ACM, 1993.

[58] Hutchings, D. R. and Stasko, J. T., “New operations for display space
management and window management,” 2002. 00011.

[59] Isenberg, P. and Fisher, D., “Collaborative Brushing and Linking for Co-
located Visual Analytics of Document Collections,” Computer Graphics Forum,
vol. 28, no. 3, pp. 1031–1038, 2009.

[60] Isenberg, P., Isenberg, T., Hesselmann, T., Lee, B., von Zadow,
U., and Tang, A., “Data Visualization on Interactive Surfaces: A Research
Agenda,” IEEE Computer Graphics and Applications, vol. 33, no. 2, pp. 16–24,
2013.

[61] Jansen, Y. and Dragicevic, P., “An Interaction Model for Visualizations
Beyond The Desktop,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 12, pp. 2396–2405, 2013.

[62] Javed, W. and Elmqvist, N., “Exploring the design space of composite
visualization,” in Visualization Symposium (PacificVis), 2012 IEEE Pacific,
pp. 1–8, Feb. 2012.

[63] Jeffrey M. Rzeszotarski and Kittur, A., “Kinetica: Naturalistic Multi-
touch Data Visualization,” in Proceedings of the 32Nd Annual ACM Conference
on Human Factors in Computing Systems, CHI ’14, (New York, NY, USA),
pp. 897–906, ACM, 2014.

[64] Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J., “Wrangler:
Interactive Visual Specification of Data Transformation Scripts,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11,
(New York, NY, USA), pp. 3363–3372, ACM, 2011.

[65] Karat, J., McDonald, J. E., and Anderson, M., “A Comparison of Menu
Selection Techniques: Touch Panel, Mouse and Keyboard,” Int. J. Man-Mach.
Stud., vol. 25, pp. 73–88, July 1986.

187

[66] Karstens, B., “Presenting large and complex information sets on mobile
handhelds,” 2005. 00007.

[67] Kay, A. C., “The reactive engine,” 1969. 00120.

[68] Keim, D. A., “Information Visualization and Visual Data Mining,” IEEE
Transactions on Visualization and Computer Graphics, vol. 8, pp. 1–8, Jan.
2002.

[69] Kim, J., Nguyen, P. T., Weir, S., Guo, P. J., Miller, R. C., and Gajos,
K. Z., “Crowdsourcing step-by-step information extraction to enhance existing
how-to videos,” in Proceedings of the 32nd annual ACM conference on Human
factors in computing systems, pp. 4017–4026, ACM, 2014.

[70] Kser, D. P., Agrawala, M., and Pauly, M., “FingerGlass: Efficient Mul-
tiscale Interaction on Multitouch Screens,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’11, (New York, NY,
USA), pp. 1601–1610, ACM, 2011.

[71] Lam, H., Bertini, E., Isenberg, P., Plaisant, C., and Carpendale,
S., “Empirical Studies in Information Visualization: Seven Scenarios,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, pp. 1520–1536,
Sept. 2012.

[72] Lee, B., Isenberg, P., Riche, N., and Carpendale, S., “Beyond Mouse
and Keyboard: Expanding Design Considerations for Information Visualiza-
tion Interactions,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 18, no. 12, pp. 2689–2698, 2012.

[73] Lepinski, G. J., Grossman, T., and Fitzmaurice, G., “The Design and
Evaluation of Multitouch Marking Menus,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’10, (New York, NY,
USA), pp. 2233–2242, ACM, 2010.

[74] Liu, Z., Navathe, S. B., and Stasko, J. T., “Ploceus: Modeling, visualizing,
and analyzing tabular data as networks,” Information Visualization, vol. 13,
pp. 59–89, Jan. 2014.

[75] Luo, Y. and Vogel, D., “Pin-and-Cross: A Unimanual Multitouch Technique
Combining Static Touches with Crossing Selection,” in Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology, UIST ’15,
(New York, NY, USA), pp. 323–332, ACM, 2015.

[76] MacKenzie, I. S., “Fitts’ Law As a Research and Design Tool in Human-
computer Interaction,” Hum.-Comput. Interact., vol. 7, pp. 91–139, Mar. 1992.

[77] Maeda, J., The Laws of Simplicity. The MIT Press, 2006.

188

[78] Mankoff, J., Hudson, S. E., and Abowd, G. D., “Interaction Techniques
for Ambiguity Resolution in Recognition-based Interfaces,” in Proceedings of
the 13th Annual ACM Symposium on User Interface Software and Technology,
UIST ’00, (New York, NY, USA), pp. 11–20, ACM, 2000.

[79] McDonnel, B. and Elmqvist, N., “Towards Utilizing GPUs in Information
Visualization: A Model and Implementation of Image-Space Operations,” IEEE
Transactions on Visualization and Computer Graphics, vol. 15, pp. 1105–1112,
Nov. 2009.

[80] Morris, M. R., Wobbrock, J. O., and Wilson, A. D., “Understanding
Users’ Preferences for Surface Gestures,” in Proceedings of Graphics Interface
2010, GI ’10, (Toronto, Ont., Canada, Canada), pp. 261–268, Canadian Infor-
mation Processing Society, 2010.

[81] Moscovich, T., “Contact Area Interaction with Sliding Widgets,” in Pro-
ceedings of the 22Nd Annual ACM Symposium on User Interface Software and
Technology, UIST ’09, (New York, NY, USA), pp. 13–22, ACM, 2009.

[82] Myers, B. A., “A taxonomy of user interfaces for window managers,” IEEE
Computer Graphics and Applications, vol. 8, no. 5, pp. 65–84, 1988.

[83] Nielsen, J., “Enhancing the explanatory power of usability heuristics,” in Pro-
ceedings of the SIGCHI conference on Human Factors in Computing Systems,
pp. 152–158, ACM, 1994.

[84] Norman, D. A., The invisible computer: why good products can fail, the per-
sonal computer is so complex, and information appliances are the solution. 1998.
00013.

[85] Norman, D. A., The Design of Everyday Things. New York, NY, USA: Basic
Books, Inc., 2002.

[86] Norman, D. A., Emotional design: Why we love (or hate) everyday things.
Basic books, 2004. 05321.

[87] Norman, D. A. and Draper, S. W., User Centered System Design; New
Perspectives on Human-Computer Interaction. Hillsdale, NJ, USA: L. Erlbaum
Associates Inc., 1986. 00007.

[88] North, C., Dwyer, T., Lee, B., Fisher, D., Isenberg, P., Robertson,
G., and Inkpen, K., “Understanding Multi-touch Manipulation for Surface
Computing,” in Proceedings of the 12th IFIP TC 13 International Conference
on Human-Computer Interaction: Part II, INTERACT ’09, (Berlin, Heidel-
berg), pp. 236–249, Springer-Verlag, 2009.

[89] North, C. and Shneiderman, B., “A Taxonomy of Multiple Window Coor-
dinations,” tech. rep., 1997.

189

[90] North, C. and Shneiderman, B., “Snap-together visualization: can users
construct and operate coordinated visualizations?,” International Journal of
Human-Computer Studies, vol. 53, pp. 715–739, Nov. 2000.

[91] Olsen, Jr., D. R., “Evaluating user interface systems research,” in Proceed-
ings of the 20th annual ACM symposium on User interface software and tech-
nology, UIST ’07, (New York, NY, USA), pp. 251–258, ACM, 2007.

[92] Ostroff, D. and Shneiderman, B., “Selection Devices for Users of an Elec-
tronic Encyclopedia: An Empirical Comparison of Four Possibilities,” Inf. Pro-
cess. Manage., vol. 24, pp. 665–680, Nov. 1988.

[93] Oviatt, S., “Multimodal interfaces for dynamic interactive maps,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 95–102, Acm, 1996.

[94] Oviatt, S., Cohen, P., Wu, L., Duncan, L., Suhm, B., Bers, J., Holz-
man, T., Winograd, T., Landay, J., Larson, J., and others, “Designing
the user interface for multimodal speech and pen-based gesture applications:
state-of-the-art systems and future research directions,” Human-computer in-
teraction, vol. 15, no. 4, pp. 263–322, 2000.

[95] Pike, W. A., Stasko, J., Chang, R., and O’Connell, T. A., “The Science
of Interaction,” Information Visualization, vol. 8, pp. 263–274, Dec. 2009.

[96] Potter, R. L., Weldon, L. J., and Shneiderman, B., “Improving the
Accuracy of Touch Screens: An Experimental Evaluation of Three Strategies,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’88, (New York, NY, USA), pp. 27–32, ACM, 1988.

[97] Raskin, J., The Humane Interface: New Directions for Designing Interactive
Systems. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
2000. 00003.

[98] Robertson, G., Fernandez, R., Fisher, D., Lee, B., and Stasko, J.,
“Effectiveness of Animation in Trend Visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 14, pp. 1325–1332, Nov. 2008.

[99] Robertson, G., Van Dantzich, M., Robbins, D., Czerwinski, M.,
Hinckley, K., Risden, K., Thiel, D., and Gorokhovsky, V., “The Task
Gallery: a 3d window manager,” in Proceedings of the SIGCHI conference on
Human Factors in Computing Systems, pp. 494–501, ACM, 2000.

[100] Ross, D., “A Personal View of the Personal Work Station: Some Firsts in
the Fifties,” in Proceedings of the ACM Conference on The History of Personal
Workstations, HPW ’86, (New York, NY, USA), pp. 19–48, ACM, 1986.

190

[101] Roudaut, A., Lecolinet, E., and Guiard, Y., “MicroRolls: Expand-
ing Touch-screen Input Vocabulary by Distinguishing Rolls vs. Slides of the
Thumb,” in Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’09, (New York, NY, USA), pp. 927–936, ACM, 2009.

[102] Rzeszotarski, J. and Kittur, A., “Kinetica: Naturalistic Multi-touch Data
Visualization,” (Toronto, ON, Canada), 2014. 00000.

[103] Sadana, R. and Stasko, J., “Designing Multiple Coordinated Visualizations
for Tablets,” Computer Graphics Forum, vol. 35, pp. 261–270, June 2016.

[104] Sadana, R. and Stasko, J., “Designing and Implementing an Interactive
Scatterplot Visualization for a Tablet Computer,” in Proceedings of the 2014 In-
ternational Working Conference on Advanced Visual Interfaces, AVI ’14, (New
York, NY, USA), pp. 265–272, ACM, 2014.

[105] Saket, B., Kim, H., Brown, E. T., and Endert, A., “Visualization by
Demonstration: An Interaction Paradigm for Visual Data Exploration,” IEEE
Transactions on Visualization and Computer Graphics, vol. 23, pp. 331–340,
Jan. 2017.

[106] Saket, B., Endert, A., and Stasko, J., “Beyond Usability and Perfor-
mance: A Review of User Experience-focused Evaluations in Visualization,” in
Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Eval-
uation Methods for Visualization, BELIV ’16, (New York, NY, USA), pp. 133–
142, ACM, 2016.

[107] Schmidt, S., Nacenta, M. A., Dachselt, R., and Carpendale, S., “A
Set of Multi-touch Graph Interaction Techniques,” in ACM International Con-
ference on Interactive Tabletops and Surfaces, ITS ’10, (New York, NY, USA),
pp. 113–116, ACM, 2010.

[108] Sears, A. and Shneiderman, B., “High Precision Touchscreens: Design
Strategies and Comparisons with a Mouse,” Int. J. Man-Mach. Stud., vol. 34,
pp. 593–613, Apr. 1991.

[109] Sellen, A. J., Kurtenbach, G. P., and Buxton, W. A. S., “The Pre-
vention of Mode Errors Through Sensory Feedback,” Hum.-Comput. Interact.,
vol. 7, pp. 141–164, June 1992.

[110] Setlur, V., Battersby, S. E., Tory, M., Gossweiler, R., and Chang,
A. X., “Eviza: A Natural Language Interface for Visual Analysis,” in Proceed-
ings of the 29th Annual Symposium on User Interface Software and Technology,
pp. 365–377, ACM, 2016.

[111] Shneiderman, B., “Direct Manipulation: A Step Beyond Programming Lan-
guages,” Computer, vol. 16, pp. 57–69, Aug. 1983.

191

[112] Shneiderman, B., “Dynamic queries for visual information seeking,” IEEE
Software, vol. 11, pp. 70–77, Nov. 1994.

[113] Shneiderman, B. and Plaisant, C., “Strategies for evaluating information
visualization tools: multi-dimensional in-depth long-term case studies,” in Pro-
ceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation
methods for information visualization, pp. 1–7, ACM, 2006.

[114] Spence, R., Information Visualization: Design for Interaction (2Nd Edition).
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2007. 00000.

[115] Stasko, J., Grg, C., and Liu, Z., “Jigsaw: Supporting Investigative Analysis
through Interactive Visualization,” Information Visualization, vol. 7, pp. 118–
132, June 2008.

[116] Stolte, C., Tang, D., and Hanrahan, P., “Polaris: a system for query,
analysis, and visualization of multidimensional relational databases,” IEEE
Transactions on Visualization and Computer Graphics, vol. 8, pp. 52–65, Jan.
2002.

[117] Sultanum, N., Somanath, S., Sharlin, E., and Sousa, M. C., “”Point It,
Split It, Peel It, View It”: Techniques for Interactive Reservoir Visualization on
Tabletops,” in Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces, ITS ’11, (New York, NY, USA), pp. 192–201, ACM,
2011.

[118] Thudt, A., Hinrichs, U., and Carpendale, S., “The Bohemian Book-
shelf: Supporting Serendipitous Book Discoveries Through Information Visual-
ization,” in Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’12, (New York, NY, USA), pp. 1461–1470, ACM, 2012.

[119] Tversky, B., Morrison, J. B., and Betrancourt, M., “Animation: Can
It Facilitate?,” Int. J. Hum.-Comput. Stud., vol. 57, pp. 247–262, Oct. 2002.

[120] Vogel, D. and Balakrishnan, R., “Occlusion-aware Interfaces,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’10, (New York, NY, USA), pp. 263–272, ACM, 2010.

[121] Vogel, D. and Baudisch, P., “Shift: A Technique for Operating Pen-based
Interfaces Using Touch,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’07, (New York, NY, USA), pp. 657–666,
ACM, 2007.

[122] Wagner, J., Huot, S., and Mackay, W., “BiTouch and BiPad: Designing
Bimanual Interaction for Hand-held Tablets,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’12, (New York,
NY, USA), pp. 2317–2326, ACM, 2012.

192

[123] Walny, J., Lee, B., Johns, P., Riche, N., and Carpendale, S., “Un-
derstanding Pen and Touch Interaction for Data Exploration on Interactive
Whiteboards,” IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 12, pp. 2779–2788, 2012.

[124] Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A., “Guide-
lines for Using Multiple Views in Information Visualization,” in Proceedings of
the Working Conference on Advanced Visual Interfaces, AVI ’00, (New York,
NY, USA), pp. 110–119, ACM, 2000.

[125] Ward, M. and Yang, J., “Interaction Spaces in Data and Information Visu-
alization,” in Proceedings of the Sixth Joint Eurographics - IEEE TCVG Con-
ference on Visualization, VISSYM’04, (Aire-la-Ville, Switzerland, Switzerland),
pp. 137–146, Eurographics Association, 2004.

[126] Wattenberg, M. and Kriss, J., “Designing for Social Data Analysis,” IEEE
Transactions on Visualization and Computer Graphics, vol. 12, pp. 549–557,
July 2006.

[127] Wigdor, D., Benko, H., Pella, J., Lombardo, J., and Williams, S.,
“Rock & Rails: Extending Multi-touch Interactions with Shape Gestures
to Enable Precise Spatial Manipulations,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’11, (New York, NY,
USA), pp. 1581–1590, ACM, 2011.

[128] Wigdor, D., Williams, S., Cronin, M., Levy, R., White, K., Mazeev,
M., and Benko, H., “Ripples: utilizing per-contact visualizations to improve
user interaction with touch displays,” in Proceedings of the 22nd annual ACM
symposium on User interface software and technology, pp. 3–12, ACM, 2009.

[129] Wigdor, D. and Wixon, D., Brave NUI World: Designing Natural User
Interfaces for Touch and Gesture. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1st ed., 2011.

[130] Wilkinson, L., The Grammar of Graphics. New York, NY, USA: Springer-
Verlag New York, Inc., 1999. 00006.

[131] Willett, W., Heer, J., and Agrawala, M., “Scented Widgets: Improv-
ing Navigation Cues with Embedded Visualizations,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, pp. 1129–1136, Nov. 2007.

[132] Wills, G. J., “Selection: 524,288 ways to say ldquo;this is interesting rdquo;,”
in Proceedings IEEE Symposium on Information Visualization ’96, pp. 54–60,
120, Oct. 1996.

[133] Wobbrock, J. O., Morris, M. R., and Wilson, A. D., “User-defined
Gestures for Surface Computing,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’09, (New York, NY, USA),
pp. 1083–1092, ACM, 2009.

193

[134] Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J., Howe,
B., and Heer, J., “Voyager: Exploratory analysis via faceted browsing of visu-
alization recommendations,” IEEE transactions on visualization and computer
graphics, vol. 22, no. 1, pp. 649–658, 2016.

[135] Wroblewski, L., Mobile first: Prface de Jeffrey Zeldmann. Editions Eyrolles,
2012. 00129.

[136] Yee, W., “Potential Limitations of Multi-touch Gesture Vocabulary: Differen-
tiation, Adoption, Fatigue,” in Proceedings of the 13th International Conference
on Human-Computer Interaction. Part II: Novel Interaction Methods and Tech-
niques, (Berlin, Heidelberg), pp. 291–300, Springer-Verlag, 2009.

[137] Yi, J. S., Kang, Y. a., and Stasko, J., “Toward a Deeper Understanding
of the Role of Interaction in Information Visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, pp. 1224–1231, Nov. 2007.

[138] Yoo, H. Y. and Cheon, S. H., “Visualization by Information Type on Mobile
Device,” in Proceedings of the 2006 Asia-Pacific Symposium on Information
Visualisation - Volume 60, APVis ’06, (Darlinghurst, Australia, Australia),
pp. 143–146, Australian Computer Society, Inc., 2006.

[139] Yu, L., Svetachov, P., Isenberg, P., Everts, M. H., and Isenberg,
T., “FI3d: Direct-Touch Interaction for the Exploration of 3d Scientific Visual-
ization Spaces,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 6, pp. 1613–1622, 2010.

194

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Thesis statement and contributions
	Opportunities and Challenges with Touch
	Variations of Multitouch Devices
	Smartphones
	Large-touch displays
	Tablets
	Target Device Type

	Themes
	Novice Users
	Simplicity
	Delight

	Organization

	Chapter 2 — Related Work
	Interaction in Visualization
	Interaction on Touchscreens
	Issues with precise selection
	Limited Vocabulary for Specifying Commands

	Visualization on touchscreens
	Research Tools
	Commercial Tools

	Chapter 3 — Tangere: A Tablet System for Information Visualization
	Introduction
	Envisioning a visualization tool for tablets
	Identifying the right configuration

	System Overview
	System Summary

	Chapter 4 — ScatterplotRamik Sadana and John Stasko. ``Designing and implementing an interactive scatterplot visualization for a tablet computer.'' Advanced Visual Interfaces (AVI) 2014.
	Scatterplot
	Classifying Tasks
	Design and Implementation
	Evaluation
	Modifications to Tangere

	Chapter 5 — Multi-Coordinated ViewsRamik Sadana and John Stasko. ``Designing Multiple Coordinated Visualizations for Tablets''. Computer Graphics Forum (EuroVis) 2016
	Multi-Coordinated Views
	Visualization Techniques
	Layout of Visualizations in the Canvas View
	Interactions within Views
	Interaction Across Views
	Handling Occlusion

	Chapter 6 — Advanced SelectionIn review: Ramik Sadana and John Stasko. ``Expanding Selection for Information Visualization Systems on Tablet Devices'' Interactive Spaces and Surfaces (ISS) 2016
	Advanced Selection
	Techniques for Advanced Selection
	The Clutch Modifier Technique for Tablets
	Generalized Selection

	Chapter 7 — Advanced Layout Techniques
	Introduction
	Layout Options

	Relevant Layout Techniques
	Fixed Canvas Sizes

	Selected Layout Technique
	Configuring Fixed-canvas Juxtaposition Layout
	The Selected Layout Specification
	Rationale

	Chapter 8 — Evaluating Effectiveness of Tangere
	Introduction
	Designing Experiments to Evaluate Tangere
	Evaluation Techniques

	Evaluation 1: Measuring Simplicity
	Methodology
	Participants
	Results
	Modifications to Tangere

	Chapter 9 — Evaluation 2: Comparison with an Existing Tool
	Designing a Comparative Study
	Methodology
	Participants, Tasks, and Datasets
	Results
	Discoverability
	Performance
	Accuracy
	Ease of Learning and Ease of Use
	System Preference
	Qualitative Observations

	Chapter 10 — Evaluation 3: Trained User Workflow Analysis
	Participants and Data
	Deliverable
	Methodology
	Results
	Data Analysis
	Memorability
	Qualitative Observations

	Reflection
	What does Tangere excel at?
	What would a redesigned system look like?

	Conclusion
	Reflection on the design of the studies

	Chapter 11 — Conclusion
	Summary
	Future Work
	Visualization pipeline
	Multi-modal input
	Other extensions

	Appendix A — Study Dataset and Tasks
	Sample Tasks from Study 1
	Sample Dataset

	References

