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Tyger Tyger, burning bright,
In the forests of the night;
What immortal hand or eye,
Could frame thy fearful symmetry?

William Blake
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SUMMARY

Combinatorial optimization plays a central role in complexity theory, operations re-

search, and algorithms. Extended formulations give a powerful approach to solve

combinatorial optimization problems: if one can find a concise geometric description

of the possible solutions to a problem then one can use convex optimization to solve

the problem quickly.

Many combinatorial optimization problems have a natural symmetry. In this work

we explore the role of symmetry in extended formulations for combinatorial optimiza-

tion, focusing on two well-known and extensively studied problems: the matching

problem and the traveling salesperson problem.

In his groundbreaking work, Yannakakis [1991, 1988] showed that the matching

problem does not have a small symmetric linear extended formulation. Rothvoß [2014]

later showed that any linear extended formulation for matching, symmetric or not,

must have exponential size. In light of this, we ask whether the matching problem has

a small semidefinite extended formulation, since semidefinite programming generalizes

linear programming. We show that the answer is no if the formulation is also required

to be symmetric. Put simply, the matching problem does not have a small symmetric

semidefinite extended formulation.

We next consider optimization over the copositive cone and its dual, the com-

pletely positive cone. Optimization in this setting is NP-hard. We present a general

framework for producing compact symmetric copositive formulations for a large class

of problems. We show that, in contrast to the semidefinite case, both the match-

ing and traveling salesperson problems have small copositive formulations even if we

require symmetry.

xiv



CHAPTER 1

INTRODUCTION

Combinatorial optimization plays a central role in complexity theory, operations re-

search, and algorithms. In a combinatorial optimization problem one has a finite

but typically large set of candidate solutions from which one wants the best solution

based on some measure.

For example, consider trying to match medical students to residency programs.

In this task the candidate solutions are all possible ways of assigning applicants to

residencies, and we measure the quality of a solution by how well it satisfies the

mutual preferences of applicants and hospitals.

For another example, consider planning the route of a delivery truck. Here the

candidate solutions are all routes that visit each delivery location, and we measure

the quality of a route by its total length.

Combinatorial optimization shows up everywhere. It features prominently in a

wide range of modern scientific and commercial endeavors including biotechnology,

engineering, manufacturing, and artificial intelligence. Algorithm designers naturally

want to know how to solve such problems quickly, both in theory and in practice.

The residency program example is a version of the matching problem we will

explore later. Even though the set of candidate solutions is exponentially large, the

matching problem has practical, efficient algorithms. The route planning example is

an instance of the traveling salesperson problem (TSP) which we will also explore

later. The space of possible solutions to the TSP is also exponentially large, and in

contrast to the matching problem, there is no known algorithm that quickly solves

general instances of the TSP.
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1.1 P vs NP, TSP, and extended formulations

Some combinatorial optimization problems, such as the TSP, seem to require an

exhaustive search of exponentially many possibilities in the worst case. The famous

P vs NP question asks, in essence, whether or not this is true. In fact, P = NP if

and only if there is an algorithm that solves every instance of the TSP in time that

is only polynomial in the size of the instance.

The P vs NP problem was first formally stated by Cook [1971] and has attracted

considerable attention ever since. Some researchers, including this author, consider

the P vs NP problem to be the most important open problem in computer science and

possibly all of mathematics. The P vs NP problem is one of the seven Millennium

Problems selected by the Clay Mathematics Institute [2016], with a million dollar

prize offered for its solution.

In the mid-1980’s there was a series of attempts by Swart [1986] to show that

P = NP by giving a polynomial size linear program for the TSP. As we will see,

such a construction, if correct, would have been a small linear extended formulation.

According to accounts such as Trick [2009] and Lipton and Regan [2012], as review-

ers found errors in the construction, and patches were introduced to fix those errors,

the resulting linear program became increasingly complicated to analyze. In a break-

through result, Yannakakis [1991, 1988] ended this line of inquiry by showing that any

construction of this type was doomed to fail. In doing so, Yannakakis also founded

the systematic study of extended formulations. We now describe the framework of

combinatorial optimization and extended formulations in more detail.

1.2 Combinatorial optimization

Let us begin with a simple example. Consider the graph depicted in Figure 1.1 on

page 3. We will call this graph G. The graph G has six vertices (also called nodes)
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Figure 1.1: A graph with edge weights.

labeled a through f . Some pairs of vertices are connected by edges, and each edge

is labeled with a number, called its weight (or cost). We will refer to edges by the

vertices they connect, so for example the edge de is the edge with weight 3 that

connects nodes d and e.

Graphs play a fundamental role in combinatorial optimization and algorithm de-

sign. They provide a rich and expressive notation for describing relationships among

objects. For example, a graph could represent:

• an airline network, where each node is a city, edges are nonstop routes, and

each edge weight is the cost of flying along that route;

• a molecule, where each node is an atom, edges are chemical bonds, and each

edge weight is the strength of the bond;

• a social network, where each node is a person, edges are friendship relations,

and each edge weight represents how much those friends communicate;

• an instance of the residency matching problem described earlier, where each

node is a resident or hospital, edges are potential matches, and each edge weight

is the desirability of including that particular match in the overall solution; or

• an instance of the route planning problem described earlier, where each node is

a delivery location, edges are routes between locations, and each edge weight is

the length of that route.

3



Algorithm designers often solve real-world problems by expressing them abstractly

in terms of graphs and then applying graph algorithms to solve their problem. For

example, the residency matching and route planning problems described earlier can

both be expressed as graph problems. Since graphs are such a versatile tool, algorithm

designers take great interest in knowing which graph problems can be solved easily.

The maximum matching problem

Let us look more closely at a particular graph problem, the maximum matching

problem. A matching in a graph is a collection of edges such that no two edges share

a common vertex. The vertices corresponding to any edge in the matching are said to

be matched. For example, in the graph G, the set {ae, bf} is a matching that matches

four vertices in total, whereas the set {ad, ae} is not a matching because the vertex

a occurs twice. In a graph with edge weights, the weight of a matching is simply

the sum of the weights of its edges. For example, the matching {ae, bf} has a total

weight of 2.

A perfect matching is a matching that covers every vertex. In order for a graph

to be able to have a perfect matching it must have an even number of nodes. In the

graph G, the set {ad, bc, ef} is a perfect matching, and in fact the only one.

In the maximum matching problem the goal is to find a matching in an edge-

weighted graph that has the highest total weight. In the maximum perfect matching

problem, the goal is to find a perfect matching that has the highest total weight.

For graph G the maximum perfect matching (indeed the only perfect matching) is

{ad, bc, ef}, with a weight of 4. If we do not require a perfect matching, the maximum

matching in G is {bc, de}, with a weight of 5.

We now review some standard terminology for combinatorial optimization prob-

lems. Recall that in a combinatorial optimization problem we seek the best solution,

according to some measure, from a set of possible solutions. The possible solutions to

4



a problem are called the feasible solutions. In the example of maximum matching, the

feasible solutions are all sets of edges that are matchings. The criterion that measures

the quality of a solution is the objective function or simply the objective, which is a

function that maps solutions to real numbers. In the example of maximum matching,

the objective function is the sum of the weights of the edges in a matching.

In a maximization problem one seeks a feasible solution that maximizes the ob-

jective function, whereas in a minimization problem one seeks a feasible solution that

minimizes the objective function. The maximum matching problem is indeed a maxi-

mization problem, since we seek the set of edges with the highest weighted sum. When

we are speaking generically about an optimization problem (either a maximization or

a minimization problem) we simply refer to optimizing the objective function.

The graph G is small enough that it is possible to list all its matchings and find

the best one quickly. In a general combinatorial optimization problem the set of

feasible solutions is always finite but typically very large. For example, a graph with

only 40 nodes can have over 3 × 1023 perfect matchings, and that number grows

exponentially with the size of the graph. A brute-force approach that evaluates all

possible matchings quickly becomes intractable. This is the essence of the difficulty

in combinatorial optimization: evaluating the quality of any given feasible solution

is easy, but it is simply not possible to try all feasible solutions to find the best one.

In order to have any hope of solving a typical combinatorial optimization problem,

some other approach is needed.

1.3 Using geometry

One possible improvement over exhaustive search is inspired by convex geometry.

Let us continue with the example of maximum matchings on the graph G. Finding a

matching means selecting a subset of edges of G. Let’s associate a decision variable

with each edge of G that indicates whether we include that edge in our matching.

5



For example, we’ll associate the variable xad with the edge ad, and we’ll set xad to

1 if we include ad in our matching, and set it to 0 otherwise. Altogether we’ll have

seven such variables for the seven edges of G. If we pick an ordering of variables, say

xad, xae, xbc, xbe, xbf , xde, xef ,

then any subset of edges of G (whether it is a matching or not) can be represented

by a vector with seven entries, one for each variable, and with each entry equal to

either 0 or 1. We refer to a vector whose entries are all either 0 or 1 as a 0/1 vector.

For example, the edge set {ad, bc, ef}, corresponding to the unique perfect match-

ing in G, is represented by the vector

(1, 0, 1, 0, 0, 0, 1) ,

while the edge set {bc, de}, corresponding to the maximum weight matching in G, is

represented by the vector

(0, 0, 1, 0, 0, 1, 0) .

Every feasible solution (that is, every matching in G) has a representation as a vector

of this form, with seven entries each equal to either 0 or 1. On the other hand, some

0/1 vectors do not correspond to matchings. For example the vector

(1, 1, 0, 0, 0, 0, 0) ,

corresponding to the edge set {ad, ae}, does not represent a feasible solution since

that edge set is not a matching. If the variable xad equals 1 then the variable xae

must be 0 in order for those variables to encode a matching. This illustrates the fact

that the variables are correlated : information about one variable can tell us about

other variables.

6



Having mapped each feasible solution to a 0/1 vector, we now make the connection

to geometry by viewing these vectors as points in seven-dimensional coordinate space,

or in other words as elements of R7. (Recall that R denotes the real number line and

that R2 denotes the Cartesian product of the real line with itself, also known as the

coordinate plane.)

From now on we identify each feasible solution (each matching) with its corre-

sponding point in space. We view the entire collection of points corresponding to

matchings as defining the corners of a polyhedron. The set of all points in this poly-

hedron, including the corner points, form the convex hull of the points corresponding

to matchings of G. We will refer to the convex hull of the points corresponding to

feasible solutions as the feasible region.

We also represent the edge weights of G as a seven-dimensional vector we call c:

c = (1, 1, 2, 2, 1, 3, 1) .

If x is an element of R7 that corresponds to a matching of G, then the weight of x,

which is the sum of the weights of its edges, is given by

weight(x) = c1x1 + c2x2 + . . .+ c7x7 .

The key point is that the weight function (the objective) is a linear function of the

coordinates of matchings. It is a fact of convex geometry that optimizing a linear

function over a finite set of points is equivalent to optimizing the same function over its

convex hull. If the finite set of points is very large but the convex hull has a compact

geometric description, in a precise sense we will define, then it may be possible to

use convex optimization to optimize the objective more quickly than an exhaustive

search over the finite set. To apply the approach we have just described, we need:

1. a mapping from feasible solutions to points in some geometric space,

7



2. a representation of the objective as a linear function in this space, and

3. a compact description of the feasible region.

For the problems we will consider, namely the matching problem and the TSP, there

are natural choices for the first two items, and the big question is whether one can

have the last item, a compact description of the feasible region.

In this work we will study extended formulations as a way to get a compact

description of the feasible region of a combinatorial optimization problem. In order

to develop intuition for extended formulations we’ll need an optimization problem

that’s easier to think about than the matching problem.

The fruit basket problem

Even though G is small, the feasible region of matchings in G is an object in seven-

dimensional space, which is hard to visualize. To illustrate the idea of extended

formulations we turn to an even simpler toy example, which we will refer to here as

the fruit basket problem.

Imagine that we have three apples and three bananas available to make a fruit

basket. Each apple is worth an amount a in the basket and each banana is worth

b. Either a or b can be negative. The goal is to make a fruit basket with maximum

value, subject to the constraint that we cannot pick an extreme amount (0 or 3) of

both fruits. For example, if we pick 0 or 3 apples then we must pick 1 or 2 bananas.

This somewhat contrived constraint models the correlation of variables we saw in the

matching example: picking a value for one decision variable can restrict options for

other decision variables.

Since there are two decision variables, x and y, the feasible region for this problem

is a two-dimensional object, which we’ve drawn as the shaded region in Figure 1.2 on

page 9. As can be seen, the feasible region is in fact an octagon, albeit not a regular

octagon. The eight corners of the octagon are feasible solutions where exactly one of

8
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Figure 1.2: The feasible region of the fruit basket problem.

the two variables is set to an extreme value. The interior of the octagon contains four

feasible solutions (not shown) where neither variable has an extreme value.

The figure also shows the solution to the fruit basket problem for the particular

case a = 4 and b = 1. In this case the optimal choice is three apples and two bananas,

represented by the point (3, 2). The gray vector pointing out from the point (3, 2)

shows the direction in which the value of the basket increases for this choice of a and

b. The thin gray line perpendicular to the vector shows a level set for the objective

function, which is a set of points that have the same objective value. From this line

it’s easy to see that no other point in the feasible region has an objective value as

high as that of the point (3, 2).

The feasible region of the fruit basket problem can be described by eight linear

inequalities, one for each side of the octagon:

x ≥ 0 , y ≥ 0 , x ≤ 3 , y ≤ 3 ,

x+ y ≥ 1 ,

x+ y ≤ 5 ,

x− y ≥ −2 , and

x− y ≤ 2 .

9



The objective is the linear function

f(x, y) = ax+ by .

Since the fruit basket problem can be expressed as the optimization of a linear objec-

tive over a feasible region defined by linear inequalities, it is a linear program (LP),

which means it can be solved efficiently. Since the linear constraints exactly describe

the convex hull of the feasible solutions, solving the linear program will give the exact

optimum value of the original combinatorial problem.

Notice that the choice of costs a and b are encoded in the objective function and

do not affect the feasible region. This means that different instances of the fruit

basket problem have the same feasible region and differ only in the direction in which

we wish to optimize. Here we see an appealing aspect of the geometric approach to

optimization: if we can express the feasible region of a combinatorial optimization

problem compactly, we can reuse that description for any instance of the problem;

the particulars of each instance are encoded solely in the objective.

1.4 Extended formulations

The linear program for the fruit basket problem has eight inequalities. Is it possible to

do better? As shown in Figure 1.3 on page 11, the answer is yes. The figure shows a

three-dimensional object with six sides, which can be thought of as a tall rectangular

prism that has been deformed by stretching the top face from left to right, and the

bottom face from front to back, resulting in four trapezoidal faces around the sides.

If we shine a light on this object from directly above, it will cast an octagonal

shadow on the ground, as depicted in the figure. In other words, if we project the

object onto the xy plane, we obtain the octagon that is the feasible region of the fruit

basket problem. We will refer to any higher dimensional object that can be projected

10



Figure 1.3: An extended formulation for the fruit basket problem.

exactly onto the octagon as an extension of the octagon, and refer to the octagon as

the projection of any such extension.

Since the extension of the octagon shown in the figure has six flat sides it can be

described by six inequalities in three variables. Since these six inequalities describe

an extension of the octagon we will say they form an extended formulation of the

octagon. If we are being precise we should distinguish between the geometric object

(the extension) and its algebraic representation in terms of inequalities (the extended

formulation), however we will typically use these terms interchangeably.

Since the extended formulation for the octagon uses linear inequalities we say

that it forms a linear extended formulation of the fruit basket problem. The size of

a linear extended formulation is the number of inequalities in its description. We do

not consider the number of variables, the number of equality constraints, or the size

of the coefficients in the inequalities. Although those numbers can matter in other

contexts, for our purposes the number of inequalities turns out to be a more accurate

measure of the geometric complexity of the object.

Using the number of inequalities as a measure of size, we would say that the

original formulation of the fruit basket problem as a linear program in two variables

has a size of eight, whereas the extended formulation in three dimensions has a size

of six. One might wonder how far this idea can be carried. It turns out that there are

objects described in terms of linear inequalities that have linear extended formulations

11



of exponentially smaller size; for an example consult Goemans [2015].

It is exactly this potential of exponential savings in problem description size that

spurred on the study of extended formulations, since if the feasible region of a com-

binatorial optimization problem with exponentially many solutions can be described

with exponentially fewer inequalities, it may be possible to solve the problem quickly

with linear programming, as Swart attempted with the TSP. We now know that many

problems, including the TSP, do not have an exponentially smaller description using

linear formulations; see Section 1.8 for more discussion.

Linear programming is a special case of a general technique known as conic pro-

gramming. In conic programming the feasible region of an optimization problem is

expressed as the affine slice of a closed convex cone of a certain dimension. The power

of a conic program (and the difficulty of solving it) lies in the type of cone that is

used and in the dimension of the cone. Examples of cones are the nonnegative cone,

the positive semidefinite (psd) cone, and the copositive cone.

The feasible region of any linear program can be expressed as the affine slice of the

nonnegative cone of a certain dimension, where that dimension is equal to the number

of inequalities in the linear program. Semidefinite programs (SDPs) generalize linear

programs but are still solvable efficiently. Here the feasible region of a program is

an affine slice of the psd cone, and the size of the program is the dimension of the

psd cone used in its formulation. Copositive programs (CPs) generalize both linear

and semidefinite programs. Here the feasible region is an affine slice of the copositive

cone. Unlike linear and semidefinite programming, copositive programming is not

believed to be efficiently solvable in general.

1.5 Symmetry

Many combinatorial problems, including matching and TSP, have natural symmetries.

Generally speaking, a problem is symmetric if transformations like rotations and
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reflections leave the feasible region unchanged. For example, the octagon that is the

feasible region of the fruit basket problem has several symmetries: rotation by 90◦

about its center, and reflection about a horizontal line, vertical line, or 45◦ diagonal

line through its center, sloping upwards or downwards. Since this octagon is not

regular, it is not symmetric with respect to a 45◦ rotation about its center, as a

regular octagon would be.

If we construct an extended formulation for a problem that has symmetries, we

may find that the extended formulation respects those symmetries, or it may not. If

an extended formulation respects the symmetries of the region it projects to, it is a

symmetric extended formulation.

p′

p

p′

p

p′

p

Figure 1.4: 180◦ rotational symmetry of the fruit basket problem.

For example, if we look at Figure 1.4 on page 13 we see that if we rotate the

octagon by 180◦ about its center, and rotate the extension about this same axis, then

by comparing the first and third diagrams in the figure we see that both the octagon

and the extension are left unchanged, because both are symmetric with respect to a

180◦ rotation about that axis. We would say that the extension respects this particular

symmetry.
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What’s required here is not just that the extension is unchanged by the rotation,

but that each point in the extension is kept “in sync” with the point it projects to.

What we mean formally by “in sync” is that the transformation that is applied to

the extension must commute with the projection operation.

To understand what this means, consider the trajectory of the point p in the figure,

as well as that of the point p′ that projects to p. If we compare the first diagram

with the last diagram, we see not only that the transformation has kept the octagon

and the extension unchanged, but that the point p′ still projects to p. We say that

the transformation commutes with the projection because if we start from the first

diagram and first project p′ to p and then apply the rotation, we get the same result

(that is, ending up at the rotated point p) as if we first apply the rotation to the

extension and then project p′ onto the plane of the octagon in the last diagram.

Having seen that this extension respects the 180◦ symmetry of the octagon, we

can ask whether this extension respects all the symmetries of the octagon. It turns

out there is a subtlety in the notion of “respecting symmetry.” To understand this

subtlety let’s first examine Figure 1.5 on page 15. In this figure we show the effect

of reflecting the extension through a plane that is parallel to the octagon and passes

through the midpoint of the extension. This plane is depicted in the second diagram

on the top row of the figure, and the subsequent diagrams show snapshots of the

extension while the reflection is being applied. The first diagram on the bottom

row, for example, shows the extension halfway through the reflection, at which point

the entire extension is lying in the plane of reflection. The effect of reflecting the

extension through this plane is similar to the effect of rotating the extension by 90◦,

except that if we follow the trajectory of the point p′ during the transformation, we

see that it moves only in a line parallel to the z axis, and that its projection p remains

unchanged.

Now let’s consider what happens to the extension of the fruit basket problem
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Figure 1.5: Reflecting the extended formulation of the fruit basket problem through
a plane parallel to the octagon.

when we rotate the feasible region by 90◦ about its center, as shown in Figure 1.6 on

page 17. In the top row we see that when we rotate the octagon 90◦ clockwise about

its axis of symmetry and do the same to the extension, the extension ends up in a

different orientation, since it does not have 90◦ rotational symmetry about this axis.

This would appear to show that the extension does not respect this particular

symmetry of the octagon, however this is not the end of the story. If we now reflect

the extension through a plane that is parallel to the octagon and passes through

the midpoint of the extension, as we described in Figure 1.5 on page 15, the result

is that the extension is now in the same orientation as it was at the start. This

process is depicted in the bottom row of Figure 1.6 on page 17. Because we were
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able to compose the rotation with another transformation (a reflection) that does not

affect the octagon, and thereby achieve a symmetry of the extension, we say that the

extension does in fact respect this symmetry of the octagon.

By comparing the first diagram with the last diagram we can check that the trans-

formation (rotation followed by reflection) commutes with the projection operation,

since from the first diagram it does not matter whether we project first and then

rotate, or rotate (and reflect) and then project.

We can use the technique just described, of applying an optional reflection, to show

that the extension in fact respects all symmetries of the octagon and is thus a fully

symmetric extension of the octagon. We generalize this idea as follows: an extension

is symmetric if, for every transformation of the feasible region that is a symmetry of

the feasible region, there is some transformation (not necessarily the same one) that

we can apply to the extension that also leaves the extension invariant, and keeps the

extension in sync with its projection, in the sense that the transformation commutes

with the projection operation.

When Yannakakis examined Swart’s construction for the TSP described earlier,

he observed that the proposed LP, if correct, would be a polynomial size symmet-

ric extended formulation for the TSP. Yannakakis then showed that any symmetric

extended formulation for the TSP must have exponential size, thus proving that the

construction was incorrect. In the course of proving this, he also showed that any lin-

ear symmetric extended formulation for the matching problem must have exponential

size.

Requiring that an extended formulation be symmetric is a restriction. In some

cases the smallest asymmetric formulation for a symmetric problem is much smaller

than the smallest symmetric formulation; refer to Section 1.8 and Chapter 7 for more

discussion of this phenomenon. Given this fact, one may wonder why anyone would

require symmetry or study symmetric formulations. We give several reasons below.
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Figure 1.6: 90◦ rotational symmetry of the fruit basket problem. Top row: 90◦

rotation about the axis of symmetry. Bottom row: reflection through a plane parallel
to the octagon.

1. As implied by Swart’s example, symmetric formulations come about naturally

when one is trying to solve a symmetric problem. Many candidate formulations

for a symmetric problem are likely to be symmetric.

2. Symmetry is often preserved when one uses certain explicit constructions of

extended formulations known as hierarchies. Refer to Section 1.8 for more

discussion of hierarchies; also see Laurent [2003] for a survey.

3. A lower bound on symmetric formulations can rule out a wide range of ap-

proaches and guide algorithm designers in search of a small formulation to
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focus on asymmetric cases only.

4. The symmetric case is often easier to reason about and can give insight into the

asymmetric case. As a prime example, the insights that Yannakakis’s developed

in proving symmetric lower bounds were crucial to proving the asymmetric lower

bounds that were derived later.

5. For certain classes of problems it is possible to prove that the best asymmet-

ric formulation is not much smaller than the best symmetric formulation. In

these cases any previously obtained symmetric lower bounds carry over to the

asymmetric case.

6. Finally, it is sometimes the case that optimization algorithms can take advan-

tage of symmetries in a formulation to perform better; see Dobre and Vera

[2015] for an example.

1.6 Extended formulations as a model of computation

Understanding models of computation has been a core part of theoretical computer

science since its inception. The Turing machine was the first general model of com-

putation that was both mathematically adequate and intuitively compelling. The

Turing machine lies behind the Church-Turing Thesis and indeed the P vs NP prob-

lem. Turing machines are in some ways extremely simple to reason about and in

other ways extremely hard to prove anything about. This difficulty has prompted

researchers to consider alternative models of computation as a way of gaining in-

sight into problems such as P vs NP. One example is the study of circuit complexity,

which blossomed in the 1980’s. Polynomial size circuits are closely related to polyno-

mial time Turing machines, yet have a combinatorial structure that permits deeper

mathematical analysis.
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Extended formulations can also be viewed as an alternate model of computation,

and like circuits can potentially give insight into problems such as P vs NP. Linear

and semidefinite extended formulations are related to polynomial time computable

functions in the sense that the solution to a linear or semidefinite program with poly-

nomial encoding length can be computed in polynomial time to any fixed accuracy.

Nonetheless, linear extended formulations and polynomial time computation are

incomparable. On one hand, Edmonds [1965] showed that matchings can be computed

in polynomial time while Rothvoß [2014] showed that the matching problem has no

small LP formulation. On the other hand, it is an easy consequence of Balas [1998]

that there are languages that are uncomputable (and therefore certainly not solvable

in polynomial time) that have small LP formulations. This latter case arises because

in the framework of extended formulations we have the freedom to construct different

extended formulations for different sizes of the same problem. Formally, we would

say that extended formulations are a nonuniform model of computation whereas

algorithms are a uniform model.

The situation with semidefinite extended formulations is still open. While semidef-

inite formulations are also nonuniform and therefore include uncomputable functions,

it is not known whether every polynomial time computable function has a small

semidefinite program.

The situation with copositive extended formulations is also still open, but in a

different sense. It is clear that any polynomial time computable function can be

encoded as a small copositive program, but it is not clear what gap, if any, there is

between functions computable by, say, small circuits and small copositive programs.

1.7 Contribution

We first show that there is no small symmetric SDP for the matching problem. This

result first appeared in Braun et al. [2016] and is presented here with the kind permis-
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sion of the Society for Industrial and Applied Mathematics (see Appendix A). Our

result is an SDP analog of the result in Yannakakis [1991, 1988] that rules out a small

symmetric LP for the matching problem. We note that our SDP lower bound also

applies for approximating the matching problem. To prove our result we show that

if the matching problem has a small symmetric SDP, then there is a low degree sum

of squares refutation of the existence of a perfect matching in an odd clique, which

contradicts a result by Grigoriev [2001].

We next define the notion of a symmetric conjunctive normal form (CNF) for-

mula and show that any combinatorial problem that can be expressed by a small

symmetric CNF has a small symmetric copositive formulation. We then give explicit

constructions to show that both matching and TSP have small symmetric CNFs.

1.8 Related work

Some of the content of this Related Work section is adapted from Braun et al. [2016]

and appears here with the kind permission of the Society for Industrial and Applied

Mathematics (see Appendix A).

As mentioned previously, Yannakakis [1991, 1988] showed that any symmetric

linear program for matching or TSP has exponential size. In doing so he began the

systematic study of extended formulations. One of his key insights was that a linear

extended formulation for a given problem corresponds to a nonnegative factorization

of a combinatorial object associated with that problem, known as the slack matrix.

In particular, the size of a minimal formulation is equal to the nonnegative rank of

the slack matrix. Thus to find the smallest formulation it is not necessary to consider

all possible higher dimensional extensions but instead it suffices to analyze a single

quantity, namely the nonnegative rank of the slack matrix.

A natural question that came out of the work of Yannakakis is whether asym-

metric formulations are more powerful than symmetric ones for symmetric problems.
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Kaibel et al. [2010] showed that the problem of detecting matchings with a logarith-

mic number of edges in the complete graph has a polynomial size asymmetric linear

formulation whereas any symmetric formulation has superpolynomial size. Goemans

[2015] and Pashkovich [2014] showed that the smallest symmetric formulation for

the permutahedron has quadratic size while the smallest asymmetric formulation is

subquadratic.

Nonetheless, despite the evidence that asymmetry can sometimes add power, Fior-

ini et al. [2012, 2015b] showed that allowing asymmetry does not substantially im-

prove the size of linear extended formulations for the TSP, and Rothvoß [2014] did the

same for matching. In particular any linear extended formulation for either problem,

symmetric or not, has exponential size.

Subsequently, Braun et al. [2012, 2015a], Chan et al. [2013], Braverman and

Moitra [2013], Bazzi et al. [2015] generalized the framework of Yannakakis to give

lower bounds for linear formulations that approximate combinatorial optimization

problems. Braun et al. [2015c] and Braun et al. [2015b] generalized the reduction

mechanism of extended formulations to abstract away the dependence on the choice

of encoding for feasible solutions, and also to allow reductions that preserve approxi-

mation factors, even for fractional optimization problems.

For the class of maximum constraint satisfaction problems (MaxCSPs), Chan et al.

[2013] established a connection between lower bounds for general linear programs

and lower bounds against an explicit linear program, namely that defined by the

hierarchy of Sherali and Adams [1990]. Using that connection, Chan et al. [2013]

showed that a constant number of rounds of Sherali-Adams yields essentially as good

an approximation as any polynomial size relaxation of a MaxCSP. By appealing to

lower bounds on Sherali-Adams relaxations of MaxCSPs in literature, they then gave

super-polynomial lower bounds for Max3SAT and other MaxCSPs.

Given the general LP lower bounds, it is natural to ask whether the situation is
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different for SDP relaxations. Semidefinite programs generalize linear programs and

can be solved efficiently both in theory and practice (see Vandenberghe and Boyd

[1996]). SDPs are the basis of some of the best algorithms currently known, for

example the approximation of Goemans and Williamson [1995] for MaxCut.

Following prior work (see for example Gouveia et al. [2011]) we define the size

of an SDP formulation as the dimension of the psd cone from which the polytope

can be obtained as an affine slice. This generalizes the nonnegative factorizations of

Yannakakis to psd factorizations. Some recent work has shown limits to the power

of small SDPs. Briët et al. [2013, 2015] nonconstructively give an exponential lower

bound on the size of SDP formulations for most 0/1 polytopes.

Building on the approach of Chan et al. [2013], Lee et al. [2014] showed that

for the class of MaxCSPs, the Lasserre SDP relaxation essentially yields the optimal

symmetric SDP approximation. In light of known lower bounds for Lasserre SDP

relaxations of Max3SAT, this yields a corresponding lower bound for approximating

Max3SAT. In a significant recent advance, Lee et al. [2015] show an exponential lower

bound even for asymmetric SDP relaxations of the TSP.

The state of lower bounds for matching and TSP are summarized in Table 1.1 on

page 22.

Table 1.1: Exponential lower bounds for formulations of matching and TSP.

Matching TSP

LP
symmetric Yannakakis [1991, 1988] Yannakakis [1991, 1988]

asymmetric Rothvoß [2014] Fiorini et al. [2015b, 2012]

SDP
symmetric this work see note1

asymmetric (open) Lee et al. [2015]

1 Lee et al. [2014] and Fawzi et al. [2015] give symmetric SDP formulation
lower bounds for MaxCSPs and the cut polytope, respectively.
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Turning now to copositive formulations, Maksimenko [2012] showed that any lan-

guage definable as the set of solutions of a polynomial size CNF is a face of the cut

polytope. Fiorini et al. [2015a] showed that the cut polytope has a small copositive

formulation. They also define the polynomially definable languages and use the result

of Maksimenko to show that every such language has a small copositive extension.

We will show later that the class of polynomially definable languages is in fact a

complexity class known as NP/poly, which is the class of languages computable in

nondeterministic polynomial time with polynomial advice.
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CHAPTER 2

MATHEMATICAL BACKGROUND

In this chapter we establish mathematical background that will be used in the rest of

this document.

2.1 Notation

Let R denote the real number line and let Rd denote the standard d-dimensional

Euclidean space with Cartesian coordinates. Elements of Rd will be treated inter-

changeably as points and column vectors. Let (Rd)∗ denote the dual space of Rd.

Thus (Rd)∗ is the set of d-dimensional row vectors, or equivalently the set of linear

functions from Rd to R.

The expression [k] denotes the set of natural numbers {1, . . . , k}. The symbols

R+ and R++ denote the sets of nonnegative and strictly positive reals, respectively.

The symbol ei denotes the ith basis vector as a column vector, with dimension taken

from context.

If M is a matrix then Mi denotes the ith row of M and Mij denotes (Mi)j, the

(i, j) entry of M . Unless otherwise stated, if a function f : R → R is applied to a

vector, matrix, or set, the function is assumed to act elementwise. Likewise, relational

operators act elementwise unless otherwise stated. For example, if a and b are vectors

of the same dimension, a ≥ b indicates that each element of a is greater than or equal

to the corresponding element of b. In particular, a ≥ 0 means that a is elementwise

nonnegative.

The expression Rn×n denotes the space of real n× n matrices, and the expression

Sn denotes the set of real n×n symmetric matrices. Note that Sn is a subspace of Rn×n
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and that Rn×n is isomorphic to Rn2
. Let Sr+ denote the cone of r × r real symmetric

positive semidefinite (psd) matrices. Let R[x] denote the set of polynomials in n real

variables x = (x1, . . . , xn) with real coefficients. For a set H ⊆ R[x] let 〈H〉 denote

the vector space spanned by H and let 〈H〉I denote the ideal generated by H. The

notation deg p denotes the degree of the polynomial p. If a group G acts on a set X,

the (left) action of g ∈ G on x ∈ X is denoted g · x.

The inner product of two vectors a and b of the same dimension is given by aᵀb

and the (Frobenius) inner product of two symmetric matrices A and B of the same

dimension is given by Tr[AB].

For sets A,B ⊆ Rd, the notation A+B denotes the Minkowski sum:

A+B :=
{
a+ b ∈ Rd

∣∣ a ∈ A, b ∈ B} .
If x ∈ Rd is a point then x+B is shorthand for {x}+B.

The symbol Sn denotes the symmetric group on n letters. An element σ of Sn

is a 1-1 and onto function from [n] to [n]. Unless otherwise specified, the action

of Sn on Rn is permutation of coordinates, and the action of Sn on Sn and Rn×n

is simultaneous permutation of rows and columns. We formalize this notion in the

following definition.

Definition 1 (standard action). The standard action of Sn on Rn is given by

σ · (x1, . . . , xn) := (xσ−1(1), . . . , xσ−1(n))

where σ : [n] → [n] is any element of Sn and x = (x1, . . . , xn) is any element of Rn.

Similarly, the standard action of Sn on Rn×n is given by

(σ ·X)i,j := Xσ−1(i),σ−1(j)
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where σ is as before and X is any element of Rn×n.

2.2 Basic definitions from convex geometry

We will make use of the following standard definitions from convex geometry.

Definition 2 (linear combination). A linear combination of the points

x1, . . . , xn

in Rd is a point of the form
n∑
i=1

λixi

with λ1, . . . , λn ∈ Rd.

By convention, an empty sum (n = 0) is allowed and is equal to 0 ∈ Rd.

Definition 3 (linear independence). A set of points is linearly independent if no

point in the set can be expressed as a linear combination of the remaining points.

Definition 4 (linear hull (span)). The linear hull or span of a subset X ⊆ Rd,

denoted spanX, is the set of all linear combinations of points in X.

The span of any set of points in Rd is a linear space.

Definition 5 (linear dimension). The dimension of a linear space L, denoted dimX,

is the size of any basis for L.

Definition 6 (linear transformation (map)). A linear transformation or linear map

from Rn to Rm is any function f : Rn → Rm that can be expressed as f(x) = Ax for

some real m× n matrix A.

Definition 7 (affine combination). An affine combination of the points x1, . . . , xn in

Rd is a point of the form
n∑
i=1

λixi
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with λ1, . . . , λn ∈ Rd and
∑

i λi = 1.

Definition 8 (affine independence). A set of points is affinely independent if no point

in the set can be expressed as an affine combination of the remaining points.

Definition 9 (affine hull). The affine hull of a set X ⊆ Rd, denoted aff X, is the set

of all affine combinations of points in X.

The affine hull of any nonempty set of points is an affine space.

Remark 10. Any affine space A can be expressed as x + L where x ∈ A and L is

a linear space. The subspace L is uniquely determined whereas x is not (unless A

consists of a single point).

It follows that any affine space can be regarded as a translation of a linear space.

Definition 11 (affine dimension). The dimension of an affine space A, denoted dimA,

is the dimension of the corresponding linear space L as in the previous remark.

Definition 12 (affine transformation (map)). An affine transformation or affine map

from Rn to Rm is any function f : Rn → Rm that can be expressed as f(x) = Ax+ b

for some real m× n matrix A and real vector b ∈ Rm.

An affine transformation is a linear transformation followed by a translation. It

follows that every affine space is the image of a linear space under an affine transfor-

mation, and vice versa.

Remark 13. An injective affine transformation can be regarded as an (affine) change

of coordinates. It will turn out that many of the properties we are interested in (for

example, the extension complexity of a polytope, to be defined later) are preserved

under affine changes of coordinates.

Definition 14 (conic combination). A conic combination or nonnegative combination
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of the points x1, . . . , xn in Rd is a point of the form

n∑
i=1

λixi

with λ1, . . . , λn ∈ Rd and each λi ≥ 0.

Definition 15 (conic hull). The conic hull of a set X ⊆ Rd, denoted coneX, is the

set of all conic combinations of points in X.

Definition 16 (convex combination). A convex combination of the points x1, . . . , xn

in Rd is a point of the form
n∑
i=1

λixi

with λ1, . . . , λn ∈ Rd,
∑

i λi = 1, and each λi ≥ 0.

Definition 17 (convex hull). The convex hull of a set X ⊆ Rd, denoted convX, is

the set of all convex combinations of points in X.

Definition 18 (hyperplane). Let a ∈ Rd be nonzero and let b ∈ R. The (d − 1)-

dimensional affine space given by

{
x ∈ Rd

∣∣ aᵀx = b
}

is the hyperplane in Rd defined by the equation aᵀx = b.

Definition 19 (halfspace). Let a ∈ Rd be nonzero and let b ∈ R. The set

{
x ∈ Rd

∣∣ aᵀx ≤ b
}

is the (closed) halfspace in Rd defined by the inequality aᵀx ≤ b.
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2.3 Polytopes

In this section we present necessary background on polytopes. A standard reference

for this topic is Ziegler [1995]; see also Brøndsted [1983]. Propositions given in this

section without proof are proven in one of these references.

Definition 20 (polytope). A polytope in Rd is any set of the form conv(V ) where V

is a finite subset of Rd.

Definition 21 (polyhedron). A polyhedron in Rd is the (possibly empty) intersection

of a finite number of closed halfspaces in Rd.

It follows that a polyhedron in Rd can be expressed as the set

{
x ∈ Rd

∣∣Ax ≤ b
}

for some A ∈ Rm×d and b ∈ Rm, where m is the number of halfspaces in the in-

tersection. Informally we will refer interchangeably to Ax ≤ b as a linear system of

inequalities and as the polyhedron {x |Ax ≤ b}.

The following nontrivial fact is well-known; see Ziegler [1995] for a proof.

Proposition 22. A subset of Rd is a polytope (as defined above) iff it is a bounded

polyhedron.

The presentation of a polytope in the form conv V is called an inner description,

while the presentation of a polyhedron in the form {x |Ax ≤ b} is called an outer

description.

Definition 23 (dimension of a polyhedron). The dimension of a polyhedron P is

denoted dimP and is defined to be equal to dim(aff P ).

Definition 24 (valid inequality). An inequality cx ≤ δ is said to be valid for a

polyhedron P ⊂ Rd if the inequality is satisfied by every point in P .
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We will say that the equality cx = δ is a valid hyperplane for P if either cx ≤ δ

or cx ≥ δ is valid for P .

Definition 25 (face). Let P ⊂ Rd be a polyhedron. A set F ⊂ Rd is a face of P iff

there is an inequality cx ≤ δ that is valid for P such that F = {x |x ∈ P and cx = δ}.

In other words, every face of P is the intersection of P with a valid hyperplane.

Proposition 26. Every face of a polyhedron is again a polyhedron.

Note that by definition, both P itself and the empty set are faces of P : use the

inequalities 0x ≤ 0 and 0x ≤ 1, respectively.

Definition 27 (proper face). If F is a face of the polyhedron P and F is not equal

to P then F is a proper face of P .

Definition 28 (facet). A facet of a polyhedron P is a face of dimension dimP − 1.

Definition 29 (vertex). A vertex of a polyhedron is a face of dimension 0 (that is,

a point).

The set of all vertices of a polyhedron P is denoted vertP .

Definition 30 (edge). An edge of a polytope is a face of dimension 1 (that is, a line

segment).

The following definition is slightly informal but hopefully clear. Refer to Ziegler

[1995] for a formal definition.

Definition 31 (relative interior). Let P ⊆ Rd be a polyhedron. A point x is in the

relative interior of P , denoted relintP , if x is in the interior of P when P is embedded

in aff P (in which P is full-dimensional).

Proposition 32. If P is a polytope then P = conv(vertP ).
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2.3.1 Projection

Proposition 33. The image of a polytope under an affine map is a polytope.

Definition 34 (affinely isomorphic). The polytopes P ⊂ Rd and Q ⊂ Re are affinely

isomorphic if there is an affine map f : Rd → Re such that f(P ) = Q and f is

injective on P .

Definition 35 (projection). Let π : Rd → Re be an affine map and let P ⊂ Rd be a

polytope. Then π(P ) is the projection of P under π.

Informally, we will use the term projection interchangeably to refer both to the

projection map π and the image π(P ) of P under the projection. As implied by the

name, the projection π(P ) will typically be a lower dimensional polytope than P is.

2.4 Slack Matrices

Let P ⊂ Rd be a polytope with an associated inner and outer description:

P = conv V = {x |Ax ≤ b} ,

where V = {v1, . . . , vn} ⊂ Rd is finite, A is an m × d real matrix, and b ∈ Rm is a

vector. The following object will be central to our study.

Definition 36 (slack matrix). Let P be a polytope as above. The slack matrix of P

(with respect to V , A, and b) is the m× n matrix S whose ijth entry is

Sij := bi − Aivj ,

the slack of the jth element of V with respect to the ith inequality.

Note that the slack matrix is always nonnegative, corresponding to the fact that

V ⊆ P .
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Remark 37. We can define slack matrices more generally, with respect to any poly-

hedron P := {x |Ax ≤ b} and finite set V ⊂ P .

Definition 38 (correlation polytope). The correlation polytope COR(n) is the convex

hull of all rank-1 symmetric n× n 0/1 matrices:

COR(n) := conv
{
bbᵀ ∈ Rn×n ∣∣ b ∈ {0, 1}n} .

In order to define our next object we need the notion of a cut. Let Kn denote the

complete graph with vertex set [n]. For any subset X ⊆ [n] let the cut defined by X

be the set of edges with exactly one endpoint in X, and let δ(X) ∈ R(n
2) denote the

characteristic vector of the cut defined by X:

δ(X)ij =


1 |X ∩ {i, j}| = 1

0 otherwise

for 1 ≤ i < j ≤ n.

Definition 39 (cut polytope). The cut polytope is the convex hull of all cut vectors

of the complete graph:

CUT(n) := conv
{
δ(X) ∈ R(n

2)
∣∣∣X ⊆ [n]

}
.

We will later make use of the following well-known fact.

Theorem 40 ([De Simone, 1989/90]). For all n, COR(n) is linearly isomorphic to

CUT(1 + n).

Definition 41 (G-symmetric). Let G be a group acting on a Euclidean space E and

let S ⊆ E be a set. The set S is G-symmetric or G-invariant if the action of G on E

leaves S unchanged:

g · S = S
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for all g ∈ G, where g · S is defined as {g · x |x ∈ S}.

For our purposes the Euclidean space E in Definition 41 will usually be either Rn

or Rn×n.

Observation 42. The polytope COR(n) is Sn-symmetric, assuming the standard ac-

tion of Sn on Rn×n as in Definition 1.

Definition 43 (copositive). A matrix M ∈ Sn is copositive if

xᵀMx ≥ 0

whenever x ≥ 0. The symbol Cn denotes the set of n× n copositive matrices.

Definition 44 (completely positive). A matrix M ∈ Sn is completely positive if

M = BBᵀ

for some entrywise nonnegative matrix B. The symbol C∗n denotes the set of n × n

completely positive matrices.

Remark 45. The sets Cn and C∗n form closed convex cones in Sn that are dual to each

other, as implied by the notation.

Remark 46. Both Cn and C∗n are Sn-symmetric under the standard action given in

Definition 1.

Definition 47 (extension). Let S ∈ Rn be a set, let C ∈ Rd be a closed convex cone,

let L ∈ Rd be an affine space, and let π : Rd → Rn be an affine map. If

S = π(L ∩ C)

then the set L ∩ C in Rd is a C-extension of S via the map π.
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Definition 48 (symmetric extension). Let S, C, L, and π be as in Definition 47,

with S = π(L ∩ C). Let G be a group acting on Rn and Rd. If S, L and C are all

G-symmetric, and

g · π(x) = π(g · x)

for all x ∈ L ∩ C and g ∈ G, then the set L ∩ C is a G-symmetric extension of S.

Definition 49 (extension complexity). Let C be a family of closed convex cones

parametrized by d, so that C has the form

C = {Cd}d∈N .

Let S ∈ Rn be a set. The smallest d, if any, such that S has a Cd-extension is the

extension complexity of S with respect to the family C.

Definition 50 (polynomial extension complexity). Let

P = {Pn}n∈N

be a family of sets and let C be a family of closed convex cones parametrized by d.

If there is a polynomial p such that for each n the C extension complexity of Pn is at

most p(n), then the family P has polynomial extension complexity with respect to C.

Definition 51 (CNF). A CNF is a Boolean formula in conjunctive normal form –

that is, a Boolean formula consisting of ANDs of clauses, where each clause is an OR

of literals, and each literal is a Boolean variable or its negation.

2.5 Linear, semidefinite, and copositive programming

A linear program is an optimization problem of the form

minimize cᵀx subject to Ax = b and x ≥ 0 ,
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where c and x are vectors in Rd for some d, b is a vector in Rm for some m, and A is

a d×m real matrix. A, b, and c are given, and the problem is to find the minimum

value of the objective function cᵀx over all feasible vectors x. Note that the feasible

region is the intersection of the hyperplane Ax = b with the nonnegative cone Rd
+.

A semidefinite program is an optimization problem of the form

minimize Tr[CX] subject to A(X) = b and X ∈ Sd+ ,

where C and X are matrices in Sd for some d, b is a vector in Rm for some m, and A

is an affine linear operator from Sd to Rm. A, b, and C are given, and the problem is

to find the minimum value of the objective function Tr[CX] over all feasible matrices

X. Note that the feasible region is the intersection of the hyperplane Ax = b with

the semidefinite cone Sd+.

A copositive program is an optimization problem of the form

minimize Tr[CX] subject to A(X) = b and X ∈ Cd ,

where C and X are matrices in Sd for some d, b is a vector in Rm for some m, and A

is an affine linear operator from Sd to Rm. A, b, and C are given, and the problem is

to find the minimum value of the objective function Tr[CX] over all feasible matrices

X. Note that the feasible region is the intersection of the hyperplane Ax = b with

the copositive cone Cd.
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CHAPTER 3

SYMMETRIC SDP EXTENDED FORMULATIONS

The contents of this chapter and Chapter 4 first appeared in an abridged form in

Braun et al. [2016] and are reproduced here with the kind permission of the Society

for Industrial and Applied Mathematics (see Appendix A).

3.1 Symmetric SDP formulations

In this section we define a framework for symmetric semidefinite programming for-

mulations and show that a symmetric SDP formulation implies a symmetric sum of

squares representation over a small basis. Our framework extends the one in Braun

et al. [2015c] with a symmetry condition; see also Lee et al. [2014].

We now present our SDP formulation framework. We restrict ourselves to maxi-

mization problems even though the framework extends to minimization problems. A

maximization problem P = (S,F) consists of a finite set S of feasible solutions and

a finite set F of nonnegative objective functions. Given two functions C̃, S̃ : F → R

specifying approximation guarantees, an algorithm (C̃, S̃)-approximately solves P if

for all f ∈ F with maxs∈S f(s) ≤ S̃(f) it computes f̃ ∈ R satisfying maxs∈S f(s) ≤

f̃ ≤ C̃(f).

Remark 52. For an exact extension of a polytope

P = conv(V ) = {x | ajx ≤ bj, j ∈ [m]}

using this framework, we would define fj(x) := bj − ajx for each j ∈ [m] and then set

S = V , F = {fj | j ∈ [m]}, and C̃(f) = S̃(f) = maxx∈P f(x) for all f ∈ F .
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Let G be a group with associated actions on S and F . The problem P is G-

symmetric if the group action satisfies the compatibility constraint (g · f)(g · s) =

f(s). For a G-symmetric problem we require G-symmetric approximation guarantees:

C̃(g · f) = C̃(f) and S̃(g · f) = S̃(f) for all f ∈ F and g ∈ G.

We now define the notion of a semidefinite programming formulation of a maxi-

mization problem.

Definition 53 (SDP formulation for P). Let P = (S,F) be a maximization problem

with approximation guarantees C̃, S̃. A (C̃, S̃)-approximate SDP formulation of P of

size d consists of a linear map A : Sd+ → Rk and b ∈ Rk together with:

1. Feasible solutions: an Xs ∈ Sd+ with A(Xs) = b for all s ∈ S, i.e., the SDP{
X ∈ Sd+

∣∣A(X) = b
}

is a relaxation of conv {Xs | s ∈ S},

2. Objective functions: an affine function wf : Sd+ → R satisfying

wf (Xs) = f(s)

for all f ∈ F with maxs∈S f(s) ≤ S̃(f) and all s ∈ S, i.e., the linearizations are

exact on solutions, and

3. Performance guarantee: max
{
wf (X) | A(X) = b,X ∈ Sd+

}
≤ C̃(f) for all f ∈

F with maxs∈S f(s) ≤ S̃(f).

If G is a group, P is G-symmetric, and G acts on Sd+, then an SDP formulation of

P with symmetric approximation guarantees C̃, S̃ is G-symmetric if it additionally

satisfies the compatibility conditions for all g ∈ G:

1. Action on solutions: Xg·s = g ·Xs for all s ∈ S,

2. Action on functions:

wg·f (g ·X) = wf (X)
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for all f ∈ F with maxs∈S f(s) ≤ S̃(f), and

3. Invariant affine space: A(g ·X) = A(X).

A G-symmetric SDP formulation is G-coordinate-symmetric if the action of G on

Sd+ is by permutation of coordinates: that is, there is an action of G on [d] with

(g ·X)ij = Xg−1·i,g−1·j for all X ∈ Sd+, i, j ∈ [d] and g ∈ G.

3.2 The symmetric factorization lemma

In this section we turn a G-coordinate-symmetric SDP formulation into a symmetric

sum of squares representation over a small set of basis functions.

We first develop some facts that will be used in the proof of the factorization

lemma. Recall that for a matrix M ∈ Sd+,
√
M denotes the unique psd matrix such

that
√
M
√
M = M .

Fact 54. Let G be a group that acts on Sd+ by simultaneous permutation of rows and

columns. Then
√
g ·X = g ·

√
X for any g ∈ G and X ∈ Sd+.

Proof. By the assumed action of G on Sd+, for any g ∈ G there is a permutation matrix

φ(g) ∈ Rd×d with g · X = φ(g)Xφ(g)ᵀ for any X ∈ Sd+. Using the orthogonality of

permutation matrices we find that

(
g ·
√
X
)2

=
(
φ(g)
√
Xφ(g)ᵀ

)2
= φ(g)

√
Xφ(g)ᵀφ(g)

√
Xφ(g)ᵀ

= φ(g)
√
XI
√
Xφ(g)ᵀ

= φ(g)Xφ(g)ᵀ

= g ·X

=
(√

g ·X
)2

.
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Since g ·
√
X and

√
g ·X are both psd, we can take the (unique psd) square root

of both sides to complete the proof.

Lemma 55. Let (
A, b, {Xs}s∈S ,

{
wf
}
f∈F

)
comprise a (C̃, S̃)-approximate SDP formulation of size d for the maximization prob-

lem P = (S,F). Then for every f ∈ F with max f ≤ S̃(f), there is a U f ∈ Sd+ and

a µf ≥ 0 such that for all s ∈ S,

C̃(f)− f(s) = Tr[U fXs] + µf .

Proof. We may assume the SDP is strictly feasible, since otherwise the spectrahedron{
X ∈ Sd+ | A(X) = b

}
is contained in a proper face of Sd+, which is a psd cone of

strictly smaller size. Let f ∈ F be such that max f ≤ S̃(f), let wf (X) be given by

Tr[CX] + c, and consider the SDP

max
{

Tr[CX]
∣∣A(X) = b, X ∈ Sd+

}
.

Let δ∗ denote the value of this SDP. By assumption, δ∗ + c ≤ C̃(f); define µf =

C̃(f) − δ∗ − c ≥ 0. Because the SDP is bounded and strictly feasible we can apply

strong duality to conclude that it is equal to

min

{
bᵀy

∣∣∣∣∣∑
i

yiAi − C ∈ Sd+

}
.

Let y∗ be a solution of the dual program. Note that δ∗ = bᵀy∗ =
∑

i y
∗
i bi. Define

U f =
∑
y∗iAi−C. Note that U f is psd and that C =

∑
y∗iAi−U f . For every s ∈ S

we now have
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C̃(f)− f(s) = C̃(f)− wf (Xs)

= C̃(f)− (Tr[CXs] + c)

= C̃(f)− δ∗ + δ∗ − Tr

[(∑
i

y∗iAi − U f

)
Xs

]
− c

= C̃(f)− δ∗ +
∑
i

y∗i bi −
∑
i

y∗i Tr[AiXs] + Tr[U fXs]− c

=
∑
i

y∗i (bi − Tr[AiXs]) + Tr[U fXs] + (C̃(f)− δ∗ − c)

= Tr[U fXs] + µf ,

where in the last step we have used the fact that A(Xs) = b for s ∈ S.

Fact 56. If A,B ∈ Sd+ then Tr[AB] =
∑

i,j

(∑
k

√
Aik
√
Bkj

)2
. In particular, the

trace of the product is a sum of squares.

Proof. Here we use the cyclic property of the trace, namely Tr[ABC] = Tr[BCA], the

fact that M = Mᵀ when M is symmetric, and the fact that Tr [MᵀM ] =
∑

i,j (Mij)
2

for any matrix M :

Tr[AB] = Tr
[√

A
√
A
√
B
√
B
]

= Tr
[√

B
√
A
√
A
√
B
]

= Tr
[(√

A
√
B
)ᵀ (√

A
√
B
)]

=
∑
i,j

((√
A
√
B
)
ij

)2

=
∑
i,j

(∑
k

√
Aik
√
Bkj

)2

.
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We are now ready to prove the main lemma of this section.

Lemma 57 (Sum of squares for a symmetric SDP formulation). If a

G-symmetric maximization problem

P = (S,F)

admits a G-coordinate-symmetric (C̃, S̃)-approximate SDP formulation of size d, then

there is a set H of at most
(
d+1
2

)
functions h : S → R such that for any f ∈ F with

max f ≤ S̃(f) we have C̃(f)−f =
∑

j h
2
j+µf for some hj ∈ 〈H〉 and constant µf ≥ 0.

Furthermore the set H is invariant under the action of G given by (g ·h)(s) = h(g−1 ·s)

for g ∈ G, h ∈ H and s ∈ S.

Proof. Let (
A, b, {Xs}s∈S ,

{
wf
}
f∈F

)
comprise a G-coordinate-symmetric SDP formulation of size d. We define the set

H := {hij | i, j ∈ [d]} via hij(s) :=
√
Xs

ij. We first show that g · hij = hg·i,g·j (in other

words, H is G-symmetric):

(g · hij)(s) = hij(g
−1 · s) (action on H)

=
(√

X(g−1·s)
)
ij

(definition)

=
(√

g−1 ·Xs
)
ij

(action on solutions)

=
(
g−1 ·

√
Xs
)
ij

(Fact 54)

=
√
Xs

g·i,g·j (action on Sd+)

= hg·i,g·j(s) . (definition)

Since hij = hji, the set H has at most
(
d+1
2

)
elements. Pick any f ∈ F with
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max f ≤ S̃(f). Using Lemma 55 we have that there exist U f ∈ Sd+ and µf ≥ 0 such

that C̃(f)−f(s) = Tr[U fXs] +µf for all s ∈ S. Finally, using Fact 56 we derive that

C̃(f)− f(s) =
∑
i,j

(∑
k

√
U f

ik

√
Xs

kj

)2

+ µf ,

and thus

C̃(f)− f =
∑
i,j

(∑
k

√
U f

ikhkj

)2

+ µf .

Since U f is a constant matrix, for any i, j, k we have
∑

k

√
U f

ikhkj ∈ 〈H〉 , so in

the last equation C̃(f) − f is expressed in the form
∑

j h
2
j + µf with each hj ∈ 〈H〉

and µf ≥ 0.

42



CHAPTER 4

A SYMMETRIC SDP LOWER BOUND FOR MATCHING

The contents of this chapter and Chapter 3 first appeared in an abridged form in

Braun et al. [2016] and are reproduced here with the kind permission of the Society

for Industrial and Applied Mathematics (see Appendix A).

4.1 The perfect matching problem

We present the perfect matching problem PM(n) as a maximization problem in the

framework of Section 3.1 and show that any symmetric SDP formulation for it has

exponential size.

Let n be an even positive integer, and let Kn denote the complete graph on n

vertices. The feasible solutions of PM(n) are all the perfect matchings M on Kn.

The objective functions fF are indexed by the edge sets F of Kn and are defined

as fF (M) := |M ∩ F |. For approximation guarantees we use S̃(f) := max f and

C̃(f) := max f + ε/2 for some fixed 0 ≤ ε < 1 as in Braun and Pokutta [2015a]; see

also Braun and Pokutta [2015b] for a more in-depth discussion.

Since S̃(f) = max f ≤ (n − 1)/2 when f is associated with an odd set, we

have (1 − ε/(n − 1))C̃(f) ≥ S̃(f), which will establish an inapproximability ratio of

1− ε/(n− 1). Refer to Section 4.2 for a more detailed discussion of the ratio.

4.1.1 Symmetric functions on matchings are juntas

In this section we show that functions on perfect matchings with high symmetry are

actually juntas : they depend only on the edges of a small vertex set. The key is the

following lemma stating that perfect matchings coinciding on a vertex set belong to
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the same orbit of the pointwise stabilizer of the vertex set. For any set W ⊆ [n] let

E[W ] denote the edges of Kn with both endpoints in W .

Lemma 58. Let S ⊆ [n] with |S| < n/2 and let M1 and M2 be perfect matchings in

Kn. If M1∩E[S] = M2∩E[S] then there exists σ ∈ A([n]\S) such that σ ·M1 = M2.

Proof. Let δ(S) denote the edges with exactly one endpoint in S. There are three

kinds of edges: those in E[S], those in δ(S), and those disjoint from S. We construct

σ to handle each type of edge, then fix σ to be even.

To handle the edges in E[S] we set σ to the identity on S, since M1 ∩ E[S] =

M2 ∩ E[S].

To handle the edges in δ(S) we note that V (M1∩δ(S)) equals V (M2∩δ(S)) when

both are restricted to S, since M1 and M2 are perfect matchings. Therefore for each

edge (s, v) ∈M1 with s ∈ S and v /∈ S there is a unique edge (s, w) ∈M2 with w /∈ S;

we extend σ to map v to w for each such s.

To handle the edges disjoint from S, we again use the fact that M1 and M2 are

perfect matchings, so the number of edges in each that are disjoint from S is the

same. We extend σ to be an arbitrary bijection on those edges.

We now show that we can choose σ to be even. Since |S| < n/2 there is an edge

(u, v) ∈ M2 disjoint from S. Let τu,v denote the transposition of u and v and let

σ′ := τu,v ◦ σ. We have σ′ ·M1 = σ ·M1 = M2, and either σ or σ′ is even.

We also need the following lemma, which has been used extensively for symmetric

linear extended formulations. See references Yannakakis [1988, 1991], Kaibel et al.

[2010], Braun and Pokutta [2011], Lee et al. [2014] for examples.

Lemma 59 ([Dixon and Mortimer, 1996, Theorems 5.2A and 5.2B]). Let n ≥ 10 and

let G ≤ An be a group. If |An : G| <
(
n
k

)
for some k < n/2, then there is a subset

W ⊆ [n] such that |W | < k, W is G-invariant, and A([n] \W ) is a subgroup of G.

We now formally state and prove the claim about juntas:
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Proposition 60. Let n ≥ 10, let k < n/2 and let H be an An-symmetric set of

functions on the set of perfect matchings of Kn of size less than
(
n
k

)
. Then for every

h ∈ H there is a vertex set W ⊆ [n] of size less than k such that h depends only on

the (at most
(
k−1
2

)
) edges in W .

Proof. Applying Lemma 59 to the stabilizer of h, we obtain a subset W ⊆ [n] of size

less than k such that h is stabilized by A([n] \W ). In other words, we have

h(M) = (g · h)(M) = h(g−1 ·M)

for all g ∈ A([n] \W ).

Therefore for every perfect matching M the function h is constant on the orbit

of M corresponding to A([n] \W ). Lemma 58 shows that the orbit is determined by

M ∩ E[W ], from which it follows that the function value h(M) is also. Therefore h

depends only on the edges in E[W ].

4.1.2 The matching polynomials

A key step in proving our lower bound is obtaining low-degree derivations of ap-

proximation guarantees for objective functions of PM(n). Therefore we start with

a standard representation of functions as polynomials. We define the matching con-

straint polynomials as

Pn := {xuvxuw | u, v, w ∈ [n] distinct}

∪

 ∑
u∈[n],u6=v

xuv − 1

∣∣∣∣∣∣ v ∈ [n]


∪
{
x2uv − xuv | u, v ∈ [n] distinct

}
.

(4.1)

Intuitively, the first set of polynomials ensures that no vertex is matched more than

once, the second set ensures that each vertex is matched, and the third set ensures
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that each coordinate is 0-1 valued. We observe that the ring of real valued functions

on perfect matchings is isomorphic to

R[{xuv}{u,v}∈([n]
2 )]/〈Pn〉I ,

with xuv representing the indicator function of the edge uv being contained in a

perfect matching.

Now we formulate low-degree derivations. Let P denote a set of polynomials in

R[x]. For polynomials F and G, we write F '(P,d) G, or F is congruent to G from P

in degree d, if and only if there exist polynomials {q(p) : p ∈ P} such that

F +
∑
p∈P

q(p) · p = G

and maxp deg(q(p) · p) ≤ d. We often drop the dependence on P when it is clear

from context. We shall write F ≡ G for two polynomials F and G defining the same

function on perfect matchings, i.e., F −G ∈ 〈Pn〉I .

4.1.3 Deriving that symmetrized polynomials are constant

Averaging any polynomial on matchings over the symmetric group gives a constant.

In this section we show that this fact has a low degree derivation.

For a partial matching M , let xM :=
∏

e∈M xe denote the product of edge variables

for the edges inM . The first step is to reduce every polynomial to a linear combination

of the xM .

Lemma 61. For every polynomial F there is a polynomial F ′ with degF ′ ≤ degF

and F '(Pn,degF ) F
′, where all monomials of F ′ have the form xM for some partial

matching M .

Proof. It suffices to prove the lemma when F is a monomial. Let F =
∏

e∈A x
ke
e for
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a set A of edges with multiplicities ke ≥ 1. From x2e '2 xe it follows that xke 'k xe

for all k ≥ 1, hence F 'degF

∏
e∈A xe. If A is a partial matching we are done,

otherwise there are distinct e, f ∈ A with a common vertex, hence xexf '2 0 and

F 'degF 0.

Lemma 62. For any partial matching M on 2d vertices and a vertex b not covered

by M , we have

xM '(Pn,d+1)

∑
M1=M∪{b,u}
u∈Kn\(M∪{b})

xM1 . (4.2)

Proof. We use the generators
∑

u xbu − 1 to add variables corresponding to edges at

b, and then use xbuxuv to remove monomials not corresponding to a partial matching:

xM '(Pn,d+1) xM
∑
u∈Kn

xbu '(Pn,d+1)

∑
M1=M∪{b,u}
u∈Kn\(M∪{b})

xM1 .

This leads to a similar congruence using all containing matchings of a larger size:

Lemma 63. For any partial matching M of 2d vertices and d ≤ k ≤ n/2, we have

xM '(Pn,k)
1(

n/2−d
k−d

) ∑
M ′⊃M
|M ′|=k

xM ′ . (4.3)

Proof. We use induction on k−d. The start of the induction is with k = d, when the

sides of (4.3) are actually equal. If k > d, let b be a fixed vertex not covered by M .

Applying Lemma 62 to M and b followed by the inductive hypothesis gives

xM '(Pn,d+1)

∑
M1=M∪{b,u}
u∈Kn\(M∪{b})

xM1 '(Pn,k)
1(

n/2−d−1
k−d−1

) ∑
M ′⊃M1
|M ′|=k

M1=M∪{b,u}
u∈Kn\(M∪{b})

xM ′ .
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Averaging over all vertices b not covered by M , we derive

xM '(Pn,k)
1

n− 2d

1(
n/2−d−1
k−d−1

) ∑
M ′⊃M1
|M ′|=k

M1=M∪{b,u}
b,u∈Kn\M

xM ′

=
1

n− 2d

1(
n/2−d−1
k−d−1

)2(k − d)
∑
M ′⊃M
|M ′|=k

xM ′

=
1(

n/2−d
k−d

) ∑
M ′⊃M
|M ′|=k

xM ′ ,

where in the second step the factor 2(k−d) accounts for the number of ways to choose

b and u.

We are now ready to state and prove the claim about symmetrized polynomials.

Lemma 64. For any polynomial F , there is a constant cF such that

∑
σ∈Sn

σF '(Pn,degF ) cF .

Proof. Given Lemma 61, it suffices to prove the claim for F = xM for some partial

matching M . Note that if |M | = k the size of the stabilizer of M is 2kk!(n − 2k)!.

Now apply Lemma 63 with d = 0:

∑
σ∈Sn

σxM = 2kk!(n− 2k)!
∑

M ′ : |M ′|=k

xM ′ 'k 2kk!(n− 2k)!

(
n/2

k

)
.

4.1.4 Low-degree certificates for matching ideal membership

In this section we present a crucial part of our argument, namely that every degree d

polynomial that is identically zero over perfect matchings has a degree O(d) derivation
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of this fact.

The following lemma will allow us to apply induction:

Lemma 65. If L is a polynomial with L '(Pn−2,d) 0 for some d, and a, b are the two

additional vertices in Kn, then Lxab '(Pn,d+1) 0.

Proof. It is enough to prove the claim for L ∈ Pn−2. For L = x2e−xe and L = xuvxuw

the claim is trivial since L ∈ Pn also. The remaining case is L =
∑

u∈Kn−2
xuv − 1 for

some v ∈ Kn−2, in which case

Lxab =

(∑
u∈Kn

xuv − 1

)
xab − xavxab − xbvxab 'd+1 0 .

We now show that any F ∈ 〈Pn〉I can be generated by low-degree coefficients from

Pn.

Theorem 66. For every polynomial F ∈ R[{xuv}{u,v}∈(n
2)

], if F ∈ 〈Pn〉I then

F '(Pn,2 degF−1) 0 .

Proof. We use induction on the degree d of F . If d = 0 then F = 0 and the statement

holds trivially. (Note that '−1 is just equality.) The case d = 1 rephrased means

that the affine space spanned by the characteristic vectors of all perfect matchings is

defined by the
∑

v xuv− 1 for all vertices u. This follows from Edmonds’s description

of the perfect matching polytope by linear inequalities in Edmonds [1965].

For the case d ≥ 2 we first prove the following claim:

Claim. If F ∈ 〈Pn〉I is a degree d polynomial and σ ∈ Sn is a permutation of vertices,

then

F '(Pn,2d−1) σF .
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First note that since F ∈ 〈Pn〉I , F is 0 on perfect matchings. Since σ simply

permutes matchings, σF is also 0 on perfect matchings. It follows that F − σF ≡ 0

mod 〈Pn〉I . The claim simply states that this identity is derivable within degree

2d− 1.

To prove the claim we use induction on the degree. If d = 0 or d = 1 the claim

follows from the corresponding cases d = 0 and d = 1 of the theorem. For d ≥ 2 it

is enough to prove the claim when σ is a transposition of two vertices a and u, since

every permutation is a product of transpositions and chaining derivations does not

increase the degree. Note that in F − σF all monomials which are independent of

both a and u cancel:

F − σF =
∑

e : a∈e or u∈e

Lexe , (4.4)

where each Le has degree at most d − 1. We now show that every summand is

congruent to a sum of monomials containing edges incident to both a and u. For

example, for e = {a, b} in (4.4) we apply the generator
∑

v xuv − 1 to find that

Labxab 'd+1 Labxab
∑
v

xuv 'd+1

∑
v

Labxabxuv .

Therefore

F − σF 'd+1

∑
bv

L′bvxabxuv (4.5)

for some polynomials L′bv of degree at most d − 1. We may assume that L′bv does

not contain variables xe with e incident to a, b, u, v, as these can be removed using

generators like xabxac or x2ab − xab.

As stated earlier, the left hand side of (4.5) is 0 on perfect matchings, so the right

hand side is also. We now show that not just the sum but in fact each summand on

the right hand side of (4.5) is 0 on perfect matchings. Fix b and v and consider the

summand L′bvxabxuv. This term is 0 on any perfect matching not containing both ab

and uv, so we just need to show that L′bv is 0 on all perfect matchings containing both
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ab and uv. Note that any other summand L′b′v′xab′xuv′ is 0 on any perfect matching

containing ab and uv since either b 6= b′ or v 6= v′. Since on all perfect matchings

containing ab and uv both the left hand side is 0 and every other summand on the

right hand side is 0, it follows that L′bv is also.

To complete the proof we need to show that this fact is derivable in degree 2d− 1

(note that 2d − 1 ≥ d + 1 for d ≥ 2). Formally, for each b and v we show that

L′bvxabxuv '2d−1 0. We only need to consider the choices of b and v such that ab and

uv are part of a perfect matching:

1. If b = u and v = a we have L′auxauxau 'd+1 L
′
auxau, and as shown before, L′au

is 0 on all perfect matchings containing au. Thus L′au ∈ 〈Pn−2〉I , if we identify

a, u as the two additional vertices in Kn. By induction we have L′au '2d−3 0

and applying Lemma 65 we conclude L′auxau '2d−2 0.

2. If a, b, u, v are distinct we have that L′bv is 0 on all perfect matchings containing

ab and uv. Thus L′bv ∈ 〈Pn−4〉I , if we identify a, b, u, v as the four additional

vertices in Kn. By induction we have L′bv '2d−3 0 and by applying Lemma 65

twice we conclude L′bvxabxuv '2d−1 0.

This concludes the proof of the claim.

We now apply the claim followed by Lemma 64 to derive that

F '2d−1
1

n!

∑
σ∈Sn

σF 'd
cF
n!

for some constant cF . As F ∈ 〈Pn〉I , it must be that cF = 0 and therefore

F '2d−1 0 .
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4.1.5 The symmetric SDP lower bound

We now have all the ingredients to prove our lower bound. Note that the alternating

group An acts naturally on PM(n) via permutation of vertices, and the guarantees

C̃, S̃ are An-symmetric. Our theorem is an exponential lower bound on the size of

any An-coordinate-symmetric SDP extension of PM(n).

Theorem 67. There exists a constant α > 0 such that for all even n and every 0 ≤

ε < 1, every An-coordinate-symmetric (C̃, S̃)-approximate SDP extended formulation

for the perfect matching problem PM(n) has size at least 2αn. In particular, every An-

coordinate-symmetric SDP extended formulation approximating the perfect matching

problem PM(n) within a factor of 1− ε/(n− 1) has size at least 2αn.

Proof. Fix an even integer n ≥ 10 and let k = dβne for some small enough con-

stant 0 < β < 1/2 chosen later. Suppose for a contradiction that PM(n) admits a

symmetric SDP extended formulation of size d <
√(

n
k

)
− 1.

Let m equal n/2 or n/2 − 1, whichever is odd. Let S = [m] and let T = {m +

1, . . . , 2m}. If m = n/2 then let U = {2m + 1, 2m + 2}, otherwise let U = ∅. Note

that S ∪ T ∪ U = [n] and |S| = |T | = m = Θ(n). Consider the objective function for

the set of edges E[S] on S. Since |S| is odd we have max fE[S] = (|S| − 1)/2, from

which we obtain

f(x)
def
= C̃(fE[S])− fE[S](x) (4.6)

=
|S| − 1

2
+
ε

2
−
∑
u,v∈S

xuv (4.7)

≡ 1

2

∑
u∈S,v∈T∪U

xuv −
1− ε

2
. (4.8)

By Lemma 57, as
(
d+1
2

)
<
(
n
k

)
, there is a constant µf ≥ 0 and an An-symmetric set
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H of functions of size at most
(
n
k

)
on the set of perfect matchings such that

f ≡
∑
g

g2 + µf

where each g ∈ 〈H〉. By Proposition 60, every h ∈ H depends only on the edges

within a vertex set of size less than k, and hence can be represented by a polynomial

of degree less than k/2 over perfect matchings. As the g are linear combinations of

the h ∈ H, they can also be represented by polynomials of degree less than k/2, which

we assume for the rest of the proof.

Applying Theorem 66 with (4.6), we conclude

1

2

∑
u∈S,v∈T∪U

xuv −
1− ε

2
'(Pn,2k−1)

∑
g

g2 + µf .

We now apply the following substitution: set x2m+1,2m+2 := 1 if U is not empty, set

xu+m,v+m := xuv for each uv ∈ E[S], and set xuv := 0 otherwise. Intuitively, the

substitution ensures that U is matched, ensures the matching on T is identical to the

matching on S, and ensures every edge is entirely within S, T , or U . The main point

is that the substitution maps every polynomial in Pn either to 0 or into Pm.

Applying this substitution we obtain a new polynomial identity on the variables

{xuv}{u,v}∈(S
2)

:

− 1− ε
2
'(Pm,2k−1)

∑
g

g2 + µf . (4.9)

(4.9) is a sum of squares refutation of the existence of a perfect matching in an

odd clique of size m. We are now ready to apply the following theorem.

Theorem 68 ([Grigoriev, 2001, Corollary 2]). The degree of any PC> refutation of

MODk
2 is greater than Ω(k).

The MODk
p principle states that it is not possible to partition a set of size k into

groups of size p if k is congruent to 1 modulo p. In our case, with p = 2 and k odd,
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this is equivalent to the statement that no perfect matching exists in an odd clique.

It can also be checked that (4.9) constitutes a PC> refutation; see [Grigoriev, 2001,

Definition 2], also see Buss et al. [1999] for further discussion.

By applying Theorem 68 to (4.9), it follows that 2k − 1 = Ω(m) = Ω(n), a

contradiction when β is chosen small enough.

4.2 A note on the inapproximability ratio

The inapproximability ratio claimed in our theorem is 1 − ε
n−1 . To be precise, the

actual ratio implied by our argument is 1/(1+ 2ε
n−4). In other words, we actually show

that any small symmetric SDP cannot achieve even a (slightly) worse ratio.

Here we derive the actual ratio implied by the argument. In the setup, n ≥ 10 is

an even integer and m = n/2 or n/2− 1 (whichever is odd). Let us consider the case

m = n/2− 1 since this gives the worse ratio.

We consider maximum matchings over S = [m]. Let

f(M) := fE[S](M) = |M ∩ S|

for any perfect matching M . We have S̃(f) := max f = m−1
2

= n−4
4

and C̃(f) :=

max f + ε
2

for some 0 ≤ ε < 1. We show that a small symmetric SDP cannot derive

max f ≤ C̃(f) when max f ≤ S̃(f) and thus cannot achieve a ρ approximation, where

1

ρ
=
C̃(f)

S̃(f)
=

max f + ε
2

max f
= 1 +

ε
2

n−4
4

= 1 +
2ε

n− 4
.

Note that for n > 4 and 0 ≤ ε < 1 we have

1

1 + 2ε
n−4
≤ 1− ε

n− 1
.
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CHAPTER 5

SMALL SYMMETRIC CP FORMULATIONS

We now consider optimization over the copositive cone and its dual, the completely

positive cone. We will refer to any formulation in this framework as a copositive (CP)

formulation, even though the geometric object corresponding to the feasible region

may itself lie in the completely positive cone.

We will define the concept of a symmetric CNF and extend the work of Mak-

simenko [2012] and Fiorini et al. [2015a] to show that any problem whose feasible

solutions can be expressed by a symmetric CNF has a small copositive formulation.

Finally, we give a symmetric CNF for the matching problem, thus establishing a small

copositive formulation for matching.

5.1 A symmetric CP extension for the correlation polytope

Fiorini et al. [2015a] gave a small copositive extension for the correlation polytope.

We now analyze this extension to show it it is in fact symmetric.

Consider the matrices Y ∈ C∗1+2n that satisfy the following conditions, where the

matrix indices range from 0 to 2n:


1 0 0

0 0 0

0 0 0

Y = 1 ,


0 ei

ᵀ ei
ᵀ

ei 0 0

ei 0 0

Y = 2 i = 1, . . . , n ,
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0 0 0

0 eiei
ᵀ eiei

ᵀ

0 eiei
ᵀ eiei

ᵀ

Y = 1 i = 1, . . . , n ,

and 
0 ej

ᵀ 0

ej −2ejej
ᵀ 0

0 0 0

Y = 0 j = 1, . . . , n .

Note that the coefficients of Y are block matrices whose diagonal elements have

dimensions 1 × 1, n × n, and n × n respectively. Let Y denote the set of matrices

Y ∈ C∗1+2n that satisfy all the conditions above. Observe that Y is an affine slice of

the completely positive cone C∗1+2n.

The definition of the set Y is taken from [Fiorini et al., 2015a], who proved the

following theorem.

Theorem 69 ([Fiorini et al., 2015a]). The set Y is a polynomial size completely

positive extension of the correlation polytope. In particular,

COR(n) =
{
Z ∈ Rn×n ∣∣∃Y ∈ Y : Zij = Yij, ∀i, j = 1, . . . , n

}
.

To derive the results of this section we make the following crucial observation.

Theorem 70. The set Y is an Sn-symmetric extension of the correlation polytope.

Proof. It suffices to give the action of Sn on R(1+2n)×(1+2n). Let σ : [n] → [n] be an

element of Sn. Define the action of σ on the set {0, . . . , 2n} by

σ(i) =


0 i = 0 ,

σ(i) i ∈ {1, . . . , n} ,

n+ σ(i− n) i ∈ {n+ 1, . . . , 2n} ,
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and let σ simultaneously permute the rows and columns of an element of R(1+2n)×(1+2n)

according to its action on {0, . . . , 2n}.

5.2 Connecting the cut and correlation polytopes

In order to connect the cut and correlation polytopes we will make use of Theorem

40, which we restate here.

Theorem ([De Simone, 1989/90]). For all n, COR(n) is linearly isomorphic to

CUT(1 + n).

If we consider the graph K1+n, on which CUT(1+n) is based, and label its vertices

from 0 to n (where 0 is a special designated vertex), then the mapping from X ∈ Rn×n

to δ ∈ R(1+n
2 ) is given by

δ0i := Xii

for i ∈ [n] and

δij := Xii −Xij +Xjj −Xji

for 1 ≤ i < j ≤ n.

The inverse mapping is given by

Xii := δ0i

for 1 ≤ i ≤ n and

Xij := 1
2
(δ0i + δ0j − δij)

for i, j ∈ [n] and i 6= j.
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5.3 Maksimenko’s construction

Our formulation relies critically on the construction given by Maksimenko [2012]

which we describe here. We first introduce some terminology. The length of a CNF

φ, denoted |φ|, is the sum of the lengths of its clauses, where the length of a clause

is the number of literals it contains. If φ is a CNF in variables x1, . . . , xk, the set

SAT(φ) consists of the strings x = (x1, . . . , xk) ∈ {0, 1}k that satisfy φ. We can now

define the following object:

Definition 71 (polytope of a formula). Let φ be a CNF in k variables. The polytope

of φ is defined as

P (φ) := conv
{
x ∈ {0, 1}k

∣∣x ∈ SAT(φ)
}
.

Note that P (φ) is a 0/1 polytope in Rk.

We now state Maksimenko’s theorem.

Theorem 72 (Maksimenko [2012]). There is a polynomial p such that for any CNF φ

the polytope P (φ) is an orthogonal projection of a face of CUT(d) for some d ≤ p(|φ|).

Here we recap the construction given by Maksimenko. Let φ have k variables and

m clauses C1, . . . , Cm. To avoid degenerate cases we assume that φ is satisfiable and

that every clause contains at least two literals.

For every i ∈ [m] we define a vertex set Vi consisting of a vertex v(a, Ci) for each

literal a that appears in Ci. In addition for each j ∈ [k] we have a vertex vj and a

vertex vj corresponding to each variable and its negation. Let

V :=

 ⋃
i∈[m]

Vi

⋃⋃
j∈[k]

{vj, vj}
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and let n = |V |. We create an additional root vertex v0 and consider the cut problem

on the complete graph with vertex set V ′ := {v0} ∪ V . In other words, we consider

the polytope CUT(1 + n).

For any v, w ∈ V ′ let x(v, w) denote the corresponding edge variable in R(1+n
2 ).

Let L(φ) be the affine subspace of R(1+n
2 ) defined by the following equations.

1. For each j ∈ [k]:

x(vj, vj)− x(v0, vj)− x(v0, vj) = 0 .

2. For each i ∈ [m]:

∑
v,w∈Vi
v 6=w

x(v, w)− (|Vi| − 2)
∑
v∈Vi

x(v0, v) = 1 .

The relevant face of CUT(1 + n) is obtained by intersecting with L(φ). Lastly, the

projection onto P (φ) in Rk is given by xj = x(v0, vj) for j ∈ [k].

Corollary 73. For any CNF φ, the polytope P (φ) has a polynomial size (in |φ|)

completely positive extension.

Proof. By Theorem 72 there is a d polynomial in the length of φ and an affine space

L = L(φ) ⊆ R(d
2) such that P (φ) is the projection of L ∩ CUT(d). Let Λ denote the

affine isomorphism from COR(d − 1) to CUT(d). It follows that P (φ) is an affine

projection of Λ−1L ∩ COR(d− 1). The claim follows by Theorem 69.

Corollary 74. Every language in NP/poly has a polynomial size completely positive

extension.

5.4 Symmetric CNFs

Let G be a group acting on [k]. If φ is a CNF on k variables, the action of G on [k]

induces an action on φ by permuting the variables. Specifically, the action of g ∈ G
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on φ is to replace each occurrence of the variable xj in φ with xg·j, for every j ∈ [k].

Definition 75 (symmetric CNF). Let φ be a CNF on k variables and let G be a

group acting on [k]. The formula φ is G-symmetric if the action of G on φ leaves φ

unchanged, up to reordering of clauses and reordering of literals within each clause.

Observation 76. If φ is a CNF, G is a group, and φ is G-symmetric, then the polytope

P (φ) is also G-symmetric.

Proposition 77. If φ is a G-symmetric CNF, the affine subspace L(φ) is also G-

symmetric.

In both Observation 76 and Proposition 77, the action of G on Rk is the induced

action on coordinates given by the action of G on the variables xj for j ∈ [k].

We are now ready to state our main lemma.

Lemma 78. If G is a group acting on [k] and φ is a G-symmetric CNF, then the

polytope P (φ) has a G-symmetric completely positive extension with size polynomial

in |φ|.

Proof. We simply need to show that the polynomial size completely positive extension

given by Corollary 73 can be constructed to preserve G-symmetry. In particular, it

suffices to define and check the action of G on each component of the construction.

1. By Proposition 77, the affine space L = L(φ) is G-symmetric, where the action

of G on L follows naturally from the action of G on φ.

2. The action of G on φ naturally defines an action on V ′, the vertex set of the

graph corresponding to CUT(d) that leaves V ′ invariant and fixes v0.

3. The action of G on V ′ induces an action on the coordinates of R(d
2) that leaves

CUT(d) invariant and fixes the role of v0.
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4. The action of G on CUT(d), combined with the isomorphism Λ from COR(d−1)

to CUT(d) implies an action of G on the coordinates of R(d−1)×(d−1) that involves

simultaneous permutation of rows and columns and thus leaves COR(d − 1)

invariant.

5. The action of G on L(φ) induces an action on Λ−1L that leaves it invariant.

It follows that the set Λ−1L ∩ COR(d − 1) is G-symmetric. It can be checked that

the polynomial size completely positive extension of this set implied by Theorem 69

is also G-symmetric. It is easy to verify that g · π(x) = π(g · x) holds for any g ∈ G

and x in this extension.

5.5 A small symmetric CP formulation for matching

Consider the complete graph Kn on n vertices, with n even. A perfect matching on

Kn is a vertex-disjoint edge cover of [n]. We can view the perfect matchings on Kn

as elements of R(n
2), where each perfect matching is represented by its characteristic

vector. Let the perfect matching polytope be defined as

PM(n) := conv
{
x ∈ R(n

2)
∣∣∣x is a perfect matching

}
.

The following proposition establishes that the matching polytope is symmetric.

Proposition 79. PM(n) is Sn-symmetric, where the action on R(n
2) is induced nat-

urally by the action on the vertex set [n].

For each n, define

φn :=

∧
i∈[n]

∨
j∈[n]
j 6=i

xij

∧
∧
i∈[n]

∧
j,k∈[n]

i,j,k distinct

(xij ∨ xik)

 .
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The following proposition establishes the relationship between the matching poly-

tope and the CNF just described.

Proposition 80.

PM(n) = P (φn) .

We are now ready to state and prove our main theorem.

Theorem 81. PM(n) has a polynomial size Sn-symmetric completely positive exten-

sion.

Proof. It is easy to check that |φn| is polynomial in n and that φn is Sn-symmetric.

The claim follows by Proposition 80 and Lemma 78.
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CHAPTER 6

A SMALL SYMMETRIC CP FORMULATION FOR TSP

In light of the framework presented in Chapter 5, in order to give a small symmetric

completely positive extended formulation for the traveling salesperson problem, it

suffices to exhibit a small symmetric CNF. To do this, we will view a tour of the

complete graph simultaneously as:

1. a permutation of its vertices, and

2. a subset of its edges.

We will construct a small CNF formula where each satisfying assignment encodes

both representations of a particular tour. As part of the construction we will use the

fact that a tour of the complete graph is also a tour of the complete directed graph

of the same size.

We will then show that our formula is invariant under an appropriately defined

action of the symmetric group. Projecting onto the variables corresponding to edges

will recover the characteristic vectors of Hamiltonian cycles in the complete graph.

6.1 The construction

Fix n ∈ N. As before, Kn denotes the complete undirected graph whose vertex set is

[n]. Let ~Kn denote the complete directed graph whose vertex set is [n].

In the following, the indices i, j, u, v, and w all take values in [n], however i and j

represent positions in the tour (e.g. the ith city visited) whereas u, v, and w indicate

vertices of Kn or ~Kn.
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6.1.1 Variables

We will represent a tour of Kn as a permutation σ ∈ Sn of its vertices, where σ(i) is

the ith vertex in the tour. We will represent σ using the set of Boolean variables

Σ := {σiv | i, v ∈ [n]}

where σiv is true iff vertex v is the ith vertex visited.

Using the fact that σ also defines a tour of ~Kn, we will represent the set of directed

edges in ~Kn corresponding to σ using the set of Boolean variables

Z := {zuv |u, v ∈ [n], u 6= v}

where zuv is true iff vertex v is visited immediately after vertex u.

Finally, we will represent the set of undirected edges in Kn corresponding to σ

using the set of Boolean variables

X := {xuv |u, v ∈ [n], u < v}

where xuv is true iff u and v are adjacent in the tour corresponding to σ.
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6.1.2 Encoding a permutation

The constraints listed below ensure that Σ encodes a permutation of [n].

∨
v∈[n]

σiv i ∈ [n] (6.1)

∧
u,v∈[n]
u6=v

σiu ∨ σiv i ∈ [n] (6.2)

∨
i∈[n]

σiv v ∈ [n] (6.3)

∧
i,j∈[n]
i 6=j

σiv ∨ σjv v ∈ [n] (6.4)

Informally, (6.1) ensures that the slot for σ(i) is assigned to a vertex, while (6.2)

ensures it is not multiply assigned. Similarly, (6.3) ensures vertex v is visited, while

(6.4) ensures it is not visited more than once.

6.1.3 Encoding cycles

The constraints below ensure that Z is a disjoint cycle cover of ~Kn.

∨
v∈[n]

zuv u ∈ [n] (6.5)

∧
v,w∈[n]
v 6=w

zuv ∨ zuw u ∈ [n] (6.6)

∨
u∈[n]

zuv v ∈ [n] (6.7)

∧
u,w∈[n]
u6=w

zuv ∨ zwv v ∈ [n] (6.8)

Informally, (6.5) ensures that vertex u has an outgoing edge, while (6.6) ensures

it does not have multiple outgoing edges. Similarly, (6.7) ensures vertex v has an
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incoming edge, while (6.8) ensures it does not have multiple incoming edges.

6.1.4 From a permutation to a directed tour

For an index variable i let i′ denote i+ 1 (mod n), with the appropriate adjustment

for 1-based indexing. The following set of constraints ensures that Z conforms to Σ:

∧
i∈[n]

(σiu ∨ σi′v ∨ zuv) u, v ∈ [n], u 6= v . (6.9)

Informally, (6.9) encodes ∨
i∈[n]

(σiu ∧ σi′v)

→ zuv , (*)

which says that directed edge uv is in Z if v immediately follows u in σ.

6.1.5 From a directed tour to an undirected tour

The constraints below ensure that X is the undirected version of Z.

xuv ∨ zuv ∨ zvu u, v ∈ [n], u < v (6.10)

zuv ∨ xuv u, v ∈ [n], u < v (6.11)

zvu ∨ xuv u, v ∈ [n], u < v (6.12)

Informally, (6.10) encodes

xuv → (zuv ∨ zvu)

(every undirected edge has a directed counterpart), while (6.11) and (6.12) encode

zuv → xuv

zvu → xuv
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(every directed edge has an undirected counterpart).

Let Φ(Σ, Z,X) denote the CNF that consists of the AND of constraints (6.1)

through (6.12).

6.1.6 Defining a group action

The action of ρ ∈ Sn on the variables (Σ, Z,X) is defined by the following maps.

σiv → σiρ(v) (6.13)

zuv → zρ(u)ρ(v) (6.14)

xuv → xρ(u)ρ(v). (6.15)

6.1.7 Putting it all together

We can now state the main theorem of this chapter:

Theorem 82. The TSP problem has a small symmetric copositive extension.

Proof. It is easy to check that every satisfying assignment of Φ corresponds to a TSP

tour and every TSP tour is represented by a satisfying assignment. We can also

verify that the action defined in (6.13)–(6.15) is consistent with the action on TSP

tours induced by permuting vertices, and the projection of the satisfying assignments

(Σ, Z,X) of Φ to X expresses exactly the characteristic vectors of TSP tours. Finally

we note that Φ has size polynomial in n and is invariant under the group action.
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CHAPTER 7

CONCLUSION

We have considered the role of symmetry in extended formulations. Generalizing the

work of Yannakakis, we showed that the matching problem has no small symmetric

semidefinite program. We then gave a framework for producing small symmetric

copositive programs and showed that both matching and TSP have small copositive

programs in this framework.

Several open questions remain. Most prominent: does the matching problem have

a small semidefinite program if we allow asymmetry? An answer either way would

fill in the last entry in Table 1.1 on page 22, and complete a line of research that

extends back nearly 30 years to Yannakakis. If the answer is yes, it would be a

strong example of the power of asymmetry in semidefinite extended formulations. If

the answer is no, it would point to the need to find more powerful but still efficient

models of computation.

Regardless of whether matching has a small asymmetric semidefinite program, the

power of asymmetry in general is not well understood. Fawzi et al. [2014, 2015] show

that in some cases asymmetry can help for semidefinite formulations. In contrast, we

have given evidence that symmetry is not a strong restriction for copositive programs.

Even though copositive programming is NP-hard, we note that it can still be useful

to have a small symmetric copositive program. For example, Dobre and Vera [2015]

show how symmetry in copositive programs can be exploited in SDP approximations.

Our symmetric copositive formulation for the TSP could possibly be generalized

to other problems. We conclude by phrasing this possibility as an open question.

Open Question. Does every symmetric set that has a small CNF also have a small

symmetric CNF?
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Jop Briët, Daniel Dadush, and Sebastian Pokutta. On the existence of 0/1 poly-
topes with high semidefinite extension complexity. Math. Program., 153(1):179–
199, 2015. doi: 10.1007/s10107-014-0785-x. URL http://dx.doi.org/10.1007/

s10107-014-0785-x. 22

Arne Brøndsted. An Introduction to Convex Polytopes. Graduate texts in mathemat-
ics. Springer, 1983. 29

Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. In Proceedings
of the thirty-first annual ACM symposium on Theory of computing, pages 547–556.
ACM, 1999. 54

Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate
constraint satisfaction requires large LP relaxations. In Foundations of Computer
Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 350–359. IEEE,
2013. 21, 22

Clay Mathematics Institute. Millennium problems, 2016. URL http://www.

claymath.org/millennium-problems. 2

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM. doi: 10.1145/800157.805047. URL
http://doi.acm.org/10.1145/800157.805047. 2

Caterina De Simone. The cut polytope and the Boolean quadric polytope. Discrete
Math., 79:71–75, 1989/90. doi: 10.1016/0012-365X(90)90056-N. 32, 57

John D. Dixon and Brian Mortimer. Permutation groups. Springer Verlag, 1996. 44

Cristian Dobre and Juan Vera. Exploiting symmetry in copositive programs via
semidefinite hierarchies. Mathematical Programming, 151(2):659–680, 2015. ISSN
1436-4646. doi: 10.1007/s10107-015-0879-0. URL http://dx.doi.org/10.1007/

s10107-015-0879-0. 18, 68

Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat.
Bur. Standards Sect. B, 69B:125–130, 1965. ISSN 0160-1741. 19, 49

Hamza Fawzi, James Saunderson, and Pablo A. Parrilo. Equivariant semidefinite lifts
of regular polygons. CoRR, abs/1409.4379, 2014. URL http://arxiv.org/abs/

1409.4379. 68

72

http://dx.doi.org/10.1007/s10107-014-0785-x
http://dx.doi.org/10.1007/s10107-014-0785-x
http://www.claymath.org/millennium-problems
http://www.claymath.org/millennium-problems
http://doi.acm.org/10.1145/800157.805047
http://dx.doi.org/10.1007/s10107-015-0879-0
http://dx.doi.org/10.1007/s10107-015-0879-0
http://arxiv.org/abs/1409.4379
http://arxiv.org/abs/1409.4379


Hamza Fawzi, James Saunderson, and Pablo A. Parrilo. Equivariant semidefinite lifts
and sum-of-squares hierarchies. SIAM Journal on Optimization, 25(4):2212–2243,
2015. doi: 10.1137/140966265. URL http://dx.doi.org/10.1137/140966265.
22, 68

Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald
de Wolf. Linear vs. semidefinite extended formulations: Exponential separation
and strong lower bounds. Proceedings of STOC, pages 95–106, 2012. 21, 22

Samuel Fiorini, Serge Massar, Manas K Patra, and Hans Raj Tiwary. Generalized
probabilistic theories and conic extensions of polytopes. Journal of Physics A:
Mathematical and Theoretical, 48(2):025302, 2015a. URL http://stacks.iop.

org/1751-8121/48/i=2/a=025302. 23, 55, 56

Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald
de Wolf. Exponential lower bounds for polytopes in combinatorial optimization.
J. ACM, 62(2):17, 2015b. doi: 10.1145/2716307. URL http://doi.acm.org/10.

1145/2716307. 21, 22

Michel X. Goemans. Smallest compact formulation for the permutahedron. Math.
Program., 153(1):5–11, 2015. doi: 10.1007/s10107-014-0757-1. URL http://dx.

doi.org/10.1007/s10107-014-0757-1. 12, 21

Michel X. Goemans and David P. Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. J.
Assoc. Comput. Mach., 42:1115–1145, 1995. doi: 10.1145/227683.227684. 22

João Gouveia, Parrilo A. Parrilo, and Rekha R. Thomas. Lifts of convex sets and
cone factorizations. Math. Oper. Res., 38(2):248–264, May 2011. 22

Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs
for the parity. Theoretical Computer Science, 259(1):613–622, 2001. 20, 53, 54

Volker Kaibel, Kanstantsin Pashkovich, and Dirk Oliver Theis. Symmetry matters
for the sizes of extended formulations. In Proc. IPCO 2010, pages 135–148, 2010.
21, 44

Monique Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre
relaxations for 0-1 programming. Math. Oper. Res., pages 470–496, 2003. 17

James R. Lee, Prasad Raghavendra, David Steurer, and Ning Tan. On the power
of symmetric LP and SDP relaxations. In Proceedings of the 2014 IEEE 29th
Conference on Computational Complexity, pages 13–21. IEEE Computer Society,
2014. 22, 36, 44

James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of
semidefinite programming relaxations. In Proc. STOC, pages 567–576, 2015. 22

73

http://dx.doi.org/10.1137/140966265
http://stacks.iop.org/1751-8121/48/i=2/a=025302
http://stacks.iop.org/1751-8121/48/i=2/a=025302
http://doi.acm.org/10.1145/2716307
http://doi.acm.org/10.1145/2716307
http://dx.doi.org/10.1007/s10107-014-0757-1
http://dx.doi.org/10.1007/s10107-014-0757-1
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