

USING ONTOLOGIES TO SUPPORT INTEROPERABILITY IN FEDERATED
SIMULATION

A Thesis
Presented to

The Academic Faculty

By

Tarun Rathnam

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanical Engineering

Georgia Institute of Technology
August 2004

USING ONTOLOGIES TO SUPPORT INTEROPERABILITY IN FEDERATED
SIMULATION

APPROVED:

Dr. Christiaan J.J. Paredis (Chair)

Assistant Professor,
Mechanical Engineering

Dr. Bert A. Bras

Professor,
Mechanical Engineering

Dr. Richard M. Fujimoto

Professor,
College of Computing

Dr. Russell S. Peak

Senior Research Scientist,
Manufacturing and Research Center

DATE APPROVED: 18TH AUGUST 2004

DEDICATION

To my parents—for their unending love, support and encouragement.

iv

ACKNOWLEDGEMENT

In my life thus far, I have been faced with many a challenge—it seems as if every

subsequent challenge I have taken on has been ‘he hardest one yet’. The success I have

enjoyed in overcoming any and all challenges is on account of the support of many that I

hold in high regard. The same applies to my completing this thesis. I use this opportunity

to express my gratitude towards those that have had a significant hand in my completing

this body of research, and more importantly, my development as a person.

I am forever indebted to my advisor and mentor, Dr. Chris Paredis, for having given me

the opportunity to further myself immensely. Chris, to me you are a beacon of light and a

pillar of support; I have garnered so much from your counsel and reached what I thought

to be ‘unreachable’ goals with your encouragement and faith.

I extend my thanks to my committee members, Dr. Bert Bras, Dr. Richard Fujimoto and

Dr. Russell Peak for their valuable feedback with regard to this thesis. Also, I owe thanks

to Manas Bajaj for being a critical eye and combing through the algorithms in this thesis.

This work has been supported by Sandia National Laboratories, whom I thank for their

input and support. Specifically, I would like to acknowledge Daniel Fellig—though we

haven’t met in person thus far; our long and frequent conversations over the phone have

significantly contributed to improving my thesis.

v

Over the past two years, I have had the honor of working with a wonderful family of

peers at the SRL, whom I thank collectively for their mentorship and support. I walk

away from the SRL ‘nest’ having learned two invaluable lessons—(i) there is still much

to learn, and (ii) never settle to be mediocre.

A special thank you to Rich Malak and Steve Rekuc—its been an interesting adventure

since we all arrived here at Georgia Tech, and my completing this adventure is largely

due to your support. To my close friends Chris Williams, Matt Chamberlain, Marco

Fernandez and Scott Duncan, thank you for keeping me sane over the last couple of years

and for improving my gaming skills, but most importantly, for your friendship and

support. For giving me the ‘prodding’ that I occasionally require, I offer my heartfelt

thanks to Benay Sager, Scott Cowan and Kannan Sockalingam.

Finally, I owe the greatest thanks to my family. As I type this acknowledgement, I realize

that it because of their encouragement, love and the ideals they have bestowed upon me

that I have made it thus far.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS

iv

TABLE OF CONTENTS

vi

LIST OF TABLES

x

LIST OF FIGURES

xi

GLOSSARY

xiii

SUMMARY

xviii

CHAPTER 1 INTRODUCTION 1

1.1 The Importance of Simulation in Design 2

 1.1.1 Distributed and Federated Simulations 6
 1.1.2 Requirements of Federated Simulations

10

1.2 Research Focus and Questions 15

1.3 Validation Strategy 32

1.4 Organization of Thesis

35

CHAPTER 2 A SURVEY OF RELATED WORK 38

2.1 Distributed Simulation in the HLA 39

 2.1.1 HLA Object Models 41
 2.1.2 Challenges in Federation Development

43

2.2 Current Solutions to Support Reuse in Federation
Development

47

vii

 2.2.1 Base Object Models 47

 2.2.2 The Agile FOM Framework

52

2.3 Simulation-Based Design and Analysis Tools 57

2.4 Models and Algorithms to Manage Disparate Information
Models

61

 2.4.1 Models for Schema and Ontology Management 63
 2.4.2 Schema and Ontology Matching Algorithms

67

2.5 Chapter Closure

74

CHAPTER 3 AN ONTOLOGY BASED FRAMEWORK TO
SUPPORT FEDERATED SIMULATION
DEVELPOMENT

78

3.1 Framework Components and Process Model 79

3.2 The Frame-Based Knowledge Model 85

3.3 The ‘World’ Ontology Specification 89

3.4 Simulation Ontology (SONT) Creation 93

3.5 Capturing Relationships between Ontologies 96

 3.5.1 The Semantics and Instantiation of Relationships in
a FONT

96

 3.5.2 Defining Relationships between Multiple Entities 101
 3.5.3 Data Type Relationships

104

3.6 Federation Ontology (FONT) Generation 106

 3.6.1 Determining the Common Schema 108
 3.6.2 Generating Transformation Routines

114

3.7 Assessing the Structural Validity of the Framework

122

viii

CHAPTER 4 AN ALGORITHM FOR AUTOMATED FONT

GENERATION
124

4.1 Overview of the GRIT Algorithm 125

4.2 Graph Theory and Algorithms 127

4.3 Representing a FONT as a Directed Graph 133

4.4 Common Representation Generation 140

4.5 Transformation Stub Generation 150

4.6 Assessing the Structural Validity of the GRIT Algorithm

164

CHAPTER 5 THE DEVELOPMENT OF A FEDERATED AIR
TRAFFIC SIMULATION

167

5.1 Introduction to the Federated Simulation 168

5.2 Empirical Structural Validation 176

5.3 Development of SONTs 181

 5.3.1 The Local Air Traffic Control (ATC) SONT 181
 5.3.2 The Ground Traffic Control (GTC) SONT 185
 5.3.3 The Ground Services SONT

188

5.4 Specification of Relationships 191

 5.4.1 Relationships between ATC and GTC Entities 192
 5.4.2 Relationships between GTC and Ground Services

Entities
198

 5.4.3 Relationships between ATC and Ground Services
Entities

202

5.5 FONT Generation 203

 5.5.1 Common Representation Generation 204
 5.5.2 Transformation Stub Generation

214

5.6 Empirical Performance Validation 225

 5.6.1 Expressiveness of the World Ontology 227
 5.6.2 Expressiveness of Relationships 230
 5.6.3 Correctness and Efficiency of the GRIT Algorithm

232

ix

CHAPTER 6 EVALUATION AND REFLECTION 237

6.1 A Critical Review of this Research 238

 6.1.1 Summary: What was done and Why? 238
 6.1.2 Limitations 243
 6.1.3 Theoretical Performance Validity

248

6.2 Future Work 256

 6.2.1 Extending the Limits of Reusability and Automation 256
 6.2.2 Going Beyond the Confines of Federated

Simulation

258

6.3 Closing Statements 260

REFERENCES 261

x

LIST OF TABLES

Table 1.1: Research Questions and Hypotheses 31

Table 1.2: Strategy for Validating the Work Presented in this Thesis 35

Table 2.1: BOM Meta Data Fields 50

Table 2.2: Summary of Key Points and Limitations Discussed in Literature
Survey

75

Table 3.1: List of Slots that Define the Object Metaclass and their Value
Types

92

Table 5.1: Interactions between Federate Simulations in the Air Traffic
Federation

175

Table 5.2: Air Traffic FONT Object and Event Attribute Vertex Array 206

Table 5.3: Air Traffic FONT Object and Event Vertex Array 213

Table 5.4: Air Traffic FONT Data Type Attribute Vertex Array 221

Table 5.5: Complexity of the GRIT Algorithm Execution in the Air Traffic
FONT Example

235

xi

LIST OF FIGURES

Figure 1.1: The ‘Vee’ Model for Systems Engineering 6

Figure 1.2: Vision for an Ontology-Based Framework to Support Automated
Simulation Integration

20

Figure 1.3: Composing a Chain of Relationships 27

Figure 1.4: The Validation Square 33

Figure 1.5: Thesis Roadmap 37

Figure 2.1: Functional Overview of the HLA 40

Figure 2.2: The Overall FEDEP Flow Model 44

Figure 2.3: Detailed View of Step 4 in the FEDEP 46

Figure 2.4: Components of a BOM 49

Figure 2.5: Conceptual Depiction of the AFF 53

Figure 2.6: Example Converter Arrangement in the AFF 55

Figure 2.7: ModelCenter User Interface for Integrating Analysis Servers 59

Figure 2.8: Analysis Server Information Meta Model 60

Figure 2.9: An Example Mapping Structure and Morphism 65

Figure 2.10: High-Level Illustration of the PROMPT Algorithm 69

Figure 3.1: Knowledge Capture Components of Ontology-Based Framework 81

Figure 3.2: Overall Process Model for Integrating Federate Simulations in the
Ontology-based Framework

83

Figure 3.3: Major Concepts of the Frame-Based Knowledge Model 86

Figure 3.4: World Ontology Metamodel Components 90

Figure 3.5: SONT Specification in terms of World Ontology Concepts 95

Figure 3.6: Specification of Independent Relationships to and from a
Common Representation

99

Figure 3.7: Definition of n:1 Relationships by Aggregation 103

Figure 3.8: FONT Development Process Flow 107

Figure 3.9: Selecting an Attribute Representation Resulting in the Smallest
Number of Lossy Transformations

110

Figure 3.10: An Example of Inferring Relationships by Composition 112

Figure 3.11: Deriving Transformations by Composing Existing Ones 121

Figure 4.1: GRIT Algorithm Process Model 126

xii

Figure 4.2: Basic Concepts that Comprise a Directed Graph 129

Figure 4.3: Example Execution of Sequential Dijkstra Shortest-Path
Algorithm

132

Figure 4.4: Representation of an Attribute Graph using Vertex and Edge
Arrays

136

Figure 4.5: Illustration of the Graph-Based Common Attribute
Representation Procedure

145

Figure 4.6: Example Attribute Graph to Illustrate Transformation Stub
Generation

156

Figure 5.1: Sub Systems in an Airport System Design 171

Figure 5.2: Ontology-based Framework Application Process for Air Traffic
Federated Simulation

181

Figure 5.3: Air Traffic Control SONT Specification 185

Figure 5.4: Ground Traffic Control SONT Specification 188

Figure 5.5: Ground Services SONT Specification 190

Figure 5.6: Example Relationship Instantiation 193

Figure 5.7: Relating the ATC Fuel Content Attribute to GTC Fuel Level and
Fuel Capacity Attributes

195

Figure 5.8: Relationships between ATC and GTC Entities 198

Figure 5.9: Relationships between GTC and Ground Services Entities 201

Figure 5.10: Air Traffic FONT Object and Event Attribute Forest 205

Figure 5.11: Cost associated with Length, GTC Dimension and GS Dimension
being selected as the common representation

210

Figure 5.12: Common Representation and SONT-Common Relationships for
all Object and Event Attributes in the Air Traffic FONT

211

Figure 5.13: Air Traffic FONT Object and Event Forest 212

Figure 5.14: Air Traffic FONT Data Type Attribute Forest 221

Figure 6.1: Shared Information between Various Aspects of a Product’s
Lifecycle

259

xiii

GLOSSARY

Aggregate Data type Used to instantiate n:1 relationships between the

attributes of simulation objects and events. The data type
is an aggregation of the n attributes that need to be
simultaneously mapped.

AFF Agile FOM Framework; a framework to support the
simplified reuse of federate simulation models in
multiple HLA federations. In this framework, converters
are instantiated to transform between FOM and SOM
representations of exchanged information.

ATC Air Traffic Controller; a system that communicates with
aircraft in the local airspace of an aircraft, so as to
manage the safe and efficient departure, arrival and
passing of multiple aircraft. This system is modeled as a
federate simulation in the Air Traffic federated
simulation.

Air Traffic Federated
Simulation

 The system-level simulation of an airport being
designed, so as to observe the emergent behavior of air
traffic control & ground traffic control and ground
service sub-systems, together, in response to different
volumes of air traffic.

Attribute A property of one or more simulation object or event.
Each attribute contributes to the description of an object
or event, and is modeled in an ontology as a slot.

Big-O Notation The standard fashion to express the theoretical
complexity of an algorithm.

BOM Framework Base Object Model Framework; a framework that uses a
piece-part approach to support reuse in the development
of HLA FOMs.

Common Information
Model

 An information model that specifies the common
representation of all shared entities in a federated
simulation. This model is part of a FONT.

Cost of a Vertex Used as a measure of the extent of information loss in
transformations between federate attributes through a
given common representation.

xiv

Dijkstra’s Algorithm Determines the shortest path between two vertices in a
connected graph. This algorithm is employed to help
define the common information model in a FONT.

Directed Graph A graph whose edges are unidirectional.

DoD Domain of Discourse; a bounded set of concepts within
the universe of discourse.

Edge A connection or relationship between two vertices in a
graph. An edge may be uni/bi directional.

Event An occurrence during the execution of a simulation.
Events are non-persistent; they are of consequence only
for a single time stamp of the simulation clock.

Federate A single simulation model that interoperates with other
simulations in a federation.

Federated Simulation The parallel execution of a group of simulations wherein
information is exchanged between individual
simulations at run-time.

Federation A collection of interoperating federate simulations

FEDEP Model Federation Development Process Model; the systems
engineering process model developed by the DoD for
building HLA federations.

FOM Federation Object Model; an information model that
describes the set of objects, interactions and attributes
that are shared across a federation.

FONT Federation Ontology; a semantically rich information
model that describes the federate and common
representations of shared simulation entities in a
federation, and the relationship between these
representations.

Forest A collection of connected sub-graphs.

Frame The generic information structure used to model
concepts in an ontology. Frames can be specialized into
metaclasses, classes and instances.

xv

Frame-based Knowledge
Model

 A knowledge representation model widely used in
ontology specification. The principal elements of this
model are the Frame and the Slot.

Graph Algorithms Algorithms to solve problems relevant to graph-based
representations and graph theory.

Graph Theory The field of mathematics that deals with the use of
diagrams or graphs to study the arrangement of objects
and the relationships between them.

GRIT Algorithm The graph based algorithm that uses knowledge
contained within a FONT to generate a common
information model and SONT-Common relationships.

GTC Ground Traffic Controller; a system that manages the
safe and efficient movement of multiple aircraft between
runways and gates. This system is modeled as a federate
simulation in the Air Traffic federated simulation.

HLA High Level Architecture; a framework for federated
simulation developed by the United States Department
of Defense.

Lossiness A transformation from one simulation entity to another
that involves loss of information is a lossy
transformation.

Mapping The knowledge required to convert an instance of one
entity to that of another is captured in a mapping
between them.

Matching The knowledge as to which two simulation entities
equate to, or are related to each other is captured as a
match between them.

Metaclass A template for specifying classes. A metaclass is an
entity whose instances are classes.

Metamodel A model of a model. Metamodels define a vocabulary
for expressing models.

Metaslot A template for specifying slots. A metaslot is an entity
whose instance are slots.

xvi

Object A persistent entity modeled though the entire length of a
simulation execution.

 OMT Object Model Template; a specification for the
instantiation of HLA FOMs and SOMs, adopted as an
IEEE standard.

Ontology A formal, explicit specification of a conceptualization,
which refers to the concepts in a given domain of
discourse and the relationships between them.

Publish & Subscribe These are services provided by an RTI for exchanging
information between federate during the execution of a
federated simulation.

Representational
Compatibility

 The task of relating between disparate representations of
shared concepts in a federation, so that information can
be exchanged in a consistent manner at run-time.

RTI Run Time Infrastructure; an operating environment for
distributed federated simulations, which provides
services for exchanging information between federate
simulations.

Semantics The study of meaning. Semantics is opposed to syntax,
in that the former pertains to what something means,
while the latter pertains to the structure in which
something is expressed.

Simulation Model A computerized, mathematical or programmatic model
of a real world system, used to predict the behavior of
that system in a certain environment.

Slot The information structure used to capture relationships
between concepts (frames) in the frame-based
architecture. All classes in an ontology are described in
terms of their slots.

 SOM Simulation Object Model; an information model in
which the set of objects, interactions and attributes in a
given HLA federate simulation domain are documented.

SONT Federation Ontology; a semantically rich information
model that describes the federate and common
representations of shared simulation entities in a
federation, and the relationship between these

xvii

representations.

SONT-Common
Relationship

 A relationship between a SONT entity (an attribute,
object or event) and its corresponding common
representation. These relationships are automatically
generated in the execution of the GRIT algorithm.

SONT-SONT
Relationship

 A relationship between two SONT entities (attribute,
object, event or data type), which is specified explicitly
by the federation developer.

Subsumption An inheritance relationship between concepts, where a
more specific concept is incorporated under a more
general category. In the context of an ontology, class B
subsumes class A if the set of slots in the domain of
class B includes all slots in the domain of class A.

Technical Interoperability A condition in which federate simulations can exchange
information with each other in a consistent manner, at
runtime. The key aspects of technical interoperability
are representational compatibility, synchronization and
interaction with the RTI.

Transformation stub A procedural relationship to convert information
between disparate representations.

Validation Square A research validation process that is anchored in the
relativistic, holistic school of epistemology, where
scientific knowledge is defined as socially justifiable
belief, and knowledge validation is postulated to be a
process of building confidence in its usefulness with
respect to a purpose.

Vertex The central concept in a graph, a vertex represents an
object, and may be the end point of one or more edges.

World Ontology The metamodel for the specification of SONTs and
FONTs. The World Ontology specifies a vocabulary for
describing a given simulation domain.

 XML Extensible Markup Language; a flexible language that
can be used to create standard information formats and
share both the format and the data on the World Wide
Web. XML is developed by the World Wide Web
Consortium (W3C).

xviii

SUMMARY

A vast array of computer-based simulation tools are used to support engineering design

and analysis activities. Several such activities call for the simulation of various coupled

sub-systems in parallel, typically to study the emergent behavior of large, complex

systems. Most sub-systems have their own simulation models associated with them,

which need to interoperate with each other in a federated fashion in order to simulate

system-level behavior. The run-time exchange of information between federate

simulations requires a common information model that defines the (representation of)

entities (simulation objects and events) that simulators can publish or subscribe to.

However, most federate simulations employ disparate representations of shared concepts.

To address the problem of disparate representations, federate simulation developers must

agree upon a common representation for concepts that are exchanged at runtime and

modify their simulation models accordingly. Furthermore, it is often necessary, especially

for legacy simulators, to implement transformation stubs that convert objects and events

from the common representation to those used in the legacy implementation. The tasks of

defining a common representation for shared simulation concepts, modifying individual

simulations and building translation stubs around them can add significant time and cost

to defining a system-level simulation.

In this thesis, a framework to support automation in the process of achieving

interoperability between federate simulations is developed. This framework uses

ontologies to capture knowledge about the semantics of different simulation concepts in a

xix

formal, reusable fashion. Using these semantics, a common representation for shared

simulation entities, and a corresponding set of transformation stubs to convert entities

from their federate to common representations (and vice-versa) are derived automatically.

In capturing the description of simulation models and the relationships between them in a

formal manner, this framework also supports the simplified re-use of federate simulations

in multiple federations. As a foundation to this framework, a schema to enable the

capture of simulation concepts in an ontology is specified. Further, steps are elaborated

for capturing knowledge as to the relationship between different federate simulation

entities. Finally, a graph-based algorithm is developed to extract the appropriate common

information model and transformation procedures between federate and common

simulation entities.

As a proof of concept, this framework is applied to support the development of a

federated air traffic simulation. To progress with the design of an airport, the combined

operation of its individual systems (air traffic control, ground traffic control, and ground-

based aircraft services) in handling varying volumes of aircraft traffic is to be studied. To

do so, the individual simulation models corresponding to the different sub-systems of the

airport needs to be federated. The ontology-based framework is employed to support the

development of this federation.

 1

CHAPTER 1

INTRODUCTION

Computer-based simulation is pervasive in the systems realization process, and provides

an effective means of predicting system behavior that is a favorable alternative over

physical experimentation. In the development of complex systems, distributed and

federated simulation is instrumental in supporting the development and integration of

sub-systems in a time and cost effective manner. In this chapter, we highlight the

importance of federated simulation in systems engineering (Section 1.1), and discuss key

issues and challenges faced in developing federated simulations. We motivate the

research presented in this thesis by elaborating challenges faced in achieving

interoperability between federate simulations, specifically concerning the fact that

simulations employ disparate representations of coupled concepts. Achieving

interoperability between simulations can be an effort-intensive task that is in the critical

path of a system’s development. In this context, we pose research questions and

accompanying hypotheses so as to investigate how the challenges associated with

attaining interoperability in simulation federations can be alleviated (Section 1.2). A plan

for validating the proposed hypotheses is laid out in Section 1.3. Finally, the layout of the

remainder of this thesis, in the context of executing the validation plan, is presented in

Section 1.4.

 2

1.1 The Importance of Simulation in Design

The design of complex engineering systems is a multi-step process in which a set of

design goals and requirements are transformed into a functional system, whose behavior

in its intended environment meets the above mentioned goals. Several methodologies to

guide the design of complex systems have been developed, such as the systematic design

method by Pahl and Beitz (1996) and the systems engineering approach (Forsberg and

Mooz 1992). One common activity in these methodologies is modeling and simulation. In

the words of Bernard Zeigler, “Modeling refers to the process of organizing knowledge

about a given system” (Zeigler 1990). Simulation is the process of performing

experiments on a model. By performing simulations, knowledge about a system is

gained. Therefore, “it can be said that modeling and simulation are the most central

activities that unite all scientific and engineering endeavors” (Cellier 1991). In the age of

electronics, computer-based modeling and simulation have become increasingly popular

and ubiquitous in engineering design. When analytical techniques and physical

experimentation are not viable, simulation provides an avenue by which the behavior of a

system can be studied. The key merits of simulation in the context of systems design are

listed as follows:

 To explore and focus the solution space corresponding to a given design

problem, at a reasonable cost: Systems design can be viewed as a process in

which the solution space for a given design problem is progressively constrained

until a point solution is obtained. In order for a designer to make educated

 3

decisions about a given aspect of a system, it is important to explore the solution

alternatives available. Based on this exploration, the designer can then pick the

best suited alternative, and focus all subsequent design activities on further

refining the solution space. The exploration of a large solution space can be a very

time and cost intensive operation. For example, the time and workforce required

to develop physical models and conduct experiments on them can be tremendous,

especially for expensive, complex systems such as aircrafts and satellites. In the

design of business processes and services, it is usually economically infeasible to

set up different pilot services and determine which works best. Computer-based

simulation can be used to perform such explorations at a lower cost (in terms of

time, workforce and monetary value). At the early stages of design, intended

behavior and function simulation can be applied to gauge how different concepts

may be used to address functional requirements of a system at a relatively high

level of abstraction. As design progresses, designers can simulate the form of the

system, optimize its attributes at a fine level of granularity and verify that its

expected behavior is in line with how it was intended to behave.

 To reduce uncertainty about the system and reduce the changes of design

failure: The design process can be viewed as information and knowledge

driven—as the design of a system progresses, designers apply knowledge to add

and transform information about the system until a complete, detailed

specification is achieved. The growth of explicit information and knowledge

about a system leads to a reduction in epistemic uncertainty (uncertainty

 4

characterized by lack of knowledge, as opposed to inherent randomness).

Simulation is basically an activity in which knowledge (models) are applied to

existing information about a system and its environment, to obtain new

information and knowledge about that system (its behavior). Therefore,

simulation can be used to reduce epistemic uncertainty associated with the

different aspects of the system (its components, its behavior, its form etc.)

(Aughenbaugh and Paredis 2004).

 To predict and analyze a system’s behavior in an artificial environment:

Often times, the environment in which a system is to operate and interact with is

not fully known to the designer. Several systems create or change their

environment as they operate. Other systems, once they are built, must interact

with humans or other existing artificial or natural systems. Through simulation,

the behavior a system being designed and its interactions with its environment can

be predicted. Simulation is an effective tool to aid in studying a system’s

sensitivity to varying environmental stimuli, so as to design an end-product that is

robust to noise.

 To guide the development of multiple sub-systems so that the overall system

behavior meets the design goals: As engineered systems become increasingly

large-scale and complex, they begin to span several engineering domains and

cannot be designed by an individual. For the development of such systems, a

holistic, hierarchical decomposition approach, namely systems engineering, is

 5

taken on. Systems engineering models, such as the ‘Vee’ model (Forsberg and

Mooz 1992) (illustrated in Figure 1.1), prescribe the decomposition of a complex

system into a hierarchy of sub-systems, each of which may be coupled with other

sub-systems. A design-to specification for each sub-system is developed and

handed off to individual development teams that are experts in their own domains.

At this point, an important challenge that arises is in making sure that the design

of individual sub-systems progress in such a fashion that when integrated, the

overall system meets its behavior objectives. We have already established that

simulation is instrumental in progressing through the development of each sub-

system. In addition, simulation has a large hand to play in coordinating the

concurrent design of multiple sub-systems. Very often, there is significant

coupling between the various sub-systems of a complex system. That is, the

decisions made regarding the attributes of one sub-system impact the design of

other sub-systems. There may be many cost and performance trade-offs that

should be investigated as they play an important role in determining the behavior

of the overall system. Therefore, it is critical to make decisions about coupled

design attributes in a concurrent fashion.

 6

Understand User
Requirements, Develop

System Concept and
Validation Plan

Develop System
Performance Specification
and System Validation Plan

Expand Performance
Specifications into CI

“Design-to” Specs and CI
Verification Plan

Fab, Assemble and Code to
“Build-to” Documentation

Evolve “Design-tp”
Specifications into “Build-

to” Documentation and
Inspection Plan

Inspect to
“Build-to”

Documentation

Assemble CIs and
Perform CI Verification

to CI “Design-to”
Specifications

Integrate System and Perform
System Verification to

Performance Specifications

Demonstrate and
Validate System to

User Validation Plan

In
te

gr
at

io
n

an
d

Qua
lif

ica
tio

n

Decom
position

and Definition

Time

Systems Engineers

Discipline Engineers

Understand User
Requirements, Develop

System Concept and
Validation Plan

Develop System
Performance Specification
and System Validation Plan

Expand Performance
Specifications into CI

“Design-to” Specs and CI
Verification Plan

Fab, Assemble and Code to
“Build-to” Documentation

Evolve “Design-tp”
Specifications into “Build-

to” Documentation and
Inspection Plan

Inspect to
“Build-to”

Documentation

Assemble CIs and
Perform CI Verification

to CI “Design-to”
Specifications

Integrate System and Perform
System Verification to

Performance Specifications

Demonstrate and
Validate System to

User Validation Plan

In
te

gr
at

io
n

an
d

Qua
lif

ica
tio

n

In
te

gr
at

io
n

an
d

Qua
lif

ica
tio

n

Decom
position

and Definition

Decom
position

and Definition

TimeTime

Systems Engineers

Discipline Engineers

Systems Engineers

Discipline Engineers

Figure 1.1: The ‘Vee’ Model for Systems Engineering

1.1.1 Distributed and Federated Simulations

To predict system-level behavior when exploring the solution space for coupled sub-

systems, distributed and federated simulation systems are often useful. A distributed

simulation is simply one that is executed on multiple computers that are geographically

distributed. A federated simulation is a system-level virtual experiment in which

multiple sub-system or federate simulation models participate. The idea of a federated

simulation is akin to that of political federations, which are conglomerates of regional

governments with a common central government. Regional governments enforce policies

in their individual districts and work with each other to enforce state-wide policies.

Similarly, in a federated, distributed simulation, individual models (developed by

disparate, geographically distributed teams on their own computers) can be linked

 7

together so as to be able to exchange information with each other when executed. A

simulation model is referred to as a federate if information about the phenomena it

models is ‘published’ to other simulations during their parallel execution. Similarly, a

simulation is a federate if certain phenomena modeled in other (federate) simulations

affect its execution. A collection of federate simulations that exchange information with

each other comprise a federation. The concurrent execution of federate simulations such

that they exchange information with each other is referred to as a federated simulation

experiment.

Typically, the individual simulations in a federated simulation are discrete event

simulations. The changes of state in a discrete event simulation are viewed to occur at

discrete points in time. Interaction in a federated simulation is event-driven—the changes

in state in one simulation are communicated in real-time to other coupled simulations,

whose states can subsequently change. This interaction is message-based, where one

simulation ‘publishes’ information in a message, which another federate can ‘subscribe’

to by receiving a corresponding message. In this manner, the interaction between coupled

sub-systems and the resultant emergent behavior at the system-level is studied using

federated simulations.

Federated simulation plays a key role in the systems realization process. We have already

seen that such simulations can be used to study the behavior of complex systems, and

support decision-making when sub-systems are involved. In doing so, federated

simulations uncover unanticipated or emergent behavior that designers have no prior

 8

knowledge of. Furthermore, these simulations do this at a reasonable cost; the only other

way to study system-level behavior would be to create and integrate physical models,

which is probably not feasible for most complex systems. Federated, distributed

simulation also helps to facilitate system-level optimization, wherein the effect of

tweaking sub-system level parameters on the overall system behavior is gauged.

Similarly the reliability and robustness of a system and issues related to the integration of

sub-systems developed in a distributed manner can be studied with the help of federated

simulations.

As one might imagine, distributed simulation is used to support system realization in

several application areas. For example, in the military community, federated simulation

systems are used to conduct war gaming simulations to evaluate attack and defense

strategies and to develop training environments for military personnel, wherein humans

are part of a simulation federation. In the semiconductor design domain, distributed

simulations are used to simulate gate-level logic interaction between components in large

integrated circuits. But perhaps the quintessential example to highlight the use of

distributed simulation is in the design of an airport. By any standard, a airport is a

complex system, composed of several interacting sub-systems such as the air traffic

control system, runway and taxiway systems, passenger service systems and

communications systems. Following the systems engineering approach, the airport’s

specification is decomposed into specifications for each sub-system. Here, distributed

simulation systems can be used to ensure that the subsystem level (executable)

specifications (Aughenbaugh and Paredis 2004) together reflect those of the overall

 9

airport being designed. While the individual sub-systems can be designed by disparate

teams, they cannot be designed completely autonomously. Distributed simulation is used

to study how these systems interact to perform the system-level operational requirements

of the satellite. Since safety is a big issue with respect to airports, distributed simulation

can be used to determine how the different systems behave in reaction to security

breaches, emergencies, mishaps and so on. Note that the cost of performing such

experiments physically would be tremendous. The airport example illustrates what is true

for all complex systems developed following systems engineering models such as the

‘Vee’: Distributed, federated simulation plays a vital role in the systems development

process.

The idea behind the federated approach to performing distributed, parallel simulations is

to organize discrete event simulations such that they are reusable, by defining a message-

based interface between them. Theoretically, this is a very efficient way to integrate a

collection of simulation models and facilitate interplay between them. However, in

practice, federate simulations are not readily reusable, as a result of which the

development of federations is quite complex and requires significant effort. Significant

complexity arises from the fact that federate simulations model coupled concepts in

different ways. In the next section, challenges specific to developing simulation

federations and facilitating communication between individual federate simulations are

discussed as motivation for the research questions posed in this thesis.

 10

1.1.2 Requirements of Federated Simulations

In the previous section, the significance of distributed and federated simulation to support

the development of complex systems has been highlighted. Simulation federations

facilitate the composition of and the interaction between sub-system level simulation

models, so as to simulate the emergent behavior of the entire system. However, the task

of developing federated simulations is not trivial. There are several issues that make

distributed simulation challenging, such as (i) integrating component simulation models,

and (ii) providing a means for real-time communication. These challenges are elaborated

in this section. Specifically, the reader’s attention is focused on the issue of developing

and using simulation information models to support the integration of federate simulation

models.

A key challenge in developing and executing distributed simulations is achieving

technical interoperability between federate simulations. Technical interoperability refers

to the capability of federate simulations to connect and exchange information with each

other at run-time (Dahmann, Salisbury, Turrell et al. 1999). The chief elements of

achieving technical interoperability are:

 Representational compatibility

 Run-time information exchange

 Time management coordination

 Security issues

 11

As is explained in the paragraphs below, achieving interoperability requires significant

effort, and involves the creation and application of compatible interfaces, middleware and

information models.

Representational Compatibility: “Most simulation software systems live in isolation”

(Cellier 1991). That is, disparate simulation environments exist in which domain-specific

simulation models can be generated and executed. For example, CAD software tools such

as ProEngineer and Catia facilitate geometric modeling and simulation for mechanical

systems, while integrated circuit simulation is carried out on tools such as Cadence. Each

of these domain-specific simulation environments employ disparate ways in which

models are represented. Each software system may even define its own language for

capturing models (example: VHDL and PSPICE for integrated circuit modeling). The

fact that different simulation systems employ different representations is a major issue in

linking coupled concepts between federate simulation models in a distributed simulation.

Aside from the representational constraints enforced by the simulation system, simulation

model developers themselves can represent concepts in multiple ways within their

individual sub-system models. For example, the models corresponding to one sub-system

may employ SI units of measurement, while that of another coupled sub-system may be

expressed in the British Foot-Pound unit system.

The run-time exchange of information between distributed simulations requires a

common information model that defines the (representation of) objects and events that

simulators can publish or subscribe to (Morse 1996). To address the problem of disparate

 12

representations, simulation developers create information models to document how

concepts have been represented in their simulation models. Using these simulation

models, the set of objects and events that are related and the discrepancies in their

representations can be identified. Having identified these inconsistencies, model

developers must agree upon a common representation for related concepts and modify

their simulation models accordingly. Furthermore, it is often necessary, especially for

legacy simulators, to implement translation routines (stubs) that convert the object and

event types in this common information model to the object and event types used in the

legacy implementation. The tasks of defining simulation information models, comparing

them, coming to an agreement on how coupled or related concepts should be modeled,

modifying individual simulations and building translation stubs around them adds to the

cost of facilitating distributed simulation. As the complexity of the coupling between sub-

systems increases, the time and effort invested into these tasks increases (Ryde and

Taylor 2003). Given the competitive nature of the marketplace for complex products and

services, being cost-effective and first-to-market are important goals of a distributed

design team. Therefore, the task of integrating sub-system simulations in a cost and time

effective manner becomes an important challenge in employing federated simulation to

support the design of complex systems.

Run-Time Information Exchange: Aside from resolving representational

inconsistencies across federate simulations, there is still the issue of facilitating

communication between these simulations as they execute. When the state of a coupled

entity in one simulation changes, that change should be reflected in other simulations,

 13

whose states may change as a result. Therefore, a run-time infrastructure (RTI) is

required to provide services in which the changes or updates of coupled objects and

events are recognized and reported in real-time. Also, middleware has to be developed so

that each federation simulation environment (which is responsible for executing a

federate simulation model) can interface with the run-time infrastructure services, to

indicate the changed state of a coupled simulation object or event. This middleware is

also responsible for ensuring that information about coupled concepts is presented in an

exchangeable representation. Developing an RTI and middleware is not a trivial task.

Again, cost, time and effort is expensed to do so, which can be quite significant when the

simulations are tightly coupled.

Time Management and Synchronization: Time management is a key element of

technical interoperability in a federation. Time management deals with mechanisms that

control the transient advancement of each federate simulation. The mechanisms must be

in place so that information is conveyed between different simulations in a timely

manner. Not all simulation execute at wall clock speed; when two coupled simulations

advance at different rates, the true emergent system behavior is not simulated unless the

cause and effect interactions between these coupled simulations are presented in the

correct order. Therefore, individual simulation time advances need to be paced and

coordinated (Dahmann, Fujimoto and Weatherly 1997). The solution to this problem is to

control logical time-advances in a distributed simulation within the RTI. Each individual

simulator (on which federate models are being executed) must then request time advances

from the RTI. Time management issues add more overhead to the process of setting up a

 14

distributed simulation. Along the same lines as time management is the issue of

synchronization. Consider a distributed simulation consisting of three coupled sub-system

level models. If Model A receives messages indicating a change in state of coupled

simulation parameters from both Models B and C, one would need to determine which

message to process first (Ryde and Taylor 2003). To do so, some mechanisms to order

and synchronize message-passing between federate simulations must be developed. In the

absence of such mechanisms, a given distributed simulation execution could end up in

deadlock (Fujimoto 2000).

From the key challenges in achieving technical interoperability between federate

simulation models, it is clear that developing and executing distributed simulations is not

trivial. As the complexity of coupling between sub-system models increases, so does the

difficulty of setting up a system-level simulation federation. That being said, it would be

significantly beneficial if one or more of the tasks associated with achieving

interoperability could be avoided when a federate simulation model is reused in another

distributed simulation. This is a challenge in itself.

Having visited the various challenges associated with attaining technical interoperability,

a context and motivation for the research presented in this thesis is laid out. Now the

reader’s focus is shifted to the research goals in this thesis—to address and mitigate a

subset of the challenges associated with achieving interoperability between federates in

distributed simulations. In the following section, the research questions (and hypotheses)

posed and answered in this thesis are elaborated.

 15

1.2 Research Focus and Questions

In the previous sections, the context (distributed simulation), and motivation (challenges

in developing federated simulations) have been outlined. The purpose of this section is to

clearly define the research contribution presented in this thesis. Having identified the key

challenges in distributed simulation, research questions are posed with the intent of

addressing (a subset of) those challenges. Hypotheses corresponding to the research

questions are proposed and the overall vision for addressing specific challenges

associated with federation development is presented.

It has been established that although distributed simulation is very powerful in supporting

the realization of complex systems in a cost and time effective manner, the task of

developing and executing distributed simulations itself can be quite cost and time

intensive. Associated with the elements of technical interoperability is the overhead of

tailoring simulation models and simulators to participate in a federated simulation.

Mitigating the cost, effort and time required to conduct these tasks would significantly

increase the efficacy of distributed simulation in supporting complex systems design.

This is essentially the motivation behind the research presented in this thesis. However,

addressing all the challenges associated with achieving technical interoperability is a

gargantuan problem. Therefore, this research is focused on addressing a sub-set of these

challenges. In this thesis, the research conducted is focused on addressing the issue of

representational compatibility between federate simulations. Specifically, we investigate

how it may be possible to reduce the cost, time and effort required to achieve consistent

 16

information transfer between simulations employing different representations of related

concepts.

One way to reduce the overhead incurred in performing the tasks associated with

achieving representational compatibility would be to automate them. These tasks include

developing information models corresponding to individual simulation models,

identifying relationships between concepts, identifying discrepancies between the

representations of related concepts and rectifying all representational inconsistencies. At

the outset, it should be noted that these tasks cannot be completely automated. In order to

develop an information model for a federate, knowledge of the concepts modeled in that

federate is required. This knowledge cannot be generated by a computer; it must be

provided by humans, probably those that developed the federate simulation models.

Furthermore, a computer does not have prior knowledge of which concepts in federate

simulations are meant to be related (effectively which aspects of sub-systems are

coupled). While a computer cannot completely automate the process of achieving

representational compatibility between federate simulations, it can conceivably support

this process. The use of a system to partially automate this overall process would

significantly mitigate the tedium, time and hence cost associated with ensuring

representational compatibility in a distributed simulation. In this thesis, the realization of

such a system is investigated. Hence, the primary research question to be answered is as

follows:

 17

Question 1: How and to what extent can the process of achieving representational

compatibility between simulations in a federation be automated?

It has already been established that knowledge is required to perform tasks associated

with attaining representational consistency. While a computer cannot create knowledge

on its own, it can apply knowledge provided by a human being. Therefore, an important

task in the above stated automation problem is the capture of knowledge such that it can

be used by a computer. The development of knowledge-based systems to capture human-

provided knowledge such that it is interpretable by a computer is a fast-growing research

field. As systems engineering becomes increasingly knowledge-intensive and

collaborative, the need for computational frameworks to enable engineering product

development, by effectively supporting the formal representation, capture, retrieval and

reuse of product knowledge, has become critical (Szykman, Sriram and Regli 2001).

Several research efforts have been taken on to address the capture and use of knowledge

related to systems design. Specifically, (Horvath and Van Der Vegte 2003) and (Liang

and Paredis 2004) have applied the use of semantic technologies to formally capture

design related metadata. Semantic technologies refer to languages and models to capture

metadata and tools to apply them. These technologies were pioneered by the World Wide

Web community in the effort to represent knowledge about web content in a machine-

processable form (Davies, Fensel and Van Harmelen 2003). The goal of semantic

technologies is to allow different agents (software or human agents) to interoperate and

share meaning. Just as semantic technologies have been leveraged to capture knowledge

related to the design of a system, they can conceivably be applied to capture knowledge

relating to the design of a federated simulation.

 18

A key constituent of semantic technologies are Ontologies. Basically, Ontologies are

information models developed to capture metadata about web content. An ontology is

defined as a specification of a conceptualization—it captures the different concepts and

relationships between them in a given Domain of Discourse (DoD) (Gruber 1993). The

key ingredients that make up an ontology are a vocabulary of basic terms, a precise

specification of what those terms mean and how they relate to each other. By organizing

knowledge in a discrete layer for use by information systems, ontologies enable

communication between computer systems in a way that is independent of the individual

system technologies, information architectures and applications (Berners-Lee, Hendler

and Lassila 2001; TopQuadrant 2003).

In this thesis, the use of ontologies to capture knowledge requisite to support the process

of achieving interoperability between simulations is proposed and demonstrated.

Ontologies can be used as a medium for representing knowledge about the concepts

defined in a federate simulation. Such ontologies would describe the semantics (or

meaning) of concepts defined in each simulation model participating in a given

federation. Given a formal definition of the meaning of each concept, the representational

differences between two related concepts can be identified automatically. That is,

software can be developed to query the knowledge captured in an ontology and determine

facts about each concept in a simulation model. From these facts, the software can

automatically determine if two concepts have equivalent representations.

 19

Above and beyond this, the knowledge contained within simulation ontologies can be

applied to determine the representational mapping between related concepts. That is, a

transformation to convert information from one representation to another could possibly

be derived in an automated fashion, based on the existing set of relationships captured in

an ontology. The automated generation of such transformations is very helpful in

mitigating the cost of achieving interoperability. Recall that in a distributed simulation,

simulations models can have disparate representations of related concepts, and translation

stubs must be built around them to convert information sent to (and received from) the

RTI into a common form that ensures consistent information transfer when the distributed

simulation is executed. In essence, these stubs can be developed automatically, to be

employed by the middleware that interacts with the run-time platform. (A more detailed

explanation as to how these transformations could be generated in an automated fashion

is presented at a later point as the hypothesis to another research question).

The vision for an ontology-based framework that supports automation in achieving

interoperability (representational compatibility to be specific) in a federated simulation is

illustrated in Figure 1.2. The key components in this framework are (i) ontologies for

participant simulation models (in which the objects and events defined in federate

simulation model are captured), (ii) a federation-level ontology in which a common

representation for shared simulation concepts is captured and (iii) a system to apply the

semantics of individual simulation concepts to determine representational relationships

between them. Federate simulation developers provide knowledge about the

representation of simulation concepts in their models through the specification of

 20

simulation models. When a federated simulation is to be created, federation developers

can specify the set of related federate simulation concepts, based on which a common

information model for consistent run-time information exchange is developed. The

common representation for shared simulation concepts is captured in a federation-level

ontology. Finally, the semantics captured in the federate and federation ontologies are

used to automatically create transformation stubs to convert entities between their

common and federate representations.

Objects

Events

Simulation Ontology A

Objects

Events

Simulation Ontology A

Objects

Events

Simulation Ontology B

Objects

Events

Simulation Ontology B

Objects

Events

Federation Ontology

Objects

Events

Federation Ontology

Transform Transform

Sim. Model A Sim. Model B

Figure 1.2: Vision for an Ontology-Based Framework to Support Automated
Simulation Integration

We project that there are certain limitations as to the extent of automation that can be

achieved using the ontology-based approach. Clearly, complete automation of the process

of achieving representational compatibility is impossible. Only that knowledge which has

been captured in a machine-interpretable, formal representation (an existing ontology)

can be applied to support achieving interoperability in an automated fashion. Capturing

the entire set of knowledge requires a complex knowledge model. In the framework

 21

discussed above, we seek to arrive at a knowledge model that strikes a balance between

expressiveness (the level of semantics that can be captured) and efficiency (the effort

required to capture these semantics in an ontology). Beyond some level of semantic

‘richness’, the task of capturing and applying knowledge to support automation becomes

significantly complicated, but the resultant payoff is not significant. In the framework

illustrated above, we envision the use of ontologies to capture the knowledge required to

generate a common information model and associated transformation stubs for a majority

of coupled concept scenarios. Specifically, we aim to automate the generation of a

common information model and transformation stubs for related federate simulation

entities that model the same concept. For a scenario wherein simulation entities that refer

to distinct yet related concepts are coupled, a richer set of semantics are required to

(knowledge about the conceptual relationship between the two simulation entities) in

order to generate transformation stubs to convert between the two entities. We do not

intent to support automation in such cases, given their infrequency and the significant

added complexity of capturing and applying additional semantics. However, it is

important to ensure that the required transformation stubs for such scenarios can be

specified manually in an intuitive fashion.

Based on the idea of using ontologies to capture knowledge, the hypothesis proposed in

connection with research Question 1 is as follows:

 22

Hypothesis 1: Ontologies can be used to formally describe the semantics of concepts in a

federate simulation model. These semantics can then be applied to generate a required

common information model and associated transformation stubs in a partially automated

fashion.

The framework and hypotheses posed above allude to more research questions

concerning specific elements of the overall approach. Below, those questions and

corresponding hypotheses are elaborated. The division of the overall research question

stated above into a set of sub-questions helps to frame the research problem better and

ensure that the work undertaken explicitly addresses key issues in automating the process

of achieving interoperability in a distributed simulation.

In the framework outlined above, it is proposed that ontologies be employed as a tool to

capture knowledge implicitly known by a distributed simulation developer, in a formal,

reusable format. Once captured, this knowledge can be applied to automate the process of

attaining representational compatibility in a federation. However it is not clear how this

comes about. There are two specific areas that need to be focused upon in hypothesis 1—

(i) the way in which knowledge about simulation concepts is to be modeled in an

ontology, so as to support the automated inferencing of relationships between disparate

representations of shared concepts, and (ii) the process by which knowledge captured in a

simulation ontology is applied to infer these relationships. Addressing these issues is

critical to answering the overall research question posed in the context of the proposed

hypothesis. Therefore, two subordinate research questions are identified as follows:

 23

Question 2: How should simulation concepts be represented in an ontology to support

achieving interoperability?

Question 3: How can the transformations between two representations of a simulation

concept be derived in an automated fashion?

For the relationship between two entities to be inferred in an automated fashion, the

semantics of those two entities should be unambiguous. In order to differentiate between

the ‘meaning’ of two concepts, both those concept must be defined using the same

vocabulary (at some level of abstraction). The same is true for determining the

representational relationship between two entities in a simulation federation. Therefore,

all concepts in a simulation model should be described using a common baseline

vocabulary.

Ontologies capture knowledge about a DoD in discrete layers. A set of terms (and

relationships) comprising all the concepts defined in one ontology can be used as a

metamodel for specifying knowledge about individual entities in the DoD. In other

words, an ontology defines a vocabulary to describe individual instances in a domain. At

a lower level of abstraction, these instances can be used as a vocabulary to describe more

concrete entities. For example, one ontology may define the semantics of a vehicle,

which can be used as a metamodel for capturing information about sedans and coupes.

These semantics could then be applied to describe the Mercedes SL55 coupe and the

BMW M5 sedan, and differentiate between them based on the relationships defined

(between sedans and coupes) at a higher level of abstraction.

 24

This layered approach to capturing knowledge can be applied to capture the semantics of

simulation concepts such that relationships between shared concepts can then be inferred

automatically. A baseline ontology can be developed that serves as a metamodel for

capturing all federate simulation domains. This metamodel should define the notion of

simulation concepts (objects, events and their attributes) without limiting expressiveness

(so that the definition of individual simulation concepts is not overly constrained). If all

federate simulation concepts are defined in terms of this metamodel, the meaning of

every concept in every simulation ontology is unambiguous, and the relationship between

two coupled concepts in a federation can be derived in an automated fashion. Hence, the

hypothesis corresponding to research question 2 is termed as follows:

Hypothesis 2: A metamodel for specifying simulation ontologies can be developed. The

set of concepts and relationships between them defined in this metamodel form a

vocabulary for describing simulation ontologies. If all simulation concepts are modeled

using the same vocabulary, the relationships between two coupled simulation concepts in

a federation can be inferred in an automated fashion.

Having discussed the capture of simulation concepts in an ontology, a hypothesis

corresponding to research question 3 is elaborated below. As mentioned earlier, the

relationship between two disparate representations of a concept in a distributed

simulation can be derived in an automated fashion, based on the existing semantics.

Relationships between federate simulation objects and events are to be specified in terms

of a common information model to facilitate consistent exchange of information at run-

time. That is, a common representation for all shared concepts is to be defined, and

relationship between two federate simulation objects is to be captured as relationships

 25

between each of them and their common representation. Further, transformation routines

or stubs must be generated as procedural forms of these relationships.

All simulation entities are specified in terms of a common set of concepts (objects,

events, attributes, and primitive data types) defined in the same metamodel. Within this

metamodel, a set of relationships between these concepts are defined, including

equivalence, inheritance, unit conversions, and other complex mathematical relationships.

When a given simulation entity is modeled, an association relationship is instantiated

between that entity and a set of concepts defined in the metamodel. Therefore, the

relationship between two simulation entities can conceivably be derived as a chain of

relationships— the association between those entities and the metamodel concepts plus

the relationship between the specific metamodel concepts. In other words, existing

relationships can be composed together to generate the required representational

relationship between two simulation entities.

As mentioned earlier, in order to derive relationships between two simulation entities in a

federation, a common representation of those entities is prerequisite. In the proposed

ontology-based framework, a federation-level ontology can be developed in which a

common representation for the set of coupled entities in a federated simulation is

captured. A human must explicitly indicate which set of entities in the individual

simulation ontologies are mapped to each other. A corresponding federation-level

ontology comprising a non-redundant set of common object and event representations

can then be developed. The instantiation of such a common information model can be

 26

automated based on the notion that the common representation of a shared entity can be

selected as one of its existing federate representations. The development of an algorithm

to automatically determine a common representation for shared concepts in a federation

is explored in this thesis.

Furthermore, software can be employed to apply the knowledge contained in the set of

ontologies in a federation to generate transformations between the federate and common

representations of simulation entities. An algorithm must be developed to determine

relationships between federate entities and their common representation equivalents in an

automated fashion. The application of graph theory and graph traversal algorithms to the

development of such an algorithm is proposed. The approach envisioned is as follows: an

algorithm can query ontologies associated with a given simulation federation to construct

a connected graph that comprises the existing relationships. In this graph-based approach,

simulation entities and metamodel concepts would be captured as nodes and the

relationships between them as edges. Existing graph traversal algorithms could then be

leveraged to find paths connecting those nodes between which relationships have to be

derived (Kasyanov and Evstigneev 1994). In this manner, semantics can be exploited to

infer relationships between simulation entities as a sequence or chain of existing

relationships (Figure 1.3). Assuming that the relationships specified at the metamodel

level are captured as procedures, the required transformation stubs can be generated

automatically as well.

 27

Federate Ontology

Federation Ontology

Simulation Ontology Meta Model

Common Object

Federate Object

Figure 1.3: Composing a Chain of Relationships

The hypothesis proposed corresponding to research question 3 is:

Hypothesis 3: Relationships between federate simulation entities are captured in terms of

a relationship with their common, federation-level representation. The relationships

between concepts defined in the simulation ontology metamodel can be composed

together to derive the federate-common entity relationships. An algorithm can be

developed to generate a connected graph of existing relationships in the federation.

Graph traversal algorithms can be developed to identify relationships between simulation

entities a chain of these existing relationships.

It is important to note that not every relationship and associated transformation stub can

be derived automatically. Only those relationships that can be expressed by applying

existing semantics can be inferred. Even if all simulation entities are expressed in terms

of the same baseline concepts, additional knowledge may be required to determine

 28

relationships between two (or more) simulation entities. As discussed earlier, two

coupled simulation entities may refer to different but related concepts (such as radius and

diameter). While a relationship between their disparate representations (such as unit

conversion) can be derived automatically, the inherent relationship between the two

entities (radius=diameter/2) must be specified by a human. Moreover, the set of

relationships defined in the ontology metamodel may not be comprehensive. Therefore,

it is important to consider and provide for human interaction and knowledge input in the

proposed framework.

Furthermore, it should be noted that in taking on the approach of composing existing

transformations together, the automatically derived transformation stub may not always

represent the best conversion between two simulation entities. The best transformation is

the simplest composition of existing relationships that entails the least amount of

information loss in converting a simulation entity from one representation to the other.

The automated selection of transformations is based on a heuristic that may not always

report the best possible composition of relationships. Furthermore, the limited set of

semantics captured in this framework does not allow us to specify degrees of information

loss in transformations. Therefore, we are not able to distinguish between transformations

that involve information loss. Finally, a composition of existing transformations may not

always be valid; knowledge to establish the validity of a composed transformation is not

captured in this framework. For these reasons, it is apt to use the approach outlined above

to arrive at ‘suggested’ transformations between simulation entities in an automated

 29

fashion. These suggestions may be approved or revised manually, based on whether the

transformation arrived at is satisfactory.

The research questions posed above are directed towards alleviating the cost of achieving

interoperability between federate simulations, specifically focused upon the issue

representational compatibility. Question 1 is a rather broad question in which automating

of the process of achieving representational compatibility is pondered. In the associated

hypothesis, the use of semantic technologies to capture and apply knowledge in support

of such automation has been elaborated. The vision for a framework in which the

semantics of simulation concepts are described in ontologies and used to automate the

process of relating federate simulation entities is presented. This vision leads into

research questions 2 and 3 in which the specifics of representing simulation concepts in

ontologies and the subsequent automated generation of transformation procedures are

contemplated. In the context of the vision presented, the approach of capturing semantics

in discrete layers and composing together existing relationships is proposed. In

automatically defining relationships between disparate representations of shared

simulation concepts, this framework offers significant potential to assuage the task of

achieving technical interoperability in a distributed simulation. Furthermore, the

ontology-based approach supports reuse of existing federate simulation models in myriad

distributed simulations. Once a formal description of the objects and events represented

in a given simulation model are captured in an ontology, that knowledge can be applied

every time the simulation model is part of a new federation. That is, a set of

 30

transformation stubs to convert to and from any federation’s common representation

could be arrived at in an automated fashion.

That being said, it is important to note that universal interoperability is not, and should

not be the goal of this framework. Universal interoperability is the ability of a simulation

to interoperate with any federation, regardless of purpose or technical implementation.

Different simulations are developed with different purposes in mind. In many simulation

models, behaviors and laws are approximated. Approximations made in one model may

not be valid in another. The set of concepts defined in one simulation may be more

superficial than in another. The integration of such disparate simulations could render the

results of the resultant distributed simulation invalid or untrustworthy. Moreover, there

are other issues related to time-management and run-time information exchange that

could impact interoperability. The focus of the framework proposed is not to determine

simulation compatibility or guarantee interoperability, but to simplify and support the

process of arriving at an interoperable set of simulations.

The research questions and hypotheses developed in this section form a scaffolding for

the remainder of this thesis—the subsequent chapters are focused on further developing,

verifying and validating the vision presented above. In the following section, the strategy

employed to validate the hypotheses is elaborated, following which, the organization of

the remainder of the thesis is presented in the context of answering the research questions

identified. Before proceeding to these sections, the research questions and associated

hypotheses are collectively reiterated below in Table 1.1.

 31

Table 1.1: Research Questions and Hypotheses

No. Research Questions and Hypotheses

Question 1 How and to what extent can the process of achieving representational
compatibility between simulations in a federation be automated?

Hypothesis

Ontologies can be used to formally describe the semantics of concepts in a
federate simulation model. These semantics can then be applied to generate
a required common information model and associated transformation stubs
in a partially automated fashion.

Question 2 How should simulation concepts be represented in an ontology to support
achieving interoperability?

Hypothesis

A metamodel for specifying simulation ontologies can be developed. The
set of concepts and relationships between them defined in this metamodel
form a vocabulary for describing simulation ontologies. If all simulation
concepts are modeled using the same vocabulary, the relationships between
two coupled simulation concepts in a federation can be inferred in an
automated fashion.

Question 3 How can the transformations between two federate simulation entities be
derived in an automated fashion?

Hypothesis

Relationships between federate simulation entities are captured in terms of a
relationship with their common, federation-level representation. The
relationships between concepts defined in the simulation ontology
metamodel can be composed together to derive the federate-common entity
relationships. An algorithm can be developed to generate a connected graph
of existing relationships in the federation. Graph traversal algorithms can be
leveraged to identify relationships between simulation entities a chain of
these existing relationships.

 32

1.3 Validation Strategy

The strategy employed to validate the work presented in this thesis is derived from the

validation square developed by Pedersen and coauthors (Pedersen, Emblemsvag, Bailey

et al. 2000). The validation square, originally developed to support validation of design

methods, is a contextual process of demonstrating the usefulness of a design method in

serving some purpose. Within this model, ‘usefulness’ of a design method is associated

with both its ability to provide design solutions correctly (structural validation) and its

ability to provide sound, correct solutions (performance validation).

The validation square is really a composition of four distinct parts, as illustrated in Figure

1.4. The validation process begins in the upper left-portion and proceeds in a counter-

clockwise direction. The first quadrant deals with Theoretical Structural Validation

wherein the validity of the individual constructs of the design method is accepted. The

second quadrant, labeled Empirical Structural Validation deals with accepting the validity

of the example problem(s) used to demonstrate the purpose of the design method. Next,

Empirical Performance Validation is conducted, wherein the usefulness of the design

method in the context of the example problem is accepted. The final component of the

validation square, Theoretical Performance Validity involves building confidence in the

generality of the design method, and its usefulness beyond the example problem. This

entails building up confidence in the method based on the acceptance of prior structural

and performance validity, based on which ‘a leap of faith’ is taken as to the general

validity of the work.

 33

Theoretical
Structural
Validity

Empirical
Structural
Validity

Empirical
Performance

Validity

Theoretical
Performance

Validity

Figure 1.4: The Validation Square (Pedersen, Emblemsvag, et al., 2000)

The validation square is leveraged to validate the ontology-based framework for

integrating simulations in a federation. Each quadrant of the validation square is

addressed in this thesis, following the process indicated above. First off, the key aspect in

accepting the Theoretical Structural Validity of the framework is to determine ascertain

that it is based on a sound foundation. In Chapter 2, a survey of existing work that can be

leveraged in the development of this framework is presented. This literature survey helps

to determine the internal consistency of the framework and the individual methods and

constructs it makes use of. In Chapter 3, a process model indicating how individual

constructs in the framework come together to support the end purpose (achieving

interoperability in an automated fashion) is used to determine the soundness of the

framework as a whole. To address Empirical Structural Validity, the appropriateness of

the example problem to demonstrate the intended use of the framework is discussed in

Chapter 5. The ontology-based framework is applied to the development of an air traffic

 34

federated simulation, which is representative of a variety of representational

inconsistencies that this framework is geared to address. The usefulness of the framework

in the context of its application to this example problem, i.e. Empirical Performance

Validity is also ascertained in Chapter 5. Here, a detailed discussion as to if and how the

framework is useful in achieving interoperability between the three simulations that

comprise the air traffic federation is included. Finally, Theoretical Performance validity

of the framework is addressed in Chapter 6, where a generalization of the frameworks

usefulness beyond the example case is discussed. The strategy for validating this work in

the context of the validation square is present below in tabular form (Table 1.2). This

table provides the reader with a validation roadmap indicating where and how each

quadrant of the validation square is addressed in this thesis.

 35

Table 1.2: Strategy for Validating the Work Presented in This Thesis

Aspect of Overall
Validity

Strategy Employed Corresponding
Chapter

Conduct literature review to determine the basis
and soundness of framework constructs Chapter 2

Theoretical
Structural Validity Create overall framework process flow model

to ascertain internal consistency of complete
framework

Chapter 3:
Section 3.7

Empirical
Structural Validity

Discuss example problem background. Show
that example problem is within the range of
intended use of the framework.

Chapter 5:
Section 5.2

Empirical
Performance
Validity

In the context of the example problem,
determine if the framework does ‘what it is
supposed to do’. Discuss the merits of using the
framework to mitigate the cost of achieving
interoperability between constituent simulations
of an air traffic federation

Chapter 5:
Section 5.6

Theoretical
Performance
Validity

Make a leap of faith based on structural and
performance validity accepted thus far. Chapter 6

1.4 Organization of Thesis

Having presented the strategy to validate the usefulness of the ontology-based

framework, this chapter is closed with a brief description of how the rest of this thesis is

laid out. The organization of the thesis is illustrated in Figure 1.5, which is a modification

 36

of the thesis roadmap developed in the work of Seepersad (2001). This figure indicates

the development and testing of the hypotheses posed and is meant to guide the reader

through the development and validation of the research work documented in this thesis.

In Chapter 1, the context and motivation for the research conducted has been elaborated.

The overall research question and its two subordinate questions, and their respective

hypotheses are posed, thus setting the foundation for the rest of the thesis. A survey of

related work in the realm of federated simulation and information model management is

presented in Chapter 2. In Chapter 3, the ontology-based framework for supporting

automation in simulation integration is detailed. The development of the individual

components of this framework is elaborated here. Following this, the process by which

knowledge captured in ontologies is applied to automatically instantiate transformations

between simulation entities is presented in Chapter 4.

The following chapters address the performance validity of framework outlined in

Chapters 3 and 4. In Chapter 5, an example federation development problem associated

with the design of a complex airport system is presented, and the use of the framework to

integrate a set of federate simulations (namely the air traffic, ground traffic and ground

services federates) is demonstrated. Finally, Chapter 6 concludes this thesis with a

summary of work, a critical review and a set of recommendations for further

investigation and extension of this research.

 37

Chapter 5:
The Development

of a Federated
Air-Traffic
Simulation

Demonstrate the use of the ontology-based
framework to capture and relate federate simulations

Empirical Performance Validation of the framework
Application and validation of GRIT algorithm

Chapter 5:
The Development

of a Federated
Air-Traffic
Simulation

Demonstrate the use of the ontology-based
framework to capture and relate federate simulations

Empirical Performance Validation of the framework
Application and validation of GRIT algorithm

Chapter 6:
Evaluation and

Reflection

Summary and critical review of research
Future work and extension of the ontology-based

framework
Theoretical performance validation of framework

and GRIT algorithm

Chapter 6:
Evaluation and

Reflection

Summary and critical review of research
Future work and extension of the ontology-based

framework
Theoretical performance validation of framework

and GRIT algorithm

Chapter 4:
GRIT: An algorithm

to Automatically
Derive Procedural
Transformations

Concept graph/tree generation
Common schema generation
Generating transformation stubs

Chapter 4:
GRIT: An algorithm

to Automatically
Derive Procedural
Transformations

Concept graph/tree generation
Common schema generation
Generating transformation stubs

Chapter 1:
Introduction

Context and motivation
Research questions and hypotheses
Validation strategy
Organization of thesis

Chapter 1:
Introduction

Context and motivation
Research questions and hypotheses
Validation strategy
Organization of thesis

Chapter 3:
A Framework
for Integrating

Simulations Using
Ontologies

Definition of components in the framework
A metamodel for simulation ontology specification
Federated simulation development process model

Chapter 3:
A Framework
for Integrating

Simulations Using
Ontologies

Definition of components in the framework
A metamodel for simulation ontology specification
Federated simulation development process model

Chapter 2:
A survey of

Related Work

Existing frameworks for distributed simulation
Efforts to simplify interoperability
Research in information model management
Theoretical structural validation for ontology-

based framework

Chapter 2:
A survey of

Related Work

Existing frameworks for distributed simulation
Efforts to simplify interoperability
Research in information model management
Theoretical structural validation for ontology-

based framework

Phase Chapter Relevance and Key Points

P
R

O
B

LE
M

 D
E

FI
N

IT
IO

N
D

E
V

EL
O

P
M

E
N

T
O

F
FR

A
M

EW
O

R
K

 C
O

N
ST

R
U

C
TS

H
YP

O
TH

ES
ES

 T
ES

TI
N

G

C
LO

S
U

R
E

Figure 1.5: Thesis Roadmap (based on Seepersad, 2001)

 38

CHAPTER 2

A SURVEY OF RELATED WORK

The purpose of this chapter is to review and assess existing research and development

work that is pertinent to answering the research questions posed in Chapter 1. Given the

overall goal of simplifying and supporting the simulation integration process, two key

research areas have been surveyed. First, an existing framework to support federated

simulation, the High Level Architecture (HLA), is studied with the emphasis on how

information modeling has been used to support the task of developing simulation

federations. Within the HLA framework, we explore existing systems to support

automation and reuse in the federation development process, which provide insight into

the development of the proposed ontology-based framework.

The second component of this literature survey is focused in the realm of information

model and schema management. In Chapter 1, we proposed that ontologies can be used to

capture simulation domains and relationships between them. Significant research has

been conducted to address this very issue i.e. how to manage information stored using

distributed and disparate models. Hence, in Section 2.3, general frameworks developed to

address ontology and schema management are discussed. These frameworks provide a

solid foundation for the development of an ontology-based framework where in

simulation concepts can be captured and related across different domains.

 39

2.1 Federated Simulation in the HLA

The High Level Architecture (HLA) is an architecture for federated simulation, which

can be used by simulation developers and users to create simulation applications

(Dahmann, Fujimoto and Weatherly 1997; Dahmann, Salisbury, Turrell et al. 1999;

Defense Modeling and Simulation Office (DMSO) 1999; Kuhl, Dahmann and Weatherly

1999). HLA is an entire framework that is used to model federate simulations, group

them together in federations and facilitate the execution of federated simulations wherein

information can be exchanged between federates in real-time. Since the capture and use

of simulation information models in HLA is similar to our approach to support simulation

integration (as discussed in Chapter 1), it is important to understand how information

models are used to help develop federated simulations in HLA. Much of this approach

can be leveraged in implementing the proposed framework. The process of developing

HLA federations, associated limitations and existing work undertaken to address those

limitations are elaborated in this section.

“The High Level Architecture (HLA) is a general-purpose architecture for simulation

reuse and interoperability. The HLA was developed under the leadership of the Defense

Modeling and Simulation Office (DMSO) to support reuse and interoperability across the

large numbers of different types of simulations developed and maintained by the

Department of Defense” (Defense Modeling and Simulation Office (DMSO) 2004) .

HLA emerged as a result of three Defense Advanced Research Projects Agency

(DARPA) contracts in 1995, and since then it has grown to become the preferred

 40

architecture for simulation interoperability within the department of defense, and is an

open standard of the Institute of Electrical and Electronic Engineers (IEEE) (IEEE 2000).

Functionally, the HLA consists of two major components. The first of these is the set of

federate simulations in a given HLA federation. HLA generalizes ‘federates’ to include

manned simulators and human participants, as is often the case in many defense-related

simulation scenarios. The second component in the HLA is the interface between

federates and a Run Time Infrastructure (RTI). The RTI is an operating system for

distributed simulation, which “provides facilities for allowing federates to interact with

each other and is a means to control and manage the execution (of an HLA federation)”

(Fujimoto 2000). The HLA interface specification defines a standardized way in which

any federate interacts with the RTI. These functional components are illustrated in

Figure 2.1.

Interface Specification

Federates
Software simulators

Federates
Live components

Federates
Data Viewers

Run-Time Infrastructure
A distributed operating system providing

distributed simulation services

Figure 2.1: Functional Overview of the HLA (Fujimoto, 00)

 41

The HLA is formally defined by three IEEE specifications—(i) HLA rules (IEEE 2000)

(ii) the object model template (OMT) specification (IEEE 2000) and (iii) an interface

specification (IEEE 2000). HLA rules describe the key set of principles upon which HLA

is based. These rules define what the different HLA federation components are

responsible for and how they interact at a high level of abstraction. The object modeling

component specifies the information structure and representation of all shared

information in a federate or federation. This includes the set of all concepts (objects),

their attributes and their associations (interactions). Finally, the HLA interface

specification is a description of the interface between federate simulations and a Run

Time Infrastructure (RTI).

The HLA framework is geared to facilitate message-based interaction between federate

simulations. Through the interface specification, a federate simulation may share

information with its counterparts by employing the publish service provided by the RTI.

The RTI then transfers the published message to other federates by means of a subscribe

service. For a given published simulation entity, knowledge as to which federates are to

be notified of that message (i.e. the subscribing federates) are documented in HLA object

models, which are discussed in detail below.

2.1.1 HLA Object Models

HLA Object models are information models which represent the concepts in a simulation

domain. These models are used to specify the representation of shared concepts in a

federation, which is to be reflected in each underlying federate simulation. “The HLA is

 42

directed towards interoperability; hence in the HLA, object models are intended to focus

on descriptions of the critical aspects of simulations and federations which are shared

across a federation” (Dahmann, Fujimoto and Weatherly 1997).

Object models are defined in table format, as specified in a meta-model, namely the

OMT. The OMT defines tables for specifying simulation Objects (persistent concepts in a

simulation) and Interactions (non-persistent, transient concepts). Object tables are used to

specify a hierarchy of classes of objects in a federation and capture related meta-data

about objects (such as name, purpose, version etc). Each object can have a set of

attributes associated with it, defined in an attribute table. Similarly, Interaction tables

define the HLA Objects involved in a given simulation occurrence (stating whether the

objects are initiators or reactors in the interaction) and can have parameters associated

with them that are defined in a parameter table. Attribute and Parameter tables define

different characteristics of attributes and parameters, respectively, such as their data type,

cardinality, resolution, units and update type (periodic or conditional).

The HLA OMT provides insight into one way in which concepts in a simulation domain

can be represented in an information model. This template can be leveraged in the

definition of a metamodel for capturing a simulation domain in an ontology. Although the

table structure specified in the OMT differs from the frame-based representation

employed in ontologies (Lassila and McGuinness 2001) (and their serializations (World

Wide Web Consortium (W3C) 2004)), the tables can be used to define the concepts of

 43

objects, interactions, attributes and parameters, their properties (table fields) and

relationships.

There are two types of HLA Object Models defined using the OMT. These are

Simulation Object Models (SOMs) and Federation Object Models (FOMs). A SOM,

associated with a federate simulation, is meant to document the set of concepts as they

are represented in that simulation. This documentation is used to gauge if the simulation

is appropriate for participation in a given federation. A FOM specifies the set of shared

information in the federation, clearly defining their representation in that federation. The

FOM and SOM are instrumental in the realization of a functional federated simulation,

elaborated in the FEDEP. The following section is focused on the FEDEP, indicating

how FOMs and SOMs are used in this process.

2.1.2 Challenges in Federation Development

The HLA Federation Development Process (FEDEP) model is a systems engineering

model for federation development (Defense Modeling and Simulation Office (DMSO)

1999). The FEDEP also serves as a common reference model for distributed teams

developing federations, and provides a mechanism to order and share federation

development experiences (Lutz 1999). The FEDEP employs a multi-step process model

that guides federation developers through the development of a federated simulation from

conception to testing and verification. It is important to study this federation development

process as it elaborates (to a significant level of granularity) individual steps involved in

 44

integrating simulations based on their information models. Using this model, the potential

for automation at each step can be identified and addressed.

The FEDEP model, illustrated in Figure 2.2, is a six-step process for federation

development. It is not so much an iterative process, but involves feedback and refinement

of individual steps as the federation development proceeds. Much of the FEDEP focuses

on the development of the FOM for a given federation and the selection of an appropriate

set of federates. Steps 1 and 2 deal with the development of a conceptual federation

model and the creation of a requirements list for the federation, known as the federation

blueprint. The next two steps deal with the design and development of the conceptual

model, where federate selection and FOM creation take place. Finally, steps 5 and 6 deal

with the actual integration of federates and federation testing.

Figure 2.2: The Overall FEDEP Flow Model (DMSO, 99)

 45

HLA’s solution to dealing with multiple representations of shared concepts is to impose

one global representation, which is defined in the FOM. This is evident in steps 3 and 4

of the FEDEP. Federates are selected based on their ability to meet the requirements

defined in the federation blueprint. The FEDEP model then suggests several approaches

to developing a FOM including a ‘bottom up’ design from scratch, a ‘merging’ of

participating SOMs and modifying an existing reference FOM. The latter methods are

efficient in that they leverage existing object models. Once the FOM has been defined,

the issue of representational consistency is tackled. As illustrated in Figure 2.3, each

federate simulation’s code is to be modified so that the resulting SOMs and target FOM

are consistent. In other words, all federates have to conform to the ‘common’

representation for the full set of exchangeable data that is defined in a FOM. Therefore,

in a given HLA federation information exchanged during run-time cannot have disparate

federate representations.

The efficacy of implementing reuse in HLA is marred by the fact that cost and time

required to achieve reuse are strongly affected by the uniformity of the federate

representations. Reuse is an important directive of the FEDEP—the process of

developing a federation from scratch is complex and resource intensive; hence it becomes

important to leverage existing work where possible. To this extent, HLA relies on the use

of ‘reference’ FOMs as a starting point for developing new federations. Still, the fact that

a simulation model has to be modified every time is participates in a new federation

indicates that this approach does not currently support a great extent of reuse. The

importance of reuse in the FEDEP has been acknowledged in the community and efforts

 46

have been made to ameliorate reusability in HLA (Scrubber, Lutz and Dahmann 1998;

Turrell, Bouwens and McCormack 1999). It is important to review this work, as it can be

leveraged in answering the research questions posed in Chapter 1.

Figure 2.3: Detailed View of Step 4 in the FEDEP (DMSO, 99)

The issue of reuse in HLA corresponds directly to the motivation for the research

presented in this thesis. The task of instantiating relationships between disparate

representations of shared concepts in a federated simulation requires significant time and

effort. Performing this task in an automated fashion, reusing existing work where

possible, would have a sizeable pay-off. A system to support the automation of such tasks

must reuse existing (formalized) knowledge. Since reuse is key to automation, the work

 47

done to address the reuse in HLA federation development has a strong relationship to the

research goals of this thesis. Hence, a detailed discussion of existing frameworks

developed to facilitate reusability in HLA follows in the sub-sections below.

2.2 Current Solutions to Support Reuse in Federation Development

In this section, existing work to improve the efficiency of federate reuse in HLA

federations is detailed. Specifically, the Base Object Model framework (Gustavson,

Hancock and McAuliffe 1998) and the Agile FOM Framework (Macannuco, Dufault and

Ingraham 1998) are discussed. The goal of this discussion is to identify the salient points

of these frameworks and how they relate to a framework to support federate simulation

integration. The ideas developed to support HLA federate reuse can be generalized and

leveraged to address the issue of simplifying the process of establishing relationships

between disparate representations of shared concepts in a federated simulation.

2.2.1 Base Object Models

The goal of the BOM framework and the ontology-based framework we have proposed in

Chapter 1 are similar; however, the approach taken is distinct. The Base Object Model

(BOM) framework has been developed as a means of simplifying the federation

development process and supporting the reuse of existing object models in HLA

federations. BOMs are reusable building-blocks to construct federate and federation

information models.

 48

The HLA FEDEP states that FOM reuse and integration through piece-parts is the most

desirable method for federation construction (Defense Modeling and Simulation Office

(DMSO) 1999). This piece-part approach to FOM development should involve exploring

the reuse of existing SOM and FOM piece parts in federation development. This idea has

been leveraged in the development of BOMs, with the goal to improve reusability and

enable rapid federation development. At the outset, it is evident that the goal of the BOM

concept and the framework being presented in this thesis are geared towards achieving

the same goal, namely to simplify the process of achieving interoperability between

federated simulations. In this research, the approach is to employ knowledge reuse to

support the federation development process. Similarly, the BOM concept has been

developed to capture and use meta-data to simplify the FOM development process, as

explained below.

A BOM is defined as a simulation component that represents a single aspect of

simulation interplay in a FOM (or SOM) that is used as a building block for FOM and

SOM specification (Gustavson, Hancock and McAuliffe 1998). In other words, a BOM is

subset of a FOM (often referred to as a mini-FOM) in which a portion of the overall

interaction between federates is captured. This concept can be viewed to be analogous to

a LEGO block (the BOM), several of which together can be used to form a number of

different structures (the federations) (Base Object Model Study Group 2001). Based on

concepts defined in the HLA OMT, a BOM consist of several Objects, Interactions and

associated attributes and parameters, respectively. In addition, a BOM includes meta-data

 49

describing the simulation interplay aspect it models. The general BOM structure is

illustrated in Figure 2.4.

A BOM represents simulation interplay by an interaction class and the set of objects

involved in that interaction. In the case that one set of involved objects responds to a

stimulus arising from another participant object (the interaction is not reciprocal), a

‘trigger’ BOM is employed. For bi-directional interaction, another class of BOMs is

defined, namely the ‘interaction’ BOM.

Object

Rev: 1.0
Scope: ….
Requirements:….

Object

Interaction

If (flag =1)
{
object 1.value=0;
Object2.state…..
}

Metadata

OMT Components

Interplay behavior

BOM

Object

Rev: 1.0
Scope: ….
Requirements:….

Object

Interaction

If (flag =1)
{
object 1.value=0;
Object2.state…..
}

Metadata

OMT Components

Interplay behavior

BOM

Figure 2.4: Components of a BOM

The key component in a BOM that enables its reuse (and possible automation) in FOM

development is the meta-data it captures about a given interplay aspect it models. This

meta-data (listed in Table 2.1) includes (but is not limited to) information about the

 50

requirements, intended domain and scope of a given BOM, its conceptual model, a set of

application scenarios and best practices on integrating the BOM in various FOMs. This

information is useful in applying an existing BOM to new federated simulation scenarios,

thus facilitating reuse. The requirements listed in the federation blueprint are used as

parameters in a meta-data search through a repository of existing BOMs. If a match is

found based on the information contained within a BOM’s meta-data, that BOM can be

integrated into the FOM being developed.

Table 2.1: BOM Meta Data Fields

Metadata Element Sub-Elements
Requirements
Conceptual Model
Accreditation Information
Intended Domain and Scope

Process
Products
Lessons Learned

Integration Experience

Use History
Revision history

2D/3D Models
Textures Graphics
Key Frames
Sequence Diagrams

Other
Scenario Application

While it is not clear whether BOM meta-data is captured in a formal, machine-

processable format (Base Object Model Study Group 2001) suggests that an XML

 51

Schema should be developed corresponding to the HLA OMT, which could then be

extended to capture information about meta-data (Miller and Filipelli 1999). Based on

this, meta-data matching could be performed using the XML-Query Language (XQuery)

developed by the W3C (World Wide Web Consortium (W3C) 2003). Potentially, the

later steps of FOM development process could be automated using meta-data to (i)

identify appropriate BOM’s to meet requirements and (ii) integrate the BOMs to realize a

FOM.

The BOM reuse methodology relates to the hypotheses posed in Chapter 1 in that it taken

on the approach of meta-data capture to support reuse in the development of simulation

federations. However, the type of meta-data and the subsequent use of that meta-data is

distinct in the two approaches. BOMs use meta-data to document the intended use of a

complete interplay component and thereby identify reusable components for the

development of different FOMs. That metadata is then used to simplify the development

of a global, federation-wide information model. While the BOM methodology alleviates

the difficulties in arriving at a FOM, the task of modifying individual simulations such

that they are consistent with the FOM is not addressed. In contrast, we propose to capture

meta-data about individual concepts in federate simulations (rather than an entire

simulation interplay scenario). Based on the semantics (meaning) of each concept, the

relationship between two concepts could potentially derived at automatically. This not

only enables automated FOM generation, it facilitates as-is federate reuse. The research

presented in this thesis takes on this approach, thereby going beyond the functionality

that BOMs offer.

 52

According to the BOM study group, in the future, the BOM framework could be

extended to facilitate the rapid integration of existing SOMs in disparate FOMs (Base

Object Model Study Group 2001). If SOMs and FOMs were built using BOMs, a BOM

level mapping between the two could be specified by identifying similar “patterns” in the

structure of the SOM and FOM. To achieve this mapping functionality in an automated

fashion, a richer set of BOM meta-data (semantics) would be required. A final limitation

of the BOM framework is that creating and managing BOMs is a task that could

potentially entail a large cost and time overhead. If, during FOM development, a BOM to

match a set of blueprint requirements is not found, a new BOM needs to be created,

which is not a trivial task. It involves modeling individual participants in the interaction,

as well as the implementation of that interaction behavior (in a given programming

language). Finally, all meta-data as to the scope of the newly created BOM etc. has to be

generated. Managing a repository of BOMs in itself calls for a significant effort in the

way of sorting, arranging and standardizing the contribution of new BOMs. Finally, it

may not be plausible to maintain a central repository of all BOMs if their number and use

were to multiply at a large rate. For these reasons, it is not feasible for supporting

simplified integration in distributed simulation, in general.

2.2.2 The Agile FOM Framework

The Agile FOM Framework has been developed at Lockheed Martin Information

Systems (Macannuco, Dufault and Ingraham 1998) to facilitate the integration of HLA

federates wherein SOM and FOM representations do not have to be consistent.

 53

As mentioned earlier, reusing a federate simulation in different HLA federations often

entails modifying the underlying simulation model to be consistent with the

representation defined in the FOM. The cost of performing this software engineering over

and over again can be significant. With this in mind, the AFF has been developed to

facilitate the as-is reuse of federate simulations in multiple federations. Rather than take

on the approach of promoting reuse through standardization, the AFF aims at allowing

simulations the freedom to maintain their own information representations. The

foundational plot of the AFF is to map federate objects and interactions (and their

attributes or parameters) to related entities in the FOM. These mappings establish

relationships between different representations of shared concepts and are used to

perform the conversions across disparate representations, to ensure consistent information

transfer by the HLA RTI during execution. A conceptual view of the AFF is illustrated in

Figure 2.5.

Figure 2.5: Conceptual Depiction of the AFF (Macannuco et al., 98)

The capabilities of the AFF were determined based on a study of a wide variety of SOMs,

their potential use in various FOMs and the types of mappings that would have to be

instantiated between the two to facilitate consistent information transfer (Macannuco,

 54

Dufault and Ingraham 1998). One important feature of the AFF is its ability to deal with

attribute atomic-ness. That is, the information stored in one attribute in a SOM may be

represented with several attributes in a target FOM. The AFF’s conversions provide

functionality to split complex attributes apart or merge constituent attributes as dictated

by a mapping. Further, conversions between representations employing different units of

measurement, coordinate systems and byte arrangement systems (“little endian” versus

“big endian”) are supported by the AFF. Finally, the AFF has the capability to handle

enumeration mappings, i.e., mappings between enumerated types where the enumerals

(and number of enumerals) are not the same. It is important to make note of these

capabilities as they indicate the types of relationships (and associated transformations)

that exist between disparate representations of concepts in federated simulations. In the

development of the framework proposed in Chapter 1, we consider how the types of

relationships identified by the AFF developers can be captured in ontologies.

The key component for establishing mappings in the AFF is a converter. A converter is

basically application-level code (procedures) that transform information from internal

(SOM) to external (FOM) representations, and vice-versa. Converters not only capture

the transformation from one representation to the other, but they interface with the HLA

RTI directly to perform appropriate conversions when attributes and parameters are

published or subscribed at run-time in a federation. The AFF identifies a set of basic

properties that converters must satisfy in order for them to support real-time mappings.

Two properties are of special interest—(i) Converters must be chainable and (ii)

Converters must be bi-directional. The former indicates that relationships should be

 55

reusable so as to apply them to develop new relationships. This property is fundamental

in the knowledge reuse paradigm; to automate the instantiation of relationships between

distributed simulation concepts, the use of existing relationships to infer new

relationships is key. The latter indicates that a relationship between two representations

of a shared simulation concept must encapsulate transformations going both ways i.e.

from representation 1 to representation 2 and vice-versa. Both these properties have been

incorporated into the ontology based framework presented in Chapters 3 and 4. An

example AFF converter arrangement illustrating chaining and bi-directionality is

depicted in Figure 2.6.

Figure 2.6: Example Converter Arrangement in the AFF (Macannuco et al. , 99)

The AFF is conceptually similar to the framework presented in this thesis. Both

frameworks have the goal to simplify the process of integrating (reusing) federate

simulations in multiple federations. Even though the scope of the AFF is limited to HLA

federations, this work helps to identify some of the key issues that need to be addressed

in implementing an ontology-based framework for relating federate simulation concepts

in a federation. The types of possible relationships and the properties of the associated

 56

conversions identified in the AFF are of specific importance. However this research goes

beyond the AFF in that the focus is not only to enable disparate concept representations

in distributed simulations, but to automate the process of relating these disparate concept

representations. Aside from pre-defined data driven conversions such as unit

transformations, all AFF converter procedures are specified by a human agent.

Macannuco notes that in order to instantiate converters, knowledge of the SOM and a

clear understanding of the representational differences between SOM and FOM is

requisite. An ontology can capture this knowledge in a formal, machine-processable

fashion, which could then be applied to automate the conversion generation process.

Having reviewed two frameworks that address reuse and automation in HLA federation

development, the key points taken away from studying the HLA framework are

summarized below:

 The HLA OMT provides insight into the development of a metamodel for

capturing simulation concepts in an ontology.

 The HLA FEDEP prescribes the modification of federate simulation code to be

consistent with the FOM. To facilitate a greater degree of automation, the

ontology-based framework for integrating simulations in a federate should be able

to integrate federate simulations ‘as-is’. One approach to do so is outlined in the

AFF. Although the AFF does not automatically generate converters it may be

possible to do so, as is explained in Section 2.2.

 57

 The BOM framework uses meta-data to reuse piece parts in SOM and FOM

development. The use of meta-data to support reuse and automation should be

exploited in the framework proposed in Chapter 1. The piece-part approach to

federation development itself calls for more overhead and is not viable for

supporting automation in federated simulation outside of HLA.

The next section of this survey is focused on studying the highlights and limitations of

commercial simulation-based design and analysis tools to support distributed simulation.

2.3 Simulation-Based Design and Analysis Tools

Having explored the HLA as a framework for federated simulation, we explore

simulation-based design and analysis tools in this section. These tools do not support

federated simulation; they are meant to be decision-support tools that are capable of

performing system level simulation, analysis and optimization. System designers use

these tools to connect models associated with different aspects (and sub-systems) of a

system being designed in a serial fashion. This enables the designer to sequentially

execute sub-system level simulations and analyze the behavior of the entire system.

Essentially, these tools do not support any run-time interaction between simulations.

However, relationships between parameters of different simulation models are specified

using these tools. To that extent, it is important to study how these tools go about relating

coupled simulation entities and to what extent this process is automated. Also, it may be

possible to extend the applicability of our proposed framework to the simulation-based

 58

design tool domain, which is another reason why we conduct this study. In this section,

we focus on one simulation-based design environment, named ModelCenter.

ModelCenter, developed by Phoenix Integration (www.phoenix-int.com) is a software

that has been developed to support model development and integration for engineering

and simulation. “It illustrates the use of an integration architecture to meet the

interoperability challenges faced by designers and analysts who are faced with the need

to support acquisition decisions by using a distributed set of existing models” (Malone

and Papay 1999). The fundamental component in this integration architecture is the

Analysis Server. An analysis server is an encapsulation of a given simulation code (on a

remote machine) such that it becomes a reusable module that can participate in any

distributed simulation that is set up using ModelCenter. This wrapper includes (i) an

information model that describes the various shared parameters and variables of a given

simulation and (ii) an executable that serves the purpose of obtaining parameter values

(and initial variable values) from specified files and running the simulation. Once

wrapped, component simulation models can be connected to develop a federation in an

intuitive fashion using ModelCenter’s GUI, as illustrated in Figure 2.7.

 59

Figure 2.7: ModelCenter User Interface for Integrating Analysis Servers

A template for the analysis server information model is depicted in Figure 2.8.

Information such as variable locations in the output/input files, their units (if applicable)

and constraints on their values can also be specified. Variable hierarchies are not captured

in this model, but can be defined in ModelCenter’s GUI using script component objects.

Using the metadata captured in these information models, ModelCenter has limited

capability to map the different variables across disparate simulation components

automatically. The ‘Auto Link’ feature is limited to detecting matches across linked

simulation based on variable names or their positions in a variable hierarchy. Users may

also instantiate links manually in a drag-and-drop fashion.

 60

Component

Lower/ Upper bounds

name

Has Variables

Variable

Units

datatype

{int, double, string….}

state

{valid, invalid}

type

{input, output, linked}

String

Unit

Bounds

Attribute

KEY

Attribute

KEY

Figure 2.8: Analysis Server Information Meta Model

ModelCenter does not have the capability to identify representational inconsistencies

between linked entities. All transformations between linked variables, such as unit

conversions, must be specified manually by the distributed simulation developer.

Ultimately, the use of a simplistic information model limits ModelCenter’s ability to

automatically identify and instantiate inter-domain mappings in a distributed simulation,

outside of unit transformations. Based on the premise that mappings can be automated if

the semantics of an entity are captured in a formal manner, a more expressive information

model is required to define shared variables wrapped in an Analysis Server.

Furthermore, ModelCenter’s functionality for running distributed simulation is limited to

running participating simulations discretely. That is, there is no exchange of data between

different analysis servers during the execution of a component simulation model.

 61

Interoperability is limited to each server executing its code given a set of inputs (possibly

from another server) and then providing its output as input to another server. Two servers

can execute their code in parallel if they do not require input from each other (or the input

of one is not determined by the output of the other, directly or indirectly).

The ModelCenter software tool is representative of most software environments

developed to support simulation-based design and analysis. With regards to (the

automation of) model integration, ModelCenter’s highlights and limitations are indicative

of most others. The research conducted in this thesis can be applied to alleviate some of

these limitations. An automated approach to connecting component models to perform

system-level simulation can significantly reduce the time and effort designers invest in

such activities. In the next section, existing work related to the automation of the concept

matching and mapping is visited.

2.4 Models and Algorithms to Manage Disparate Information Models

In the hypotheses posed in Chapter 1, ontologies have been identified as an avenue for

capturing simulation domains and supporting the automation of relationship definition

between shared concepts in a federated simulation. This is really a specialization of a

general problem in database schema and ontology management, namely: relating

distributed databases and ontologies with overlapping domains (Berners-Lee, Hendler

and Lassila 2001). The use of databases and other computer-based repositories are

ubiquitous in academia and industry. For example, in the realization of engineered

products, databases are used to store product related data ranging from concepts,

 62

geometry to manufacturing and disassembly. It is likely that this data, stored in disparate

databases, each of which employs its own schema, will have to be integrated to study an

existing product’s realization or to perform product modifications and adaptations. To

share such information across different sources, it is essential to address the issue of

mapping between different information representations. This issue is pertinent in the

domain of semantic technologies as well. Ontologies play a prominent role in publishing

data on the semantic web. Given the distributed nature of the World Wide Web, it is

likely that information on it will be captured in myriad ontologies. Therefore the task of

establishing semantic mappings between ontologies is an important one.

This issue of relating disparate information models is being researched by several groups,

both in the domain of ontologies and databases. Several researchers have developed

fundamental theory and models for establishing and representing relationships between

different information schemas (Alagic and Bernstein 2001; Madhavan, Bernstein,

Domingos et al. 2002; Maedche, Motik and Stojanovic 2003). Others have used this

fundamental basis to develop algorithms and frameworks that support automating the

information model relationship process (Noy and Musen 2000; Doan, Domingos and

Halvey 2001; Madhavan, Bernstein and Rahm 2001; Peak 2003). However, most existing

frameworks are focused on the task of automating the task of schema/ontology matching

(Milo and Zohar 1998; Madhavan, Bernstein and Rahm 2001; Rahm and Bernstein

2001)—the task of determining which elements of two or more schemas are equivalent.

While the matching task is an important one in integrating federates in a federation, there

is still the issue of mapping i.e. determining the representational transformations between

 63

two matched entities. The research contribution in this thesis addresses the automation of

this process.

Nonetheless, a lot of this existing work can be leveraged in the development of a

framework to support automated mapping between federate concepts in a distributed

simulation. Specifically, existing models for representing mappings can be applied to

determine an underlying meta-model for adequately representing relationships between

federate representations of shared simulation concepts in an ontology. The algorithms and

frameworks that address automating the matching process can be leveraged in the

development of an algorithm to support the process of instantiating mappings between

federate ontology entities. In the following sections, the highlights and shortfalls of the

above-mentioned existing contributions are detailed.

2.4.1 Models for Schema and Ontology Management

In this section, related work in the area of schema management is discussed. Several

researchers have been addressing the problem of managing and integrating information

distributed in databases and repositories employing different schemas. To solve this

problem, several formal, generic models and frameworks for maintaining

correspondences across different schemas have been proposed. Two such models,

representing the majority of work in this area, are discussed below. These models provide

insight as to what key features must be embodied in a framework to support the

integration of participants in a federated simulation.

 64

A theoretical framework for managing model meta-data has been developed by

researchers at Microsoft (Bernstein 2003). This framework specifies a generic model for

managing meta-data, applicable to many different modeling environments such as UML

(Naiburg and Maksimchuk 2001), XML schema (Walmsley 2001) and Enhanced Entity

Relationship Diagrams (EER) (Chen 1976). A general baseline model for representing

meta-data is prescribed, so as to be at least as expressive as EER models. The model

defines the existence of objects, properties and relationships (aggregation, generalization

and asscociations). Based on this model, as set of model-management operators have

been defined, namely Match, Compose, Dif and Merge.

Two operators of special interest are Match and Compose. A Match signifies the

existence of a mapping between two entities. A mapping is defined as a set of objects that

relate two matched objects. The actual relationship between the schema objects and the

associated mapping is captured in a schema morphism (Alagic and Bernstein 2001). In

other words, a mapping between two schema objects (as defined in this framework)

consists of an intermediate representation of those objects and a set of data translations

between the source/target and intermediate representations. An example of such a

mapping, between two schema objects that capture information about employees is

illustrated in Figure 2.9 (Bernstein 2003). This approach to relating concepts across

different information models has two basic advantages. First, the use of an object

structure in the mapping is more expressive than the definition of relationship pairs (such

as <Name, FirstName> and <Name, LastName> in the example depicted in Figure 2.9. If

such relationships are defined directly, the structure of the relationship, embodied in

 65

Mapee, is lost.). Furthermore, the use of an intermediate representation means that new

mappings can be instantiated to and from matched objects by defining a morphism to the

existing intermediate object structure (A new object can be mapped to Emp or Employee

by defining a morphism to Mapee). The compose operation creates new object mappings

by combining two existing mappings. The idea is to use knowledge of existing schema

relationship to identify new ones. A generic schema for composing mappings has been

developed.

Figure 2.9: An Example Mapping Structure and Morphism (Bernstein, 03)

This framework for model management can be used as a foundation for defining

relationships between federate simulation concepts in a federation. The representation of

mappings via an intermediate set of objects and a set of morphisms can be leveraged to

capture relationships and transformations between disparate representations of simulation

concepts in an ontology. Based on the advantages that this approach offers, a more

efficient method for relating simulation concepts can be realized. Furthermore, the

composition operation can also be implemented in a system to support the generation of

 66

transformations between federate concept representations. The definition of new

mappings through composition results in a greater extent of automation; hence a similar

approach has been embodied in the algorithm to generate representational

transformations, which is detailed in Chapter 4.

Maedche and co-authors (2003) have developed a framework for managing multiple

distributed ontologies wherein an ontology representation model and reuse system is

defined. The object-instance (OI) conceptual model for defining, reusing and evolving

ontologies defines the set of entities in an ontology and rules and relationships between

them. These entities include concepts, properties, instances and structural relationships

including cardinality, subsumption, property domain and range. Based on this metamodel

for ontology specification, the issues of including distributed ontologies and evolving

them are addressed. The approach to establishing connections between distributed

ontologies covering overlapping domains is to include copies of an ontology in other

related ontologies. Relationships can be instantiated (from the set defined in the OI

model) to connect included and including ontology entities. Finally, a method to

propagate changes in one ontology to all dependent ontologies (those that include a copy

of the source ontology) has been developed.

The OI model defined in this framework can be leveraged in the development of a

metamodel for simulation ontology specification. Equally important is the idea of

including distributed ontologies to form an information model that spans a larger domain

of discourse. In order to capture mappings between federate simulation ontologies, a

 67

similar approach could be taken where all federate ontologies are included in a larger

(federation) ontology. Having done so, relationships could then be specified between

shared federate concepts.

However, the limited set of relationships defined in the OI model (domain/range and

subsumption) is a significant restriction of this model. The framework is focused on

aligning an included ontology to fit within the structure of an existing ontology. Ontology

alignment refers to the task in which additional ontologies are ‘fit’ within the structure of

an existing ontology. For example an ontology about passenger cars can be aligned to fit

within a more general ontology about vehicles. Alignment does not address the issue of

mapping between disparate representations of concepts. Consider the example of relating

the concept of address having data type string to the concept zipcode of type integer in an

included ontology. While it is intuitive that a zipcode is a subset of an address, the two

concepts seemingly employ incompatible representations and their relationship cannot be

defined based on domain, range or sumbsumption. Such scenarios are likely to occur in a

federated simulation, and call for a more expressive model for relating ontology entities.

Such a model is presented in the framework presented in Chapter 3.

2.4.2 Schema and Ontology Matching Algorithms

Having discussed existing models for representing relationships across disparate

domains, the remainder of this section is focused on presenting existing algorithms and

tools that support the automation of the schema matching process. Several algorithms

have been developed, based on different approaches, to address the issue of identifying

 68

matches. Algorithms like SEMINT (Li and Clifton 2000) perform matches using the

instance pool associated with a schema, while others like SKAT (Mitra, Wiederhold and

Jannink 1999) perform rule-based matching based on schema level information. Some

systems such as LSD (Doan, Domingos and Halvey 2001) perform only 1:1 matches

while other are able to handle n:1 (and 1:n) schema matches. Finally there are those

algorithms that employ a single matching criterion as opposed to hybrid matchers that use

multiple matching criteria. In this section, three such algorithms are discussed: PROMPT,

an algorithm for ontology merging and alignment, GLUE an ontology matching system

and CUPID, a generic schema matching algorithm. Note that automated matching only

addresses a subset of the federate simulation integration problem. While the automated

generation of data translations between shared concepts is not covered in these

algorithms, much of this work is very relevant to the research conducted in this thesis. In

the sections below, the salient features of the above-mentioned algorithms and their

applicability to this research are highlighted.

Researchers at Stanford Medical Informatics have developed PROMPT: an algorithm and

tool to support the automation of ontology alignment and merging (Noy, Fergerson and

Musen 2000). This algorithm is based on the frame-based representation paradigm

(Minsky 1975), very similar to the OI model presented above. A human-in-the-loop

approach has been taken in the development and implementation of PROMPT.

Developers acknowledge that it is not possible to completely automate the process of

relating ontologies. Instead, the human is prompted to provide knowledge when required,

 69

while the algorithm automates underlying tasks. The PROMPT algorithm flow is

illustrated in Figure 2.10.

Figure 2.10: High-Level Illustration of the PROMPT Algorithm (Noy, 00)

To support automated ontology relation, PROMPT identifies concept matches across

specified ontologies and reports them as suggested matches to a user. The matching

criterion varies based on whether the intended task is to align two ontologies or merge

them (amalgamate two sets of concepts into a single hybrid set). As the user approves

suggestions, appropriate new entities are created in a target ontology and a new set of

suggestions is reported. This is where the algorithm takes advantage of semantics to

support additional automation. Based on the existing set of approved operations, and the

set of concepts related to the matched entities, new suggestions are inferred. For example,

if two concepts match, it is likely that their super classes will also match. Such automated

inferencing means that matches are not identified solely based on linguistics. This means

that users do not have to specify additional relationships explicitly, but instead just

 70

approve them as they are reported. This method significantly reduces the time, effort and

error-making associated with ontology alignment and merging (Noy and Musen 1999).

Finally, PROMPT also uses semantics to determine conflicts (inconsistencies in the

knowledgebase, such as the data type of a merged property) and suggest operations to

solve them.

PROMPT does not address the issue of mapping disparate representations of related

entities. As stated above, PROMPT is developed to address merging and alignment. Still,

the tool represents one way in which automation can be supported in defining

relationships across domain models. The same approach of suggesting mappings between

related simulation concepts (how disparate representations translate) for users to approve

or reject could be employed to support federate simulation integration.

Another tool that performs automated ontology matching, called GLUE, has been

developed by researchers at the University of Washington. GLUE is a software system

that employs machine learning techniques to match concepts across ontologies using

multiple measures of similarity. This is in contrast with most other schema/ ontology

matching systems that employ a single measure of similarity. Similarity measures are

clearly defined so that there is an unambiguous understanding as to what is meant by a

‘match’ between two ontologies. These similarity measures (exact, most-specific-parent

and most-general-child) are defined in terms of a joint probability distribution. GLUE

uses a populated knowledge-base to determine a match between two given concepts. That

is, from the pool of instances of concepts A and B, the set of instances BA∩ is identified.

 71

More accurately, the probability P (A, B) is calculated and used as the basic measure to

determine whether A is similar to B, for a given definition of similarity. In order to

determine the required probability, a multi-strategy learning system is employed. A

content learner exploits frequencies of words in the textual content of instances A, B to

determine P (A, B). A second learner, called the name learner calculates the required

probability based on instance names. The predictions of individual learners are combined

using a meta-learner to determine the final probability.

A major limitation of GLUE is that it makes heavy use of instances to determine matches.

While this might make sense for any populated knowledgebase, it is not so in the case

simulation information models. In a simulation information model, there are no

instances—instances are created when the simulation is executed. An information model

for a simulation usually captures concepts, their properties and relationships. Therefore

the instance-based probability approach to determining entity matches cannot be

employed to support simulation integration.

A more generic schema matching algorithm, called CUPID has been developed with the

idea of combining the matching strategies employed by several existing schema matching

systems (Madhavan, Bernstein and Rahm 2001). CUPID discovers schema matches

based on names, data types, constraints and schema structure. Like GLUE, this algorithm

employs a similarity coefficient (between 0 and 1) as the measure of the degree of

similarity between two schema entities. However, similarity measures are not based on

the instance pool. Instead, a multiple phase match strategy is used to calculate similarity

 72

coefficients. The first phase calculates matches based on linguistics of schema entities

and even employs a thesaurus to identify synonyms and short-forms. The second phase is

a structural match, wherein the context of a schema entity and its vicinity to other

matched entities are taken into consideration. This is similar to the method in which the

PROMPT algorithm identifies new operations based on existing approved ones. In order

to perform structure mapping, CUPID creates schema trees and uses a tree matching

algorithm to find matches. The tree matching algorithm is based on heuristics that are

rather intuitive. For example, two non-leaf elements of their respective schema trees

match if they are linguistically similar and their sub-trees are similar.

The primary focus of GLUE, PROMPT and CUPID is in identifying semantic

correspondences. That is, these tools answers the question “Which concepts in two

ontologies map to each other?” which only addresses the matching problem. The task of

‘mapping’ two concepts deals with the generation of “a query to transform an instance of

one concept to that of the other” . These concepts may contain equivalent information,

but their representations can be inconsistent. Therefore, the question “How do concepts in

two ontologies map to each other?” is not addressed in this work. Still, the task of

automated ontology matching is an important one and the value of this work is quite

significant. In order to define a mapping a set of matching entities must first be defined.

CUPID and PROMPT can be leveraged to automate this task. As has been noted, the

reliance of GLUE on instances annuls its applicability to performing matches between

federate simulation schemas. That being said, these three algorithms show how one can

take advantage of structure and existing relationships to define new ones. This is a

 73

fundamental knowledge reuse concept that can be employed in the development of an

algorithm to generate transformations between federate representations of shared

simulation entities.

The key points noted in reviewing existing work in the field of schema and ontology

management are summarized as follows:

 A relationship between two entities can be captured using an intermediate

mapping structure and a set of morphisms to translate data to and from the

mapping structure. Given is advantages (stated above) the ontology-based

framework should take on this approach to map simulation entities.

 As explained in the OI model, relationships between disparate simulation

ontologies can be captured by including all simulation ontologies into a larger

federation domain. Within this domain, relationships can be instantiated between

the included sub-domains.

 Existing algorithms that are meant to relate schemas and ontologies focus on

matching, not mapping. Still, these algorithms can be leveraged to support the

simulation concept mapping process, given that in order to instantiate a mapping,

a match is prerequisite.

 74

 Reuse/ Inference methods employed by PROMPT and CUPID to determine new

matches based on existing ones (and existing relationships in the ontology) can be

leveraged to perform mapping inference.

2.5 Chapter Closure

In this chapter, existing work in the domains of simulation integration and schema

management have been reviewed. At the outset, the goal of this review was to identify

relevant work that can be leveraged in the development of (i) a framework for ontology-

based capture and relation of simulation concepts and (ii) an algorithm to automate the

aforementioned relationship definition. In the context of the former, the HLA framework

for representing simulation concepts and integrating federate simulations was

investigated. The HLA OMT was identified as a meta-model that could be leveraged for

the specification of a vocabulary for representing simulation concepts in an information

model. The AFF and BOM frameworks were identified as two methods by which the

process of developing a federated simulation can be simplified or automated. Here, we

learned that use of meta-data is key is supporting reuse and automation in federation

development. In Section 2.2, the limited functionality of commercial simulation based

design packages with respect to supporting simulation integration was discussed.

ModelCenter’s click-and-connect environment was identified to be an intuitive user-

interface for the framework proposed in Chapter 1. Finally, frameworks for schema

management were explored in Section 2.3. Here, the key components for representing

relationships between concepts were identified and algorithms to automate schema

matching were presented. These algorithms themselves can be leveraged directly to

 75

support automated matching between coupled concepts in a federation. Moreover, their

key features such as the idea of structure-based inference of matches can be extended to

automate the definition of mappings between simulation concepts in an ontology. Table

2.2 summarizes the limitations of existing work that will be addressed in this thesis and

key ideas and development that can be leveraged to do so.

Table 2.2: Summary of Key Points and Limitations Discussed in Literature Survey

Framework Limitations and Key Points

HLA

Key Points to Leverage:

 The HLA OMT can be leveraged to development a metamodel
for capturing simulation concepts in an ontology. This is one
model for representing simulation domains; others include those
presented in Section 2.3.

 To facilitate a greater degree of automation, a framework for

developing simulation federations should be able to integrate
federate simulations ‘as-is’. One approach to do so is outlined in
the AFF.

 The BOM framework uses meta-data to reuse piece parts in

SOM and FOM development.

Limitations:

 The HLA FEDEP prescribes the modification of federate
simulation code to be consistent with the FOM.

 The generation of converters in the AFF is not automatic.

 The BOM piece-part approach to federation development is not

viable for supporting automation in federated simulation outside
of HLA

 76

Table 2.2 (continued)

Schema
Management
Models

Key Points to Leverage:

 A relationship between two entities can be captured using an

intermediate mapping entity and a set of morphisms to translate
data to and from the mapping structure.

 The mapping composition operation can be leveraged to define

relationships between simulation concepts automatically by
chaining together an existing set of relationships.

 Relationships across disparate (simulation) ontologies can be

instantiated by including a copy of the ontologies in a larger
federation domain

Limitations:

 The set of relationships that can be captured in an OI model is

not very expressive. There is no data structure to capture
transformations across related entities.

Schema
Matching
Algorithms

Key Points to Leverage:

 Automated schema matching tools can be leveraged as-is to find

matches between concepts in participating federate simulation
ontologies

 The structure based inference of matches employed in CUPID

and PROMPT can be extended to find new mappings based on
structure and vicinity to existing mappings.

Limitations:

 Schema matching algorithms only determine which concepts

map. Representational inconsistencies are not reported or
handled.

 77

Having completed this survey, a more clear understanding of the important features and

possible approaches to address the simulation integration (specifically representational

inconsistency) problem has been developed. In the next chapter, the lessons learned in

undertaking this related work assessment are applied in the development of an ontology-

based framework to support the development of simulation federations. The requirements

of the framework, a metamodel for capturing and relating simulation concepts and the

process of developing an inter-related federation are discussed in the following chapter.

 78

CHAPTER 3

AN ONTOLOGY-BASED FRAMEWORK TO SUPPORT
FEDERATED SIMULATION DEVELOPMENT

In this chapter, we describe a framework for supporting the process of establishing

representational compatibility in a federated simulation. The goal of this chapter is to

develop the hypotheses we have proposed at the outset of the thesis. In Chapter 1, we

elaborated a vision for using ontologies to help mitigate the cost of achieving

representational compatibility among a set of federate simulations. In the hypotheses, the

use of ontologies to capture the semantics or ‘meaning’ of simulation model concepts is

proposed. Here, the realization of the proposed vision is presented. Specifically, a

metamodel for the representation of simulation concepts in ontologies is developed

(hypothesis 2). The capture of federate simulation domains and the relationships between

them, using this metamodel, is elaborated as well. Using these semantically rich

ontologies, the derivation of transformation stubs to convert information between

federate representations (hypothesis 3) is discussed.

 79

3.1 Framework Components and Process Model

In Chapter 1, we have proposed an ontology-based framework to support achieving

interoperability between federate simulations, with the following functional elements: (i)

capture knowledge about simulation models in ontologies and (ii) apply this knowledge

to derive transformations between federate representations of shared simulation concepts.

In this section, we introduce the individual components that make up this framework.

Together, these components can be used to realize the above-stated functional aspects of

the framework. A model describing the overall process in which these constructs are used

to achieve representational compatibility between federate simulations (in an automated

fashion) is also elaborated below.

The components of this framework employed for knowledge capture are the Simulation

(federate) Ontologies (SONT), a target Federation Ontology (FONT) and a meta-model

for specifying these, called the World Ontology. The World Ontology contains metadata

and specifies the structure of simulation objects, their attributes, interactions between

objects (events) and data types. It also includes data structures to capture the relationship

between these entities. Finally, this ontology includes a set of primitive data types and

defines the relationships between them. The World Ontology expresses a discrete,

abstract layer of semantics that is used to describe the concepts in individual simulation

models. In other words, it defines a communal vocabulary for the specification of entities

in SONTs and FONTs. By expressing all simulation concepts in terms of this vocabulary,

the ‘meaning’ of each SONT entity is unambiguous, and the relationship between such

 80

entities can be derived in an automated fashion. The structure of entities defined in the

world ontology i.e. the properties of objects, events and their attributes is leveraged from

the HLA OMT (IEEE 2000), which has been developed so as to be comprehensive and

extensible in its ability to express simulation concepts. More details on the development

of the World Ontology are specified in Section 3.3.

The SONT specifies the object and event architecture corresponding to a given federate

simulation model. Based on the structure provided in the World Ontology, SONTs are

specified by domain experts who play a major role in the development of a given

simulation model. This process is analogous to documenting a SOM in current HLA

practice. However, a SONT captures concepts and relationships between them in a

formal, computer-sensible fashion that is much richer than the unstructured text that

comprises a SOM. Unlike a SOM, a SONT contains knowledge that a computer can use

to make inferences. A detailed explanation of SONT specification is elaborated in

Section 3.4.

It has been mentioned that in order to facilitate consistent information transfer between

federates in a distributed simulation, a common representation for all shared simulation

entities must be defined. As has been noted in Chapter 2, this is the approach taken in the

development of HLA federations (in the development of FOMs) and the theoretical

model for schema management (Bernstein 2003) (in the creation of intermediate mapping

objects). Similarly, in this framework, a common information model for consistent

information transfer is defined in the FONT. The FONT specifies a federation-level

 81

representation for all objects and interactions that are shared among different federates,

and captures the relationships between the federate and common representations. FONT

generation is explained in Section 3.6.

The above mentioned knowledge capture components of the framework are illustrated in

Figure 3.1. It should be noted that the knowledge captured in all these ontologies is

represented in terms of a frame-based knowledge model that is employed by numerous

knowledge-based systems (Minsky 1975). This knowledge model is elaborated in Section

3.2.

SONT A
ObjectsObjects

EventsEvents

SONT A
ObjectsObjects

EventsEvents

SONT A
ObjectsObjects

EventsEvents

SONT B
ObjectsObjects

EventsEvents

SONT B
ObjectsObjects

EventsEvents

SONT B
ObjectsObjects

EventsEvents

SONT A SONT B

Common Schema

Transformations

ObjectObject EventEvent AttributeAttribute

World Ontology

FONT

RelationshipRelationship

Included in Domain

KEY

Described in terms of
Procedural relationship

Included in Domain

KEY

Described in terms of
Procedural relationship

Figure 3.1: Knowledge Capture Components of Ontology-Based Framework

The second functional aspect of this framework is the application of knowledge captured

in the ontologies to derive transformation stubs for converting information between

federate and common representations. This is achieved through the development and

application of an algorithm that queries the ontologies to infer transformations between

 82

simulation entities. The Graph-based Inference of Transformations (GRIT) algorithm

employs existing work in graph theory and traversal to determine (i) the common

representation of shared concepts in a federation (i.e. the contents of a FONT) and (ii) the

transformations between federate and common representations of shared concepts, in an

automated fashion. The development and functioning of the GRIT algorithm is detailed

in Chapter 4.

Having introduced the individual components in the framework, let us visit the process in

which these components contribute to support the process of achieving interoperability.

The ontology-based federation development process can be summarized in the following

steps:

 Define the World Ontology (one-time task)

 Define SONTs based on the World Ontology

 Generate a FONT

o Determine a common information model

o Generate the transformation routines

The overall federation development process model is illustrated in Figure 3.2. Essentially,

the World Ontology metamodel needs to be defined before any other tasks can be carried

out. However, the definition of this ontology is a one-time task—once created, the same

World Ontology is reused over and over. In order to do so, the World Ontology must be

‘included’ in every SONT being developed. The inclusion of one ontology in another

 83

means that the Domain of Discourse (DoD) of the including ontology spans at least the

domain of the included ontology. In other words, every concept defined in the included

ontology is also defined in the including ontology. In this manner, every SONT contains

the same set of metamodel structures and relationships as defined in the world ontology.

Develop SONTs

Specify SONT-SONT relationships

Generate FONT & Transformation stubs

Approve or Revise inferred lossy transformations

Figure 3.2: Overall Process Model for Integrating Federate Simulations in the
Ontology-based Framework (box in grey indicates automated task)

Individual SONTs are specified by simulation model developers. The concepts in a given

federate simulation model are to be captured in terms of the metamodel structures

specified in the World Ontology. This includes simulation objects and events, their

attributes and complex data types (other than the primitive set defined in the World

Ontology).

Once the SONTs for the complete set of federate simulations in a distributed simulation

have been specified, a common, federation-level representation for all shared entities can

be defined in the FONT. In order to generate a common federation-level schema, the set

 84

of related federate concepts must first be specified. The federation developer(s) must

specify the set of participating SONTs and indicate which set of federate objects and

events are related (ultimately, all relationships are defined between federate and common

representations of shared entities). In order to capture a relationship between two federate

entities, both those entities must be part of the same domain. Therefore, each SONT that

is participating in the federation must be included in the FONT. Equivalently, the FONT

must span all SONT DoD’s (illustrated in Figure 3.1). Once this is accomplished,

relationships between two or more objects or events can be captured in the FONT. Since

objects and events are defined in terms of their attributes, so too must the relationships

between them. Therefore, the federation developer must indicate which attributes of

related objects and events match. It is important to note that schema and ontology

matching tools identified in Chapter 2 (PROMPT and GLUE) can be leveraged to support

automation of this process. However, we focus on the development of a system to

perform automated mapping of matched entities. Therefore, in the framework presented

in this thesis, automated ontology matching algorithms are not leveraged, their potential

use is acknowledged.

Given the relationships specified by the user, new relationships can be inferred

automatically by composing existing relationships together. GRIT uses the complete set

of relationships to (i) automatically determine the appropriate common schema in the

FONT and (ii) automatically generate transformation stubs between federate and

common representations of shared entities. This is an iterative process that incorporates

feedback from the federation developer. In order to select the common representation for

 85

a set of related concepts, GRIT may require the federation developer to provide

additional knowledge regarding the loss of information in transformations between the

federate representations of related entities (this is explained in detail in Section 3.6).

Having completed these steps, the user is presented with the set of inferred

transformations, so as to either approve them or revise them if an available direct

transformation is preferable. If revisions are made, the common representation, and the

associated transformations are recomputed. In this manner, the process of defining

relationships in a FONT is an iterative process that employs feedback from the user to

refine previously generated common representation and transformation routines.

The steps described above provide a basic explanation of the process by which federate

simulations are integrated in this framework. The earlier steps are focused on the capture

of knowledge in ontologies; the latter apply that knowledge to support the process of

achieving representational compatibility in a federation. Having presented a general

overview of the components in this framework and the process in which they are

employed, a more in-depth discussion follows. In Sections 3.2 through 3.6, the structure

and use of the individual components is explained in detail, except for the GRIT

algorithm, which is addressed in the following chapter.

3.2 The Frame-based Knowledge Model

In this section, a frame-based knowledge model (Minsky 1975) for representing concepts

and relationships between them is presented (Figure 3.3). This model defines the

foundation for capturing simulation concepts in ontologies. The World Ontology

 86

metamodel, individual SONTs and the federation-level FONT are all defined using this

knowledge representation. Essentially, this model can be viewed as the metamodel for

specifying of all ontologies in this framework. Frame-based knowledge models have been

employed in the development of several different knowledge representation systems. In

the effort to provide knowledgebase interoperability, a protocol for accessing frame-

based knowledge bases has been developed, named the Open Knowledge Base

Connectivity (OKBC) protocol (Chaudhri, Farquhar, Fikes et al. 1998). The OKBC

defines a standard knowledge model (based upon frame-based representation) and a set of

operations that can be applied to the components of that knowledge model.

Metaclass Metaslot

Class

Subclass

subclass_of superclass_of

is_a is_a

Instance

is_a

Class, Instance and Metaclass structure

Metaclass Metaslot

Class

Subclass

subclass_of superclass_of

is_a is_a

Instance

is_a

Class, Instance and Metaclass structure

Frame FrameSlot

Slots are relationships between Frames

Domain Range

AB
S

TR
AC

TI
O

N

Figure 3.3: Major Concepts of the Frame-Based Knowledge Model

 87

The knowledge model used for the development of ontologies in this framework is

leveraged from the OKBC protocol. The OKBC knowledge model has been developed

based on the requirements of more that fifty knowledge representation systems

(Chaudhri, Farquhar, Fikes et al. 1998). OKBC was designed with the goal of being

precise, flexible, extensible and consistent. As a result, the OKBC knowledge model is

unambiguous and applicable to and compatible with a variety of knowledge

representation systems. Furthermore, the operations defined in this protocol yield

semantically equivalent results over a range of knowledge representation systems. In

adopting the OKBC knowledge model as a foundation for the specification of knowledge

in simulation ontologies, its above-mentioned qualities are bequeathed to this framework.

This means that the framework presented in this research is based on sound, widely-

accepted foundations and can be implemented, extended and interfaced with existing

knowledge-based systems in a standard fashion. Parenthetically, the Protégé ontology

development tool, in which this framework has been implemented, employs a frame-

based knowledge model based on that which is defined in the OKBC protocol (Noy,

Fergerson and Musen 2000). The OKBC knowledge model is formally defined using the

Knowledge Interchange Format (KIF), which is a first-order predicate logic language

(Genesereth 1995).

The elementary concept in the knowledge model employed in this framework is a Frame,

which is a primitive object that represents an entity in a given domain. Relationships

between frames are captured through the definition of Slots. Slots can be viewed as

attributes of frames: each slot has a domain i.e. the frame to which it applies (the frame it

 88

describes), and a range (also called value-type) i.e. the frame(s) that represent the values

the slot can take. Formally, a slot is a binary relation, and each value V of a slot S of a

frame F represents the assertion that the relation S holds for the entity represented by F

and the entity represented by V. As an example, consider that concept of a parent and a

child are captured in two frames. The relationship between the Parent and Child frames

can be captured in two slots, has_child and has_parent. The has_child slot is in the

domain of the Parent frame, while its value type or range is an instance of the Child

frame (this can be intuitively read as Parent has_child <instance_of> Child). Slots have

other properties such as cardinality (number of values a slot can have) and inverse

(indicating that the slot is part of a pair that describes a reflexive relationship). Each slot

can have a set of Facets associated with it, which represent a constraint that must hold on

the relationship between two frames. Together, Frame-Slot pairs and associated facets

capture the entire semantics of a DoD.

The generic frames are segregated into two object oriented constructs: Classes and

Instances (or individuals). A class is an object that defines a collection of entities having

the same set of properties (slots). One can view the class object as a way to represent a

simulation concept in the DoD. Classes can be arranged in hierarchies with multiple

inheritance. A taxonomy of simulation concepts is captured as a tree of classes, using

subsumption relationships defined as subclass_of /superclass_of reflexive slots. Instances

represent individual entities that are members of the class. An instance is a frame that

inherits its structure (set of slots) from its defining class. The relationship between a class

and its instances is captured via is_a slots.

 89

Classes can be considered to be models for specifying instances. Similarly, a model for

specifying classes is required: a metamodel (or a model of a model). OKBC defines a

class that is the ‘class of all classes’ to capture this concept. In the knowledge model

employed in this framework, a slightly different approach is taken. The concept of a

Metaclass and a Metaslot, leveraged from the Protégé knowledge model, is used to

capture collections of classes and slots, respectively. Metaclasses are frames that can be

used to specify specializations of classes. Similarly, Metaslots are templates for the

specification of slots with a different set of properties. These meta-modeling constructs

are important for specifying the world ontology.

The overall knowledge model defined for use in this framework is illustrated in Figure

3.3. Note that this knowledge model is explained here to a degree that is sufficient to

convey the development of various ontologies that comprise this framework. A more in-

depth and formal specification of the concepts discussed above can be found in

(Chaudhri, Farquhar, Fikes, Karp and Rice 1998).

3.3 The ‘Word’ Ontology Specification

Having elaborated the knowledge model used to define simulation ontologies, the

application of that model to define the World Ontology is discussed in this section. As

mentioned earlier, the World Ontology is meant to capture a set of metamodel concepts

that can be used to define simulation model entities in SONTs and FONTs.

 90

Concepts in the World Ontology are modeled using the Metaclass and Metaslot entities

defined in the frame-based knowledge model, as illustrated in Figure 3.4. Templates for

simulation objects, events and data types are defined as metaclasses, while the template

for defining attributes is specified as a metaslot. This is done so that simulation objects,

events and data types can be modeled as classes, each with their own set of attributes

(slots that are instances of the attribute metaslot). Hence, SONT developers can take on

an object oriented approach to capturing a simulation model domain in an ontology. This

enables SONT developers to specify a hierarchy of objects and events, thus capturing the

equivalent information specified in HLA object and interaction class structure tables.

Object_MetaClass

Name
Version
Date
Purpose

.

.

.

Direct-Slots
Direct-Instances

Object_MetaClassObject_MetaClass

NameName
VersionVersion
DateDate
PurposePurpose

.

.

.

Direct-SlotsDirect-Slots
Direct-InstancesDirect-Instances

Datatype_MetaClass

Name
Has_relationship

Direct-Slots
Direct-Instances

Datatype_MetaClassDatatype_MetaClass

NameName
Has_relationshipHas_relationship

Direct-SlotsDirect-Slots
Direct-InstancesDirect-Instances

Attribute_MetaSlot

Name
Has_datatype
Has_relationship
cardinality

.

.

.

Direct-Instances

Attribute_MetaSlotAttribute_MetaSlot

NameName
Has_datatypeHas_datatype
Has_relationshipHas_relationship
cardinalitycardinality

.

.

.

Direct-InstancesDirect-Instances

Value is an instance of

KEY

Metaclass
Slot

Value is an instance of

KEY

Metaclass
Slot

Relationship

to

Function_to
Function_from
Direct-Instances

from

Relationship

to

Function_to
Function_from
Direct-Instances

RelationshipRelationship

toto

Function_toFunction_to
Function_fromFunction_from
Direct-InstancesDirect-Instances

fromfrom
FunctionFunction

routineroutine
Is_lossyIs_lossy

Figure 3.4: World Ontology Metamodel Components

The metaclass for objects includes slots that correspond to all fields specified in the HLA

Object Model Identification Table (IEEE 2000). This includes data structures to capture

 91

the name, version, purpose of the object and the date it was created. Furthermore, slots to

capture subclass and super class relationships, class-attributes relationships (Direct-Slots)

and aggregation relationships between the object metaclass and its instances (Direct-

Instances) are included. The range of each slot is defined so as to constrain the definition

of objects. For example, the range of the Direct-Slots slot is defined to be an instance of

the attribute metaslot. This means that every simulation object is modeled as a class that

can have one or more direct slots, as long as those slots are attributes (instances of the

attribute metaslot). A detailed view of the object metaclass, its various slots and their

ranges is illustrated in Table 3.1. The event and data type metaclasses are defined to be

essentially identical to the object metaclass. However they are modeled as separate

metamodel entities so as to be able to distinguish between object, event and data type

classes in SONTs and FONTs.

The attribute metaslot has its own set of slots that define the semantics of simulation

attributes, which correspond to the HLA attribute table fields. As defined in the frame-

based knowledge-model, all slots must have a domain and a value-type (or range). If

attributes are to be modeled as slots, the same must be true for them. Therefore, the

attribute metaslot includes the slots Has-Domain and Has-Datatype. The Has-Domain

slot is constrained such that its range is one or more instances of the object, event or data

type metaclasses. In other words, an attribute must belong to an object, event or data

type. The Has-Datatype slot is constrained such that its range is an instance of the data

type metaclass. That is, each attribute can have a value type or range that is an instance of

the data type metaclass. Also, a slot to capture the cardinality of an attribute (how many

 92

values the attribute can have at a given point in time) and the Direct-Instances slot to

capture the relationship between individual attributes and this metaslot is included.

Table 3.1: List of Slots that Define the Object Metaclass and their Value Types

Domain Slot Range (value is instance of….)
Name String (data type class)
Version Floating Point (data type class)
Date Created Date MDY (data type class)
Purpose String (data type class)
Sub class Object Metaclass
Super class Object Metaclass
Direct Instances Class
Direct Slots Attribute Metaclass

Object
Metaclass

Direct Constraints Facet

The World Ontology also includes a Relationship class to hold information about the

relationship between simulation concepts in a FONT. The relationship (transformation)

between a simulation entity and its common representation is represented as an instance

of this class. A corresponding Has-Relationship slot is included in the definition of the

meta-entities, to associate a relationship instance with a set of simulation entities. Even

though the relationship class and associated Has-Relationship slots are part of the World

Ontology, we postpone the discussion of the structure and use of these constructs until

Section 3.5, which is devoted solely to the representation of relationships in a FONT.

 93

Apart from template components, the World Ontology also includes a set of data types

that are expected to be used consistently across all SONTs and FONTs. These include

primitive data types such as integers, floating point numbers, strings, enumerated types

and units of measurement. Furthermore, relationships (and transformations) between

these data types can also be captured so as to be reused in myriad FONTs. However, as is

explained in Section 3.5, it is more efficient to encode the relationships between these

basic data types within the GRIT algorithm, than to capture them within the World

Ontology.

3.4 Simulation Ontology (SONT) Creation

Simulation Ontologies are information models that represent the set of concepts defined

within a corresponding simulation model. Analogous to an HLA SOM, a SONT

documents the representation of the objects and events in a given simulation domain.

However, in a SONT this documentation is captured in a semantically rich manner that

can be processed by a software agent. The semantics describing a simulation domain are

captured in terms of the metamodel concepts defined in the World Ontology.

For every SONT to be defined in terms of the same vocabulary, the World Ontology must

be included in each SONT domain. The first step to be undertaken in the development of

a SONT is therefore to copy the concepts defined in the World Ontology into the SONT.

Having done so, the SONT developer can begin to document simulation entities as

instances of the appropriate meta-entities. Simulation domains are described in an object

oriented fashion in a SONT, where concepts are modeled as classes, defined by a set of

 94

member attributes. All concepts that are viewed to be persistent throughout the length of

a simulation experiment are modeled as object classes—instances of the object metaclass.

Conversely, those concepts that are not persistent, i.e. they are only relevant at a single

instant in time, are modeled as event classes. Each object and event must be given a

unique name (name is used as a handle to identify individual frames) and are described in

terms of their attributes. Given that classes (frames) are defined in terms of slots, the

individual attributes of objects and events are modeled as slots; instances of the attribute

metaslot. When an attribute is created within the definition of an object or event, the

attribute’s domain is updated to include that object or event. Note that an attribute can

have multiple domains. For example, the attribute length can be a descriptor of multiple

objects in a simulation model that deals with form and geometry. Each attribute must also

be assigned a range; which can be one or more instances of the data type metaclass.

SONT developers may define data types for attributes as instances of the data type

metaclass. Each data type can have multiple attributes that represent the individual

members (fields) of that data type. Since each attribute in a data type class must have a

range, which itself is an instance of the data type metaclass, data types are defined in

terms of existing data types. Therefore, at some level of abstraction, all SONT specific

data types are defined based on the primitive set of data types defined in the World

Ontology.

Once instantiated, the object, event and data type classes can be arranged in hierarchies.

This arrangement should be defined in terms of the subsumption relationships between

 95

various entities. An object A is a sub-class of an object B if the set of attributes in A

subsume that of B. In other words, subclasses inherit the attributes of their super class.

The arrangement of SONT entities in hierarchies is an important step in the development

of a federated simulation. When a relationship between two entities is identified, that

relationship can then be applied to infer additional relationships between the respective

sub and super classes of those two entities. Furthermore, during the execution of a

federated simulation, if federate entity A determines its state (attribute values) by

subscribing to entity B in another federate, then the former is notified of all changes to

the subordinate classes of B. Therefore it is vital to arrange SONT entities into

hierarchies to support relationship inference and inheritance during run-time interplay.

An illustration showing the definition and arrangement of SONT entities in terms of

World Ontology concepts is provided in Figure 3.5. Note that no new relationships

(instances of the relationship class in the World Ontology) are defined in the

development of a SONT. That task arises when individual SONTs are to be integrated in

a given federation. The representation and instantiation of relationships between SONT

entities is addressed in the following section.

Object_MetaClassObject_MetaClass

Attribute 1

Object 1

Attribute 1Attribute 1

Object 1Object 1

Attribute_MetaSlotAttribute_MetaSlot

Datatype_MetaClass

meter
Conversion_factor

2-D coordinate

X
Y

Datatype_MetaClassDatatype_MetaClass

metermeter
Conversion_factorConversion_factor

2-D coordinate

X
Y

2-D coordinate2-D coordinate

XX
YY

Has datatype

KEY

Instance of
Has datatype

KEY

Instance of

Figure 3.5: SONT Specification in terms of World Ontology Concepts

 96

3.5 Capturing Relationships between Ontologies

The capture of relationships between federate representations of shared concepts in a

federation is a key aspect of achieving representational compatibility in this framework.

In this section, the semantics of relationships between different SONT entities in a

federation are explored. During the development of a federation, a human must indicate a

set of federate SONTs and the relationships between the individual entities they describe.

Once specified, these relationships should be applied to infer transformations, and should

be reused when the federation is modified. Therefore, it is important to capture these

relationships in a formal manner. As indicated earlier, the user specified relationships and

inferred transformations are to be stored in the FONT. In order to do so, a vocabulary for

describing relationships must be specified at the meta-model level. Such a vocabulary

should capture a match between two entities (i.e., the fact that two representations of a

concept are related) and a corresponding mapping between them (i.e., how to transform

an instance of one attribute to that of another). The definition of this vocabulary is

elaborated below:

3.5.1 The Semantics and Instantiation of Relationships in a FONT

The World Ontology includes a Relationship class to hold information about the

relationship between attributes, objects and events in a FONT. The relationship between a

particular entity and its common representation is represented as an instance of this class.

To account for both the match and mapping aspects, the Relationship class consists of the

following slots:

 97

 to: whose value is the target entity,

 from: whose value is the subject entity,

 function_to: whose value is an instance of the function class and holds

information about the transformation from the subject entity to the specified

target,

 function_from: which is analogous to function_to, except going from the target

entity to the subject

The function class consists of two slots: Routine and Is_lossy (Figure 3.4). The Routine

contains the transformation stub to convert entity instances between their federate and

common representations. Is_lossy has a Boolean value that indicates whether the

transformation from one representation to the other leads to a loss of information. In

Section 3.6, we discuss the use of is_lossy to determine the common representation for a

set of related SONT entities.

Federation developers can specify relationships between objects, events, data types and

their attributes in a FONT as instances of this relationship class. In most cases, users are

to specify knowledge of matches—the existence of a relationship between two SONT

objects, events or data types in the federation. Based on the class-level matches, users

must specify matches between the individual attributes of matched entities. Matches are

specified by providing values for the to and from slots of a given relationship instance.

Using this knowledge and the semantics of each matched entity the GRIT algorithm is

employed to determine the routines of the function_to and function_from slots in an

 98

automated fashion. In a minority of cases, users may explicitly provide these routines as

well. To associate a given relationship with a set of SONT entities, each object, event,

data type and attribute includes in its definition, a has_relationship slot. The range of this

slot is an instance of the relationship class. In essence, the has_relationship slot captures

the knowledge as to the participation of a simulation entity in a particular relationship.

In the FONT, all user-defined relationships are defined directly between SONT entities.

Once a common representation for all shared entities has been defined, all relationships

are to be defined between the SONT and common representations of entities (Figure 3.6).

In doing so, the relationship between n SONT entities is captured as a set of independent

relationships between each SONT entity and the common representation. The

independence of these relationships means that when the representation of a given SONT

entity changes, only the relationship between that entity and the common representation

is affected. Furthermore, the instantiation of a relationship between a given SONT entity

and a set of n already related SONT entities involves the specification of only one

additional relationship (as opposed to n). In this manner, the capture of relationships to

and from the common representation of shared entities helps to simplify the modification

and reuse of a FONT.

 99

SONT A

Object 1Object 1

SONT B

Object 2Object 2

FONT

SONT A

Object 1Object 1

SONT A

Object 1Object 1

SONT B

Object 2Object 2

SONT B

Object 2Object 2

FONT

SONT A

Object 1Object 1

SONT B

Object 2Object 2

Common_ObjCommon_Obj

FONT

SONT A

Object 1Object 1

SONT B

Object 2Object 2

Common_ObjCommon_Obj

SONT A

Object 1Object 1

SONT B

Object 2Object 2

SONT B

Object 2Object 2

Common_ObjCommon_Obj

FONT

(a) A User-Defined Relationship is ultimately captured as independent relationships to a common entity

SONT A

Object 1Object 1

SONT B

Object 2Object 2

Common_ObjCommon_Obj

FONT

SONT C

Object 3Object 3

SONT A

Object 1Object 1

SONT B

Object 2Object 2

SONT B

Object 2Object 2

Common_ObjCommon_Obj

FONT

SONT C

Object 3Object 3

SONT C

Object 3Object 3

(b) Specification of a relationship between a SONT entity and n other related entities involves creating
only one additional relationship

Figure 3.6: Specification of Independent Relationships to and from a Common
Representation

Given that each object and event is described in terms of its attributes, the relationship

between two objects (or events) is defined in terms of the relationship between their

attributes. Each attribute may be matched and mapped to its common schema equivalent.

A mapping between two objects or events is simply the collection of the mappings

between their individual attributes. Consider the following example: two objects, Person

and Individual, exist. Person is described in terms of the attributes name and age.

Similarly Individual is described in terms of attributes given name and years old. A

mapping from Individual to Person involves a transformation of an Individual’s given

name and years old attributes to the name and age of a Person, respectively. Assuming

 100

that these attribute level transformations already exist, there is no need to explicitly

specify a mapping between Individual and Person; the equivalent knowledge exists in

relationships between their attributes. Therefore, at the class level, mappings do not need

to be captured. However, it is necessary to capture knowledge as to which objects and

events relate to each other to facilitate information exchange at run-time. This is because

an attribute can be part of more than one object or event. In the example above, consider

that the age attribute is part of a third object, Tree. While the concepts of Person and

Individual relate to each other, they do not relate to Tree. When the years old attribute of

an Individual changes; that change is to be reflected in the age of a Person, but not that of

a Tree. This knowledge is captured in a match between Person and Individual (and the

lack of a match between Person and Tree). In general, when an attribute that is part of

multiple SONT objects changes its state in the context of one particular object, only those

objects that subscribe to that need to be notified as to the change in that attribute’s state.

The same routine is used to convert that attribute’s value from its SONT to common

representation, irrespective of the context (domain) in which that attribute is modified.

The knowledge as to which corresponding attribute to reflect these modifications in is

captured in object (and event) level relationships.

Once the user specifies all SONT-SONT relationships, additional instances of the

relationship class are automatically created to capture the match and mapping between

SONT and common representation of entities. Essentially, these relationships capture

equivalent knowledge as the relationships instantiated by the federation developer.

However, it is important to maintain both sets of relationships in the FONT. Saving the

 101

user-defined relationships in the FONT allows users to revisit and modify these

relationships at any time. The automatically generated SONT-Common relationship

instances capture equivalent knowledge in a form that can be directly employed by the

RTI. Furthermore, by capturing relationships to and from a common representation, the

task of modifying or specifying additional relationships is simplified, as mentioned

above.

3.5.2 Defining Relationships between Multiple Entities

It is important to note that based on the semantics of the relationship class, a relationship

can only be specified between a pair of entities. That is, the cardinality of the to and from

slots of the relationship class are constrained to be one. The reason for this constraint

relates to the generation of transformation procedures corresponding to a relationship. For

every relationship instance for which a mapping is to be defined, there must be a

procedure to transform information from the representation specified in the from slot to

that which is specified in the to slot, and vice-versa. These procedures can be written in

any choice of object oriented programming language (OOPL), such as Java or C. In the

majority of OOPL’s, procedures or functions are constrained to have only one return

value. Therefore, any transformation stored in a relationship instance can only output a

single information construct. Since relationships are bi-directional and two

transformations are generated, both the to and from slot values are constrained to hold a

single entity. Obviously, this limits the set of relationships that can be instantiated in a

FONT. It is likely that one SONT may represent a simulation concept using several

attributes whereas another may model the equivalent with a single attribute (probably of a

 102

more complex data type). In general there may be a need to relate n attributes of an object

in one SONT to m attributes of a coupled object in another SONT. The same may be true

at the class level (although less likely) as well. It is important to provide for the

specification of such relationships in this framework.

Several approaches can be adopted to incorporate the specification of transformations

between multiple sets of entities. One such approach would be to pass arrays or lists of

simulation entities as input and output arguments to the transformation routines in a

relationship. However this requires additional information to be specified as to the order

of the entities contained within the above-mentioned list. A more elegant solution exists:

For a set of n attributes being related simultaneously, a new data type class—and

aggregation—is instantiated such that its member attributes correspond to the set of

attributes being simultaneously related. Further, a new attribute is specified such that its

value type is the new data type specified above. In this manner, the information expressed

in n attributes is now encapsulated within a single attribute (Figure 3.7). The relationship

between n attributes in one SONT and m attributes in another can equivalently be

expressed as a relationship between two (complex) attributes.

 103

Attribute 1

Object 1

Attribute 2
Attribute 3

Object 2
Attribute 1Attribute 1

Object 1Object 1

Attribute 2Attribute 2
Attribute 3

Object 2

Attribute 3Attribute 3

Object 2Object 2

Attribute 1

Object 1

Attribute 2

Attribute 3

Object 2

Attribute 1

Aggr_datatype

Attribute 2

Aggr_attribute

Attribute 1Attribute 1

Object 1Object 1

Attribute 2Attribute 2

Attribute 3

Object 2

Attribute 3Attribute 3

Object 2Object 2

Attribute 1

Aggr_datatype

Attribute 2

Attribute 1Attribute 1

Aggr_datatypeAggr_datatype

Attribute 2Attribute 2

Aggr_attributeAggr_attribute

n:1

1:1

Aggregate data type is created such
that it contains the set of n attributes being
simultaneously mapped

Figure 3.7: Definition of n:1 Relationships by Aggregation

As an exemplification of this approach, consider the following scenario: A person,

described in terms of his or her name, is modeled using two attributes, First Name and

Last Name in one SONT, while the equivalent concept is modeled in a single attribute

Full Name in another SONT. A FONT is to be generated in which the attributes First

Name and Last Name together relate to the attribute Full Name. Following the approach

stated above, a new data type Aggregate_Name_Type is created by the federation

developer, with the former attributes as its slots. Next, a new attribute is

Aggregate_Name is instantiated, of value type Aggretate_Name_Type, within the

definition of the person object. Finally, a relationship instance is specified between Full

Name and Aggregate_Name.

 104

Having aggregated a set of attributes in the SONT there is still the issue that the

underlying simulation model employs a representation wherein the attributes are not

aggregated. When information is exchanged by the RTI at run-time, an aggregated set of

attributes must be de-aggregated when passed to the federate simulator. To address this

issue, a given instance of the aggregate data type can be created such that it references the

same location in memory as the original set of n attribute values of an object, event or

data type instance. In effect, this eliminates the need for performing a de-aggregation

operation. When the state of the aggregate attribute is updated, so too are the states of the

attributes it encapsulates.

3.5.3 Data type relationships

One final type of relationship that merits attention is that of relationships between data

types. The relationship between two attributes involves a relationship between their

respective data types. Hence, it is important to capture relationships and associated

transformations between data types in a FONT as well. Data type classes are very similar

to objects and events. Therefore, the relationship between two data types can be captured

in a similar fashion i.e. in terms of the relationship between their constituent attributes. A

key difference in the representation of relationships between data types and objects/

events is that transformations are captured at the class level in a data type relationship.

That is, the mapping between the constituent attributes of two data type classes are

encapsulated in a single procedure (this helps to simplify the process in which attribute-

level mappings are generated, as shall be explained in Section 3.6.2).

 105

While all relationships involving user-defined data types are captured via instances of the

relationship class, it is redundant to do so for the set of primitive data types (such as the

relationship between two units of length measurement—meter and centimeter) defined in

the World Ontology. These relationships are to be defined once and for all, when the

World Ontology is developed. Rather than specifying individual relationships between

primitive data types, the knowledge as to the transformations between primitive data

types is encoded as part of the GRIT algorithm. Since these relationships hold true for

any federation, there is no downfall in ‘hard-coding’ these relationships. As an example,

consider the relationships between data types corresponding to different units of

measurement. The relationship between two units of a certain measurable quantity is of

multiplication or division by a constant conversion factor. A certain system of

measurement can be chosen as a reference to which all conversion factors are determined.

(1995) has shown that with the knowledge of the conversion factors relating a set of

simple units (e.g., meter, second and Kelvin), the conversion factor for any composite

unit (i.e., a product or quotient of simple units, such as meter per second) can be derived.

Therefore, rather than instantiating multiple relationships between individual units of

measurement in the World Ontology, these relationships are derived as required based on

the knowledge of conversion factors. Hence, a conversion_factor slot (as shown in Figure

3.5) is included in the definition of simple unit data types and composite units are

captured as a product of simple units. SONT developers may specify additional unit data

types in the same form; the transformation between two units of a certain measurable

quantity will be automatically generated based on the specified conversion factor.

 106

We conclude this section with a quick recapitulation of the points made above. To begin

with, a metamodel for capturing relationships between SONT entities in a FONT was

presented so as to capture both matched and mappings between entities. Furthermore, we

established that for object and event level relationships, only the knowledge as to the

matches between objects and events need be specified. We saw that n:m relationships can

be specified by the process of attribute aggregation. Finally, the capture of relationships

between data types was discussed. Having done so, the reader has a fundamental

understanding of how relationships between simulation entities are captured in this

framework. In the next section, the process of FONT generation, of which relationship

definition is a key aspect, is explored in detail.

3.6 Federation Ontology (FONT) Generation

A federation ontology (FONT) serves as a common model to and from which federates

can convert shared information during run-time. Therefore the FONT consists of (its own

representation of) all shared objects, events and their constituent attributes in a given

federation. Further, this ontology must include the definition of the relationships between

the SONT and common representations of shared concepts. In order to specify a

relationship between two entities, both entities must be defined in the same ontology.

Therefore, as stated earlier, the FONT includes all SONTs, a common schema that is a

liaison between individual SONT representations of shared concepts and a set of

relationships between them (Figure 3.1).

 107

The FONT generation process, a sub-set of the overall framework process model, is

presented in Figure 3.8. The first step in FONT generation is creating a new ontology that

includes all the SONTs that are part of the federation. This simple task is analogous to

including the World Ontology in each SONT. Following this, the federation developers

must specify the knowledge as to which SONT objects relate to (publish or subscribe to)

each other. In the previous section, the process of specifying these relationships has

already been elaborated upon. When a relationship between two or more SONT entities is

instantiated, a common or shared representation for those entities must be created.

Ultimately, all relationships must be defined between federate and common

representations of shared concepts.

Include all SONTs in the FONT

Specify SONT-SONT relationships

Determine Common Representation

Generate Transformation Routines

Approve or Revise inferred lossy transformations

USER

Figure 3.8: FONT Development Process Flow (grey boxes indicate automated tasks)

Given the relationships specified by the user, new relationships can be inferred

automatically by composing existing relationships together. The complete set of

 108

relationships is used to determine the appropriate common representation (Section 3.6.1).

Following this, the procedural transformations associated with these inferred

relationships are also composed automatically (Section 3.6.2). During these steps, the

user is prompted to provide additional knowledge about transformations as required.

Having completed these steps, the user is presented with the set of inferred relationships

and transformations, so as to either approve them or revise them if an available direct

relationship is preferable. If revisions are made, the common representation, and the

associated transformations are recomputed. In this manner, the process of defining

relationships in a FONT is an iterative process that employs feedback from the user to

refine automatically generated common representation and transformation routines.

3.6.1 Determining the Common Schema

Since the relationship between SONT entities is captured in the FONT as a relationship

between each entity and a corresponding common representation, the question arises:

which representation should be chosen as the common representation? For each set of

related SONT objects, a corresponding common object is specified, such that its

attributes comprise the common representation of the individual SONT attributes of the

objects that are related to each other. In this manner, a common schema of objects, events

and their constituent common attributes is defined in the FONT. Alongside, a set of

relationships between SONT entities and their common schema equivalents is

instantiated.

 109

There is still the question as to what the representation of a common attribute should be.

By making the common attribute correspond directly to one of the SONT attribute

representations, at least one of the transformation routines will be trivial. It is furthermore

important to choose a representation that avoids any unnecessary loss of information

when exchanging data in a federation. The importance of this choice may not be evident

when there are only two related attributes; in fact it is irrelevant in this case. However,

this choice becomes significant when three or more SONT attributes in a federation relate

to each other. For example, if the SONT attribute position of data type 2-D coordinate

relates to attribute location (in another SONT domain) of type 3-D coordinate, and

attribute point also of type 3-D coordinate, the corresponding common attribute must be

of type 3-D coordinate. If it is selected to be of type 2-D coordinate, then there is an

avoidable and unrecoverable loss of information. Both attributes location and point have

three coordinates, yet when location subscribes to point (or vice-versa), the value is

converted from 3-D to 2-D (common representation) and back to 3-D, resulting in a loss

of the third coordinate’s value. To avoid this scenario, the common representation of a set

of related attributes should have a representation that does not lead to any avoidable loss

of information.

In order to determine which SONT representation of a shared attribute is the appropriate

common representation, we introduce the notion of lossiness. A transformation from one

representation to another is lossy if any information is lost in that transformation. In the

example above, the transformation from attribute location to position is lossy (while the

inverse is not). The information about lossiness is captured in the is_lossy Boolean slot of

 110

a given instance of the function class. In a relationship where from = position and to=

location, the value of function_to (an instance of the function class) has is_lossy = true,

while that of function_from has is_lossy = false.

The common representation for a set of related attributes is best determined as the

representation that leads to the fewest number of lossy transformations. In the event that

there are several SONT representations that lead to the same (least) number of lossy

transformations, any of them may be picked as the common representation. In the case of

the example presented above, it is clear that if the representation of the SONT attributes

location or point is selected to be the common representation, then the number of lossy

transformations is at its minimum (Figure 3.9).

Position PointLocation

Common_attribute

Common attribute = location or point

Position Location

Common_attribute

Point

Common attribute = position

Lossy

KEY

Non Lossy

Transformation
from location to
point is lossy

There is no
avoidable loss of
information PositionPosition PointPointLocationLocation

Common_attributeCommon_attribute

Common attribute = location or point

PositionPosition LocationLocation

Common_attributeCommon_attribute

PointPoint

Common attribute = position

Lossy

KEY

Non Lossy
Lossy

KEY

Non Lossy

Transformation
from location to
point is lossy

There is no
avoidable loss of
information

Figure 3.9: Selecting an Attribute Representation Resulting in the Smallest Number
of Lossy Transformations

 111

Generally, knowledge as to the lossiness of transformations between related attributes is

provided by the federation developer. While the selection and instantiation of the

common schema is automated, the knowledge required to do so must be explicitly

provided by a human(s). This information is conveyed by providing a value (True or

False) for the is_lossy slot in a given relationship’s functions. Based on the knowledge

provided by the user, the GRIT algorithm simply selects a common representation that

leads to the smallest number of lossy SONT to SONT transformations. Once the

knowledge of lossiness in a given mapping is provided, it can be applied to determine

lossiness of other transformations. Specifically, if the mapping between the data types of

two related attributes involves a lossy transformation, then the corresponding attribute-

level transformation must be lossy as well. However, the fact that there is no information

loss in the mapping between two attribute data types is not sufficient to determine if the

attribute-level transformation is lossy. It is important to understand that there can be a

loss of information in a transformation between two attributes having the same data type.

For example, a transformation from the attribute Name to First Name involves discarding

information about a person’s surname, even though both attributes have a value type of

String. Essentially, lossiness relates to the underlying semantics of the concepts captured

in related attributes than to their data types.

The complexity of the task of determining the common representation for a set of related

attributes varies based on the set of user defined relationships. This point is highlighted

using the example depicted in Figure 3.9. Consider that the federation developer specifies

a relationship between the position and location attributes and another between location

 112

and point. In order to determine which of these attributes should be selected as the

common representation, the GRIT algorithm notes the number of lossy transformations

associated with each of them being (hypothetically) selected as the common

representation. To determine the number of lossy transformations associated with point

being the common representation, knowledge as to the lossiness of a transformation from

position to point is required. This knowledge is not specified in the set of user defined

relationships, and potentially the federation developer may not know how position and

point relate. Therefore, the relationship between these two attributes is derived by

composing existing relationships. A transformation from position to point can be inferred

transitively as the sum of the transformation from position to location and that of location

to point (Figure 3.10). Based on the lossiness of these transformations, the required

knowledge of lossiness in the transformation from position to point is determined. Once a

count of lossy transformations associated with each federate attribute is obtained, a

suitable common representation can be selected.

PositionPosition

LocationLocation

PointPoint

Rel. 1

Rel. 2

Rel. 3=2+1

Relationship between Position and Point is transitively inferred

Inferred Relationship

KEY

User specified Relationship

Figure 3.10: An Example of Inferring Relationships by Composition

 113

Having determined the common representation for a set of related SONT attributes, a

corresponding instance of the attribute metaslot is instantiated in the FONT. Furthermore,

additional instances of the relationship class are created to capture the match between

each SONT attribute and the newly instantiated common attribute. These steps can be

performed automatically and do not require any interaction from the federation

developer. When a common representation and corresponding relationships have been

defined for the complete set of related attributes of two SONT objects (or events), a

common representation of those objects is also automatically instantiated, such that the

member attributes of this common object are the common attributes defined earlier. As

was done with related attributes, a new set of relationship instances are created to capture

the match between the SONT and common objects.

Having created a common set of entities, a final step in the development of the common

schema is to arrange these entities into a hierarchy. This step is vital to facilitate

inheritance in publication and subscription of federate objects or interactions. That is, if a

certain object subscribes to another SONT’s parent object, it should be notified of all

updates to the children of that parent object. The set of common objects and events in the

FONT are arranged into a hierarchy based on Classification—the process of constructing

a concept hierarchy in which more general concepts are located above more specific ones

according to the subsumption order. The subsumption relationship between two objects in

a schema is defined such that an object B subsumes an object A if the set of attributes that

comprise B includes the set of attributes that comprise A. In this case, object B is a

refinement of object A, or A is the parent of B. The hierarchical arrangement of common

 114

objects and events is captured be specifying ranges for their respective subclass-of and

superclass-of slots.

At this point, a common representation for all shared entities is defined and ordered, and

a set relationships between SONT and common entities is instantiated. In this section, we

explored the process by which these tasks are undertaken, except for the implementation

of the GRIT algorithm to select the common representation. A significant aspect of the

following chapter is devoted to studying the development and application of the GRIT

algorithm. The final step in the development of the FONT is the generation of

transformation stubs to convert SONT entities to their common representations and vice-

versa. Specifically, the function_to and function_from slot values in attribute level-

relationships need to be defined. The generation of transformation stubs in an automated

fashion is discussed in the following section.

3.6.2 Generating Transformation Routines

The transformation routines in a relationship between two SONT entities comprise a

mapping between those two entities i.e. they specify a procedure by which an instance of

one SONT entity can be converted to an instance of the other SONT entity and vice-

versa. The generation of transformation routines in this framework is analogous to the

specification of converters in the AFF (Macannuco, Dufault and Ingraham 1998) and

schema morphisms in the framework for model management developed at Microsoft

(Alagic and Bernstein 2001). While the specification of converters and morphisms is a

manual process, we exploit the use of ontologies to infer transformations in an automated

 115

fashion. As mentioned earlier, mappings only need to be defined for attribute

relationships. Since all classes are defined in terms of their attributes, the mapping

between two simulation objects, for example, can be viewed as a collection of mappings

between their attributes. The process by which attribute-level transformations are

generated is detailed in the following paragraphs.

There are two discrete conversions that are encapsulated in an attribute-level

transformation stub: (i) a conversion between the data types of two related attributes and

(ii) a conversion between the two concepts being related. The data type conversion deals

with the fact that two simulation entities that model the same concept may have different

representations. The data type conversion is employed to convert an instance of a

simulation concept from one federate representation to another. The second conversion

deals with the fact that two distinct concepts may be related in a federation. Apart from

the fact that these concepts may have different representations, there is a fundamental

relationship between the concepts themselves that needs to be captured as a procedure.

As an example, consider that a federation developer specifies a relationship between the

attribute radius of type meter in one SONT and diameter of type foot in another. Clearly,

these two concepts are related, but they are not the same. Furthermore, they are expressed

in dissimilar length units. The transformation between the SONT attribute radius to

diameter consists of two discrete conversions—one to covert the concepts of radius to

that of a diameter and the other to convert the resulting value in meters to feet. The

resultant transformation stub is as follows:

 116

Function_to.routine:

foot radius_to_diameter (meter radius) {

 foot diameter;

 diameter= (meter_to_foot(radius))*2;

 return diameter;}

It is important to note that this framework does not constrain the types of conceptual

relationships that can be defined between simulation entities. In most cases, relationships

in a federation are defined between two representations of the same simulation concept.

Here, the concept level conversion is simply one of equivalence, and the only non-trivial

conversion is between the data types of two attributes. In cases where relationships are

defined between disparate concepts, the federation developer must specify the knowledge

as to how these two concepts relate. Ideally, we would like the user to specify this

relationship in a declarative fashion, from which the transformations in either direction

can be derived (e.g. radius – (diameter/2) = 0). However, a declarative

relationship between two entities can be converted into two procedures (to perform

transformations in either direction) only if that relationship is analytically invertible.

Hence we assume that whenever the user explicitly specifies a mapping, he or she does so

in a procedural form (e.g. radius=diameter/2 and diameter =radius*2).

The extent to which a transformation stub can be generated autonomously depends on the

conceptual relationship between two attributes, and the relationship between their data

types. The relationship scenarios and the corresponding steps undertaken to arrive at the

required transformation stubs are listed in the following cases:

 117

Case 1: The conceptual relationship between two attributes and the relationship between

their data types is specified by the user. Most relationships across SONTs are made

across entities that refer to the same concept. If the conceptual relationship between two

attributes is one of equivalence, no additional knowledge needs to be specified in the

relationship definition (apart from knowledge of a match). In contrast, if the mapping

between two attributes involves a relationship between two distinct concepts, the required

transformation must be specified explicitly by the user.

Given that a relationship between the data types of a pair of related attributes is known,

the required attribute-level transformations can be inferred automatically. In a majority of

cases, attributes are defined in terms of primitive data types. Recall that the relationship

between primitive data types is already is already known (as discussed in Section 3.5.3).

Therefore, transformations between primitive data types can be instantiated, which are

then used to perform the attribute-level transformations. For example the transformation

from data type meter to data type foot can be generated automatically based on the

knowledge of the conversion factor captured in the World Ontology:

foot meter_to_foot (meter input) {

 foot output;

output=(input/foot.conversion_factor

*meter.conversion_factor);

 return output;}

If both data types are not primitive, then the transformation between them requires

additional knowledge. When the federation developer specifies a relationship between

 118

two attributes such that one or both of them has a custom data type, a relationship must

be defined between those to data type classes. To do so, the user must specify a set of

matches between the individual attributes of these data types. Based on this, the data type

level transformation can be generated automatically as a collection of the transformations

of its individual attributes. Consider the example transformation between the position and

location attributes illustrated in Figure 3.9. Position is defined to have data type 2-D

coordinate (with attributes x, y and z of data type foot) whereas location is of type 3-D

coordinate (consisting of x and y in meters). The relationship between 3-D coordinate

and 2-D coordinate can be derived automatically if the user specifies that the respective x

and y fields equate to each other. Since these fields have primitive data types, the

following transformation function between the custom data types is generated

automatically:

3D 2D_to_3D (2D input) {

 3D output;

 output.x = meter_to_foot(input.x);

 output.y = meter_to_foot(input.y);

 output.z= 0; // user specified default

 return output; }

Data type level transformations can be applied to generate the required attribute-level

transformation stub to convert position to location or vice-versa. This routine is created

as follows, assuming that position and location refer to the same concept:

 119

3D position_to_location (2D input) {

3D output;

output= 2D_to_3D(input);

return output;}

Case 2: The relationship between two attributes is not explicitly defined by the federation

developer. When the common representation for a set of related attributes is defined, a set

of relationships between the SONT attributes and the selected common representation are

instantiated. Depending on the selection of the common representation, some of the

SONT-common relationships have to be composed from the set of user defined

relationships. The transformations corresponding to these composed relationships cannot

be derived as elaborated in the case 1. If the user has not defined a given attribute

relationship explicitly, he or she has not captured the knowledge as to the conceptual and

data type conversions between those attributes. Moreover, the federation developers may

not know anything about the relationship between two attributes that they did not

explicitly specify.

To determine the lossiness in relationships that are not defined by the user, the approach

of composing user-defined relationships together is taken on, as explained in Section

3.6.1. A similar approach is taken to generate transformation stubs corresponding to

composed relationships. We use the position-location-point transformation example

developed thus far to illustrate this approach. Consider that the user specifies

relationships between position & location, and location & point. Upon the selection of

point as the common representation, a transformation to map position to point is required.

This transformation is represented as a nested procedure in which calls are made to

 120

transformations from position to location and location to point, as illustrated below.

Obviously, the latter transformations are either explicitly specified by the federation

developer or are generated automatically as elaborated in Case 1.

3D Position_to_Point (2D input) {

 3D output;

 output = Location_to_Point(Position_to_Location(input));

 return output; }

Transformations between data types for which relationships have not been specified are

also composed in the same manner as explained above. It should be noted that a

composed transformation will involve a loss of information if any of its constituent

transformations are lossy. The GRIT algorithm is devised so as to search for the smallest

chain of transformations that does not involve a lossy transformation. However, in the

event that there are no non-lossy chains, the composed transformation will inevitably lead

to a loss of information (Figure 3.11), which may be potentially avoidable. When the

FONT has been completely defined, the federation developer is presented with the set of

composed relationships with lossy transformations. If the user is cognizant of a direct

relationship and an associated non-lossy transformation to replace a composed lossy

transformation, he or she may explicitly define this relationship and provide the

knowledge required to generate the required transformations. The common schema and

transformation generation process is then reiterated with the revised set of relationships.

In this manner, the framework incorporates user feedback in the development of the

FONT.

 121

Object A

Attribute 1

Object AObject A

Attribute 1Attribute 1

Object B

Attribute 2

Object BObject B

Attribute 2Attribute 2

Common Object

Common attribute

Common ObjectCommon Object

Common attributeCommon attribute

Non-lossy transformations
cannot be derived Inferred Transformation

KEY

Non Lossy Transformation

Lossy Transformation

Inferred Transformation

KEY

Non Lossy Transformation

Lossy Transformation

1

3

2

4

2 3+2 3+

4 1+4 1+

Figure 3.11: Deriving Transformations by Composing Existing Ones

Once the final common schema and transformation routines have been approved, the

FONT generation process is complete. At this point, a federation level representation for

shared concepts is defined, and all run-time simulation interplay is conveyed in this

format. Also, a set of transformation stubs are generated for the RTI to convert

information it sends and receives from federate simulators into the appropriate

representations. Given that all this knowledge is stored in the federation ontology, the

procedure by which an RTI accesses and interprets this knowledge is an important issue

that remains outstanding. However, the development of such an RTI-FONT interface is

outside the scope of this framework and is hence not discussed. Suffice it to mention that

several web-based markup languages for ontology serialization exist, such as Resource

Description Framework (RDF) and Web Ontology Language (OWL) (Davies, Fensel and

Van Harmelen 2003), which along with their respective parsers, can be leveraged in the

development of an RTI-FONT interface.

 122

3.7 Assessing the Structural Validity of the Framework

Having explored the integration of federate simulations using the ontology based

framework, the reader’s attention is now focused on assessing the structural validity of

this framework. As mentioned earlier, the internal consistency of this framework is

accepted by ensuring that it is based on sound foundations. In the previous chapter, the

salient points of existing work that should be leveraged in the development of this

framework were identified. Here, we briefly recapitulate to demonstrate that the

development of this framework draws from these key points.

First, the specification of the World Ontology to represent simulation concepts is based

on the definition of the HLA OMT (IEEE 2000). The set of simulation entities (objects,

events, attribute) and their various properties (value type, cardinality etc.) was ascertained

based on the tables and fields that comprise the OMT. Furthermore, the approach to

integrating simulations through the specification of a federation-level FONT is leveraged

from the FOM based federation development approach in HLA (Defense Modeling and

Simulation Office (DMSO) 1999). Finally, the principle of inferring new relationships

based on existing ones, identified in the PROMPT (Noy and Musen 2000) and CUPID

(Madhavan, Bernstein and Rahm 2001) algorithms to perform ontology matching, is

leveraged to support automation in generation of mappings between matched simulation

entities. A similar approach has been demonstrated in the AFF, where the importance of

being able to chain exiting converters together is highlighted .

 123

The overall framework process model is also developed by building upon the work of

others. Specifically, the process of relating simulation entities via an intermediate

mapping entity and a set of transformations is derived from the schema management

models developed by (Alagic and Bernstein 2001). The approach of instantiating

converters between federate and federation-level representations has also been employed

in the AFF, albeit specific to the HLA framework. As has been demonstrated in the AFF,

the reusability of federate simulation models in multiple federations is ameliorated by

taking on this approach. The same is true for the ontology-based framework—once a

simulation model is developed, it can be used in multiple federations by specifying

relationships and transformations between its entities (captured in the SONT) and the

common model defined for that federation. In this manner, the need to modify the

simulation model each time it participates in a new federation is diminished.

Having developed the individual components of this framework and the overall process

model by building upon the work of others, this framework can be viewed to be internally

consistent, and theoretically valid in its structure. However, the validity of the GRIT

algorithm, which is part of this framework, is not yet accepted. The development of this

algorithm and its structural validity are discussed in the next chapter.

 124

CHAPTER 4

AN ALGORITHM FOR AUTOMATED FONT DEVELOPMENT

In the previous chapter, a framework for federation development using ontologies was

developed. Thus far, the capture of semantics describing a simulation federation has been

focused upon. In this chapter, we present the process by which the knowledge captured in

an ontology is applied to complete a given FONT specification in an automated fashion.

Referring back to the hypothesis posed corresponding to research question 3 in Chapter

1; the specification of a graph-based algorithm to infer federate-common relationships

and transformation stubs is detailed in the following sections. In Section 4.1, a high-level

explanation of the algorithm and its constituent procedures is presented. The application

of graph theory and graph algorithms to support achieving representational consistency in

a federation is discussed in Section 4.2. The specification of individual procedures that

together comprise the algorithm being presented is detailed in Sections 4.3 thru 4.5.

Finally, this chapter is closed out with a discussion to support the acceptance of the

theoretical structural validity of this algorithm.

 125

4.1 Overview of the GRIT Algorithm

A key step in the ontology based federation development process model (Section 3.2) is

the automated generation of the common schema and transformations in the FONT.

Using the formally captured semantics of SONT entities and the relationships between

them, a suitable common representation of these entities and a set of procedures to

transform between their SONT and common representations are to be specified. In order

to do so, a Graph-based Inference of Transformations (GRIT) algorithm is presented. As

its name suggests, the GRIT algorithm uses constructs defined in the field of graph-

theory to model the set of related entities in a FONT. By building upon existing

algorithms to efficiently traverse a graph, the GRIT algorithm infers a suitable common

representation and derives associated transformation stubs based on the existing

knowledge captured in a FONT.

The process by which the GRIT algorithm accomplishes the above-mentioned tasks is

illustrated in Figure 4.1. First, connected graphs are developed corresponding to the set of

related SONT objects, events, their attributes, and data types. Next, graphs of objects,

events and their attributes are used to determine the set of simulation entities that share a

common representation, and subsequently their common representation. Following this, a

set of SONT-Common relationships and their associated transformations are derived by

composing user-defined relationships together, as was discussed in Section 3.7.2. Finally,

transformations between data types of different related SONT attributes are instantiated,

 126

and the ensuing common schema and transformations are presented to the federation

developer for approval or revision.

Create Graphs from existing FONT

Determine and Instantiate common representations

Generate Object & Event Attribute Transformations

Generate data type transformations

1
2Develop SONTs

Specify SONT-SONT relationships

Generate FONT & Transformation stubs

Approve or Revise inferred lossy transformations

FRAMEWORK PROCESS

GRIT PROCESS

Create Graphs from existing FONT

Determine and Instantiate common representations

Generate Object & Event Attribute Transformations

Generate data type transformations

1
2Develop SONTs

Specify SONT-SONT relationships

Generate FONT & Transformation stubs

Approve or Revise inferred lossy transformations

FRAMEWORK PROCESS

GRIT PROCESS

Figure 4.1: GRIT Algorithm Process Model

To demonstrate how the GRIT algorithm supports FONT generation through its different

steps, we employ the Position / Location example developed in the previous chapter. To

briefly recapitulate, consider that a SONT consists of the object Vehicle, which has an

attribute Position of data type 2-D Coordinate. Vehicle is related to the object Car in

another SONT domain, which is described in terms of the attribute Location, of data type

3D-Coordinate. There exist relationships between the attributes Location and Position,

and the data types 2-D Coordinate and 3-D Coordinate. The GRIT algorithm is employed

to (i) create a common representation for the attributes Location and Position, and the

objects Vehicle and Car (ii) create transformation stubs between these SONT entities and

their common representations, and (iii) create transformation stubs between the 2D and

 127

3D Coordinate data types. Throughout this chapter, we refer to this example to help

explain how each procedure in the GRIT algorithm contributes to accomplishing these

tasks.

The steps depicted in Figure 4.1 comprise a single iteration of the GRIT algorithm. As

mentioned earlier, the FONT development process is iterative; hence these steps may be

repeated several times before the final FONT specification is obtained. Within the GRIT

algorithm, each of these steps is executed by an individual procedure. In the following

sections, the specification of these individual procedures are discussed in detail. In order

to study these procedures, a sound understanding of basic graph theory, the representation

of a FONT as graphs and graph traversal algorithms employed in GRIT is pre-requisite.

Therefore, we begin below with a basic and brief introduction to graph theory and

associated algorithms.

4.2 Graph Theory and Algorithms

Graph theory is a field of mathematics that deals with the use of diagrams or graphs to

study the arrangement of objects and the relationships between them. Graph theory is

defined as “the study of graphs, either for their own sake, or as models for such diverse

things as groups (in pure mathematics) or computer networks” (Kuperberg 2000). Indeed,

the theory of graphs has been applied extensively to solve problems in myriad domains,

including optimization, electrical engineering, communication & network engineering

and programming (Bondy and Murthy 1981; Yellen and Gross 1998). In this thesis, graph

theory is applied to support automation of the process of deriving procedural

 128

relationships between simulation model entities in the ontology-based framework

presented thus far. Our interest in graph theory is not so much in the existence of proofs

for specific theorems, but rather in the application of efficient algorithms developed to

perform graph-relevant tasks. Algorithms to find a path between two nodes in a

connected graph are of specific relevance to the generation of a FONT. The FONT

consists of a set of related entities for which a common representation and associated

transformations are to be generated in an automated fashion. The user-specified

knowledge in a FONT can be used to construct a connected, directed graph of related

simulation entities. Using this graph, an algorithm to find the shortest path between two

vertices can be employed. This shortest path is essentially equivalent to the most trivial

transformation from one simulation entity (vertex) to another. In this chapter, the

implementation of this proposed graph-based approach to infer the common schema and

transformations is detailed. Before doing so, we introduce the basic concepts in graph

theory and the graph algorithm being used in this thesis.

A Graph G (V, E) is a structure that consists of a set of Vertices V= {V1, V2…} and a set

of Edges E= {E1, E2…}. Each edge is incident on a pair of vertices (which are not

necessarily distinct), thus connecting them. A graph is qualified to be directed if its edges

have an ordered pair of end points (vertices), such that and edge E (u, v) starts at u and

ends at v. Associated with each edge is a length (or weight), which is non-negative. The

length of an edge usually defines some characteristic of the connection between two

vertices, such as its complexity, or time required to travel along that edge. A path within

a graph refers to a sequence of edges such that EI and EI+1 share a common end point.

 129

Obviously, in a directed graph, the end vertex of EI in a path is equivalent to the start

vertex of EI+1. A graph that is not fully connected is called a forest. Each forest may have

several connected sub-graphs and trees (which are sub-graphs without circuitous

connections). The concepts of a forest, sub-graph, vertex, edge and path are all illustrated

in Figure 4.2. A more in-depth discussion on the concepts in graph theory can be found in

(Even 1979; Gross and Yellen 2003).

10

V1 V2

V7

V5 V3

60
10

2

9

12

92

V1 V2

V7

V5 V3

60
10

2

9

12

92

SUB GRAPH 1

V4 V6

SUB GRAPH 2

101

FOREST

Vertex

Directed Edge

Edge Length

V8

Tree

Figure 4.2: Basic Concepts that Comprise a Directed Graph

Several efficient algorithms have been developed to perform operations on graphs, such

as graph traversal and tree ordering. As mentioned above, the algorithms of particular

interest are those that identify paths between two given vertices. An algorithm to

determine the shortest path between two vertices is used to support the selection of a

common representation and associated transformations in the FONT development

process. As we shall see in following sections, the edges that constitute the shortest path

 130

between two vertices in a graph is equivalent to the chain of functions composed together

in a transformation from one simulation entity to another.

The two famous, widely-accepted and used shortest-path algorithms are Floyd’s

algorithm (Floyd 1962) and Dijkstra’s algorithm (Dijkstra 1959). Floyd’s algorithm, also

known as the all-pairs algorithm is used to find the shortest path between every pair of

vertices in a graph. In contrast, Dijkstra’s algorithm finds the shortest path between a

specified vertex and all other reachable vertices in the graph. Essentially, Dijkstra’s

algorithm can be modified to execute n times so as to achieve the same functionality as

Floyd’s algorithm. Given its simplicity, we use Dijkstra’s algorithm in the GRIT

algorithm described in this chapter. There exist several variants to Dijkstra’s algorithm in

existence; we use the baseline sequential single-source algorithm, which is specified

below in pseudo-code:

s

i

m

Sequential Dijkstra
{
 d =0 //intialize distance of source vertex

d (i s)= // initalize distance of target vertices
T=V //initalize untraversed vertices

T empty
 {
 find all V T, with minimum

procedure

while

≠ ∞

≠

∈ m s

m t t m

t m m t t

t m m t

m

d //i.e. theclosest vertex to V
 each E(V ,V), V T //untraversed vertices directly connected to V

{
(d >[d +length(E(V ,V))]) //i.e.a shorter path to V exists
d =[d +length(E(V , V))]

}
remove V fr

for

if

end for

∈

om T //update untraversed vertices
}

}
end while

end procedure

 131

The sequential Dijkstra algorithm is explained as follows: Consider a graph with N

vertices and a set of directed edges. Given a source vertex VS, the algorithm listed above

finds the shortest distance of N-1 vertices from VS. The distance of a given vertex VI

from VS is represented as dI. The set of vertices in the graph is designated as V, and the

set T refers to those vertices that have been visited (the shortest distances to those

vertices has been determined). Dijkstra’s algorithm begins with an initialization phase, in

which the distance of VS from itself (dS) is set to zero, and all other distances are infinite.

The set of un-traversed vertices (T) is initially the entire set of vertices (V) in the graph.

The algorithm repeatedly picks a set of vertices VM from T, having minimal d’s, which

guarantees that the shortest path is always explored. Initially, VS has the minimum

distance of zero (all others are infinite). Therefore, the algorithm always begins its trace

from VS. At this point, the set of vertices VT in T that are adjacent to VS are identified.

This is done by comparing the lengths of all edges with start point VS. If the distance of

the vertices VT from VS is calculated to be less that what is previously recorded, the new

minimal distance is noted as dT. In the initial iteration, all recorded distances are infinite,

and given that all edge lengths are finite, the distance of vertices adjacent to VS are noted

as length of the edges E (VS, VT). Finally, VS is removed from the set of un-traversed

vertices and the process is repeated. That is, having noted the distances of the vertices

adjacent to VS, the adjacent vertices with the smallest distance are identified as VM, the

distances of the vertices adjacent to them (VT) are noted and so on. In this manner, the

algorithm always takes incremental steps along the shortest path(s) moving away from

VS, until all reachable vertices have been traversed. Note that the distance of those

 132

vertices that are not part of the same sub-graph as VS i.e. are not reachable from VS,

remains infinite when the algorithm completes its execution. A simple example to

highlight the execution of the sequential Dijkstra algorithm is illustrated below in Figure

4.3.

1 2

3

4 5

15
10

10 2

9

30

1 2

3

4 5

15
10

10 2

9

30

1 2

3

4 5

15
10

10 2

9

30

1 2

3

4 5

15
10

10 2

9

30

1 2

3

4 5

15
10

10 2

9

30

1 2

3

4 5

15
10

10 2

9

30

10

1 2

3

4 5

15
10

2

9

30

10

1 2

3

4 5

15
10

2

9

30

1 2

3

4 5

15
10

2

9

30

10

1 2

3

4 5

15
10

2

9

12

10

1 2

3

4 5

15
10

2

9

12

10

1 2

3

4 5

60
10

2

9

12

10

1 2

3

4 5

60
10

2

9

12

= VM

KEY

= VT = untraversed
= traversed= VM

KEY

= VT = untraversed
= traversed

d= ∞ ∞ ∞∞0d= ∞ ∞ ∞∞0 d= ∞ 10 ∞150d= ∞ 10 ∞150 d=

d= 42 10 12150d= 42 10 12150d= 25 10 12600d= 25 10 12600d= 25 10 12600d= 25 10 12600 25 10 12600

∞ 10150 12∞ 10150 12

Figure 4.3: Example Execution of Sequential Dijkstra Shortest-Path Algorithm

The complexity of Dijkstra’s algorithm is quantified using the Big-O notation (Ryan

1992) or Landau notation, which is a theoretical measure of the complexity of an

algorithm, usually indicating time or memory required for execution. Dijkstra’s algorithm

is of complexity O(N2), meaning that the maximum or upper bound on the number of

operations performed or time taken to do so is 2(*)Nα≤ , where N refers to the number of

 133

vertices in the graph. The value of α depends on the cost of performing comparisons and

other operations within the nested loops.

Dijkstra’s algorithm determines the shortest distance from a given vertex Vs to all other

vertices in a graph. In doing so, the algorithm uncovers the shortest path from Vs to any

other vertex. While the algorithm does not report this path, given the shortest distance

between two vertices, the task of identifying the shortest path is trivial. A modification to

this algorithm, as employed in GRIT, reports both the shortest path and distance between

two vertices in a graph. It is important to note two fundamental conditions that are pre-

requisite for Dijkstra’s algorithm to function properly: (i) the graph should be finite and

(ii) the lengths of edges must be non-negative and finite. As we shall see, both these

conditions are satisfied in the application of this algorithm to compose relationships in

the FONT generation process. Before exploring the application of Dijkstra’s algorithm in

the development of GRIT, the representation of FONT as a graph, in a convenient,

computer-interpretable form is presented in the following section.

4.3 Representing a FONT as a Directed Graph

A graph is a model of a set of entities and the connections between them. This is

equivalent to what is modeled in an ontology. Therefore, the application of graph theory

to this framework is straightforward. A given simulation attribute in the FONT that

participates in a relationship is represented as a vertex in a graph. The attribute-level

relationships, as defined by the user, correspond to edges connecting two vertices. Since a

relationship encapsulates two routines to transform between the related attributes, each

 134

relationship corresponds to a pair of directed edges in a graph. Given that there are sets of

attributes that relate to each other, the resultant directed graph will generally be a

collection of sub-graphs, i.e., a forest.

In order to explain the GRIT algorithm for supporting automated FONT generation, it is

important to first discuss how simulation entities (vertices) and their associated

relationships (edges) are stored in a computer. One way to represent a graph in a

computer is in an adjacency matrix (A); which is an nxn matrix such that AIJ equals 1 if

there exists and edge from VI to VJ, or zero otherwise. For cases where edges have

lengths, AIJ is set to the length of the edge, or zero if the edge does not exist. It has been

noted that the adjacency matrix is not an efficient representation for sparse graphs; graphs

where the number of edges is small (less than n2, where n is the number of vertices). It is

likely that a graph of simulation entites and their relationships will be sparse. That is,

each SONT entiity is only related to a limited set of other entities. Usually, a given SONT

concept only relates to one other concept in another domain. Moreover, if relationships

are specified between federate attributes A and B and B and C, it is unlikely that the user

will explicitly define a relationship between A and C, as this can be inferred based on the

relationships already specified. For sparse graphs, the representation of choice is that of

incidence lists. An incident list is a list (array or linked list) of pointers to all edges

incident upon a given node. Maintaining incidence lists makes tracing a path in a graph

rather simple: Given a vertex, the set of edges incident upon it are immediately available

(rather than having to search through an adjacency matrix).

 135

The incidence list approach is taken to represent a simulation attribute graph. In order to

capture the properties of vertices, such as the attribute they refer to and their

corresponding incidence lists, an array or table of vertices is maintained. Similarly, an

array of edges is constructed, holding information as to length of each edge. Each index

of the vertex array is a complex data structure which includes the fields Attribute Name,

Incidence List, Shortest Distance List and Shortest Path List. Given that the graph is

directed, the Incidence List could potentially include pointers to both edges that start

from and end at a given vertex. However, Dijkstra’s algorithm (and hence the GRIT

algorithm) only requires a listing of edges starting from a given vertex. Therefore, the

Incidence List of a given vertex only lists the index numbers of edges leaving a given

vertex. The shortest distance from the subject vertex to every vertex in the graph is

captured in the Shortest Distance List. The Shortest Path List of a given vertex, as its

name suggests, is an array such that its nth index captures an array of edge indices,

indicating the shortest path from the subject vertex to the nth vertex. In other words, the

shortest path list is a 2-dimensional array, or an array of arrays. Given that the number of

edges in the shortest path between two edges varies for each pair of edges, each index of

the shortest path list is modeled as a dynamic array. Obviously, the length of the shortest

path list for each vertex is N, where N is the total number of vertices in the graph. Each

index of the edge array is a complex data structure that includes the fields Start Vertex,

End Vertex and Length. Start and End Vertex fields hold the index number of the start

and end vertices respectively. The vertex and edge array representation of an attribute

graph is depicted below in Figure 4.4.

 136

V0 V1

V2

V3 V4

60
10

2

9

12

92

Vertex Array (V):

Attribute = Attr1

Incident List =

Shortest Path List =

1 2

1 4 6

V [0]:

V [0].Shortest Path List [2]:

Edge Array (E):

Start = 0

End = 1

Length = 60

E [0]:

Start = 3

End = 4

Length = 2

E [4]:

10

Shortest Distance List = 0 60 24 10 12

V0 V1

V2

V3 V4

60
10

2

9

12

92

V0 V1

V2

V3 V4

60
10

2

9

12

92

Vertex Array (V):

Attribute = Attr1

Incident List =

Shortest Path List =

1 2

1 4 6

V [0]:

V [0].Shortest Path List [2]:

Edge Array (E):

Start = 0

End = 1

Length = 60

E [0]:

Start = 0

End = 1

Length = 60

E [0]:

Start = 3

End = 4

Length = 2

E [4]:

Start = 3

End = 4

Length = 2

E [4]:

10

Shortest Distance List = 0 60 24 10 12

Figure 4.4: Representation of an Attribute Graph using Vertex and Edge Arrays

The length of an edge is determined based on the lossiness of its corresponding

transformation, which is defined in a given attribute-level relationship. If a given

transformation is non-lossy, the length of the corresponding edge is 1. Edges

corresponding to lossy transformations are given the weight 2*m, where m is the total

number of edges in the graph. Assigning contrasting weights to lossy and non–lossy

transformations allows the GRIT algorithm to compose the least lossy relationship

between two attributes as the shortest path between their corresponding vertices. At first

glance, one might question why lengths of 1 and 2*m are selected. We need to be able to

differentiate between lossy and non-lossy transformations. Since we are employing a

shortest path algorithm, a non-lossy transformation should have a smaller length.

Furthermore, we want to be able to distinguish between a single non-lossy

 137

transformation, and a chain of non-lossy transformations. Similarly, it is important to

discern one lossy transformation and a chain of two or more lossy transformations.

Clearly, we need to use finite, non-zero lengths to accomplish the latter (choosing

weights of zero or infinity means that one cannot differentiate between one edge and a

chain of edges). We cannot use negative and positive weights for non-lossy and lossy

transformations, respectively, because the shortest path will then correspond to the

longest non-lossy transformation. Moreover, if a lossy transformation is given a positive

length L and a non-lossy transformation corresponds to an edge of length 1, we cannot

differentiate between a single lossy transformation, and a chain of L non-lossy

transformations. However, if we choose the value of L to be greater than the total number

of edges in the graph, we are guaranteed that the length of a single edge corresponding to

a lossy transformation will always be greater than the longest possible chain of non-lossy

transformations. Therefore, by selecting lossy and non-lossy edges to be of length 2*m

and 1, respectively, we avoid the case where one cannot discern between a chain of non-

lossy transformations and a single lossy transformation.

Given a graph that is represented as indicated above, a modified version of Dijkstra’s

algorithm is used to generate the shortest path list corresponding to each vertex in that

graph. This modification entails capturing the actual shortest path between two vertices,

rather than just the distance of that path. The shortest path between two vertices specifies

the set of edges that constitute the shortest connection between those vertices, and the

order in which they are traversed. This information is vital to generate the transformation

stubs in the relationship between two SONT attributes. Each edge in a path corresponds

 138

to a routine that is nested in the composed transformation from one attribute (vertex) to

another. The order in which these edges are traversed determines the order in which the

corresponding routines are nested. An in-depth explanation as to generation of

transformation stubs using shortest path lists follows in Section 4.5.

The procedure to generate the shortest path lists for each vertex in the graph is as follows:

 Generate Shortest Path List {
 (i =0, i<length(V), i++){
 V[i].shortest distance list[i]=0

V[i].shortest distance list[]=
T=V

T empty{
 find all V

procedure
for

j i

while

≠ ∞

≠

j j

[m] T with minimum (V[i].shortest distance [m])
 each E [].incident list : E =E(V[m],V[t]), V[t] T{

(V[i].shortest distance list [t] >(V[i].shortest distance list[m]+E[j].length)) {
V[i].shortes

for V m

if

∈
∈ ∈

t distance list [t] =(V[i].shortest distance list[m]+E[j].length)
[].shortest path list[t] =append (V[i].shortest path list[m], j)

 }
}
remove V[m] from T

}
 }
}

V i
end if

end for

end while
end for

end procedure

The application of Dijkstra’s algorithm in the above listed procedure is evident. The

procedure to determine the shortest path of all reachable vertices from a given start vertex

(VS) is applied N times (where N is the number of vertices in the attribute graph), so as to

determine the shortest path between every possible pair of vertices. The minimum

distance test from the original algorithm is applied to determine if a shorter path from VS

 139

to a given vertex VT is found. In the above listed procedure, the minimum distance and

shortest path to VT are updated simultaneously. Since the shortest path is captured as an

array of edge index numbers, the shortest path to a vertex VT is captured by appending

the index of the edge corresponding to the shortest path between vertex VM
 and VT to the

existing shortest path between VS and VM. Note that for every vertex VZ that is not

reachable from a given start vertex VS, the shortest path from VS to VZ is not captured

and the Zth index of VS’s shortest path list remains null. When the procedure ends, the

shortest path list for each index of the vertex array V, i.e. the shortest path from V[i] to

every other reachable vertex, in V is defined.

The complexity of this procedure is of the order O(N3). Essentially, this procedure

iterates Dijkstra’s algorithm N times, where N is the total number of vertices or

equivalently the total number of related SONT attributes in the FONT. The cost of this

algorithm can more accurately stated to be 2*(*)N mα≤ , where m is the number of

attribute-level relationships defined in the FONT. Since it is highly unlikely that a

relationship is defined between each attribute in the FONT and all other attributes, the

number of edges m will almost always be less than N. Most often, the number of

relationships involving a given attribute depends directly on the number of SONTs in the

federation. That is, a given attribute is only related to those entities that model the

equivalent concept in another domain. Therefore, assuming that the number of SONTs in

a federation will be relatively small, the procedure listed above is of relatively low

complexity, and will not require substantial amounts of resources (operations, time and

memory) to complete its execution.

 140

Having elaborated the representation of related FONT attributes as a directed graph and

the procedures to initialize the associated arrays, we may proceed to studying the

application of this graph to determine the common representation and transformation

stubs for a set of related entities. At this point, it should be mentioned that two distinct

attribute graphs are maintained by the GRIT algorithm. One is used to determine the

common representation and transformations between the attributes of simulation objects

and events. The other graph consists of the attributes of data types and the relationships

between them. The reason being: data type level transformations are to be generated in an

automated fashion as well; however there is no common representation defined when two

SONT data types are related. To illustrate this point, we return to the Vehicle—Car

example introduced earlier. In the FONT, the set of related attributes pairs are Position &

Location, Ordinate & X, and Abscissa & Y (the latter two are attributes of the 2D and 3D

Coordinate data types). For the attributes Position & Location, a common representation

is to be defined, whose data type will be either 2D or 3D Coordinate. Since the common

representation is defined in terms of federate data types, data types and their attributes do

not have common representations. Hence this step is to be skipped for Ordinate & X and

Abscissa & Y. Therefore, it is necessary to differentiate between attributes of objects (and

events), and those of data types. To do so, these are maintained in separate graphs.

4.4 Common Representation Generation

The development of a common representation for a set of related entities is an important

step in the development of a FONT. As has been elaborated in Chapter 3, a common

attribute is to be instantiated for a set of related SONT attributes. In the case of the

 141

Vehicle—Car example, a common representation is to be defined for the attributes

Position and Location, and the objects Vehicle and Car. It is through these common

representations, that information about these related entities is exchanged. The common

attribute relating Position and Location is to take on either one of these federate attribute

representations (i.e. its data type must be selected as either 3D or 2D Coordinate).

Specifically, the SONT representation that leads to the least number of lossy

transformations is to be selected as the common representation. Using the graph

representation of a related collection of SONT attributes, the common representation for

a set of related attributes can be determined in an efficient, automated fashion. A

procedure to do so is presented in this section. Furthermore, a common object

corresponding to Vehicle and Car is to be instantiated. This common object must be

defined such that the common representations of all related attributes of Vehicle and Car

are in its domain (in this case, the common object has a single common attribute). A

subsequent procedure to generate common objects and events, and include appropriate

common attributes in their domains is also developed below.

The common representation for a set of shared attributes is selected as one of these

federate representations. The SONT attribute representation which leads to the smallest

number of SONT-SONT lossy transformations should be selected to be the common

representation. To determine this selection, the number of lossy transformations

associated with each SONT representation ‘hypothetically’ being selected as the common

representation must be determined. Following this, the SONT representation leading to

 142

the least number of lossy transformations can then be selected as the common

representation. This is the general approach taken in the procedure presented below:

2

2

Select Common Representation {
cost= new integer [length(V)]
T=V

 each V[m] T{
 T = All V[n] : V[m].shortest distance list [n] !=

 each V[i] T {

procedure

for

for

∈
∞

∈

2

 each V[t] T {

 each E[j] V[t].incidence list {
cost[i] =cost[i]+V[t].shortest distance list [i] +

 V[i].shortest distance list [E[j].

for
for

∈
∈

2 2

2

2

2

end]
}

}
}
Find a V[k] T : cost[k] < cost[j] for all j k, V[j] T

create common representation(V[k], T)
generate attribute transformation stubs (V[k], T ,)
T=T-T

}
}

end for
end for

end for

C
C

end for
end proced

∈ ≠ ∈
=

ure

Consider that the set of attributes describing objects and events and their relationships are

modeled in a graph as specified in the previous section. The first problem in identifying a

common representation is to determine which set of attributes share that representation.

For a given vertex V[m], the set of other vertices that share a common representation is

simply those vertices that are reachable from V[m]. Since a pair of edges are instantiated

for every attribute relationship, we know that if V[m] is reachable from V[n], then V[n] is

reachable from V[m]. Therefore, the set of reachable vertices from V[m] and V[n] are the

same. Given the representation of vertices in a vertex array, a set of attributes (vertices)

 143

sharing the same common representation as a given vertex V[m] is defined as all V[n] for

which the nth index of V[m]’s shortest distance list is not infinite. In the procedure listed

above, this is set is identified as T2.

Having determined the set of vertices corresponding to attributes that share a common

representation, we now come to the task of determining the common representation from

amongst these attributes. As mentioned earlier, this is done by calculating the number of

lossy transformations associated with each attribute being selected as the common

representation. Note that the transformations to be evaluated are SONT-SONT

transformations, which correspond to each existing edge connecting two any two vertices

(V[n], V[m]) in T2. Once the common representation is instantiated, all SONT-SONT

transformations are carried out via the common representation. Therefore, an edge

connecting V[n] to V[m] becomes a path from V[n] to the common representation to

V[m]. The lossiness of these end-to-end transformations are evaluated so as to select a

common representation to a minimization in information lost in SONT-SONT

communication at run-time. Therefore, if a given vertex V[k] in T2 is ‘hypothetically’ the

common representation, then each edge V[n] to V[m] is modeled as a path from V[n] to

V[k] to V[m]. The lossiness the associated SONT-SONT transformation is quantified by

the length of this path.

In the procedure presented above, the total length of all paths V[n]—V[k]—V[m]

corresponding to every edge E(V[n], V[m]) in T2 is recorded as the cost of selecting V[k]

to be the common representation. The process is repeated for each vertex in T2, and the

 144

vertex corresponding to the lowest cost is selected to be the common representation. In

order to determine the cost of selecting a given vertex V[k] as common, the shortest

distance from V[n] to V[m] via V[k] for each edge (V[m], V[n]) is determined and added

to cost[k]. This shortest distance is simply the sum of the shortest distance from V[n] to

V[k] and that from V[k] to V[m]. Note that these distances are already recorded when

Dijkstra’s algorithm was applied to the graph, as elaborated in Section 4.3.

A simple example of the common attribute selection procedure is illustrated in Figure

4.5. A sub graph consisting of three vertices reachable from each other (V0, V1, and V2)

is identified as the set T2. The progress of the procedure in selecting each one of these

vertices as the common representation is depicted in the figure. Each edge in the sub-

graph is modeled via the selected common representation, and the resultant shortest

distance is noted. The sum of these distances (for all edges in the sub-graph) is the cost

associated with each vertex being selected as the common representation. V1 is found to

have the lowest cost and is selected as the common representation. By inspection, it is

clear that when either V1 or V2 is selected to be the common representation, there is only

one resultant SONT-SONT transformation that is lossy, that from V1 to V0 (this cannot

be avoided based on the set of relationships defined). However, if V2 is selected as the

common representation, the SONT-Common relationship between V0 and the resultant

common attribute has to be inferred as a chain V0—V1—Common attribute (V2). In

the case that V1 is selected to be common, no SONT-Common relationships are inferred

by composition. Hence, it makes sense to select V1 to be equivalent to the common

 145

representation, with the intent of realizing the simplest SONT-Common transformations

thereafter.

V0 V1 V2

1

8

1

1

T2 = {V0, V1, V2}

V0 = common

V0 V0 V1 d = 1
0 1

V0 V0 V1 d = 1
0 1

V1 V0 V0 d = 8
08

V1 V0 V2 d = 10
8 2

V2 V0 V1 d = 109 1

Cost [0] = 29

V1 = common

V0 V1 V1 d = 1
1 0

V0 V1 V1 d = 1
1 0

V1 V1 V0 d = 8
80

V1 V1 V2 d = 1
0 1

V1 V1 V2 d = 1
0 1

V2 V1 V1 d = 11 0
V2 V1 V1 d = 11 0

Cost [1] = 11

V2 = common

V0 V2 V1 d = 3
2 1

V0 V2 V1 d = 3
2 1

V1 V2 V0 d = 10
91

V1 V2 V2 d = 1
1 0

V1 V2 V2 d = 1
1 0

V2 V2 V1 d = 10 1
V2 V2 V1 d = 10 1

Cost [2] = 15

Figure 4.5: Illustration of the Graph-Based Common Attribute Representation
Procedure

It is important to note that selecting the SONT representation with the lowest cost as the

common representation leads to the most efficient manner in which information is

converted to and from the common representation. At the outset, our goal was to select a

common representation that leads to the smallest number of lossy transformations.

Following the procedure discussed above, not only is a representation leading to minimal

lossy transformations selected, but the composition of SONT-Common transformations

(based on those specified by the user) is as simple as possible. That is, the shortest

possible path between vertices (i.e. the lowest cost) implies the shortest possible chain of

user-defined transformations (path of edges). There may be multiple V[k] that lead to the

least number of lossy SONT-SONT transformations, but the complexity (number of

 146

transformations composed together) of their associated SONT-Common transformations

may differ. In the approach elaborated above, the representation leading to the least

complex composition of transformations is always selected.

The complexity of the procedure to determine common representation is of the order

2(* *)O S V m , where S refers to the total number of sub-graphs in the forest, V refers to the

maximum number of vertices in each sub-graph and m refers to the total number of edges

in each sub-graph. As has been argued earlier, the complexity of this and all graph-based

procedures relates directly to the number of SONTs in the FONT and the complexity of

relationships between them. Given a reasonable number of attributes (N) and

relationships between them (m/2), this procedure will not require significant resources to

compute the common representation for a set of related attributes.

Once the common representation for the set of related attributes in T2 has been

determined, a new instance of the attribute meta slot is created as part of the common

schema. This attribute is modeled to be equivalent to the SONT attribute corresponding

to the vertex in T2 with the lowest cost. That is, its range (data type) and constraints (e.g.

cardinality) are exactly the same as the selected SONT attribute. Following this, a set of

relationship instances are defined between each SONT attribute corresponding to a V[i]

in T2 and the newly instantiated common representation. Furthermore, the transformation

stubs for these relationships are generated, following a procedure to be presented in

Section 4.5. The entire process is repeated for each sub-graph in the forest i.e. each set of

 147

attributes that share a common representation or each set of vertices that are reachable

from each other.

Having defined the common representation, a set of SONT-Common relationships and

associated transformation stubs for all attributes, the common representation of objects

and events and their associated SONT-Common relationships can be defined. Recall,

once a common attribute is defined corresponding to Position and Location; a common

object must be defined for Vehicle and Car, such that the above mentioned common

attribute is in this common object’s domain. The process of generating common

representations for related objects and events is relatively simple, and employs a much

simpler graph than is required for attributes. An undirected graph of objects (or events) is

created such that each vertex in V refers to a related object, and each edge in E refers to

the existence of a match between a pair of objects (vertices). The length of each edge is

assumed to be constant; edge lengths are of little consequence here. Furthermore, the

shortest paths between vertices in an object graph do not need to be captured. Based on

this simplified graph, the object and event common representations are created by

employing the following procedure:

 148

2

2

2

Generate Object/Event Common Representation {
V T

 each V[m] T {
T = All V[n] : V[m].shortest distance list [n] !=

(length(T)>1)
C = new common object/event ()
 each V[i] T {

 e

procedure

for

if

for
for

∈
∈

∞

∈

j

j j j

j

2

ach attribute a V[i] {

 (R : R.from =a & R.to ac , (ac common attributes))

add to domain (ac , C)

}
create new relationship (V[i],C)
}

T=T-T
}

}

if

end for

end for

end for
end procedure

∈

∃ = ∈

Similar to the first steps of the process to generate common representations for attributes

of objects and events, this procedure begins by determining the set of SONT objects

(vertices) sharing the same common representation, by finding the set of vertices (T2)

reachable from a given vertex V[m]. If this set only includes one vertex, it is obvious that

the corresponding SONT object or event is not related to any other objects, and no

common representation is created. If a set of multiple related objects is found, a new

instance (C) of the object (or event) metaclass is created as part of the common schema.

This common object then needs to be described in terms of a set of common attributes.

The common representations of the attributes of each SONT object in the set T2 make up

the set of attributes that describe C. As one might expect, many of the attributes of each

V[i] in T2 share the same common representation. In the procedure listed above, each

attribute (AJ) of each V[i] in T2 is queried to determine if it participates in a SONT-

 149

Common relationship. If so, the corresponding common attribute (ACJ) is modified such

that its domain includes the newly created class C (the values in the domain slot of ACJ

are appended to include C). Following this, a relationship instance between each V[i] and

C is instantiated to indicate a match between the SONT objects and their newly created

common representation. At this point, the process of generating and relating the SONT

and common objects is complete; no transformations need to be defined at the object or

event level since their mappings are defined in terms of the mappings between their

individual attributes. This entire process is repeated for each sub-graph in the forest of

objects or events. This procedure is not of a high degree of complexity; its complexity is

of the order O(S*T*a), where S is the number of sub-graphs in the object (or event)

forest, T is the number of vertices in each sub-graph, and a is the number of attributes in

the domain of each object.

Thus far, procedures have been outlined for creating common representations for objects,

events and their attributes using a graph-based representation. Here we have seen that

given a set of vertices, edges and the shortest distances between two given vertices, the

common representation of simulation entities can be generated in an automated fashion.

The remaining final component of the GRIT algorithm is the instantiation of

transformation stubs between the SONT and common representation of object and event

attributes and their data types. In the following section, procedures that utilize shortest

path lists to generation transformations between attributes and data types, respectively,

are explored.

 150

4.5 Transformation Stub Generation

In order to map SONT attributes to their common counterparts, so as to facilitate

consistent information exchange at run-time, a set of transformation stubs need to be

generated as part of each SONT-Common attribute relationship. In the context of the

Vehicle—Car example, a common representation for attributes Position and Location is

generated following the procedure discussed in the previous section. Alongside, a set of

relationships between these attributes and their common representation are instantiated.

For these relationships, transformation stubs need to be generated. It is by invoking these

SONT-Common transformation stubs that run-time information is exchanged between

the corresponding federate simulations. A graph-based procedure to generate these stubs

is presented in this section. Object and Event level relationships do not require

transformations, as they are converted from SONT to common form (and vice-versa) by

employing the transformations defined for their constituent attributes. However, a set of

transformations do need to be defined between the related data types in the FONT (such

as from 2D Coordinate to 3D Coordinate, and vice-versa). Since a transformation

between two attributes involves a transformation between their respective data types,

calls to these data type transformations are nested within attribute-level stubs. In this

section, a procedure to infer data type level transformations is also presented. We begin

below with the specification of attribute level transformations.

In Section 4.4, a procedure to generate a common representation for a set (T2) of

attributes corresponding to vertices that are reachable from each other was presented.

Once the common representation and SONT-Common relationships are defined for the

 151

attributes in a given sub-graph, the transformation routines in these relationships are

instantiated by making a call to the following procedure:

2

2

j

j

Generate AttributeTransformation Stubs (V[k], T , C) {
 each V[m] T {

Find relationship R in FONT between V[m].attribute and C

Create Transformation Header (R .function_to.routine, V[m],

procedure
for ∈

j

l l j

 C)

 (V[m] V[k]){
 (i=0, i <length (V[m].shortest path list [k]), i++){
E E [V[m].shortest path list [k] [i]]

Find corresponding relationship R : R is between V[E .start].attribute &

if
for

≠

=

j

l

j

 V[E .end].attribute

(R relationships with explicitly defined tranformations) {
Append Transformation (R .function_to.routine, V[Ej.start].attribute,

 V[Ej.end].attribute)

Append

if

else

∈

j

j

Transformation (R .function_to.routine, datatype (V[Ej.start].attribute),

datatype (V[Ej.end].attribute))
}

}
Close Transformation (R .function_to.routine)

}
}

end for
end if

end for
end procedure

Given a set of mutually reachable vertices (T2), a corresponding set of related attributes,

and a newly instantiated common representation (C), a SONT-Common relationship (R)

from each attribute corresponding to a vertex V[m] in T2 is identified. For every such

relationship, the values of the function_to and function_from slots are to be determined.

In the procedure listed above, the function_to routine for each R is instantiated by making

calls to the Create Transformation Header and Append Transformation functions. As its

 152

name suggests, Create Transformation Header simply sets the String value of

R.function_to.routine to the appropriate function header as:

<C’s data type> <V[m].attribute>_to_<C> (<V[m].attribute’s data

type> input)

{

 <C’s data type> output;

 output = input;

Following this, the actual conversion from the given attribute (V[m]) to the common

representation (C) is to be appended to this transformation routine. Obviously, if V[m] is

the vertex V[k] who’s corresponding attribute was chosen to be the common

representation, the relationship between V[k] and C is one of pure equivalence, and the

required transformation is simply output = input. Therefore, no further steps need to

be appended to this transformation. However, for all other V[m], the transformation from

the attribute corresponding to V[m] to C is not quite as trivial. These transformations may

be composed of a chain of user-defined relationships existing in the attribute graph. A

transformation from V[m] to C is equivalently traced as the shortest path from V[m] to

V[k]. In the procedure listed above, the shortest path from V[m] (m kV V≠) to V[k] is

identified as the kth index of V[m]’s shortest path list. For each edge EJ in this path, the

equation relating output and input in the transformation being specified is modified to

include a transformation from the start to end vertices of EJ. In this manner, the

transformation from V[m] to V[k] (equivalently to C) is captured as a chain in which

each link corresponds to the transformation associated with an edge EJ in the shortest

path from V[m] to V[k].

 153

In appending the transformation corresponding to a given EJ to the relationship between

input and output, care has to be taken to differentiate between those EJ that relate two

representations of an equivalent concept and those that relate two different concepts. For

those EJ that correspond to relationships between two representations of the same

concept, a transformation from EJ.start to EJ.end simply entails a conversion from

EJ.start’s data type to that of EJ.end. Therefore, the relationship between output and input

in the transformation being generated is (pre) appended to include a transformation

between the appropriate data types of the start and end vertices of EJ, as follows:

output = (<EJ’s start vertex data type>_to_<EJ’s end vertex

data type>(input));

Obviously, if the start and end vertices of EJ have the same data type, it doesn’t make

sense to specify a transformation between them; hence this step is skipped for all such

cases.

For those EJ that correspond to relationships between two disparate concepts, a

transformation between the data types of the two vertices connected by EJ does not

completely describe the conversion from the start to end vertex of EJ. As mentioned in

Chapter 3 (Section 3.7.2), transformations for all relationships that involve more than a

data type conversion must be explicitly defined by the federation developer. Assuming

that all such transformations exist and are named in the form

<attribute_1>_to_<attribute_2>, they can be appended to the chain of

transformations between V[m] and C as:

 154

 output = (<EJ’s start vertex>_to_< EJ’s end vertex>(input))

The transformation from V[m] to C is generated by pre-appending the transformation

corresponding to each EJ, in the fashion described above, until all edges in the entire path

from V[m] to V[k] have been traversed. The resultant appended transformation is of the

following form:

output = (<Ek’s start vertex>_to_< Ek’s end vertex> (<EJ’s

start vertex data type>_to_<EJ’s end vertex data

type>(input)));

Having traced the entire path from V[m] to V[k], the required transformation is closed by

adding a return statement. The resultant complete transformation is as follows:

<C’s data type> <V[m].attribute>_to_<C> (<V[m].attribute’s data

type> input)

{

 <C’s data type> output;

output = (<Ek’s start vertex>_to_< Ek’s end vertex> (<EJ’s

start vertex data type>_to_<EJ’s end vertex data

type>(input)));

 return output;

}

The transformation between each attribute corresponding to a vertex V[m] in the set T2

and the common attribute C is defined by repeating this entire process until all V[m] in T2

have been traversed. By identifying the edges that constitute the shortest path from each

 155

vertex to V[k], the transformation from any attribute to its common representation is

composed as a chain of the user-defined SONT-SONT attribute relationships specified in

the given sub-graph. There are two key assumptions made in generating these

transformations: (i) for every SONT-SONT attribute relationship, a relationship between

the data types of those attributes is also defined, and (ii) transformations in relationships

between disparate concepts are explicitly defined by the federation developer.

Assumption (i) is made when the transformation between the data types of two attributes

in an edge EJ is appended to the equation relationship between the input and output

variables. As long as that data type level transformation procedure exits, a call can be

made to it during the execution of a transformation between V[m] and C. Assumption (ii)

may be alternatively stated as—if an explicit transformation between two vertices in an

edge EJ is not specified, then the vertices are assumed to be two representations of the

same concept. Therefore, an appropriate transformation between their data types

adequately captures the traversal from the start to end vertex of all such EJ.

The complexity of the algorithm listed above is of the order 2()O N , where N is the

number of vertices in a given sub-graph T2. The procedure repeats its outer loop N times,

so that a transformation is generated for each SONT-Common relationship in the set T2.

The inner loop iterates until all edges in the shortest path from V[m] to V[k] are

traversed. If there are N vertices related to each other, the longest path between any two

vertices will have N-1 edges, such that every vertex in T2 is visited between V[m] and

V[k]. As has been mentioned earlier, the number of related attributes in a sub-graph

relates directly to the number of SONTs in the federation. It is improbable that a

 156

prodigiously large number of federates will be part of a federation. Therefore, for all

practical purposes, the execution of this procedure will require insignificant time and

computing power.

An example to illustrate the functioning of transformation stub generation procedure is

provided in Figure 4.6. In the sub-graph defined , vertex V2 is selected to be the common

representation. A SONT-Common transformation is to be defined from each vertex to the

common representation. The properties of each vertex are listed in the figure. Edge E1 is

the only edge that corresponds to a transformation (from attr2 to attr3) that has already

been explicitly provided by the federation developer. In the following paragraph, we trace

the generation of the function_to routine in the SONT-Common relationship between

Attr1 and the common attribute, using the procedure detailed above.

Sub-graph: V0 V1

V2

V3

E0 E1

E3

E2

E5

E4

V0

Attribute = attr1 of type meter
Shortest path List [3] = {E0,E1}

V1

Attribute = attr2 of type custom1

Shortest path List [3] = {E1}

V2

Attribute = attr3 type centimeter

Shortest path List [3] = {null}

V3

Attribute = attr1 of type inch

Shortest path List [3] = {E5}

V0

Attribute = attr1 of type meter
Shortest path List [3] = {E0,E1}

V0

Attribute = attr1 of type meter
Shortest path List [3] = {E0,E1}

V1

Attribute = attr2 of type custom1

Shortest path List [3] = {E1}

V1

Attribute = attr2 of type custom1

Shortest path List [3] = {E1}

V2

Attribute = attr3 type centimeter

Shortest path List [3] = {null}

V2

Attribute = attr3 type centimeter

Shortest path List [3] = {null}

V3

Attribute = attr1 of type inch

Shortest path List [3] = {E5}

V3

Attribute = attr1 of type inch

Shortest path List [3] = {E5}

Common rep

KEY

Edge on shortest path to common

Edge w/ explicitly defined trans.

Common rep

KEY

Common rep

KEY

Edge on shortest path to common

Edge w/ explicitly defined trans.

Figure 4.6: Example Attribute Graph to Illustrate Transformation Stub Generation

 157

The procedure begins by selecting V0 to be V[m], following which, a relationship R

between V0.attribute (i.e. Attr1) and the common representation is identified, and a

corresponding transformation header is created for the function_to slot of R. This header

is as follows:

Centimeter attr1_to_Common (Meter input)

{

 Centimeter output;

 output = input;

Following this, the shortest path from V0 to V[k] (V2) is identified as the 3rd index of

V0’s shortest path list. The first edge in this path is E0, which connects V0 to V1. Given

that this edge does not correspond to an explicitly defined transformation, the required

transformation from Attr1 to Common is appended as:

Centimeter attr1_to_Common (Meter input)

{

 Centimeter output;

 output = meter_to_custom1(input);

The next edge E1 is traversed. This edge corresponds to a user-defined transformation,

hence the appended Attr1 to common transformation is as follows:

Centimeter attr1_to_Common (Meter input)

{

 Centimeter output;

 output = attr2_to_attr3(meter_to_custom1(input));

 158

At this point, all edges in the path from V0 to V2 have been traversed. Therefore, the

transformation can be closed with a return statement, as follows:

Centimeter attr1_to_Common (Meter input)

{

 Centimeter output;

 output = attr2_to_attr3(meter_to_custom1(input));

 return output;

}

This example highlights a key point with regard to the composition of transformation

stubs—given that the data types of both Attr1 and the Common representation are

primitive (they are meter and centimeter, respectively), one may question why a direct

transformation cannot be instantiated between these attributes, (based on the fact that the

relationship between any two units of a measurable quantity is known from their

respective conversion factors). While the data types of both attributes (Attr1 and

Common) are primitive, the knowledge as to the concept level relationship between them

is not specified. That is, it is not known whether the conversion of Attr1 to Common

involves only a conversion between their data types. Furthermore, the shortest path from

Attr1 to Common signifies the least lossy transformation from Attr1 to Common;

specifying a direct relationship may have implications as to the lossiness of the resulting

transformation. Therefore, even though both Attr1 and Common have primitive data

types, the transformation between them is composed as a chain of transformations in the

shortest available path from Attr1 to Common.

 159

Thus far, only the generation of a transformation stub from a SONT attribute to its

common schema equivalent has been discussed. To complete the specification of a

SONT-Common relationship, a transformation in the opposite direction, i.e. from the

common to SONT representation must be defined as well. The value of function_from for

a given relationship R between V[m] and C can be determined along side that of

function_to, following the same set of steps as listed above. To define a transformation in

the opposite direction, the shortest path from the vertex V[k] (corresponding to the

common representation) to each V[m] needs to be identified. Other than this, the steps

undertaken to generate transformations from C to each V[m] remain unchanged.

Having elaborated the specification of transformations between SONT and common

attributes of objects and events, a final set of transformations needs to be defined between

the various data types of these attributes. Recall that transformations between attributes

involved transformations between their data types. For example, a transformation from

the Vehicle attribute Position to its corresponding common representation may involve a

conversion from 2-D Coordinate to 3-D Coordinate. For the FONT specification to be

complete, and for the attribute-level transformations to function correctly, it is vital to

define transformations between the set of related data types.

For every relationship between two SONT attributes specified by the federation

developer, he or she must also specify the existence of a relationship between their data

types. Furthermore, if both these data types are not primitive, matches between the

individual attributes of these data types must be specified, as was done with Object and

 160

Event level relationships. Again, if the individual attributes of two related data type

classes relate to each other such that a transformation between them only involves a

conversion between their own data types, then no further information need be specified,

except, of course, the existence of a match between two or more data type attributes. For

example, in the relationship between 2-D Coordinate and 3-D Coordinate, matches are

specified between the individual attributes X & Abscissa, and Y& Ordinate. However, if

the transformation between two data types involves a more complex relationship between

their attributes, it must be explicitly specified by the federation developer.

For those non-primitive data type relationships whose transformations are not explicitly

defined, a graph based approach can be taken on to generate these transformations in an

automated fashion. A directed graph consisting of the set of related data type attributes

can be constructed, just as was done for the attributes of objects and events. Using this

graph, the transformation between two related data types can be derived via the following

procedure:

 161

Generate Datatype Transformations {
 each Relationship R : (R.to, R.from datatype & R.to, R.from primitive datatype &

R Relationships with explicitly defined transformations) {
star

procedure
for ∈ ∉
∉

t =R.from
end =R.to
Create Transformation Header (R.function_to, start, end)

 each V[m] : V[m].attribute start {
 each V[n] :V[n].attribute end {

 V[m].shortest distance list [n] {
 (i=0, i

for
for

if
for

∈
∈

≠ ∞

j

l l j

j

j

 <length (V[k].shortest path list [m]), i++){
E E [V[m].shortest path list [n] [i]]

Find corresponding relationship R : R is between V[E .start].attribute &

V[E .end].attribute

Append Transformation (R .

=

function_to.routine,

datatype (V[Ej.start].attribute), datatype (V[Ej.end].attribute))
}

}
}

}
Close Transformation(R.function_to)
}

}

end for
end if

end for
end for

end for
end procedure

This procedure identifies the set of relationships R between data types that are not

primitive and do not have predefined transformations. For each such relationship, the

from and to data types (named start and end, respectively) are identified, and

corresponding header for the function_to values of R is instantiated as:

<end datatype> <start datatype>_to_<end datatype> (<start

datatype> input)

{

 162

Once the transformation stub header has been defined, the conversions between the

individual attributes of the start and end data types need to be specified. In the procedure

presented above, the set of vertices corresponding to attributes in the domain of the start

data type are identified. For each such vertex V[m], if a reachable vertex V[n] is found

such that the attribute corresponding to V[n] is in the domain of the end data type, a

transformation from V[m] to V[n] is composed by traversing through the nth index of

V[m]’s shortest path list, just as was done with the attributes of objects and events. The

transformation from V[m] to V[n] is appended to the data type level transformation as:

output.<V[n].attribute> = (<EJ’s start vertex data

type>_to_<EJ’s end vertex data type>

(input.<V[m].attribute>;

This process is repeated for each attribute V[m] in the start data type’s domain. The

resultant transformation stub is of the following form:

 163

<end datatype> <start datatype>_to_<end datatype> (<start

datatype> input)

{

 <end datatype> output;

output.<V[n1].attribute> = (<EJ’s start vertex data

type>_to_<EJ’s end vertex data type>

(input.<V[m1].attribute>;

output.<V[n2].attribute> = (<Ek’s start vertex data

type>_to_<Ek’s end vertex data type>

(input.<V[m2].attribute>;

 return output;

}

In this manner, the transformation between two data types is derived based on the

matches specified between their individual attributes. To recap, these transformations are

only generated for those data types whose individual attributes relate in a manner such

that they are conceptually equivalent but have different representations. All other

transformations, except for those between primitive data types, must be specified

explicitly be the federation developer. The knowledge required to generate

transformation routines between primitive data types is hard-coded as its own set of

procedures in GRIT algorithm. As an example, the generation of transformations between

unit data types was discussed in Chapter 3 (Section 3.7.2). Procedures to generate

transformations between primitive data types are trivial and do not exploit the graph-

based representation of a FONT. Hence, there is little value in discussing these

procedures in this chapter.

 164

Having defined a set of transformations between the data types of related attributes, an

iteration of the overall GRIT algorithm comes to an end. At this point a complete

specification of the FONT is available to the federation developer. In the context of the

Vehicle—Car example, common representations for the attributes Position and Location,

and the objects Vehicle and Car are generated following the procedure presented in

Section. Furthermore, transformation stubs for the SONT-Common attribute relationships

are generated as was illustrated in this section. Finally, transformations for the

relationship between 2-D and 3-D Coordinate data types are inferred using the routine

presented above. The common representations for related SONT attributes and the set of

SONT-Common composed relationships that involve information loss are reported to the

user. If the user is cognizant of a non-lossy transformation to replace an inferred lossy

one, he or she may specify this knowledge and initiate another iteration through the GRIT

algorithm. The final specification of the FONT is obtained when the federation developer

is satisfied with the extent of information loss in end-to-end attribute transformations.

4.6 Assessing the Structural Validity of the GRIT Algorithm

In the previous sections, the detailed specification of the GRIT algorithm has been

explored. Having done so, the readers’ attention is now focused on the validity of this

algorithm. Given that this algorithm is a key component of the overall framework, and is

the main avenue by which automation in federation development is supported, its validity

must be assessed in order to pontificate about the validity of the body of research

presented in this thesis. While we may not be able to say much in the way of the

 165

performance validity of this algorithm at this point, the structural validity and internal

consistency of this algorithm is accepted based on the arguments below.

In basing the GRIT algorithm in graph theory, a well developed branch of discrete

mathematics, a strong foundation has been laid for the development of a system to

support automation in federation development. Graph theory has been formally

researched since the early 1930’s and since then has been applied to solve problems in

several different domains. While the procedures listed in this chapter do not imply the use

of a certain programming language, they are firmly grounded in a graph-based

representation that has evolved over the years. Also, the application of Dijkstra’s

algorithm, which is well accepted as an efficient, valid algorithm to traverse paths

between vertices in a graph, further bolsters the validity of the GRIT algorithm.

The GRIT algorithm process model depicted in Figure 4.1 helps to validate the fact that

this algorithm is internally consistent. Each step in this model builds upon previous one,

and the automated specification of the FONT progresses in a serial fashion. The first

procedure generates a graph corresponding to a set of related attributes in the FONT.

Using this graph, the shortest distance and path between two attributes is noted, which in

turn is applied to determine a common representation for a set of related attributes.

Finally, transformations are defined between the SONT and common representations

using the previously defined shortest path between them. Essentially, each subsequent

procedure uses the output of its predecessor as input to perform its tasks. These

procedures do not negate or conflict the work of previously executed procedures; they

 166

build upon them. Similarly, the GRIT algorithm as a whole is internally consistent with

the other components of the ontology-based federation development framework. It uses

the set of relationships previously defined in the FONT to generate a new set of entities

and relationships between them; thus building upon user-specified knowledge, not

negating or modifying it in any way.

 167

CHAPTER 5

THE DEVELOPMENT OF A FEDERATED AIR TRAFFIC

SIMULATION

To validate the usefulness of the framework and GRIT algorithm in supporting federation

development, it is important to apply them to an example problem that is representative

of the scope of problems they have been designed to address. If we can demonstrate that

the constructs we have developed in previous chapters are applicable to solving such an

example, an important step towards accepting the validity of the hypotheses proposed in

Chapter 1 is accomplished. In this chapter, the ontology-based federation development

framework is applied to support the automated generation of an air-traffic federated

simulation. In the context of the design of an airport, we introduce the air traffic federated

simulation scenario and explicitly state why this example problem is apt to study the

application of the framework and algorithm. The framework process model defined in

Chapter 3 is then followed to develop the federated simulation. Based on the resultant

FONT, the effectiveness of the framework in supporting automation in achieving

representational compatibility in a framework is established and discussed in detail.

 168

5.1 Introduction to the Federated Simulation

We employ a federated air traffic simulation to test the performance validity of the

framework and algorithm developed in previous chapters. This simulation is developed in

order to study the behavior of several sub-systems that are part of, or interact with an

airport being designed. The characteristics of this federation development problem and

the extent of interplay between federates makes this an ideal case study to support the

validation of our hypotheses. In the following paragraphs, the simulation scenario, the

goal of the federated simulation and the individual federate models are introduced.

The simulation of aircraft traffic at and around an airport is conducted in the context of an

airport design problem. Consider that a new airport is to be developed for a metropolitan

city. This airport is a very large system consisting of multiple components such as

terminals, runways, control towers and hangars. Aside from physical components, there

are several functional sub-systems that are part of an airport, including air traffic control,

aircraft servicing and several passenger related services. To design such a large system,

the ‘Vee’ model for system engineering is employed (Forsberg and Mooz 1992). In

accordance with this model, the design of the entire airport system is broken down into

several smaller design problems. Specifications are developed for the coupled individual

systems, which are then designed by separate teams. As these systems are being designed

in parallel, it is necessary to ensure that their design progresses in a manner such that the

expected behavior of the entire system adequately addresses its requirements. Therefore,

it becomes necessary to simulate and analyze the behavior of the airport system as a

 169

whole. To do so, the simulation models corresponding to individual sub-systems of the

airport need to be integrated and executed in a federated fashion. We employ the use of

the ontology-based framework to support the automated integration of these simulation

models into a federated simulation.

The federated simulation being considered in this chapter is employed at the early stages

of the airport system development process. Upfront, some basic characteristics of several

sub-systems need to be defined before detailed design can be investigated. For example,

to define a specification for the network of runways at an airport, the required number of

runways needs to be identified first. These requirements stem from the overall

requirements of the airport, such as the volume of air traffic that the airport system is

expected to manage. In this example, the overall goal of the federated simulation is to

help designers identify a set of design-to specifications for the individual sub-systems of

an airport. This federated simulation provides information about the expected behavior of

the airport system, based on the characteristics of its individual sub-systems. By studying

the behavior of the airport with regard to managing different air traffic scenarios, the

specification of individual sub-systems can be decided upon.

Given the overall application scenario and goal of the air traffic federated simulation, let

us further investigate the airport system in terms of its constituent sub-systems. The

airport system, as a union of its individual components, is illustrated in Figure 5.1. An

important sub-system of an airport is the air traffic controller (ATC), which is responsible

for queuing aircraft in departure and arrival corridors and for directing aircraft in the

 170

airport’s airspace to land. It is vital to make sure that the traffic control procedures in this

system are designed to handle a large number of aircraft in the airport’s local airspace. A

similar component is the ground traffic controller (GTC), which is responsible for

managing aircraft traffic between gates, hangars and runways. Related to these sub-

systems are the runway networks and taxiway networks on which aircraft travel. It is

important to make sure that myriad aircraft can travel on these networks, and that they are

designed to allow smooth flow of a large number of aircraft (as has been projected).

Finally, the gates at which aircraft are parked, the resources they require to deplane and

board passengers and cargo and the inter-flight services performed on aircraft constitute

the ground-based aircraft services component of the airport. While there are several other

systems that are part of an airport, in this example, we limit ourselves to the set of

systems defined above.

 171

4R

2L

Air Traffic Controller

Ground Services

Ground Traffic Controller

4R4R

2L2L

Air Traffic Controller

Ground Services

Ground Traffic Controller
Figure 5.1: Sub Systems in an Airport System Design

The simulation of the aircraft system as a whole is conducted to identify the key design-

to specifications of its sub-systems. By subjecting the airport system to different volumes

of aircraft landing, taking-off, refueling and so on, the effectiveness of the different sub-

systems in managing these aircraft can be studied. Based on this, the specification of each

sub-system can be modified until the airport system as a whole behaves such that it

adequately performs aircraft management tasks defined as part of its requirements. The

goals of conducting this federated simulation experiment, with respect to each sub-

system, are as follows:

 172

 To gain insight as to the efficiency of the air traffic controller in directing and

queuing aircraft for landing: By recording information such as the average time an

aircraft spends in the airport airspace, waiting to land, and the fuel consumed in

doing so, the effectiveness of the ATC, given its current specification, can be

gauged. Note that other sub-systems also affect the ATC’s performance, such as

number of runways and the usage of those runways by the GTC. Therefore, it is

important to simulate the behavior of these sub-systems as a whole.

 To gain insight as to the effectiveness of the ground traffic controller in managing

the flow of aircraft between gates and runways: Just as with the ATC, the

effectiveness of a given GTC specification can be gauged based on the results of

the federated air traffic simulation. The average time an aircraft spends waiting to

take-off or park at a gate are indicative of the GTC’s performance, but in turn

depend on other sub-system parameters, such as the number of gates at the

airport.

 To determine parameters of ground-specific aircraft services: The air traffic

simulation at the airport helps designers to decide on an adequate number of

gates, ground crew, re-fueling tankers and so on.

Designers arrive at the best suited or satisficing specification of the individual sub-

systems of the airport in an iterative fashion. By running the system-level federated

simulation and analyzing the emergent behavior of the system, required changes in the

 173

specification of each sub-system can be determined. Once these changes are

implemented, the simulation can be executed again, repeating the process until the system

level behavior is acceptable.

Corresponding to the sub-systems identified above, there are three federate simulation

models that comprise the air traffic federation. These are (i) the Air Traffic Controller

(ATC) model (ii) the Ground Traffic Controller (GTC) model and (iii) the Ground

Services model. The ATC simulation model is a representation of the system that

manages aircraft traffic in the airport’s airspace. This system keeps track of every aircraft

in the vicinity of the airport and sends and receives messages from different aircraft. The

GTC simulation model represents the system in place to control the flow of aircraft traffic

on ground. This system keeps track of the position and status of all aircraft on the ground,

and communicates to aircraft via messages, instructing pilots to park, taxi to a certain

location, take-off and so on. Finally, the ground services federate models the use of on-

ground resources by different aircraft that arrive at the airport, such as the availability of

gates and use of ground personnel to deplane passengers and offload cargo.

Given that the airport design is still in its early stages, our interest is in studying the

behavior of the airport at a relatively high level of abstraction. Specifically, we want to

gauge how this system behaves in response to distinct events where different volume of

aircraft arrive and depart. Therefore, each federate in the air traffic simulation federation

corresponds to a discrete event simulation model. These simulations model their

respective systems such that they are defined to be in a particular state at a given time

 174

stamp, which may change after a discrete interval (as opposed to in a time-continuous

fashion). Based on this, interactions between the federate simulations takes place in an

event-driven fashion, wherein the change in state of an entity in one federate simulation

may trigger a change in another. The specifics of the interaction between the four

federates of the air traffic simulation is explained as follows.

Given the interactions between the individual sub-systems of the airport, there is

significant interaction between the individual federate simulations in the air traffic

federation. In the real system, the ATC and GTC systems will intermittently contact each

other and the aircraft (pilots). Similarly, when a given aircraft instance in the ATC

simulation lands on a runway, the GTC simulation must be made cognizant of this event.

Every aircraft that lands is sent a message by the GTC, indicating a destination gate and a

taxiway to follow. Therefore, the GTC must keep track of all available gates, and all

taxiways upon which aircraft are traveling at a given time. The Ground Services

simulation model captures all gate related resources. This federate communicates the

availability of gates to the GTC. Furthermore, the appropriate number of ground

personnel and re-fueling tanks are assigned to work at a given gate based on the payload

and fuel content of a given aircraft parked at that gate. Therefore, there is interplay

between the GTC and Ground Service federates that involves exchange of payload and

fuel data. The complete interoperation between the federate simulations (at a high level of

abstraction) is listed in Table 5.1.

 175

Table 5.1: Interactions between Federate Simulations in the Air Traffic Federation

Involved Federate
Simulations Description of Interaction

ATC, GTC

When an aircraft in the ATC simulation lands, information about
its call sign, the type of aircraft, its fuel level and so on need to be
published to a corresponding aircraft in the GTC simulation.
Similarly, when an aircraft in the GTC simulation takes-off, this
information needs to be subscribed to by a corresponding aircraft
instance in the ATC federate.

ATC, GTC, Ground Services

Each federate models a runway that are part of the airport. The
availability of a runway to land on (in the ATC), to take-off from
(in the GTC) or on which maintenance needs to be conducted (in
ground services) and needs to be shared across all three federates.
If the GTC assigns an aircraft to take-off from a runway, the state
of that runway changes to in-use. Other federates must subscribe
to this change. Similarly, if the ATC or ground services updates
the state of a runway, all other federates must subscribe to this
state-change.

The GTC maintains information about gates, as to whether they
are in use or free. Corresponding to this, there are gates modeled
in the ground service federate. When the GTC assigns an aircraft
to park at a given gate, this needs to be reflected in the ground
services federate as well.

The fuel level and payload of an aircraft at a given gate in the
GTC simulation must be communicated to the ground services
federate. When the aircraft is re-fueled in the ground services
simulation, the fuel level of a corresponding aircraft in the GTC
simulation must be updated.

GTC, Ground Services

When an aircraft in the ground services federate has been
prepared for take-off, an event must be triggered in the GTC to
queue the aircraft for departure. When the aircraft clears the gate
in the GTC federate, the state of a corresponding gate in the
ground services federate must be updated.

Having described the federated air-traffic simulation in terms of its purpose and

constituent federates; we may proceed to applying the ontology-based framework to

support the development of this federation. However, before doing so, the validity of

 176

using this example problem to gauge the performance of the framework must be

accepted; else this exercise is futile. In the following section, an argument as to why this

problem is apt to demonstrate the application of the ontology-based framework for

federation development is presented. Once we have established the empirical structural

validity of this example problem, we proceed with the development of the associated

simulation ontologies.

5.2 Empirical Structural Validation

The goal of applying the ontology-based framework to support the integration of the

airport-related federate simulations is to study the applicability of the framework in the

context of an example that is representative of the type of federation development

problems it is meant to address. Given this goal, it is necessary to determine if the air

traffic simulation problem is an apt test case. In order to do so, we pose the following

questions about this example—(i) Is the federated air traffic simulation representative of

the types of problems this framework has been designed to address? (ii) Does this

example allow us to validate specific characteristics of the framework? By answering

these questions in the following paragraphs, we determine that the air traffic federated

simulation is an appropriate test case.

In Chapter 1, the application scope of this framework has been elaborated so as to pertain

to system-level simulations of large scale engineering systems. Traditionally, sub-system

level simulation models exist, which need to be integrated with each other in order to

study the emergent behavior of a system. It is within this context that the ontology-based

 177

framework is to be applied to support achieving interoperability between sub-system

level simulations in an automated fashion. Clearly, the air traffic simulation is a system-

level experiment to study the expected behavior of the airport as a whole. As has been

detailed above, there are several sub-systems to an airport, each with corresponding

behavior models, that need to interoperate with each other. Since these sub-system

models are all discrete event models, the interaction between them must be carried out in

a message-passing form at discrete time steps. This is a typical federated simulation

problem, which is exactly the type of simulation interoperability problem our framework

is designed to address. Therefore, at a high-level, it is evident that the air traffic example

is representative of the federation development problems within the scope of this

framework.

At a lower level of granularity, we must investigate if this example problem allows us to

determine certain key characteristics of this framework. These characteristics and the

extent to which they can be studied using this example are elaborated as follows:

 Expressiveness of the World Ontology: In hypothesis 2, the definition of a

metamodel for capturing simulation concepts in an ontology has been proposed,

which has then been realized in the development of the World Ontology. To

validate this hypothesis, it is important to show that this metamodel can be used to

express myriad shared simulation concepts in a SONT. The air traffic example

federated simulation is a good example to test the expressiveness of the World

Ontology. The individual federates in the air traffic simulation involve a diverse

 178

set of concepts, including physical objects that are persistent through the

simulation, such as an aircraft, runways and gates. There are also several non-

physical, non-persistent concepts modeled in each federate, such as the

communication between the ATC and GTC. Finally, these simulation models

include several parameters and state variables including those that capture the

status of gates and runways (e.g.: free, busy, open, closed) that need to be shared

across federate domains.

 Expressiveness of relationships: Along with the ability of the World Ontology to

represent shared concepts in a given simulation domain, the ability to express

different relationships between these concepts in an ontology must also be tested.

Again, the air traffic control is a quintessential with which this can be tested.

Given that there is significant interaction between individual federates, several

relationships will need to be defined between entities of each federate. These

relationships range from simple equivalence to complex mappings. For example,

both the GTC and ATC simulation models include the concept of an aircraft’s

heading, measured as an angle, in degrees and minutes. The relationship between

these two concepts is one of pure equivalence. A more complex relationship

exists between the fuel level of an aircraft parked at a gate, its fuel capacity and

the number of re-fueling tankers required at a gate.

 Correctness of the GRIT algorithm: A graph based approach to automate the

generation of transformation stubs between related entities in a federated

 179

simulation is proposed in hypothesis 1, and implemented in the GRIT algorithm.

In order to validate this hypothesis, we must investigate whether the GRIT

algorithm is able to correctly derive transformations between related entities. In

the air traffic federated simulation example, several equivalent concepts with

disparate federate representations are related. Subsequently, mappings between a

subset of federate entities involve information loss. For example, the identifier for

a runway in the ATC simulation includes the runway number as well as its

associated Instrument Landing System (ILS) code. This identifier relates to

runway ID’s in the GTC which is defined only in terms of the runway number.

This and other relationships involving lossy transformations can be used to

investigate whether the GRIT algorithm instantiates the appropriate common

schema. Subsequently, the transformation stubs composed between federate and

common schema entities in the air traffic federation can be evaluated to determine

if the GRIT algorithm correctly derives these procedures.

Based on the argument above, the empirical structural validity of the hypotheses

proposed in Chapter 1 is accepted. In other words, we accept that the selected example

problem i.e. the air traffic federated simulation is appropriate to demonstrate the intended

use of the ontology-based framework. Having done so, we may proceed with the

application of the framework to this federation development problem, based on which the

performance of this framework can be analyzed.

 180

To employ the ontology-based framework and GRIT algorithm for the development of

the air traffic federated simulation, we follow the framework process model prescribed in

Figure 3.2. A flow chart indicating these steps in the context of this example federation

development problem is illustrated in Figure 5.2.The first step in this process is to create

simulation ontologies corresponding to each federate in the air traffic federation. These

SONTs should describe the federate representations of shared objects, event, attributes

and their data types. Once the SONT corresponding to the ATC, GTC and Ground

Services simulations are available, an initial FONT is to be generated that includes all

SONT domains. At this point, we (the federation developers) specify relationships

between the coupled entities of the three SONT domains, based on the interactions

enumerated in Table 5.1. Note that for every object or event level relationship that is

specified, relationships between their individual attributes, and the data types of those

attributes must be instantiated as well. For each attribute-level relationship, we must

specify knowledge as to the lossiness of the transformations between the related

attributes. Having specified the complete set of SONT-SONT matches, the GRIT

algorithm is invoked to generate the required common information model and SONT-

Common transformation stubs. This algorithm creates a graph for related attribute,

objects and events, and uses the shortest distance or equivalently the least lossy chain of

relationships between related attributes to determine their common representation. The

required transformations are then generated using knowledge of the shortest path between

the related attributes. Finally, when the GRIT algorithm has finished it execution, we may

examine the resulting common information model and the resultant lossy

transformations, and revise them if required.

 181

Include FONTs in new SONTS

Determine Common Representation

Generate Transformation Routines

USER

Create ATC SONT Create GTC SONT Create GS SONT

Specify SONT-SONT relationships

Approve or Revise inferred lossy transformations

World Ontology

V0 V1

V2

V3 V4

60
10

2

9

12

92

V0 V1

V2

V3 V4

60
10

2

9

12

9210

GRIT Algorithm

Include FONTs in new SONTS

Determine Common Representation

Generate Transformation Routines

USER

Create ATC SONT Create GTC SONT Create GS SONT

Specify SONT-SONT relationships

Approve or Revise inferred lossy transformations

World Ontology

V0 V1

V2

V3 V4

60
10

2

9

12

92

V0 V1

V2

V3 V4

60
10

2

9

12

9210

GRIT Algorithm

Figure 5.2: Ontology-based Framework Application Process for Air Traffic
Federated Simulation

5.3 Development of SONTs

In accordance with the figure above, we begin the air traffic federation development

process by developing SONTs for each of the three federate simulation models. The

shared concepts in these federate domains are modeled in terms of the common

vocabulary defined in the World Ontology, as follows:

5.3.1 The Local Air Traffic Control (ATC) SONT

The air traffic control federate simulates the management of aircraft in the airport’s local

airspace. In this simulation, the local airspace is populated with different volumes of

 182

aircraft in a transient manner, which are queued to land at different runways of the

airport. The queuing system assigns instructions to each aircraft so as to allow them to

land in a timely and safe manner (without having to maintain a holding pattern around the

airport for too long or collide with other traffic). Furthermore, the management of

outbound aircraft traffic is also modeled in this federate.

There is a long list of individual concepts represented in this simulation model, but our

interest is only the simulation’s interface—those concepts that are shared with other

federates in the air traffic simulation. A central concept in the ATC simulation is that of

an aircraft. During the simulation execution, several aircraft simulation entities are

created and destroyed as they enter and leave local airspace. Each aircraft is described in

terms of its type (turbo prop, business jet, twin engine commercial jet, 3+ engine

commercial jet), its position , which include latitude and longitude (as angles) and

altitude (in feet above mean sea level), heading (in degrees), payload (in metric tons), and

fuel content (in Imperial gallons). There are other attributes of aircraft captured within

this simulation (such as speed of aircraft and average rate of descent), but again, they are

of little consequence given that they are not shared with other federates. The creation and

deletion of aircraft in the simulation is triggered by two events, namely New Aircraft in

Airspace and Aircraft on Ground, respectively. The second key shared concept in the

ATC simulation is that of a runway. Each runway is defined in terms of its length, ILS

(instrument landing system), Localizer frequency (in MHz) (which is used to line the

aircraft laterally with the runway centerline), and its availability at a given time (in-use or

 183

free). This information about runways is used to determine which planes can land on

which available runways at a given point in the simulation.

Having introduced the key concepts of the ATC simulation that are shared in the air

traffic federation, let us now investigate how they are modeled in a simulation ontology.

Every shared concept that is persistent throughout the length of the simulation should be

modeled as an Object (instance of the object metaclass) and every non-persistent concept

as an event (instance of the event metaclass). Given that aircraft are created and

destroyed, they are not fully persistent. However, within the simulation, they are

maintained for more than a single time stamp. Internally, there is some notion of

persistence associated with aircraft, but the only time aircraft information is exchanged

with the GTC is when an aircraft is created or destroyed. Therefore, we choose to

describe the aircraft concept in terms of two events: New Aircraft in Airspace and

Aircraft on Ground. Each event is described in terms of its constituent attributes

(instances of the attribute metaslot). The attributes of the Aircraft on Ground correspond

to those attributes that are to be published to the GTC simulation when an aircraft lands.

The New Aircraft in Airspace event consists of attributes that are subscribed to from the

GTC when an aircraft takes-off, plus other attributes required to initialize a new aircraft.

That being said, it is likely that some attributes may be shared between the two events.

Therefore, a higher-level, abstract aircraft event can be defined, such that its attributes are

subsumed by both the Aircraft on Ground and New Aircraft in Airspace events. The

resultant hierarchy of events (and the attributes in their domain) is illustrated in Figure

5.3. Several attributes of these events (heading, payload, fuel content) have value-types

 184

that are units of measurement, which have been previously defined in the World

Ontology. However, two attributes, Position and Fuel Content require custom data types

to be defined. In the ATC simulation model, the fuel content of an aircraft is defined via a

complex data type that includes both the total fuel carrying capacity of the aircraft and

the amount of fuel currently on-board. In a similar fashion, a new data type Fuel Content

Type is instantiated within the SONT, with two attributes, namely Capacity and

Remaining Fuel, both having unit data type Imperial Gallon. Further, the value type of

the Fuel Content attribute in the domain of the aircraft events is set to Fuel Content Type.

Similarly, a new data type (Lat-Long-alt) is instantiated to capture the value of the

Position attribute. This data type has three attributes, Latitude and Longitude, both of the

degree-minute data type for angle measurement, and Altitude of unit data type Foot.

Runways are persistent through the length of the simulation and are modeled as objects.

In the ATC simulation, each runway is characterized by an alpha-numeric number that

specifies the runway and the direction it is to be approached from (e.g.: 4R, read runway

four-right), an ILS Localizer frequency, the runway’s length and its current usage status.

In the ATC SONT, individual attributes are instantiated corresponding to each of these

fields. All these attributes have primitive data types, which makes the specification of the

runway object relatively trivial. Specifically, Runway Number takes on the String data

type, Length is specified in feet, ILS Localizer is specified in MHz, and the status of the

runway is captured as the attribute Is_Available of type Boolean. The resultant ATC

SONT is illustrated below.

 185

E Aircraft On Ground

A Call-Sign

A Position

A Type

A Fuel Content

A Payload (Metric Ton)

E New Aircraft in Airspace

A Heading (Degree)

A Position

A Call-Sign

A Type

A Fuel Content

E Aircraft Events

A Position (Lat-Long-Alt)

A Call-Sign (String)

A Type {turbo prop….}

A Fuel Content (Fuel Content Type)

E Aircraft On GroundE Aircraft On Ground

A Call-Sign

A Position

A Type

A Fuel Content

A Payload (Metric Ton)A Payload (Metric Ton)

E New Aircraft in AirspaceE New Aircraft in Airspace

A Heading (Degree)A Heading (Degree)

A Position

A Call-Sign

A Type

A Fuel Content

E Aircraft EventsE Aircraft Events

A Position (Lat-Long-Alt)

A Call-Sign (String)

A Type {turbo prop….}

A Fuel Content (Fuel Content Type)

O Runway

A ILS Localizer (MHz)

A Runway No (String)

A Length (foot)

A Is_Available (boolean)

O RunwayO Runway

A ILS Localizer (MHz)

A Runway No (String)

A Length (foot)

A Is_Available (boolean)

D Lat-Long-Alt

A Longitude (Degree, Min)

A Latitude (Degree, Min)

A Altitude (foot)

D Lat-Long-AltD Lat-Long-Alt

A Longitude (Degree, Min)

A Latitude (Degree, Min)

A Altitude (foot)

D Fuel Content Type

A Remaining Fuel (Imperial Gal.)

A Capacity (Imperial Gal.)

D Fuel Content TypeD Fuel Content Type

A Remaining Fuel (Imperial Gal.)

A Capacity (Imperial Gal.)

A Remaining Fuel (Imperial Gal.)

A Capacity (Imperial Gal.)

Subclass

KEY

Event
Direct Attribute
Inherited AttributeA

A

E

ObjectO

Data TypeD

Subclass

KEY

Event
Direct Attribute
Inherited AttributeA

A

E

ObjectO

Data TypeD

Figure 5.3: Air Traffic Control SONT Specification

5.3.2 Ground Traffic Control (GTC) SONT

The ground traffic federate simulates the direction of all aircraft traffic on ground. In this

simulation, new aircraft are created as they land on runways. They are each assigned to

follow specific taxiways to assigned gates. There are multiple aircraft in existence in the

simulation at a given time stamp, each of which can be in a different state (e.g.: parked,

landed, and taxiing). Therefore, the focus of this simulation is to model the behavior of

the ground controller in making sure traffic flows smoothly, and without accidents.

 186

Since the ground controller interacts with aircraft, runway networks, taxiway networks

and terminal gates, these are all central concepts modeled in the GTC federate. Of course,

in the context of this federation, only runway, aircraft and gate information is shared with

other federates. Each aircraft has a number of properties associated with it, such as its

location (latitude and longitude), heading (all in degrees, minutes), fuel level, fuel

capacity (both in US gallons) and payload (in metric tons). Furthermore, individual

aircraft are identified by their call-sign and type (propeller, small jet, small commercial

jet, large commercial jet). In the GTC, there are four aircraft related events that are

published or subscribe to other federates—Aircraft Landed, Aircraft Parked, Aircraft

Chocks Off (indicates chocks removed from tires and aircraft is ready to depart) and

Aircraft Departed. Analogous to the ATC, runways are modeled in the GTC simulation

with properties Dimensions (Length and Width in feet), and availability (in terms of a

true /false Boolean). Finally, the GTC maintains information about gates, as to their

location (a sector number) and availability (also a Boolean). It should be noted that while

taxiways are an important concept in the GTC, we do not explore them in detail as they

are not shared with other federates in the air-traffic simulation.

As with the ATC SONT, aircraft in the GTC SONT are modeled as events. Not that it is

wrong for them to be modeled as objects (technically, aircraft are persistent for more than

a single time stamp in both simulations), but we choose to model them as events because

aircraft information is only exchanged when an event occurs. As mentioned earlier, there

are two pairs of Aircraft Events, each of which correspond to Events in the ATC, and

Ground Service SONTs, respectively. Similar to the ATC, a baseline Aircraft Event class

 187

is created, whose attributes are those that are common to the individual events. These

common attributes include Fuel Level, Fuel Capacity (with data type US gallon), Call-

sign (with data type String) and Aircraft Type (with an Enumerated data type). Other

attributes specific to each event include Heading (in degrees) and Payload (of unit data

type Metric Ton).

Both runways and gates, which are persistent throughout the simulation, are represented

in the GTC SONT as Objects. The Runway object is defined in terms of the attributes

Dimensions (in terms of a custom data type with attributes Length and Width in feet),

Runway Number (a String) and In_Use (which a Boolean). In a similar fashion, the Gate

object has attributes Gate Number, Sector (both Strings), and In_Use (this is a single

attribute with two domains, runway and gate). The resultant GTC SONT is depicted

below in Figure 5.4.

 188

E Aircraft ParkedE Aircraft Parked

A Payload (Metric Ton)A Payload (Metric Ton)

A Gate Number (String)

A Call-Sign

A Fuel Capacity

A Fuel Level

E Aircraft Events

A Fuel Level (US Gallon)

A Call-Sign (String)

A Fuel Capacity (US Gallon)

E Aircraft EventsE Aircraft Events

A Fuel Level (US Gallon)

A Call-Sign (String)

A Fuel Capacity (US Gallon)

E Aircraft Chocks OffE Aircraft Chocks Off

A Call-Sign

A Fuel Capacity

A Fuel Level

A Payload (Metric Ton)A Payload (Metric Ton)

A Gate Number (String)

A Heading (Degree)A Heading (Degree)

A Location (Lat-Long)

A Call-Sign

A Type

A Fuel Capacity

E Aircraft Departed

A Fuel Level

E Aircraft LandedE Aircraft Landed

A Call-Sign

A Location (Lat-Long)

A Type

A Fuel Capacity

A Payload (Metric Ton)A Payload (Metric Ton)
A Fuel Level

O Runway

A Dimensions (2D-Measure)

A Runway No (String)

A In_Use (Boolean)

O RunwayO Runway

A Dimensions (2D-Measure)

A Runway No (String)

A In_Use (Boolean)

O Gate

A Sector (String)

A Gate Number (String)

A In_Use (Boolean)

O GateO Gate

A Sector (String)

A Gate Number (String)

A In_Use (Boolean)

D Lat-Long

A Longitude (Degree, Min)

A Latitude (Degree, Min)

D Lat-LongD Lat-Long

A Longitude (Degree, Min)

A Latitude (Degree, Min)

D 2D-Measure

A Width (Foot)

A Length (Foot)

D 2D-MeasureD 2D-Measure

A Width (Foot)

A Length (Foot)

Figure 5.4: Ground Traffic Control SONT Specification

5.3.3 Ground Services SONT

The final federate simulation in the air traffic federation models the behavior of myriad

ground-based sub-systems that perform activities centered on aircraft arrival and

departure. These activities include deplaning passengers, offloading cargo, re-fueling

aircraft and de-icing or maintaining runways as required. Essentially, this federate

manages crew and resources as aircraft arrive and depart from gates. When an aircraft

arrives at a given gate, an appropriate number of ground-crew members (based on the

payload of the aircraft) that are not currently engaged in other tasks are sent to offload

 189

cargo and passengers. Similarly, fuel tankers, cargo trolleys and so on are assigned to

attend to different aircraft existing in the simulation.

Gates, runways, ground crew and refueling tanks are all key concepts in the ground

services simulation model domain. Of these concepts, those that are shared with others in

the federation are runways and gates. The ground services simulation does not explicitly

model aircraft as persistent objects; the arrival of an aircraft at a gate is treated as a

discrete event, namely Service Required, based on whose parameters, the appropriate

number of persistent resources (fuel tankers, crew and so on) are set to a ‘busy’ state. As

one might imagine, the state of these resources is changed back to ‘free’ when another

event occurs (Service Completed), signaling the aircraft’s departure. The Service

Required event is defined in terms of a set of parameters that include the total payload

that needs to be offloaded (in pounds), and the amount of fuel to be supplied (in US

gallons), and the gate number at which these resources are to be supplied. The Service

Completed event is defined solely in terms of a gate number. Gate information, which is

maintained throughout the length of the simulation, includes the gate number, location (a

sector number) and the status of the gate (busy or free). Finally, runways are modeled in a

fashion similar to that of other federates. Each runway is described in terms of its

number, ILS localizer frequency (in MHz) (runway service teams are responsible for

setting and maintaining on-ground ILS beacons), its dimensions (in feet) and status (busy

or free).

 190

Based on the representation in the ground services simulation, all aircraft related

information in the ground services SONT are modeled in terms of two event classes—

Service Required and Service Completed. The Service Required event has attributes

Payload (of data type Pound), Fuel Required (in US gallons) and Gate Number (of data

type String), while Service Completed only reports a Gate Number at which an aircraft

has been serviced. Runway and Gate concepts are modeled as objects, given that they are

persistent through time in this simulation. Each Runway object has attributes Runway

Number (a String), ILS Localizer Frequency (in MHz), Dimensions (of a complex data

type with Length and Width as attributes) and Status (with an Enumerated data type

{busy, free}). The Gate object is defined in terms of attributes Gate Number, Sector (a

String) and Status. The complete ground services SONT is illustrated in Figure 5.5.

E Service Required

A Fuel Required (US Gal.)

A Payload (Pound)

A Gate Number (String)

A Gate Number (String)

E Service Completed

O Runway

A Dimensions (Length_x_Width)

A Runway No (String)

A Status {Busy, Free}

O Gate

A Sector (String)

A Gate Number (String)

A Status {Busy, Free}

D Length_x_Width

A Width (Foot)

A Length (Foot)

A ILS Localizer Freq. (MHz)

E Service Required

A Fuel Required (US Gal.)

A Payload (Pound)

A Gate Number (String)

E Service RequiredE Service Required

A Fuel Required (US Gal.)

A Payload (Pound)

A Gate Number (String)

A Fuel Required (US Gal.)

A Payload (Pound)

A Gate Number (String)

A Gate Number (String)

E Service Completed

A Gate Number (String)

E Service Completed

O RunwayO Runway

A Dimensions (Length_x_Width)

A Runway No (String)

A Status {Busy, Free}

O Gate

A Sector (String)

A Gate Number (String)

A Status {Busy, Free}

O GateO Gate

A Sector (String)

A Gate Number (String)

A Status {Busy, Free}

D Length_x_Width

A Width (Foot)

A Length (Foot)

D Length_x_WidthD Length_x_Width

A Width (Foot)

A Length (Foot)

A ILS Localizer Freq. (MHz)

Figure 5.5: Ground Services SONT Specification

 191

At this point, the shared entities in the ATC, GTC and Ground Services federate

simulations have been captured in their respective SONTs. It is interesting to note, that in

each of these simulation models, concepts are described in an object-oriented fashion,

which makes the development of their corresponding SONTs quite straightforward. In

general, legacy simulations that do not employ an object oriented representation may

need to be federated. For such a federate, an object-oriented interface to the underlying

simulation must be defined, based on which the corresponding SONT is modeled.

Having completed the SONT development process for the air traffic federation, we

proceed to the definition of relationships between the entities defined in each SONT, in

the following section.

5.4 Specification of Relationships

In accordance with the federation development process model illustrated in Figure 5.2,

the next step in the development of the air traffic federation is to specify relationships

between entities in each SONT domain. To capture relationships (instances of the

relationship class defined in the World Ontology) between SONT entities, they must all

be included in a single federation level ontology, namely the FONT. Therefore, a new

ontology is created such that its domain spans those of the ATC, GTC and Ground

Services SONTs. Within this ontology, a set of relationships between different SONT

objects and events, their attributes and the data types of those attributes are to be

specified. This task is divided into two sections, one to define relationships between ATC

and GTC entities, and the other to relate GTC and Ground Services Entities.

 192

5.4.1 Relationships between ATC and GTC Entities

The ATC and GTC federates mainly exchange information about aircraft that land and

take-off from the airport. Specifically, when an aircraft in the ATC lands, a

corresponding aircraft must be instantiated in the GTC federate. Similarly, when an

aircraft in the GTC takes-off, a corresponding new aircraft must be instantiated in the

airspace modeled by the ATC federate. In other words, the occurrence of the Aircraft on

Ground event in the ATC must be published for subscription by the Aircraft Landed

event in the GTC, and the Aircraft Departed event in the GTC must be translated to the

New Aircraft in Airspace event in the ATC. Therefore, a relationship (instance of the

relationship class) is instantiated to indicate that the two events match each other.

When an event or object level relationship is defined, matches between their attributes

need to be specified as well. For each pair of equivalent attributes in the Aircraft on

Ground and Aircraft Landed events, a relationship must be specified between them. The

attributes of the ATC event Aircraft on Ground subscribed to by the Aircraft Landed

event are Heading, Position, Payload, Fuel Content, Call-Sign and Aircraft Type. In the

same order, these attributes relate to the GTC federate attributes Heading, Location,

Payload, Fuel Level and Fuel Capacity, Call-Sign and Type. In each relationship, the

corresponding attributes are specified in the to and from slots of the relationship instance,

and knowledge as to whether either transformation (from to to or to to from) is lossy must

be provided as the value of the is_lossy slot. A relationship specified from ATC_heading

to GTC_heading is depicted in Figure 5.6. There is no loss of information in a

transformation between these attributes; hence is_lossy is set to false in both the

 193

function_to and function_from slots of this relationship. Since both attributes have the

same pre-defined data type (degrees), no data type level relationship needs to be

specified. The same case is observed in the relationship between ATC_Call-Sign and

GTC_Call-Sign, and the relationship between ATC_Payload and GTC_Payload.

I Relationship_Instance

S From = ATC_Heading

S To = GTC_Heading

S Function_To = ATC_Heading_to_GTC_Heading

S Function_From = GTC_Heading_to_ATC_Heading

I ATC_Heading_to_GTC_Heading

S Routine = TBD

S Is_Lossy=false

I GTC_Heading_to_ATC_Heading

S Routine = TBD

S Is_Lossy=false

I Relationship_Instance

S From = ATC_HeadingS From = ATC_Heading

S To = GTC_HeadingS To = GTC_Heading

S Function_To = ATC_Heading_to_GTC_HeadingS Function_To = ATC_Heading_to_GTC_Heading

S Function_From = GTC_Heading_to_ATC_HeadingS Function_From = GTC_Heading_to_ATC_Heading

I ATC_Heading_to_GTC_Heading

S Routine = TBD

S Is_Lossy=false

S Routine = TBDS Routine = TBD

S Is_Lossy=falseS Is_Lossy=false

I GTC_Heading_to_ATC_Heading

S Routine = TBD

S Is_Lossy=false

S Routine = TBDS Routine = TBD

S Is_Lossy=falseS Is_Lossy=false

Figure 5.6: Example Relationship Instantiation

Both the ATC attribute Position and its related GTC Attribute Location have custom data

types (Lat-Long-Alt and Lat-Long, respectively). Since a transformation between them

includes a transformation between their data types, a relationship between these data

types must be specified as well. The relationship between the Lat-Long-Alt and Lat-Long

data types involves an equivalence mapping between their respective latitude and

longitude attributes. Therefore, relationships are defined between these attributes, based

on which the GRIT algorithm infers required data type level transformations between

Lat-Long-Alt and Lat-Long. Note that since Lat-Long-Alt includes information about

altitude while Lat-Long does not, the transformation from Position to Location involves

 194

loss of information. This knowledge is captured in the relationship between them as the

value of the appropriate is_lossy slot.

The relationship between the ATC attribute Fuel Content and the GTC attributes Fuel

Level and Fuel Capacity is not quite as straight forward. Fuel Content encapsulates both

the total fuel capacity of the aircraft and the amount of fuel left at a given time stamp

within its own data type Fuel Content Type, but the same is not true in the GTC SONT.

Therefore, a relationship needs to be specified between a single ATC attribute and two

GTC attributes. In accordance with the steps to be undertaken for specifying n:m

relationships outlined in Section 3.5.2, an aggregate data type Aggr_Fuel_Cap_Datatype

is instantiated in the GTC SONT, with the GTC attributes Fuel Capacity and Fuel Level.

Subsequently, an aggregate attribute Aggr_Fuel_Cap_Attr is defined in the domain of the

Aircraft Events event in the GTC (Figure 5.7). A relationship is then defined from Fuel

Content to Aggr_Fuel_Cap_Attr. Since these attributes have disparate, custom data types,

a relationship (match) must be specified between Fuel Content Type and

Aggr_Fuel_Cap_Datatype. Since the attributes of these data types are conceptually

equivalent, the transformations to convert between the two can be generated

automatically by simply specifying relationships between the attributes of these data

types.

 195

E Aircraft Events

A Fuel Level

A Call-Sign

A Fuel Capacity

E Aircraft EventsE Aircraft Events

A Fuel Level

A Call-Sign

A Fuel Capacity

Relationship Instance

KEY

Event
Direct Attribute
Data Type

A

E

D Fuel Content TypeD Fuel Content Type

A Remaining Fuel (Imperial Gal.)

A Capacity (Imperial Gal.)

A Remaining Fuel (Imperial Gal.)

A Capacity (Imperial Gal.)

E Aircraft Events

A Position

A Call-Sign

A Type

A Fuel Content

E Aircraft EventsE Aircraft Events

A Position

A Call-Sign

A Type

A Fuel Content

E Aircraft Events

A Position

A Call-Sign

A Type

A Fuel Content

E Aircraft EventsE Aircraft Events

A Position

A Call-Sign

A Type

A Fuel Content

E Aircraft EventsE Aircraft Events

A Fuel Level

A Call-Sign

A Fuel Capacity

A Aggr_Fuel_Cap_Attr (Aggr_Fuel_Cap_Datatype)

D Aggr_Fuel_Cap_Datatype

A Fuel Level (US Gal.)

A Fuel Capacity (US Gal.)

D Aggr_Fuel_Cap_DatatypeD Aggr_Fuel_Cap_Datatype

A Fuel Level (US Gal.)

A Fuel Capacity (US Gal.)

D

Figure 5.7: Relating the ATC Fuel Content Attribute to GTC Fuel Level and Fuel
Capacity Attributes

Another attribute level relationship of interest is that between the ATC attribute Aircraft

Type and the GTC attribute Type. Both these attributes have enumerated data types, and a

relationship between them involves specifying a relationship between each pair of

enumerals (e.g. turbo prop in ATC is equivalent to propeller in GTC). Given that

relationships can only be specified between simulation entities and not enumerals, we

cannot capture knowledge of the relationship between enumerals in the FONT. Hence, as

part of the relationship between Aircraft Type and Type, the transformation stubs to

convert values between the two must be explicitly defined at this point. The procedure

(stub) to convert the value of Aircraft Type to a corresponding value of Type is captured

 196

in the ontology as the value of function_to in the relationship from Aircraft Type to Type.

This procedure is as follows:

String Aircraft_Type_to_Type (String input) {

 String output;

 Switch (input){

 Case: “turbo prop” {output = “Propeller”; break ;}

 Case: “business jet” {output = “Small Jet”; break ;}

 Case: “Twin Engine Commercial Jet” {output = “Small

Commercial Jet”; break ;}

Case: ”3+ Engine Commercial Jet” {output = “Large

Commercial Jet”; break ;}

 };

 return output;

}

In a similar fashion, the transformation from Type to Aircraft Type is also specified

explicitly.

We summarize the relationship between other events, objects of the ATC and GTC

SONTs as follows: The relationship between events New Aircraft in Airspace and

Aircraft Departed involves mappings between their attributes, many of which have

already been related, as explained above. An Object level relationship is defined between

the ATC and GTC Runway objects. Subsequently their related pairs of attributes are

ATC_Runway Number & GTC_Runway Number, Length & Dimensions and the Boolean

attributes Is_Available & In_Use. It should be noted the Length and Dimension do not

refer to the same concept, hence the transformation stubs associated with their

 197

relationship cannot be automatically generated. These must be specified explicitly along

with the definition of this relationship. Based on the directions provided in Section 3.6.2,

the required transformations are specified explicitly by the federation developer as

follows:

Function_to.routine:

2D_Measurement Length_to_Dimension (foot input) {

 2D_Measurement output;

 output.length = input;

 output.width = 0; //User-defined default

 return output;

}

Function_from.routine:

Foot Dimension_to_Length (2D_Measurement input) {

 Foot output;

 output = input.length;

 return output;

}

Furthermore, a transformation from Dimensions to Length involves a loss of information

(information as to the width of the runway is discarded), while the opposite does not.

This knowledge is indicated in the value of the is_lossy slots in this relationship. The

complete set of relationships between the ATC and GTC SONTs is depicted in Figure

5.8.

 198

E Aircraft On Ground

A Payload (Metric Ton)

E Aircraft On GroundE Aircraft On Ground

A Payload (Metric Ton)A Payload (Metric Ton)

E New Aircraft in Airspace

A Heading (Degree)

E New Aircraft in AirspaceE New Aircraft in Airspace

A Heading (Degree)A Heading (Degree)A Heading (Degree)

O Runway

A ILS Localizer (MHz)

A Runway No (String)

A Length (foot)

A Is_Available (boolean)

O RunwayO Runway

A ILS Localizer (MHz)

A Runway No (String)

A Length (foot)

A Is_Available (boolean)

D Lat-Long-Alt

A Longitude (Degree, Min)

A Latitude (Degree, Min)

A Altitude (foot)

D Lat-Long-AltD Lat-Long-Alt

A Longitude (Degree, Min)

A Latitude (Degree, Min)

A Altitude (foot)

D Fuel Content Type

A Remaining Fuel (Imperial Gal.)

A Capacity (Imperial Gal.)

D Fuel Content TypeD Fuel Content Type

A Remaining Fuel (Imperial Gal.)

A Capacity (Imperial Gal.)

A Remaining Fuel (Imperial Gal.)

A Capacity (Imperial Gal.)

E Aircraft EventsE Aircraft Events

A Fuel Level (US Gallon)

A Call-Sign (String)

A Fuel Capacity (US Gallon)

A Heading (Degree)

A Location (Lat-Long)

A Type

E Aircraft Departed

A Heading (Degree)

A Location (Lat-Long)

A Type

A Heading (Degree)A Heading (Degree)

A Location (Lat-Long)

A Type

E Aircraft Departed

E Aircraft Landed

A Location (Lat-Long)

A Payload (Metric Ton)

A Type

E Aircraft LandedE Aircraft Landed

A Location (Lat-Long)

A Payload (Metric Ton)

A Type

A Location (Lat-Long)

A Payload (Metric Ton)

A TypeA Type

O Runway

A Dimensions (2D-Measure)

A Runway No (String)

A In_Use (Boolean)

O RunwayO Runway

A Dimensions (2D-Measure)

A Runway No (String)

A In_Use (Boolean)

D Lat-Long

A Longitude (Degree, Min)

A Latitude (Degree, Min)

D Lat-LongD Lat-Long

A Longitude (Degree, Min)

A Latitude (Degree, Min)

E Aircraft Events

A Position (Lat-Long-Alt)

A Call-Sign (String)

Fuel Content (Fuel Content Type)A

E Aircraft EventsE Aircraft Events

A Position (Lat-Long-Alt)

A Call-Sign (String)

Fuel Content (Fuel Content Type)A

A Aggr_Fuel_Cap_Attr (Aggr_Fuel_Cap_Datatype)

D Aggr_Fuel_Cap_Datatype

A Fuel Level (US Gal.)

A Fuel Capacity (US Gal.)

D Aggr_Fuel_Cap_DatatypeD Aggr_Fuel_Cap_Datatype

A Fuel Level (US Gal.)

A Fuel Capacity (US Gal.)

Figure 5.8: Relationships between ATC and GTC Entities

5.4.2 Relationships between GTC and Ground Services Entities

The information to be exchanged between the GTC and Ground Services federates relates

primarily to activity at a gate. Therefore, all gate related objects and events in these

SONTs are related to each other. Both the GTC and Ground Services SONTs model Gate

 199

objects in their respective domain, between which a relationship instance is defined. The

individual attributes of these gate objects that map to each other are Gate Number, Sector

and In_Use in the GTC, and Gate Number, Sector and Status in the Ground Services

SONT. The relationship between the Gate Number and Sector attributes is simply one of

equivalence (hence the transformation does not need to be specified explicitly) and there

are no lossy transformations involved. Since the attribute Status is an enumerated type,

the transformations in the relationship between Status and In_Use must be defined

explicitly (as was done with Aircraft Type and Type in the previous section).

Since the occurrence of an Aircraft Parked event in the GTC must trigger the Service

Required event in the Ground Services simulation, (and conversely, the Service

Completed event must trigger the Aircraft Chocks Off event) a relationship between these

events must be specified as well. When an aircraft arrives at a gate in the GTC,

information about its fuel level, fuel capacity and payload need to be subscribed to by the

Ground Services federate. Therefore, we relate the Fuel Level, Fuel Capacity and

Payload attributes of the Aircraft Parked event to the Fuel Required and Payload

attributes, respectively, of the Service Required event. Since Both Fuel Level and Fuel

Capacity are simultaneously required to determine the required fuel at a gate, there is an

2:1 mapping between these attributes. Recall that an aggregate data type

(Aggr_Fuel_Cap_Datatype) and attribute (Aggr_Fuel_Cap_Attr) have already been

defined to group Fuel Level and Fuel Capacity together (Section 5.4.1). These aggregate

entities are employed again to specify a relationship between Fuel Capacity, Fuel Level

 200

and Fuel Required. In a similar fashion, relationships are defined for corresponding

attributes of the Aircraft Chocks Off and Service Completed events Figure 5.9.

Finally, a relationship between the Runway objects defined in both SONTs is instantiated.

Specifically, the Runway Number, Dimensions and state of runways must be exchanged

between the two federates. The relationship between the two Runway Number attributes

is one of simple equivalence and does not involve any loss of information. The

Dimensions attributes are conceptually equivalent, but they have different data types

(2D_Measurement and Length_x_Width). Therefore, a relationship must be defined

between these data types as well. Note that the attributes of 2D_Measurement (Length

and Width) correspond directly to the Length and Width attributes of Length_x_Width.

Hence, the transformations in this data type level relationship do not need to be specified

explicitly; it suffices to specify relationship between the individual attributes of

2D_Measurement and Length_x_Width Figure 5.9. The relationship between the runway

attributes Status and In_Use has already been defined above, so no additional steps need

to be carried out. The full set of relationships between the GTC and Ground Services

SONT entities is presented below in Figure 5.9.

 201

E Aircraft Parked

A Payload (Metric Ton)

A Gate Number (String)

E Aircraft ParkedE Aircraft Parked

A Payload (Metric Ton)A Payload (Metric Ton)

A Gate Number (String)

E Aircraft EventsE Aircraft Events

A Fuel Level (US Gallon)

A Call-Sign (String)

A Fuel Capacity (US Gallon)

E Aircraft Chocks Off

A Gate Number (String)

E Aircraft Chocks OffE Aircraft Chocks Off

A Gate Number (String)

O Runway

A Dimensions (2D-Measure)

A Runway No (String)

A In_Use (Boolean)

O RunwayO Runway

A Dimensions (2D-Measure)

A Runway No (String)

A In_Use (Boolean)

O Gate

A Sector (String)

A Gate Number (String)

A In_Use (Boolean)

O GateO Gate

A Sector (String)

A Gate Number (String)

A In_Use (Boolean)

D 2D-Measure

A Width (Foot)

A Length (Foot)

D 2D-MeasureD 2D-Measure

A Width (Foot)

A Length (Foot)

E Service Required

A Fuel Required (US Gal.)

A Payload (Pound)

A Gate Number (String)

E Service RequiredE Service Required

A Fuel Required (US Gal.)

A Payload (Pound)

A Gate Number (String)

A Fuel Required (US Gal.)

A Payload (Pound)

A Gate Number (String)

A Gate Number (String)

E Service Completed

A Gate Number (String)

E Service Completed

O Gate

A Sector (String)

A Gate Number (String)

A Status {Busy, Free}

O GateO Gate

A Sector (String)

A Gate Number (String)

A Status {Busy, Free}

D Length_x_Width

A Width (Foot)

A Length (Foot)

D Length_x_WidthD Length_x_Width

A Width (Foot)

A Length (Foot)

O Runway

A Dimensions (Length_x_Width)

A Runway No (String)

A Status {Busy, Free}

A ILS Localizer Freq. (MHz)

O RunwayO Runway

A Dimensions (Length_x_Width)

A Runway No (String)

A Status {Busy, Free}

A ILS Localizer Freq. (MHz)

A Aggr_Fuel_Cap_Datatype

Figure 5.9: Relationships between GTC and Ground Services Entities

 202

5.4.3 Relationships between the ATC and Ground Services Entities

The only information shared directly between the ATC and Ground Services federates is

that of runways. In fact, the runway concept is modeled in each federate, and all federates

exchange runway related information with each other. A relationship is defined between

the Runway objects in both SONTs, following their individual attributes are related as

well. The attributes Runway Number, ILS Localizer, Length and Is_Available in the ATC

domain are related to attributes Runway Number, ILS Localizer Frequency, Dimensions

and Status, respectively. One should keep in mind that most of these attribute level

relationships no not really need to be instantiated. We have already related several

attributes of the Runway object in the ATC to corresponding attributes in the GTC. In

turn, these GTC attributes have been related to Runway attributes in the Ground Services

domain. Based on these existing relationships, the relationship between two attributes of

Runway objects in the ATC and Ground Services SONTs can be inferred by the GRIT

algorithm. Therefore, we skip the specification of several attribute level relationships

between the ATC and Ground Service federates. The only attribute-level relationship that

does need to be instantiated is between the ILS localizer frequencies modeled in both

federates. Recall that the GTC Runway object does not include any information about

ILS. Hence, no prior relationship exists from which the relationship between the ILS

localizer attributes of the ATC and Ground Services SONTs can be inferred. Therefore,

we specify a relationship from ILS Localizer to ILS Localizer Frequency with no lossy

transformations. Since their data types are the same, no further relationships or

transformations need to be specified.

 203

Using the knowledge captured in the relationships defined above, the GRIT algorithm is

to be employed to produce a common schema for the set of related entities in the air

traffic FONT. Furthermore, a set of ‘final’ SONT-Common entity relationships and

transformations are to be specified in the FONT. Finally, the entities, relationships and

transformations stubs captured in the FONT can be applied by a run time infrastructure to

facilitate interoperation between the simultaneously executing federation of simulations.

The application of the GRIT algorithm to complete the specification of this example

FONT is elaborated in the next section.

5.5 FONT Generation

Having captured the relationships between SONT entities in the air traffic federation, we

continue with the next and final step in the ontology-based framework process model—

the generation of a common representation of shared entities and the transformation stubs

relating them. Here, the knowledge captured in the relationships defined in the previous

section is applied by the GRIT algorithm to perform the above mentioned tasks

automatically. It is at this stage of the FONT development process that the fruit of all

labor performed in earlier steps is enjoyed. By selecting a common representation leading

to the least number of lossy transformations, and subsequently defining these

transformations automatically, significant effort and time that would be required to

perform these tasks manually is saved. In the following sub-sections, we trace through

the execution of the GRIT algorithm in the context of the air traffic FONT developed

thus far.

 204

5.5.1 Common Representation Generation

The GRIT algorithm has its own process model (depicted in Figure 4.1), which we will

follow to develop the common schema and transformations in the air traffic FONT. The

first step of course, is to create a graph from the set of entities and relationships between

them that have already been specified. Graphs are created for objects and events, their

attributes and the attributes of related custom data types. To instantiate a common

representation for all shared attributes of objects and events, an attribute graph is created

such that each vertex corresponds to a single SONT attribute, and each edge corresponds

to one of two transformations an attribute-level relationship. The result is a forest of

many sub-graphs, wherein each sub-graph represents a set of vertices (attributes) that

share a common representation. This forest is illustrated in Figure 5.10. Each vertex in

this figure is identified by a number, which corresponds to an index number in the vertex

array. Similarly each edge in this figure has a number which indicates its index in the

edge array. Next to an edge label, the length of that edge (1 indicates a non-lossy

transformation, 2*m (where m is the number of edges in the graph) indicates a lossy

transformation) is included in parentheses. While we do not list the entire vertex or edge

arrays (the equivalent information is presented in Figure 5.10), the attributes

corresponding to each vertex in Figure 5.10 are listed in Table 5.2. As seen in this table,

all attributes of the GTC, ATC and Ground Services that participate in a relationship, as

defined in the previous section, are represented as vertices. Once the graph is initialized,

Dijkstra’s algorithm is invoked to identify the shortest paths between all vertices. The

execution of this algorithm has been discussed in detail in Chapter 4; hence we do not

explain it in detail in the context of this specific graph. Furthermore, the shortest path and

 205

shortest distance lists associated with each vertex are not explicitly listed since these are

evident from the figure below.

E0 (4)

V0 V10
E10 (1)

E1 (1)

V1 V11
E11 (1)

E3 (1)

V3 V13
E14 (1)

E4 (1)

V4 V14
E15 (1)

E6 (1)

V6 V16
E18 (1)

E2 (1)

V2 V12
E12 (1)

V21

E13 (1)

E25 (1)

E5 (1)

V5 V15
E16 (1)

V22

E17 (1)

E26 (1)

E7 (1)

V7 V17
E19 (8)

V23

E20 (1)

E27 (1)

E9 (1)

V9 V27
E1 (1)

E8 (1)

V8 V18
E21 (1)

V24

E22 (1)

E28 (1)

E23 (1)

V19 V25
E29 (1)

E24 (1)

V20 V26
E30 (1)

E0 (4)

V0 V10
E10 (1)

E1 (1)

V1 V11
E11 (1)

E3 (1)

V3 V13
E14 (1)

E4 (1)

V4 V14
E15 (1)

E6 (1)

V6 V16
E18 (1)

E2 (1)

V2 V12
E12 (1)

V21

E13 (1)

E25 (1)

E5 (1)

V5 V15
E16 (1)

V22

E17 (1)

E26 (1)

E7 (1)

V7 V17
E19 (8)

V23

E20 (1)

E27 (1)

E9 (1)

V9 V27
E1 (1)

E8 (1)

V8 V18
E21 (1)

V24

E22 (1)

E28 (1)

E23 (1)

V19 V25
E29 (1)

E24 (1)

V20 V26
E30 (1)

Figure 5.10: Air Traffic FONT Object and Event Attribute Forest

Having initiated the attribute graph and identified shortest paths between vertices, the

procedure to select a common representation from a set of vertices in a sub-graph is

executed. Here, each vertex (attribute) is hypothetically selected as the common

representation, and the corresponding cost associated with that selection is captured.

Recall that this cost is the total distance of the paths between each related pair of vertices,

such that these paths pass through the selected common vertex. The vertex with the

lowest cost associated with it, i.e. the lowest number of end-to-end lossy transformations,

 206

is selected as the common representation. If two or more vertices have the same lowest

cost, any of their associated attributes is selected as common.

Table 5.2: Air Traffic FONT Object and Event Attribute Vertex Array

Vertex Attribute Vertex Attribute Vertex Attribute

V0 Position V10 Location V20 GTC Sector

V1 ATC Heading V11 GTC Heading V21 GS Payload

V2 ATC Payload V12 GTC Payload V22 Fuel Required

V3 ATC Call Sign V13 GTC Call Sign V23 GS Dimensions

V4 Aircraft Type V14 Type V24 GS Gate No

V5 Fuel Content V15 Aggr_Fuel_Cap_Attr V25 GS Sector

V6 ATC Runway No V16 GTC Runway No V26 Status

V7 Length V17 GTC Dimensions V27 ILS Localizer
Freq.

V8 Is_Available V18 In_Use

V9 ILS Localizer V19 GTC Gate No

Most of the sub-graphs in the attribute forest only involve two vertices. The selection of

the common representation in such cases is inconsequential. For example, consider the

sub-graph involving vertices V0 and V10 i.e. a relationship between Position and

Location. According to the GRIT algorithm, for a given vertex VK selected as common,

the associated cost is the sum of the shortest lengths from VM to VK and VK to VN, for

 207

every related pair of vertices (VM, VN) in the sub-graph. If V0 is selected to be common,

the path from V0 to V10 (passing through V0) has a minimal length of 4 (the weight of

the lossy transformation is twice the number of edges, i.e., 2*2). Similarly, a path from

V10 to V0, such that it passes through the common representation V0 has length 1.

Therefore, the cost associated with V0 being common is 5. If V10 is selected to be

common, the length of the path from V10 to V0, passing through the common vertex

(V10) has length 1, while the length of V0—Common (V10)—V10 is 4. Therefore, the

cost of selecting either attribute as common is the same. In other words, if Position is

selected to be equivalent to the common representation, the transformation Position—

Common—Location is just as lossy as the transformation from Position to Location.

Similarly, the transformation Location—Common—Position is just as lossy as the

transformation from Location to Position. In general, when there are only two vertices in

a sub-graph, the cost of either one being common is the same. Therefore, the attribute

corresponding to either vertex can be selected to be equivalent to the common

representation shared between the two SONT attributes. In this example, we assume that

Position is selected to be the common representation. Having done so, a new instance of

the attribute metaslot, Common_Position (named by appending the SONT selected SONT

representation to the word ‘common’) is created automatically, such that its data type is

the same as Position’s (Lat-Long-Alt). Once the common attribute is instantiated,

relationships between Position and Common_Position and Location and

Common_Position are also specified automatically according to the GRIT algorithm. In

this manner, the common representation for a pair of related SONT attribute, and

relationships between the SONT and common attributes are captured in the FONT

 208

automatically. Of course, there is still the issue of defining the transformation routines for

these relationships, which we will explore shortly.

In sub-graphs involving three or more vertices, the cost associated with each vertex being

selected as common can vary. That is, the selection of a given SONT attribute as the

common representation does not always lead to the same number of lossy end-to-end

transformations. As an example, consider the sub-graph involving vertices V7, V17 and

V23 i.e. the attributes Length, GTC Dimensions and GS Dimensions. The cost associated

with each of these attributes being selected as common is illustrated in Figure 5.11. Since

the attributes GTC Dimensions and GS Dimensions both capture information about a

runway’s length and width, a transformation from any of these attributes to Length

involves some loss of information. If Length is selected to be the common representation,

a transformation from GTC Dimension to GS Dimension (and vice-versa) involves loss of

information since this transformation has to be specified via the common representation

(GTC Dimensions—Common (Length)—GS Dimensions). Obviously, this information

loss is avoidable if Length is not selected to be common. Therefore, as is expected,

Length has the largest cost associated with it. It is interesting to note that while the

selection of GS Dimensions and GTC Dimensions leads to the same number of lossy end-

to-end transformations, GTC Dimensions has a lower cost associated with it. This is

because the selection of GS Dimension as the common representation means that a

transformation from Length to GTC Dimensions (and vice-versa) has to be defined via

GS Dimensions. Since there is no relationship specified by the user between GS

Dimensions and Length, this relationship (and its transformations) has to be composed

 209

based on the existing relationships between Length & GTC Dimensions, and GTC

Dimensions & GS Dimensions. When GTC Dimensions is selected to be common, no

transformations need to be composed from existing ones. Therefore, GTC Dimensions

has the lowest cost in this sub-graph, and is selected to be equivalent to the common

representation. Again, once a common attribute (Common_GTC_Dimensions) is defined,

a set of SONT-Common relationships from Length, GTC Dimensions and GS Dimensions

to Common_GTC_Dimensions are also instantiated.

 210

(a) V7 i.e. Length = Common

1

V7 V17
8

V7
0

0

2

V7 V23
9

V17
1

8
Cost= 29

(b) V17 i.e. GTC Dimension = Common

0

V17 V17
0

V7
8

1

1

V17 V23
1

V17
0

0
Cost= 11

(c) V23 i.e. GS Dimension = Common

1

V23 V17
1

V7
9

2

0

V23 V23
0

V17
1

1
Cost= 15

The end-to-end transformation from GS
Dimension to GTC Dimension is lossy,
which is avoidable

There is only one lossy transformation,
which is unavoidable. All paths to and from
the common attribute involve only one
edge

There is only one lossy transformation,
which is unavoidable, but paths to and
from the common attribute involve
multiple edges.

(a) V7 i.e. Length = Common

1

V7 V17
8

V7
0

0

2

V7 V23
9

V17
1

8

1

V7 V17
8

V7
0

0 1

V7 V17
8

V7
0

0

2

V7 V23
9

V17
1

8 2

V7 V23
9

V17
1

8
Cost= 29

(b) V17 i.e. GTC Dimension = Common

0

V17 V17
0

V7
8

1

1

V17 V23
1

V17
0

0 1

V17 V23
1

V17
0

0
Cost= 11

(c) V23 i.e. GS Dimension = Common

1

V23 V17
1

V7
9

2

0

V23 V23
0

V17
1

1

1

V23 V17
1

V7
9

2

0

V23 V23
0

V17
1

1 0

V23 V23
0

V17
1

1
Cost= 15

The end-to-end transformation from GS
Dimension to GTC Dimension is lossy,
which is avoidable

There is only one lossy transformation,
which is unavoidable. All paths to and from
the common attribute involve only one
edge

There is only one lossy transformation,
which is unavoidable, but paths to and
from the common attribute involve
multiple edges.

Figure 5.11: Cost associated with Length, GTC Dimension and GS Dimension being
selected as the common representation

Apart from the sub-graphs discussed above, most other sub-graphs do not involve any

lossy transformations. Therefore, the cost associated with selecting any given vertex as

common remains the same for all vertices in these sub-graphs. Consequentially, the GRIT

algorithm may select any vertex in a sub graph to be equivalent to the common

representation. The selection of the common representation in these cases is relatively

 211

unimportant, hence we do not list which attributes are selected as common in these sub-

graphs. Suffice it to mention that a common attribute is instantiated for all sub-graphs in

the attribute forest, and the corresponding SONT-Common relationship instances are

defined as well. The common representation for the attributes corresponding to each sub-

graph in the attribute forest is illustrated below in Figure 5.12.

A Position

A Location
A Common_Position

A Position

A Location
A Common_Position

A PositionA Position

A LocationA Location
A Common_PositionA Common_Position

A ATC Heading

A GTC Heading
A Common_ATC_Heading

A ATC HeadingA ATC Heading

A GTC HeadingA GTC Heading
A Common_ATC_HeadingA Common_ATC_Heading

A ATC Payload

A GTC Payload A Common_GTC_Payload

A GS Payload

A ATC PayloadA ATC Payload

A GTC PayloadA GTC Payload A Common_GTC_PayloadA Common_GTC_Payload

A GS PayloadA GS Payload

A ATC Call Sign

A GTC Call Sign
A Common_ATC_Call_Sign

A ATC Call SignA ATC Call Sign

A GTC Call SignA GTC Call Sign
A Common_ATC_Call_SignA Common_ATC_Call_Sign

A Aircraft Type

A Type
A Common_Aircraft_Type

A Aircraft TypeA Aircraft Type

A TypeA Type
A Common_Aircraft_TypeA Common_Aircraft_Type

A Fuel Content

A Aggr_Fuel_Cap_Attr A Common_Aggr_Fuel_Cap_Attr

A Fuel Required

A Fuel ContentA Fuel Content

A Aggr_Fuel_Cap_Attr A Common_Aggr_Fuel_Cap_AttrA Common_Aggr_Fuel_Cap_Attr

A Fuel RequiredA Fuel Required

A Length

A GTC_Dimensions A Common_GTC_Dimensions

A GS_Dimensions

A LengthA Length

A GTC_DimensionsA GTC_Dimensions A Common_GTC_DimensionsA Common_GTC_Dimensions

A GS_DimensionsA GS_Dimensions

A Is_Available

A In_Use A Common_Status

A Status

A Is_AvailableA Is_Available

A In_Use A Common_StatusA Common_Status

A Status

A ILS Localizer

A ILS Localizer Freq.
A Common_ILS_Localizer

A ILS LocalizerA ILS Localizer

A ILS Localizer Freq.A ILS Localizer Freq.
A Common_ILS_LocalizerA Common_ILS_Localizer

A GTC Gate No

A GS Gate No
A Common_GTC_Gate_No

A GTC Gate NoA GTC Gate No

A GS Gate No
A Common_GTC_Gate_NoA Common_GTC_Gate_No

A ATC Runway No

A GTC Runway No A Common_GS_Runway_No

A GS Runway No

A ATC Runway NoA ATC Runway No

A GTC Runway No A Common_GS_Runway_NoA Common_GS_Runway_No

A GS Runway No

Figure 5.12: Common Representation and SONT-Common Relationships for all
Object and Event Attributes in the Air Traffic FONT.

Once the common representation for all related attributes in the air traffic FONT have

been generated, the next procedure invoked in the GRIT algorithm defines common

 212

representations at the object and event level. Similar to the attribute graph defined above,

an object and event level graph is defined, where vertices represent related objects and

events, and edges correspond to the relationships between them. The object and event

level graph for the air traffic FONT is illustrated in Figure 5.13. The entities

corresponding to each vertex in this graph are listed in Table 5.3. The procedure to

generate common objects and events begins by identifying sub-graphs with the overall

forest. For each sub-graph, the attributes of the object or event corresponding to a given

vertex are queried to determine if they are related to a common attribute. Each common

attribute identified is then added to the domain of a new object or event class. Once all

attributes of all vertices in the sub-graph have been traversed, the definition of this new,

common class is complete. Furthermore, relationships are instantiated between the

classes corresponding to each vertex in the sub-graph, and the newly created common

class.

E0
V0 V3

E1
V1 V4

E3
V5 V9

E4
V6 V10

E2
V2 V7 V11

E5

E6
V8 V12

E0
V0 V3

E0
V0 V3

E1
V1 V4

E1
V1 V4

E3
V5 V9

E3
V5 V9

E4
V6 V10

E4
V6 V10

E2
V2 V7 V11

E5E2
V2 V7 V11

E5

E6
V8 V12

E6
V8 V12

Figure 5.13: Air Traffic FONT Object and Event Forest

 213

Table 5.3: Air Traffic FONT Object and Event Vertex Array

Vertex Object / Event Vertex Object / Event Vertex Object / Event

V0 Aircraft On
Ground (E) V5 Aircraft Parked

(E) V10 Service
Completed (E)

V1 New Aircraft in
Airspace (E) V6 Aircraft Chocks

Off (E) V11 GS Runway (O)

V2 ATC Runway
(O) V7 GTC Runway

(O) V12 GS Gate (O)

V3 Aircraft Landed
(E) V8 GTC Gate (O)

V4 Aircraft
Departed (E) V9 Service

Required (E)

Let us examine the definition of a common object for the sub-graph with vertices V2, V7

and V11 in Figure 5.13 i.e. the Runway objects in each SONT domain. A new class,

Common_Object_1 is instantiated as the common representation for all three runway

objects in the FONT. To determine the common attributes that comprise this new class,

the attributes of the objects corresponding to each vertex in the sub-graph are traversed.

For vertex V2 (the ATC Runway object), the set of SONT attributes related to attributes in

the common domain are ATC Runway No, Length, ILS Localizer and Is_Available

(Figure 5.3). We know that Length is related to Common_GTC_Dimensions, as was

elaborated previously. Similarly, ATC Runway No is related to

Common_GS_Runway_No, ILS Localizer is related to Common_ILS_Localizer, and

Is_Available is related to Common_Status (Figure 5.12). These common attributes are

modified such that their domain includes the new class Common_Object_1. Furthermore,

a relationship instance is defined from ATC Runway to Common_Object_1. This process

is then repeated for vertices V7 and V11. Since the attributes of GTC Runway and GS

 214

Runway are also related to the same common attributes as those of V2, no further

attributes are added to Common_Object_1’s domain. (In general, if multiple attributes are

related to the same common attribute, the addition of that common attribute to the target

domain is performed more than once. This does not mean that we end up with too many

common attributes describing the common class. Rather, it means that the fact that a

unique attribute describes a unique object or event is specified several times). In this

manner, a common class (object or event) and a set of SONT-Common relationships is

specified for each sub-graph in the forest depicted in Figure 5.13.

Having defined the common representation for all shared entities in the air traffic FONT,

we proceed to the final automated step in FONT development; the derivation of

transformation. For every SONT-Common attribute level relationship (match) that has

been specified in this section, a corresponding mapping must be instantiated. We explore

the instantiation of these mappings, as accomplished by the GRIT algorithm, in the

following section.

5.5.2 Transformation Stub Generation

For every relationship between a SONT domain attribute and a common attribute, a

corresponding pair of transformation stubs must be defined. The GRIT algorithm invokes

a procedure to do so after the SONT-Common relationships for a given sub-graph of the

attribute forest have been instantiated. For each relationship from a SONT attribute to a

common attribute, the corresponding shortest path between the two is identified

(equivalently, the shortest path between the given SONT attribute and the attribute that

 215

was selected to be the common representation), based on which the required

transformations are generated. Each edge in this shortest path implies that another

transformation has to be added to the chain of routines composed together to realize the

required SONT-Common transformation. Of course, for the SONT attribute previously

selected to be the common representation, a shortest path to the common attribute does

not explicitly exist. The transformation between the two is a simple equivalence

operation, which is generated by the GRIT algorithm, given it keeps track of which

attribute is selected as common in a given sub-graph.

Let us explore the instantiation of transformations in the sub-graph of the attribute tree

consisting of vertices V0 and V10 i.e. attributes Position and Location (Figure 5.10). The

instantiation of the corresponding common attribute Common_Position, such that its

representation is equivalent to Position, has been elaborated in Section 5.5.1. A

relationship between Location and Common_Position has also been defined, for which

the transformations are now specified. The value of the function_to slot of this

relationship is entered by the GRIT algorithm based on the shortest path from Location

(V10) to the attribute select to be equivalent to Common_Position, i.e. Position (V0).

From Figure 5.10, it is clear that this path involves a single edge E10. Since a

transformation corresponding to this edge has not been explicitly defined, the GRIT

algorithm assumes that the transformation from Location to Position only involves a

conversion between their data types (Lat-Long and Lat-Long-Alt, respectively).

Therefore, the required transformation is specified as:

 216

Lat-Long-Alt Location_to_Common_Position (Lat-Long input)

{

 Lat-Long-Alt output;

 output = Lat-Long_to_Lat-Long-Alt (input);

 return output;

}

Note that this transformation is defined in terms of the transformation between the data

types of Location and Position. While this data type level transformation has not yet been

generated, since we have previously specified the existence of a relationship between

Lat-Long and Lat-Long-Alt, the required transformation will be generated before the

FONT specification is complete. Also, since the path from Location to the common

representation (Position) only involves a single edge, only one transformation (Lat-

Long_to_Lat-Long-Alt) is called from within the transformation from Location to

Common_Position. In a similar fashion, the transformation from Common_Position to

Location i.e. the value of function_from in the relationship between Location and

Common_Position is generated as:

Lat-Long Common_Position_to_Location (Lat-Long-Alt input)

{

 Lat-Long output;

 output = Lat-Long-Alt_to_Lat-Long (input);

 return output;

}

The only other SONT attribute in this sub-graph is Position. Since Position corresponds

to the vertex that was selected as the common representation, the shortest path from

 217

Position to itself is not investigated. Instead, the required function_to transformation in

the relationship from Position to Common_Position is simply specified as listed below

(the required function_from transformation stub is also specified as an equivalence

relationship).

Lat-Long-Alt Position_to_Common_Position (Lat-Long-Alt input)

{

 Lat-Long-Alt output;

 output = input;

 return output;

}

The generation of transformation stubs for all other sub-graphs in the attribute forest

follows the same process. While we do not explain the generation of each transformation

in detail, it is worth briefly studying the generation of a transformation from the attribute

Type (V14) to its corresponding common representation Common_Aircraft_Type, which

is defined so as to be equivalent to the attribute Aircraft Type (V4). Recall that we

explicitly defined a transformation from Type to Aircraft Type (and vice-versa) in Section

5.4.1. This means that the transformation between Type and Common_Aircraft_Type

cannot be defined solely in terms of a transformation between their data types. Instead,

the GRIT algorithm identifies that a user-specified transformation exists corresponding to

the edge connecting V14 to V4, and generates the required SONT-Common

transformation in terms of this user-defined transformation:

 218

String Type_to_Common_Aircraft_Type (String input)

{

 String output;

 output = Type_to_Airraft_Type (input);

 return output;

}

Once the GRIT algorithm has generated all required transformations for all sub-graphs of

the attribute forest, the transformations between their respective data types are to be

specified. These relationships include those between primitive data types, such as two

units of measurement, and those involving custom data types, such as Lat-Long and Lat-

Long-Alt. For every related set of data type classes, an appropriate procedure is invoked

to generate the transformation between them. For two related primitive data types, the

generation of the required transformations stub is relatively simple. The knowledge as to

how two primitive data types relate is captured when the World Ontology is defined. For

example, the relationship between two units of measurement is captured in terms of their

conversion factor to a selected reference unit. If two custom data types relate such that

their individual attributes map to each other, and the relationship between these attributes

is that of equivalence, other than their representation (data types), the GRIT algorithm

can generate transformations for these related data types automatically. All other data

type level relationships must be specified explicitly.

Since the GTC Payload attribute is expressed in metric tons, and the Ground Services

Payload attribute has data type Pound, a relationship between these to units of measure is

specified, for which transformations are to be generated. Recall that the definition of each

 219

unit data type class in the World Ontology includes the slot SI_Conversion_Factor,

which represents the factor by which a value in a given unit has to be multiplied to

achieve the equivalent value in SI Units (refer to Section 3.7.2). The Data type class

Metric Ton has a conversion factor of 1016, while Pound has a conversion factor of 0.45.

Using these values, the GRIT algorithm generates the required transformation from

Metric Ton to Pound as:

Float Metric_Ton_to_Pound (Float input)

{

 Float output;

 output = (input * 1016) /0.45;

 return output;

}

A relationship between two custom data types in the air traffic FONT exists between Lat-

Long and Lat-Long-Alt, which are the data types of the attributes Position and Location,

respectively. The individual attributes of these data types that relate to each other are

ATC Latitude & GTC Latitude, and ATC Longitude & GTC Longitude. Since these

attributes are conceptually equivalent, the transformations between Lat-Long and Lat-

Long-Alt can be derived automatically by the GRIT algorithm, given that relationships

are defined between ATC Latitude & GTC Latitude, and ATC Longitude & GTC

Longitude. Recall that we have defined these relationships in Section 5.4.1. In order to

generate the required data type transformation, the GRIT algorithm maintains a graph of

all related data type attributes. From this graph, the shortest path (if it exists) between two

attributes belonging to the respective data types being related is identified, based on

 220

which a conversion from one attribute to the other is generated. This process is repeated

for all related attributes of the two data types.

The graph of all data type attributes in the air traffic FONT is illustrated in Figure 5.14,

and the attributes associated with the different vertices are listed in Table 5.4. In this

graph, the vertices corresponding to attributes of Lat-Long-Alt are V0, V1, and V2 (ATC

Latitude, ATC Longitude and Altitude). There exists a path between from V0 to V5, and

V1 to V6, where V5 and V6 correspond to GTC Latitude and GTC Longitude, which are

attributes of Lat-Long (note that no attribute of Lat-Long is reachable from the ATC

attribute Altitude (V2)). The GRIT algorithm defines a transformation from ATC Latitude

to GTC Latitude as a composition of all edges in the shortest path from V0 to V5. Since

this path involves only one edge, and the data types of both ATC Latitude and GTC

Latitude are the same (the unit data type Degree-Minute), this transformation is reduced

to a simple equivalence operation. Similarly, a transformation from ATC Longitude to

GTC Longitude is also generated in a similar fashion. At this point, all attributes of Lat-

Long-Alt that have paths to any attributes of Lat-Long have been accounted for. The

required data type level transformation is specified as a collection of these attribute

conversion, as follows:

 221

Lat-Long Lat-Long-Alt_to_Lat-Long (Lat-Long-Alt input)

{

 Lat-Long output;

 output.GTC_Latitude = input.ATC_Latitude;

 output.GTC_Longitude = input.ATC_Longitude;

 return output;

}

E0 (1)

V0 V5
E1 (1)

V1 V6

V2
E2 (1)

V3 V7
E3 (1)

V4 V8

E9 (1)

V10 V12

E4 (1) E5 (1)

E6 (1) E7 (1)

E8 (1)

V9 V11
E10 (1) E11 (1)

E0 (1)

V0 V5
E1 (1)

V1 V6

V2
E2 (1)

V3 V7
E3 (1)

V4 V8

E9 (1)

V10 V12

E4 (1) E5 (1)

E6 (1) E7 (1)

E8 (1)

V9 V11
E10 (1)

E8 (1)

V9 V11
E10 (1) E11 (1)

Figure 5.14: Air Traffic FONT Data Type Attribute Forest

Table 5.4: Air Traffic FONT Data Type Attribute Vertex Array

Vertex Attribute Vertex Attribute Vertex Attribute

V0 ATC Latitude V5 GTC Latitude V10 Width

V1 ATC Longitude V6 GTC Longitude V11 GS Length

V2 ATC Altitude V7 Fuel Level V12 Breath

V3 Remaining Fuel V8 Fuel Capacity

V4 Capacity V9 GTC Length

 222

Another example of a custom data type transformations generated by the GRIT algorithm

is that of the relationship between the data types Fuel Content Type and

Aggr_Fuel_Cap_Datatype. The attributes of Fuel Content Type, namely Remaining Fuel

and Capacity, are represented in the graph above as vertices V3 and V4. A path exists

from V3 to V7 and V4 to V8, where V7 and V8 correspond to attributes Fuel Level and

Fuel Capacity in the domain of Aggr_Fuel_Cap_Datatype. Since these attributes are

equivalent to each other, the conversions between them can be generated based on the

relationship between their data types. Note that Remaining Fuel and Capacity have data

type Imperial Gallon, and Fuel Level and Fuel capacity are expressed in US Gallon.

Therefore, the transformation from Capacity to Fuel Capacity involves a transformation

from the primitive unit data type Imperial Gallon, to US Gallon (the same is true for the

transformation from Remaining Fuel to Fuel Level). The resultant data type level

transformation from Fuel Content Type to Aggr_Fuel_Cap_Datatype then automatically

generated as a collection of these attribute transformations:

Aggr_Fuel_Cap_Datatype

Fuel_Content_Type_to_Aggr_Fuel_Cap_Datatype (Fuel_Content_Type

input)

{

 Aggr_Fuel_Cap_Datatype output;

output.Fuel_Capacity = Imperial_Gallon_to_US_Gallon

(input.Capacity);

output.Fuel_Level= Imperial_Gallon_to_US_Gallon

(input.Remaining_Fuel);

 return output;

}

 223

There exist relationships involving custom data types in the air traffic FONT, for which

the GRIT algorithm cannot derive transformations. An example that has already been

discussed is the transformation between two enumerated data types. Recall that both

attributes Aircraft Type (in ATC domain) and Type (in GTC domain) have enumerated

data types, and the transformation between them has been explicitly specified. This is

because enumerated data types do not have individual attributes that can be related to

each other. If Aircraft Type and Type were modeled in terms of data types with individual

attributes, then a relationship between these attributes could be specified. The knowledge

captured within these relationships could then be used by the GRIT algorithm to compute

the required data type level transformation.

The same is true for any relationship between a custom data type and a primitive data

type. Most primitive data types do not have individual attributes. The only primitive data

types that have slots (note slots in general, not instances of the attribute metaslot) are unit

data types, but their slots capture information about the conversion factor to an SI unit.

Therefore, no relationships can be specified between the attributes of a custom data type

and those of a primitive data type, because the latter is non-existent. Hence in

relationships between attributes where one attribute has a primitive data type, and the

other has a custom data type, the associated transformations must be explicitly provided,

since they cannot be derived based on a data type level transformation that does not exist.

This is precisely the reason why the transformation from attribute Length to GTC

Dimension (and vice versa) was explicitly defined in Section 5.4.1.

 224

Given that all transformations that cannot be generated by the GRIT algorithm are

explicitly defined, once the procedure to generate data type transformations completes its

execution, the execution of the overall GRIT algorithm is complete. The result is a

complete FONT specification, wherein a common set of objects, event and attributes has

been instantiated as the communal representation for all shared federate entities.

Furthermore, a set of transformation stubs to convert all airport related concepts from

their respective SONT representations to their related common representation, and vice-

versa are captured in the FONT. The entire set of information contained within the FONT

can then be applied by an RTI to facilitate consistent run-time communication between

the ATC, GTC and Ground Services simulations.

Based on the nature of the automatically derived transformations between SONT and

Common entities (whether they are lossy or not), we may choose to specify additional

relationships and re-iterate through the GRIT algorithm. There are only two lossy SONT-

Common relationships (From Common_Position to Location and from

Common_GTC_Dimensions to Length) that have been derived. Since the relationship

between Location and Position (equivalent to Common_Position) or Length and GTC

Dimension (equivalent to Common_GTC_Dimensions) inherently involves discarding

some information, we cannot specify any additional knowledge to help the situation.

Furthermore, the information that is discarded is inconsequential to the interplay between

federate simulations. Hence, we accept this specification of the FONT as the ‘final’

specification to be used by the RTI.

 225

5.6 Empirical Performance Validation

In the previous sections, we have stepped through the process of developing a FONT for

the example air traffic federated simulation. A system level simulation of the airport

being designed was to be developed and executed. Sub-system level simulation models

exist and need to interact with each other in order to simulate the emergent behavior of

the airport as a whole. The run-time exchange of information between distributed

simulations requires a common information model that defines the (representation of)

objects and events that simulators can publish or subscribe to. However, several concepts

that are common to the airport as a whole (e.g. runway, aircraft) are modeled in different

ways in each sub-system level simulation. An archetypical example of this is that the

concept of an aircraft’s payload is represented in metric tons in the ATC and GTC

simulation models, and in pounds in the Ground Services model. We used the ontology-

based framework to allow the three federates to exchange information in a consistent

manner without having to modify each one of their implementation. Our goal in applying

this framework is to determine a common information model and set of transformation

stubs to and from that model in an automated fashion. Using these, a run-time

infrastructure can facilitate the execution of the required system-level simulation such

that information between the GTC, ATC and Ground Services federates is exchanged in a

consistent manner, and thereby the expected behavior of the airport is correctly

simulated.

To that extent, we pose the question—“Has the ontology-based framework done what it

was supposed to do?” In a broad sense, the answer is a resounding yes. Given the ATC,

 226

GTC and Ground Services simulation models, with the knowledge of the representation

of shared concepts within their individual domains and the loss of information in

transforming between them; a common information model and a set of transformation

stubs to convert information to and from that common representation have been

generated automatically. That being said, we confess that the word ‘automatically’ is

used rather loosely here. There was still some effort involved in modeling the individual

simulation domains in ontologies, and specifying relationships between them. Moreover,

not all transformations were generated automatically. Therefore, considerable time and

effort is still required to achieve representational compatibility between the ATC, GTC

and Ground Services simulations. However, this is significantly less time and effort

intensive than having to define the common information model and transformations

manually. In this federation, there are 26 shared attributes for which a common

representation has defined and 56 corresponding transformation stubs that have generated

automatically (Figure 5.10). This of course does not include transformations between the

data types of these attributes. While we did not attain representational consistency in the

air traffic federation in a completely automated fashion, clearly, the use of this

framework has automated part of the process. Therefore, the framework has successfully

been used to support automation in the process of attaining representational compatibility

between the three federates in the air traffic simulation. Looking back at research

question 1 and its associated hypothesis, the framework has accomplished exactly what it

was supposed to do, in the context of this example.

 227

At a finer level of granularity, it is important to evaluate the performance of the

framework in terms of its key characteristics that we set out study. In Section 5.2, we

stated that the goal of undertaking this example FONT development was to answer three

performance-related questions about the framework, namely (i) Is the expressiveness of

the world ontology sufficient to capture all SONT model concepts? (ii) Is the

expressiveness of relationships sufficient to capture required knowledge about how two

concepts relate to each other? and (iii) Does the GRIT algorithm determine the common

representation and transformations in a correct and effective manner? As we shall see

below, answering these questions helps to determine the validity of the research

hypotheses we posed in Chapter 1, in the scope of this example problem.

5.6.1 Expressiveness of the World Ontology

Since the World Ontology has been based on the HLA OMT; we expect that different

simulation concepts can be represented in terms of Objects, Events and their Attributes.

In this example, we have modeled several different concepts using the constructs defined

in the World Ontology, ranging from a static, persistent entity such as a runway, to the

act of performing some action, such as re-fueling an aircraft. We were able to capture

knowledge as to the persistence of a given concept in the simulation by either modeling it

as an event or an object. By modeling objects and events as classes, significant freedom

is offered in how each simulation concept is modeled. Each object and event can have

any number of attributes, which means that pretty much any concept can be described in

an object oriented fashion. This description can be captured completely in one attribute

with a complex data type, or in several attributes whose data types are simpler in nature.

 228

For example, we modeled the position of an aircraft to contain information about its

latitude, longitude and altitude (in the Lat-Long-Alt data type) in the ATC (Figure 5.3).

We could just as easily have specified the attributes Latitude, Longitude and Altitude as

descriptors of an aircraft. We chose the former because it reflects how these concepts

have been modeled in the underlying simulation model. The fact that we were able to

represent these concepts in the exact same fashion as the simulation model shows that the

World Ontology does not constrain the way in which simulation concepts are

represented.

However, the fact that all concepts in a SONT or FONT must be expressed in an object

oriented fashion is a limitation that implies additional work to attain representational

consistency in the air traffic federation. Recall that the Ground Services simulation model

is a legacy simulation model that does not employ an object oriented representation.

Since the World Ontology constrains the representation of simulation models in terms of

abstract data types (objects) and methods (events), an object oriented interface is to be

built as a wrapper around the Ground Services federate.

Aside from imposing an object oriented representation, there are very few constraints

imposed by the World Ontology. Whether a concept is described such that its properties

are grouped together in a single attribute (as with Position, a complex descriptor of an

aircraft) or specified as multiple, more simple attributes, the knowledge represented is

equivalent. There is some added effort required in specifying complex data types, but this

is almost negligible. In the end, the knowledge that needs to be provided as input to the

 229

GRIT algorithm, and consequently the time and effort required to do so does not change

if a concept is modeled with many simple attributes (with primitive data types) or few

complex attributes (with custom data types).

It is worth mentioning that in the scope of this framework, objects and events are treated

no differently, so it really didn’t matter whether we decided to model a federate concept

as an object or an event. For example, we chose to model the concept of an aircraft only

as an event, even though aircraft are somewhat persistent in the ATC and GTC

simulations. Knowing that the only time aircraft information is exchanged between the

ATC and GTC is when an event occurs in relation to an aircraft, it made sense to model

aircraft related concepts as events. If we had modeled them as objects, the underlying

relationships and transformation stubs relating individual attributes would not change.

The only change comes during execution, where a change in an aircraft’s attributes in the

ATC would be reflected in a corresponding GTC aircraft, irrespective of whether that

aircraft is landing or not (vice-versa applies as well). The change in an aircraft objects

attributes would then trigger a local event, as opposed to a direct mapping between

events, as is currently implemented.

Based on the above arguments, and the fact that we were successfully able to model all

three federates in terms of World Ontology constructs, we accept the validity of the

World Ontology in performing as required.

 230

5.6.2 Expressiveness of Relationships

As we have seen in previous sections, we were successfully able to specify the

knowledge required to generate a complete FONT specification in multiple instances of

the relationship class. This includes knowledge of matches between objects, events and

data types (such as the relationship between ATC Runway and GTC Runway), and the

mappings between their individual attributes (such as the relationship between Location

and Position). By specifying relationships between objects (or events and data types)

independently, the knowledge as to how two attributes relate does not have to be

provided again and again if the attribute appears in multiple objects. For example, the

relationship between attributes In_Use (in the domain of both GTC Runway and GTC

Gate), and Status (seen in both GS Runway and GS Gate) only had to be specified once.

Furthermore, we were able to specify simultaneous mappings from multiple attribute to

one attribute, and vice versa through the definition of aggregation data types and

attributes. In the relationship between Fuel Content and Fuel Level & Fuel Capacity, the

aggregation of the latter two in a single attribute meant that we could still specify a

transformation stub from Fuel Content to Fuel Level and Fuel Capacity, such that the

procedure only has a single output parameter. In addition, the is_lossy slots with each

relationship allowed us to capture knowledge as to the loss of information in translating

between shared attributes, which is required to generate the required transformation

stubs. Where these could not be inferred automatically, the routine slots allowed us to

specify transformations explicitly.

 231

A significant limitation in expressing relationships was observed in that several

transformations needed to be specified manually. If the relationship between two

attributes is any more complex than a conversion between their representations (data

types) additional knowledge required as to the concept level relationship between two

attributes cannot be specified; instead the transformations need to be specified explicitly.

Effectively, this means specifying the same relationship twice (as two procedures, instead

of one declarative relationship). Furthermore, transformations for relationships involving

enumerated data types must be specified manually. As was experienced with the

relationship between attributes Aircraft Type and Type, there is no provision to specify

matches between the individual enumerals (such as Turbo Prop equates to Propeller).

Instead, the entire transformation procedure is to be listed as a switch or if-else procedure

(see Section 5.4.1). Moreover, this knowledge has to be provided twice, once in the

procedure to convert the value of Aircraft Type to a corresponding value of Type, and

once to go the other way. The same is true for the relationship between In_Use and Status

(see Section 5.4.2). Similarly, for relationships involving one primitive data type and one

custom data type, transformations need to be defined manually. In defining a relationship

between data types 2D-Measurement and Foot, the attributes of 2D-Measurement could

not be mapped to any corresponding attributes in Foot, simply because this, and all

primitive data types don’t have any attributes. Hence, the required transformation was

specified manually.

While some transformations do need to be specified explicitly, it should be noted that

since the majority of attributes in the air traffic FONT have primitive data types, the

 232

relationships between them were defined in a relatively straightforward and quick

fashion. For these relationships of course, we did not need to specify any transformations.

Moreover, we did not have to specify all relationships; some could be inferred from

others. Recall that the set of relationships defined between the ATC and GS SONT

entities was minimal, in that most of their concepts were related through existing

relationships with the GTC SONT (Section 5.4.3).

Clearly, the relationship class allowed us to specify all the knowledge required to

complete the FONT specification. As we have noted, the efficiency in specifying this

knowledge has room to improve based on the fact that several transformations had to be

specified manually. However, the relationships in the FONT have ‘done what they are

supposed to do’ to support the development of the air traffic FONT, which is our basis

for accepting the performance validity of this component.

The two points we have evaluated thus far lend support to accepting the overall validity

of Hypothesis 2 posed in Chapter 1, in that we have shown, with the help of a concrete

example, that a metamodels (the World Ontology) can be used as a vocabulary for

specifying SONTs, and that relationships between SONT entities can be defined based on

those defined in this metamodel.

5.6.3 Correctness and Efficiency of the GRIT Algorithm

For all attribute sub-graphs in the air traffic FONT involving lossy transformations, the

GRIT algorithm correctly selected a common representation leading to the least number

 233

of end-to-end lossy transformations. We traced through the procedure to determine the

common representation for the two sub-graphs involving lossy transformations, namely

those corresponding to (i) the relationship between Position and Location, and (ii) the

relationship between Length, GTC Dimensions and GS Dimensions. The latter highlights

an important point about this procedure—even though the selection of GTC Dimensions

and GS Dimensions as common leads to the same number of minimal lossy

transformations, GTC Dimensions has a lower cost associated with it. This is because the

cost associated with each attribute reflects not only the number of lossy transformations,

but the number of chains in an end-to-end transformation as well. Therefore, in selecting

the representation with lowest cost as common, the GRIT algorithm identifies that GTC

Dimensions, if selected as common, leads to the least number of lossy transformations,

and the most efficient composition of SONT-Common transformations (Figure 5.11). For

all other sub-graphs in the attribute tree, there are no lossy transformations, so the

selection of the common representation is somewhat inconsequential. Even then, the

GRIT algorithm selected the common representation such that the simplest composition

of SONT-Common transformations is realized.

The correctness of the transformation stubs generated is somewhat dependent on the

knowledge provided as input to the GRIT algorithm. Under the assumption that all

transformations that were generated automatically correspond to relationships where the

same concept is defined with a different representation (data type), the transformations

produced are exactly as desired. In the development of the air traffic FONT, all

transformations associated with relationships between two disparate concepts were

 234

specified manually. Hence, all transformations derived automatically (such as between

GTC Payload and GS Payload) are exactly as desired. Another assumption is made in

that for every set of related attributes, a relationship between their data types exists. The

transformation from GTC Payload to GS Payload makes a call to a data type level

transformation from Metric Tons to Pounds. If this relationship had not been defined

before executing the GRIT algorithm, the resultant air traffic FONT would not be

complete. That is, a run-time or compile-time error would occur when a call to a non-

existent procedure is flagged. However, the occurrence of such a situation is more the

fault of the federation developer and does not mean that the transformation generation

procedure is flawed.

The efficiency of the GRIT algorithm in generating the required complete air traffic

FONT can be quantified in terms of the overall complexity of executing its individual

procedures. In Chapter 4, bounds on these complexities were defined in terms of the

number of related attributes, objects, events and so on. In Table 5.5, we have quantified

those bounds in the context of this example, given that we know the total number of

vertices and edges in each graph. The total indicates that the number of instructions

processed in completing the execution of the GRIT algorithm is *23596α≤ . Assuming

that α , the number of instructions in the inner-most loop of each procedure, is not very

large, it is evident that the GRIT algorithm is quite efficient, and does not require

significant computing resources. Realize that today’s computers can perform millions of

instructions per second. That being said, the total number of instructions noted below is at

 235

the application code level. Of course, these correspond to may more instructions in

assembler or machine code, but this is still well within reason.

Table 5.5: Complexity of the GRIT Algorithm Execution in the Air Traffic FONT
Example

Procedure Theoretical
Complexity

Empirical
Complexity

Generate Shortest Path List O(N2*m) 22599

Select Attribute Common
Representation O (N*T*m) 208

Select Object Common
Representation O (S*T*a) 60

Generate Attribute Transformation
Stub O (N2) 729

TOTAL 23596

The successful execution of the GRIT algorithm to automatically complete the air traffic

FONT specification provides significant support to the validity of Hypotheses 3. In the

context of this example, the GRIT algorithm automatically derives the common

information model and infers transformations based on existing knowledge (semantics).

The graph-based approach is found to be an efficient manner in which these tasks are

undertaken. Essentially, this is exactly the vision proposed in hypotheses 3, which we

have established is certainly valid within the scope of this example problem.

The goal of this chapter has been to gain insight as to the performance validity

(usefulness) of the framework and algorithm developed previously. Based on the

 236

arguments above, we have accepted the empirical performance validity of the research

hypotheses. Now, we must generalize the performance validity acceptance beyond the

scope of the air traffic federated simulation. The functionality and fundamental

limitations of the framework, as applicable to a broad range of federated simulation

scenarios are discussed in the following chapter. Based on this discussion, we make a

‘leap of faith’ to accept the general validity of this framework.

 237

CHAPTER 6

EVALUATION AND REFLECTION

The purpose of this chapter is to bring closure to the development and analysis of the

ontology-based framework presented in this thesis. In doing so, we consolidate the

various ideas developed throughout this document and tie them back to the research

questions and hypotheses posed at the outset. The idea here is to summarize and re-

emphasize the contributions made in this body of research, and highlight its inherent

limitations. In this manner, the reader is left with a clear understanding of the specific

points that have been addressed in this thesis. A Masters Thesis grounded in research

requires one to pose meaningful research questions, establish and develop associated

hypotheses, and finally build confidence in their validity. In this chapter, we undertake

the final step in this process, wherein we consolidate arguments in support of the general

validity of all three hypotheses posed in Chapter 1. Finally, we close with a brief

overview of potential paths along which future work can be undertaken based on what we

have accomplished thus far. In answering the research questions, we have uncovered

limitations to our hypotheses that lead to a new set of questions. In the interest of

expanding the range of the usefulness of our contribution it is important that we discuss

avenues for future investigation.

 238

6.1 A Critical Review of this Research

Having conducted and explained the research contributions and applied them to an

example problem in previous chapters, it is important to tie all of this back to the big

picture—supporting the process of developing federated simulations. In this section, we

re-emphasize how the individual constructs (SONTs, FONTs, graph-based algorithm and

so on) factor into supporting automation and reuse in federation development.

Furthermore, we highlight the fundamental limitations of our approach to achieving

representational compatibility in a federated simulation. By doing so, we are able to

bound or characterize the general validity of this body of research. We begin with a brief

recap of the ontology-based framework, and the reasoning that went into its development.

Essentially, the following section is a summary of the arguments developed in support of

the hypotheses.

6.1.1 Summary: What was done and why?

At the outset of this thesis, we stated that the goal of this research is to address challenges

in the realm of federated simulations. Distributed and federated simulations are

developed to study the emergent behavior of large systems for which sub-system level

models exist. While there are several aspects to achieving interoperability between the

simulation models of different sub-systems, our focus is on attaining representational

compatibility. In order to exchange information between simulations at run-time, a

common information model defining the representation of all shared simulation concepts

must be defined. Since federate simulations often employ disparate representations of

 239

shared concepts, attaining representational compatibility in the entire federation tends to

involve significant effort. Essentially, this entails either modifying each federate

simulation model, or defining an interface that translates federate representations of

concepts to a chosen common representation.

The goal of this research is to support the attainment of representational compatibility in

a federated simulation, in a partially automated, reusable fashion. To meet this goal, we

use ontologies to capture and reuse knowledge about simulation models. Essentially, we

have shown that concepts in a given simulation model can be described in a formal,

unambiguous fashion using an ontology. Since these simulation model descriptions are

machine-interpretable, we have been able to design and employ procedures that use them

to perform tasks involved with attaining representational compatibility in a federation.

Our approach involves defining a federation-specific common information model based

on the available descriptions of federate simulation models. Furthermore, we define

procedural relationships between the federate and common descriptions of simulation

model entities. By doing so, we make federate simulation models and their descriptions

readily reusable. Defining relationships between federate and common simulation entities

means that federate simulation models can represent entities in disparate ways and still

exchange information with each other. Therefore, the same model can be used in several

federations without having to modify its implementation. Also, their corresponding

descriptions (ontologies) can be reused as input to the procedures that automate the

process of arriving at a common information model.

 240

To ensure that this approach is developed correctly and affirm its validity in solving the

representation inconsistency problem, we have taken a structured, four-step approach that

has been elaborated upon in previous chapters. We began by conducting a survey of

related literature that ties into the research questions and hypotheses we posed. This

survey was instrumental in helping us identify what the highlights and limitations of

existing frameworks are in contrast with what we have proposed. Based on this, we

identified ideas and implementations that can potentially be leveraged to support our

cause. Next, we use the key points from the work of others as a basis upon which we built

our framework. Analogous to having a strong foundation for a well-constructed edifice,

building upon existing frameworks (such as HLA, schema mapping and morphisms) and

theory (i.e. graph theory) builds confidence in the validity of our research developments.

Having developed our framework, we demonstrated its usefulness in the context of an

example federation development problem. By selecting this problem as one that is

representative of the types of problems that the framework is meant to address, we are

able to speak of the usefulness of our framework in supporting reuse and automation in

developing federated simulations. Accepting the generality of this work involves taking a

leap of faith to accept the general validity of this framework based on its empirical

performance.

The framework that we have developed consists of several components that work

together to achieve the overall goal of attaining representational compatibility in a

federation.

 241

 At a high level of abstraction, a metamodel for capturing simulation models in

ontologies (the world ontology) is defined. This metamodel serves as a communal

vocabulary, in terms of which all simulation concepts are defined. Therefore, the

semantics of any given simulation concept, and hence the relationship between

any two concepts can be unambiguously inferred. By basing the definition of this

metamodel on the HLA OMT, we have leveraged the research conducted by

others to determine how best to capture different simulation model concepts.

 Furthermore, we have defined a relationship class to capture relationships

between two simulation concepts in an ontology. This class has been defined so as

to include knowledge of both matches and mappings between simulation entities

(recall, a match specifies which entities relate, a mapping specifies how they

relate), as both are required to perform run-time information exchange.

 Finally, an algorithm to generate a common information model and procedures to

translate information between federate and common representations is employed

in this framework. This algorithm uses graph theory and associated algorithms as

a means to automate the above-mentioned tasks in an efficient manner.

When compared to the traditional approach taken on in federation development, our

framework offers clear advantages. Conventional methods of integrating federate

simulations (such as the HLA FEDEP model) require federation developers to manually

define a common information model, and modify the representations of individual

 242

simulations so as to be consistent with this common information model. On the other

hand, the ontology-based approach facilitates the selection of an appropriate common

information model in an automated fashion. Clearly, this process is not completely

automated—knowledge needs to be provided by the federation developer in the creation

of SONTs and the specification of relationships between them, which entails a significant

effort. Still, partial automation in support of achieving interoperability reduces the time

and effort required to integrate a set of federate simulations.

The simplified reuse of federates and federations in the ontology-based framework helps

to further facilitate federation development. Once an ontology corresponding to a given

simulation model is created, the semantics contained within that ontology can be reused

to integrate its corresponding simulation model into multiple federations. Therefore, the

cost of developing a simulation ontology is amortized over its application in several

FONT development problems. The point at which the cost of developing a SONT is

recovered and the benefit of reuse is achieved depends on the reuse scenario. Recall that

when a SONT is created, only the entities shared in a federation are modeled in that

SONT. Based on the set of shared concepts in a given federation, an existing SONT

corresponding to a federate simulation may need to be extended to include concepts that

were previously not modeled. However, if an existing SONT already captures all shared

entities in a federation, that SONT can be applied as-is. In such a case, the benefit of the

ontology-based approach is reaped in reusing an existing SONT once.

 243

Looking back at the overall goal of this research, we have accomplished what we set out

to do. The framework that has been developed over the previous chapters supports

automation and reuse in federation development, specifically in the process of attaining

representational compatibility between interoperating simulations. Along the way, we

have built-up arguments to support the claim that this work is valid; both in its structure

and its performance. However, there are fundamental limitations that we have uncovered

in doing so, which need to be recapitulated before we stake a claim as to the general

validity of this research.

6.1.2 Limitations

There are fundamental limitations to the functionality of this framework that need to be

explicitly stated. The framework we have developed supports automation and re-use in

federation development; it does not completely automate this process, nor does it render

federate simulations (or existing federations) readily reusable in a plug-and-play manner.

There are several tasks involved in achieving interoperability in a simulation federation,

all of which are not addressed in this thesis. For example, an interface between each

simulator and an RTI needs to be developed, where services such as publishing and

subscribing to entities in the federation are defined. This aspect of interoperability is not

addressed in this research; we focus solely on developing a common information model

and a set of transformation stubs so that information between federates can be exchanged

in a consistent manner.

 244

The degree to which the overall process of achieving representational compatibility is

automated in this framework is dependent on the set of related entities in a federation.

First, the process of identifying matches between simulation entities is not automated; the

GRIT algorithm only generates a mapping (transformations) for a sub-set of matched

entities. As we have noted, the only transformations that can be generated automatically

are those between two conceptually equivalent entities. In other words, if two related

simulation entities refer to the same concept but have different representations, only then

can their transformation be generated automatically. All other transformation procedures

must be specified manually (e.g. e.g. radius= diameter/2 and diameter=

radius*2). In most cases, entities of two or more simulations that are coupled are

different representations of the same concept. As the number of related, disparate

concepts in a federation grows, so too does the effort required to attain representational

compatibility, given that each of these transformations needs to be specified manually.

Moreover, since transformations are specified in pairs, equivalent knowledge as to how

two entities relate needs to be explicitly specified twice, which somewhat negates the

extent to which knowledge is ‘reused’ in this framework.

Our implementation also imposes limitations on the extent to which automation is

achieved. For example, we discovered in Chapter 5 that for any relationship between a

primitive and custom data type, the associated transformations must be specified

manually, since primitive data types have been defined such that they do not have any

attributes. Similarly, transformations for related attributes with enumerated data types

must also be specified explicitly. Furthermore, it is assumed that when a match between

 245

two attributes is specified, a corresponding match between their data types is specified as

well. The existence of data type relationships is not automated, and no error checking

exists to make sure all required data type transformations have been specified.

Theoretically, the resultant FONT could be incomplete and federation developers would

have no knowledge of this until run-time, when a call to a non-existent data type

transformation is made.

There are limitations concerned with the reusability aspect of this framework as well. We

have made the claim that by defining transformation stubs to convert between federate

and common representations of shared simulation entities, the same federate, and hence

its corresponding SONT can be reused in multiple federations. In theory, a SONT

describes a federate simulation model, and once defined, it can be reused every time the

corresponding federate participates in a new federation. However, recall that in a SONT,

we only model those concepts of a federate simulation that are expected to be shared with

other federates. Realistically, it is not possible to know exactly which concepts in a

federate simulation maybe shared in any given federation a-priori. On the other hand, it is

wasteful to model every concept in a given simulation domain in its SONT. Therefore,

when a simulation participates in multiple federations, its SONT may not be readily

reusable; it may need to be modified or augmented. Still, an existing SONT provides a

basis for such modification, and federation developers do not need to start from scratch.

The statements above apply to the reuse of federations. Existing federations may be

extended by adding new federates and defining relationships between their shared entities

 246

and those of others (or simply the corresponding common representation). Depending on

the set of relationships involving this new federate, other federate SONTs may have to be

modified to include a larger set of concepts. This occurs when there is a new aspect to the

coupling and interplay between the existing and new federates that has not been modeled

in the existing federation. Furthermore, existing selections of the common representation

and associated transformations may need to be revised as well. Again, while this means

that the existing federation is not readily reusable, they serve as a ‘partially-complete’

starting point for creating new federations.

Another fundamental limitation of this framework deals with its interaction with an RTI.

In this framework, we support the achievement of representational compatibility by

capturing a common information model and a set of transformation stubs to help facilitate

consistent information transfer. The run-time exchange of information between federates

in a consistent manner is ultimately dependent upon the application of the knowledge

captured in a FONT by an RTI. That is, the RTI used to facilitate run-time information

exchange in a federation developed using this framework must access the FONT and

invoke transformation stubs in an appropriate manner. First, the RTI must mimic the

information structure (objects and events) defined in the FONT as abstract data types in

the selected OOP that the transformation stubs have been written in. The existing

transformations stubs must then be compiled as procedures that pass instances of these

abstract data types as input and output parameters. Finally, the RTI must be able to

interpret which transformation procedure to invoke when a given federate entity is

 247

published or subscribed. To do so, the RTI should be able to access and construe

relationships between SONT and Common entities captured in the FONT.

It is important to note that no existing federated or distributed simulation RTI has been

designed with capabilities to parse an ontology corresponding to a given federation. Most

RTI’s, such as that of the HLA, only transfer information published from a source

federate and reflect that information in all subscribing target federates. There is no notion

of converting between representations here; it is assumed that all federate simulations

have been modified so as to represent entities in a communal form. However, research

efforts are currently being undertaken in the development of a next-generation RTI,

which complements the research presented in this thesis. An Extensible Framework for

Interoperable Distributed Simulation (IDSim) is being designed so as to interface with a

FONT and thereby facilitate the transformation of information from one form to another

as it is exchanged during a federation’s execution (Fitzgibbons and Fujimoto 2004). The

interface between the ontology-based framework and IDSim is defined in terms of an

XML information model that is equivalent to a FONT.

Finally, the object-oriented approach to modeling concepts in an ontology confines the

limits to which this framework is applicable. The knowledge model based on which the

World Ontology, SONTs and FONTs are defined bears close resemblance to the object

oriented paradigm. Therefore, all simulation entities modeled in this framework are done

so in an object oriented fashion. That is, Objects, Events and Data types, collectively

classes, are all defined in terms of a set of member slots, namely simulation attributes.

 248

This means that every federate simulation model must captured in its corresponding

ontology in an object oriented fashion, irrespective of whether the underlying simulation

model employs such a representation. For legacy simulations written in languages such as

Fortran (Nyhoff and Sanford 1995), object-oriented wrappers must be build around them,

based on which their corresponding SONTs are modeled. Developing these object-

oriented wrappers adds to the time and effort required to achieve interoperability in a

federation, and hence works against our overall goal of reducing the cost of achieving

interoperability.

Having identified the highlights and fundamental limitations of this framework we may

now address the validity of this body of research and the hypotheses put forth in Chapter

1. In previous sections, we have performed validation of the individual parts of this

research from the standpoint of their structure and performance (in the context of a single

example), as illustrated in the Validation Square (Figure 1.4) (Pedersen, Emblemsvag,

Bailey et al. 2000). In the following section, we bring all previous arguments together

and present a case for accepting the general validity of this framework as a whole. The

limitations discussed above help to define bounds on the validity of our hypotheses.

6.1.3 Theoretical Performance Validity

In Chapter 1, an overall research question was posed as to how the process of achieving

representation compatibility in a federation could be automated (research question 1).

This question was broken down into two constituent sub-questions (research questions 2

and 3). Their corresponding hypotheses address individual portions that together

 249

comprise hypothesis 1 (they deal with the capture of knowledge and its subsequent

application to support automation, respectively). In this discussion about the validity of

this body of research, we begin by consolidating arguments backing the validity of

hypotheses 2 and 3. Having accepted the validity of these hypotheses, we then build upon

their supporting arguments so as to present a case for the validity of the overall

hypothesis proposed in connection with research question 1.

Question 2: How should simulation concepts be represented in an ontology to support

achieving interoperability?

Hypothesis 2: A metamodel for specifying simulation ontologies can be developed. The

set of concepts and relationships between them defined in this metamodel form a

vocabulary for describing simulation ontologies. If all simulation concepts are modeled

using the same vocabulary, the relationships between two coupled simulation concepts in

a federation can be inferred in an automated fashion.

In hypothesis 2, we proposed that a metamodel could be developed as a common

vocabulary for describing simulation models in ontologies. If all federate simulations

were described in terms of the same common vocabulary, the relationships between them

could be inferred automatically. To validate this claim, we have developed this

hypothesis into the World Ontology, and tested its expressiveness in the context of the

Air Traffic federated simulation. The World Ontology specification stemmed from the

HLA OMT, which is a well-developed template for specifying simulation and federation

object models (SOMs and FOMs) within the HLA framework. This template has been

developed taking multiple simulation coupling scenarios into consideration, is currently

 250

part of an IEEE specification (IEEE 2000), and is used to support federation development

within the DoD HLA environment. By leveraging the HLA OMT, we have given a

sound, thoroughly investigated and valid basis to the World Ontology. Further, we have

successfully tested the performance of this metamodel in capturing three federate

simulation models, namely the ATC, GTC and Ground Services federates. Since we have

determined that the shared entities of these simulations are representative of the different

types of entities that the World Ontology is meant to be able to model (such as objects,

events and custom data types), we project that the World Ontology is able to capture all

federate simulation models. To accept the usefulness of this metamodel outside the

context of the air traffic simulation, we have to take a ‘leap of faith’—while it is not

viable to test its usefulness on a large range of federation development scenarios, we are

fairly confident that the successful modeling of the air traffic federation will be reflected

in most other cases.

Of course, the usefulness and applicability of the World Ontology is limited. We make

the assumption that all simulation models employ an object oriented representation.

Furthermore, we stake the claim that relationships between federate simulations can be

inferred based on the fact that they are described in terms of the same vocabulary. To do

so, additional knowledge is required to be specified, such as the existence of matches

between objects, events and data types. The mapping between two or more entities can

only be correctly inferred if two matched entities are conceptually equivalent, all others

must be explicitly specified. Given that all additional knowledge required is specified

(and the fact that this framework allows for the specification of this additional

 251

knowledge), we accept the general validity of hypothesis 2. The key points in support of

this are:

 The World Ontology specification is leveraged from the HLA OMT, a well-

accepted template for defining simulation information models

 The World Ontology has successfully been used to capture shared concepts of

the ATC, GTC and Ground Services simulation models

 Relationships between simulation entities can be (and have been) successfully

inferred when they are specified in terms of World Ontology constructs.

The general validity of this hypothesis is bounded by the following characteristics:

 An object oriented representation of a federate simulation model exists

 Additional knowledge required to infer relationships (mappings) between

simulation entities is explicitly provided.

 252

Question 3: How can the transformations between two representations of a simulation

concept be derived in an automated fashion?

Hypothesis 3: Relationships between federate simulation entities are captured in terms of

a relationship with their common, federation-level representation. The relationships

between concepts defined in the simulation ontology metamodel can be composed

together to derive the federate-common entity relationships. An algorithm can be

developed to generate a connected graph of existing relationships in the federation.

Graph traversal algorithms can be developed to identify relationships between simulation

entities a chain of these existing relationships.

The specification of a common representation for all shared federate simulation entities

and the generation of federate—common transformations are proposed in hypothesis 3.

Here, we state that by using a graph traversal approach, we can select a common

representation from amongst the set of related federate entities, and subsequently map

federate entities to and from their common representations in an automated fashion. In

Chapter 4, we have presented GRIT, a graph-based algorithm to accomplish exactly these

tasks. The instantiation of a common representation and associated transformations in this

algorithm is based on the knowledge of the shortest path between two nodes in a directed

graph. We have employed Dijkstra’s graph algorithm, an efficient, well-accepted

algorithm to identify the shortest path between nodes in the graphs corresponding to a

FONT (Dijkstra 1959). The usefulness of this algorithm to automate the specification of a

FONT has been tested in the context of the air traffic federation. Here, we traversed

through different mapping scenarios to study the correctness and efficiency of this

algorithm. It was shown that following the steps in the GRIT algorithm, a common

representation for shared simulation entities is selected that leads to the simplest

 253

composition of the resultant federate—common relationships, wherein the loss of

information in these transformations is minimal. Having demonstrated the GRIT

algorithm’s use in automatically deriving a suitable common information model and

correctly generating the subsequent federate—common transformation stubs in the

context of a significantly complex example, we project that it will perform in a similar

fashion when used in the development of other federation ontologies.

Again, there are inherent limitations and assumptions associated with the performance of

this algorithm. In order for the correct common representation to be selected, knowledge

as to the lossiness of different transformations must be specified by the federation

developer. Without this knowledge, one cannot assess the differences in lossiness, and

therefore one cannot determine which representation is best chosen as common.

Moreover, we make the assumption that for every collection of matched entities, a match

between their value-types exists as well. Perhaps the biggest limitation of this algorithm

is that it only generates mappings for relationships between conceptually equal

simulation entities. All relationships between simulation entities involving anything more

than a representation conversion must be explicitly specified. Under the assumption that a

minority relationships in federated simulations are between disparate concepts, the GRIT

algorithm is clearly useful in reducing the time and effort required to attain

representational compatibility between a set of federate simulations. Hence, we accept

hypothesis 3 to be valid, based on the following key arguments:

 254

 The algorithm to automatically generate transformations between related

simulation entities is founded in the theory of graphs and Dijkstra’s widely-

accepted graph algorithm

 In the context of a significantly complicated federation development problem,

we have shown that the GRIT algorithm can automatically select a suitable

common information model and compose associated transformations using the

knowledge contained in a federation ontology.

The characteristics that bound the validity of hypothesis 3 are:

 The selection of a common information model requires a federation developer(s)

to specify knowledge as to the loss of information in transformations for every

(attribute-level) match specified

 Only a subset of the required transformations can be generated automatically. All

transformations corresponding to relationships between disparate concepts must

be explicitly defined.

 We have assumed that the best selection of a common representation is one that

leads to the fewest end to end lossy transformations, without taking into account

the extent of information loss (two slightly lossy transformations may be better

than one very lossy transformation).

 255

Question 1: How and to what extent can the process of achieving representational

compatibility between simulations in a federation be automated?

Hypothesis 1: Ontologies can be used to formally describe the semantics of concepts in a

federate simulation model. These semantics can then be applied to generate a required

common information model and associated transformation stubs in a partially automated

fashion.

Based on the validity of hypotheses 2 and 3, we can accept the overall hypothesis posed

in this thesis to be valid. In hypothesis 1, our vision for an ontology-based framework to

support achieving interoperability between federate simulations was presented. Through

the length of this thesis, we have developed this vision and tested its performance in the

context of a quintessential example. Specifically, we have shown that (i) ontologies can

be used to describe the semantics of a simulation domain (ii) the procedural relationships

between federate simulation entities can be generated and captured in an automated

fashion. The validity of these functional components has been discussed, characterized

and accepted in terms of the first three quadrants of the Validation Square. Essentially,

the validity of hypotheses 2 and 3 together implies that our overall vision is valid. The

framework we have developed can be used to support the development of simulation

federations, in general, in a more cost and time effective manner. Using a communal

vocabulary, shared concepts of federate simulation domains are modeled in ontologies in

an object-oriented fashion. With the help of a graph-theoretic algorithm, a common,

federation-level information model for shared entities and associated transformation

stubs can be generated automatically. As we have previously discussed, the usefulness of

this framework is dependent on the existence of an RTI that applies the knowledge

 256

contained in a federation ontology to facilitate consistent information transfer in a

consistent manner.

6.2 Future work

It is said that every answer leads to new questions—this is certainly true in the case of

this research. In answering the research questions and validating our hypotheses, we have

identified certain limitations to our research. Exploring ways to combat these limitations

entails posing and investigating additional research questions. In this section, we present

a brief overview of the paths along which we see this work progressing. It is important to

highlight these, as we would like to extend the confines to which the usefulness of this

body of research is limited.

6.2.1 Extending the limits of reusability and automation

The overall goal of this investigation has been to reduce the cost and time required to

achieve interoperability between simulations. While we have been able to automate part

of this process, there is still room for automation to a greater degree. The same is true

with regards to the extent to which we support reuse in federation development. One

avenue for further automation is in the specification of matches between entities of

federate simulations. In Chapter 2, we evaluated several frameworks and algorithms that

have been designed to find matching entities across disparate schemas. For example,

PROMPT (Noy and Musen 2000) is an algorithm developed to identify classes and slots

of two ontologies that potentially relate to each other. Similarly, GLUE (Alagic and

Bernstein 2001) uses machine learning techniques to identify strong relationships

 257

between disparate information schemas. These systems could be employed to identify

matches between the entities modeled in the different SONTs corresponding to federate

simulations that need to interact with each other. Automated entity matching would mean

that users of the ontology-based framework would no longer explicitly have to specify

relationships between SONT entities; they would simply approve or decline

automatically generated ‘suggested’ matches. The knowledge of existing, approved

matches could then be used to refine the set of subsequent suggested matches. Clearly,

this reduces both time and effort required to integrate federate simulations, and moves us

one step closer to plug-and play reuse of existing federates (and their SONTs) in multiple

federations.

Another avenue for future development of the ontology-based framework is in the

specification of relationships between disparate simulation concepts. Currently, the

transformations for all such relationships need to be specified manually. To do so, the

same knowledge (a relationship between two entities) must be specified in two

transformation procedures, which is wasteful. Perhaps the knowledge as to the conceptual

relationship between two simulation entities could be provided only once, as a non-

causal, declarative equation. From this relationship, the required causal procedures could

be generated automatically using declarative equation solvers such as Maple. Such an

approach to relationship specification would eradicate the need for federation developers

to specify transformations explicitly. Specifying an equation describing the relationship

between two or more SONT entities involves less effort and repetition, and hence would

contribute towards a greater extent of automation and reuse in this framework. Clearly,

 258

implementing the specification of declarative relationships implies that a richer set of

semantics be defined to describe relationships (compared to the current specification of

the relationship class in the World Ontology). Determining what this set of semantics

should be is an interesting research question in itself.

6.2.2 Going beyond the confines of Federated Simulation

Although the framework developed in this thesis is rooted in the domain of distributed

simulation, the ideas developed here could potentially be applied to address a much larger

challenge—that of system (product) information management. As the market place for

engineered products, processes and services becomes more competitive, the need to

capture, store and reuse information and knowledge related to the design and

development of these systems has increased. Any system development team capable of

efficiently managing and reusing their information and knowledge capital holds and edge

over competitors, and is able to develop better end-products and bring them to market

faster. Therefore, the management of information and knowledge has become an

important challenge in the field of Product Lifecycle Management (PLM). Traditionally,

information about various aspects of a system’s lifecycle is maintained in different

electronic repositories (Figure 6.1). However, there is significant overlap and coupling

between the different aspects of a system’s design, development, use and dissolution.

Hence, relationships exist between the different knowledge and information-bases

associated with myriad aspects of a system’s lifecycle. These information sources are all

managed by different owners and may employ distinct representations of system-related

concepts. Therefore, a significant issue in system information management is reconciling

 259

between different representations of information about equivalent or related concepts in

multiple repositories.

Product Description

Manufacturing
Info

Product
Behavior

Many others…

Relationship

Information
Object

Information about the
Product Life-cycle

Information shared
between disciplines

Product Description

Manufacturing
Info

Product
Behavior

Many others…

Relationship Relationship

Information
Object

Information about the
Product Life-cycle

Information shared
between disciplines

Figure 6.1: Shared Information between Various Aspects of a Product’s Lifecycle

In this body of research, we have essentially presented a framework in which different

information models can be related to each other. Clearly, the ideas we have developed are

applicable to help address the issue of relating between different product-related

information sources. By generating transformations to convey information across

different, overlapping repositories, the burden of managing system lifecycle related

information across disparate sources (schemas) can be significantly lightened. The

framework we have developed could be used as a starting point to realize a system that

serves this purpose. Applying the ontology-based framework to the significantly larger

scope of system information management requires significant modification and

extension. Therefore, answering the question ‘How can a framework for capturing and

 260

relating simulation model concepts using ontologies be extended to support the

management of product lifecycle related information’ could entail a meaningful

investigation and result in a useful research contribution. In this context, perhaps the

most important of issues to be investigated is the development of a vocabulary (World

Ontology) that is expressive enough that it may be used to describe the entire range of

concepts associated with a product’s lifecycle.

6.3 Closing Statements

There is immense potential in the use of semantic technologies to capture human

knowledge and apply it to automate tasks involved in the design and development of

complex systems. In this thesis, we have taken the first steps in exploiting this potential

to facilitate automation in the development of federated, system level simulations. In

doing so, we have discovered that this work has fundamental limitations, and that there

are several avenues along which it can still be extended. As the domain of knowledge-

based systems and semantically-rich information modeling moves past its inception, we

aspire that the steps we have taken may be furthered such that the usefulness of this

contribution may proliferate to a wider audience.

 261

REFERENCES

Aughenbaugh, J., Paredis, C. (2004). "The Role and Limitations of Modeling and
Simulation in Systems Design." 2004 ASME International Mechanical Engineering
Congress and R&D Expo: Computers & Information in Engineering, Anahiem, CA.

Base Object Model Study Group (2001). "BOM Methodology Strawman (BMS)
Specification.", Simulation Interoperability Standards Organization, Orlando, FL.

Berners-Lee, T., J. Hendler and O. Lassila (2001). "The Semantic Web." The Scientific
American Magazine (279)

Bernstein, P. (2003). "Applying Model Management to Classical Meta Data Problems."
in the Proceedings of Conference on Innovative Data Systems Research (CIDR-2003),
209-220.

Bondy, J. and U. Murthy (1981). Graph Theory with Applications, North-Holland.

Cellier, F. E. (1991). Continuous System Modeling. New York, NY, Springer-Verlag.

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P.D., Rice, J.P. (1998). "OKBC: A
Programmatic Foundation for Knowledge Base Interoperability." Proceedings of the
Fifteenth National Conference on Artificial Intelligence (AAAI-98), Madison, WI, AAAI
Press.

Chen, P. (1976). "The Entity Relationship Model - Towards a Unified View of Data."
ACM Transactions on Database Systems, 1: 9-36.

Dahmann, J., Fujimoto, R., Weatherly, R. (1997). "The Department of Defense High
Level Architecture." 1997 Winter Simulation Conference, 142-149.

Dahmann, J., Salisbury, M., Turrell, C., Barry, P., Blemberg, P. (1999). "HLA and
Beyond: Interoperability Challenges." Fall 1999 Simulation Interoperability Workshop,
Fall, 1999.

 262

Defense Modeling and Simulation Office (DMSO) (1999). "High Level Architecture:
Federation Development and Execution Process (FEDEP) Model."

Defense Modeling and Simulation Office (DMSO) (2004). "High Level Architecture
Website" (www.dsmo.mil/public/transition/HLA).

Dijkstra, E. W. (1959). "A Note on Two Problems in Connection with Graphs."
Numerische Mathematics, 1: 269-271.

Doan, A., Domingos, P. and Halvey, A. (2001). "Reconciling Schemas of Disparate Data
Sources: A Machine Learning Approach." Proceedings of the ACM SIGMOD
Conference, 509-520.

Even, S. (1979). Graph Algorithms. Rockville, MD, Computer Science Press, Inc.

Fitzgibbons, J. and R. Fujimoto (2004). "IDSim: An Extensible Framework for
Interoperable Distributed Simulation." In the proceedings of the International Conference
on Web Services, San Diego, CA, July, 2004.

Floyd, R. W. (1962). "Algorithm 97: Shortest Path." Communications of the ACM, 5:
345.

Forsberg, K. and H. Mooz (1992). "The Relationship of Systems Engineering to the
Project Cycle." Engineering Management Journal, 4(3): 36-38.

Fujimoto, R. (2000). Parallel and Distributed Simulation Systems. New York, NY, John
Wiley& Sons.

Genesereth, M. (1995). "Knowledge Interchange Format Specification.", Stanford
University. (http://logic.stanford.edu/kif/).

Gruber, T. (1993). "Toward Principles for the Design of Ontologies Used for Knowledge
Sharing." International Workshop on Formal Ontology, Padova, Italy, March, 1993.

 263

Horvath, I. and Van Der Vegte, W. (2003). "Nucleus-based Product Conceptualization -
Part 1: Principles and Formalization." International Conference on Engineering Design
(ICED 03), Stockholm, Sweden, August 19-21, 2003.

IEEE (2000). "Std 1516.1-2000, Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) - Federate Interface Specification."

IEEE (2000). "Std 1516.2-2000, Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) - Object Model Template (OMT) Specification."

IEEE (2000). "Std 1516.3-2000, Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) - Framework and Rules."

Kasyanov, V. and Evstigneev, V. (1994). Graph Theory for Programmers: Algorithms
for Processing Trees. Dordrecht, The Netherlands, Kluwer Academic Publishers.

Kuhl, F., Dahmann, J. and Weatherly, R. (1999). Creating Computer Simulation Systems:
An Introduction to the High Level Architecture. Upper Saddle River, NJ, Prentice Hall.

Kuperberg, G. (2000). "Dept. of Mathematics Glossary.", University of California.
(http://www.math.ucdavis.edu/profiles/glossary.html).

Lassila, O. and McGuinness, D. (2001). "The Role of Frame-Based Representation on the
Semantic Web.", Knowledge System Laboratory, Stanford University, Stanford, CA.

Li, W. and Clifton, C. (2000). "SEMINT: A Tool for Identifying Attribute
Correspondences in Heterogeneous Databases using Neural Networks." Data and
Knowledge Engineering, 33(1): 49-84.

Liang, V. and Paredis, C. (2004). "A Port Ontology for Conceptual Design of Systems."
Journal of Computing and Information Science in Engineering, 4(3): tba.

Lutz, B. (1999). "FEDEP V1.4: An Update to the HLA Process Model." Winter
Simulation Conference.

 264

Macannuco, D., B. Dufault and L. Ingraham (1998). "An Agile FOM Framework."
Simulation Interoperability Workshop, September, 1998.

Macannuco, D., Coffin, D., Dufault, B. and Civinskas, W. (1999). "Experiences with a
FOM Agile Federate." Simulation Interoperability Workshop, March 14-19, 1999.

Madhavan, J., Bernstein, P., Domingos, P. and Halevy, A. (2002). "Representing and
Reasoning about Mappings between Domain Models." American Association for
Artificial Intelligence (AAAI).

Madhavan, J., Bernstein, P. and Rahm, E. (2001). "Generic Schema Management with
Cupid." Proceedings of the Very Large Data Base Conference, Rome, Italy.

Maedche, A., Motik, B. and Stojanovic, L. (2003). "Managing Multiple and Distributed
Ontologies on the Semantic Web." International Journal on Very Large Data Bases, 12:
286-302.

Malone, B., Papay, M. (1999). "ModelCenter: An Integration Environment for
Simulation Based Design." 1999 Fall Simulation Interoperability Workshop.

Miller, G. and Filipelli, L. (1999). "An XML Representation of HLA Object Models."
Simulation Interoperability Workshop.

Milo, T. and Zohar, S. (1998). "Using Schema Matching to Simplify Heterogeneous Data
Translation" Proceedings of the International Conference on Very Large Data Bases:
122-133.

Minsky, M. (1975). A Framework for Representing Knowledge, McGraw-Hill.

Mitra, P., Wiederhold, G. and Jannink, J. (1999). "Semi-Automatic Integration of
Knowledge Sources." Proceedings of FUSION 99, Sunnyvale, CA.

Morse, K. (1996). "Interest Management in Large Scale Distributed Simulations.",
University of California, Irvine, CA.

 265

Naiburg, E. and R. Maksimchuk (2001). UML for Database Design. Upper Saddle River,
NJ, Addison-Wesley.

Novak, G. S. (1995). "Conversion of Units of Measurement." IEEE Transactions on
Software Engineering, 21(8): 651-661.

Noy, N., Fergerson, R. and Musen, M. (2000). "The Knowledge Model of Protégé 2000:
Combining Interoperability and Flexibility.", Stanford Medical Informatics Technical
Report, Stanford University, Stanford, CA.

Noy, N. and M. Musen (2000). "PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment." Seventeenth National Conference on Artificial Intelligence
(AAAI-2000), Austin, TX.

Noy, N. and Musen, M. (1999). "An Algorithm for Merging and Aligning Ontologies:
Automation and Tool Support." Sixteenth National Conference on Artificial Intelligence
(AAAI99), Orlando, FL.

Nyhoff, L. and L. Sanford (1995). FORTRAN 77 for Engineers and Scientists, Pearson
Education.

Pahl, G. and W. Beitz (1996). Engineering Design - A Systematic Approach. London,
UK, Springer Verlag London Ltd.

Peak, R. S. (2003). "Characterizing Fine-Grained Associativity Gaps: A Preliminary
Study of CAD-CAE Model Interoperability."ASME Design Engineering Technical
Conference and Computers and Information in Engineering Conference, Chicago, IL,
September, 2003, ASME.

Pedersen, K., Emblemsvag, J., Bailey, R., Allen, J. and Mistree, F. (2000). "Validating
Design Methods and Research: The Validation Square." Proceedings of the 2000 ASME
Design Engineering Technical Conferences, Baltimore, MD, September 10-14, 2000.

Rahm, E. and Bernstein, P. (2001). "On Matching Schemas Automatically." International
Journal on Very Large Data Bases, 10(4).

 266

Ryan, P. J. (1992). "An Approach to Asymptotic Complexity." Mathematics and
Computer Education, 26: 135-46.

Ryde, M. and Taylor, S. (2003). "Issues Using COTS Simulation Software Packages for
the Interoperation of Models." Proceedings of the 2003 Winter Simulation Conference.

Scrubber, R., Lutz, R. and Dahmann, J. (1998). "Automation of the Federation
Development and Execution Process." 1998 Fall Simulation Interoperability Workshop,
Fall, 1998.

Seepersad, C. (2001). The Utility-Based Compromise Decision Support Problem with
Applications in Product Platform Design. Thesis. The G.W. Woodruff School of
Mechanical Engineering, Georgia Institute of Technology. Atlanta, GA.

Szykman, S., R. D. Sriram and W. C. Regli (2001). "The Role of Knowledge in Next-
generation Product Development Systems." ASME Journal of Computing and
Information Science in Engineering, 1.

TopQuadrant (2003). "Semantic Integration: Strategies and Tools.", TopQuadrant Inc.,
Beaver Falls, PA.

Turrell, R., Bouwens, C. and McCormack, J. (1999). "HLA Federation Development and
Execution: Automated End-to-End Support of the FEDEP with the HLA Tool Suite."
1999 Spring Simulation Interoperability Workshop, Spring, 1999.

Walmsley, P. (2001). Definitive XML Schema. Upper Saddle River, NJ, Prentice Hall.

World Wide Web Consortium (W3C) (2003). "XQuery 1.0: An XML Query Language
Working Draft."(http://www.w3.org/TR/xquery/).

World Wide Web Consortium (W3C) (2004). "RDF Primer" (http://www.w3.org/TR/rdf-
primer/).

Yellen, J. and G. Gross (1998). Graph Theory and its Applications, CRC Press.
Zeigler, B. (1990). Object Oriented Simulation with Hierarchical, Modular Models:
Intelligent Agents and Endomorphic Systems. Boston, MA, Academic Press.

	Table of Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

