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SUMMARY

My dissertation work examines resource allocation algorithms in stochastic

systems. I use applied probability methodology to investigate large-scaled stochastic

systems. Specifically, my research focuses on proposing and analyzing stochastic

algorithms in large systems. A brief outline of the thesis is below.

The first topic is randomized scheduling in a many-buffer regime. The goal of this

research is to analyze the performance of the randomized longest-queue-first schedul-

ing algorithm in parallel-queueing systems. Our model consists of n buffers and a

server. Tasks arrive to each buffer independently with rate λ and have independent

and identically distributed (i.i.d.) exponential service requirements. To complete

the description of the model, we need to specify a scheduling algorithm for deter-

mining how and when the server allocates service to tasks. We are interested in the

asymptotic regime n→∞ and networks with a large number of buffers are related to

mean-field models in physics. This asymptotic regime could be called the many-buffer

regime. In this research task, we aim to investigate the influence of the scheduling

algorithms on quality of service in the many-buffer regime.

Second, we propose a low-complexity and high-performance scheduling scheme in

constrained queueing systems. Scheduling of resources among various entities con-

tending for their access is one of the fundamental problems in operations research

and our goal is to design a scheduling algorithm with high performance and low

complexity for large-scale networks. In the network we are interested in, packets ar-

rive at buffers and packets in buffers are served according to interference restrictions.

Since Tassiulas and Ephremides proposed the maximum weight algorithm of through-

put optimality, extensive research efforts have been expended for mitigating its high

viii



complexity by studying various types of scheduling algorithms. In this research, we

develop a generic framework to design scheduling algorithms of high throughput and

low complexity. Our algorithm updates current schedules under the interactions with

a given oracle system which solves a combinatorial optimization problem in a finite

number of steps. Our algorithm using any such oracle is throughput optimal for

general combinatorial resource allocation problems including wireless networks and

input queued switch networks.
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CHAPTER I

INTRODUCTION

Imagine managing a system with shared (restricted) resources, such as a computer

system, a wireless network, or a call center. With the goal to achieve some quality of

service, you need to answer the following questions:

1. How do you allocate shared resources?

2. What levels of resources must be selected?

One of factors that make these questions challenging is randomness that naturally

arises in these systems: Arrivals of demand (tasks, packets, or calls) and the service

time of each demands would be typical examples. In such stochastic systems, we need

to allocate resources and determine resource levels without full future information.

Modern stochastic systems continue to grow in size, and one of the key elements

for efficient resource allocation is a scheduling algorithm. For example, scheduling is

required for sharing bandwidth among users on the Internet; for sharing access to fast

memory between central processing units (CPUs) in a multi-core computer processor;

for sharing the manufacturing facility between different types of jobs; or for sharing

human resources in workforce management.

From a design point of view, analyzing performance of scheduling algorithms is

often challenging. The search for desirable algorithmic features often presents trade-

offs between quality of service and computational effort for required information or

communication. In this thesis, we propose several practical scheduling algorithms

and analyze the performance of them with the objective to select the values of design

parameters.

The systems we shall be focusing on in this thesis possess the following features:
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Stochastic systems. We will be investigating queueing systems in which a resource

allocation decision is made repeatedly over time. Since the system is stochastic, we

measure the performance (quality of service) statistically, such as expected delay, the

probability distribution of queue length, and the probability for the system to be

unstable.

Large-scale systems. Most applications give rise to systems that continue to grow

in size. For instance, a traditional web server farm has only hundreds of servers,

while cloud data centers have many more processors. As a result, scalability and

computability are becoming ever more important characteristics of decision rules,

and simple scheduling algorithms with good performances are of particular interest.

However, scheduling algorithms in small systems are not necessarily applicable to

large-scale systems because of a potentially large computational burden due to the

size of the algorithm’s required input or its running time. As the size of the system

grows large, obtaining real-time system-wide state information can become increas-

ingly expensive and difficult or even entirely impossible.

Strong dependencies. As a consequence of statistical dependencies among the

buffer contents, most dynamical service systems are intractable and not amenable

to exact analytical solutions. On the other hand, we will be focusing on the regime

where the size of the system grows to infinity. Asymptotic analysis is sometimes

possible and can provide significant insights despite the dependencies. Furthermore,

they can turn out to be good approximations even for systems of moderate size.

1.1 A Simple Example: Parallel-Buffered System

This section outlines the main themes of the research presented in this thesis and

previews some of the main contributions. Before we do so, it is useful to examine a

simple example to help us gain some intuition about resource allocation problems in

2



large-scale systems.

Figure 1.1 depicts a simple example, a parallel buffered system with one centralized

server. In the model, each buffer is fed with an independent stream of tasks according

to Poisson processes with rate λi for the i-th buffer; that is, the interarrival times

between two consecutive tasks are independent and identically distributed (i.i.d.),

according to an exponential distribution with mean 1/λi. All buffers are connected

to a single server, which generates service tokens according to a Poisson process with

rate µ. Later, for the simplicity of our notation, we will assume that the number of

buffers is equal to n and the rate of service token generations is n. When a service

token is generated, the server chooses a queue according to a scheduling policy. The

service token is either “consumed” to instantly serve a job currently waiting in some

queue, in which case the job departs from that queue, or “wasted” when the chosen

buffer is empty, in which no further change occurs to the system. Since the service

token process determines service speed variations, all jobs are essentially of the same

type. The performance of the system depends on the way it selects a buffer, i.e., its

scheduling policy. If the server chooses a buffer uniformly at random, the system is

equivalent to independent M/M/1 queues.

n

�1 �2 �3 �n

Figure 1.1: Parallel buffered system with one server.
When the server is idle, it chooses a buffer according to a scheduling policy.
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The queueing dynamics in the service token model are different from the usual

service time model, in which the server immediately serves a task arriving at an empty

system. However, the service time model can simulate the queue length dynamics in

a service token model by introducing dummy tasks, which the server fetches and

initiates service when the token is wasted according to the service token model. Since

a task leaves the system at the completion of service when token is consumed, the

queue length process from the above rule has the same distribution one with service

token. In this way, the system with service token can be simulated by the service

time model. On the other hand, we note that the evolution of the queues is identical

under both models when all queues are non-empty. Thus, we expect that the behavior

of the two models is similar when the system is heavily loaded. One benefit of the

service token model is that it often allows for more concise descriptions (analysis) of

the model to understand the performance of the scheduling algorithm from our work.

Intuitively, the longest-queue-first (LQF) scheduling, in which the server chooses

the buffer that contains largest number of tasks, is desirable. In what sense is the

longest-queue-first policy beneficial? First of all, LQF scheduling algorithm is work

conserving, which means that it does not lose any service token as much as possible

because the server selects a nonempty buffer unless all buffers are empty. Quantita-

tively, the algorithm utilizes the maximum capacity of the system. In other words,

the LQF policy makes the system stable (queue lengths do not blow up with proba-

bility 1) if the total arrival rates is less than the service rate (i.e., λ1 + λ2 + · · · < µ);

That is, the LQF policy maximizes throughput. In addition to stability, which is an

important and necessary first-order metric, LQF policy is optimal with respect to

more stringent Quality of Service requirements: minimizing maximum queue length.

We review various versions of the LQF scheduling algorithm in systems with different

settings in the next section.

On the other hand, under the LQF scheduling policy, at each service token, the
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scheduler requires queue length information, which leads to a significant amount

of control signaling and may be impossible to build or operate in practice. Such

challenges are only exacerbated in large-scale systems. In this thesis, we shall focus

on reducing the computational effort in scheduling in two ways:

Partial information. Rather than complete information, we utilize only incom-

plete information through random sampling. This random sampling is often a good

way to emulate an optimal algorithm which requires the complete information. We

use a randomized version of LQF policy, under which the server selects a number of

buffers uniformly at random (with replacement) and processes a task from the longest

queue among the selected buffers. As we will see in the sequel, the Randomized-LQF

algorithm shows asymptotically the same performance as the LQF policy if the num-

ber of samples grows as the total number of buffers increases. If the number of

samples is 1, the system can be considered n independent M/M/1 queues. However,

in other cases explicit analysis is impossible because of strong dependencies in the

system (i.e., if the server selects a buffer, tasks in other buffers cannot be served.).

Instead, asymptotic analysis in the limit of a large number of buffers is often possi-

ble and can provide good approximations to measure the performance. Furthermore,

they often turn out to be quite accurate even for moderately sized systems. In this

thesis, we employ large-buffer, mean-field regime to the simplest system in which all

arrival rates are the same and derive limit theorems which enables us to measure the

system performance approximately.

Partial steps. One of the reasons why employing algorithms from small-scale sys-

tems to large-scale systems is often impossible is that the total computational time

for each decision grows as the size of the system grows. For instance, LQF schedul-

ing policy requires at least n comparisons to find the longest queue, which increases

linearly with respect to the number of buffers. A way to resolve this issue is to use
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only partial steps to make a decision instead of the entire process, which sometimes

guarantees the quality of service as well. In Chapter 3, we introduce a framework

for designing scheduling algorithms that utilize only partial steps to find the longest

queue but preserve stability benefit of LQF scheduling policy.

This framework is applicable to more general queueing systems, called constrained

queueing systems which consist of many buffers that temporarily store tasks, but only

certain subsets of the buffers can serve tasks at the same time. Typical examples of

such systems include wireless networks, which can be represented in an undirected

graph: Each buffer corresponds to a node and an edge means interference between

two buffers. Thus, buffers that share an edge cannot transmit a packet at the same

time. The parallel buffer system in Figure 1.1 is a simple wireless network that

corresponds to a complete graph with n nodes. For constrained queueing systems, a

well-known scheduling algorithm, the Maximum Weight Scheduling (MWS) algorithm

maximizes the system capacity and is the same as the LQF algorithm for the parallel

buffered system. Generally, the MWS algorithm also needs a lot of computational

time in large-scale systems to generate a “good” schedule. Scheduling algorithms

in our framework utilize partial steps to find proper schedules, but the stability is

guaranteed if the parameters in the algorithm satisfy sufficient conditions, which can

be easily checked.

1.2 Previous Research

In this section, we review some of the existing literature and prior research that is

related to our work. Extended discussions of related work concerning specific topics

and techniques is presented within subsequent chapters.

1.2.1 Parallel Buffered Systems

Scheduling is an essential component of any queueing system where the server re-

sources need to be shared between many queues. A classical stochastic scheduling
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problem involves a single resource whose service capacity is to be optimally shared

by n competing users. Each user submits tasks which may have to wait for service in

the user’s queue, normally on a First-Come-First-Served basis. In a queueing theory

framework, this problem is modeled as a system of n parallel queues, each with its

own arrival process and connected to a single server as in Figure 1.1 in the previous

section.

The usual objective in the scheduling problems is to minimize the overall average

holding cost of tasks in the system with ci denoting the cost per unit waiting time in

the i-th queue. When the holding cost is a linear combination of the number of tasks

in the competing queues, the well-known cµ-rule is introduced in [54], under certain

conditions, to give the optimal allocation sequences to minimize the overall average

holding cost. Following the cµ-rule, the server always selects a task from the queue

with largest ciµi value, where µi is the service rate of tasks in i-th queue unless it is

empty; in that case, the server selects queue with the second largest ciµi, and so on.

According to the cµ-rule, any work-conserving rule is optimal for our simple model

in the previous section because all tasks are identical (ci and µi are the same for all

queues) and the longest-queue-first (LQF) scheduling algorithm is the same as the

cµ-rule.

1.2.2 Longest-Queue-First Scheduling Algorithm

The Longest-queue-first (LQF) scheduling algorithm has been studied in various

queueing systems. For a two-queue system with identical arrival rates operating

under LQF policy has been analyzed in [63], where the authors derived an explicit

solution of the distribution of the difference between queue lengths from the balance

equations and concluded that the LQF scheduling algorithm is better than the First-

Come-First-Serviced algorithm. The same model has also been analyzed in [21] using

generating functions. The non-preemptive two-queues model with unequal Poisson
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arrival rates and general service time distribution was studied in [14]. For the model

with more than two queues, Zipkin [64] derived an approximation of the standard

deviation of the queue lengths. Menich and Serfozo [45] showed that the LQF pol-

icy combined with the Join-Shortest-Queue routing is optimal in the sense that it

minimizes the queue lengths stochastically. The numerical and simulation studies in

[32] and [53], compare the LQF policy with other reasonable policies and found that

it always outperforms these policies, even for asymmetric systems. In addition, the

LQF scheduling algorithm guarantees stability of the system over the entire capacity

region of the system [48, 57] and outperforms in terms of the buffer overflow proba-

bility [28]. In parallel queues with batch service, the LQF scheduling policy is also

optimal [62].

1.2.3 Randomized Algorithms

A line of work on the design of load-balancing algorithms in large buffered systems

bears close algorithmic motivation to our scheduling algorithms. The general problem

is to route a stream of incoming tasks to a set of queues for processing. Most existing

work on the mean-field, large-buffer asymptotic regime for queueing systems concen-

trates on the so-called supermarket model, which has received much attention over

the past decades following the work of Vvedenskaya et al. [61]. For more examples, see

[46] and follow-up work. The focus in this body of work is the load-balancing problem:

how incoming tasks should be routed to buffers. For the randomized join-the-shortest-

queue routing policy, where tasks are routed to the buffer with the shortest queue

length among d uniformly selected buffers, this line of work has exposed a dramatic

improvement in performance for d = 2 versus d = 1. This phenomenon is known as

the power of two choices. The general idea has since been extended to various other

settings [1, 26, 39, 40, 43]. In contrast, we focus on a scheduling problem and employ

the random sampling idea to the longest-queue-first policy. We let the number of
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samples d depend on the number of buffers n, which is much less than n but grows to

infinity as n increases, and we compare the performance of the randomized algorithm

to that of the optimal algorithm: LQF.

1.2.4 Constrained Queueing Systems

A general version of the parallel queueing system is the constrained queueing sys-

tem, in which only certain subsets of the buffers can serve tasks at the same time.

In a general constrained queueing system, to find delay (queue-size) optimal algo-

rithm is non-trivial. The primary reason is that the algorithm has to be online

(i.e., use only network-state information like queue-size or age of packet). However,

performance metrics like average queue-size are determined by the behavior of the

system over the entire time horizon it is operating. Another natural performance

criterion to evaluate a scheduling algorithm is throughput optimality. A scheduling

algorithm is throughput-optimal if it can stabilize the system for all sets of arrival

rates that are stabilizable under some algorithm (to be defined more precisely later).

Loosely speaking, a throughput-optimal algorithm is able to sustain the maximum

possible throughput in the network. For constrained queueing systems, a well-known

throughput-optimal algorithm is the maximum-weight scheduling (MWS) algorithm,

which was first introduced in [58]. The MWS algorithm in our simple model cor-

responds to the LQF algorithm, which is thus throughput optimal. However, the

complexity to compute a “good” schedule at each service epoch increases exponen-

tially with the number of queues, and so, it is difficult to implement.

Another alternative is a greedy approximation of the MWS algorithm. At every

service epoch, the queue with longest length is first added to the schedule, and all

queues interfering with it are removed, and this process is recursively repeated until

a maximal schedule is obtained. This greedy scheduling algorithm has very good

performance under a topological constraint called local pooling [18]. Several classes
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of graphs such as trees, trees of cliques, perfect graphs, and chordal graphs, satisfy

local pooling [12, 29, 37].

1.3 Notation

We now introduce some of the terminology that will be used throughout the thesis.

We denote by N, Z+, and R+, the sets of natural numbers, non-negative integers,

and non-negative reals, respectively. We represent general sets or events by calli-

graphic fonts: A, B, C, · · · . Also, the cardinality of a (finite) set A is denoted by

|A|.

We use upper-case letters for random variables, and lower- case letters for deter-

ministic values. For a random variable X, the probability that X is greater than

constant a, the expectation of X, and the variance of X are denoted by P[X > a],

E[X], and Var[X], respectively.

We reserve bold letters for vectors: x,y, z, · · · . Therefore, random vectors are

denoted by bold upper-case letters: X, Y , Z · · · . For any vector x =
(
xi : i ∈ I

)
∈

RI , we define

xmax := max
{
xi : i ∈ I

}

with an exception for random vector (arrival vector)A =
(
Ai : i ∈ I

)
in Section 3.5.1;

For A, we define Amax := max
{

1, Ai : i ∈ i ∈ I
}

.

Given a function f : R+ → R+ and a vector x ∈ RI+, f(x) is a vector with entries

f(xi):

f(x) :=
(
f(xi) : i ∈ I

)
∈ RI+.
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CHAPTER II

RANDOMIZED LONGEST-QUEUE-FIRST FOR

LARGE-SCALE BUFFERED SYSTEMS

In this chapter, we study the parallel-queueing model described in Section 1.1. We

develop diffusion approximations for the randomized longest-queue-first scheduling

algorithm by establishing new mean-field limit theorems as the number of buffers n

goes to infinity. We achieve this by allowing the number of sampled buffers d = d(n)

to depend on the number of buffers n, which yields an asymptotic ‘decoupling’ of the

queue length processes. We show through simulation experiments that the resulting

approximation is accurate even for moderate values of n and d(n).

Another noteworthy feature of our scaling idea is that the randomized longest-

queue-first algorithm emulates the longest-queue-first algorithm, yet is computation-

ally more attractive. The analysis of the system performance as a function of d(n) is

facilitated by the multi-scale nature in our limit theorems: the various processes we

study have different space scalings. This allows us to show the trade-off between per-

formance and complexity of the randomized longest-queue-first scheduling algorithm.

This chapter is based on [17].

2.1 Introduction

Resource pooling is becoming increasingly common in modern applications of stochas-

tic systems, such as in computer systems, wireless networks, workforce management,

call centers, and health care delivery. At the same time, these applications give rise

to systems which continue to grow in size. For instance, a traditional web server

farm only has a few servers, while cloud data centers have thousands of processors.
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These two trends pose significant practical restrictions on admission, routing, and

scheduling decision rules or algorithms. Scalability and computability are becoming

ever more important characteristics of decision rules, and as a result, simple decision

rules with good performance are of particular interest. An example is the so-called

least connection rule implemented in many load balancers in computer clouds, which

assigns a task to the server with the least number of active connections; cf. the

join-the-shortest-queue routing policy. From a design point of view, the search for

desirable algorithmic features often presents trade-offs between system performance,

information/communication, and required computational effort.

Over the past decades, mean field models have become mainstream aids in the

design and performance assessment of large-scale stochastic systems, see for instance

[5, 7, 23, 36, 60]. These models allow for summary system dynamics to be approxi-

mated using a mean-field scaling, which leads to deterministic ‘fluid’ approximations.

Although these approximations are designed for large systems, they typically do not

work well unless the scaling parameter n is excessively large.

In the view of this, to find more refined approximations than fluid approximations

is of interest. In this chapter, we derive diffusion approximations in a specific instance

of a large-scale stochastic system: a queueing system with many buffers with a ran-

domized longest-queue-first scheduling algorithm. Under this scheduling algorithm,

the server works on a task from the buffer and with the longest queue length among

several sampled buffers; it approximates the longest-queue-first scheduling policy in

which the server services a task from the longest buffer, but it is computationally

more attractive if the number of buffers is large.

2.1.1 Our Model

In our model, each buffer is fed with an independent stream of tasks, which arrive ac-

cording to a Poisson process. All n buffers are connected to a single centralized server.
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Under the randomized longest-queue-first policy, this server selects d(n) buffers uni-

formly at random (with replacement) and processes a task from the longest queue

among the selected buffers; it idles for a random amount of time if all buffers in

the sample are empty. Tasks have random processing time requirements. The total

processing capacity scales linearly with n and the processing time distribution is in-

dependent of n. We work in an underloaded regime, with enough processing capacity

to eventually serve all arriving tasks. Note that this scheduling algorithm is agnostic

in the sense that it does not use arrival rates. By establishing limit theorems, we

develop approximations for the queue length processes in the system, and show that

the approximations are accurate even for moderate n and d(n). Also, we study the

trade-off between performance and complexity of the algorithm.

2.1.2 Related Works

Most existing work on the mean-field large-buffer asymptotic regime for queueing

systems concentrates on the so-called supermarket model, which has received much

attention over the past decades following the work of Vvedenskaya et al. [61], in

which it is shown that by routing tasks to the shorter queue among a small number

(d > 2) of randomly chosen queues, the probability that a typical queue has at least

k tasks decays as λ
dk−1
d−1 (super-geometrically), as k → ∞, where λ is the common

arrival rate. A recently proposed different approach for the load balancing problem

is inspired by the cavity method [8, 9, 10]. This approach is a significant advance in

the state-of-the-art since it does not require exponentially distributed service times.

However, applying this methodology to our setting presents significant challenges due

to the scaling employed here. We do not consider this method here, it remains an

open problem whether the cavity method can be applied to our setting.

The papers by Alanyali and Dashouk [2] and Tsitsiklis and Xu [59] are closely

related to this chapter. Both consider scheduling in the presence of a large number of
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buffers. The paper [2] studies the randomized longest-queue-first policy with d(n) = d,

and the main finding is that the empirical distribution of the queue lengths in the

buffer is asymptotically geometric with parameter depending on d. It establishes an

upper bound on the asymptotic order, but here we establish tightness and identify

the limit. A certain time scaling that is not present in [2] is essential for the validity

of our limit theorems. The paper [59] analyzes a hybrid system with centralized and

distributed processing capacity in a setting similar to ours. Their work exposes a

dramatic improvement in performance in the presence of centralization compared to

a fully distributed system.

2.1.3 Our Contributions

We establish a diffusion limit theory for a queueing system in the large-buffer mean-

field regime. Diffusion approximations are well-known to arise in the context of mean-

field models (e.g., [35]) but off-the-shelf results typically cannot directly be applied

due to intricate dependencies or technical intricacies. Thus, by and large, second-

order diffusion approximations have been uncharted territory for many large-scale

queueing systems.

Our analysis is facilitated by the idea to scale the number of sampled buffers d(n)

with the number of buffers n, which asymptotically ‘decouples’ the buffers and con-

sequently removes certain dependencies among the buffer contents. The decoupling

manifests itself through a limit theorem on multiple scales, where the various queue-

length processes we study have different space scalings. We show empirically that

this result leads to accurate approximations even when the number of buffers n is

small, i.e., outside of the asymptotic regime that motivated the approximation.

For our system, since the scheduling algorithm depends on n, several standard

arguments for large-scale systems break down due to the multi-scale nature of the
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various stochastic processes involved; thus, our work requires several technical nov-

elties. Among these is an induction-based argument for establishing the existence of

a fluid model. We also rely on an appropriate time scaling, which is specific to our

case and has not been employed in other work.

Our fluid limit theory makes explicit the trade-off between performance and com-

plexity for our algorithm. Intuitively, one expects better system performance for

larger d(n), since the likelihood of idling decreases; however, the computational effort

also increases since one must sample (and compare) the queue length of more buffers.

Our main insight into the interplay between performance (i.e., low queue lengths) and

computational complexity of the scheduling algorithm within our model can be sum-

marized as follows. We study the fraction of queues with at least k tasks, and show

that it is of order 1/d(n)k under the randomized longest-queue-first scheduling policy.

This strengthens and generalizes the upper bound from [2]. Thus, the average queue

length is of order 1/d(n) as n approaches infinity. This should be contrasted with

d(n), which is the order of the computational complexity of the scheduling algorithm.

The randomized longest-queue-first algorithm approximates the longest-queue-

first algorithm, which is a fully centralized policy, so it is appropriate to make a

comparison with the partially centralized scheduling algorithm from [59], where all

n buffers are used with probability p > 0 (and one buffer is chosen uniformly at

random otherwise). Our algorithm has better performance although it compares only

d(n) � n buffers per job as opposed to pn + 1 − p, which is the average number of

buffers used in the partially centralized algorithm.

2.1.4 Organization of the Chapter

Section 2.2 introduces the precise model to be studied and the notation to e use

throughout. Our main results come in two pieces: limit theorems (Section 2.3) and

approximations with validation (Section 2.4). Sections 2.5 is devoted to establishing

15



the technical results, and the reader is referred to Section 2.5.1 for an overview of the

proofs. Finally, Appendix at the end of this section has several standard results that

we have included for quick reference.

2.2 Model: Symmetric Parallel Buffer Systems

The systems we are interested in consist of many parallel buffers and a single server.

In our model, each buffer is fed with an independent stream of tasks, which ar-

rive according to a Poisson process. All n buffers are connected to a single central-

ized server. Under the randomized longest-queue-first policy, this server selects d(n)

buffers uniformly at random (with replacement) and processes a task from the longest

queue among the selected buffers; it idles for a random amount of time if all buffers in

the sample are empty. Tasks have random processing time requirements. The total

processing capacity scales linearly with n and the processing time distribution is in-

dependent of n. We work in an underloaded regime, with enough processing capacity

to eventually serve all arriving tasks. Note that this scheduling algorithm is agnostic

in the sense that it does not use arrival rates. By establishing limit theorems, we

develop approximations for the queue length processes in the system, and show that

the approximations are accurate even for moderate n and d(n). Also, we study the

trade-off between performance and complexity of the algorithm.

Consider a system with n buffers, which temporarily store tasks to be served by the

(central) server. The number of tasks in a buffer is called its queue length. Buffers

temporarily hold tasks in anticipation of processing, and tasks arrive according to

independent Poisson processes with rate λ < 1. The processing times of the tasks

are i.i.d. with an exponential distribution with unit mean. All processing times are

independent of the arrival processes. The server serves tasks at rate n.

The server schedules tasks as follows. It selects d(n) buffers uniformly at random

(with replacement) and processes a task in the buffer with the longest queue length
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among the selected buffers. Ties are broken by selecting a buffer uniformly at random

among those with the longest queue length. If all selected buffers are empty, then the

service opportunity is wasted and the server waits for an exponentially distributed

amount of time with parameter n before resampling. Once a task has been processed,

it immediately leaves the system. We do not consider scheduling within buffers, since

we only study queue lengths. Throughout, we are interested in the case when d(n)

satisfies

(1) d(n) = o(n), i.e., limn→∞
d(n)
n

= 0.

(2) limn→∞ d(n) =∞.

In this model description, it is not essential that there is exactly one server. In-

deed, the same dynamics arise if an arbitrary number M of servers process tasks

at rate n/M , as long as each server uses the randomized longest-queue-first policy.

This model arises in the content of cellular data communications [2]. An abstract

representation of the model is displayed in Figure 2.1.

Let us fix the number n of buffers. Since all events (arrivals of takes and service

generation/loss) are generated according to independent Poisson processes, the queue

length vector at time t,
(
Q1(t), Q2(t), . . . , Qn(t)

)
is Markov. Moreover, the systems

is fully symmetric, and in the sense that all queues have identical and independent

statistics for the arrivals, and the assignment of service deos not depend on the specific

identity of queues besides their queue lengths. Hence, we can use a Markov process

{Fn,k(t)}∞k=0 to describe the evolution of a system with n buffers, where

Fn,k(t) :=
1

n

n∑

i=1

IQi(t)≥k,

and IA is an indicator function of A. Each Fn,k(t) represents the fraction of buffers

with queue length greater than or equal to k at time t in the system with n buffers.

Note that Fn,0(t) = 0 for all t and n according to this definition. Such mean-field
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Figure 2.1: Our models with n buffers.
Upper: One central server with service rate n. Lower: M servers with service rates
n/M .
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quantities have been used in analyzing various scheduling and load balancing policies,

e.g., [2, 46, 59]. However, under the randomized longest-queue-first policy, we can

expect from [2] that, whenever limn→∞ d(n) =∞,

lim
t→∞

lim
n→∞

Fn,k(t) = 0

for all k ≥ 1, i.e., in this sense the performance is asymptotically the same as that of

the longest-queue-first policy, and these random variables are asymptotically degen-

erate.

2.3 Limit Theorems

In this section, we present limit theorems which are stated in terms of Fn,k( · ) under

appropriate scaling. Let K ∈ N be a fixed finite integer satisfying limn→∞ n/d(n)K =

∞. Let Un,k( · ) be the following modification of Fn,k( · ) :

Un,k(t) := d(n)k Fn,k

(
t

d(n)

)
,

for k = 0, 1, . . . , K. Our first limit theorem is that
(
Un,1(t), . . . , Un,K(t)

)
has a fluid

limit as n→∞ and that this fluid limit satisfies the system of differential equations

described in the following definition.

Definition 2.1. For v1, . . . , vK ∈ R+,
(
u1(t), . . . , uK(t)

)
is said to be a longest-queue-

first fluid limit system with initial condition (v1, . . . , vK) if:

(1) uk : [0,∞)→ R+ with uk(0) = vk for all k = 1, . . . , K.

(2) u′1(t) = e−u1(t) − 1 + λ.

(3) u′k(t) = λuk−1(t)− uk(t), for all k = 2, . . . , K.

By the usual existence and the uniqueness theorem of first order ordinary differ-

ential equations (e.g., [11]), there is a unique differentiable function u1 : [0,∞)→ R+

with u1(0) = v1 satisfying the second condition in Definition 2.1. For k ≥ 2, when
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uk−1(t) and vk are given, the differential equation of uk is linear with inhomogeneous

part uk−1(t), and therefore uk : [0,∞) → R+ is unique. Thus, by induction, for any

given initial condition, there is a unique longest-queue-first fluid limit system.

We remark that the following is an explicit expression of the solution if v1 <

ln
(

1
1−λ

)
(the other case yields a similar expression):

u1(t) = ln

(
C1 e

(1−λ)t − 1

C1(1− λ) e(1−λ)t

)
,

uk(t) = e−t vk + λ

∫ t

0

e−(t−s) uk−1(s) ds, k = 2, . . . , K,

where C1 = 1/(1− (1− λ)ev1). Moreover, a longest-queue-first fluid limit system has

a unique critical point which is stable:
(
ln
(

1
1−λ

)
, λ ln

(
1

1−λ

)
, . . . , λK−1 ln

(
1

1−λ

))
. The

following proposition summarizes these arguments.

Proposition 2.2. For any (v1, . . . , vK) ∈ RK
+ , there is a unique longest-queue-first

fluid limit system (u1(t), . . . , uK(t)) with uk(0) = vk for all k = 1, . . . , K, and

(u1(t), u2(t), . . . , uK(t)) →
(

ln

(
1

1− λ

)
, λ ln

(
1

1− λ

)
, . . . , λK−1 ln

(
1

1− λ

))

as t→∞.

Our first limit theorem states that
(
Un,1(t), . . . , Un,K(t)

)
converges to a fluid limit

system as n→∞ given an appropriate initial condition.

Theorem 2.3 (Fluid limit). Consider a sequence of systems indexed by n. Fix a

number K ∈ N such that limn→∞ n/d(n)K =∞. Assume that Un,k(0) is deterministic

for every n and k ≤ K, and that there exist v1, . . . , vK ∈ R+ such that

lim
n→∞

Un,k(0) = vk, k = 1, . . . , K,

and

lim
n→∞

d(n)K (Fn,K+1(0) + Fn,K+2(0) + · · · ) = 0.
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Then, the sequence of stochastic processes {(Un,1(t), . . . , Un,K(t))}n∈N converges al-

most surely to the longest-queue-first fluid limit system
(
u1(t), . . . , uK(t)

)
with initial

condition (v1, . . . , vK), uniformly on compact sets.

The proof of the above theorem is based on mathematical induction, and we give

a high-level overview of this proof at the beginning of Section 2.5.

This result makes the explicit trade-off between performance and complexity for

randomized longest-queue-first algorithms. Theorem 2.3 shows that for k = 1, . . . , K,

as n→∞,

Fn,k

(
t

d(n)

)
= Θ

(
1

d(n)k

)
.

For k = 1, this agrees with the upper bound sketched in [2]. Then, the average queue

length is order of 1
d(n)

, inverse of the complexity. In the next section, we investigate

this by simulation.

Figure 2.2 shows sample paths of Un,1(t) (the scaled fraction of nonempty queues)

for various n and it empirically confirms our first limit theorem. However, even for

n as large as 10000, the sample paths fluctuate around the fluid limit, especially for

large t. This means that it is important to incorporate a second-order approximation.

Our second limit theorem is about the diffusion limit of Un,1(t) as n → ∞. Pre-

cisely, we show that the stochastic processes Un,1(t) converges in distribution to a

diffusion process after appropriate scaling. We believe it is the first diffusion limit

theorem for a queueing system in the large-buffer mean-field regime, and is based on

an asymptotic ‘decoupling’ of the queue length processes. Note that Un,1(t) is not

a Markov process, but the approximating process Z(t) is a Markov process. In the

appendix, we explain the exact meaning of this type of convergence, for which we use

the symbol ‘⇒’.

Theorem 2.4 (Diffusion limit). Consider a sequence of system indexed by n. Sup-

pose that limn→∞ n/d(n) = ∞ and limn→∞ n/d(n)2 = 0. Assume that Un,1(0) is
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Figure 2.2: Sample paths of Un,1(t)
In this simulation In this simulation, we use d(n) = 10 · log10(n) and λ = 0.7. The
thick curve is the solution of u′(t) = e−u(t) − 1 + λ.
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deterministic for all n, and that there exists some v1 ∈ R+ such that

lim
n→∞

√
n

d(n)
(Un,1(0)− v1) = 0, (1)

and

lim
n→∞

√
n d(n) (Fn,2(0) + Fn,3(0) + · · · ) = 0. (2)

Then, we have, as n→∞,

√
n

d(n)
(Un,1(t)− u1(t)) ⇒ Z(t),

where Z(t) is the solution of the following Ito integral equation:

Z(t) =
√
λB(1)(t)−

∫ t

0

√
1− e−u1(s) dB(2)(s)−

∫ t

0

e−u1(s) Z(s) ds

for independent Wiener processes B(1)(t) and B(2)(t).

We anticipate that this theorem can be generalized as follows. The process Un,k(t)

couples with uk+1(t) (the scaling limit of Uk+1(t)), but the fact that their scaling

behavior is different (
√
n/d(n)k vs.

√
n/d(n)k+1) introduces complications for the

proof technique used for Theorem 2.4.

Conjecture 2.5. Consider a sequence of system indexed by n. Suppose that limn→∞ n/d(n) =

∞ and fix k ≤ K, where K is defined in the beginning of this section. Assume that

Un,k(0) is deterministic for all n and k ≤ K, and that there exists v1, . . . , vK ∈ R+

and v∗1, . . . , v
∗
K ∈ R such that

lim
n→∞

√
n

d(n)k
(Un,k(0)− vk) = v∗k.

Additionally, assume that

lim
n→∞

√
n d(n)K+1 (Fn,K+1(0) + Fn,K+2(0) + · · · ) = 0.

Then, we have, as n→∞,

√
n

d(n)k

(
Un,k(t)− uk(t) +

1

d(n)
uk+1(t)

)
⇒ Zk(t),
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where we interpret uK+1(t) as zero, and Z1(t) is the solution of the following Ito

integral equation:

Z1(t) = v∗1 +
√
λB

(1)
1 (t)−

∫ t

0

√
1− e−u1(s) dB

(2)
1 (s)−

∫ t

0

e−u1(s) Z1(s) ds,

and, for k = 2, . . . , K, Zk(t) is the solution of the following Ito integral equation:

Zk(t) = v∗k +

∫ t

0

√
λuk−1(s) dB

(1)
k (s)−

∫ t

0

√
uk(s) dB

(2)
k (s)−

∫ t

0

Zk(s) ds,

for independent Wiener processes B
(1)
k (t) and B

(2)
k (t).

Next, we utilize above our limit theorems to establish approximations of the pro-

cesses in our system and show their accuracy by simulation.

2.4 Approximation and Validation

In this section, we propose diffusion approximations based on our limit theorems in the

previous section, and we investigate the discrepancy between these approximations

and the original pre-limit system. In addition, we examine the trade-off between

performance (average queue length) and complexity (the number of samples) through

simulation.

Our limit theorems are stated in terms of a function d(n), but here we investigate

systems for which we sample a fixed number of buffers d. For simplicity, we only

consider systems that are initially empty.

2.4.1 Diffusion Approximations

Our diffusion limit theorem suggests the following approximation for the distribution

of the fraction of nonempty queues in a system with n buffers and d samples:

Fn,1(t) ≈ 1

d
u1(dt) +

1√
nd
Z(dt), (Diffusion Approximation)

where u1(t) is the fluid limit of Un,1(t) from Theorem 2.3 and Z(t) is the Gaus-

sian process defined in Theorem 2.4. One of the assumptions in Theorem 2.4 is

24



limn→∞ n/d(n)2 = 0, which may not be plausible for systems with relatively small d

compared to n; we confirm this later. Our conjecture in Section 2.3 suggests adjusting

the Diffusion Approximation as follows:

Fn,1(t) ≈ 1

d
u1(dt)− 1

d2
u2(dt) +

1√
nd
Z(dt), (Modified Diffusion Approximation)

where u1(t) and Z(t) are the same as the Diffusion Approximation, and u2(t) is the

fluid limit of Un,2(t) in Theorem 2.3.

Since Z is a centered Gaussian process, the distribution of Fn,1(t) is approximately

normal for fixed t. To be able to describe the variance, we need σ2(t) = Var[Z(t)].

From standard SDE results, σ2(t) satisfies the ODE

d

dt
σ2(t) = − 2e−u1(t)σ2(t) + λ+ (1− e−u1(t)), (3)

with initial condition σ2(0) = 0.

To investigate the accuracy of our approximations, we collect simulation samples

of the fraction of nonempty buffers Fn,1(t) and compare the resulting histogram with

our approximations. The normal distributions from our two approximations of Fn,1(t)

have the same variance, but their means are different.

First, we check the accuracy of Diffusion Approximation for moderate n and d.

For λ = 0.7 and n = 20, we produce a histogram with 100000 samples of F20,1(50)

for d = 4 and d = 12 and compare this with the probability density function of the

normal distribution from Diffusion Approximation. Figure 2.3 shows the results.

Through these and other experiments, we find that Diffusion Approximation is

accurate even when n is moderate and it works best in cases where d is small compared

to n, which is the regime of our theoretical results. When d is large compared to n,

then the distribution becomes more concentrated at 0.

Second, we verify our approximations for large n and small d. Applying algorithms

with small computational complexity to large systems is most meaningful in practice,

and this is the case in our model when the number of buffers n is large and the number

25



Figure 2.3: Diffusion Approximation versus simulation of the distribution of Fn,1(50)
for moderate n and d.
Upper: n = 20, d = 4, Lower: n = 20, d = 12.
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of samples d is small. By simulation, we obtain histograms of 1000 samples of the

fraction of nonempty queues at time 50 (Fn,1(50)) for n = 1000 and λ = 0.7 as in

Figure 2.4. This result shows that the ODE (3) gives a good approximation of the

variance of Fn,1(50). For the mean of Fn,1(50), Modified Diffusion Approximation is

more accurate than Diffusion Approximation when d is relatively small. As d grows,

Diffusion Approximation better estimates the mean of Fn,1(50). This shows that our

theorems provide good approximations in practically attractive situations.

We next empirically study when our approximation works well, with the objective

to find a criterion depending on n, d, and λ for the validity of our approximation.

From the Modified Diffusion Approximation, we find the following approximations

for the mean and the standard deviation of Fn,1(t) for reasonably large t:

µ '
(

1

d
− λ

d2

)
log

(
1

1− λ

)
, σ ' 1√

nd

λ

1− λ
,

where we use Proposition 2.2 and we set dσ2(t)/dt = 0 in (3). We use the Kolmogorov-

Smirnov distance between our approximation and the empirical distribution (from

simulation) as a measure of accuracy of our approximation. We find that the quality

of our approximation depends on n, d, and λ mostly through µ and σ, and Figure 2.5

summarizes the data from our experiments by plotting the results in the (µ, σ) plane.

The experiments show that the Modified Diffusion Approximation works well if µ

and σ satisfy σ < µ/3 and σ > 2(µ− 1/4)/3. We have also tested the choice of t on

the accuracy of our approximation, and we found that it does not have a significant

effect.

Another observation we get from these simulation experiments is that the variance

is not negligible compared to the mean of the fraction of nonempty queues even when n

is large. Existing literature exclusively focuses on the performance of algorithms in the

mean-field large-buffer regime with the fluid limit, but our experiments highlight that

the second-order approximation is also important. Our work is the first investigation

in this direction.
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Figure 2.4: Our approximations versus simulation of the distribution of Fn,1(50) for
large n = 1000.
Upper: d = 5, Lower: d = 15.
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Figure 2.5: The Kolmogorov-Smirnov test statistic for various parameter values.
We use 5000 simulation replications to estimate the distribution of Fn,1(100)
for n = 100, 150, . . . , 1000, 1200, . . . , 2000, d = 2, 5, 7, 10, 12, . . . , 30, and λ =
0.80, 0.82, 0.84, . . . , 0.98, 0.99.
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2.4.2 Performance vs. Complexity

To see the trade-off between performance and complexity, we measure the complexity

and performance through CPU-time and average queue length, respectively. For a

system with n buffers where the server samples d buffers, the CPU-time consumed

during a fixed time is O(dn) and our fluid limit theorem concludes that the average

queue length is proportional to 1/d.

For a fixed number n of buffers in the system, we simulate systems with varying

number of sampled buffers d. We run our simulation up to time t = 50 with λ = 0.7

and measure the CPU-time consumption and the average queue length at t = 50 for

1000 samples of each case. The results of our experiments are represented graphically

in Figure 2.6.

Figure 2.6 shows that CPU-time per buffer (computational complexity) is indeed

proportional to the number of sampled buffers d, and that the average queue length

(performance) is inverse-proportional to the sample size d. Therefore, the simulation

study confirms our theoretical results on the quantitative trade-off between perfor-

mance and complexity.

2.5 Proofs of the Limit Theorems

This section provides the proofs of the two theorems in Section 2.3. Before going into

detail, we first introduce the key ideas in the proofs.

2.5.1 Sketch of Proofs

We now discuss the starting point of the proofs of our limit theorems, particularly

focusing on Theorem 2.3. Several additional technical tools are needed to fill in the

details, and we work these out in Sections 2.5.2–2.5.4.

Instead of working directly with the random variables Un,k, we rely on the auxiliary
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Figure 2.6: Performance versus complexity
We use n = 10, d = 2, 3, 4 and for n = 100, d = 2, 4, 10, 15, 20, 25. Upper: average
queue length vs. sample size d. Lower: CPU time per buffer vs. sample size d.
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random variables

Vn,k(t) =
∞∑

j=k

Fn,j(t),

for all k ≥ 0, as in [2, 59, 61].

For k ≥ 1, Vn,k( · ) increases by 1/n when there is an arrival in queues with length

greater than or equal to k − 1 and it decreases by 1/n if the server processes a task

in a queue with length greater than or equal to k. Thus, we have

Vn,k(t) = Vn,k(0) +
1

n
An,k

(
λn

∫ t

0

Fn,k−1(s) ds

)

− 1

n
Sn,k

(
n

∫ t

0

[
1− (1− Fn,k(s))d(n)

]
ds

)
,

(4)

where An,k( · ) and Sn,k( · ) are independent Poisson processes with rate 1.

Upon multiplying (4) by d(n)k and rescaling time by a factor d(n), we obtain,

after substituting U in terms of F ,

d(n)k Vn,k

(
t

d(n)

)
= d(n)k Vn,k(0) +

d(n)k

n
An,k

(
λ

n

d(n)k

∫ t

0

Un,k−1(s) ds

)

−d(n)k

n
Sn,k

(
n

d(n)

∫ t

0

[
1−

(
1− Un,k(s)

d(n)k

)d(n)
]

ds

)
.

Upon replacing An,k and Sn,k by their law-of-large-numbers approximations (the iden-

tity function), we get

d(n)k Vn,k

(
t

d(n)

)
≈ d(n)k Vn,k(0) + λ

∫ t

0

Un,k−1(s) ds

− d(n)k−1

∫ t

0

[
1−

(
1− Un,k(s)

d(n)k

)d(n)
]

ds,

and a similar ‘second order’ representation can be obtained when An,k and Sn,k are

replaced by their central limit theorem approximations. For these approximations to

be justified, we need d(n)k = o(n). Continuing with the fluid approximation, since

U0(t) = 1, we obtain for k = 1,

d(n)k Vn,1

(
t

d(n)

)
≈ d(n)k Vn,1(0) + λ t−

∫ t

0

[
1− e−Un,1(s)

]
ds,
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while we obtain for k ≥ 2,

d(n)k Vn,k

(
t

d(n)

)
≈ d(n)k Vn,k(0) + λ

∫ t

0

Un,k−1(s) ds−
∫ t

0

Un,k(s) ds.

Next we use the following relation between Vn,k(t) and Un,k(t):

Un,k(t) = d(n)k Vn,k

(
t

d(n)

)
− d(n)k Vn,k+1

(
t

d(n)

)
. (5)

The second term on the right-hand side of (5) vanishes on the fluid scale, but it has

to be taken into account on the diffusion scale.

The above outline is formalized through a mathematical induction argument. The

next section is devoted to the induction base for the fluid limit theorem, k = 1. Sec-

tion 2.5.3 considers the induction hypothesis for the fluid limit theorem. Section 2.5.4

addresses the proof of the diffusion limit theorem.

2.5.2 Fluid Limit: Dynamics of the First Term

In this section, we prove the base of the induction by showing the existence of the

fluid limit of Un,1(t) and finding the dynamics of the limit. The strategy of the proof

is the following:

1. The proof evolves around the evolution of d(n)Vn,1(t/d(n)) and d(n)Vn,2(t/d(n)).

By definition, we have

Un,1(t) = d(n)Fn,1

(
t

d(n)

)
= d(n)Vn,1

(
t

d(n)

)
− d(n)Vn,2

(
t

d(n)

)
. (6)

2. We prove in Lemma 2.6 that d(n)Vn,2(t/d(n)) converges (in an appropriate

sense) to the zero function. We then prove in Lemma 2.7 that d(n)Vn,1(t/d(n))

has a fluid limit. A key tool in the latter is Lemma 2.18 from the appendix,

which requires showing that d(n)Vn,1(t/d(n)) is Lipschitz in some asymptotic

sense.
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3. We deduce from (6) that the fluid limits of Un,1(t) and d(n)Vn,1(t/d(n)) are the

same. Using (4) and the approach outlined in the previous section, we then

formulate the differential equation satisfied by the fluid limit.

First, we prove that d(n)Vn,2(t/d(n)) converges to 0 uniformly on compact sets

for appropriate initial conditions. In particular, it has a fluid limit.

Lemma 2.6. Consider a sequence of systems indexed by n. Assume that limn→∞ d(n)Vn,2(0) =

0 and that limn→∞ Fn,1(0) = 0. Then, we have

lim
n→∞

d(n)Vn,2

(
t

d(n)

)
= 0,

uniformly on compact sets, almost surely.

Proof. Let Wn( · ) be the process which increases by 1 whenever there is an arrival,

a service completion, or the end of a wasted service in the nth system. Note that

Wn( · ) is a Poisson process with rate (1 + λ)n. For any t > 0, the total number of

increases of Fn,1( · ) in (0, t ] is less than or equal to Wn(t). Since Fn,1( · ) increases by

1/n at a time, we obtain, for t > 0,

0 ≤ Fn,1

(
t

d(n)

)
≤ Fn,1(0) +

1

n
Wn

(
t

d(n)

)
,

By our assumption on Fn,1(0) and Lemma 2.15, Fn,1(t/d(n)) thus converges almost

surely to 0 as n→∞, uniformly on compact sets. From (4), we also deduce that

d(n)Vn,2

(
t

d(n)

)
≤ d(n)Vn,2(0) +

d(n)

n
An,2

(
λn

∫ t/d(n)

0

Fn,1(s) ds

)

= d(n)Vn,2(0) +
d(n)

n
An,2

(
λn

d(n)

∫ t

0

Fn,1

(
s

d(n)

)
ds

)
.

Upon applying Lemma 2.12, Lemma 2.15, and Lemma 2.17, the second term converges

almost surely to 0 as n → ∞, uniformly on compact sets. The claim thus follows

from the assumption on Vn,2(0).
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In the next lemma, we prove that, almost surely, d(n)Vn,1(t/d(n)) satisfies the

assumptions of Lemma 2.18, i.e., that it is Lipschitz in some asymptotic sense. This

is a key ingredient in establishing the existence of the fluid limit of d(n)Vn,1(t/d(n)).

Lemma 2.7. Consider a sequence of systems indexed by n. Assume that there is some

v ∈ R+ such that

lim
n→∞

d(n)Vn,1(0) = v.

Then, any subsequence of {d(n)Vn,1(t/d(n))}n∈N has a subsequence that converges to

a Lipschitz function uniformly on compact sets, almost surely.

Proof. Fix T > 0, and recall the construction of the Poisson process Wn( · ) with rate

(1+λ)n from the proof of Lemma 2.6. For a, b ∈ [0, T ] with a < b, the total number of

increases or decreases of Vn,1(t) in (a, b ] is less than or equal to |Wn(a)−Wn(b)|. Since

d(n)Vn,1( · ) increases or decreases by d(n)/n at a time, there exists some γn = γn(T )

such that limn→∞ γn = 0 almost surely and

∣∣∣∣d(n)Vn,1

(
a

d(n)

)
− d(n)Vn,1

(
b

d(n)

)∣∣∣∣ ≤ 2

∣∣∣∣
d(n)

n
Wn

(
a

d(n)

)
− d(n)

n
Wn

(
b

d(n)

)∣∣∣∣

≤ 2(1 + λ)|a− b|+ γn.

By Lemma 2.18, any subsequence of {d(n)Vn,k(t/d(n))}n∈N has a subsequence that

converges to a 2(1 + λ)-Lipschitz function uniformly on [0, T ], almost surely.

Now, with (6) and the preceding lemmas, we can prove that any subsequence

of {Un,1(t)}n∈N has a convergent subsequence which converges to a Lipschitz func-

tion u(t). In the next proposition, we prove that the limit is independent of the

subsequence, so that convergence of {Un,1(t)}n∈N to u(t) on compact sets follows.

Proposition 2.8. Consider a sequence of systems indexed by n. Suppose that for

some v ∈ R+,

lim
n→∞

d(n)Vn,1(0) = v, lim
n→∞

d(n)Vn,2(0) = 0,
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almost surely. Then, there exists a Lipschitz function u : [0,∞) → R+ such that,

almost surely,

lim
n→∞

Un,1(t) = u(t),

uniformly on compact sets and u is the unique solution to the differential equation

u′(t) = e−u(t) − (1− λ)

with initial value u(0) = v. Also, almost surely,

lim
n→∞

d(n)Vn,2

(
t

d(n)

)
= 0,

uniformly on compact sets.

Proof. By the existence of the limit of d(n)Vn,1(0), we have limn→∞ Fn,1(0) = 0. Con-

sider the sequence of bivariate random processes {(d(n)Vn,1(t/d(n)) , Un,1(t))}n∈N .

From (6) and the preceding two lemmas, any subsequence has a subsequence which

converges uniformly on compact sets, almost surely. Suppose the convergent subse-

quence converges to (u(t), u(t)) , for some Lipschitz function u : [0,∞)→ R.

We obtain from (4) that

d(n)Vn,1

(
t

d(n)

)

= d(n)Vn,1(0) +
d(n)

n
An,1

(
λn

∫ t/d(n)

0

1 ds

)

− d(n)

n
Sn,1

(
n

∫ t/d(n)

0

[
1− (1− Fn,1(s))d(n)

]
ds

)

= d(n)Vn,1(0) +
d(n)

n
An,1

(
λ

n

d(n)
t

)

− d(n)

n
Sn,1

(
n

d(n)

∫ t

0

[
1−

(
1− Un,1(t)

d(n)

)d(n)
]

ds

)
.

Thus, letting n go to infinity along the convergent subsequence, we find that, almost

surely, the second term converges to λt uniformly on compact sets by Lemma 2.15.

Moreover, by Lemma 2.13, Lemma 2.14, Lemma 2.15, and Lemma 2.17, the last term
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converges almost surely to
∫ t

0

(
1− e−u(s)

)
ds, uniformly on compact sets. Therefore

u(t) satisfies the integral equation

u(t) = v + λ t+

∫ t

0

(
1− e−u(s)

)
ds.

Since u is absolutely continuous, u is differentiable almost everywhere. If u(t) is

differentiable at t, we obtain

u′(t) = e−u(t) − (1− λ). (7)

By standard existence and uniqueness theorems for ordinary differential equations,

there is a unique solution u : [0,∞) → R+ satisfying the above differential equation

(7) with initial condition u(0) = v. Thus, every subsequence of {Un,1(t)}n∈N has a

subsequence which converges to the same limit u(t). Therefore, {Un,1(t)}n∈N converges

to u(t) uniformly on compact sets, almost surely.

2.5.3 Fluid Limit: Dynamics of Higher Terms

In this section, we state and prove the induction step. Let k ≥ 1 and assume through-

out that limn→∞ n/d(n)k+1 =∞. We work under the induction hypothesis that there

exists a Lipschitz continuous function uk : [0,∞)→ R+ such that

lim
n→∞

Un,k(t) = uk(t), (8)

uniformly on compact sets, almost surely, and

lim
n→∞

d(n)k Vn,k+1

(
t

d(n)

)
= 0, (9)

uniformly on compact sets, almost surely. Starting from this hypothesis, we prove

the existence of the fluid limit of Un,k+1(t) and characterize it through a differential

equation.

The proof roughly follows the same outline as for the dynamics of the first term

in Section 2.5.2, i.e., we first establish the existence of the fluid limits and then
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use (4) to establish the differential equations they satisfy. The details, however,

are different; for instance, we must avoid a circular argument for establishing an

asymptotic Lipschitz property of d(n)k+1 Vn,k+1(t/d(n)) (Lemma 2.10), an issue that

did not arise in Section 2.5.2.

Lemma 2.9. Consider a sequence of systems indexed by n, for which (8) and (9)

hold. Assume that

lim
n→∞

d(n)k+1 Vn,k+2(0) = 0,

almost surely. Then, we have

lim
n→∞

d(n)k+1 Vn,k+2

(
t

d(n)

)
= 0,

uniformly on compact sets, almost surely.

Proof. By (4), we have

d(n)k+1 Vn,k+2

(
t

d(n)

)

≤ d(n)k+1 Vn,k+2(0) +
d(n)k+1

n
An,k+2

(
λn

∫ t/d(n)

0

Fn,k+1(s) ds

)

= d(n)k+1 Vn,k+2(0) +
d(n)k+1

n
An,k+2

(
λ

n

d(n)k+1

∫ t

0

d(n)k Fn,k+1

(
s

d(n)

)
ds

)
.

Hypothesis (9) implies that limn→∞ d(n)k Fn,k+1(t/d(n)) = 0 almost surely, uniformly

on compact sets. Thus, by Lemma 2.12, Lemma 2.15, and Lemma 2.17, we obtain

that, almost surely,

lim
n→∞

d(n)k+1 Vn,k+2

(
t

d(n)

)
= 0,

uniformly on compact sets.

To show the existence of the fluid limit of d(n)k+1 Vn,k+1(t/d(n)), we need to prove

that it is Lipschitz in some asymptotic sense, cf. Lemma 2.18. For the case k = 0, we

used a scaled version of a Poisson process Wn(t) to prove this for d(n)Vn,1(t/d(n)).

However, for d(n)k+1 Vn,k+1(t/d(n)), when k ≥ 1, a similar modification of Wn(t) does
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not work since d(n)k+1 Wn(t/d(n)) diverges for k > 0. We resolve this difficulty by

partitioning an expression for d(n)k+1 Vn,k+1(t/d(n)) into three parts – an initial part,

an arrival part, and a departure part; see (4). Assuming the existence of a limit for

the initial part, we then show that the other two parts admit fluid limits.

As we shall see, the arrival part depends on Un,k(t) and the induction hypothe-

sis guarantees its convergence. Thus, the existence of the fluid limit of the arrival

part follows immediately. We cannot directly apply the induction hypothesis for the

departure part because it turns out to involve Un,k+1(t), the very quantity we are

trying to establish a fluid limit for. To circumvent this issue, we show that Un,k+1(t)

is locally bounded and this allows us to show that the departure part is Lipschitz

continuous in the sense of Lemma 2.18.

Lemma 2.10. Consider a sequence of systems indexed by n, for which (8) and (9)

hold. Suppose that there exists some v ∈ R+ such that limn→∞ d(n)k+1 Vn,k+1(0) = v,

almost surely. Then, any subsequence of
{
d(n)k+1 Vn,k+1(t/d(n))

}
n∈N has a subse-

quence which converges almost surely to a Lipschitz continuous function uniformly on

compact sets.

Proof. Fix T > 0. Decompose d(n)k+1 Vn,k+1(t/d(n)) into three parts as follows:

d(n)k+1 Vn,k+1

(
t

d(n)

)
= d(n)k+1 Vn,k+1(0) + In(t)−Dn(t),

where In(t) ≥ 0 and Dn(t) ≥ 0 are the total increase and decrease amount of process

d(n)k+1 Vn,k+1(t/d(n)) by time t, respectively.

The almost sure limit of In(t) is readily found. Indeed, from (4), we have

In(t) =
d(n)k+1

n
An,k+1

(
λn

∫ t/d(n)

0

Fn,k(s) ds

)

=
d(n)k+1

n
An,k+1

(
n

d(n)k+1

∫ t

0

Un,k(s) ds

)
,

which converges almost surely to
∫ t

0
uk(s) ds uniformly on [0, T ] by Lemma 2.12 and

2.17 in Appendix.
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Proving the almost sure limit of Dn(t) is more intricate. We obtain from (4) that

Dn(t)

=
d(n)k+1

n
Sn,k+1

(
n

∫ t/d(n)

0

(
1− (1− Fn,k+1(s))d(n)

)
ds

)

=
d(n)k+1

n
Sn,k+1

(
n

d(n)

∫ t

0

(
1− (1− Fn,k+1(s/d(n)))d(n)

)
ds

)

=
d(n)k+1

n
Sn,k+1

(
n

d(n)k+1

∫ t

0

d(n)k

[
1−

(
1− Un,k+1(s)

d(n)k+1

)d(n)
]

ds

)
. (10)

The first step for analyzing this expression is to bound the integrand. Write M =

supt∈[0,T ]

∫ t
0
uk(s) ds and let ε > 0. Then, for all t ∈ [0, T ] and large enough n, we

have

Un,k+1(t) ≤ d(n)k+1 Vn,k+1

(
t

d(n)

)
≤ d(n)k+1 Vn,k+1(0) + In(t) ≤ v +M + ε.

Thus, for all large enough n, we have almost surely

d(n)k

[
1−

(
1− Un,k+1(t)

d(n)k+1

)d(n)
]
≤ d(n)k

[
1−

(
1− v +M + ε

d(n)k+1

)d(n)
]

≤ v +M + 2ε

for all t ∈ [0, T ]. Lemma 2.15 implies that, almost surely,

lim
n→∞

sup
a,b∈[0,(v+M+2ε)T ]

∣∣∣∣∣
d(n)k+1

n
Sn,k+1

(
n

d(n)k+1
b

)

− d(n)k+1

n
Sn,k+1

(
n

d(n)k+1
a

)
− (b− a)

∣∣∣∣∣ = 0,

which by (10) shows that limn→∞ γn = 0 almost surely, where

γn = sup
0≤s<t≤T

∣∣∣∣∣Dn(t)−Dn(s)−
∫ t

s

d(n)k

[
1−

(
1− Un,k+1(u)

d(n)k+1

)d(n)
]

du

∣∣∣∣∣ .

We next note that, for a, b ∈ [0, T ],

|Dn(a)−Dn(b)| ≤ (v +M + 2ε)|a− b|+ γn.
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Therefore, by Lemma 2.18, any subsequence of {Dn,k(·)} has a subsequence that

converges to a Lipschitz continuous function, which implies that any subsequence of
{
d(n)k+1 Vn,k+1(t/d(n))

}
n∈N has a subsequence converging to a Lipschitz continuous

function uniformly on [0, T ], almost surely.

By the preceding two lemmas, any subsequence of {Un,k+1(t)}n∈N has a subse-

quence which converges almost surely to a Lipschitz function uniformly on compact

sets. We prove the induction step through the same argument used in the induction

base.

Proposition 2.11. Consider a sequence of systems indexed by n, for which the in-

duction hypothesis (8) and (9) hold. Assume that there exists some v ∈ R+ such that

limn→∞ d(n)k+1 Vn,k+1(0) = v, almost surely and limn→∞ d(n)k+1 Vn,k+2(0) = 0. Then,

the sequence {Un,k+1(t)}n∈N converges almost surely to the unique Lipschitz function

uk+1 : [0,∞)→ R+ satisfying

u′k+1(t) = λuk(t)− uk+1(t),

with u(0) = v, uniformly on compact sets. Moreover, we have

lim
n→∞

d(n)k+1 Fn,k+2

(
t

d(n)

)
= 0,

uniformly on compact sets.

Proof. Consider the sequence of coupled random processes

{(
d(n)k+1 Vn,k+1(t/d(n)) , Un,k+1(t)

)}
n∈N

.

By the preceding lemmas, any subsequence has a subsequence which converges uni-

formly on compact sets, almost surely. Moreover, the convergent subsequence con-

verges to (uk+1(t), uk+1(t)) for some Lipschitz function uk+1(t).
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We deduce from (4) that

d(n)k+1 Vn,k+1

(
t

d(n)

)

= d(n)k+1 Vn,k+1(0) +
d(n)k+1

n
An,k+1

(
λn

∫ t/d(n)

0

Fn,k(s) ds

)

− d(n)k+1

n
Sn,k+1

(
n

∫ t/d(n)

0

(
1− (1− Fn,k+1(s))d(n)

)
ds

)

= d(n)k+1 Vn,k+1(0) +
d(n)k+1

n
An,k+1

(
λn

d(n)k+1

∫ t

0

Un,k(s) ds

)

− d(n)k+1

n
Sn,k+1

(
n

d(n)k+1

∫ t

0

d(n)k

(
1−

(
1− Un,k+1(s)

d(n)k+1

)d(n)
)

ds

)
.

From Lemma 2.13, Lemma 2.14, Lemma 2.15, and Lemma 2.17, by taking the limit

as n→∞ along the convergent subsequence, we conclude that uk+1(t) satisfies

uk+1(t) = v + λ

∫ t

0

uk(s) ds−
∫ t

0

uk+1(s) ds.

Since uk+1(t) is absolutely continuous, uk+1(t) is differentiable almost everywhere. If

uk+1(t) is differentiable at t, we obtain

u′k+1(t) = λuk(t)− uk+1(t). (11)

Since the differential equation (11) is linear with inhomogeneous term λuk(t), it

uniquely determines uk+1(t). Thus, every sequence of {Un,k+1(t)}n∈N has a subse-

quence that converges to the same limit uk+1(t). Therefore, Un,k+1(t) converges to

uk+1(t) uniformly on compact sets, almost surely.

The last statement of the proposition follows from Lemma 2.9.

Using Proposition 2.8 and Proposition 2.11, we are now ready to prove our fluid

limit theorem.

Proof of Theorem 2.3. From the assumptions of Theorem 2.3, we have

lim
n→∞

Un,1(0) = v1
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and

lim
n→∞

d(n)Vn,2(0) = lim
n→∞

(
Un,2(0)

d(n)
+ · · ·+ Un,K(0)

d(n)K−1
+
d(n)K(Fn,K+1(0) + · · · )

d(n)K−1

)
= 0.

Therefore, Proposition 2.8 yields the fluid limit for Un,1(t), which is (8) for k = 1.

Lemma 2.6 yields (9) for k = 1.

We next assume that conditions (8) and (9) hold. The assumptions in Proposi-

tion 2.11 hold because of the assumptions from Theorem 2.3, as can be seen with a

similar argument as above. Thus, Proposition 2.11 and Lemma 2.9 show that (8) and

(9) hold, respectively, with k replaced by k + 1. This induction argument establishes

Theorem 2.3.

2.5.4 Diffusion Limit

In this section, we prove our second limit theorem, Theorem 2.4, a diffusion limit of

Un,1(t). To this end, we introduce a new sequence of stochastic processes with the

same fluid limit u1(t) as {Un,1(t)}n∈N. For this new sequence, we can apply a result

from Kurtz [35] to obtain its second-order approximation. We then compare the new

processes with {Un,1(t)}n∈N and show that the difference vanishes.

Proof of Theorem 2.4. From (4), we have

Un,1(t) = − d(n)Vn,2

(
t

d(n)

)
+ Vn,1(0) +

d(n)

n
An,1

(
λn

d(n)
t

)

− d(n)

n
Sn,1

(
n

d(n)

∫ t

0

[
1−

(
1− Un,1(s)

d(n)

)d(n)
]

ds

)
.

(12)

Let limn→∞ n/d(n) =∞ and limn→∞ n/d(n)2 = 0 and assume that Un,k(0) for all

n and k, and v1 ∈ R+ satisfies conditions (1) and (2) in Theorem 2.4.

Define a sequence of stochastic processes {Ûn(t)} as the unique solution to

Ûn(t) = v1 +
d(n)

n
An,1

(
n

d(n)

∫ t

0

fn,1(Ûn(s)) ds

)

− d(n)

n
Sn,1

(
n

d(n)

∫ t

0

fn,−1(Ûn(s)) ds

)
,

(13)
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where fn,1 = λ and

fn,−1(x) =





1−
(

1− x
d(n)

)d(n)

if 0 ≤ x ≤ d(n)

1− e−x + e−d(n) otherwise

.

The process Ûn(t) is coupled with Un,1(t). We next argue that Ûn(t) has a fluid

and diffusion approximation prescribed by the theory developed by Kurtz [35] (see

Lemma 2.19 in the Appendix). Note that the index in [35] is N = n/d(n) and n can

often also be expressed in terms of N . This cannot always be done, but we suppress

the arguments needed to deal with such cases.

Let f1(x) = λ and f−1(x) = 1 − e−x. After noting that the maximum of

m (e−x − (1− x/m)m) over 0 ≤ x ≤ m converges to 2 as m → ∞, we have, for

large enough n,

|fn,−1(x)− f−1(x)| ≤ 3

d(n)
≤ 3

d(n)

n
.

Thus all conditions from Lemma 2.19 are satisfied and Ûn(t) converges almost surely

to u1(t) uniformly on compact sets, and we have the second-order approximation of

Ûn(t) such that √
n

d(n)

(
Ûn(t)− u1(t)

)
⇒ Z(t), (14)

where Z(t) satisfies

Z(t) =
√
λB(1)(t)−

∫ t

0

√
1− e−u1(s) dB(2)(s)−

∫ t

0

e−u1(s)Z(s) ds

for independent Wiener processes B(1)(t) and B(2)(t). We note that the results in

[35] yield strong approximations; here we only use weaker results of convergence in

distribution.

We next compare Un,1(t) with Ûn(t) and show that
√
n/d(n) |Un,1(t)− Ûn(t)| ⇒ 0.

Fix some T > 0. From (12) and (13), we have, since 0 ≤ Un,1(t) ≤ d(n) and fn,−1(t)

44



is 1-Lipschitz continuous,

√
n

d(n)

∣∣∣Un,1(t)− Ûn(t)
∣∣∣

≤
√

n

d(n)
(Vn,1(0)− v1) +

√
nd(n) Vn,2

(
t

d(n)

)

+

∣∣∣∣ S̃n
(∫ t

0

fn,−1(Un,1(s)) ds

)
− S̃n

(∫ t

0

fn,−1(Ûn(s)) ds

) ∣∣∣∣

+

√
n

d(n)

∫ t

0

∣∣∣ fn,−1(Un,1(s))− fn,−1(Ûn(s))
∣∣∣ ds

≤ εn(t) +

∫ t

0

√
n

d(n)

∣∣∣ Un,1(s)− Ûn(s)
∣∣∣ ds,

where

S̃n(t) =

√
n

d(n)

(
d(n)

n
Sn,1

(
n

d(n)
t

)
− t
)

and

εn(t) =

√
n

d(n)
(Vn,1(0)− v1) +

√
n d(n) Vn,2

(
t

d(n)

)

+

∣∣∣∣ S̃n
(∫ t

0

fn,−1(Un,1(t)) ds

)
− S̃n

(∫ t

0

fn,−1(Ûn,1(t)) ds

) ∣∣∣∣ .

By Gronwall’s inequality, we obtain, for t ∈ [0, T ],

√
n

d(n)

∣∣∣ Un,1(t)− Ûn(t)
∣∣∣ ≤ εn(t) + et

∫ t

0

εn(t) ds ≤ L · sup
t∈[0,T ]

εn(t),

where L = 1 + TeT .

We proceed by showing that εn(t)⇒ 0. From (4), we find that

√
n d(n) Vn,2

(
t

d(n)

)
≤
√
n d(n)Vn,2(0) +

√
n d(n) Sn,2

(
n

d(n)2

∫ t

0

Un,1(s) ds

)
,

which converges to 0 almost surely as n → ∞ uniformly on compact sets, by (2),

Lemma 2.12, Lemma 2.17 with limn→∞ n/d(n)2 = 0. Also, from Lemma 2.16 and

Lemma 2.17, we deduce that

(
S̃n

(∫ t

0

fn,−1(Un,1(s)) ds

)
, S̃n

(∫ t

0

fn,−1(Ûn(s)) ds

))

⇒
(
B

(∫ t

0

[
1− e−u1(s)

]
ds

)
, B

(∫ t

0

[
1− e−u1(s)

]
ds

))
,
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as n → ∞, where B is a standard Wiener process. By the continuous mapping

theorem, we conclude that, as n→∞,

εn(t) ⇒ 0,

and therefore √
n

d(n)

(
Un,1(t)− Ûn(t)

)
⇒ 0.

From (14), we conclude that, as n→∞,

√
n

d(n)
(Un,1(t)− u1(t)) ⇒ Z(t),

as claimed.
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Appendix

2.A Probability Measures and Convergence Theorems

This appendix reviews elements of convergence theory of functions and stochastic

processes.

For fixed T > 0, Dk[0, T ] is the space of functions from [0, T ] to Rk that are

right-continuous with left-limits (RCLL) equipped with the norm

‖f‖T := sup
0≤t≤T

‖f(t)‖∞

and the associated topology of uniform convergence. We define Dk[0,∞) similarly,

and we equip it with the product metric (of convergence on compact sets) and its

associated topology.

We interpret a stochastic process X in this context as a measurable mapping

from a probability space (Ω,F ,P) to Dk[0,∞). For a sequence {Xn}n∈N of stochastic

processes and a stochastic process X, we say that {Xn}n∈N converges almost surely

to X uniformly on compact sets if

P
(

lim
n→∞

‖Xn −X‖T = 0
)

= 1,

for all T > 0.

For a stochastic process X, we can define a probability measure PX on Dk[0, T )

for any T > 0. We say that a sequence {Xn}n∈N of stochastic processes converges in

distribution to a stochastic process X if, for all T > 0,

lim
n→∞

∫

Dk[0,T ]

f dPXn =

∫

Dk[0,T ]

f dPX

for every bounded and continuous real-valued function f on Dk[0, T ]. We abbreviate

this by

Xn ⇒ X,
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as n→∞.

The following lemmas contain results about convergence of functions that are

needed to prove our theorems. The first three lemmas are basic results about uniform

convergence on compact sets. The proof of the third lemma can be found in [15].

Lemma 2.12. Let {fn}n∈N be a sequence of real-valued functions defined on [0,∞)

and assume that it converges to a function f : [0,∞) → R uniformly on compact

sets. Assume that the functions Fn : [0,∞) → R with Fn(t) =
∫ t

0
fn(s) ds and

F : [0,∞) → R with F (t) =
∫ t

0
f(s) ds are well-defined. Then, as n → ∞, {Fn}n∈N

converges to F uniformly on compact sets.

Lemma 2.13. Let {fn}n∈N and {gn}n∈N be two sequences of real-valued functions

defined on [0,∞). Assume that gn is nonnegative. If, as n→∞, {fn}n∈N and {gn}n∈N

converges uniformly on compact sets to real-valued functions f and g, respectively, and

f and g are continuous, then, as n→∞, the sequence {fn(gn)}n∈N converges to f(g)

uniformly on compact sets.

Proof. Fix T > 0 and ε > 0. Since g is continuous on [0, T ], there exists M > 0 such

that |g(t)| ≤ M for all t ∈ [0, T ]. Since f is continuous on [0,M + 1], there exists

0 < δ < 1 such that, for s, t ∈ [0,M + 1], |t− s| < δ implies |f(t)− f(s)| ≤ ε/2. Let

L = max{T,M + 1}.

From the fact that fn → f and gn → g as n → ∞ uniformly on compact sets,

there exists some N ∈ N such that n ≥ N implies |fn(t) − f(t)| ≤ min{ε/2, δ} and

|gn(t) − g(t)| ≤ min{ε/2, δ} for all t ∈ [0, L]. Then, for all t ∈ [0, T ] and n ≥ N , we

have

|gn(t)| ≤ |gn(t)− g(t)|+ |g(t)| ≤ 1 +M.

Thus, if n ≥ N , we have

|fn(gn(t))− f(g(t))| ≤ |fn(gn(t))− f(gn(t))|+ |f(gn(t))− f(g(t))| < ε,
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for all t ∈ [0, T ]. Therefore, fn(gn) converges to f(g) as n→∞ uniformly on compact

sets.

Lemma 2.14. Let {fn}n∈N be a sequence of nondecreasing real-valued functions on

[0,∞) and let f be a continuous function on [0,∞). Assume that limn→∞ fn(t) = f(t)

for all rational numbers t ∈ [0,∞). Then, {fn}n∈N converges to f , as n → ∞,

uniformly on compact sets.

The next lemmas are the functional law of large numbers and the functional central

limit theorem for Poisson processes, see for instance [13].

Lemma 2.15 (Functional Law of Large Numbers). Let A be a Poisson process with

rate λ. Then, as n→∞, we have almost surely,

1

n
A(n t) → λt,

uniformly on compact sets. Also, if f(n) = o(n) and limn→∞ f(n) = ∞, we have

almost surely,

1

n
A

(
n

f(n)
t

)
→ 0,

as n→∞, uniformly on compact sets.

Lemma 2.16 (Functional Central Limit Theorem). Let A be a Poisson process with

rate 1. Then, as n→∞,

√
n

(
1

n
A(n t)− t

)
⇒ B(t),

where B(t) is the standard Wiener process.

The following lemma is often called the random time-change theorem, see for

instance [13].

Lemma 2.17 (Random Time-Change Theorem). Let {fn}n∈N and {gn}n∈N be two

sequences in Dk[0,∞). Assume that each component of gn is nondecreasing with
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gn(0) = 0. If as n → ∞, (fn, gn) converges uniformly on compact sets to (f, g) and

f and g are continuous, then

lim
n→∞

fn(gn) → f(g),

uniformly on compact sets, where the ith component of f(g) is the composition of ith

component of f and ith component of g.

The next lemma can be used to show the existence of a fluid limit of a sequence

of stochastic processes. Intuitively, it entails that if the fluctuations of a sequence

of functions are asymptotically bounded by the fluctuations of a Lipschitz function,

then any subsequence has a convergent subsequence which converges to a Lipschitz

function. This lemma immediately follows from arguments in Appendix A in [59].

Lemma 2.18. Fix T > 0. Let {fn}n∈N be a sequence in D[0, T ]. Assume that |fn(0)| ≤

M and

|fn(a)− fn(b)| ≤ L|a− b|+ γn, ∀a, b ∈ [0, T ],

for constants M,L and a sequence γn ↓ 0. Then, any subsequence of {fn}n∈N has

a subsequence that converges to an L-Lipschitz function f uniformly on [0, T ] with

|f(0)| ≤M.

The next lemma is used to prove Theorem 2.4. Kurtz [35] derives diffusion ap-

proximations for variety of continuous Markov chains and the following lemma is a

special case. We use it to obtain the diffusion limit of {Ûn(t)}n∈N in the proof of

Theorem 2.4.

Lemma 2.19. Consider a sequence of real-valued Markov processes {UN(t)}N∈N

which satisfies

UN(t) = u0 +
1

N
AN

(
N

∫ t

0

fN,1(UN(s))ds

)
− 1

N
SN

(
N

∫ t

0

fN,−1(UN(s))ds

)
,
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where AN( · ) and SN( · ) are independent Poisson processes with rate 1, and fN,i are

positive valued continuous functions for i = ±1. Suppose that there exist a constant

M > 0 and functions f1 and f−1 such that

fN,i(x) ≤M, |fN,i(x)− fi(x)| ≤ M

N
, and |

√
fi(x)−

√
fi(y)|2 ≤M |x− y|2

for i = ±1. Let F (x) = f1(x) − f−1(x) and also assume that |F ′(x)| ≤ M , and

|F ′′(x)| ≤M . Then, we have

√
N (UN(t)− u(t)) ⇒ V (t),

where u(t) is a function satisfying

u(t) = u0 +

∫ t

0

f1(u(s))ds−
∫ t

0

f−1(u(s))ds

and V (t) is a stochastic process given by

V (t) =

∫ t

0

√
f1(u(s))dB(1)(s)−

∫ t

0

√
f−1(u(s))dB(2)(s) +

∫ t

0

F ′(u(s))V (s)ds,

where B(1)(t) and B(2)(t) are independent Wiener processes.

51



CHAPTER III

SCHEDULING USING INTERACTIVE OPTIMIZATION

ORACLES FOR CONSTRAINED QUEUEING SYSTEMS

In this chapter, we propose a generic framework for designing throughput-optimal and

low-complexity scheduling algorithms for constrained queueing systems. Under our

framework, a scheduling algorithm updates current schedules by interacting with a

given oracle system that generates an approximate solution to a related optimization

task. One can utilize our framework to design a variety of scheduling algorithms by

choosing an oracle system such as random search, Markov chain, belief propagation,

and primal-dual methods. The complexity of the resulting scheduling algorithm is

determined by the number of operations required for an oracle to process a single

query, which is typically small. We provide sufficient conditions for throughput-

optimality of the scheduling algorithm in general constrained queueing system models.

This chapter is based on [55].

3.1 Introduction

The dynamic resource allocation problem in modern communication networks such

as wireless networks and input queued switches, examples of constrained queueing

systems in which only certain sets of queues can be served simultaneously, is often

addressed by the maximum-weight scheduling (MWS) algorithm. As it is throughput-

optimal, MWS algorithm yields a stable system under all possible loads for which

it can be made stable and requires information only about current queue lengths.

However, because it requires repeatedly solving computationally hard problems to find

“good” schedules, the MWS algorithm cannot be implemented in practice. Therefore,
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extensive research has proposed throughput-optimal scheduling algorithms with low

complexity. Examples of such algorithms include simpler implementations of the

MWS algorithm [24, 47, 58], greedy algorithms [3, 30, 38, 44], and random access

algorithms [25, 27, 42].

3.1.1 Our Contributions

This chapter introduces a novel framework for designing low-complexity throughput-

optimal scheduling algorithms in constrained queueing systems, by utilizing itera-

tive optimization methods approximating a “good” schedule (i.e., a maximum-weight

schedule). While the standard implementation of the MWS algorithm entails all

iterations of such a method at each service time, the scheduling algorithm in our

framework entails only one iteration of it at each service time, which means that the

computational time required to find a schedule decreases significantly. Furthermore,

we show that the scheduling algorithm preserves throughput-optimality. To build our

generic framework, we view steps of an iterative optimization methods as queries to

a black box that we formalize as an interactive oracle system. The input of the oracle

system depends on the current state of network system, and the output consists of

a schedule and “advice”, information used in the next step of the method. We de-

scribe four examples of the oracle system: random search (RS), Markov chain Monte

Carlo (MCMC), belief propagation (BP), and primal-dual methods (PDM). For in-

stance, for MCMC, the advice given by the oracle consists of the state of the Markov

chain and the current schedule. After formulating an oracle system from any itera-

tive optimization method, one can design a throughput-optimal and low-complexity

scheduling algorithm via interacting with it.

The intuitive reason why one step of an approximation method suffices for throughput-

optimality follows. This method seeks a schedule of maximum weight, which is a func-

tion of the queue lengths. We construct a weight function such that its value remains
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constant for long stretches of time. Therefore, although we only use one step of the

method at each service time, the schedule automatically approximates a maximum

weight schedule as time passes, which guarantees the throughput-optimality of the

algorithm. This underlying intuition is similar in spirit to that in [49, 52]. The main

difference is that while the authors in [49, 52] force the weight function value “vary

slowly” in real numbers, we let them “vary rarely” in integers. Because we introduce

an integer-valued weight function, we do not need to analyze “time-varying” systems,

which simplifies the throughput-optimality proof. More importantly, our proof is

robust in the sense that it is not sensitive to the given oracle systems, underlying

network structures, and arrival processes, as explained in Section 3.3.

Our generic framework overcomes several limitations of previous work. First,

most existing throughput-optimal algorithms [24, 47, 49, 52] rely on an underlying

network structure, and in principle, they are not easily applied to networks with

other structures. In addition, proving their throughput-optimality requires a unique

set of techniques for each algorithm. In contrast, our generic framework does not rely

on a network structure, and it guarantees throughput-optimality by only checking

simple algebraic conditions. Furthermore, the authors of [49, 52] considered only

Bernoulli arrival processes, and their proofs are not easily generalizable to other

arrival processes. However, the algorithm resulting from our framework is throughput-

optimal under any arrival processes with bounded second moments.

One way in which our framework can be used is to select a low-complexity,

throughput-optimal scheduling algorithm with good delay performance. Using our

framework, one can establish the throughput optimality of a family of scheduling

algorithms that interact with optimization methods and measure their delay perfor-

mance through simulation. Therefore, one can test which algorithm works best in

practice while theoretically guaranteeing throughput-optimality.
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3.1.2 Related Work

Simpler or distributed implementations of the MWS algorithm have been extensively

proposed in the literature. Tassiulas [58] provides the so-called “pick-and-compare”

algorithm, which is a linear-complexity version of the MWS algorithm but suffers from

bad delay performance. The work in this line also includes a variant of the MWS algo-

rithm by Giaccone, Prabhakar, and Shah [24] and a gossip-based algorithm by Modi-

ano, Shah, and Zussman [47]. However, these algorithms are specific to certain net-

work models and still require numerous information (or message) exchanges for each

new scheduling decision. Recently, even fully distributed random access algorithms

have been shown to achieve desired high performance (i.e., throughput-optimality)

in both wireless interference and buffered circuit switched network models [49, 52].

The main intuition underlying these results is that nodes in a network can adjust

their random access parameters dynamically using local information such as queue

lengths so that they can simulate the MWS algorithm asymptotically for throughput-

optimality. From an optimization point of view, under these algorithms, nodes run

a Markov chain Monte Carlo (MCMC) with time-varying parameters depending on

queue lengths. If the parameters change slowly enough, the authors of [52] proved

that algorithms sample a maximum-weight schedule (for throughput-optimality). We

note that the “pick-and-compare” algorithm and the random access algorithm can

also be understood as special cases of algorithms developed under our generic frame-

work using RS and MCMC oracles, respectively, and more details appear in Section

3.4.

Although several greedy algorithms reduce time complexity, they achieve only

some fraction of the maximal throughput region. For example, parallel iterative

matching [3] and iSLIP [44] have been shown to be 50% throughput optimal [16].

In addition, Kumar et al. [34] and Dimakis and Walrand [18] identified sufficient

conditions on the network topology for throughput-optimality. Joo et al. [30] and
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Leconte et al. [38] further analyzed these conditions to obtain fractional throughput

results for a class of wireless networks. However, these algorithms are generally not

throughput optimal and require multiple rounds of message exchanges between nodes.

3.1.3 Organization of the Chapter

Section 3.2 describes the constrained queueing system model of interest in this study

and the performance metric (i.e., throughput-optimality) for scheduling algorithms.

Section 3.3 provides the main results of this chapter: a generic framework for de-

signing a throughput-optimal and low-complexity scheduling algorithm that finds its

current schedule via interaction with an oracle system. It also states the throughput-

optimality proof with an associated key lemma. Section 3.4 introduces several ex-

amples of scheduling algorithms under our framework, and Section 3.5 presents the

formal proof of the key lemma.

3.2 Model and Performance Metric

3.2.1 Network Model

The constrained queueing system, a stochastic network system with service-level con-

straints, consists of many buffers that temporarily store packets (jobs) to be served.

Packets arrive at each buffer via an exogenous stochastic process and leave the sys-

tem after being served. At most one packet in each nonempty buffer can be served

at a time, and all packets have a unit service time. However, because of service

constraints, not all nonempty buffers can transmit their packets simultaneously, and

only certain subsets of the buffers can serve packets at the same time. We call these

subsets schedules, and every constrained queueing system has its own collection of

schedules. At each service epoch, any scheduling algorithm selects a schedule among

the collection, and nonempty buffers in the schedule process their packets. Our goal

is to design scheduling algorithms that require little computational time to choose a

schedule at each service epoch while maintaining high performance. Our performance
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metric introduced in the next section relates to the number of packets (queue length)

in each buffer. For the next step, we set up a mathematical model that represents

the above network system and describe how the queue length of each buffer changes

as time evolves.

Our model is a constrained queueing system with n buffers in time slotted by

service epochs (i.e., time is denoted by a nonnegative integer variable t ∈ Z+), and at

each time t, a schedule is selected by a scheduling algorithm. Buffers are indexed by

elements in the set I (i.e., |I| = n), and the queue length of buffer i ∈ I is denoted

by Qi(t). Now, we show how Qi(t + 1) changes from Qi(t) by arrivals and service.

During time interval [t, t + 1), the queue length of buffer i increases by the number

of (external) arrival packets at buffer i and decreases by 1 if a selected schedule (a

subset of buffers) at time t contains buffer i. For a mathematical illustration of this

observation, we denote the number of arrivals to buffer i during [t, t + 1) by Ai(t)

and depict a schedule by an n-dimensional binary vector s =
(
si : i ∈ I

)
such that

si = 1 if buffer i is in the schedule, and si = 0 otherwise. We also let S ⊂ {0, 1}n be

the set of all available schedules and S(t) ∈ S the schedule, which could be random

according to a scheduling algorithm, during [t, t + 1) for t ∈ Z+. Then, the above

observation is expressed as

Qi(t+ 1) = Qi(t) + Ai(t)− Si(t) I{Qi(t)>0}, (15)

where IA is an indicator function of set (event) A. We close this section with key

assumptions relating to the external arrivals of packets:
{
Ai(t) ∈ Z+ : t ∈ Z+, i ∈ I

}

are independent random variables and, for fixed i ∈ I,
{
Ai(t) : t ∈ Z+

}
are identically

distributed with

E[Ai(t)] = λi, Var[Ai(t)] ≤ σ2,

where λi ∈ [0, 1] and σ are positive constants. Specifically, λi is said to be the arrival

rate for buffer i ∈ I.

57



3.2.2 Performance Metric

Our goal is to design high-performance scheduling algorithms that find a schedule

S(t) ∈ S at each time t ∈ Z+ in little computational time. In this chapter, a

scheduling algorithm has high performance, called throughput-optimality if it ensures

that queues do not blow up as long as the vector of arrival rates is within the system

maximal stability region.

To describe it formally, we define the set of allowed schedules as follows:

C :=

{∑

s∈S

αs s :
∑

s∈S

αs = 1 and αs ≥ 0 for all s ∈ S

}
,

that is, the convex hull of all available schedules in S. The set C essentially contains

all effective service rates induced by any scheduling algorithm. Therefore, if queues

in a system with arrival rate vector λ are stable by any scheduling algorithm, there

exists s ∈ C such that λ ≤ s component-wise; we call such λ admissible. Also, when

arrival rate vector λ is strictly less than some s in C, we say λ is strictly admissible,

and the set of all strictly admissible arrival rate vectors is denoted by Λo:

Λo :=
{
λ ∈ Rn

+ : λ < s, for some s ∈ C
}
.

Thus, a throughput-optimal scheduling algorithm is able to make a system stable for

any arrival rates λ ∈ Λo, which is formally stated as follows.

Definition 3.1. A system is stable if

lim inf
t→∞

∑

i∈I

Qi(t) <∞ with probability 1,

i.e., the total queue length remains finite with probability 1.

Definition 3.2. A scheduling algorithm is called throughput-optimal if the system

with arrival rates vector λ ∈ Λo is stable under the scheduling algorithm.

To prove that scheduling algorithms from our framework are throughput optimal,

we first define an appropriate underlying Markov chain and show that a subset of
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states with bounded total queue length is positive recurrent utilizing the popular

Lyapunov-Foster criteria, which is introduced in Appendix 3.A.

The remainder of this section briefly introduces a well-known throughput-optimal

algorithm, called a maximum weight scheduling algorithm. As in previous section,

a constrained queueing system is represented by (I,S): I is an index set for buffers

(|I| = n), and S is the set of all schedules that are n dimensional binary vectors.

For such system, the maximum-weight scheduling (MWS) algorithm [56] selects a

solution (schedule) to the following optimization problem:

max

{
s ·w :=

∑

i∈I

siwi : s ∈ S

}
, (16)

where w = W (t) is an n-dimensional vector called a weight vector and s ·w is called

the weight of schedule s at time t. Namely, the optimization problem (16) finds a

maximum-weight schedule in S. Weight vector W (t) at time t depends on queue

length vector Q(t) :=
(
Qi(t) : i ∈ I

)
, specifically, W (t) can be Q(t) itself.

3.2.3 A Simple Example From Chapter 2

The parallel-queueing system, which we study in Chapter 2, is an example of con-

strained queueing systems. In this section, we represent the parallel queueing system

as a constrained queueing system, find all strictly admissible arrival rate vectors,

and argue that the longest-queue-first scheduling algorithm is the maximum weight

scheduling algorithm.

Since the system consists of n buffers, we index the buffers by I = {1, 2, . . . , n}.

For simplicity, we assume that the arrival process is Poisson with rate λi for buffer

i and the service rate is 1. For buffer i, the probability that the number of arrivals

between service epochs t and t+ 1 is exactly k is

P[Ai(t) = k] =

(
λi

λi + 1

)k
1

λi + 1
,

because the arrival processes are Poisson with rate λi and the time duration between

two consecutive service epochs follows i.i.d. exponential distribution with rate 1.
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Therefore, the number of arrivals has geometric distribution and the arrival rate (the

expected number of arrivals between two consecutive service epochs) is λi for each

buffer.

At every service epoch, only one buffer is selected, so an available schedule is

denoted by a binary vector with only one nonzero entry. Therefore, the set of allowed

schedules is

C = {(α1, . . . , αn) : αi ≥ 0, α1 + · · ·+ αn = 1} ,

so arrival rate vector λ = (λ1, . . . , λn) is strictly admissible if λ1 + · · ·+ λn < 1.

Lastly, at every time t, if we set weight vector W (t) = Q(t), the maximum weight

scheduling algorithm chooses a buffer with longest queue, which is the longest-queue-

first scheduling algorithm.

3.3 Main Results: Scheduling using Interactive Oracles

This section presents our main results, a general framework for designing low-complexity

scheduling algorithms for constrained queueing systems and the sufficient conditions

for throughput-optimality of the algorithms. As mentioned in Section 3.2.2, at every

epoch t, the maximum weight scheduling algorithm for a constrained queueing sys-

tem (I,S) needs to solve optimization problem (16). For weight vector w, a solution

to optimization problem (16) can be obtained by various methods according to the

structure of network system (I,S). Such a method usually consists of many steps

(iterations) that induce a long computation time at each service epoch in the MWS

algorithm. As the MWS algorithm, the scheduling algorithm in our framework uti-

lizes an iterative method for optimization problem (16), but uses only one step per a

service epoch instead of all steps in the method. Thus, the algorithm takes little com-

putational time to find a schedule at each service epoch. In addition, proper choices

of weight vector W (t) at each service epoch guarantees the throughput-optimality
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of the algorithm. In the remainder of this section, we describe the algorithm in de-

tail: Section 3.3.1 introduces a general (abstract) concept of one step (iteration) of

the method that solves problem (16), Section 3.3.2 describes our scheduling algo-

rithm and conditions that guarantee the throughput-optimality of the algorithm, and

Section 3.3.3 presents the proof outline of our main theorem.

3.3.1 Oracle System

To develop throughput-optimal, low-complexity scheduling algorithms for a con-

strained queueing system represented by (I,S), we propose an algorithm that finds

a schedule in S at each service epoch by utilizing a black box called an oracle sys-

tem. The oracle system is motivated by one iteration in (randomized or determinis-

tic) iterative methods for finding an (approximate) optimal solution to optimization

problem (16). Typically, at every iteration, an iterative method updates its current

solution (schedule) using information from the previous iteration (and weight vector);

we refer to such information transmitted between two consecutive iterations advice.

Thus, an iterative method can be understood as a process interacting with a black

box that receives advice as an input and outputs an updated schedule and new ad-

vice used in the next iteration; that is, the iterative method maintains advice (and

a weight vector), and at each iteration, it sends current advice to the black box and

replaces the current advice and the current schedule with outputs from the black box.

We introduce a generalized definition of the black box in an iterative method, the

oracle system, which has the following input and output:

◦ The oracle system receives advice d and weight vector w =
(
wi ∈ Z+ : i ∈ I

)

as inputs,

◦ The oracle system outputs (or returns) schedule S ∈ S and updated advice D̂.

We denote the set of all advice by D. Since the oracle system is similar to one step

(iteration) in an iterative method that finds an (approximate) solution to optimization
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problem (16), when we consecutively interact with the oracle system while fixing a

weight vector, we obtain an approximate solution. To state this argument formally,

when the oracle system takes advice d and weight vector w as inputs, we denote

outputs by S = Soracle(d) = Soracle(w,d) and D̂ = Doracle(d) = Doracle(w,d), where

the oracle can generate random outputs in general. Then, we assume that the oracle

system satisfies the following condition:

C0. For any η, δ ∈ (0, 1), if wmax = maxi∈I wi is large enough, there exists h =

h(wmax, η, δ) such that for any t ≥ h and any advice d ∈ D,

P
[
Soracle

(
D

(t)
oracle(d)

)
·w ≥ (1− η) max

{
s ·w : s ∈ S

}]
≥ 1− δ,

where D
(t)
oracle is the function composing Doracle “t times” (i.e., D

(t)
oracle = D

(t−1)
oracle ◦

Doracle).

Condition C0 implies that after h interactions, the oracle system generates schedule

s that is an approximate solution to (16).

3.3.2 Scheduling Algorithms

This section describes how our scheduling algorithm interacts with an oracle sys-

tem that corresponds to one step (iteration) in an iterative method for optimization

problem (16). The oracle system receives advice and a weight vector as inputs. Our

scheduling algorithm maintains adviceD(t) and weight vectorW (t) along with queue

length vector Q(t). Then, at service epoch t, current advice D(t) and current weight

vector W (t) are sent to the oracle system, which returns updated advice D(t+1) and

schedule S(t). Then, schedule S(t) and arrival vector A(t) during [t, t+1) determine

queue length vector Q(t+ 1) at time t+ 1 by (15).

Therefore, the time-complexity of the scheduling algorithm is precisely depends

on how long the oracle system takes to process a query (i.e., the time-complexity of

one step of an iterative algorithm), which is typically very small, as we see examples
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Oracle 
System

�
D(t), W (t), Q(t)

��
D(t),W (t)

�

�
D(t + 1), S(t + 1)

�

�
D(t + 1), W (t + 1), Q(t + 1)

�

Figure 3.1: Scheduling with an interactive oracle system.
At each service epoch, a query consisting of current advice D(t) and weight W (t) is
sent to the oracle system. The oracle returns updated advice D(t+ 1) and schedule
S(t+ 1).

in Section 3.4. That is, the algorithm has low complexity. In addition, throughput-

optimality is achieved by a proper choice of weight vector W (t) as a function of

queue length vector Q(t). We ensure that when Q(t) is large, W (t) does not change

for sufficient amount of time so that the oracle system returns a maximum-weight

schedule with respect to W (t). This guarantees that our scheduling algorithms are

throughput optimal.

Next, we explain how to define W (t). For each i ∈ I, we let Wi(t) be an integers

in the interval
[
Ui(t)− 2, Ui(t) + 2

]
, where

Ui(t) := max
{
f
(
Qi(t)

)
, g
(
Qmax(t)

)}

for positive real-valued functions f, g : R+ → R+ and Qmax(t) = maxi∈I Qi(t). At

t = 0, we define Wi(0) be the closest integer to Ui(0) and renew Wi(t+ 1) for t ≥ 0 as

follows: For i ∈ I such that the distance between previous weight Wi(t) and Ui(t+ 1)

is greater than 2, Wi(t + 1) becomes the closest integer to Ui(t + 1), and Wi(t + 1)
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is the same as Wi(t) for the other i’s. The following is a formal description of the

procedure at each service time.

◦ S(t+ 1) = Soracle(W (t),D(t)),

◦ D(t+ 1) = Doracle(W (t),D(t)),

◦ Wi(t+ 1) is the closest integer to Ui(t+ 1) if

|Wi(t)− Ui(t+ 1)| > 2,

and Wi(t+ 1) = Wi(t) otherwise.

Now, we are ready to state our main theorem, which introduces the sufficient

condition for functions f and g to guarantee throughput-optimality of the algorithms.

Theorem 3.3. The above scheduling algorithm is throughput-optimal if functions

f, g, h satisfy condition C0 in addition to the following conditions:

C1. f and g are increasing, differentiable, and concave.

C2. limx→∞
g(x)
f(x)

= 0, and limx→∞ g(x) =∞.

C3. f(0) = 0.

C4. limx→∞ f
′(x) = limn→∞ g

′(x) = 0.

C5. For any fixed η, δ > 0,

lim
x→∞

h(f(x), η, δ)

x
= 0.

C6. There exists c ∈ (0, 1) such that for any fixed η, δ > 0,

lim
x→∞

f ′
(
f−1 (g ((1− c)x))

)
h (f((1 + c)x), η, δ) = 0.
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We provide some intuitions underlying the above conditions. Conditions C1, C3, and

C4 are technical conditions that make our analysis using a Lyapunov function easier.

Condition C2 implies that f should grow faster than g. Therefore, weight Wi(t) ≈

Ui(t) = max
{
f(Qi(t)), g(Qmax(t))

}
is determined by f and g for large and small queue

Qi(t), respectively. To establish throughput-optimality, we prove that if the maximum

queue length Qmax(t) is large, weight function Wi(t) remains constant for long enough

stretches of time so that the interactive oracle produces an approximation solution of

(16), i.e., achieves the maximum weight schedule. To this end, we need the property

that Ui(t) changes slowly, where conditions C5 and C6 ensure it for maximum and

non-maximum queues, respectively, as explained in what follows. From Condition C5,

f should grow slowly with respect to h, i.e., Ui(t) = f
(
Qmax(t)

)
for maximum queues

change slowly. The change of Ui(t) for other non-maximum queues is larger than

that for maximum queues, but the term f ′
(
f−1 (g ((1− c)x))

)
in condition C6 will

be used to bound the change of Ui(t) for non-maximum queues. Namely, condition

C6 is necessary to guarantee that Ui(t) for non-maximum queues changes slowly with

respect to h. Note that due to condition C6, g should grow “not too slowly”.

Our proof formalizes the above intuitions. The proof outline of the above theorem

is presented in the following section, and detailed proofs of key lemmas are given in

Section 3.5. In Section 3.4, we present several specific examples of throughput-optimal

and low-complexity scheduling algorithms under Theorem 3.3.

3.3.3 Proof Outline of Main Theorem

We will utilize Lemma 3.14 in Appendix 3.A to show the desired throughput-optimality.

To this end, we first define a Markov chain describing the evolution of the network

system. Under our scheduling algorithm, at time t, we retain advice D(t), weight

vector W (t), and queue length vector Q(t), all of which depend on only the previous
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ones: D(t− 1), W (t− 1), and Q(t− 1). Therefore,

{
X(t) := (D(t),W (t),Q(t))

}
t∈Z+

is a Markov chain on the state space

Ω :=

{
(d,w, q) ∈ A× Zn+ × Zn+ : |wi − ui| ≤ 2,where ui = max

{
f(qi), g(qmax)

}}
.

For x = (d,w, q) ∈ Ω, we consider the following Lyapunov function:

L(x) :=
n∑

i=1

∫ Qi

0

f(s) ds.

Since limx→∞ f(x) =∞ (i.e., condition C2), we have that supx∈Ω L(x) =∞ and L is

bounded if and only if queue lengths are bounded. Therefore, the positive recurrence

of Bγ =
{
x ∈ Ω : L(x) ≤ γ

}
for large enough γ guarantees the stability of the

system, i.e., queue lengths remain finite with probability 1.

To establish the positive recurrence of Bγ, we define functions τ, κ : Ω→ R+ that

satisfy (56) and conditions L1–L4 in Lemma 3.14 when λ ∈ Λo.

First, observe that for any λ ∈ Λo, there exists ε > 0 and
(
αs : s ∈ S

)
∈ [0, 1]|S|

so that
∑

s∈S

αs = 1− ε < 1 and λ <
∑

s∈S

αss. (17)

For state x = (d,w, q) ∈ Ω, we define

τ(x) =

⌊
1

(n+ σ
√
n) + 1

min

{
1

f ′ (f−1(g((1− c)qmax))))
, c qmax

}⌋
, (18)

κ(x)

τ(x)
=

(
ε

2
(1− α)(1− β) +

2n

1− c
(
(1− β)α + β

))
f((1− c)qmax)

− n

(
f(qmax)

τ(x)
+ (σ2 + 2)f ′(0) + n+ σ

√
n+ 1

)
, (19)

where σ2 is an upper bound of variance of Ai(t), c is the constant appearing in

condition C6, bxc the largest integer not greater than x, and α, β ∈ (0, 1) constants

satisfying

ε

2
(1− β)(1− α)− 2n(β + (1− β)α)

1− c
> 0.
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For example, one can choose α = β = ε(1−c)
32n

. Using the above functions, we establish

the following lemma, the proof of which is presented in Section 3.5.

Lemma 3.4. Given arrival rate vector λ ∈ Λo and initial state x = (q,w, q) ∈ Ω

with large enough qmax = maxi∈I qi, we have

E
[
L(X

(
τ(x))

)
− L(0) : X(0) = x

]
≤ − κ(x). (20)

We explain why we define τ(x) and κ(x) as in (18) and (19), respectively, in Section

3.5. In essence, we define τ(x) large enough so that the weights of schedules are close

to the maximum weight mostly in the time interval [0, τ(x)]. The definition (19) of

κ(x)/τ(x) consists of the first positive and second negative terms. If the weights of

schedules are close to the maximum weight, the negative draft of L occurs, which

contributes the first positive term of (19). The second negative term of (19) bounds

the possible positive draft of L for other cases. Moreover, from Lemma 3.4, without

loss of generality, one can assume that (20) holds for every x ∈ Ω (i.e., (56) of Lemma

3.14 holds): if it does not hold for x with small qmax, one can redefine τ(x) = κ(x) = 0

for those cases, and this redefining does not affect the following arguments that verify

Bγ is positive recurrent.

Now, we check that τ and κ satisfy conditions L1–L4 of Lemma 3.14:

L1. lim infL(x)→∞ κ(x) > 0.

L2. infx∈Ω κ(x) > −∞.

L3. supx∈Bγ τ(x) <∞ for all γ ∈ R+.

L4. lim supL(x)→∞ τ(x)/κ(x) <∞.

Toward this, we investigate limits of τ(x) and κ(x)/τ(x) as L(x)→∞:

lim
L(x)→∞

τ(x) = ∞ (21)

lim
L(x)→∞

κ(x)/τ(x) = ∞, (22)
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the proof of which are elementary and given in Appendix 3.B for completeness. The

above two equations imply that

lim
L(x)→∞

κ(x) = ∞ (23)

which verifies condition L1 (i.e., infL(x)→∞ κ(x) > 0). In addition, since κ, τ are

bounded as long as L is bounded, condition L3 (i.e., supx∈Bγ τ(x) <∞) follows and

(23) implies condition L2 (i.e., infx∈Ω κ(x) > −∞). Finally, (22) implies condition

L4 (i.e., lim supL(x)→∞ τ(x)/κ(x) <∞). This completes the proof of Theorem 3.3.

3.4 Applications

This section shows the wide applicability of our framework by illustrating several

throughput-optimal and low-complexity scheduling algorithms interacting with var-

ious oracle systems. As we mentioned in Section 3.3.1, oracle systems are derived

from iterative methods for solving optimization problem (16):

max

{
s ·w :=

∑

i∈I

siwi : s ∈ S

}

and such methods depend on the underlying structure of constrained queueing system

(I,S). Thus, to illustrate an oracle system from an iterative method, we begin

by introducing specific network systems in which the method finds an approximate

solution to (16) with high probability. Then, we construct the oracle system by

identifying advice space A, inputs, and outputs, in addition to finding function h

that satisfies condition C0. Finally, we provide explicit functions f and g and prove

that they satisfy conditions C1–C6 of Theorem 3.3, from which the throughput-

optimality of the scheduling algorithm immediately follows as a corollary.

3.4.1 Random Search (RS): Pick-and-Compare

The first oracle system that we introduce utilizes the naive random search (RS)

method, which maintains a current schedule s ∈ S. At each iteration, the method
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picks a new vector Ŝ ∈ {0, 1}n uniformly at random and, if Ŝ is in S and the weight

of Ŝ is greater than that of s, s is replaced by Ŝ. Now, we formally describe the

oracle system called RS oracle system.

RS oracle system. The advice space of the RS oracle system is S (i.e., D = S).

When the oracle system receives advice d = s ∈ A and weight vector w =
(
wi :

i ∈ I
)

as inputs, it returns Soracle(w, s) and Doracle(w, s) = Soracle(w, s) obtained as

follows:

1. Pick Ŝ ∈ {0, 1}n uniformly at random.

2. Set Soracle(w, s) =





Ŝ if Ŝ ∈ S and Ŝ ·w > s ·w

s otherwise

.

At each query, the oracle system returns a maximum-weight schedule with a proba-

bility of at least 1/2n, so function h in condition C0 can be defined as

h(Wmax, η, δ) :=
log δ

log (1− 1/2n)
, (24)

which is independent of weight w. The following corollary shows how we choose

functions f and g to guarantee the throughput-optimality of the scheduling algorithm

with the RS oracle system.

Corollary 3.5. The scheduling algorithm described in Section 3.3.2 using the RS

oracle system is throughput-optimal if

f(x) = xa, g(x) = xb, and 0 < b < a < 1.

Proof. It is elementary to check conditions C1–C5 of Theorem 3.3 for h(wmax, η, δ)
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in (24). Condition C6 of Theorem 3.3 can be derived as follows: for 0 < c < 1,

lim
x→∞

f ′
(
f−1 (g ((1− c)x))

)
h (f((1 + c)x), η, δ)

= lim
x→∞

log δ

log (1− 1/2n)
a ((1− c))

b(a−1)
a x

b(a−1)
a

= 0.

Since functions f and g satisfy conditions C1–C6, the scheduling algorithm with the

RS oracle system is throughput optimal according to Theorem 3.3.

3.4.2 Markov Chain Monte Carlo (MCMC)

The second oracle system comes from the Markov chain Monte Carlo (MCMC)

method, which solves the optimization problem (16) for the following interference

model in wireless networks.

Wireless network model. An interference model in a wireless network is rep-

resented by an undirected graph G = (V , E) with |V| = n (e.g., see [49, 52]). V

represents the set of links or queues (i.e., I = V), and they share an edge if they can-

not transmit their packets simultaneously. Therefore, the set of all available schedules

S is defined as

S =
{
s ∈ {0, 1}n : si + sj ≤ 1, ∀ (i, j) ∈ E

}
. (25)

For buffer i ∈ I, we define neighborhood N (i) as the set of buffers, which cannot

transmit packets when buffer i processes a packet: N (i) := {j ∈ I : (i, j) ∈ E}.

Figure 3.4.2 illustrates a wireless network in a grid interference topology with nine

buffers.

MCMC oracle system. In the MCMC oracle system, the advice space is D = S.

If the oracle system receives advice d = s and weight vector w as inputs, it returns

Soracle(w,d) = Ŝ and Doracle(w,d) = Ŝ, obtained from the following procedure:
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Figure 3.2: Wireless network with n = 9 queues in a grid interference topology.
Available schedules are {1, 3, 5, 7, 9}, {1, 3, 8}, {2, 4, 6, 8}, {2, 4, 9}, {2, 6, 7}, {2, 7, 9},
and so on. In this example, N (4) = {1, 5, 7}.
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1. Choose buffer i ∈ I uniformly at random, and set

Ŝj = sj, for all j 6= i.

2. If sj = 1 for some j ∈ N (i), then set Ŝi = 0.

3. Otherwise, set

Ŝi =





1 with probability exp(wi)
1+exp(wi)

0 otherwise

.

Then, existing results relating to the mixing time of MCMC show that condition C0

holds with

h(wmax, η, δ) = eC1 wmax

(
C2 + log

(
1

ηδ

))
, (26)

where C1 = C1(n), C2 = C2(n) are some (“n-dependent”) constants independent of

wmax. The proof of (26) is a direct consequence of Lemmas 3 and 7 in [52], and

we omit the details because of space constraints. We can select functions f and g

according to the following corollary so that the scheduling algorithm with the MCMC

oracle system is throughput optimal.

Corollary 3.6. The scheduling algorithm described in Section 3.3.2 using the MCMC

oracle system is throughput-optimal if

f(x) = (log(x+ e))a − 1 and g(x) = (log(x+ e))b − 1,

where 0 < a2 < b < a < 1.

Proof. It is elementary to check conditions C1–C4 of Theorem 3.3. Condition C5 is

from (26) and f(x) = (log(x+ e))a − 1:

h(f(x), η, δ)

x
=

(
C2 + log

(
1

ηδ

))
× eC1(log(x+e))a−log x−C1 x→∞→ 0.
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Furthermore, condition C6 can be derived as follows:

f ′
(
f−1(g((1− c)x)))h(f((1 + c)x)

)

=
a (C2 + log (1/(ηδ)))(

log((1− c)x+ e)
(1−a)b
a

) × eC1(log((1+c)x+e))a−log((1−c)x+e)
b
a−C1 x→∞→ 0.

This completes the proof of Corollary 3.6.

We note that the scheduling algorithm described in Section 3.3.2 using the MCMC

oracle system is a discrete-time version of the CSMA algorithm in [49, 52].

3.4.3 Belief Propagation (BP)

We derive the third oracle system from the belief propagation (BP) method, a pop-

ular heuristic iterative method for solving inference problems arising in probabilistic

graphical models [31]. For the provable throughput-optimality of the scheduling algo-

rithm with the BP oracle system, we introduce a special constrained queueing system,

called input-queued switch model [34].

Input-queued switch model. An input-queued switch consists of m input ports

and m output ports. An input port has m buffers each of which stores packets to an

output port. Thus, the total number of buffers in the system is n = m2. Scheduling

constraints in the input-queued switch as follows:

1. Every input port can transmit at most one packet.

2. Every output port can receive at most one packet.

When an output port receives a packet, the packet leaves the system. We represent

the above input-queue switch as an undirected complete bipartite graph of left vertices

L, right vertices R, and edges E = {(i, j) : i ∈ L, j ∈ R}, where |L| = |R| = m.

Then, each buffer is dented by (i, j) ∈ E , so I = E . The set of all possible schedules

is
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S =




s ∈ {0, 1}E :

∑
j:(i,j)∈E sij ≤ 1 ∀i ∈ R,

∑
i:(i,j)∈E sij ≤ 1 ∀j ∈ L




. (27)

One can observe that this model is a special case of the wireless network model

described in the previous section.

1

2

3

7

8

9

4

5

6

Figure 3.3: Input-queued switch with m = 3 input ports, m = 3 output ports, and
m2 = 9 buffers.
Available schedules are {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, {2, 6, 7}, {3, 4, 8}, and {3, 5, 7}.

BP oracle system. In the BP oracle system, the advice space is D = Z2|E|
+ × S.

For the inputs of weight vector w =
(
w(i,j) : (i, j) ∈ E

)
and advice d = (m, s) ∈ A,

where m = [mi→j,mj→i : (i, j) ∈ E ], the oracle system outputs Soracle(w,d) = Ŝ and

Doracle(w,d) = (M̂ , Ŝ) calculated as follows:

1. For each (i, j) ∈ E , set

Ŝ(i,j) =





0 if mi→j +mj→i > w′(i,j)

1 otherwise

M̂i→j = max
k 6=j:(i,k)∈E

(
w′(i,k) −mk→i

)
+
,
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where

w′(i,j) := w(i,j) + r(i,j) and (x)+ :=





x if x ≥ 0

0 otherwise

.

2. If Ŝ /∈ S, reset Ŝ = s.

In the above procedure, we need to choose
(
r(i,j) : (i, j) ∈ E

)
∈ [0, 1]|E| such that

s∗ ∈ arg maxs s ·w′ = arg maxs s ·w is unique, and ξ ≤ s∗ ·w′ −maxs 6=s∗ s ·w′ for

some constant ξ > 0. For example, we can set

r(i,j) = 1
2i2m+j , where i, j ∈ {1, . . . ,m}.

Then, from work by Bayati et al. [6] and Sanghavi et al. [51], condition C0 holds

with

h = h(wmax, η, δ) = O(wmax/ξ).

The following corollary suggests to the choice of functions f and g so that the schedul-

ing algorithm with the BP oracle system is throughput optimal.

Corollary 3.7. The scheduling algorithm described in Section 3.3.2 using the BP

oracle system is throughput-optimal if

f(x) = xa, g(x) = xb, and 0 <
a2

1− a
< b < a <

1

2
.

Proof. It is elementary to check conditions C1–C5 of Theorem 3.3, where h(Wmax, η, δ) =

O(Wmax/ξ). Condition C6 of Theorem 3.3 can be derived as follows: for c > 0,

lim
x→∞

f ′
(
f−1 (g ((1− c)x))

)
h (f((1 + c)x), η, δ)

= lim
x→∞

C · x
b(a−1)
a ((1 + c)axa + 1) = 0,

where C is some constant depending only on ξ, c, a, b and the last equality is from

0 < b, a < 1 and b > a2

1−a . This completes the proof of Corollary 3.7.
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We also note that one can design the BP oracle in various ways, one of which is

the following:

1. For each (i, j) ∈ E , set

Ŝ(i,j) = 0

b(i,j) = w′(i,j) −mi→j −mj→i

M̂i→j = max
k 6=j:(i,k)∈E

(
w′(i,k) −mk→i

)
+
.

2. Choose (i, j) ∈ E so that b(i,j) is the largest among those which Ŝ ∈ S after

resetting Ŝ(i,j) = 1. Reset Ŝ(i,j) = 1, and keep this “greedy” procedure until no

edge is found.

While the first BP oracle system simply checks whether the “belief”, b(i,j), is positive

or not, the second BP oracle system determines schedule Ŝ(t) greedily based on
(
b(i,j) : (i, j) ∈ E

)
. When we use the same set of functions f and g in Corollary 3.7,

the scheduling algorithm with the above second BP oracle system is also throughput

optimal, and the proof is identical to that of the first BP oracle system. We note

that a similar version of the scheduling algorithm using the second oracle system

was first studied in [4] heuristically, but our results (Theorem 3.3) provide its formal

throughput-optimality proof, which is missing in [4].

3.4.4 Primal-Dual Method (PDM)

We introduce the fourth oracle system, called the primal-dual method (PDM). For a

detailed description of the oracle, we first introduce a primary interference constrained

wireless model.
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Primary interference constrained wireless network model. This network

model is represented by a directed graph, G = (V , E) with |E| = n, and the set

of available schedules S is defined as

S =



s ∈ {0, 1}

E :
∑

j:(j,i)∈E

sji ≤ 1,
∑

j:(i,j)∈E

sij ≤ 1, ∀ i ∈ V



 . (28)

The above “matching” scheduling constraint has been popularly used for modeling

primary interference in wireless networks [50], which is also a special case of the

wireless network model in Section 3.4.2.

1 2

43

Figure 3.4: Primary wireless network.
Available schedules are {1→ 2, 3→ 4}, {1→ 4}, {2→ 4, 3→ 1}, and so on.

PDM oracle system. The PDM method is an iterative mechanism introduced by
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Edmonds [19, 20] which maintains primal and dual variables of a Linear Program-

ming (LP), and updates them until the primal solution u ∈ S reaches the maximum

weight schedule (i.e., matching). At each iteration, the primal solution always forms a

matching and the dual solution v is feasible, where each edge in the primal matching

should be ‘tight’ with respect to the dual solution (see the most recent implementa-

tion of the Edmonds’ algorithm by Kolmogorov [33] for more details). Formally, in

the PDM oracle system, advice space D is the set of primal and dual variables, and for

advice d = (u,v) ∈ D, the oracle outputs Soracle(w,d) = Ŝ and Doracle(w,d) = D̂,

which are chosen as follows:

1. If the dual solution v is not feasible, make it feasible by re-normalizing.

2. If some edge in the primal solution u is not tight with respect to the dual

solution, remove it.

3. Obtain new primal and dual solutions û, v̂, as described in [33].

4. Set D̂ = (û, v̂) and Ŝ = û.

It is well known that condition C0 holds with h = h(wmax, η, δ) = O(n). Then, the

following theorem suggests how to select functions f and g so that the scheduling

algorithm with the PDM oracle system is throughput optimal.

Corollary 3.8. The scheduling algorithm described in Section 3.3.2 using the PDM

oracle system is throughput-optimal if

f(x) = xa, g(x) = xb, and 0 < b < a < 1.

Proof. It is elementary to check conditions C1–C5 of Theorem 3.3, for h(wmax, η, δ) =

O(n). Condition C6 of Theorem 3.3 can be derived as follows: for 0 < c < 1, since h
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is independent on wmax,

lim
x→∞

f ′
(
f−1 (g ((1− c)x))

)
h (f((1 + c)x), η, δ)

= lim
x→∞

h(x, η, δ) a ((1− c))
b(a−1)
a x

b(a−1)
a = 0.

Because f and g satisfy all conditions in Theorem 3.3, the scheduling algorithm with

the PDM oracle system is throughput optimal.

3.5 Proof of Main Lemma

In this section, we prove Lemma 3.4 showing the following negative drift property of

L:

E
[
L(X(τ(x)))− L(0) |X(0) = x

]
≤ − κ(x), (29)

for arrival rate vector λ ∈ Λo and initial state x = (d,w, q) ∈ Ω with large enough

qmax := maxi∈I qi.

Proof outline. The proof consists of several steps with associated lemmas and

propositions. Before we detail the proof, we summarize our high-level strategy to

prove Lemma 3.4.

First, we introduce a random variable ∆(x) such that

E
[
L(X(τ(x)))− L(0) |X(0) = x

]
≤ E

[
∆(x) |X(0) = x

]
+O(1).

Then, we define an event E1 that occurs with high probability, and on the event, we ob-

tain an upper bound of E
[
∆(x) |X(0) = x

]
, which is formally stated in Lemma 3.10.

This leads to the proof of the desired inequality (29), where the definition (19) of

κ(x) is used. To prove Lemma 3.10, we show that the weight W (t) ≈ f(Q(t)) does

not change many times on [0, τ(x)] for large enough qmax under E1, which is formally

stated in Proposition 3.11, and in its proof, we define τ(x) appropriately as in (18).

Since W (t) remains fixed for long enough time on [0, τ(x)], the oracle satisfying con-

dition C0 returns schedules with weights close to the maximum weight mostly in the
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time interval, which is formally stated in Proposition 3.12. This leads to the proof of

Lemma 3.10.

We provide the proofs of Lemma 3.10, Proposition 3.11, and Proposition 3.12 in

Section 3.5.2, Section 3.5.3, and Section 3.5.4, respectively.

3.5.1 Proof of Lemma 3.4

In this subsection, we provide the proof of Lemma 3.4 apart from a key lemma,

Lemma 3.10. For notational simplicity, we use L(t) to denote L(X(t)). We start

with the following proposition, the proof of which is quite standard in the literature

(e.g., see [56]).

Proposition 3.9. For the Markov chain {X(t) : t ∈ Z+} defined in Section 3.3.3,

we have

L(t+ 1)− L(t) =
n∑

i=1

∫ Qi(t+1)

Qi(t)

f(s) ds

≤ A(t) · f(Q(t))− S(t) · f(Q(t)) + f ′(0)

(
n∑

i=1

Ai(t)
2 + n

)
, (30)

where f
(
Q(t)

)
=
(
f(Qi(t)) : i ∈ I

)
.

Proof. It is sufficient to show that
∫ Qi(t+1)

Qi(t)

f(s) ds ≤ f(Qi(t))Ai(t)− f
(
Qi(t)

)
Si(t) + f ′(0)

(
A2
i (t) + 1

)
, ∀i ∈ I. (31)

We verify (31) by cases: Qi(t+ 1) ≥ Qi(t) and Qi(t+ 1) < Qi(t).

First, assume that Qi(t + 1) ≥ Qi(t). Since f is convex and f ′ is non-increasing,

we obtain

f(s) ≤ f(Qi(t)) + f ′(Qi(t))(s−Qi(t))

≤ f(Qi(t)) + f ′(0)(s−Qi(t)) ≤ f(Qi(t)) + f ′(0)Ai(t),

for all Qi(t) ≤ s ≤ Qi(t+ 1). Therefore, we conclude that
∫ Qi(t+1)

Qi(t)

f(s)ds ≤
(
f(Qi(t)) + f ′(0)Ai(t)

)(
Qi(t+ 1)−Qi(t)

)

≤ f(Qi(t))Ai(t)− f(Qi(t))Si(t) + f ′(0)Ai(t)
2,
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which shows (31) holds when Qi(t+ 1) ≥ Qi(t).

Second, suppose that Qi(t + 1) < Qi(t). Then, because f is convex and f ′ is

non-increasing, we have

f(Qi(t)) ≤ f(s) + f ′(s)(Qi(t)− s) ≤ f(s) + f ′(0)(Qi(t)− s), ∀s ∈ [Qi+1(t), Qi(t)],

so we obtain

−f(s) ≤ −f(Qi(t))+f ′(0)(Qi(t)−s) ≤ −f(Qi(t))+f ′(0), ∀s ∈ [Qi+1(t), Qi(t)],

where we use Qi+1(t) ≥ Qi(t)− 1 for the last inequality. This inequality implies that

∫ Qi(t+1)

Qi(t)

f(s) ds =

∫ Qi(t)

Qi(t+1)

−f(s) ds

≤
∫ Qi(t)

Qi(t+1)

−f(Qi(t)) + f ′(0) ds

=

∫ Qi(t+1)

Qi(t)

f(Qi(t))− f ′(0) ds

≤ f(Qi(t))Ai(t)− f(Qi(t))Si(t) + f ′(0)

where the last inequality follows from Qi(t+ 1)−Qi(t) ≥ −1. This inequality verifies

(31) for the case of Qi(t+ 1) < Qi(t).

When one takes expectation of (30), the first term of right hand side becomes

Ex[A(t) · f(Q(t))] := E[A(t) · f(Q(t)) |X(0) = x]

= Ex[A(t)] · Ex[f(Q(t))]

≤
∑

s∈S

αss · Ex[f(Q(t))]

≤ (1− ε) Ex

[
max
s∈S

{
s · f(Q(t))

}]
, (32)

where the inequalities come from (17). Here, to simplify notation, we use Ex[Y ]

to denote the conditional expectation of random variable Y under the initial state
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{X(0) = x}. Note that E[Ai(t)
2] = Var(Ai(t)) + E[Ai(t)]

2 ≤ σ2 + 1. Then, by

summing (30) from t = 0 to t = τ(x)− 1 and applying (32), we obtain

Ex[L(τ(x))− L(0)] = Ex



τ(x)−1∑

t=0

L(t+ 1)− L(t)




≤
τ(x)−1∑

t=0

Ex[A(t) · f(Q(t))− S(t) · f(Q(t))] + n
(
σ2 + 2

)
f ′(0)τ(x)

≤ Ex[∆(x)] + n
(
σ2 + 2

)
f ′(0) τ(x), (33)

where

∆(x) :=

τ(x)−1∑

t=0

(
(1− ε) max

s∈S

{
s · f(Q(t)

}
− S(t) · f(Q(t))

)
.

This inequality shows that if S(t) · f(Q(t)) is close to maxs∈S
{
s · f(Q(t)

}
for most

of time, ∆(x) is negative, i.e., L has the desired negative drift property.

Next, we aim for bounding Ex[∆(x)]. To this end, we consider the following event

E1 :=

{
Amax(0) + · · ·+ Amax(τ(x)− 1) ≤ (n+ σ

√
n+ 1) τ(x)

}
,

where Amax(t) := max{1, Ai(t) : i ∈ I}. The following lemma establishes the condi-

tional expectation of ∆(x) given E1, which will be used later for bounding Ex[∆(x)].

Here, to simplify notation, we use Px[A] to denote the conditional probability of event

A under the initial state {X(0) = x}.

Lemma 3.10. For any α, β ∈ (0, 1) and initial state x = (a,w, q) ∈ Ω with large

enough qmax, it follows that

Ex[∆(x) | E1] ≤
(
−ε

2
(1− α)(1− β) +

2n

1− c
(
(1− β)α + β

))

× f((1− c)qmax) τ(x), (34)

Px[Ec1 ] Ex[∆(x) | Ec1 ] ≤
(
n f(qmax)

τ(x)
+ n(n+ 1) + nσ

√
n

)
τ(x). (35)

The proof of the above lemma is given in Section 3.5.2. A high level intuition for

event E1 and above lemma is as follows. Amax(t) is at least the maximum change of
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queue length for each queue during [t, t + 1); that is, |Qi(t + 1) − Qi(t)| ≤ Amax(t),

for every i ∈ I. In other words, on E1, Qi(t) in [0, τ(x)] does not change too much.

Namely, W (t) ≈ f(Q(t)) does not change many times in [0, τ(x)] for x = (d,w, q)

with large enough qmax. From condition C0 of the oracle system, the schedule S(t)

is close to a max-weight one with respect to f(Q(t)) ‘mostly’ in the time interval

[0, τ(x))], which guarantees the negative drift of ∆(x) on E1, i.e., (34). On the other

hand, (35) holds essentially because the event E1 occurs with high probability.

Now, we are ready to complete the proof of Lemma 3.4 using upper bounds (34)

and (35). For any x = (d,w, q) ∈ Ω with large enough qmax, from (33), we have

Ex[L(τ(x))− L(0)]

≤ Px[E1] Ex[∆(x) | E1] + Px[Ec1 ] Ex[∆(x) | Ec1 ] + n
(
σ2 + 2

)
f ′(0)τ(x)

≤
(
−ε

2
(1− α)(1− β) +

2n

1− c
(
(1− β)α + β

))
f((1− c)qmax)τ(x)

+

(
n f(qmax)

τ(x)
+ n(n+ 1) + nσ

√
n

)
τ(x)

+ n
(
σ2 + 2

)
f ′(0)τ(x)

≤
(
−ε

2
(1− α)(1− β) +

2n

1− c
(
(1− β)α + β

))
f((1− c)qmax)τ(x)

+ n

(
f(qmax)

τ(x)
+ (σ2 + 2)f ′(0) + n+ σ

√
n+ 1

)
τ(x)

= −κ(x),

which completes the proof of Lemma 3.4.

3.5.2 Proof of Lemma 3.10

This subsection presents the proof of Lemma 3.10, thus completing the proof of

Lemma 3.4. In the proof of Lemma 3.10, we need two auxiliary results: Proposi-

tions 3.11 and 3.12. We prove theses propositions in Section 3.5.3 and 3.5.4.

The following proposition states that Qmax(t) is bounded, and W (t) changes at

most n times on E1.
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Proposition 3.11. For any initial state x = (a,w, q) ∈ Ω with large enough qmax,

given that event E1 occurs, W (t) changes at most n times during [0, τ(x)] and

(1− c) ≤ Qmax(t)

qmax

≤ (1 + c), for all t ∈ [0, τ(x)], (36)

where c is the constant in condition C6 of Theorem 3.3.

The proof of the above proposition is given in Section 3.5.3. Let Tm be the time at

which the m-th change of weight vector W (t) occurs, i.e., W (t) remains fixed during

the time interval [Tm, Tm+1). Formally, let T0 = 0 and for m ≥ 1, iteratively define

Tm := inf
{
t ∈ Z+ : W (t− 1) 6= W (t), t > Tm−1

}
.

Since W (t) remains fixed for t ∈ [Tm, Tm+1), condition C0 implies that that with

high probability, S(t) is close to the max-weight schedule with respect to W (t) for

Tm + h ≤ t ≤ Tm+1. Using this observation with Proposition 3.11, we obtain the

following proposition, which states that with high probability, schedule S(t) is close

to a max-weight schedule with respect to f(Q(t)) ‘mostly’ in time interval [0, τ(x))],

on the event E1.

Proposition 3.12. For any η, α, β ∈ (0, 1) and initial state x = (d,w, q) ∈ Ω with

large enough qmax, it follows that

Px

[
|T (x, η)| ≥ (1− α) τ(x) | E1

]
≥ 1− β,

where

T (x, η) :=

{
t ∈ [0, τ(x)] : S(t) · f(Q(t)) ≥ (1− η) max

s∈S

{
s · f(Q(t))

}}
. (37)

The proof of the above proposition is given in Section 3.5.4. In the remainder of this

section, we derive (34) and (35) utilizing Propositions 3.11 and 3.12.
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First, from (36), we have the following upper bound for any summand in ∆(x):

for all t ∈ [0, τ(x)],

(1− ε) max
s∈S

{
s · f(Q(t)

}
− S(t) · f(Q(t)) ≤ max

s∈S

{
s · f(Q(t)

}

≤ n f(Qmax(t))

≤ n f((1 + c)qmax). (38)

Furthermore, we have a tighter bound for t ∈ T (x, η). From the definition (37) of

T (x, η) with η = ε/2, we obtain that for all t ∈ T (x, η),

(1− ε) max
s∈S

{
s · f(Q(t)

}
− S(t) · f(Q(t)) ≤ −ε

2
max
s∈S

{
s · f(Q(t))

}

≤ −ε
2
f(Qmax(t))

≤ −ε
2
f((1− c)qmax), (39)

where the last inequality comes from (36). Now, under η = ε/2 in Proposition 3.12,

define the following event

E2 :=
{∣∣∣∣
{
t ∈ [0, τ(x)] : S(t) · f(Q(t)) ≥ (1− ε/2) max

s∈S

{
s · f(Q(t))

}}∣∣∣∣ ≥ (1− α)τ(x)

}
.

Then, according to Proposition 3.12, we have Px[E2 | E1] ≥ 1−β for x = (d,w, q) ∈ Ω

with large enough qmax. From upper bounds (38) and (39), and the definition of the

event E2, we conclude that

Ex[∆(x) | E1 ∩ E2]

≤ Ex

[
−ε

2
f((1− c)qmax)T (x, η) + n f((1 + c)qmax)(τ(x)− T (x, η))

∣∣∣∣ E1 ∩ E2

]

≤
(
−ε

2
(1− α)f((1− c)qmax) + αn f((1 + c)qmax)

)
τ(x). (40)

From (38), we also have

Ex[∆(x) | Ec2 ∩ E1] ≤ Ex



τ(x)−1∑

t=0

n f((1 + c)qmax)

∣∣∣∣ Ec2 ∩ E1




=
(
n f((1 + c)qmax)

)
τ(x). (41)
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Using (40) and (41), we derive (34) as follows:

Ex[∆(x) | E1]

= Px[E2 | E1] Ex[∆(x) | E1 ∩ E2] + Px[Ec2 | E1] Ex[∆(x) | E1 ∩ Ec2 ]

≤ (1− β)
(
−ε

2
(1− α)f((1− c)qmax) + αn f((1 + c)qmax)

)
τ(x)

+ β (n f((1 + c)qmax)) τ(x)

≤
(
−ε

2
(1− α)(1− β) +

2n

1− c
(
(1− β)α + β

))
f((1− c)qmax)τ(x),

where, in the last inequality, we use the following property for concave functions f

with f(0) = 0:

f((1 + c)x)

f((1− c)x)
≤ 2

1− c
f((1 + c)x)

f(2x)
≤ 2

1− c
.

Next, for proving (35), we introduce the following Chebyshev-type inequality in-

volving conditional expectations in [41]:

Lemma 3.13 ([41, Theorem 2.1]). If X is a random variable with mean λ and vari-

ance σ2 then we have

(E[X|A]− λ)2 ≤ σ2 1− p
p

,

for any event A with P[A] = p.

From conditions C1, C2 and C4, we have

max
s∈S

s · f(Q(t)) ≤ nf(Qmax(t))

≤ nf(qmax + Amax(1) + · · ·+ Amax(τ(x)))

≤ nf(qmax) + nAmax(1) + · · ·+ nAmax(τ(x)), (42)

for x ∈ Ω with large enough qmax. Since E[Amax(1) + · · ·+Amax(τ(x))] ≤ (n+ 1)τ(x)

and Var[Amax(1) + · · ·+ Amax(τ(x))] ≤ nσ2 τ(x), we have

E [Amax(1) + · · ·+ Amax(τ(x)) | Ec1 ] ≤ (n+ 1)τ(x) + σ
√
n
√
τ(x)

√
1− P[Ec1 ]

P[Ec1 ]
(43)
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from Lemma 3.13. Also, according to the definition of event E1, we have

Px[Ec1 ] ≤ 1

τ(x)
, (44)

the proof of which is elementary and given in Appendix 3.B for completeness. Com-

bining (42), (43), and (44), we derive (35) as follows:

Px[Ec1 ] Ex[∆(x) | Ec1 ]

≤ Px[Ec1 ] Ex



τ(x)−1∑

t=0

max
ρ∈S

ρ · f(Q(t))

∣∣∣∣ Ec



≤ Px[Ec1 ]

τ(x)−1∑

t=0

(n f(qmax) + nEx[Amax(1) + · · ·+ Amax(τ(x)) | Ec])

≤ n f(qmax) + n τ(x)Px[Ec1 ]Ex[Amax(1) + · · ·+ Amax(τ(x)) | Ec]

≤ n f(qmax) + n τ(x)Px[Ec1 ]

(
(n+ 1)τ(x) + σ

√
n
√
τ(x)

√
1− P[Ec1 ]

P[Ec1 ]

)

≤ n f(qmax) + n(n+ 1) τ(x) + nσ
√
n τ(x)

√
τ(x)

√
P[Ec1 ]

≤ n f(qmax) + n(n+ 1) τ(x) + nσ
√
n τ(x).

This completes the proof of Lemma 3.10.

3.5.3 Proof of Proposition 3.11

This subsection presents the proof of Proposition 3.11. We assume that event E1

occurs throughout this section. We first note that, for all i ∈ I and t ∈ [1, τ(x)],

Qi(t)− qi ≤ Amax(0) + · · ·+ Amax(τ(x)− 1) ≤ (n+ σ
√
n+ 1)τ(x),

Qi(t)−Qi(t− 1) ≥ − 1,

τ(x) ≤ c

n+ σ
√
n+ 1

qmax,

where the right hand side of the last inequality is the second term of the minimum

in the definition of τ(x). Then, we obtain

−c qmax ≤ τ(x) ≤ Qi(t)−qi ≤ (n+σ
√
n+1)τ(x) ≤ c qmax, for all t ∈ [0, τ(x)],
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which implies that (36) in Proposition 3.11 holds.

Now, we prove that for x = (d,w, q) with large enough qmax, Tn+1 > τ(x), i.e.,

W (t) changes at most n times during [0, τ(x)]. Toward this, we claim that we need

only to show that given initial state X(0) = x = (d,w, q) with large enough qmax,

the following holds:

∣∣Ui(t+ 1)− Ui(t)
∣∣ ≤ f ′

(
f−1(g((1− c) qmax))

)
· Amax(t), ∀t ∈ [0, τ(x)]. (45)

Under assuming (45), one can obtain that for all t ∈ [0, τ(x)],

∣∣Ui(t)− Ui(0)
∣∣ ≤ f ′

(
f−1(g((1− c) qmax))

)
(Amax(1) + · · ·+ Amax(τ(x)))

≤ f ′
(
f−1(g((1− c) qmax))

) ((
n+ σ

√
n+ 1

)
τ(x)

)
≤ 1,

where the second inequality is from the definition of event E1 and the last inequality

from the definition of τ(x). In other words, Ui(t) varies by at most 1 for all i ∈ I

during [0, τ(x)]. Then, since Wi(t) is updated only if Ui(t) varies by at least 2, Wi(t)

changes at most once, and W (t) changes at most n times, which implies Tn+1 > τ(x).

To verify (45), we investigate the variation of Ui(t) by the following cases:

1. Suppose that f(Qi(t)) > g(Qmax(t)). Because Ui(t) = f(Qi(t)) (from the def-

inition of Ui), Qi(t) > f−1(g(Qmax(t))) (from the previous assumption), f ′ is

decreasing (from condition C1), and Qmax(t) ≥ (1 − c)qmax (from (36)), we

obtain an upper bound of f ′(Qi(t)) as:

f ′
(
Qi(t)

)
≤ f ′

(
f−1(g(Qmax(t)))

)
≤ f ′

(
f−1(g((1− c) qmax))

)
.

2. Now, suppose that f(Qi(t)) ≤ g(Qmax(t)). Because g′(x) < f ′(x) for large

enough x (from condition C2), Qmax(t) ≥ (1 − c)qmax (from (36)), and f ′ is

decreasing (from condition C1), we obtain an upper bound of g′(Qmax(t)) as:

g′
(
Qmax(t)

)
≤ f ′

(
Qmax(t)

)
≤ f ′

(
(1− c) qmax

)
≤ f ′

(
f−1(g((1− c) qmax))

)

for large enough qmax.
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Then, (45) follows from the definitions of Ui and Amax(t) and the above upper bounds

of f ′(Qi(t)) and g′(Qmax(t)). This completes the proof of Proposition 3.11.

3.5.4 Proof of Proposition 3.12

This subsection presents the proof of Proposition 3.12. Without loss of generality,

assume that η ≤ 7
8

and let

η′ = 1− (1− η)1/3 ≤ 1

2
, α′ = 1−

√
1− α, γ =

β

n+ 1
, and δ = α′γ.

To simplify notation, we use h(x) instead of h(x, η′, δ). From conditions C1-C6, for

large enough x, we have

2n

f ((1− c)x)
≤ η′, (46)

n g((1 + c)x) + 2n
1
2
(f((1− c)x)− 2)

≤ η′, (47)

(n+ 1) h(f((1 + c)x+ 2))

cx
≤ α′, (48)

(n+ 1) f ′
(
f−1(g((1− c)x))) h(f((1 + c)x+ 2)

)
≤ α′, (49)

where their detailed proofs are given in Appendix 3.B.

In the rest of this section, we assume that E1 occurs. Then, we claim that the

following conditions are sufficient to prove Proposition 3.12:

(a) For all t ∈ [0, τ(x)],

(1− η′)
[
max
s∈S

s · f(Q(t))

]
≤ max

s∈S
s ·W (t).

(b) With probability at least 1 − β, at least (1 − α)τ(x) number of time instance

t ∈ [0, τ(x)] satisfy

(1− η′)
[
max
s∈S

s ·W (t)

]
≤ S(t) ·W (t). (50)
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(c) For all t ∈ [0, τ(x)] at which (50) is satisfied,

(1− η′) (S(t) ·W (t)) ≤ S(t) · f(Q(t)).

The proof of Proposition 3.12 comes immediately from (a), (b) and (c):

(1− η)

[
max
s∈S

s · f(Q(t))

]
= (1− η′)3

[
max
s∈S

s · f(Q(t))

]

≤ (1− η′)2

[
max
s∈S

s ·W (t)

]

≤ (1− η′) (S(t) ·W (t))

≤ S(t) · f(Q(t)),

where with probability at least 1 − β, at least (1 − α)τ(x) number of time instance

t ∈ [0, τ(x)] satisfy the second last and last inequalities. Hence, we proceed toward

proving (a), (b) and (c).

Proof of (a). Recall that our scheduling algorithm in Section 3.3.2 maintains |Ui(t)−

Wi(t)| ≤ 2, where Ui(t) = max
{
f(Qi(t)), g(Qmax(t))

}
. Thus, for t ∈ Z+ and i ∈ I,

we have f(Qi(t))− 2 ≤ Wi(t), and hence

max
s∈S

s · f(Q(t))− 2n ≤ max
s∈S

s ·W (t). (51)

In addition, from Proposition 3.11, we have

f((1− c)qmax) ≤ f(Qmax(t)) ≤ max
s∈S

s · f(Q(t)). (52)

Therefore, we conclude that, for large enough qmax,

(1− η′)
[
max
s∈S

s · f(Q(t))

]
≤

(
1− 2n

f((1− c)qmax)

)[
max
s∈S

s · f(Q(t))

]

= max
s∈S

s · f(Q(t))− 2n

(
maxs∈S s · f(Q(t))

f((1− c)qmax)

)

≤ max
s∈S

s · f(Q(t))− 2n

≤ max
s∈S

s ·W (t),

90



where the first inequality comes from (46), the second inequality from (52), and the

last inequality from (51).

Proof of (b). Recall that Tm is the time at which the m-th change of weight vector

W (t). For t ∈ [Tm, Tm+1), let w := W (t) and define a binary random variable

Zt ∈ {0, 1} by

Zt :=





1 if
(
Soracle(D

(t)
oracle(d))

)
·w < (1− η′) maxs∈S s ·w

0 otherwise

.

Then, from condition C0, for t ∈ [Tm+h′, Tm+1), we have E[Zt] < δ and E
[∑l−1

t=h′ Zt

]
<

δ(l−h′), where h′ ≥ h(wmax, η
′, δ) and l > h′. Applying the Markov inequality to the

random variable
∑l−1

t=h Zt, we conclude that
∣∣∣∣
{
t ∈ [h, l) :

(
Soracle(D

(t)
oracle(d))

)
·w ≥ (1− η) max

s∈S
s ·w

}∣∣∣∣ ≥ (1− δ/γ)(l − h)

occurs with probability at least 1− γ. In other words, with probability ≥ 1− γ,
∣∣∣∣
{
t ∈ [Ti + h, Ti+1) : S(t) ·W (t) ≥ (1− η′) max

s∈S
s ·W (t)

}∣∣∣∣ ≥ (1− α′)(Ti+1 − Ti − h),

where from Proposition 3.11, we set

h = h((1 + c)qmax + 2, η′, δ) ≥ h(W (t), η′, δ).

Since W (t) changes at most n times in [0, τ(x)] from Proposition 3.11, one can use

the union bound and conclude that with probability ≥ 1− β = 1− (n+ 1)γ,

(1− η′)
(

max
s∈S

s ·W (t)
)
≤ S(t) ·W (t),

for at least (1 − α′) fraction of times in
⋃n
i=0[Ti + h, Ti+1). Furthermore, from (48),

(49), and the definition of τ , we have

(n+ 1)h = (n+ 1)h(f(1− c)qmax + 2)

≤ α′

2
min

{
c qmax,

1

f ′
(
f−1(g(1− c)qmax)

)
}

≤ α′

2
(τ(x) + 1) ≤ α′τ(x).

91



Thus, it follows that
∣∣∣∣∣
n⋃

i=0

[Ti + h, Ti+1)

∣∣∣∣∣ ≥ τ(x)− (n+ 1)h ≥ (1− α′)τ(x).

Therefore, with probability ≥ 1− β, for at least (1− α′)2 = (1− α) fraction of times

in the interval [0, τ(x)], (50) holds.

Proof of (c). From |Ui(t) −Wi(t)| ≤ 2, where Ui(t) = max
{
f(Qi(t)), g(Qmax(t))

}
,

we have

f(Qi(t))− 2 ≤ Wi(t) ≤ f(Qi(t)) + g(Qmax(t)) + 2, (53)

Then, for all t ∈ [0, τ(x)] at which (50) is satisfied, we obtain

1

2
(f((1− c)qmax)− 2) ≤ 1

2
(f(Qmax(t))− 2) ≤ 1

2

[
max
s∈S

s ·W (t)

]

≤ η′
[
max
s∈S

s ·W (t)

]
≤ S(t) ·W (t). (54)

where the first inequality comes from (1− c)qmax ≤ Qmax(t) in Proposition 3.11 , the

second inequality from (53), the third inequality from the assumption η′ ≤ 1/2, and

the last inequality from (50). We also have

S(t) ·W (t) ≤ S(t) · f(Q(t)) + n g(Qmax(t)) + 2n

≤ S(t) · f(Q(t)) + n g((1 + c)qmax) + 2n, (55)

where the first inequality follows from (53) and the second inequality from Qmax(t) ≤

(1 + c)qmax in Proposition 3.11. The last two inequalities with (47) lead to (c): for

large enough qmax, we have

(1− η′)s(t) ·W (t) ≤
(

1− n g((1 + c)qmax) + 2n
1
2
(f((1− c)qmax)− 2)

)
S(t) ·W (t)

≤ S(t) ·W (t)− n g((1 + c)qmax) + 2n

≤ S(t) · f(Q(t)),

where the first inequality comes from (47), the second inequality from (54), and the

last inequality from (55). This completes the proof of Proposition 3.12.
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Appendix

3.A Positive Recurrence of a Markov Chain: Lyapunov-
Foster Criterion

This section introduces a method for proving the positive recurrence in a Markov

chain and its relation to the stability of a system, which is proved by the conclusion

in Lemma 3.14.

A Markov chain is a discrete random process where the decision of next state

depends only on the current state. Formally, a set of random vectors {X(t)}t∈Z+ is

a Markov chain if

P[X(t+ 1) = x |X(0) = x0, . . . ,X(t) = xt] = P[X(t+ 1) = x |X(t) = xt].

The possible values of X(t) is called the state space, which is dented by Ω. In this

thesis, Ω is countable. Also, Markov chains of our interest is time-homogeneous, i.e.,

P[X(t+ 1) = x |X(t) = y] = P[X(1) = x |X(0) = y],

for all t ∈ Z+.

We now recall the definition of the positive recurrence in Markov chain
{
X(t)

}
t∈Z+

on state space Ω. A subset B ⊂ Ω is said to be recurrent if

inf
x∈B

P [τB <∞|X(0) = x] = 1,

where τB = inf{t ≥ 1 |X(t) ∈ B} is a hitting time for B. Also, recurrent subset B is

called positive recurrent if

sup
x∈B

E [τB |X(0) = x] <∞.

One way to show the positive recurrence is to use the following negative drift condition

on a Lyapunov function, also known as the Lyapunov-Foster criterion.
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Lemma 3.14 ([22, Theorem 1]). Let {X(t) : t ∈ Z+} be a Markov chain on state

space Ω, and L : Ω → R+ be a function on Ω such that supx∈Ω L(x) = ∞. For any

γ ≥ 0, define Bγ = {x ∈ Ω : L(x) ≤ γ}. Suppose there exist functions τ, κ : Ω→ R+

such that

E[L(X(τ(x)))− L(X(0)) |X(0) = x] ≤ −κ(x), ∀x ∈ Ω, c (56)

and they satisfy the following conditions:

L1. lim infL(x)→∞ κ(x) > 0.

L2. infx∈Ω κ(x) > −∞.

L3. supx∈Bγ τ(x) <∞ for all γ ∈ R+.

L4. lim supL(x)→∞ τ(x)/κ(x) <∞.

Then, there exists constant γ0 > 0 so that for all γ0 < γ, the following holds:

sup
x∈Bγ

E
[
TBγ |X(0) = x

]
< ∞.

Namely, Bγ is positive recurrent.

The above function L is called a Lyapunov function. To show a queueing system

is stable, we construct an underlying network Markov chain which is irreducible and

show that a subset of state with finite queue lengths is positive recurrent. For this, we

define a Lyapunov function that that depends on queue lengths and goes to infinity

as total queue length goes to infinity and prove that it has negative drift property as

in above lemma. Details are in Section 3.3.3 and Section 3.5.

3.B Proof of Auxiliary Equations

Proof of (21) and (22). This section verifies two equations

lim
L(x)→∞

τ(x) = ∞ (21 Revisited)

lim
L(x)→∞

κ(x)/τ(x) = ∞, (22 Revisited)
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where, for x = (d,w, q) ∈ Ω, L(x) =
∑

i∈I
∫ Qi

0
f(s) ds,

τ(x) =

⌊
1

(n+ s
√
n) + 1

min

{
1

f ′ (f−1(g((1− c)qmax))))
, c qmax

}⌋
,

κ(x)

τ(x)
=

(
ε

2
(1− α)(1− β) +

2n

1− c
(
(1− β)α + β

))
f((1− c)qmax)

− n
(
f(qmax)

τ(x)
+ (σ2 + 2)f ′(0) + n+ σ

√
n+ 1

)
,

and α, β are constants that satisfy

ε

2
(1− β)(1− α)− 2n(β + (1− β)α)

1− c
> 0. (57)

We first note that L(x) → ∞ if and only if qmax → ∞ from the definition of L. To

show that (21), we calculate the limit of τ(x) in cases:

(i) If c qmax ≤ 1
f ′(f−1(g((1−c)qmax))))

, we have

lim
L(x)→∞

⌊
1

(n+ s
√
n) + 1

c qmax

⌋
≥ lim

qmax→∞

1

(n+ s
√
n) + 1

c qmax − 1 = ∞,

(ii) If c qmax >
1

f ′(f−1(g((1−c)qmax))))
, we have

lim
L(x)→∞

⌊
1

(n+ s
√
n) + 1

1

f ′ (f−1(g((1− c)qmax))))

⌋

≥ lim
qmax→∞

1

(n+ s
√
n) + 1

1

f ′ (f−1(g((1− c)qmax))))
− 1 = ∞

since limx→∞ f(x) = g(x) =∞ and limx→∞ f
′(x) = 0 (conditions C1, C2, and

C4).

Therefore, we have limL(x)→∞ τ(x) =∞.

To prove (22), note that the following property for concave function f with f(0) =

0:

f((1− c)x) ≥ (1− c)f(x) + cf(0) = (1− c)f(x).
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Then, we have

lim
L(x)→∞

κ(x)

τ(x)

= lim
qmax→∞

(
ε

2
(1− α)(1− β) +

2n

1− c
(
(1− β)α + β

))
f((1− c)qmax)

− n

τ(x)
f(qmax)− n

(
(σ2 + 2)f ′(0) + n+ σ

√
n+ 1

)

≥ lim
qmax→∞

(
ε

2
(1− α)(1− β) +

2n

1− c
(
(1− β)α + β

)
− 1

1− c
n

τ(x)

)
f((1− c)qmax)

− n
(
(σ2 + 2)f ′(0) + n+ σ

√
n+ 1

)
= ∞,

due to (57), (21), and limx→∞ f(x) =∞.

Proof of (44). This section proves (44); that is, Px[Ec1 ] ≤ 1
τ(x)

, where E1 = {Amax(0)+

· · ·+Amax(τ(x)−1) ≤ (n+σ
√
n+1) τ(x)}. Recall thatAmax(t) = max{1, A1(t), . . . , An(t)}.

Then, we have E[Amax(t)] ≤
∑n

i=1 λi+1 ≤ n+1 and Var [Amax(t)] ≤
∑n

i=1 Var[Ai(t)] ≤

nσ2 for every t ∈ Z+. From these inequalities and Chebyshev’s inequality, we have

Px [Ec1 ] = Px

[
Amax(1) + · · ·+ Amax(τ(x)) ≥

(
n+ σ

√
n+ 1

)
τ(x)

]

= Px

[
Amax(1) + · · ·+ Amax(τ(x)) ≥ (n+ 1) τ(x) +

√
τ(x)

(
σ
√
n
√
τ(x)

)]

≤ 1

τ(x)
,

which verifies (44).

Proof of (46)–(49). Conditions C2 and C5 show that

lim
x→∞

2n

f ((1− c)x)
= 0,

lim
x→∞

h(f((1 + c)x+ 2))

x
= 0,

which implies (46) and (48). Now, from conditions C1 and C2, we obtain

lim
x→∞

g((1 + c)x)

f((1− c)x)
≤ lim

x→∞

2

1− c
g((1 + c)x)

f(1 + c)x
= 0,
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where we use the following property for concave function f :

f((1 + c)x)

f((1− c)x)
≤ 1

1− c
f((1 + c)x)

f(2x)
≤ 2

1− c
.

Then, (47) holds. Finally, for (49), we let x′ = x+ 2/(1 + c) > x, and we observe that

f ′
(
f−1(g((1− c)x))) h(f((1 + c)x+ 2)

)

= f ′
(
f−1(g((1− c)x))) h(f((1 + c)x′)

)

=
f ′
(
f−1(g((1− c)x))

)

f ′
(
f−1(g((1− c)x′))

)

× f ′
(
f−1(g((1− c)x′))) h(f((1 + c)x′)

)

≤ f ′
(
f−1(g((1− c)x′))) h(f((1 + c)x′)

)
→ 0,

as x→∞ from condition C6. This completes the proof of (49).
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