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Abstract— Existing Model Predictive Control methods rely on
finite-horizon trajectories from the environment. Such meth-
ods are limited by the length of the samples because the
robot cannot plan for scenarios beyond this time horizon.
Simply extending the time-horizon of sampled trajectories
is not feasible as an increase in the time-horizon requires
more sampled trajectories from the environment in order
to maintain controller performance. On robots such as the
AutoRally platform, which operate in real time with limited
computational power, increasing the number of sampled tra-
jectories is computationally intractable. This work improves
the long-term planning capabilities of autonomous systems by
augmenting cost-estimates of trajectories with a learned value
of the terminal state. This learned value approximates the
expected cost under the car’s current control policy from the
terminal state for an arbitrary time-horizon without requiring
an increase in the number of samples. We show that this
improves the lap times of the AutoRally platform.

I. INTRODUCTION

Algorithms for autonomous driving have been at the fore-
front of both machine learning and robotics in recent years.
A crucial prerequisite to achieving autonomous vehicles is
designing algorithms to solve the controls problem: how
do we output controls to our system that minimize some
cost function (such as distance travelled, fuel consumed, or
collisions encountered)?

At Georgia Tech, work on high speed autonomous driving
has lead to the development of model predictive control
(MPC) algorithms that demonstrably yield collision-free
behavior despite challenging terrain conditions and limited
computational power [1]. This work was performed on the
AutoRally platform [2], a 1/5 scale battery-powered RC car
driving around a dirt track. A motivating factor behind work
on this platform was that research on high-speed systems
can expose boundary conditions encountered by autonomous
vehicles in real-world environments.

Model Predictive Control Algorithms, such as receding
horizon Gauss-Newton LQR [3] and Model Predictive Path
Integral (MPPI) [1], continuously re-optimize a simple model
of the system over a short planning horizon to make rea-
sonable short-term decisions. This continual re-optimization
over control sequences allow MPC algorithms to handle
modeling errors as well as changes in the environment. For
example, MPPI allows the AutoRally platform to achieve
speeds of 12 m/s on a dirt track where the wheels of the car
are prone to slipping. These results are especially impressive
because the dynamics of the vehicle are modeled with a small
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(2 layers with 32 nodes each) network and all computation
is performed on board the vehicle itself.

It has been demonstrated that many MPC algorithms
are actually a special case of dynamic mirror descent, an
algorithm proposed in the online learning setting [4]. In the
online learning framework an agent makes a decision only to
have a loss revealed to it by the environment, much like how
a controls algorithm outputs a motor control and then incurs
a cost in terms of fuel or collision. The authors refer to the
family of MPC algorithms that come from dynamic mirror
descent as DMD-MPC (Dynamic Mirror Descent Model
Predictive Control).

Lowrey et al.[5] show that Model Predictive Control
methods can be improved with the help of a Value Function
Approximator in their work POLO: Plan Online, Learn
Offline. Whereas standard model predictive control methods
are limited by their planning horizon, POLO uses informa-
tion from the value function to better understand the costs
of sampled trajectories. However, previous research in this
space assumes access to a perfect dynamics model. This is
impossible in the case of AutoRally where expensive dynam-
ics models cannot be used in real-time and track conditions
introduce uncertainty into how the system behaves.

This work will bridge the gap by extending existing
infrastructure around DMD-MPC to learn and exploit a value
function as is done in POLO. We will then study how this
value function affects the quality of trajectories generated
by the controller even when the value function is informed
by an approximation of a dynamics model rather than the
ground truth dynamics.

II. LITERATURE REVIEW

A. Model Predictive Path Integral

In response to the challenges of controlling a real-time
system where the dynamics can only be approximated,
researchers have proposed a series of algorithms that take
advantage of advancements in computer hardware and ma-
chine learning. Put simply, the control theorists are solving
the following problem: given the dynamics of a system (i.e
a a model of how the robots state changes over time) and
some cost function that measures the quality of a trajectory,
what controls should the robot execute to minimize the cost
function?

The intuitive approach to this problem is to sample a series
of possible trajectories the robot could take, compute the cost
of each trajectory, and then choose the the trajectory with
the lowest cost. In Model Predictive Control (MPC), this is
done iteratively at each timestep. The robot’s understanding



of its dynamics is not necessarily accurate, but by sacrificing
accuracy this algorithm can be run in real-time. Furthermore,
the evaluation of trajectories at each timestep allows the robot
to self-correct in light of its inaccurate dynamics model.

One algorithm in the family of MPC techniques is the
Model Predictive Path Integral Controller [1]. This con-
troller, referred to as MPPI, solves the controls problem by
formulating cost in terms of ideas from information theory,
namely free energy and relative entropy. This formulation
allows the authors to show that the resulting trajectory is
actually an optimal solution with respect to minimizing the
cost function. MPPI advanced the state of controls algorithms
by allowing the autonomous agents to determine their next
step online (in real-time), with just the hardware that could fit
on a scale car. Previous approaches required knowledge of
the environment beforehand to precompute optimal controls.
However, MPPI makes large assumptions about our knowl-
edge of the dynamics of the robot to make this guarantee. Not
only does it assume the dynamics of the robot are known,
this algorithm also assumes that these dynamics are control
affine.

To mitigate this problem, the next move forward in sam-
pling based methods was an Information Theoretic Approach
to Model-Predictive Controls (MPC) [6]. This approach
improves MPPI by removing the control affine assumption.
This is an important step forward because there is no longer
a need to derive a dynamics system from the physics of an
environment and existing knowledge of the robot. Instead,
the model comes from a data-driven approach to modeling
the system; given data on how the robot drives under different
controls a modeled is learned using a function approximator.
In this case, a deep neural network with 2 hidden layers
containing 32 neurons each was sufficient to capture the dy-
namics of a model RC-car accurately enough to consistently
drive the car at 12 m/s. While this work overcomes one
problem pertaining to its predecessor, namely the assumption
that the system is controls-affine, it is still limited by the fact
that the sampled trajectories must be finite. These trajectories
then may not account for long-term changes in behavior that
would be helpful to the vehicle. Du et al. find that as the
length of the trajectories (the time-horizon) is expanded, an
exponential number of samples is needed in order to maintain
controller optimality [7]. However, this exponential increase
is impractical on the AutoRally system which has limited
computational ability onboard.

B. Value Functions over Markov Decision Processes

Reinforcement Learning researchers, such as [8] have been
working on similar prescriptive analysis but approaching the
problem with a slightly different framework called Markov
Decision Processes (MDPs).

A Markov Decision Process is a 5-Tuple M =
{S, T,A,R, γ} that describes the environment of an au-
tonomous agent. Here, S is the state space and A is the
set of actions. From this we define T : S × A× S → [0, 1]
as a transition function that gives the probability of being
in state s′ given that action a was taken from state s, and

R : S ×A→ R as a reward function. γ is a discount factor
that controls how long-term the planning of the robot is. The
problem of Reinforcement Learning (RL) is to learn a policy
π : S → A that maximizes the reward encountered by an
agent. Notice that the problem formulated by control theory,
minimizing system cost given dynamics by outputting the
appropriate control at a given state is equivalent to that of RL.
Now system dynamics are given by the transition function,
the cost function is simply an inverted reward function, and
controls are referred to as outputs. As a result, RL algorithms
can also provide promizing approaches to vehicle control.

A fundamental technique in Reinforcement Learning is
Value Iteration. We define the Value function (parameterized
by a policy π) as a mapping between a state in the MDP
and the real numbers as follows:

V π(s) = E[
∞∑
t=0

γtR(st, π(st, π(st))|s0 = s]

In value iteration, the agent repeatedly explores the environ-
ment until a predefined termination condition is met. Each
rollout allows the agent to further refine its definition of the
value function and propogate information about a given state
to its neighboring statement. Value iteration can generate
good policies in MDPs with a small, discrete state space.
However in environments with large, continuous state spaces
and high-entropy transition functions Value Iteration fails to
converge. High speed driving with the AutoRally platform is
one such example of an environment where Value Iteration
will fail to converge.

Recent work in Deep Reinforcement Learning still aims to
learn a Value Function, but uses the representational power of
machine learning techniques to capture the complexities of a
value function corresponding to a challenging environment.
For example in [9], the authors formulate neural networks
as a valid way to perform fitted value iteration. In discrete
MDPs, a more common technique is to train a neural network
to learn a Q-function, where a neural network learns to
approximate the function

Qπ(s, a) = E[R(s, a) +
∞∑
t=1

γtR(st, π(st))|s0 = s]

and then setting

V π(s) = max
a

Qπ(s, a)

C. Plan Offline, Learn Online

Using Deep Reinforcement Learning techniques to learn
a policy function yields better policies than more classical
value iteration methods. However, a value function doesn’t
necessarily exploit knowledge of system dyanamics and
more importantly, it does still suffer from approximation
errors. Conversely, Model-Predictive Control methods such
as DMD-MPC do optimize the cost function while consid-
ering system dynamics. DMD-MPC suffers from only being
able to plan over a finite-time horizon, meaning it cannot
formulate long-term plans in the same way value-function
based policies do. Lowrey et al. [5], developed POLO: Plan



Offline, Learn Online to leverage the strength of both of these
approaches.

In POLO, finite length trajectories are sampled and have
their cost computed by summing over each state in the tra-
jectory, as is done in MPPI. However, POLO then augments
the cost with the result of evaluating the Value function at
the last state of the rollout. Formally, we are now defining
the reward of a sample trajectory as

max
a

E[
N−1∑
t=0

γtr(st, at) + γNV (sN )|s0 = s]

This combines both the precise, local-optimization based
nature of MPPI as well as the global information embedded
in the Value function. The authors of this work evaluate
POLO on a system where the dyanamics are known and so
the Value function can be approximated with high precision.
The goal of this work is to show that the insights of POLO
generalize to systems where this assumption is removed.
That is, even with a noisy Value Function generated from an
approximated dynamics function, POLO outperforms control
algorithms that do not leverage information from the Value
Function.

III. METHODS

This work will be conducted by simulating the AutoRally
Platform by using its dynamics model (a learned neural
network) as a model of how the car really moves. The
software to execute controls on the robot in the simulation
is written in Python leveraging the ROS (Robot Operat-
ing System) framework. The implementation of the DMD-
MPC (Dynamic Mirror Descent Model Predictive Control)
algorithm is backed by PyTorch. This work extends the
previous implementation of DMD-MPC by integrating a
bridge between the ROS framework governing sensing and
motor output of the vehicle and the PyTorch implementation
generating controls for the system. While previous iteration
of the DMD-MPC software either focused on simpler con-
trol systems or had limited capability of working with the
AutoRally system, our approach allows any special case of
DMD-MPC to be run on the robot. This work will then
provide a formulation of POLO (Plan Online, Learn Offline)
as an unexplored extension of DMD-MPC.

Our hypothesis is that exploiting the POLO framework,
i.e taking advantage of an approximated value function,
will enable augmented MPC methods to outperform those
that are purely reactive in nature. The Value Function will
be modeled with an ensemble of neural networks, each of
which will only consist of 2 layers and a hyperbolic tangent
activation function. The network will be trained via Adaptive
Moment Estimation. It is assumed that the system has access
to the costmap beforehand, which is the same assumption
made in previous work. To train the value function, the robot
will simulate rollouts across the costmap offline, using its
learned dynamics model to train offline. This is to ensure that
we can state the improvements from using POLO come from
the existence of an approximated value function, not because
the value function captured additional dynamics information.

Recall that DMD-MPC defined a class of algorithms, not
one control strategy in general. The closest algorithm to
POLO in the family of algorithms defined by DMD-MPC is
MPPI (Model Predictive Path Integral), and as a result MPPI
will be the specific baseline we compare against. We will
conduct a number of trials of the vehicle running MPPI in
a number of different environments. Note that MPPI can be
considered a special instance of POLO where the expected
utility of every terminal state is 0. We will then augment
MPPI with the approximated value function and have the car
drive an equal number of laps in simulation. We will compare
overall lap times between POLO and baseline approaches.

A. State Space

The standard state space of the AutoRally platform is
given as

[x, y, yaw, roll, ẋ, ẏ,− ˙yaw]

The purpose of a value function is to provide a mapping
between the state and expected reward over time. We make
a number of modifications to the state in order to facilitate
learning this maping.

First, rather than tracking the position of the car as its
x, y coordinates, we instead consider the car in terms of
the progress around the track. We call this longitudinal
measurement θ and it takes the value 0 at the beginning
of the track and 2π at the end of the track. Because θ is
discontinuous (it jumps from 2π to 0 at the track start line),
we keep track of sin θ and cos θ instead.

For a given amount of progress around the track, we also
need to keep track of whether the car is closer to the inside
of the track or the outside of the track. This latitudinal value
ranges from 0 to 1 and is also kept as part of the state.

Finally, we us a value ψ to to look at the orientation of the
car rather than the yaw value. Specifically, we set ψ equal
to the difference between the car’s yaw from the original
state and the yaw the car woul face if it were parallel with
the track boundaries at that point. In the interest of tracking
continuous values as we did with θ, we track cosψ and sinψ
in the state. Thus, our new state definition is:

[sin θ, cos θ, latitude, cosψ, sinψ, roll, ẋ, ẏ,− ˙yaw]

B. Cost Function

The original cost function for MPPI for a state X on
AutoRally was given as:

c(X) = w1 · (sdes − s)2 +w2 ·Mxy +w3 · slip +w4 · φ(X)

Where sdes is the desired speed of the system, s is the
actual speed of the system, Mxy is the costmap cost, ”slip”
penalizes the slippage of the car and φ(X) is an indicator of
whether the car leaves the track. w1...w4 are the weights of
each term. The slip angle is given as

− arctan
ẏ

ẋ

and is only nonzero when the slip angle exceeds a certain
threshold. We modify this cost function as well to better
capture the racing task.



Fig. 1: Red, convergence with old state space. Blue, conver-
gence with new state space

The first modification we make is adding a new term, θ̇, to
the cost function. This measures the change in track progress
(which we already computing in the state as discussed in
subsection A). Computing this term requires knowledge of
the next step in the trajectory, but MPPI computes costs
with every state of the trajectory already rolled out. We
also modify the first term of the cost function so that it is
only nonzero when s > sdes. This incentivizes the car to
not accelerate if it risks crashing into the track boundaries.
Finally, we modify the behavior of φ so that if any state in a
rollout leaves the trajectory, then all states incur the collision
cost. This further incentivizes against crashing.

IV. RESULTS

A. Learning a Value Function

We train a neural network with two hidden layers consist-
ing of 32 nodes each and a tanh nonlinearity to learn the
value function. The loss curve for a network learning a value
function from the original state space as opposed to our own
state space is shown below.

From the curve we can see that learning a value function
from the original state space takes does not converge to as
well as learning a value function from our modified state
space. This implies that our transformation of the state space
facilitates learning the value function. Because the accuracy
of our estimated cost per rollout is dependent on the accuracy
of the value function, a good representation of the value
function is a must.

B. Quality of Trajectories

Using this value function approximator, we race the car
around the track with a target speed of 11 m/s to see if its
racing performance is improved. The results over 10 laps or
until collision are given in the table below:

Lap Times
Old Cost Function 7.46 seconds

No Approximate Value Function 6.446 seconds
Approximate Value Function 6.28 seconds

First, we see that the changes made to the state and
action space better encode the racing task than the original
cost function as defined in the MPPI paper. Our new cost
function does not force the car to stay at the center of
the track as heavily, allowing for the car to make tighter
turns. Comparing the new cost function with and without
value function approximation, the results show that value
function approximation does indeed improve the lap time of
the vehicle.

Qualitatively, we can also observe the car being able to
stay closer to the track boundary, enabling tighter turns. This
is closer to human expert driving behavior. where the expert
is fully aware of the importance of planning for turns in
advance. It is important to note that we keep the number of
samples fixed across the no-value-function scenario and the
driving algorithm with the value function enabled.

V. CONCLUSION

Model Predictive Control algorithms have demonstrated
the ability to control autonomous systems despite inaccu-
racies in the dynamics model and the limitation to com-
putational power that is onboard the vehicle. However,
these algorithms are limited by the need for exponentially
more trajectories to be sampled as the planning horizon
is increased (which leads to a lower controller frequency).
This limitation means that the planning horizon cannot be
extended to lengths comparable to how humans plan into
the future, leading to lower quality trajectories.

Value function approximation addresses this gap by ap-
proximating the cost of the rollout over an infinitely long
time horizon without having to sum over each state inde-
pendently. Thus, the car exhibits behavior that would imply
it is planning further into the future without suffering from
exponentially growing computational costs. Qualitatively, we
see this in how the car is preparing for turns by moving into
the inner boundary of the track earlier on the straight part
of the track. Quantitatively, we see that the lap times for the
car are improved.

Future work will involve experimenting with alternative
network architectures to learn the value function such as what
is done by Tamar et al. [10]. It could also be fruitful to train
the value function off of data obtained from the real world
as well as the dynamics model. Richards and How [11] show
that MPC is a valid control tool on unmanned aerial vehicles
and Lowrey et al [5] show that is useful on humanoids.
Therefore it stands to reason that this work on value function
approximation for MPC (based on a noisy dynamics model)
can extend to systems beyond racing cars as explored in
this work. This can improve the control capability of a large
number of already deployed autonomous systems.

A. Real world experiments

Part of this work has included extending an existing
implementation of POLO so that it can deploy controls to the
AutoRally platform, a physical robot. An image of the car
running in the Gazebo simulator is shown in Figure. Here,
the system’s state comes from the car’s state estimator, not
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Fig. 2: Top: trajectories with old cost function, Middle:
trajectories with new cost function, Bottom: trajectories with
new cost function and value function approximation

Fig. 3: AutoRally platform in Gazebo simulator along side
visualization of the car’s rollout

its dynamics model. In future work, we will take the car to
outdoor venues to see how the car does subject to challenging
conditions in nature.
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