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Abstract - In this paper, we present an approach to transfer 
human expertise for learning off-road navigation behavior to 
an autonomous mobile robot. The methodology uses the 
concept of humanized intelligence to combine principal 
component analysis and neural network learning to embed 
human driving expertise onto mobile robots.  The algorithms 
are tested in the field using a commercial Pioneer 2AT robot 
to demonstrate autonomous traversal over rough natural 
terrain.  
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1.  Introduction 
 Humans have a remarkable ability to make rational 
decisions in an environment of uncertainty and imprecision. 
This capability enables them to perform a wide variety of 
tasks without exact measurements or explicit computations. 
For instance, a human can drive a vehicle on a rough terrain 
using perceptions of the physical environment, rather than 
with precise mathematical models of the environment 
specifying the exact locations and sizes of local objects. The 
driver adjusts the speed and steering of the vehicle based on 
his subjective judgment of the surface conditions, e.g., the 
vehicle speed is decreased in driving on a bumpy and rough 
terrain but is increased on a hard, smooth and flat surface. The 
human driving actions are motivated by broad perceptions of 
the terrain quality and obstacles.  On the other hand, 
navigation of hazardous terrain by a mobile robot is a difficult 
task to overcome.  Research such as traversability analysis, 
deliberative path planning with pre-stored terrain maps and 
embedded reactive behavior [1] have been used to address the 
problems of off-road navigation, but the process of 
successfully navigating between two designated points in 
rough terrain with minimal human interaction is still an open 
issue [2]. It is therefore highly desirable to capture the 
expertise of the human driver and to utilize this knowledge 
base to develop autonomous navigation systems for mobile 
robots.  

2.  Background 
 The concept of human-robot interaction for enhanced 
robot navigation capability has been addressed in few research 
efforts. In [3], Lennon and Atkins show how human 

perception can augment rover navigation capability for Lunar 
exploration missions. An astronaut’s navigation and planning 
ability is used to free the rover from time-consuming analysis 
of the terrain and its hazards. A rule-based following behavior 
is then designed to visually track the astronaut along a path 
that is assumed safe. In [4], CORGI, a vision-guided mobile 
robot, is trained by a human operator that controls the robot to 
demonstrate behavior desired in typical navigation situations. 
A neural network is used to map human perception to learned 
behaviors such as obstacle detection and wall-following. 
Neural networks have also been used to mimic human driving 
behavior for navigation along a circular racetrack [5] and for 
reactive navigation based on sonar input data [6]. Using a real-
time driving simulator, Nechyba [7] developed discontinuous 
human control strategies for abstracting models of human skill 
directly from observed human input-output data. CMU’s 
research projects ALVIN, RAPLH, and ROBIN [2] develop a 
human-based automated vehicle driving system by using 
artificial neural networks to model human driving skills from 
input-output data. In the CMU projects, the vehicle was 
successfully able to operate on structured surfaces, such as 
open or dirt roads and trails.  

 In the UGV research arena, there has been significant 
progress in the areas of road-following, obstacle detection and 
traversability analysis for off-road navigation [2], but the 
ability to successfully navigate off-road between two 
designated points with minimal human intervention (i.e. in 
rough terrain) is still an open problem.  Other research efforts 
focused on mapping human driving skill to a mobile robot 
have also shown success in limited situations, such as on 
outdoor roads or in indoor settings. Their results though are 
not applicable to mobile robots that operate on highly 
unstructured surfaces where there are no roads or trails to 
follow, such as on the rough terrains found in natural terrain 
environments. 

 To address these issues, we present a methodology to 
embed human driving expertise onto mobile robots using the 
concept of humanized intelligence. Recent studies in 
computational intelligence have shown that the next research 
direction in computational intelligence involves embedding 
the capability of a human being directly into the computation 
system. The term humanized CI [8] classifies this burgeoning 
research trend and is emphasized through an interactive 
evolutionary computation system.  Mobile robots, although 
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classified as a conventional engineering system, does not 
directly fall into the humanized CI scheme since their ultimate 
function is to interact autonomously in natural environments, 
without human intervention. We desire to embed human 
capabilities, such as perception and reasoning, directly into the 
system through seamless human-robot interaction – the human 
teaches and the robot learns through physical interaction even 
after the interactions are complete. This process of  
“humanized intelligence” represents this distinct feature of the 
mentor-protégé relationship found between human and 
machine.  The following sections describe this system in 
detail.  Section 3 describes the learning algorithms for 
autonomous navigation. Section 4 presents the human-robot 
interaction system and Section 5 provides preliminary test 
results. 

3.   Learning Algorithms for Autonomous 
Navigation 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1: Supervised learning system based on visual terrain 

input data and human drive commands  
 
 
 In this research, our focus is to develop an autonomous 
robot navigation system for traversing on rough terrain by 
using perception-based reasoning and decision-making to 
embed human expertise directly into the control system 
(Figure 1). Given a set of terrain images retrieved from 
camera images, the goal of the navigation algorithm is to 
determine, in real time, a suitable drive command (speed and 
turn angle) to navigate a mobile robot through hazardous 
terrain.  In order to accomplish this navigation goal, the 
following algorithmic steps are implemented: 
  
i. Perception 

• Reduce the environmental input data to a reduced 
dimensionality, while still maintaining a sufficient 
data signal to enable transfer of knowledge between 
human and robot. 

ii. Reasoning 
• Train a set of neural network classifiers based on the 

reduced data set as input, and corresponding human-
driving commands as output. The goal of the neural 
network is to learn speed and turn angle commands 

based on a human-driver navigating in hazardous 
terrain. 

iii. Decision-Making 
• During field operations and in real time, input a 

reduced terrain image into the trained neural network 
and feed the speed and turn command outputs into the 
mobile robot controller for navigation. 

3.1  Perception-Based Capability 
 To develop human-robot interaction systems, the robot 
must first develop the ability to mimic the human expert's 
perception capabilities [9].  In this way, the robotic system can 
be reasonably confident that decisions made by the system are 
sound enough to ensure human-equivalent performance. In 
[10], Zadeh introduces a computational theory to perceptions 
to enhance the ability of intelligent systems to deal with real-
world problems. These systems utilize information consisting 
of both measurements and perceptions in order to make 
decisions. The difficulty associated with embedding 
perceptions in robotic systems is that perceptions are derived 
from imprecise sensor data.  Thus, the first step to perceiving 
the environment is to extract representative signals that 
classify the environment in a concise fashion.  

 Principal Component Analysis (PCA) is a method for data 
dimensionality reduction, which preserves the most 
information about a given data set based on a linear construct. 
PCA involves an orthogonal sub-space projection of the high 
dimensional terrain images onto a smaller number of 
dimensions. Once projected, the first principal component (or 
eigenvector) provides the most information about the data, 
with the second providing additional information given the 
value of the first. The last eigenvector accounts for the 
smallest variance in the data set. The eigenvector approach we 
utilize for reducing the terrain input data has been validated in 
relevant real-time applications [11]. We begin by representing 
a terrain image Ti by a transformed vector of size NxM. Given 
a set of terrain images T1, T2, … TK, we then determine the 
average image A and the covariance matrix R such that: 
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where α  represents the number of terrain images. Based on 
the covariance calculation, R must be a square matrix, 
therefore α=NxM for our application. We are now interested 
in finding a set of eigenvectors V that maximizes the variance 



found in the input data. We determine the eigenvectors by 
computing the generalized eigenvector solution: 
 

R × V = V × D  (3) 
 

where R is the covariance matrix, V is the matrix representing 
the set of eigenvectors, and D is a matrix of eigenvalues 
derived from the input data. Once the eigenvectors are 
generated, we use them to create the eigenimage matrix E of 
our terrain image set such that: 
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 The input data used in this research effort are acquired 
from a video camera on-board the mobile robot.  A sample 
image set of the terrain environment and a segment of the 
filter set (i.e. eigenimages) are shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 

 
 

 
 
 
 

Figure 2. (a) Typical images of a terrain environment (b) Filter 
set that encodes terrain image signal (c) Pattern created from 

projecting terrain data onto eigenvector set 
 

3.2  Reason-Based Computation 
 A neural network allows one to represent arbitrary input-
output relationships without being limited to linearity. In this 
research, we wish to find the relationship between perceptions 
and human actions. Perceptions are derived from imprecise 
sensor input data, while corresponding actions are derived 
from human control variations. Our neural network design 
consists of a feedforward neural network consisting of an 
input layer to represent the visual input data and an output 
layer representing variations of speed and steering commands. 
Training the network involves finding a set of appropriate 
weights that mimic the desired human driver action for a given 
set of visual data input. 
 
 Once the eigenimage matrix is calculated, a terrain image 
T is transformed into a pattern representing the components of 
the terrain image. Thus, a NxM terrain image can be reduced 
and transformed into a vector of size W (where W is the 
number of eigenimages used in the methodology) (Figure 2c). 
This projection uses a simple operation such that: 
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where Tc is the NxM terrain vector representing the image 
acquired by the on-board camera, and P is the projected 
terrain image that is fed into the neural network classifier 
(Figure 3).  The drive commands consist of speed/turn 
recommendations and are extracted from the human driver 
during run-time.  We limit each run-time cycle to 
approximately 10 minutes during training, with an image 
acquisition rate of 5 frames/sec. The training cycle therefore 
stores about 3000 images for each run. To limit the noise on 
the human driving data, turn recommendations are rounded to 
the nearest 5-degree increment. 
 
 
 
 
 
 
 
 
 
 

Figure 3. Neural network classifier with the terrain image 
signal as input and human driving command as output 

 
 To determine the optimal size of the neural network, we 
trained on different sized neural network structures to create a 
receiver operator curve (ROC) based on drive command error 
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per terrain image, and number of inputs (i.e. eigenimages used 
in projection) fed into the neural network. For real-time 
implementation, the smaller the network size, the less 
computation is required during autonomous control. The ROC 
analysis allows us to determine a suitable network of 
minimum size that allows learning of the human-driver 
commands based on the terrain image data set.  Based on this 
process, we fixed the size of the neural network to 24 inputs 
nodes and 10 hidden nodes.  This corresponds to 24 
eigenimages to represent the terrain input data. 
  
4.  Human-Robot Interaction System 
 The human-robot interface system (Figure 4) is used to 
collect data during the mentor-protégé interaction and consists 
of a Pioneer 2AT mobile robot that can operate autonomously 
or be teleoperated (during training) by a human mentor from a 
base station. The Pioneer is a 4-wheeled skid steering all-
terrain commercial robotic platform equipped with an 
electronic compass, tilt sensor, inertial positioning unit, and 
FireWire stereo vision system, all connected to an on-board 
Linux-based laptop computer.  The base station has a 
Macintosh Powerbook running MacOS X, and has an attached 
joystick that can be used for teleoperation. Images from the 
robot’s vision system are downloaded to the base station to 
allow the human operator to view the environment from the 
mobile robot’s perspective. The Powerbook communicates, 
when necessary, to the Linux laptop on-board the mobile robot 
by way of a wireless Ethernet link.  Both the robot and base 
station laptops run code written in Ayllu [12], a C-based 
language specialized for Behavior-Based Control; the vision 
software takes advantage of SRI's Small Vision System for a 
variety of image processing functions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Human-Robot interface system 
 
 During human-robot interaction, the interface system 
sends a continuous stream of images to the base station 
(Figure 5), where the human mentor watches and sends 
control inputs via the joystick.  The human mentor commands 
movement of the mobile robot through angular turns of the 
joystick. The joystick’s angular position is than transformed 
into speed and turn recommendations for control of the mobile 
robot. Data, consisting of terrain images paired with the 

mentor’s control signals, are collected at the base station for 
processing by the learning algorithms. After mentor training, 
the stored data is used to train the neural network on the 
navigation run. Once robot learning is completed, the learned 
behavior is used to control the mobile robot to autonomously 
navigate in the natural terrain environment.   
 
 
 
 
 
 
 
 

 
 
 

Figure 5. Human viewpoint from mobile robot perspective 
 
5.  Decision-Making Test Results 
 Test runs are used to determine the effectiveness of the 
human training as the mobile robot autonomously navigates 
through a test location. The training/testing runs take place in 
the JPL Mars Yard, a 20m x 20m area that simulates various 
types of natural terrain environments.  A typical scenario is 
shown in Figure 6 with the associated grid map shown in 
Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Snapshot of Mars Yard terrain environment 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

Figure 7. Grid map of Mars Yard terrain environment 
 



 The initial training cycle consists of a human operator 
navigating around local rock obstacles.  Four typical scenarios 
were tested: navigation on a clear straight path toward a large 
cluster of rock, navigation alongside a rock cluster located to 
the left, navigation alongside a rock cluster located to the 
right, and navigation around rock clusters randomly 
distributed along a path. In these scenarios, we are training the 
robot to learn the concept of safe navigation, i.e. given a 
natural terrain environment, find the clearest path of traverse. 
The human mentor guides the mobile robot safely from a 
random start to an end goal position corresponding to the 
desired terrain scenario, while ensuring maximum clearance 
distance is maintained between the mobile robot and large 
untraversable rock areas. Human-robot interaction test 
scenarios of approximately 10-meter traverse distances were 
used for training the navigation system. To evaluate the 
capability of the system, the robot was then commanded to 
autonomously navigate for an additional ten runs at different 
locations not previously training on, without the human 
mentor. We were interested in determining whether the robot 
could perform in any situation, given an environment with 
similar terrain characteristics. Performance was determined 
based on comparing the minimum clearance distance between 
the mobile robot and large obstacle areas, for a human-driven 
versus autonomous run such that: 
 

RobotClearancei =  min(||rockpositioni – robotposition(t)||) 
HumanClearancei = min(||rockpositioni – robotposition(t)||) 

Error = ∑HumanClearancei/RobotClearancei 
 
where rockpositioni is the x,y position of one of K identified 
untraversable rock areas (labeled a priori for evaluation 
purposes) over the path, robotposition is the x,y position of the 
mobile robot at time t, RobotClearance is the minimum 
clearance achieved during autonomous traverse, and 
HumanClearance is the minimum clearance achieved during 
human operation of the mobile robot. An error value nearest to 
1.0 represents the ideal learning situation.  We select this form 
of an error metric since we are focusing on learning the 
concept of safe navigation (i.e. obstacle clearance). 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Comparison of driving between mentor (human) and 

protégé (trained mobile robot) 
 
 To compare the performance of the human and robot, we 
ran the robot autonomously through a test scenario, while 
having the user provide their command preferences via the 

joystick.  These joystick commands were not sent to the robot, 
but were stored for performance comparison. A snapshot of a 
particular instance of one of the robot implementation runs is 
shown in Table I.  Figure 8 shows the corresponding path of 
the human versus robot. The largest error found in the test 
runs for the four scenarios was a 0.4 meter clearance 
difference (Error = 1.2) between human directed location and 
actual robot driven location.  In no case did the robot protégé 
collide with an obstacle during its navigation test runs.  
 
Table I. Comparison of driving commands between mentor 
(human) and protégé (trained mobile robot) 

 
 

6.  Conclusions 
 In this paper, we discuss the development of a human-
robot interaction system to learn off-road navigation behavior. 
The innovation of our approach is the integration of a learning 
process that uses data extracted from physical human 
interaction and modeling of the terrain environment for real-
time control and implementation in natural terrain 
environments. Preliminary test results show that the 
methodology enables seamless interaction for embedding 
human expertise in mobile robot systems for safe navigation 
in natural terrain environments. Future work will focus on 
expanding the capability of the mobile robot to traverse more 
complex terrain environments.  
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