
Learning Multi-Modal Control Programs

Tejas R. Mehta and Magnus Egerstedt

{tmehta,magnus}@ece.gatech.edu
Georgia Institute of Technology

School of Electrical and Computer Engineering
Atlanta, GA 30332, USA

Abstract. Multi-modal control is a commonly used design tool for break-
ing up complex control tasks into sequences of simpler tasks. In this pa-
per, we show that by viewing the control space as a set of such tokenized
instructions rather than as real-valued signals, reinforcement learning
becomes applicable to continuous-time control systems. In fact, we show
how a combination of state-space exploration and multi-modal control
converts the original system into a finite state machine, on which Q-
learning can be utilized.

1 Introduction

In this paper we study the problem of controlling complex systems through the
decomposition of the control task into a sequence of control modes. Such a divide
and conquer approach has proved useful in that it allows the control designer to
construct a number of relatively simple control laws, rather than one complex
law. Successful examples of this approach include flight mode control in avionics
and behavior based control of autonomous robots.

The aim of this paper is to show that such multi-modal control design strate-
gies allow us to use standard reinforcement learning techniques on previously
computationally intractable problems, namely for continuous-time control sys-
tems, where the states and control signals take on values in uncountably large
sets. To see how this can be done, it should be noted that reinforcement learning
is readily applicable when the state space and the input set are finite sets and the
system is event driven (e.g. finite state machines or Markov decision processes).
See for example [9, 11, 16, 17].

However, by considering a finite number of feedback laws κi, i = 1, . . . , M
(i.e. mappings from the state space to the input set), together with interrupts
ξj , j = 1, . . . , N , which are the conditions for the termination of the current
mode, a finite quantization of the control space is obtained. Note that the con-
trol set itself is not quantized but rather that the quantization acts at a functional
level. This observation takes care of the problem of quantizing the control in-
puts. Moreover, by adopting a Lebesque sampling strategy where a new state
is sampled only when the interrupts trigger, the continuous time problem is
transformed into an event-driven problem. The final piece of the puzzle is the

observation that, given an initial state x0 and a finite length multi-modal pro-
gram, only a finite number of states are reachable. These ideas are illustrated
in Figure 1, where the first figure corresponds to a case where the state space
X ∼ Rn and the input set U ∼ Rm. Depicted as a function of x and u is the so-
called Q-function that characterizes the utility of using control input u at state
x. In the next figure, U is replaced by Σ, which corresponds to a finite set of
control-interrupt pairs. Without discretizing U , a finite control space is obtained
by defining a finite set of available control modes. The final figure shows a situ-
ation where both the state space and the input space are finite. The input space
is again given by Σ, while XQ is the quantized state space obtained through an
exploration of the states that are reachable from x0 (in N steps) at the distinct
times at which the interrupts may trigger.

XU

Q

(a)

X
Σ

Q

(b)

XQ
Σ

Q
(c)

Fig. 1. Depicted is the progression from X and U being smooth manifolds (a) to the
case when both the state space and the input set are finite (c) through the introduction
of multi-modal control procedures and Lebesque sampling.

To go from a continuous time control system to a finite state machine is
certainly not a new idea. In particular, discretizations of the space-time do-
main are routinely used for establishing reachability properties. However, such
discretizations do not reflect the underlying dynamics in any meaningful way.
Alternatives are given in [2], where tokenized control symbols result in reachable
lattices, and in [15], where LTL specifications are defined for a quantized system
while guaranteeing that the specifications still hold for the original system. The
idea of structured state space explorations was pursued in [1], where the reach-
able part of the state space was implicitly discretized using rapidly-exploring
random trees. Additional results on motion description languages and tokenized
control strategies can be found in [3, 6–8]. Moreover, it is not necessary to let
the state space and input set be finite in order to apply learning techniques
[14]. For example, a set of basis functions can be defines for supporting the Q-
function such as sigmoids, wavelets, or Gaussian kernel functions. However, the
computational burden associated with these methods of often prohibitive.

In this paper we will make these preliminary, informal observations rigorous,
and the outline of the paper is as follows: In Section 2 we will discuss reinforce-

ment learning for discrete event-driven systems and see how these techniques
can be modified in order to incorporate multi-modal feedback strategies. In Sec-
tion 3 we switch our attention to continuous-time control systems, where the
state and control spaces are Rn and Rm respectively. Contained in this section
is moreover a robotics example, that illustrates the potential usefulness of the
proposed approach. Additional improvement and refinement issues are treated
in Section 4, followed by a brief robustness discussion in Appendix A.

2 Reinforcement Learning

For systems operating in unknown environments and/or with unknown dynam-
ics, reinforcement learning provides the means for systematic trial-and-error in-
teractions with the environment. Although the contribution of this paper is to
apply learning techniques to multi-modal hybrid systems, we will here briefly
cover the standard reinforcement-learning model.

2.1 Standard Reinforcement Learning

In the standard reinforcement-learning model, at each step (discrete time), the
agent chooses an action, u ∈ UF , based on the current state, x ∈ XF , of the
environment, where UF and XF are finite sets (Hence the subscript F). The
corresponding result is given by xk+1 = δ(xk, uk), where δ : XF × UF → XF

is the state transition function that encodes the system dynamics. Moreover,
a cost c : XF × UF → R is associated with taking action u at state x. The
agent should choose actions in order to minimize the overall cost. Given a policy
π : XF → UF , the discounted cost that we wish to minimize is given by

V π(x0) =
∞∑

k=0

γkc(xk, π(xk)),

where γ ∈ (0, 1) is the discount factor and xk+1 = δ(xk, π(xk)), k = 0, 1, . . .
We will use V ∗(x) to denote the minimum discounted cost incurred if the

agent starts in state x and executes the optimal policy, denoted by π∗. In other
words, the optimal value function is defined through the Bellman equation

V ∗(x) = min
u∈UF

[
c(x, u) + γV ∗(δ(x, u))

]
,∀x ∈ XF .

This equation simply states that the optimal value is obtained by taking the
action that minimizes the instantaneous cost plus the remaining discounted cost.
Once V ∗ is known, the optimal policy, π∗, follows directly through

π∗(x) = min
u∈UF

[
c(x, u) + γV ∗(δ(x, u))

]
,

which shows why knowing V ∗ is equivalent to knowing the optimal policy.

If we now let Q∗(x, u) be the discounted cost for taking action u in state x
and then continuing to act optimally, we observe that V ∗(x) = minuQ∗(x, u),
and therefore

Q∗(x, u) = c(x, u) + γ min
u′∈ UF

Q∗(δ(x, u), u′).

To find Q∗, we start by assigning a uniform value to every state-action pair, and
then randomly select state-action pairs (x, u) and update the Q-table using the
following Q-learning law

Qk(x, u) := Qk−1(x, u)+αk

(
c(x, u)+γ min

u′∈ UF

{
Qk−1(δ(x, u), u′)−Qk−1(x, u)

})
.

If each action is selected at each state an infinite number of times on an infinite
run and αk, the learning rate, is decayed appropriately, the Q values will converge
to Q∗ with probability 1. By appropriate decay of αk we mean that

∑
k αk = ∞

while
∑

k α2
k < ∞, hence decreasing the learning rate over time (e.g. αk = 1/k)

will guarantee convergence. (For more details regarding reinforcement learning,
see for example [9, 11, 14, 16, 17].)

2.2 Learning Control Programs

We now define a new input space that corresponds to tokenized descriptions
of feedback laws and interrupts, as prescribed within the motion description
language (MDL) framework. Instead of interacting with the environment at each
step, the agent takes actions based on a feedback law κ, which is a function of
the state x. The agent furthermore continues to act on the feedback control law
κ until the interrupt ξ triggers, at which point a scalar cost is incurred.

Formally, let XF and UF be finite sets, as defined earlier, and let Σ = K×Ξ,
where K ⊆ UF

XF (the set of all maps from XF to UF) and Ξ ⊆ {0, 1}XF .
Moreover, let δ̃ : XF × Σ → XF be the state transition mapping, x̃k+1 =
δ̃(x̃k, (κk, ξk)), obtained through the following free-running, feedback mechanism
[8]: Let x̃0 = x0 and evolve x according to xk+1 = δ(xk, κ0(xk)) until the inter-
rupt triggers, i.e. ξ0(xk0) = 1 for some index k0. Now let x̃1 = x(k0) and repeat
the process, i.e. xk+1 = δ(xk, κ1(xk)) until ξ1(xk1) = 1. Now let x̃2 = x(k1), and
so on. Also let ζ : XF ×Σ → R be the cost associated with the transition.

We want to apply reinforcement learning to this model. To accomplish this
we must make a few modifications. First, note that card(Σ) is potentially much
larger than card(UF), where card(·) denotes the cardinality. This directly affects
the number of entries in our Q-table. If all possible feedback laws and interrupts
were available, the cardinality of the new input space would be [2card(UF)]card(XF)

with obvious implications for the numerical tractability of the problem.
Second, in order to find Q∗, we start again by assigning a uniform value to

every state-action pair, and then iteratively update the Q values by randomly
selecting a state-action pair with the action comprising of one of the possible
feedback laws in K and interrupts in Ξ. The consequent Q-learning law is

Qk(x, (κ, ξ)) := Qk−1(x, (κ, ξ))

+αk

(
ζ(x, (κ, ξ)) + γ min

(κ′,ξ′)

{
Qk−1(δ̃(x, (κ,ξ)), (κ′, ξ′))−Qk−1(x, (κ, ξ))

})
.

Since Ξ and K are finite, the set of all possible modes Σ is finite as well. Hence
the convergence results still hold, as long as each mode is selected for each state
an infinite number of times, and αk decays appropriately.

2.3 Example: Maze

Consider the problem of an agent navigating a M ×M planar grid (we will let
M = 10) with obstacles. For any of the M2 possible positions, the agent can
move either north (N), south (S), east (E), west (W), or not at all (ε). Each
such action, except of course ε, advances the agent one step, and it is understood
that there is a boundary along the perimeter of the grid that the agent can not
cross. Moreover the agent can advance through obstacles even though a hefty
cost is incurred whenever this happens. Starting from an arbitrary location, the
agent needs to find the shortest path to a specified goal, while avoiding obstacles.

We can restate this problem as a reinforcement learning problem, where
the agent must learn the optimal policy given the model of the environment.
Formally, we have

– x = (x1, x2), where x1, x2 ∈ {0, 1, 2, . . . , M − 1};
– u ∈ {N, S,E, W, ε};

– δ(x, u) =

(x1,min{x2 + 1,M − 1}) if u = N
(x1,max{x2 − 1, 0}) if u = S
(min{x1 + 1,M − 1}, x2) if u = E
(max{x1 − 1, 0}, x2) if u = W
(x1, x2) if u = ε

– c(x, u) =

0 if δ(x, u) = xgoal

100 if δ(x, u) ∈ O
1 otherwise

Here, xgoal is the goal state, while O ⊂ X is the set of obstacles. Using standard
Q-learning, as previously described, the agent quickly learns the shortest path
to the goal and the resulting simulation result is shown in Figure 2(a).

In this example, each input corresponds to one step in the maze. However,
one could ask the question about the shortest mode string that makes the agent
reach the goal, following the development in [8]. Unfortunately, the total number
of feedback laws is card(K) = card(UF)card(XF), i.e. in this example we have 5100

possible control modes, which is a numerically intractably large number. Hence,
we have to reduce the size of K, and our particular choice is the set of constant
feedback laws, i.e. K = {κN , κS , κE , κW , κε}, where κN (x) = N, ∀x ∈ XF , and
so on. Similarly, we need to limit the size of the interrupt set, and we simply let
Ξ be set of interrupts that trigger after m steps, m = 1, 2, . . . , N . (We denote
these interrupts by Ξ = {ξ1, . . . , ξN}.) In this case card(Ξ) = N , and for the
particular problem we are interested in, we let N = 9 (since M = 10), so we
need 9× 5× 100 = 4500 entries in the Q-table. Note that, in order to keep track
of the number of steps, the state space has to be augmented in a straightforward
manner.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
10 x 10 MAZE

start = (4,0) goal = (4,8)

(a)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
10 X 10 MAZE

start = (4 0) goal = (4 8)

(b)

Fig. 2. Robot navigating through a maze using a standard reinforcement-learning
model (left) and using modes with interrupts as the control set (right).

Now in order to find Q∗, and consequently the optimal policy, we start by
assigning a uniform value to every state-action pair (recall we have 4500 possible
such pairs). We then randomly select a state-action pair and update its Q-value
according to the previously discussed, modified Q-learning law. The result of
the simulation is shown in Figure 2(b). Note that this may not always be the
shortest path in terms of length (even though it happens to be the shortest in
this particular case), but it is the optimal path in terms of the length of the
mode string.

3 Learning Control Programs for Continuous Systems

Now that the discrete-time case with finite state and input spaces is covered, we
shift focus to the main contribution of this paper, namely the solution to the
problem of learning multi-modal control programs for continuous-time systems.
Suppose we have the following system:

ẋ = f(x, u), x ∈ X = Rn, u ∈ U = Rm, where x(t0) = x0 is given.

If at time t0, the system receives the input string σ = (κ1, ξ1), . . . , (κq, ξq), where
κi : X → U is the feedback control law, and ξi : X → {0, 1} is the interrupt,
then x evolves according to

ẋ = f(x, κ1(x)); t0 ≤ t < τ1

...
...

ẋ = f(x, κq(x)); τq−1 ≤ t < τq,

where τi denotes the time when the interrupt ξi triggers (i.e. changes from 0 to
1).

We are interested in finding a sequence of control-interrupt pairs that min-
imizes a given cost for such a system. For example, we might be interested in
driving the system to a certain part of the state space (e.g. to the origin), and
penalize the final deviation from this target set. Previous work on reinforcement
learning for continuous-time control systems can broadly be divided into two
different camps. The first camp represents the idea of a direct discretization of
the temporal axis as well as the state and input spaces (e.g. [4, 13]). The main
criticism of this approach is that if the discretization is overly coarse, the control
optimizing the discretized problem may not be very good when applied to the
original problem. Of course, this complication can be moderated somewhat by
making the discretization more fine. Unfortunately, in this case, the size of the
problem very quickly becomes intractable.

The second approach is based on a temporal discretization (sampling) in
combination with the use of appropriate basis functions to represent the Q-table
(e.g. [5, 12, 14]). Even though this is a theoretically appealing approach, it lacks
in numerical tractability. In contrast to both these two approaches, we propose
to let the temporal quantization be driven by the interrupts directly (i.e. not
by a uniform sampling) and let the control space have finite cardinality through
the interpretation of a control symbol as a tokenized control-interrupt pair. In
other words, by considering a finite number of feedback laws κi : X → U, i =
1, . . . , M , together with interrupts ξj , j = 1, . . . , N , the control space (viewed at
a functional level) is finite even though the actual control signals take on values
in Rm. Another effect of the finite mode-set assumption is that it provides a
natural quantization of the state space. Moreover, if we bound the length of the
mode sequences, this quantization is in fact resulting in a finite set of reachable
states.

Given an input σ = (κ, ξ) ∈ Σ, where Σ ⊆ UX × {0, 1}X , the flow is given
by

φ(x0, σ, t) = x0 +
∫ t

0

f(x(s), κ(x(s)))ds.

If there exists a finite time T ≥ 0 such that ξ(φ(x0, σ, T)) = 1, then we let the
interrupt time be given by

τ(σ, x0) = min{t ≥ 0 | ξ(φ(x0, σ, t)) = 1}.
If no such finite time T exists then we say that τ(σ, x0) = τ∞ for some dis-
tinguishable symbol τ∞. Furthermore, we let the final point on the trajectory
generated by σ be

χ(σ, x0) = φ(x0, σ, τ(σ, x0))

if τ(σ, x0) 6= τ∞ and use the notation χ(σ, x0) = χ∞ otherwise. Moreover let
χ(σ, χ∞) = χ∞,∀σ ∈ Σ.

This construction allows us to define the Lebesque sampled finite state ma-
chine (XQ

N , Σ, δ̃, x̃0), where N is the longest allowable mode string, and where
the state transition is given by

x̃0 = x0

x̃k+1 = δ̃(x̃k, σk) = χ(σk, x̃k), k = 0, 1, . . .

The state space XQ
N is given by the set of all states that are reachable from x̃0

using mode strings of length less than or equal to N .
Now that we have a finite state machine describing of the dynamics, we can

run our learning algorithm, with an appropriate cost function, in order to obtain
the optimal control program as discussed earlier. However, in order to preserve
computing resources, we run this in parallel with the state exploration, and the
general algorithm for accomplishing this is given by

X := {x̃0, δ̃(x̃0, σ)}, ∀σ ∈ Σ
step(x̃0) := 0
step(δ̃(x̃0, σ)) := 1, ∀σ ∈ Σ
p := 1
Qp(x̃, σ) := const ∀x̃ ∈ X , σ ∈ Σ
repeat

p := p + 1
x̃ := rand(χ ∈ X | step(χ) < N)
σ := rand(Σ)
x̃′ := δ̃(x̃, σ)
if x̃′ /∈ X then

step(x̃′) := step(x̃) + 1
X := X ∪ {x̃′}
Q(x̃′, σ) := const ∀σ ∈ Σ

end if
Qp(x̃, σ) := Qp−1(x̃, σ)

+ αp

(
ζ(x̃, σ) + γ minσ′∈Σ

{
Qp−1(x̃′, σ′)−Qp−1(x̃, σ)

})

until mod(p, L) = 0 and |Qp(x̃, σ)−Qp−L(x̃, σ)| < ε, ∀ x̃ ∈ X , σ ∈ Σ

XQ
N = X

Unlike the earlier Q-learning algorithm, the state space is initially unknown
for this case, and we thus begin learning/exploring from the states we know
(namely x̃0 and all the states reachable in one step). At each iteration of the
learning process, we select a state randomly from the set of known states and we
select a mode randomly from the set of modes. In the algorithm, the function
step(x̃) represents the length of the shortest control program used so far to reach
state x̃ from the initial state x̃0. This is to ensure we only explore states that
are reachable from x̃0 using mode strings of length less than or equal to N , i.e.
X ⊆ XQ

N . We then calculate the next state and determine if it is a member of our
known state space (In practice, it is necessary to check if the next state belongs to
a neighborhood of a previously visited state). If not, add this state to the known
state space and make the corresponding change in the Q-table. We continue to
explore and update the state space and our Q-table (or value function) in this
manner until the Q-table is stationary. Note that in the algorithm, ε > 0 is a
small positive scalar and L is a large number needed to ensure that sufficiently
many state-action pairs are visited.

3.1 Example

Consider the following simple planar integrator system:

ẋ = u, x, u ∈ R2, x0 =
(

1
1

)
.

Moreover, let the modes be given by Σ = {σij = (κi, ξij), i = 1, 2, j = 1, . . . , 5},
where

κ1(x) =
(

1 0.1
0 −1

)
x

κ2(x) =
(−1 0
−0.2 2

)
x

ξ1j =
{

1 if x2
2 < Mδj

0 otherwise

ξ2j =
{

1 if x2
1 < Mδj

0 otherwise
for j = 1, 2, . . . , 5,

where M, δ > 0. Note that the system is unstable in either mode. We want to
learn a mode string that will stabilize the system, i.e. drive it to the origin.
Although it may not be possible to drive the system to x = 0 with these partic-
ular control-interrupt pairs, we want to select a string of modes which bring the
system to a neighborhood of x = 0.

For the particular choice of modes, the reachable set has cardinality 2
∑N

i=0 5i,
where N is the maximum number of steps (or string length) and as can be ex-
pected, the cardinality of the state space increases exponentially with respect to
the length of the control program. The resulting plot from solving the learning
problem using the combined state space exploration and Q-learning is shown in
Figure 3(a) in which N = 5 and the cost is given solely by the final distance
to the origin. We could of course also change the cost to let it include an addi-
tive term that measures the total distance travelled. The corresponding, learned
optimal trajectory for this cost is shown in Figure 3(b).

3.2 Example: Maze Revisited

We now apply this strategy for obtaining finite state machine descriptions of
continuous time multi-modal control systems to the previously discussed maze
problem. In particular, we still use the mode set {N, S,E, W, ε}, but define it
for a planar integrator instead of a finite state machine. We moreover let the
interrupts, which previously counted the number of steps taken, correspond to
a certain distance travelled. We apply this scheme to the problem of making a
robot negotiate a maze and in Figure 4 the experimental setup is shown, where
a Magellan Pro Mobile Robot from iRobot is to negotiate the maze. Figure 5
moreover shows final path obtained through the learning algorithm.

−1 0 1 2 3 4 5 6 7 8 9
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

f
1

f
1

f
1

f
2

f
2

x1

x2

x
0

x
f

f1
f2

(a)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x1

x2

f
1

f
1

f
2

f
2

f
2

x
0

x
f

f1
f2

(b)

Fig. 3. In this example, M = 1 and δ = 0.75 and the resulting optimal mode strings are
(cost = final distance to the origin) σ̂ = (κ1, ξ13) · (κ2, ξ25) · (κ1, ξ15) · (κ2, ξ23) · (κ1, ξ15)
(left) and (cost = final distance to the origin combined with total distance travelled)
σ̂ = (κ2, ξ24) · (κ1, ξ12) · (κ1, ξ21) · (κ2, ξ13) · (κ1, ξ25) (right).

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

Fig. 4. Experimental setup

4 Refining the Learning Process

In this section we discuss some methods for enhancing the learning process. In
particular, for problems with large state and input spaces (basically all inter-
esting problems), the convergence is typically slow when using a purely random
exploration strategy. However, it is well-known that one can use knowledge about
the problem in order to speed up the learning process. The idea is to start out the
learning process completely at random, but as the system gains ”experience” the

−1 0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 5. The final trajectory. Depicted is the path of the robot together with the range
sensor readings (IR-based) obtained throughout the final run. Note how the odometric
drift makes the maze look somewhat distorted.

state space exploration becomes less and less random. In other words, we bias
the selection of the state-action pairs to explore and update based on current
values of the Q-table.

In order to formalize this, some notation is needed. We let P (x, u) de-
note the probability of selecting state-action pair (x, u) from XF × UF , with∑

x∈X

∑
u∈U P (x, u) = 1. Initially we begin with

P0(x, u) =
1

card(X)card(U)
.

In other words, every state-action pair has an equal likelihood of being selected.
As we gain experience, we can change these probabilities to bias the selection in
favor of state-action pairs with lower Q-values (potentially ”good” state-action
pairs). There may be many appropriate methods for biasing these probabilities,
and one simple approach is to let the probability of selection state-action pair
(x, u) be given by

Pk(x, u) =
Qk−1(x, u)∑

x′∈XF

∑
u′∈UF

Qk−1(x′, u′)
.

Given such a biased probability distribution, we do not want to use it pre-
maturely, for this may lead us to not learn the optimal policy. Instead we want
to introduce a confidence value, c ∈ [0, 1], which is based on the time step k and
the past Q-values. With a lower value of c, the exploration strategy should be
more random (i.e. use P0(x, u) when selecting a state-action pair), while higher

value of c suggest using a more biased exploration strategy (i.e. use Pk(x, u)).
Note that we still want to leave some amount of randomness in the selection
process in order to ensure that the entire state and input space is explored.
Hence, c should never equal 1. The degree of bias in the selection process and
the necessary experience will vary from problem to problem.

Based on our knowledge of the problem we can also start pruning the state-
space as we gain experience. This means that we could exclude states that we are
certain are not part of the optimal trajectory. This reduction in the size of the
state-space enables the learning process to converge faster since all the plausible
state-action pairs can be selected more often. However, great caution and high
degree of accuracy must be used when pruning the state-space to ensure that
the optimal policy is still learned since incorrectly pruning a potentially useful
state may mean that only a sub-optimal policy is learned.

5 Conclusions

In this paper we present a method for going from continuous time control systems
to finite state machines in a structured manner. In particular, by only considering
a finite number of modes, i.e. control-interrupt pairs, the input space is finite and
the continuous time dynamics has been replaced by a Lebesque sampled, discrete
time system. Moreover, by only allowing mode strings of a certain length, the
reachable state space (at the interrupt times) is finite as well. This construction
means that previously unavailable computational methods, such as reinforcement
learning, are now applicable in a straight forward manner.

Acknowledgements

This work was sponsored by the National Science Foundation through the pro-
gram ECS NSF-CAREER award (grant # 0237971).

References

1. A. Bhatia, and E. Frazzoli. Incremental Search Methods for Reachability Analysis
of Continuous and Hybrid Systems. Hybrid Systems: Computation and Control.
Springer-Verlag, 2004.

2. A. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quantized control
systems. IEEE Transactions on Automatic Control, 4(47):546-563, April 2002.

3. A. Bicchi, A. Marigo, and B. Piccoli. Encoding steering control with symbols. IEEE
International Conference on Decision and Control, pages 3343-3348, 2003.

4. S.J. Bradtke, B.E. Ydstie, and A.G. Barto. Adaptive linear quadratic control using
policy iteration. American Control Conference, pages 3475-3479, 1994.

5. L. Crawford, and S.S. Sastry. Learning Controllers for Complex Behavioral Sys-
tems. Neural Information Processing Systems Tenth Annual Conference(NIPS 96),
1996.

6. M. Egerstedt. On the Specification Complexity of Linguistic Control Procedures.
International Journal of Hybrid Systems, Vol. 2, No. 1-2, pp. 129-140, March &
June, 2002.

7. M. Egerstedt, and D. Hristu-Varsakelis. Observability and Policy Optimization for
Mobile Robots. IEEE Conference on Decision and Control, Las Vegas, NV, Dec.
2002.

8. M. Egerstedt, and R.W. Brockett. Feedback Can Reduce the Specification Com-
plexity of Motor Programs. IEEE Transactions on Automatic Control, Vol. 48, No.
2, pp. 213–223, Feb. 2003

9. T. Jaakkola, M.I. Jordan, and S.P. Singh. On the Convergence of stochastic itera-
tive dynamic programming algorithms. Neural Computation 6(6), 1994.

10. L.P. Kaebling, M.L. Littman, and A.R. Cassandra. Learning Policies for Partially
Observable Environments: Scaling Up. Proceedings of the Twelfth International
Conference on Machine Learning, 1995.

11. L.P. Kaebling, M.L. Littman, and A.W. Moore. Reinforcement learning: A survey.
Journal Of Artificial Intelligence Research, 1996.

12. K. Morgansen, and R.W. Brockett. Optimal Regulation and Reinforcement Learn-
ing for the Nonholonomic Integrator. Proceedings of the American Control Confer-
ence, pp. 462-6, June 2000

13. R.S. Sutton. Generalization in Reinforcement Learning: Successful Examples Using
Sparse Coarse Coding. Neural Information Processing Systems 8, 1996.

14. R.S. Sutton, and A.G. Barto. Reinforcement Learning, An Introduction. MIT Press,
Cambridge, MA, 1998.

15. P. Tabuada and G. Pappas. Model Checking LTL over Controllable Linear Systems
is Decidable. Hybrid Systems: Computation and Control, Springer-Verlag, Prague,
Czech Republic, 2003.

16. J.N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine
Learning, 16(3), 1994.

17. C.J.C.H. Watkins, and P. Dayan. Q-learning. Machine Learning 8(3/4):257-277,
May 1992.

Appendix A Robustness Analysis

Note that the entire argument presented in this paper concerning the finite state
space model hinges on the fact that we start from a fixed initial state. In this
section we will conduct a sensitivity analysis to show that if the mode string σ̂
is optimal when starting at x0, it is in fact still optimal for x̃0 = x0 + ∆x0, for
some small perturbation ∆x0. It is sufficient to show that if x0 is perturbed a
little, then x̃f , the point obtained after executing σ̂ from x̃0, lies within a small
neighborhood of xf , i.e. we need to show that ∆xf = xf − x̃f is small.

In order to simplify the notation, we let the interrupt surfaces be encoded
by smooth functions gi(x) = 0, i.e. ξi(x) = 1 when gi(x) = 0 and ξi(x) = 0
otherwise. Also, the trajectory of x is given by x(t) = Φ1(t, t0) until g1(x) = 0.
Then it is given by x(t) = Φ2(t, τ1) until g2(x) = 0, and so on. Here Φi is
the state-transition function associated with ẋ = f(x, κi(x)), and τi is the time
that interrupt ξi triggers, i.e. gi(x(τi)) = 0. Moreover we will denote this point
xhi

= x(τi). So for t ∈ [0, τ1), we get

˙̃x = f1(x̃, u) = f1(x + ∆x0, u)

= f1(x, u) +
∂f1

∂x
∆x0 + o(∆x).

Hence,

∆̇x =
∂f1

∂x
∆x0 + o(∆x),

meaning that for t ∈ [0, τ1), ∆x(t) = Φ1(t, t0)∆x0 + o(∆x). To examine the
trajectory after the interrupt, we have to calculate the change in the interrupt
time τ1 and the position at this time, namely xh1 . Again, using the first order
approximation, we get

x̃(τ1 + ∆τ1) = x(τ1 + ∆τ1) + ∆x(τ1 + ∆τ1)
= x(τ1) + f1(x(τ1))∆τ1 + ∆x(τ1) + o(∆τ1).

Here t = τ1 + ∆τ1 is the time that the trajectory of x̃ hits the interrupt surface,
so we must have

g1(x̃(τ1 + ∆τ1)) = 0,

which implies that

g1(x(τ1)) +
∂g1

∂x
(x(τ1))

[
f1(x(τ1))∆τ1)

]
+

∂g1

∂x
(x(τ1))∆x(τ1) + o(∆τ1) = 0.

Letting Lf1g1(x(τ)) := ∂g1
∂x (x(τ1))

[
f1(x(τ1))∆τ1)

]
, which is the Lie derivative of

g1 along f1, and assuming that this quantity is non-zero, we get

∆τ1 =
∂g1
∂x (x(τ1))Φ1(τ1, t0)∆x0

Lf1g1(x(τ1))
,

where we have ignored higher order terms. Hence,

∆xh1 = x̃(τ1 + ∆τ1)

=
[
I − f1

∂g1
∂x (x(τ1))

Lf1g1(x(τ1))

]
Φ1(τ1, t0)∆x0.

Now, based on the assumption that Lf1g1(x(τ1)) 6= 0 (i.e. the interrupt triggers
non-tangentially), ∆xh1 is small. Similarly we get that ∆xh2 is small under the
assumption that Lf2g2(x(τ2)) 6= 0. Continuing in this manner, we deduce that
∆xf will be small as long as Lfi

gi(x(τi)) 6= 0, for i = 1, . . . , M , and the result
follows.

