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SUMMARY

Motivated by challenges and opportunities in nutritional epidemiology and food

journaling, ubiquitous computing researchers have proposed numerous techniques for auto-

mated dietary monitoring (ADM) over the years. Although progress has been made, a truly

practical system that can automatically recognize what people eat in real-world settings re-

mains elusive. This dissertation addresses the problem of ADM by focusing on practical

eating moment detection. Eating detection is a foundational element of ADM since auto-

matically recognizing when a person is eating is required before identifying what and how

much is being consumed. Additionally, eating detection can serve as the basis for new types

of dietary self-monitoring practices such as semi-automated food journaling.

In this thesis, I show that everyday eating moments such as breakfast, lunch, and dinner

can be automatically detected in real-world settings by opportunistically leveraging sensors

in practical, off-the-shelf wearable devices. I refer to this instrumentation approach as

”commodity sensing”. The work covered by this thesis encompasses a series of experiments

I conducted with a total of 106 participants where I explored a variety of sensing modalities

for automatic eating moment detection. The modalities studied include first-person images

taken with wearable cameras, ambient sounds, and on-body inertial sensors. I discuss the

extent to which first-person images reflecting everyday experiences can be used to identify

eating moments using two approaches: human computation, and by employing a combina-

tion of state-of-the-art machine learning and computer vision techniques. Furthermore, I

also describe privacy challenges that arise with first-person photographs. Next, I present

results showing how certain sounds associated with eating can be recognized and used to

infer eating activities. Finally, I elaborate on findings from three studies focused on the use

of on-body inertial sensors (head and wrists) to recognize eating moments both in a semi-

controlled laboratory setting and in real-world conditions. I conclude by relating findings

and insights to practical applications, and highlighting opportunities for future work.
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CHAPTER I

INTRODUCTION AND MOTIVATION

“Without proper diet, medicine is of no use. With proper diet, medicine is of no need.”

–ancient Ayurvedic proverb

1.1 Monitoring Eating Activity

Eating is one of the most fundamental human activities. Satisfying the hunger urge is

essential for survival and sharing a meal has been one of the most enduring social practices

for thousands of years [47]. Because of the important role eating plays in our lives, it

has been extensively studied. Anthropologists have investigated the relationship of eating

behavior to culture and society and have claimed that learning how food is eaten is to

learn how a society functions [40]. Food consumption has been shown to be tied to rituals,

symbols, belief systems and identities [95].

For several decades health researchers have also been deeply interested in studying eating

habits and its impact on human health. It is now understood that good nutrition is vital

for optimal growth and development, and prevention of disease [46, 72]. Dietary intake has

been widely examined as it relates to cardiovascular disease, hypertension, obesity, diabetes,

cancer, osteoporosis and many other medical conditions [17].

Despite the importance of eating as an activity, keeping track of what, where, how

much and with whom people eat remains a significant challenge, particularly in naturalistic

settings. As described by Jacobs:

“A full characterization of a person’s diet would consist of a large number of discrete

pieces of information. There are thousands of foods, prepared in myriad ways, and

eaten in various amounts and combinations. Even a single food such as a carrot or an

onion presents a challenge, as there are many varieties and genetic variations; growing
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conditions are influential in food composition. The timing and context of eating, as

well as the number of meals eaten, may all contribute to metabolism of food” [58].

Nutritional epidemiologists have typically relied on validated dietary assessment instru-

ments driven by self-reported data including food frequency questionnaires and meal recalls

[141]. Unfortunately, these instruments suffer from several limitations, ranging from biases

to memory recollection issues [58, 93].

Over the last 15 years, a large body of research has aimed at automating the task

of food intake monitoring. This research has been possible thanks to advances in mobile,

wearable and sensing technologies. Despite significant progress, most proposed systems have

required individuals to wear specialized devices such as neck collars for swallow detection [6],

or microphones inside the ear canal to detect chewing [80]. These form-factor requirements

have severely limited the immediate practicality of automated food intake monitoring in

health research.

Another factor that has hampered progress in automated nutrition monitoring has been

the way the recognition problem has been represented. There are at least two key technical

challenges in building a fully automated food intake monitoring system: (1) recognizing

when an individual is performing an eating activity, and then (2) inferring what and how

much the individual eats. Historically, methods devised to automate dietary tracking have

largely ignored the distinction between these challenges. Failing to acknowledge the many

facets of the problem, I would argue, is an important reason why previous automated dietary

assessment research efforts did not meet expectations in terms of practical applicability and

deployment.

My work is particularly concerned with the challenge of eating detection. The aim

of this dissertation is to defend the thesis that it is possible to automatically detect eating

moments, such as breakfast, lunch, dinner and snacks by opportunistically leveraging sensors

embedded in practical, off-the-shelf wearable devices that have become increasingly popular

with the general population. I call this sensing approach “commodity sensing”.
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Figure 1: Wearable cameras, smartphones, activity trackers and smartwatches are exam-
ples of popular consumer electronic devices that can be used for sensing everyday human
activities.

1.2 Commodity Sensing

When implementing activity recognition systems, researchers have traditionally designed

custom devices or employed dedicated data collection methods. Although this approach

makes it possible to experiment with new types of sensing technologies and conduct user

studies with participants, it is not practical when capturing sensor data in real-world settings

and in longitudinal studies. Participants are often unwilling to wear custom devices and

sensors for days or weeks at a time no matter how motivated they are about the research

goal. Fortunately, over the last few years, we have seen the emergence of a wide range

of wearable devices such as smart watches, activity trackers, and wearable cameras, with

extensive computation and sensing capabilities. Many of these devices have been widely

embraced by individuals already while some are becoming increasingly more popular.

By leveraging the capabilities of these devices, it is possible to capture sensor data
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referring to people’s everyday activities over the long term without requiring the utilization

of any other custom device. This strategy, which is central to this thesis, is referred to as

“commodity sensing”. It is derived from a concept introduced by Lukowicz et al. called

opportunistic sensing [82]. These researchers argued that to recognize complex activities

in real-world environments and realize universal context awareness, it is imperative that

systems take advantage of sensors and devices that just happen to be in the environment.

This approach is in contrast to systems that require specialized sensors deployed for specific

applications. The idea of readily-available sensors and devices that can be leveraged by

applications when necessary is well aligned with Weiser’s vision of omnipresent computing,

where a sensing layer is seamlessly overlayed in the physical environment, becoming in effect

invisible [135].

While opportunistic sensing has been proposed as a comprehensive approach that en-

compasses automatic discovery, configuration and even on-demand exchange of signals and

algorithms as appropriate, commodity sensing is a simpler construct. I define it as the uti-

lization of sensors in off-the-shelf devices which happen to be ubiquitous and omnipresent

by virtue of having been adopted by the general population. Despite its conceptual simplic-

ity if compared to opportunistic sensing, it satisfies the requirement of supporting activity

recognition systems without custom or application-specific sensors, a key ingredient for

scalability.

1.3 Application Domains

Eating is a universal, multi-faceted activity that is strongly tied to the everyday human

experience. It is also one of the most important health determinants. Therefore, it is no

surprise that understanding people’s eating habits and its consequences at the individual

and societal levels is incredibly valuable. The approaches I explore in this dissertation are

motivated by applications of eating detection along four inter-related dimensions: popula-

tion health, nutritional epidemiology, dietary self-monitoring, and patient and elder care.
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1.3.1 Population Health

Between 2006 and 2008, on a typical day, Americans age 15 or older dedicated 67 minutes to

eating and drinking activities. An additional 23.5 minutes were spent in secondary eating,

that is, eating while engaged in another activity. Men spent more time eating and drinking

(69 minutes) than women (65 minutes). Individuals who snack all day long, reporting at

least 4.5 hours of primary or secondary eating and drinking, are called constant grazers [66].

These types of findings emerge out of population health studies. Population health is

defined as “the health outcomes of a group of individuals, including the distribution of such

outcomes within the group” [70]. In the context of eating activities, population health means

gathering information on eating patterns to understand key issues related to nutrition and

health. As described by Andrews et al, “A better understanding of American eating patterns,

including the context of their food consumption, can improve programs and policies targeted

at reducing obesity and improving overall nutrition and, more generally, inform consumer

education, food assistance programs, and product development/ marketing.”

In the U.S., a large portion of population health data, including nutritional habits, is

gathered through the Behavioral Risk Factor Surveillance System (BRFSS), a telephone

survey focused on health-related risk factors1. Although it is the largest continuously con-

ducted survey system in the world, it is based on self-reported data, which is prone to

inaccuracies and biases. The ability to collect objective data about people’s activities at

scale would be a breakthrough in population health. In fact, it would represent a develop-

ment as significant as the development of the BRFSS itself. In the context of nutrition, this

vision is becoming a reality and the work outlined in this document demonstrates technical

approaches for realizing this future.

1.3.2 Nutritional Epidemiology

Nutritional epidemiological findings form the backbone of public health policy, nutritional

guidelines and even agricultural subsidies. One of the key reasons why health researchers

are interested in how people eat is to elucidate the mapping between dietary habits and

1http://www.cdc.gov/brfss/about/index.htm
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disease. Finding out what people eat and the broader context of eating activities has been

of interest to epidemiologists for many decades. For example, cohort studies have shown

an inverse association between adherence to the Mediterranean diet and cardiovascular risk

[39]. Moreover, researchers are beginning to explore the impact of time-restricted diets on

human health [49].

One disease, cancer, has been extensively studied alongside dietary impact. Cancer

is considered a chronic disease of the genome that may be influenced at many stages by

nutritional and metabolic factors. It is estimated that up to 80% of colon, breast, and

prostate cancer cases and one third of all cancer cases may be influenced by diet and

associated lifestyle factors [46]. Unfortunately, there is much we do not know about the

mechanisms underlying lifestyle-disease relationships. This challenge is exemplified by an

analysis by Schoenfeld and Ioannidis titled “Is everything we eat associated with cancer?

A systematic cookbook review” [119]. In this work, the relative risk of different foods with

respect to cancer are analyzed based on a review of published work. While some studies

show that items such as eggs and coffee act in cancer prevention, others claim they are

cancer risk factors.

The source of divergent findings in nutritional epidemiology stems in large part from

the use of flawed measurement tools. As with population health studies, epidemiological

research is also based on self-reported data. In fact, population health data sometimes

drive explorations in the space of nutrition. And as previously mentioned, self-report based

instruments have many flaws, which are detailed in Chapter 2. Recently, there has been a

strong sentiment in the health research community that more resources need to be allocated

towards the development of more objective and precise measures, which includes the ability

to detect eating activities [32, 94].

1.3.3 Dietary Self-Monitoring

The need for improved dietary tracking is also shared by individuals interested in meeting

health goals. Recently, health concerns linked to dietary behaviors such as obesity and
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diabetes have fueled demand for dietary self-monitoring, one of the most effective meth-

ods for weight control [20, 12]. It is characterized by systematic self-observation, periodic

measurement and recording of target behaviors with the goal of increasing self-awareness

[64, 140]. However, adherence to dietary self-monitoring is poor and generally wanes over

time, even with modern smartphone-based systems such as MealSnap2 and MyFitnessPal3

[30, 19]. Individuals must remember to log meals and snacks throughout the day, and then

manually record eating activities, a tedious and time-consuming task.

Semi-automated food journaling, a technique that hinges on eating detection, is a

promising new approach where the food tracking task is split between individuals and an

automated system, thus reducing the burden of self-monitoring while keeping individuals

involved in the process. In essence, it is an attempt to reach a compromise between manual

and automatic nutrition tracking. The key aspect of the approach is the splitting of the

food journaling task into two sub-tasks. The first sub-task, which is completed first and

is fully automated, centers on detecting when an eating activity is taking place. Examples

of eating activities include breakfast, lunch, dinner and snacking. Upon eating detection,

the other sub-task is triggered, requiring individuals to manually provide some information

pertaining to what was consumed.

A practical instantiation of this approach starts with an on-body sensor that automat-

ically infers when a person is eating. In my work, this has been done in a number of

ways with varying degrees of accuracy: by recognizing eating moments from images taken

with wearable cameras [129], presented in Chapter 3; by identifying acoustic signatures

associated with eating from environmental sounds [130], presented in Chapter 4; and by

recognizing food intake gestures with inertial sensors [127], presented in Chapter 5.

Once eating is taking place and the eating activity has been detected, several courses

of action could be pursued to prompt the individual for more information. In one scenario,

the individual’s smart-watch could softly vibrate to remind and nudge the individual to add

an entry to a food log. In some cases it might be undesirable or not socially acceptable

2http://www.mealsnap.com
3http://www.myfitnesspal.com

7



to document a meal while it is taking place. Instead, the individual could receive a text

message later in the day as a reminder to log at an opportune time in the near future.

1.3.4 Patient and Elder Care

While healthy eating habits are important in the prevention of a large number of medical

illnesses for the general population, it is particularly critical for the elderly and individuals

with chronic diseases [89]. For older adults, poor nutritional intake is linked to increased

morbidity and mortality due to energy deficiencies, low-body mass, cognitive decline, and

many other factors [92, 110, 88]. In particular, a deeper understanding of the impact of

poor dietary habits on individuals 75 years old and older is needed.

Poor dietary habits are also common for individuals with chronic diseases such as mental

illnesses [87]. For example, individuals with schizophrenia have a 20% shorter life expectancy

than the population at large [97] and are vulnerable to lifestyle diseases including diabetes,

coronary heart disease, and hypertension. To make matters worse, some of the medications

used to treat schizophrenia have been associated with weight gain, the onset of diabetes

and other problems. The combined effect of these risks suggests that physical activity and

nutrition monitoring as a means of health promotion would be beneficial to this population.

1.4 Thesis and Research Contributions

In this dissertation, I defend the thesis that everyday eating moments can be automat-

ically detected in real-world settings by opportunistically leveraging sensors in

practical, off-the-shelf wearable devices. I define eating moments as eating activities

such as breakfast, lunch, and dinner.

My work encompasses a wide span of research contributions around the study and

evaluation of different sensing modalities for eating moment detection, starting with first-

person point-of-view photographs taken with wearable cameras, progressing to ambient

sound sensing and concluding with a detailed examination of inertial sensing. The specific

research contributions of this work are enumerated below:
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1.4.1 Activity Recognition with Human Computation

Human computation is an approach that combines humans and computers to solve large-

scale problems that neither can solve alone. Services such as Amazon Mechanical Turk4

have popularized human computation by creating work marketplaces where any individual

can sign up to perform computer-based tasks and be compensated accordingly. Luis von

Ahn, the pioneer of human computation, originally demonstrated the value of this technique

by applying it towards image recognition problems [132, 133]. Today, human computation

is used for a variety of tasks, including gathering labels that can be used to train machine

learning classifiers [75, 121].

In chapter 3, I present an approach where human computation is used in the recognition

of eating moments from first-person images. This work demonstrates that human computa-

tion can be used not only to gather data to train a classifier, but act as the classifier itself.

One of the significant challenges of the task is that human computation workers are not

simply identifying objects in photographs, but reasoning about whether the individual the

photos refer to is in the middle of an eating moment. In other words, the task involves rec-

ognizing an activity from a photographic scene, and not just an object. This method was

validated with photographs taken by multiple individuals over several days in real-world

settings [129].

1.4.2 Privacy-Saliency Matrix

A difficulty of analyzing first-person images taken in real-world settings with human com-

putation is that privacy concerns arise. The reason for this is because human computation

workers are unknown individuals, and thus untrustworthy. In truth, anyone can sign up

to become a worker, regardless of profile or background. Giving these individuals access

to images portraying family, friends, bystanders, personal habits, and locations could be

characterized as a threat. Researchers have proposed ethical guidelines for dealing with

first-person photos, but these have had limited practical utility [68].

Although computer vision techniques can support the mitigation of privacy concerns in

4http://www.mturk.com
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first-person photographs (e.g., face detection), it is not possible to guarantee that they can

eliminate all privacy threats altogether. Additionally, a privacy-preserving approach might

end up flagging photos whose content is relevant, such as evidence of eating activity. To

understand and quantify the balance between privacy threat mitigation and the need to

preserve certain photos due to the presence of relevant content, I developed a framework

called the Privacy-Saliency Matrix [128]. I evaluated the framework by testing four compu-

tational techniques on a dataset of images collected in real-world settings. The techniques

were face detection, image cropping, location filtering and motion filtering.

1.4.3 Identifying Eating with Computer Vision Techniques

First-person images offer the possibility of capturing a person’s activities throughout the day

objectively. But computer vision techniques have traditionally fallen short when it comes to

recognizing objects and scenes in a photograph without any type of human input. Recently,

however, convolutional neural networks (CNN) have recently been used with success on

single image classification with a vast number of classes [73] and have been effective at

learning hierarchies of features [144].

In light of these promising results, I conducted an experiment and showed that CNN can

be used not only to identify images, but also to classify everyday activities into 19 categories

including eating, working, driving, biking and cooking [22]. As part of this research, I com-

piled the largest annotated dataset of first-person images in everyday, real-world settings.

In total, more than 40,000 images were collected over a period of 6 months. In the specific

context of eating detection, I showed the extent to which a model generalizes to other indi-

viduals. Also significantly, I quantified how much a general model’s performance improves

when re-trained with a small amount of data for one individual. This research was the first

to analyze model generalizability and personalization for eating moment classification with

data collected in naturalistic settings and over a period of time spanning several months.

1.4.4 Ambient Sounds as Evidence of Eating

Activity recognition researchers have investigated acoustic sensing for a variety of applica-

tions, including eating detection [103, 1]. Traditionally, the sensing takes place with on-body
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microphones capturing internal body sounds [143, 107]. In a feasibility study in real-world

settings with 20 participants, I demonstrate that ambient, environmental sounds recorded

around and outside the body, can also be a powerful predictor of eating activity. This is

possible because there are several acoustic signatures tied to eating activities that can be

recognized, such as the clicking of utensils on bowls, the unwrapping sound of foods coming

out of packages and containers, and the background noise of certain eating environments

(e.g., restaurant background music or chatter).

1.4.5 Commodity Inertial Sensing for Eating Detection

Body-worn inertial sensors have been extensively employed in activity recognition and eating

detection. But until recently, inertial sensors were specialized devices and only instrumented

for research studies in laboratory settings [3, 60]. Today, it is possible to explore the

problem of eating detection with off-the-shelf devices such as smartwatches, activity tracking

devices and wearable computers (i.e., Google Glass). In my work, I pioneered the notion of

piggybacking on the sensing capabilities of devices that individuals have already adopted

for their own personal use for the purpose of eating detection. In this document, I present

results that validate this methodology.

1.4.6 Inferring Eating Moments from Food Intake Gestures

Activity recognition researchers are often interested in identifying when people perform

certain gestures with arms and hands. Therefore, gesture spotting techniques have been

developed for a number of applications over the years including eating recognition, when it is

desirable to identify food intake gestures. However, for automatic eating moment detection,

pinpointing intake gestures is not enough; the goal is to recognize an eating moment such

as breakfast, lunch and dinner. Using a density-based unsupervised learning technique,

I present an approach where eating moments can be inferred from predicted food intake

gestures [127].
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1.4.7 Transfer Learning from Lab to Real-World

Model learning is often a difficult and resource-intensive task involving data collection and

a significant amount of tuning in terms of features and parameter optimizations. Once a

model has been built and meets certain specifications, it is highly desirable to be able to

use it in a variety of settings. When the model is reutilized, the accumulated “knowledge”

of the model is applied towards solving a different but related problem; this is referred to

as transfer learning.

Using a wrist-mounted inertial sensor, I show that transfer learning for an eating de-

tection model trained in the lab and deployed in real-world settings is possible. I built a

model with data collected in a laboratory study with 20 participants and validated it in

real-world conditions in two studies. The first study involved 7 participants for a period of

1 day, and the second study had one participant collecting data for an entire month. While

1-day studies set in naturalistic conditions are common, in-the-wild studies for a period of

several weeks are rare. For both studies, results proved to be highly encouraging.

1.4.8 Impact of One vs. Two-Handed Inertial Sensing

Eating is an activity that often requires the use of both hands. Therefore, instrumenting

both hands with inertial sensors might seem like the best approach to detect eating events.

However, in practice, individuals only wear one wristwatch or activity tracking band. Ad-

ditionally, these types of devices are often placed on the non-dominant hand, the one that

tends to be used less often while eating.

To understand the impact of dominant versus non-dominant inertial sensing for eating

moment detection, I conducted a study with 4 participants in a laboratory setting and

compiled preliminary results that address some of these empirical questions.

1.4.9 Activiome: A Platform for Activity Recognition Research

A large portion of my dissertation work focuses on recognizing eating behaviors in real-world

settings. This endeavor entails collecting sensor data and estimating ground truth labels

“in the wild”, a task that is known to be challenging. To facilitate this process, I developed
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a platform called Activiome that is composed of a web server backend, a web application,

a mobile application, and connectivity support for a range of activity tracking devices and

smartwatches.

The mobile application is programmed to function as a wearable camera taking first-

person photos at pre-defined intervals throughout the day; participants wear the phone on

a lanyard around the neck. The recorded photos capture objective evidence of participants

throughout their day. The mobile app also collects sensor data from tracking devices (e.g.,

inertial sensor data from a smartwatch) and uploads it to the Activiome web server in

near real-time. The web application provides an interface that allows study participants

to review all collected photographs and annotate them by activity category. By having

participants review their own content, privacy concerns are greatly minimized.

Although this platform was designed for the purposes of this dissertation work, it is not

tied to the recognition of eating moments in any way. It will be made available to researchers

and represents, in my opinion, a compelling tool for activity recognition research in real-

world settings.

1.5 Dissertation Overview

Automated eating detection has been a topic of study within the ubiquitous computing

research community for many years. Chapter 2 presents an analysis of relevant background

material and related work. Chapter 3 focuses on eating detection with wearable cameras.

Aside from direct observation, a video recording of an individual’s life experience represents

one of the best ways to capture the richness of everyday activities. Unfortunately, there

are many technical challenges associated with continuous video recording, ranging from

battery life and storage to data processing. An alternative to continuous video capture is the

shooting of photographs at regularly-spaced time intervals throughout the day. Although

not continuous, first person point-of-view photographs also provide a good representation

of one’s daily activities. This technique is one of the approaches I explored for eating

detection. In addition to presenting the wearable system developed for photo capture, I

discuss two methods used for inference, one based on human computation and another
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based on computer vision and machine learning techniques.

A difficulty that emerges with first-person photographs taken in naturalistic settings is

privacy. Pictures taken automatically with on-body cameras might result in the recording

of undesirable moments and scenes. To make matters worse, photos taken of computer

screens might also capture sensitive information such as computer passwords and credit

card numbers. These problems are amplified when these photographs are examined with

human computation services like Amazon Mechanical Turk, which are populated by indi-

viduals whose real identities are unknown. A detailed discussion of privacy challenges and

techniques I employed to better understand and mitigate privacy concerns can also be found

in chapter 3.

The second method I investigate for identifying eating moments in first-person pho-

tographs uses a combination of metadata and computer vision features. In particular, it

leverages a machine learning method, convolutional neural networks (CNN), that has been

lately shown to perform well at image recognition tasks. In this case a performance analysis

was done for eating detection while also examining the approach’s ability to recognize a

much larger set of everyday activities in real world settings.

Is it possible to recognize eating moments by the sounds that people make when they

eat, such as chewing noises, and the acoustic signature of people’s eating environments?

This is the question I address in chapter 4. I conducted an experiment with participants in-

the-wild where the audio of their everyday experiences was captured with a wrist-mounted

recorder. This approach is promising because it relies on a simple, and arguably ubiquitous

sensor: a microphone. After presenting results, I discuss future directions for this work.

Chapter 5 is dedicated to the use of single-point inertial sensing in eating detection.

The first part of the chapter focuses on how food intake gestures and eating moments can

be detected with one wrist-mounted inertial sensor placed on the wrist. It begins with

the description of a system I built for this task, ranging from data collection to high-level

activity inference. The system was evaluated both in a laboratory setting and also in the

wild. One of the highlights of the analysis was the exploration of whether a model trained

in the lab can be successfully used in naturalistic conditions. A discussion section follows
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the presentations of the study results. The second part of the chapter presents results of a

lab study where a head-mounted inertial sensor was used to detect eating activity.

In Chapter 6, I discuss two studies where participants wore wrist-mounted inertial sen-

sors on both wrists. In the first study, I analyze the impact of detecting food intake gestures

when both arms are instrumented. In the second study, I present preliminary results of fully

personalization eating detection model. The dissertation concludes in Chapter 7 with an

overview of the all the work encompassing this dissertation. Notably, It includes insights

gained from conducting user experiments and building practical systems in the context of

eating detection. The chapter ends with future directions for this line of research.

Finally, in the interest of completeness, I included two appendices in this document.

Appendix A describes Activiome, a system I built for sensor and meta data aggregation,

visualization and annotation. Activiome was employed in many of the user studies, and

played a key role in allowing me to evaluate some of this dissertation’s systems and ap-

proaches in real-wold settings. Appendix B collects forms and materials that supported my

user studies.

1.6 Peer-Reviewed Publications

The work I present in this document explores three sensing modalities for eating moment

detection: first-person images, acoustic sensing and inertial sensing. In total, I conducted

2 laboratory studies and 6 in-the-wild studies with 106 participants, which resulted in 5

conference publications:

• ”Predicting Daily Activities From Egocentric Images Using Deep Learning”. Daniel

Castro, Steve Hickson, Vinay Bettadapura, Edison Thomaz, Gregory D. Abowd, Hen-

rik Christensen, Irfan Essa. Proceedings of the International Symposium on Wearable

Computers (ISWC) 2015.

• ”A Practical Approach for Recognizing Eating Moments with Wrist-Mounted Inertial

Sensing”. Edison Thomaz, Irfan Essa, Gregory D. Abowd. Proceedings of the ACM

International Joint Conference on Pervasive and Ubiquitous Computing (Ubicomp)

2015.
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• ”Inferring Meal Eating Activities in Real World Settings from Ambient Sounds: A

Feasibility Study”. Edison Thomaz, Cheng Zhang, Irfan Essa, Gregory D. Abowd.

Proceedings of ACM Conference on Intelligence User Interfaces (IUI) 2015.

• ”Feasibility of Identifying Eating Moments from First-Person Images Leveraging Hu-

man Computation”. Edison Thomaz, Aman Parnami, Irfan Essa, Gregory D. Abowd.

Proceedings of International SenseCam and Pervasive Imaging Conference 2013.

• ”Technological Approaches for Addressing Privacy Concerns When Recognizing Eat-

ing Behaviors with Wearable Cameras”. Edison Thomaz, Aman Parnami, Jonathan

Bidwell, Irfan Essa, Gregory D. Abowd. Proceedings of the ACM International Joint

Conference on Pervasive and Ubiquitous Computing (Ubicomp) 2013.
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CHAPTER II

BACKGROUND AND RELATED WORK

In this chapter, I present the most relevant work that pertains to tracking eating habits

while leveraging sensors and ubiquitous computing technologies. It begins with sensing ap-

proaches leveraging environmental resources and sensor-embedded utensils, discusses eating

detection using acoustic means and with inertial sensors, and concludes with an analysis of

strategies for inferring people’s routines. Since building eating detection classifiers require

annotated data, obtaining a reliable measure of ground truth is critical. Therefore, the final

section is dedicated to methods for annotating human activities in real-world settings.

2.1 Dietary Assessment Methods

It has been more than 70 years since researchers first became interested in understanding the

science of measuring dietary intake [118]. Bingham traced the first attempts to perform this

measurement outside of a controlled setting to the 1930s and 1940s [15]. Widdoson et al., for

instance, presented an examination of English diets using the weighted food record in 1936

[136, 137]. The process involved recording the weight of each item of food and beverage

consumed. Soon thereafter, Wiehl, Turner and Reed pioneered interview-based dietary

recall and food frequency methods, with the goal of estimating energy intake[138, 131, 139].

Dietary recalls, food records and food frequency questionnaires (FFQ) remain the pri-

mary dietary assessment mechanisms in use today. In dietary recall, an interviewer assists

an individual in remembering what was eaten over a period of time, typically 24 hours.

Dietary records are different in that participants are asked to write down what is consumed

shortly after the eating moment. Jacobs observed that in practice people often wait until

the end of the day to record what they ate [58]. In this case, the dietary record becomes a

self-administered recall.

When it comes to the level of detail that is logged in a dietary recall or record, it

varies depending on the end goal. It might be necessary to weigh the food before eating,
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collect food samples for chemical analysis, gather detailed information about the foods (e.g.,

brand, whether it was eaten with condiments or paired with a beverage, etc.), specific timing

information and more.

With food frequency questionnaires (FFQ), which come in many flavors in terms of

the number and specificity of questions, the objective is to obtain more general dietary

knowledge and habits. For instance, a question in a FFQ might be “How often do you eat

pizza, and if so, how often and how many slices do you typically consume?”. More detailed

questions might be asked, such as “When you drink milk, is it typically fat free, 1%, or

whole-milk?” or “Do you prefer white or whole-wheat bread?”.

Despite the use of these self-report methods for several decades, observations have shown

that people tend to forget items that were eaten, underestimate large portion sizes, over-

estimate small ones and, in general, be susceptible to a large variety of errors and biases,

some of which are shown in Table 1. Recently it has became possible to measure the ac-

curacy of dietary recalls, records and FFQs thanks to the doubly-labeled water technique

[79]. Findings confirmed the weaknesses of these assessment methods.

Table 1: Some sources of error or bias in dietary intake estimates from FFQ. A complete
list can be found in Coulston and Boushey [17].

Type of Error Reason for Error

Memory Unable to recall food consumption

Frequency judgment Cognitive difficulty in providing information (low-literacy)

Question comprehension Not able to understand which foods are being talked about

Response errors Mistankely codes incorrect frequency

Social desirability bias Misrepresent dietary intake to please investigators

In light of these limitations, researchers have begun to question the validity of the data

collected by these methods. Archer et al. focused on the National Health and Nutrition

Examination Survey (NHANES), stating that ”methodological limitations compromise the

validity of U.S. nutritional surveillance data and the empirical foundation for formulating
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Figure 2: The top image shows a version of a nutrition monitoring necklace by Kalantarian
et al. [63]. The bottom image depicts a sensor embedded in a tooth for oral activity
recognition [78].

dietary guidelines and public health policies” [8]. Dhurandhar et al. believe traditional

instruments like dietary recalls and records should not be used at all for energy intake (EI)

and physical activity energy expenditure (PAEE) assessment. In their own words, ”...it is

time to move from the common view that self-reports of EI and PAEE are imperfect, but

nevertheless deserving of use, to a view commensurate with the evidence that self-reports of

EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI

and PAEE.” [32].

2.2 Automated Dietary Monitoring

Dietary assessment challenges and limitations have fueled interest in automated processes

starting in the 1980s. At the time, researchers tried to detect chews and swallows using

oral sensors in order to measure the palatability and satiating value of foods [124]. The

desire to automate nutrition monitoring persists to this day, with researchers developing

and evaluating practical and experimental systems spanning many different types of tech-

niques. Cheng-Yuan Li et al. recently revisited oral activity detection with a wearable
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system, shown in Figure 2 [78]. Sounds from the users mouth and on-body sensing ap-

proaches have also been suggested as ways to detect when and what individuals are eating

[4]. Other approaches have explored a variety of sensing modalities and computational

methods, including the use of crowdsourcing techniques [99], shopping receipts [86], and

neckband wearables [26, 63]. A key finding from this body of research is that no single

sensor can capture all dimensions of eating behavior.

2.2.1 Sensing with Objects, Places and Artifacts

Several techniques for tracking, recording, and even modifying nutrition patterns have been

put forth through the instrumentation of everyday home environments and objects. In

2006, Chang et al. presented a dining table that could track various eating scenarios, from

afternoon teas to Chinese-style dinners [23]. It was designed with the goal of tracking

what and how much individuals ate. Automated food logging was achieved using two

layers of sensing surface, one with RFID sensing and another with weighting cells. The

RFID surface identified tabletop objects and tracked their location while the weighting

surface helped recognize food transfers between containers. The authors claimed that their

approach allowed them to track entire food movement paths and validated their system

with results showing accuracy in the range of 80%. Recently, Zhou et al. also experimented

with a smart table surface [147] (Figure 3). It performed favorably when evaluated with

5 subjects across 40 meals, recognizing the spotting and recognition of food intake related

actions such as cutting, scooping and stirring.

Macaw built a system for automatically photographing meal eating activities from a

camera mounted on a dining room ceiling light [83] (Figure 3) . According to the author,

one of the difficulties of relying on individuals for documenting meals is that people often

forget to take pictures while eating. In previous work exploring barriers to food journaling,

colleagues and I identified that remembering to track foods is indeed a problem [30]. In this

implementation, Maekawa configured the camera to turn on and off with the ceiling light

under the assumption that eating always takes place with the lights on.
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Figure 3: The top row images show the ceiling light camera by Maekawa and a typical photo
taken with the camera [83]. The bottom-left image is showing the smart table surface by
Zhou et al. [147]. The HAPIfork is shown in the bottom-right picture.

Kadomura et al. explored a sensor-embedded fork around an interactive mobile appli-

cation with the goal of monitoring and possibly modifying a child’s eating behavior. [61].

The fork was instrumented with motion sensors for detecting changes in eating behavior

state and a single-pixel color sensor to determine food colors. By tracking different foods by

color, the system attempted to encourage children to eat a variety of food items. Another

instrumented utensil is the HAPIfork 1, shown in Figure 3. It was designed to sense and

control the pace of eating, delivering vibrations when it identifies that the person is eating

too fast. Fluid intake tracking through specialized and instrumented cups has also been a

focal point of researchers. Lester et al. developed a method that uses optical, ion selective

electrical pH, and conductivity sensors to sense and classify liquid in a cup. Accuracies of

up to 79% were obtained for 68 different types of drinks [77].

1https://www.hapi.com/product/hapifork
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Despite the promise and constant improvement of approaches around instrumented ob-

jects and locations, their practicality is severely limited by the fact they are often not

portable enough, if at all. From the point of view of activity tracking, the key advantage

of wearable sensors is that individuals are free to move amongst different locations and eat

anywhere since they are carrying the system with them at all times. In other words, they

are not restricted to the infrastructure in the built environment or having to remember to

always carry a sensing object with them (e.g., a “smart” fork).

2.2.2 Acoustic Sensing for Eating Detection

Sound is a contextually-rich source of information that can be easily recorded using one

of the simplest and most ubiquitous sensors; a microphone. Hence, a large body of work

at the intersection of acoustic sensing and activity recognition has emerged over the last

decade. Clarkson and Pentland were able to infer environmental and situational context

through audio classification many years before smartphones and wearable sensors became

widely popular [28, 29]. Soon thereafter, Stager examined a low-power implementation of a

sound recognition system and evaluated the tradeoff between classification parameters (e.g.,

features, feature selectors) and performance [123]. Ward et al. explored the use of on-body

microphones and accelerometers to recognize activities involved in an assembly task in a

wood workshop, where hand and machine tools are typically used interchangeably [134].

And framed in the context of Activities of Daily Living (ADL) recognition, Chen examined

bathroom sounds recorded with a microphone and obtained 84% accuracy when identifying

six activities including taking a shower and hand washing [25].

Mobile phones have been explored extensively in auditory scene recognition and analy-

sis. Rossi et al. implemented a system called AmbientSense as a mobile phone application

for recognizing user context from ambient sounds [114]. AmbientSense operated in two

modes; it could perform audio recognition on the mobile device in real-time or by send-

ing audio features for classification to a server. Using Mel-frequency cepstral coefficients

(MFCC) as features, the system was able to identify 23 ambient sound classes including

“beach”, “forest”, “phone ring”, and “street” with 58% accuracy. Given the difficulty of
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collecting training data for a system like AmbientSense, Rossi et al. also examined the use

of web-collected audio data to build a context recognition system [113]. Through the com-

pilation of 114 hours of audio data from the FreeSound database, they obtained practical

recognition rates between 50% and 80% for the same 23 classes studied in AmbientSense.

Another implementation of an audio-centric activity recognition system on mobile devices

is SoundSense [81]. It combines supervised and unsupervised machine learning techniques

with a hierarchical classifier to perform varying levels of audio classification, and discover

novel sound events specific to individual users. Its coarse category classifier had an accuracy

range between 80% and 90% for three types of sounds (ambient, sound and speech).

There is no question mobile phones are ubiquitous, but most of the time they are

inside pockets and pursues. This raises an important question; how practical are mobile

phone-based activity recognition systems that rely on environmental sounds? Franke et al.

partially addressed this point by showing that a mobile phone can successfully infer ambient

sounds even when inside clothing [42]. An alternative to mobile phones are wearable devices

that are directly placed on the body; these are not limited by the constraint of being inside

some other object (e.g., purse or bag). A system that illustrates this approach is BodyScope,

a wearable acoustic sensor attached to the user’s neck [143]. Its goal was to explore how

accurately a large number of activities could be recognized with a single acoustic sensor.

The system was able to recognize twelve activities at 79.5% F-measure accuracy in a lab

study and four activities (eating, drinking, speaking, and laughing) in an in-the-wild study

at 71.5% F-measure accuracy.

One of the most explored applications of sound-based activity recognition with wearable

devices has been dietary intake tracking. Sazonov et al. proposed a system for monitoring

swallowing and chewing through the combination of a piezoelectric strain gauge positioned

below the ear and a small microphone located over the laryngopharynx [116, 84]. Passler

investigated the problem of intake monitoring using microphones in the outer ear canal [104].

A promising and comprehensive approach to automated dietary monitoring was proposed by

Amft et al. [5]. It involves having individuals wear sensors in the wrists, head and neck and

automatically detect food intake gestures, chewing, and swallowing from accelerometer and
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acoustic sensor data. Liu et al. developed a food logging application based on the capture of

audio and first-person point-of-view images [80]. The system processes all incoming sounds

in real time through a head-mounted microphone and a classifier identifies when chewing is

taking place, prompting a wearable camera to capture a video of the eating activity. The

authors validated the technical feasibility of their method with a small user study.

Bai et al. developed a wearable computer called eButton with the goal of “evaluating the

human lifestyle” [11]. Similar to the SenseCam in terms of functionality and capabilities,

eButton was designed to be worn like a chest button instead of around the neck with a

lanyard. It houses a CPU, storage components, a wide-angle digital camera module, and

an array of sensors in a small form factor. Sun et al. suggested the use of the eButton for

objective dietary assessment [126], and Zhang et al. implemented an activity recognition

system from video segments captured with the eButton [145].

Recently, Liu et al. developed a food logging application based on the capture of audio

and first-person point-of-view images [80]. The system processes all incoming sounds in real

time through a head-mounted microphone and a classifier identifies when chewing is taking

place, prompting a wearable camera to capture a video of the eating activity. The authors

validated the technical feasibility of their method with a small user study, so it is unclear

how their system performs in real world settings.

2.2.3 Recognizing Eating with On-Body Inertial Sensing

The widespread availability of small wearable accelerometers and gyroscopes has opened

up a new avenue for detecting eating activities through on-body inertial sensing [6]. Amft

et al. have detected eating gestures with a measurement system comprised of five inertial

sensors placed on the body (wrists, upper arms and on the upper torso) [5, 60]. Recognition

of four gesture types resulted in recall of 79% and precision of 73% in a study with four

participants.

Zhang et al. investigated an approach for eating and drinking gesture recognition using

a kinematic model of human forearm movements [146]. With accelerometers located on the

wrists, features were extracted using an extended Kalman filter, and classification was done
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with a Hierarchical Temporal Memory network. Results showed a “successful rate” around

87% for repetitive eating activities. The authors were not explicit about which perfor-

mance measures they used in their evaluation (i.e., what they meant by “successful rate”),

how many participants took part in the study, and whether the results reflected person-

dependent or person-independent findings. Additionally, the study focused exclusively on

eating and drinking activities so the system’s ability to differentiate between eating and

drinking versus other activities is unclear.

Also with wrist-based inertial sensors, Kim et al. proposed an approach for recognizing

“Asian-style” eating activities and food types by estimating 29 discrete sub-actions such as

“Taking chopsticks”, “Stirring”, and “Putting in mouth” [69]. In a feasibility study with

4 subjects, the authors obtained an average F-measure of 21% for discriminating all sub-

actions. The system performed better when considering only certain classes of sub-actions,

but hand actions could not be identified at all. These measurements led the authors to

state that the 29 pre-defined sub-actions may not be suitable for the recognition of meals.

Recently Dong at al. put forth a method for detecting eating moments in real-world set-

tings based on a wrist-motion energy heuristic [35, 34]. They evaluated it with participants

wearing a smartphone on the wrist. The phone collected continuous inertial sensor data

reflecting people’s arm and hand gestures. One possible concern with this setup is that it is

unclear how much the placement and weight of the phone influenced intake gesture move-

ments. Precision and recall measurements were in the range of 20% and 80% respectively.

Finally, Amft et al. proposed a system for spotting drinking gestures with one wrist-worn

acceleration sensor. Based on a study with six users that resulted in 560 drinking instances,

the system performed remarkably well, with average of 84% recall and 94% precision[2].

In this work, the authors also attempted to recognize container type and fluid level, and

achieved recognition rates over 70% in both cases.

2.2.4 Identifying Daily Routines and Patterns

Discovering daily routines in human behavior from sensor data has been an active area

of research. With a dataset of 46 days of GPS sensor data collected from 30 volunteer
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subjects, Biagioni and Krumm demonstrated an algorithm that uses location traces to

assess the similarity of a person’s days [14]. Blanke and Schiele explored the recognition of

daily routines through low-level activity spotting, with precision and recall results in the

range of 80% to 90% [16]. Other proposed techniques for human activity discovery have

included non-parametric approaches [125], and topic modeling [55].

One of the most comprehensive analysis of human behaviors in naturalistic settings was

done by Eagle and Pentland [36]. By collecting data from 100 mobile phones over a 9-month

period, they were able to recognize social patterns in daily user activity, infer relationships,

identify socially significant locations, and model organizational rhythms. Their work was

based on a formulation for identifying structure in routines called eigenbehaviors [37]. By

examining a weighted sum of an individual’s eigenbehaviors, the researchers were able to

predict behaviors with up to 79% accuracy. This approach also made it possible to calculate

similarities between groups of individuals in terms of their everyday routines. With data

collected in the wild over 100 days, Clarkson also presented an approach for the discovery

and prediction of daily patterns from sensor signals [29].

In 2014, Chen et al. showed that it is possible to leverage these kinds of daily rou-

tines and patterns in service of eating detection. The researchers built an eating prediction

model based on location histories and behavior data such as user activity (e.g., stationary,

walking, running, driving, cycling), sleep duration and sociability (i.e., the number of in-

dependent conversations and their durations). Since the study was conducted on a college

campus, predictions were compared against actual food purchases logged through student

identification cards. The system was able to predict eating with 74% accuracy [24].

2.2.5 Techniques for Estimating Ground Truth in Real World Settings

One element of eating detection that has been prevalent throughout the years and across

different sensing modalities is the use of statistical machine learning techniques for inference

and modeling. The fundamental challenge with this approach is that obtaining labeled

ground truth examples for real-world activity recognition requires interrupting individuals

as they are performing everyday tasks. This is often achieved by constantly prompting
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Figure 4: Example first-person point-of-view photos taken with a wearable camera.

people to self-report what they are doing on a journal or logbook [57]. A popular self-

report technique is the experience sampling method (ESM), first suggested by Larson and

Csikszentmihalyi [74].

Over the years, a variety of strategies have been created for including individuals in the

process of activity labeling. A variation of ESM called Context-Aware Experience Sampling

(CAES) attempts to reduce the frequency of interruptions by prompting individuals to log

their activities only when a significant change in context occurs, such as a sudden change

in heartbeat rate [111]. An alternative to ESM is the Day Reconstruction Method (DRM),

which helps participants re-construct activities and experiences of the preceding day using a

procedure designed to mitigate recall biases [62]. Despite the shortcomings of self-reporting,

numerous mobile and web-based systems have been developed to facilitate this process in

the last few years such as AndWellness [51], MyExperience [43], and Ohmage [108].

Recently, the idea of directly observing individuals from egocentric cameras for overall

lifestyle evaluation has been gaining appeal [33]. In this approach, individuals wear cameras

that take first-person point-of-view photographs at regular intervals throughout the day
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(e.g., every 30 seconds), documenting one’s everyday activities including dietary intake, as

shown in Figure 4 [101]. One of the first cameras used in this context was SenseCam, a

lightweight digital camera worn around the neck that passively captures first-person point

of view images and sensor readings at regular intervals throughout the day [53]. One of

the most unique characteristics of SenseCam is that it doesn’t require wearers to perform

any action, since images are taken completely automatically. Since its introduction, the

SenseCam device has enabled a wide range of applications. Kelly et al. investigated the

potential of SenseCam to infer travel research, and in particular evaluate modes and volumes

of active versus sedentary travel [67]. Byrne et al. explored SenseCam as a collector of

observational data and found it to be complementary to traditional methods. Among other

findings, they reported that the passive nature of SenseCam is particularly well-suited for

task observations since it doesn’t intrude into people’s environment [21]. In the domain of

eating activities, the capture and categorization of environmental and social context was

explored by Gemming et al. [44].

Image-Diet Day is another system that automatically captures first-person images [7].

Fourteen participants wore the mobile phone-based device during eating periods for three

days and the captured images assisted participants in completing a 24-hour recall procedure.

In terms of their value for recall, the images were regarded as helpful, but participants did

report technical and perception issues wearing the phone camera device.

Although first-person point-of-view images offer a viable alternative to direct observa-

tion, a fundamental problem remains. All captured images must be manually coded for

lifestyle indicators, and even with supporting tools such as ImageScape [109], the process

tends to be tedious and time-consuming. To address this challenge, human computation-

based methods around the Amazon’s Mechanical Turk infrastructure have been developed,

such as Platemate [99]. Crowdsourcing has matured in the last five years to become an at-

tractive approach to researchers in many fields, including nutritional analysis and activity

recognition. One emerging way to leverage human computation is to use the crowd not only

to annotate images and other forms of media but also to provide training data for machine

learning classifiers [121].
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CHAPTER III

FIRST-PERSON POINT-OF-VIEW PHOTOGRAPHS

With the advent of small wearable cameras such as the Narrative Clip1 and the GoPro2, it

has become possible to capture everyday experiences with unprecedented richness in detail.

A head or chest-mounted camera is configured to take first-person point-of-view (FPPOV)

images automatically throughout the day (e.g. every 30 seconds), and the resulting snap-

shots capture people performing a wide range of everyday activities, from socializing with

friends to having meals with family members.

I explored this approach to infer eating moments in naturalistic settings. This technique

is particularly promising because it is completely passive; it does not require individuals to

do any extra work. Moreover, the capture images reflect people’s eating activities and the

surrounding context of those activities truthfully. Despite these advantages, one of the major

challenges of this technique is that only a small portion of the total number of automatically-

captured images from a wearable camera depicts an eating activity. Therefore, before these

images can be examined from an nutritional perspective or saved in a food journal, it is

necessary to devise a mechanism to sift through thousands of FPPOV images and discover

the ones that pertain to eating. The sheer volume of images generated per day makes it

impractical to annotate them manually.

I pursued two research directions to identify eating moments with FPPOV images, one

using human computation and one combining computer vision and convolutional neural

network techniques. Important privacy considerations arise out of the use of FPPOV images,

and these issues are also discussed in this chapter.

1http://www.getnarrative.com
2http://www.gopro.com

29



Figure 5: I implemented an application on a standard mobile phone to passively capture
first-person point-of-view images (FPPOV).

3.1 Collecting First-Person Point-of-View Photos

Before FPPOV images can be analyzed for evidence of eating activity, they must be cap-

tured. Researchers have used a number of tools for taking FPPOV images in the past, such

as SenseCam [53]. Because I was interested in using mobile phones for this task and ran

into performance issues when testing existing applications that promise this functionality, I

chose to implement a mobile photo capture application targeting the iOS platform. The ad-

ditional motivation for having my own implementation was that it could serve as a platform

for future experiments and prototypes.

The application, called WAID, took photos automatically every 30 seconds using either
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the front or back phone camera. People wear the phone as a pendant around the neck

with its back-camera facing forward, as shown in Figure 5. All images were saved on the

device itself and were immediately visible through the built-in “Photos” application. The

application was optimized to conserve battery life; it didn’t provide any user interface when

running, except for displaying a gray logo on an otherwise completely black background.

The only feedback people got from the application was the system’s default image snapshot

sound effect whenever a picture was taken. If people chose to suppress or minimize this

sound effect, they could mute the phone or turn down the volume.

By turning off certain features of the phone, such as Wifi and Bluetooth, and setting the

brightness of the screen to its lowest level, WAID ran for up to 10 hours on a single battery

charge for different iPhone models (iPhone 4S, iPhone 4 and iPhone 3G), all running the

most recent version of the iOS supported by each device (iOS 6.0.1 and iOS 4.3) at the time

of the study.

3.2 Method I: Human Computation

Human computation has emerged as a viable way to tackle problems that can’t be presently

solved by computers. Although human computation has been validated as a technique for

image labeling [132, 133, 122, 115], identifying health-specific activities in photos through

crowdsourcing techniques has not been explored with much depth. I devised a method

where human computation was applied towards identifying eating moments in FPPOV

images. The method is comprised of 3 stages, where images are first collected and filtered

for privacy protection, formatted into temporal groups, and finally presented to a group of

trusted and human computation workers as part of an evaluation (Figure 6).

3.2.1 Excluding Images for Privacy Protection

First-person point-of-view images captured every 30-seconds might depict a day in an in-

dividual’s life with an unprecedented level of detail. But there is a good chance that these

images also reflect aspects of one’s life that might be embarrassing or compromising. There-

fore, an important step of the method was the exclusion of images that posed a privacy

threat to the individuals wearing the camera and to individuals who, knowingly or not,
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Figure 6: The pipeline for recognizing eating moments from first-person point-of-view (FP-
POV) images leveraging human computation and evaluating the performance of the system.
It is comprised of 3 stages, where images are first collected and filtered for privacy protec-
tion, formatted into temporal groups as a web-based user interface, and finally presented
to a group of trusted and human computation workers.

were captured in the images.

After transferring all images from the phone to a computer, participants were given

the opportunity to review all photos taken by their device and delete any images they did

not like to share. Additionally, I reviewed the images and deleted any photo that either

captured other individuals, or that could reveal sensitive information of the individual who

wore the camera. These privacy measures were established by the Institutional Review

Board (IRB) at Georgia Tech.

3.2.2 Coding Images in AMT

In this method, the task of recognizing eating moments in thousands of FPPOV images was

performed by human computation coders. The human computation platform I chose to use

was Amazon’s Mechanical Turk (AMT). It is described as a “a marketplace for work that

requires human intelligence”. It exists on the premise that a large number of tasks that

computers aren’t good at, such as identifying objects in photographs, can be easily carried

out by people. Through Mechanical Turk, companies or individuals (called “requesters”),

post well-defined tasks (“human intelligence tasks” or HITs) that are matched with, and

executed by “workers”. Workers signup on the site to perform HITs in exchange for rewards,

which range from $0.01 to $1. Requesters can specify a number of parameters for HITs,

such as the number of workers that are allowed to perform the task, the qualification of

those workers, and the reward amount for tasks completed. Workers are paid only after
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Figure 7: The layout of the human intelligence task (HIT) posted at Amazon’s Mechanical
Turk for the study. I included a set of guidelines to help workers perform the task suc-
cessfully. The choices for meal location were: at home, at work or school, at a fast-food
restaurant, at a sit- down restaurant, in the car, somewhere else. The choices for meal type
were: meal, snack.

HITs have been completed and approved by requesters.

3.2.3 Generating and Assigning HITs

I created a human-intelligence task on AMT that asked workers to examine a group of

photos and indicate whether any photo showed an eating activity. If positive, I asked

workers for additional information (i.e. meal location and type). The images were grouped

by hour, and formatted into a web-based mosaic-like interface (Figure 8). In order to fit

a large number of images on the grid, the images were reduced in size, which lowered the

amount of activity detail that could be seen. To counter the effect of smaller image sizes, I

implemented a script that enlarged the photo underneath the cursor, on hover.

Once a HIT was created, it had to be assigned to workers. On AMT, it is possible

to specify exactly how workers are matched to tasks. To improve the validity of workers’

results, I assigned each HIT to three unique workers, and coalesced their votes on each

question by taking a majority vote. With this method, depending on the number of workers
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Figure 8: The image grid interface was designed to help Amazon’s Mechanical Turk workers
browse a large number of photos more efficiently. Hovering the cursor over an images
expanded it such that it can be examined in more detail, as shown in the middle of the first
row.

and valid answers per question (e.g. for meal location), there was a possibility that a

majority vote might not be obtained. If and when this condition occurred, the HIT was

resubmitted until a majority vote was reached. A completed HIT assignment consisted of

the answers to the three questions, the photo group examined, and an identifier for the

workers who completed the task.

3.2.4 Deployment and Evaluation

I conducted a feasibility study with a non-random convenience sample of participants (n =

5) over 3 days. The only requirement for being in the study was familiarity with the basic

operations of a smartphone device. There were 3 females and 2 males, and they ranged

in age from 23 to 35 years old and were either graduate students or research scientists at

Georgia Tech. With the exception of one married participant, all other participants were

single and either lived alone or with roommates.

Participants were provided with a smartphone preloaded with the WAID application

and were instructed to wear the device as much as possible, ideally from the moment they

woke up until when they went to sleep. It would be impractical for subjects to wear the
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smartphone continuously for hours at a time, so I gave them complete latitude to turn

the device off, or take it off if they wanted to or needed to. Due to limited battery life,

participants were asked to recharge the device every night.

On average, each participant provided 3,509 photos. The image exclusion step where

participants reviewed their own images lasted about 15 minutes per participant and led to

the removal of up to 200 images. Going through the remaining images and deleting photos

that included secondary participants took us at least 45 minutes per subject, and resulted

in the deletion of an additional 700 images on average. in total, forty nine instances of

eating activity were recorded in the photos.

One important aspect of Mechanical Turk is that it makes it possible to select workers

based on a number of qualifications tied to cost. For instance, it costs more to recruit

so-called “master” workers because they have been identified by Amazon as proficient at

categorization tasks. I hypothesized that performance would be significantly affected by

workers’ level of qualifications. Therefore, I created identical categorization tasks for masters

and regular workers and compared their results. I rewarded all workers $0.15 per assignment

and, for regular workers, I indicated that they should have a HIT approval rate greater than

98%.

3.2.5 Results

To assess the performance of Mechanical Turk workers at recognizing eating activities in

photos, I had to estimate a measure of ground truth for the image data collected. This

was accomplished by having three trusted coders answer the three questions posed in the

AMT tasks for each one of the photo groups. The trusted coders used the same web-based

interface to examine and browse images as the AMT workers, and their inter-rater reliability

was calculated to be 0.65 (Fleiss’ kappa).

Table 2 shows how AMT workers performed at identifying eating activities in partici-

pants’ photos in relation to the estimated ground truth. I calculated recognition accuracy,

precision and recall for each participant and across all participants. The results are broken

down by worker type to highlight the performance impact of hiring master versus regular
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Table 2: Individual and aggregate performance measures showing how well the system
was able to identify eating moments from first-person point-of-view (FPPOV) images and
human computation. The TP, FP, TN and FN abbreviations refer to true positive, false
positive, true negative, and false negative results, respectively.

Participant Worker Type TP FP TN FN Precision Recall Accuracy

regular 5 0 33 9 100% 35.71% 80.85%
P1

master 10 0 33 4 100% 71.42% 91.48%

regular 1 2 59 10 33.34% 9.09% 83.34%
P2

master 6 1 60 5 85.71% 54.54% 91.67%

regular 1 1 24 7 50% 12.5% 75.75%
P3

master 5 0 25 3 100% 62.5% 90.90%

regular 2 2 25 8 50% 20% 72.97%
P4

master 7 3 24 3 70% 70% 83.78%

regular 1 0 28 5 100% 16.67% 85.29%
P5

master 3 1 27 3 75% 50% 88.23%

regular 10 5 169 39 66.67% 20.4% 80.26%
All

master 31 5 169 18 86.11% 63.26% 89.68%

workers on AMT. As expected, I saw improved results across all measures when the tasks

were assigned to master workers, with overall eating behavior recognition accuracy reach-

ing 89.68% accuracy in the best case scenario. With master workers, overall precision was

86.11% and overall recall was 63.26%.

Inferring meal type and location from FPPOV images is desirable since it might provide

additional information that is valuable from a health perspective. However, achieving this

from images alone proved to be challenging. Only 19% of meal locations and 24% of meal

types were correctly recognized. However, as will be discussed in the next sections, these

numbers bear little practical significance since meal location can be often obtained through

other means in real-world applications, such as GPS, and meal type is open to interpretation

based on time of day and other factors.
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3.2.6 Discussion

One of the most salient results from the evaluation was the low overall recall of AMT master

workers (63.26%), indicating that they missed many instances of eating activities. Since

each photo group contained upwards of 50 images, it is reasonable that a human might

miss important details in the images when constrained by time. This was validated when I

confirmed that recall was worse when only one or two photos in a group showed participants

eating. This often occurred when the food eaten was consumed quickly, within a minute

or two, resulting in the eating behavior being captured in only a small number of photos.

I found this to be the case with at least one of the participants, who replaced meals with

energy bars.

Overall precision (86.11%) was much closer to overall accuracy for master workers.

There were many photos where participants were clearly around food items, such as when

shopping for food, in line at a cafe or cooking at home. In most of these cases, one could

be easily led to believe that eating was also taking place. This was a common source of

false positives in the data. A particularly noticeable result was the disparity in the overall

precision measure between regular and master workers. The results provide evidence that

master workers are indeed better at categorization tasks than regular workers, as Amazon

claims. This justifies the higher cost paid to AMT to recruit master workers. Overall, for

the reasons mentioned above, recognizing eating moments from FPPOV images proved to

be a difficult task. This had a direct effect on precision, recall and explains the relatively

low agreement reliability amongst coders.

It is important to note that the results only refer to eating activities that were pho-

tographed by participants’ cameras. Some eating activities might not have been captured.

However, given the perspective from which the photos were captured, the largest majority

of participants’ eating activities was documented.

3.2.6.1 Meal Location and Type

An individual’s location can be often obtained from sensors in mobile phones and other

wearable devices. Since there are circumstances when a location sensor is not present or
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can’t be used (e.g. to preserve battery life), I felt that it would be valuable to understand

the extent to which meal location could be inferred from images alone. Upon analysis, I

was able to attribute the low recognition rates for meal location to two factors. Firstly,

because participants wore a phone as a pendant around the neck, all photos were taken at

chest-level, pointing directly forward. When participants were sitting at a table and eating,

the field of view of the camera was often obstructed by objects in the scene (e.g. body

parts, table, chairs, dish-ware, food). This made it difficult to examine the background of

the photos and determine participants’ whereabouts. I suspect that this issue would have

been greatly minimized with the use of a wide-angle camera lens. Secondly, to protect the

privacy of secondary participants, I had to discard all photos showing people other than

study participants. More often than not, eating is a social activity, with people congregating

around a physical space, therefore many of the deleted photos provided rich contextual

information about the meal, such as where it took place and with whom. Without these

deleted images, it became significantly harder to determine the physical context of the meal.

In terms of meal type, there is a significant amount of ambiguity in what one refers to

as a snack or as a meal. Given a photo of a participant eating an energy bar, it is unclear

if it should be categorized as a snack or a meal (e.g. lunch). Time of day could be used

to help with this differentiation, but ultimately it is a matter of personal interpretation.

This interpretive flexibility was reflected in the results for meal type, since the methodology

for measuring performance was based on response agreement amongst trusted coders and

AMT workers.

3.2.6.2 Multiple Eating Activities in Photo Group

In the experiment, each photo group included all images captured within a 1 hour interval

per participant. I never saw more than one eating activity per photo group. If there had

been multiple eating activities within the hour, the exact activity AMT workers based their

answers on would have been ambiguous. Spreading all captured photos into more photo

groups, each with an interval window of 15 or 30 minutes, would have been a way to address

this issue. As previously mentioned, this is an area I plan to explore in future work since
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I expect that a shorter window might also improve the workers’ ability to recognize eating

moments.

3.2.6.3 Mechanical Turk Worker Qualifications

Although the human computation approach offers advantages if compared to a computer

vision technique in estimating eating moments from real-world everyday images, it has

limitations of its own. One of the characteristics of the method is that people with a wide

range of skills and backgrounds are the ones ultimately accepting and completing tasks

[112]. Consequently, there is a certain level of variability and non-determinism in human

computation that might be unacceptable in certain applications. A set of workers recruited

now is always likely to be different from another set of workers recruited just five minutes

later.

For a price, it is possible to benefit from a categorization scheme set by Amazon where

certain workers are considered to be more proficient at certain tasks than others. I em-

ployed both “categorization masters” and regular workers in the study and could verify

that results improved significantly with experts. In my experience, seemingly simple para-

metric modifications in the HIT can have a dramatic impact on performance. There is a

large body of research that corroborates this finding, indicating how various factors, from

pricing to qualifications, affect the timeliness and quality of the work performed by workers

on Mechanical Turk [71, 90, 122].

3.2.6.4 Annotation Quality Control

The strategy of labeling images through majority vote is the only crowdsourcing quality

control used in this work. It is certainly an effective one, as it accounts for occasional human

errors and variability in human performance [122]. Hara et al. studied the impact of accu-

racy in majority group size and determined that performance gains diminish significantly as

group size grows beyond 5 AMT workers [48]. For cost reasons, I kept majority vote group

size to 3 workers in this feasibility study. One opportunity that exists involves putting in

place additional quality measures, such as validation or Find-Fix-Verify [13]. With vali-

dation, a set of AMT workers evaluate the classification of images that have already been
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labeled.

3.2.7 Privacy Considerations

Privacy arouse as an important element of this work, and privacy-related constraints dic-

tated important aspects of the methodology. One of the challenges of continuous and

automatic capture of FPPOV images is that these images may, in some circumstances, pose

a privacy concern. Privacy is an area that deserves special attention when dealing with

wearable cameras, particularly in public settings. A body of research work has explored

this area. Kelly et al. proposed an ethical framework to formalize privacy protection when

wearable cameras are used in health behavior research and beyond [68]. People’s percep-

tions of wearable cameras are also very relevant. Nguyen et al. examined how individuals

perceive and react to being recorded by a wearable camera in real-life situations [98], and

Hoyle et al. studied how individuals manage privacy while capturing lifelong photos with

wearable cameras [54].

In the specific case of this study, a large number of photos of non-study participants

ended up being captured (Figure 5). These included participants’ family members, col-

leagues, neighbors and many other individuals that participants did not know, such as

people who happened to be sharing public transportation with participants, visiting the

same coffee shop or eating at the same restaurant. Since these individuals were not in the

study, they did not consent to their pictures being taken and reviewed by Amazon Mechan-

ical Turk workers. In order to approve this research, the IRB requested that I delete all

such images, which led to the removal of an average of 700 photos per participant (20% of

the total). Importantly, the elimination of these photos had a detrimental impact on the

performance of the system, since so many photos of eating activities included secondary

subjects. In some cases, more than 90% of a set of images depicting an eating activity had

to be deleted.

In light of these privacy concerns and methodological restrictions, one might question

whether the benefits gained by crowdsourcing the identification of eating moments in FP-

POV photos is outweighed by the effort involved in having to manually review and delete
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photos for privacy reasons. One way to address this question is by considering whether pri-

vacy threats can be automatically and computationally mitigated. If this is indeed possible,

then outsourcing photo annotation and identification represents a clear advantage. Through

an empirical study with 5 participants over 3 days, I quantified the extent to which four

techniques could be used to reduce the privacy-infringing content of images. The techniques

were face detection, cropping, location filtering, and motion filtering. To perform this anal-

ysis, I developed a framework called Privacy-Saliency Matrix for understanding the balance

between the eating information in an image and its potential privacy concerns.

3.2.7.1 The Privacy-Saliency Matrix

One of the most constructive ways to address privacy and technology is to make explicit

the balance between the positive value proposition of a technology and the negative impact

on privacy concerns. Iachello and Abowd portrayed this kind of analysis in Ubicomp as

a proportionality argument [56]. For FPPOV imagery, the balance is between whether an

image contains information considered to be a privacy concern and if that image contains

information salient to a particular task at hand, such as eating. For a set of images, one

can visualize this balance in a 2-by-2 matrix, the privacy-saliency matrix (see Figure 9).

The two dimensions of the matrix, as the name suggests, reflect the presence of privacy

concerns and content salience. In this work, content salience corresponds to evidence of

eating behavior or not. Any FPPOV image taken throughout the daily life of an individual

can be uniquely placed into a single quadrant of the matrix. Images in Quadrant 1 (Q1)

contain evidence of eating and exhibit no privacy concerns. For example, these images

show people eating by themselves or the camera only captures evidence of the food in front

of a person and not any evidence of others who might be around. Images in Quadrant 2

(Q2) contain evidence of eating behavior but also exhibit some information that would be

considered a privacy concern. Usually, these photos capture people eating with others who

can be identified (e.g. friends or family also eating across the table, or strangers who are

nearby). Images in Quadrant 3 (Q3) do not reveal any eating behavior, nor do they pose

any privacy threat. Sending these images to a human computation service is not a problem
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Figure 9: Privacy-saliency matrix provides a framework for studying the balance between
privacy concerns and evidence of eating in images.

for privacy reasons, but having too many of them makes the human computation task more

expensive and, depending on the information task being presented to the workers, more

susceptible to misclassifications. Images in Quadrant 4 (Q4) similarly do not reveal any

eating behavior, but they do pose a privacy threat.

The privacy-saliency matrix makes it clear how one can understand the opportunities for

technology to address the privacy concern for using human computation to identify eating

for FPPOV imagery. It also provides a way to quantitatively assess the impact of any given

technique or set of techniques. In the context of eating activities, these techniques can be

assessed by the following guidelines:

• Keep images in Q1: I would like to keep as many images in Q1 as possible, since they

show an eating activity without privacy concerns.

• Eliminate images in Q3 and Q4: Images in Q3 and Q4 can be eliminated completely

since they do not depict an eating activity. As I described above, it is important to
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Figure 10: A high-level view of the user study, image coding, and evaluation process. Once
participants reviewed and released their images for analysis, the images were coded for
evidence of eating behaviors and privacy concerns. Four privacy mitigation techniques were
applied on the images separately, and each of the resulting matrices were compared to the
privacy-saliency matrix reflecting the images’ ground truth.

remove Q4 images because of privacy concerns. Removing images from Q3 has other

non-privacy advantages.

• Move images from Q2 to Q1: It would be advantageous to keep the images in Q2, since

they also capture an eating activity. The issue with Q2 images is that they contain

one or more elements that pose a privacy risk. The ideal scenario would be to purge

the visual component that constitutes that privacy risk while keeping the rest of the

image, and thus the evidence of eating behavior, intact. In effect, this corresponds to

moving the image from Q2 to Q1.

• Eliminate images in Q2: Depending on the approach, it might not be possible to fully

suppress the privacy risks of images in Q2 and move them to Q1. A less desirable

alternative is to simply delete these images, since they cannot be reviewed by human

computation workers. In this case, I want some assurance that the episode of eating

evidence by that image removed from Q2 is reflected by an image in Q1 already. For

example, if taking pictures every 30 seconds during a meal, it is likely that images

within some temporal window of another image might reveal the same eating behavior.

This may not hold for shorter duration eating activities, like a snack.

43



It is important to note that since the ultimate goal is to optimize the multi-variate bal-

ance between privacy and content salience for a given application, single-objective measures

such as precision and recall are not adequate. The field of multi-objective optimization, also

known as Pareto optimization, is concerned with reaching optimality of more than one ob-

jective function, and thus comes closest to addressing this privacy-saliency compromise.

Table 3: I recruited 5 participants to be part of the study. A total of 14,422 first-person
point-of-view (FPPOV) images were captured and analyzed.

Participant Age Gender # of Images

P1 31 Male 1230
P2 24 Male 5360
P3 21 Male 2528
P4 23 Male 1958
P5 25 Male 3346

3.2.7.2 User Study

To assess how face detection, cropping, location filtering, and motion filtering could be

applied to mitigate privacy concerns in FPPOV images, an IRB-approved user study was

conducted with graduate student participants (n = 5, all male). The only criteria that I set

for participating in the study was that participants had to be familiar with the operation of

a smartphone device and be able and willing to recharge the phone every night. Participants

were asked to wear the phone for 3 days.

After going over the study protocol, participants were provided with an iPhone 3GS

smartphone preloaded with the previously described Waid application (Figure 5). Partic-

ipants were asked to wear the device as much as possible for the duration of the study; I

told them that they could turn off the phone, or take it off, if they did not feel comfortable

wearing the device in certain places or situations. All images captured by the mobile ap-

plication were saved in the phone’s default photo library, so participants could review and

delete photos whenever they wished. Finally, at the end of the study, participants had the

opportunity to review, delete, and get a copy of all captured photos before releasing the

images to us. In total the number of FPPOV images collected across all participants was
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14422.

3.2.7.3 Method

The methodology for evaluating the privacy mitigating techniques for FPPOV images in

the context of eating activity recognition was comprised of two phases. Figure 10 shows

the overall workflow. In the first phase, the images were individually coded for evidence of

eating behavior and also for privacy threats using the privacy-saliency matrix. The goal was

to establish a ground truth baseline for the image set so that I could confidently measure

the impact of each automated technique on an image-by-image basis. In the second phase,

all images were processed with one of the 4 techniques proposed (i.e. face detection, image

cropping, location filtering and motion filtering), and results were compared to the baseline.

The images were reviewed by 3 coders. To reduce the learning effect caused by reviewing

FPPOV images in sequential order, I developed a custom image annotation application that

arranged images randomly. Coders viewed images on a grid, and tagged them according to

privacy and saliency (as defined on a codebook) using keyboard shortcuts for efficiency. The

criteria for a privacy concern was the presence of a human head in the image or any body part

thereof (e.g. hair, eye, nose). The head could belong to the participant himself or someone

else who happened to be photographed. Evidence of eating behavior was determined to

be one or more visual cues that indicated that the participant was engaged in an eating

activity, such as the presence of silverware, food on a plate, food in hand, others eating

nearby, the identification of a restaurant, etc.

The inter-rater agreement amongst coders on the total of 14,422 images was calculated

to be 0.73 (Fleiss’ kappa), indicating general agreement. In the case of disagreement, I

treated privacy and saliency differently. If any one of the three coders thought that there

was a privacy concern in the image, the image was considered to have a privacy concern.

The overall categorization on the eating dimension was based on a majority vote by the

coders.

45



3.2.7.4 Privacy Mitigation Techniques

In this section, I describe in more detail the four techniques that I implemented with the

goal of automating balancing privacy against saliency: face detection, cropping, location

filtering and motion filtering.

Face Detection

It is relatively common for faces to be captured in FPPOV images. When this occurs,

the identity of the individuals whose faces were recorded is completely revealed, a worst-case

scenario in terms of privacy. Ideally, I would like to be able to flag all FPPOV images that

contain faces, the images found in Q2 and Q4 in the privacy-saliency matrix, so that they

can be either deleted or filtered further. For the analysis in this paper, I simply assume all

flagged images are deleted.

I evaluated the performance of two face detection algorithms with respect to its impact

in the distribution of images in the privacy-saliency matrix, (1) the one available in the Core

Image framework of Mac OS X (10.7 and above), and (2) the set of Haar’s cascade classifiers

available through the OpenCV library [18]. For the Core Image detector, I implemented

an application that leveraged the framework’s API. The Haar classifiers consisted of groups

of Haar-like features that were learned using Viola and Jones’ boosted cascade approach

(AdaBoost) for encoding the contrast and spatial relationship of facial features within a

window. The Haar Cascade Classifiers were trained on hundreds of face images at similar

orientations. Following training, the classifiers were applied to images at multiple scales

using a sliding window.

Image Cropping

Recognizing eating behavior in a passive, objective and automated fashion is a hard

problem amplified by the fact that eating is often a social activity. Taking photos from a

first-person perspective will generally result in images that include other people, such as

those sitting across the table or sharing the same environment (e.g. restaurant), a clear

privacy risk. This is a typical case where it would be desirable to crop FPPOV images to

exclude undesirable elements in the scene (e.g. faces) while retaining the salient content

(e.g. evident of eating activity). In the matrix representation previously discussed, this
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Figure 11: Several images that contain evidence of eating behavior might pose a privacy
concern. By cropping a portion of the image, it is often possible to eliminate privacy issues.

corresponds to the “Move images from Q2 to Q1” scenario.

The cropping technique I considered is perhaps the simplest, and hinges on the obser-

vation that when people eat, they usually have a plate or food container right in front of

them. Thus, when taking photos from a first-person perspective, the bottom-half region of

the images is likely relevant to the evidence of eating (Figure 11). The top-half region of

the image is usually where faces are located, and can be discarded.

I implemented an application in Objective-C for Mac OS X that cropped the bottom-

half of participants’ images, shrinking the image height in half. Image cropping not only

has a desirable effect of eliminating privacy risks, it also has an undesirable potential side

effect of deleting the evidence of eating behavior. Therefore, to calculate exactly how this

technique performed, all cropped images were coded again for evidence of eating behavior

and privacy. Like before, 3 coders reviewed and tagged the images, two of whom are authors.
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Figure 12: The top chart shows a location trace of one of the participants in the study.
Each point in the trace corresponds to a FPPOV image automatically taken with the
wearable camera. From the distribution of photos, it is possible to see that photos with
evidence of eating activity (red squares) are clustered around a few locations only. The
bottom chart illustrates the positive correlation between the number of images depicting
non-eating activities and the distance between the location the image was taken and the
closest known eating location.

The inter-rater agreement amongst coders in this session was calculated to be 0.8 (Fleiss’

kappa).

Location Filtering

The top of Figure 12 shows the geo-location distribution of images for one participant.

Red areas of the graph indicate where eating behavior was found in the ground truth coding,

and gray areas of the graph are images with no eating behavior. What this plot suggests

is that eating activity is localized in space, and this is evident from all of the participants

in the study. This empirical evidence reinforces the intuition that routines such as eating

can often be inferred from location data [9, 65]. Most eating behaviors can be mapped to
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a small number of locations, such as home and work. Naturally, presence in locations such

as restaurants and to a lesser degree bars, are highly correlated with the activity of eating

as well. The central idea of this technique is to reduce privacy exposure by considering

only the photos that maximize the chance of an eating behavior being recorded. In the

privacy-saliency matrix, this technique is aligned with the goal of eliminating photos in Q3

and Q4, whose images do not show evidence of eating activity.

This approach leverages the latitude and longitude metadata embedded in each one of

the images captured by participants over the duration of the study. To demonstrate the

value and performance of this technique, I show how I can eliminate a significant number

of images simply on the basis of their geo-spatial physical distance from the closest image

that depicts an eating activity. This distance is calculated from the latitude and longitude

of two points using the Haversine formula:

d = 2r arcsin(
√

sin2 (∆φ
2 ) + cos(φ1)cos(φ2) sin2(∆λ

2 ))

In a practical application of location filtering, I would infer the likely locations of eating

in two ways. First of all, when collecting location and FPPOV images for a longer period

of time, previous work shows that it is possible to infer where home and work are for an

individual based on location traces alone [9, 65]. Secondly, discovering that an individual

is or was at a restaurant can be easily done by looking up the individual’s coordinates on

a location database. By combining these two methods, I argue that further locations could

be feasibly inferred through a semi-supervised learning approach.

Motion Filtering

It is more likely that people are eating when they are not moving. Based on this insight,

I implemented a filter that disregards images when the level of motion of the individual

wearing the camera around the time the images were taken exceeds a predefined threshold.

The objective was to eliminate images from Q3 and Q4 in the privacy-saliency matrix,

which do not convey any information as far as eating activities are concerned.

To collect movement data at the time FPPOV photos were shot, I instrumented the

image capture application to continuously log the stream of accelerometer events for as
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Figure 13: I computed a measure of human motion intensity by leveraging accelerometer
data from the mobile phone camera. By adding up the number of images in each quadrant
of the privacy-saliency matrix by level of motion, it is possible to see that the most eating
activities are contained within a region of motion that range from 1 to 21.

long as the application was running. This enabled us to compile sensor data at the moment

images were captured and also several seconds before and after. The level of motion,

set for each image, was calculated to be the standard deviation of the composite 3-axis

accelerometer data (i.e. x, y, and z) over the minute the photo was taken:

Ms =
√

1
N

∑N−1
n=0 |(|xn|+ |yn|+ |zn|)− µ|2 ∗ 100

where N is sampling rate times number of seconds in a minute. The normalized score

value Ms ranged from 0 to 65 and the threshold for eating activities was set to 8. This

was determined empirically, based on the distribution of FPPOV images of the study par-

ticipants. As shown in Figure 13, the distribution of motion intensity for eating images

has a range of 1-21 only, which is distinct from the distribution of motion intensity seen in

non-eating images. Additionally I verified that these distributions are significantly different

with a Kolmogorov-Smirnov test (p ¡ 0.001).
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Figure 14: The privacy-saliency matrices showing the coded distribution of images before
the application of the privacy mitigation techniques (ground truth) and after. Note that due
to corrupted data, the location filter could be applied to images from 4 participants only.
The matrix in the bottom-right corner shows how images transitioned from one quadrant
to another after cropping. The arrows in green show transitions that I consider “good” (e.g.
reduction of images with privacy concerns), while red arrows highlight transitions that I
consider “bad” (e.g. removal of evidence of eating behavior).

3.2.7.5 Results

A total of 14,422 images were captured in the 5-person study. Figure 14 shows the ground

truth coding in terms of the priv-acy-saliency matrix of the raw FPPOV images. I show the

resulting privacy-saliency matrix after each of the four automated techniques are applied

to those images.

I ran two face detection algorithms on the participants’ images, the one available through

the Mac OS X’s Core Image framework and the set of of Haar’s cascade classifiers available

through the OpenCV library. The Haar classifiers outperformed the Core Image detector by

an order of magnitude, therefore I am just reporting results with respect to this classifier.

As shown in Figure 14, Q2 and Q4 in the privacy-saliency matrix saw the largest decrease
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in the number of images, in the range of 35% to 42%. Around 13% to 14% of the images

in Q1 and Q3 were flagged for containing faces, which is indicative that the face detection

algorithm generated false positives, since the images in these quadrants were previously

screened for faces by human coders.

Note that I did not measure the performance of the algorithm with respect to its ability

to recognize faces. Instead, by assuming the removal of images from the quadrants when the

algorithm detected faces in them, I measured how the application of the algorithm modified

the distribution of images in the privacy-saliency matrix. One of the reasons why the face

detection method did not perform better is because FPPOV images are often blurry and

do not capture faces looking directly at the camera frequently. Nevertheless, as FPPOV

images become more popular, it is likely that we will see the development of face detection

and other computer vision techniques that are optimized for this type of photography. Also,

the privacy criteria that I employed while coding the images was the presence of a human

head or any visible part thereof, such as hair, nose, eyes, etc, and not a face. In light of this,

many of the images assigned to Q2 and Q4 in the matrix could have never been flagged by

face detectors.

With regards to cropping the bottom-half region of the images, it had a positive effect

in that it reduced the number of photos with privacy concerns. The number of images in Q2

and Q4 fell around 67% and 30% respectively, as shown in Figure 14. More importantly,

the intended effect of having images transition from Q2 to Q1 materialized. Out of 174

images in Q2, 75 moved to Q1. This represents a best case scenario since many images

depicting eating activities but compromised by privacy threats had those threats removed

with cropping. A smaller but still significant number of images (48) moved from Q2 to Q3.

This can be interpreted from two perspectives. On one hand, 48 images that presented

privacy issues before no longer did after cropping. This meant that they could be examined

by human computation workers without the risk of a privacy violation, for example. On the

other hand, the evidence of eating activities in the images is no longer present, so from the

point of view of eating behavior recognition, these images do not hold any useful information

anymore.
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Location filtering proved to be an effective approach for removing images that do not

include evidence of eating activity. When considering photos within a radius of 0.2 km of a

known eating location, images in Q3 and Q4 fell by 46% and 40.89% respectively. However,

as previously discussed, the condition under which these results were obtained is when all

eating locations are known. If that is the case, all instances of eating activity are accounted

for, and thus there is no loss of images in Q1 and Q2 (no percentage change in the number of

images). Unfortunately, all collected location data for one of the participants was corrupted

and had to be discarded. This required us to generate ground truth quadrant numbers for

the privacy-saliency matrix with 4 participants instead of 5. This is the reason why the

numbers in Q1 and Q2 differ from those in the ground-truth privacy-saliency matrix in

Figure 14.

Motion filtering performed similarly to location filtering in terms of the reduction of

images in Q3 and Q4. Q3 saw a decrease of 35.57% in its images and the number of images

in Q4 fell by 41.49%. Because of the need to establish a range in the motion score under

which an eating behavior is most likely to occur, it is always the case that some images

representing eating activities end up outside of that range and are disregarded. This is why

the privacy-saliency matrix for motion filtering shows a decrease in the number of images

in Q1 (24.47%) and Q2 (20.69%). Without a doubt, this decrease is undesirable, but it is

less pronounced than the loss of images in Q3 and Q4. Overall, the collective loss of images

in all quadrants, affecting Q3 and Q4 to a higher degree, underscores the trade-off between

capturing activities of interest and mitigating privacy concerns that lies at the core of this

paper.

3.2.7.6 Additional Privacy Risks

Though I followed a strict criteria of marking all the images that had any part of the

head as a privacy threat, I discovered several other categories of threats while coding the

images. In some instances, information captured in an image could be linked back to an

individual. For example, personal id, credit card number, cell phone usage, email screen.

In other cases, the display of jewelry, tattoos, clothes could help an acquaintance identify
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an individual. Furthermore, a silhouette could provide enough information for a friend or

family member to infer identity. A non-obvious threat emerged as a result of analysis of

one participant’s images of a meeting where under-table shots had potential of providing

compromising information about secondary participants.

The IRB mandated us to mark all images that contained any personally identifiable

information like face, accessories, and tattoos. Although I found the IRB requirements to

be too restrictive, the findings suggested a more complex definition of privacy, one that

begs understanding of the relationship between the secondary participants and third party

that looks at the images. For example, an email of a person becomes more important than

the jewelry or tattoo when an image is shown to a third person. However, it is not easy to

establish that relationship when an image becomes publicly available. Hence most stringent

rules should be imposed in those situations. But in the cases where access is limited to a

set of third party members such as coders or Mechanical Turkers, some criteria could be

overlooked without compromising privacy.

An important and somewhat paradoxical condition that this work does not take into

account is when the recording of an eating activity represents a privacy violation. In a

survey focusing on the activities and habits that people do at home that they would not want

recorded, Choe et al. found that the “cooking and eating” category ranked third, behind

the self-appearance and intimacy categories [27]. This finding underscores the complexity

of the privacy-saliency balance, in particular when there is an overlap between the two.

3.3 Method II: Convolutional Neural Network (CNN)

Two high-level insights emerged out of the study aimed at identifying eating moments using

human computation (i.e., Method I above). The first one was that there is a positive correla-

tion between the skill and cost of AMT workers and the quality of inferences. Although the

best case scenario in terms of performance resulted in overall accuracy in the range of 90%,

this could only be achieved when hiring the most expensive workers. Therefore, it is likely

that for most applications, this approach will not scale. Secondly, and more importantly,

it is practically impossible to guarantee the level of privacy protection that individuals
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demand with a photographic method that also makes use of human computation.

In light of these findings and limitations, I explored another approach for identifying

eating activities with FPPOV images. The approach, which is entirely computational, does

not make use of external and untrustworthy annotators. Instead, it leverages state-of-the-

art methodologies in machine learning and computer vision to automatically infer everyday

activities from FPPOV photos.

In contrast to state-of-the-art methods that use hand-crafted features with traditional

classification approaches on FPPOV images and videos, the approach is based on Convo-

lutional Neural Networks (CNNs) combining image pixel data, contextual metadata (time)

and global image features. Convolutional Neural Networks have recently been used with

success on single image classification with a vast number of classes [73] and have been

effective at learning hierarchies of features [144]. However, little work has been done on

classifying activities on single images from a wearable device over extended periods of time.

To test and evaluate the method, I compiled a dataset of 40,103 images representing

everyday human activities. The dataset has 19 categories of activities and were collected

by one individual over a period of six months “in the wild”. The classification method uses

a combination of a Convolutional Neural Network (CNN) and a Random Decision Forest

(RDF), using what I refer to as a CNN late-fusion ensemble. It is designed to work on

single images captured over a regular interval.

3.3.1 Data Collection and Annotation

Over a period of 26 weeks, 40,103 FPPOV images of activities of daily living were collected

for one subject. These photos were annotated into 19 activity classes such as cooking, eating,

cleaning and playing with kids. The images were aggregated and manually annotated using

a tool I developed to facilitate this daily task. The web-based tool, called Activiome, is

described in more detail in Appendix A. The activity classes were defined by the subject at

their discretion prior to data collection.

The FPPOV photo collection setup used in this study was the same one that was

employed for the Method I experiment; The participant wore a phone as a pendant around
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Figure 15: Overview of the Convolutional Neural Network Late Fusion Ensemble for pre-
dicting activities of daily living.

the neck with its back-camera facing forward, as shown in Figure 5. An application running

on the phone took photos automatically every 30 seconds and uploaded them in real-time

to the Activiome system.

At the end of the day, the participant could filter through the images in order to remove

unwanted and privacy-sensitive images and annotate the remaining images. The distribution

of annotated photos into activity classes is shown in Table 4. The ”Working” and ”Family”

are the top two dominant classes due to the participant’s lifestyle. The participant was

free to collect and annotate data at their disclosure. The subject was also free to leave

ambiguous images (i.e. going from work to a meeting) unannotated. Any unlabeled and

deleted images were not included in the dataset.

3.3.2 Description of Dataset

As shown in Table 4, the distribution of tasks was represented by a few common daily

tasks followed by semi-frequent activities with fewer instances. It is important to note the

difficulty of categorizing certain classes due to their inherent overlap (e.g., socializing vs.

chatting, chores vs. family, cleaning vs. cooking, etc). This class overlap is due to the

inherent impossibility of describing a specific moment with one label (the participant could

be eating and socializing).

The bi-weekly breakdown of data collection is shown in Table 5. It is possible to see a

general increase in the number of annotated samples later in the collection process. Some of

this was due to increasing the interval at which the application captured images up to once

a minute from once every five minutes. The rest of the increase can be attributed to the
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Table 4: The distribution of the 19 different classes in the dataset.

Classes Number of Images Percent of Dataset

Chores 725 1.79
Driving 1031 2.54
Cooking 759 1.87
Exercising 502 1.24
Reading 1414 3.48
Presentation 848 2.09
Dogs 1149 2.83
Resting 106 0.26
Eating 4699 11.58
Working 13895 34.24
Chatting 113 0.28
TV 1584 3.90
Meeting 1312 3.23
Cleaning 642 1.59
Socializing 970 2.39
Shopping 606 1.49
Biking 696 1.71
Family 8267 20.37
Hygiene 1266 3.12

participant becoming more comfortable with the data collection and annotation process,

and over time, successfully incorporating this process into their day-to-day routine.

The participant collected the majority of the data from approximately 7-8am to 7-8pm.

Most of the data that was not captured took place during the participant’s sleep cycle. On

an average day, 80% of the photos were kept; the participant removed approximately 20%

of the photos due to privacy concerns and uncertainty about category assignment. The

participant handled null classes, such as blurry images, by leaving them unlabeled. These

images were then removed prior to assembling the dataset.

3.3.3 Implementation

Recently, Convolutional Neural Networks (CNNs)[76] have been shown to be effective at

modeling and understanding image content for classification of images into distinct, pre-

trained classes. I used the Caffe CNN framework [59] to build the model since it has achieved

good results in the past and has a large open-source community. Since the dataset has a

small number of images, I fine-tuned the CNN using the methodology of Hinton et al. [52].
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Table 5: The bi-weekly distribution of the number of images in the dataset.

Classes Number of Samples Percent of Dataset

Week 1&2 553 1.40
Week 3&4 814 2.07
Week 5&6 69 0.18
Week 7&8 216 0.55
Week 9&10 239 0.61
Week 11&12 2586 6.58
Week 13&14 5858 14.90
Week 15&16 6268 15.94
Week 17&18 2903 7.38
Week 19&20 3417 8.69
Week 21&22 6465 16.45
Week 23&24 4695 11.94
Week 25&26 5229 13.30

It uses the ImageNet [31] classification model introduced by Krizhevsky et al. [73], which

was trained on over a million images in-the-wild. I retrained the last layer using the collected

data with 19 labels for daily activity recognition. I set the base learning rate to 0.0001 in

order to converge with the added data and used the same momentum of 0.9 and weight

decay of 0.0005 as Krizhevsk et al. [73] with up to 100,000 iterations as shown in Figure 16.

The CNN had five convolutional layers, some max-pooling layers, and three fully-connected

layers followed by dropout regularization and a softmax layer with an image size of 256x256.

I split the data by classes into 75% training, 5% validation, and 20% testing; the classifier

was never trained with testing data on any of the experiments. The parameters were chosen

using the validation set and the fine tuning in all of the experiments was only done with

the training set. It is interesting to note that the algorithm achieved almost 78% accuracy

after only 20,000 to 30,000 iterations and converged around 50,000 iterations due to fine

tuning. Despite a high total accuracy, the class accuracy of a CNN alone was hindered due

to the lack of contextual information and global image cues.

3.3.3.1 Classic Ensemble

One method to combine the CNN output with non-image data is a classic ensemble method.

Training a classifier such as a RDF on the contextual metadata can yield a probability

distribution which can be combined with the CNN probability distribution to produce a
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Figure 16: A Convolutional Neural Network trained for 100,000 iterations. Accuracy con-
verges after 20,000 to 30,000 iterations.

Table 6: A comparison of the baselines using RDF trained on contextual metadata, color
histograms and a combination of both.

RDF Metadata RDF Hist RDF Metadata+Hist

Avg. Class Accuracy 15.51 40.43 50.71
Total Accuracy 52.50 68.89 76.06

final probability. This equally weighs the CNN output and the RDF output in order to get

the best output possible. This can prevent overfitting from the CNN but doesn’t necessarily

increase the prediction accuracies since it doesn’t leverage which classifier is better at which

classes or which information from the classifiers is important.

3.3.3.2 Late Fusion Ensemble

To solve the problem of combining a CNN with a classic ensemble, I developed a late-fusion

ensemble technique. I used a RDF trained on the CNN soft-max probabilities along with

the contextual metadata (day of week and time of day) and the global image information
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Table 7: A comparison of the baselines using kNN trained on contextual metadata, color
histograms and a combination of both.

kNN Metadata kNN Hist kNN Metadata+Hist

Avg. Class Accuracy 15.51 44.23 54.72
Total Accuracy 52.50 65.62 73.07

(histograms of color), each being separate features for the RDF. This allowed for a good

combination of outputs that could be learned rather than naively combined. This outper-

formed the classic ensemble and the normal CNN model by approximately 5%. The pipeline

for the method is shown in Figure 15.

3.3.4 Results and Baseline Comparison

In this section I present a comparison of baseline machine learning techniques against the

different convolutional approaches for the classification of daily living activities. As shown

in Tables 6 and 7, RDF and kNN performed well with contextual metadata (day of the week

and time of day) and color histograms. RDFs marginally outperform the kNN methods,

particularly with the use of color histograms. It is worth mentioning that other global

features (such as GIST [100]) were tested on the same baseline methods and obtained

negligible changes in accuracy.

In order to improve the performance of the activity prediction, I leveraged the use of

local image information. With a regular CNN, there was a minor increase in total accuracy

(+2%) over the baseline (see Table 9), and a more substantial increase in average class

accuracy (+7%). There was an even greater increase in accuracy when incorporating both

contextual metadata and global image information (color histograms). This motivated the

development of the CNN late fusion ensemble that leveraged the metadata and global and

local image features. This configuration resulted in a total accuracy of 83.07% with an

average class accuracy of 65.87%, showing an impressive increase over the baseline and the

other methods. A confusion matrix of the final method’s results is shown in Figure 17. In

particular, eating activities were recognized with 83.12% accuracy.

I ran evaluations using k-Nearest Neighbor (kNN) and Random Decision Forest (RDF)
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Table 8: A comparison of the best of all methods (using contextual metadata, color his-
tograms and pixel data) for all the 19 activity classes. CNN+LF is CNN with Late Fusion
Ensemble

kNN RDF CNN CNN+LF

Chores 33.10 17.24 00.69 20.00
Driving 55.07 60.87 98.55 96.62
Cooking 25.66 35.53 47.37 60.53
Exercising 44.00 63.00 69.00 73.00
Reading 68.55 49.12 30.04 53.36
Presentation 80.00 72.35 80.59 87.06
Dogs 62.17 44.35 55.65 66.09
Resting 72.73 54.55 27.27 45.45
Eating 77.14 75.75 82.05 83.12
Working 91.10 96.42 93.49 95.19
Chatting 21.74 04.35 00.00 17.39
TV 77.38 75.79 81.75 81.75
Meeting 68.73 61.00 73.36 81.47
Cleaning 26.56 30.47 38.28 46.09
Socializing 52.85 37.31 31.60 45.08
Shopping 40.16 27.87 63.93 64.75
Biking 19.57 23.19 78.26 81.88
Family 70.82 87.42 86.69 90.15
Hygiene 52.36 46.85 51.57 62.60
Avg. Class Accuracy 54.72 50.71 57.38 65.87
Total Accuracy 73.07 76.06 78.56 83.07
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Table 9: A comparison of different CNNs and CNN ensembles using contextual metadata,
global features (color histograms), raw image pixels and their combinations. LF is short for
“Late Fusion”.

Average Class Accuracy Total Accuracy

CNN 57.38 78.56

CNN Classic (Pixel + Metadata) 53.48 78.47

CNN Classic (Pixel + Metadata + Hist) 59.72 81.49

CNN LF (Pixel) 63.22 80.94

CNN LF (Pixel + Metadata) 65.29 82.45

CNN LF (Pixel + Metadata + Hist) 65.87 83.07

classifiers in order to adequately fine-tune the best accuracy for the baseline. I parametrized

the dataset using contextual metadata (day of the week (as a nominal value from 0 to 6)

and time of day) and global image features (color histograms). I found that a kNN classifier

(with a k-value of 3) trained on the metadata and the color histograms (with 10 bins) gave

an accuracy of 73.07% which was better than training a kNN trained on the metadata alone

or the color histograms alone. I tested the classifier at incremental parameters of k (until

50) and found that performance slowly degraded as I increased k beyond 3. I further tested

the time metadata at three granularities (the hour, hour + minutes (i.e. 7:30am = 7.5),

and hour and minute as separate features) and found the difference in prediction accuracy

to be negligible. As a result, I selected to keep the hour and minute as separate features

as this led to the highest accuracy. Further, I found that a RDF classifier with 500 trees

trained on the metadata and color histograms (with 10 bins) yielded best overall accuracy

of 76.06%. As a point of comparison, random chance for this dataset, by picking the highest

prior probability, was 34.24% ).

Training the RDF with more than 500 trees had a negligible effect on the total accuracy.

The baseline results can be seen in Table 6. It is important to note that a high total accuracy

was driven by the distribution of the data amongst the classes. Since a majority of the data

was in two classes (“Working” and “Family”), a classifier could achieve a high total accuracy

by accurately classifying only those two classes. Average class accuracy is also shown to

highlight how well the baseline classifier does for all classes distributed evenly.
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Figure 17: Confusion Matrix for the 19 classes of the dataset with columns as the predicted
labels and rows as the actual labels.

3.3.5 Discussion

As shown in Table 9, the CNN late-fusion ensemble method outperformed both the CNN

along and the CNN classic ensemble configuration. Training an RDF with extra features

and the CNN probabilities allowed the RDF to find what was important for each individual
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class. It also allowed for the other types of data to be effectively added, in a framework

that prevented some of the overfitting that CNNs typically have. This shows how the novel

ensemble method effectively combined local pixel-level information, contextual information,

and global image-level information. Because it relied on a CNN running on a GPU, the

system used a large amount of power and was not well suited for embedded devices. On an

ARM device, testing each image would take more than 15 seconds. However, the method

could be run on a server that an embedded device could query.

Figure 18: An example of a classification error on an image from the class “Chores” (class
0). The presence of the kitchen environment in the image led to confusion against other
classes including “Eating” (class 8), “Socializing” (class 14) and “Family” (class 17).

Many of the classification failures of the method had to do with classes being inter-

related. The worst results were with the “Chores” and “Chatting” activities. An example

of a “Chores” misclassification can be seen in Figure 18. In this example, the image has

erroneous probability peaks for “Eating”, “Socializing” and “Family” classes due to the

presence of the kitchen environment in the image, a place where the family meets, socializes

and eats together.
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In a second experiment, a positive correlation was found between the amount of training

data and the algorithms’ test accuracy. I highlight two hypotheses for the increase in

accuracy over time. The first is that the algorithm was adequately learning the participants’

schedule and frequented activities, which allowed it to improve the model. The second

plausible hypothesis is that the algorithm was adapting to general human behavior and

learning the overall characteristics of specific classes. This presents two interesting questions

for the applications of this research. Firstly, how much data is required to train a generic

model and secondly, how much data is required to “fine-tune” said generic model to a

specific user.

To answer the first question, I trained the model with varying amounts of data points

to observe the number of days/samples a person is required to collect in order to train a

good generic model. The top 7 classes are shown in Figure 19, with the other 12 classes

omitted to maintain clarity). It is possible to see that class accuracies improve as more data

is captured, with a significant increase in accuracy after the first 4 weeks.

In order to address the second question, I performed a final experiment in which two

volunteers (V1 and V2) wore the wearable device for 48 hours in order to collect images.

The data was divided equally into a training and test set (Day 1 for training and Day 2

for testing) in order to test the validity of the model trained by the original participant’s

data. The results of this experiment are demonstrated in Table 10. As you can see, for

some classes that involve a similar viewpoint and environment, like reading, the model

generalized well. However, for many others such as driving and chatting, where volunteers

were going different places and talking to different people, the model did not generalize

well. It is worth noting that the initial accuracy prior to fine-tuning performed worse than

the highest prior probability of the original model (34.24%). I reason that this is due to

the difference in habits between participants, which requires fine-tuning to adapt to one’s

specific daily schedule.

Different individuals also have different activities and one set of class labels from one

individual might not fit another individual’s lifestyle. A valid question to ask is, given the

model trained for one person, is it possible to fine-tune the classifier to yield good results
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Figure 19: A plot of class accuracies vs. the number of weeks of training samples. A
general trend is visible where the class accuracies increase as the amount of training samples
increase. A significant increase in accuracy is seen after training on the first 4 weeks of data.

for a different person, even with different classes? At its core, this addresses the question

of whether a classifier is learning the schedule and habits of one person or if the learning is

inherently adapting to common human behavior. As seen in Table 10, the classifier trained

on the original participant was not very successful. However, fine-tuning that model with

just one day of data from the new user yielded very good accuracy. Not only did this achieve

great accuracy, but the CNN converged in less than 5,000 iterations, whereas the original

CNN took more than 50,000 iterations to converge.
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3.4 Comparing Method I vs. Method II

In the best-case scenario, when master AMT workers were used, a study employing Method

I showed that it is possible to detect eating moments using FPPOV and human compu-

tation with 89.68% accuracy. In contrast, experiments with Method II demonstrated that

analyzing FPPOV with a state-of-the-art machine learning approach resulted in accuracy

of 83.12%.

Clearly, in terms of performance, Method I is superior to Method II. However, its 6%

performance gain over Method II comes at a cost. First of all, there is the financial cost

associated with the use of human computation. Even though the cost of completing one

human computation task is low, the need to review thousands of images and validate anno-

tations causes the overall operational cost to climb rapidly. Secondly, there is the challenge

of addressing privacy concerns when making FPPOV photos available to human computa-

tion workers. As previously stated, even when employing the most advanced techniques for

identifying faces and other possible sources of privacy threats, it is currently not possible

to guarantee that all privacy concerns can be addressed computationally. These limitations

directly impact the method’s scalability and viability for practical, real-world deployments.

With regards to Method II, it is purely computational. As a result, it sidesteps the key

scaling limitations of Method I: financial cost and privacy. On the other hand, Method II

is centered around training a classifier for identifying eating activities, which also comes at

a cost. The model building process requires the acquisition of training data under a variety

of real-world settings. However, my experiments showed evidence that it would be possible

to build a general classifier for eating detection that could be personalized to individuals

without too many additional examples. Under these circumstances, performance results

climbed significantly, highlighting the promise of this approach.
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Table 10: A comparison of the original model tested on two volunteers and the fine tuned
model. “Original” is the original applicants data and model. “V1” and “V2” are the results
from the original model tested on volunteers 1 and 2 data respectively. “V1 Fine” and
“V2 Fine” are the results from the fine-tuned models trained on volunteers 1 and 2 data
respectively. The results that are not available are classes that the two volunteers did not
perform when collecting their data.

Original V1 V1 Fine V2 V2 Fine

Chores 20.00 5.56 25.0 N/A N/A
Driving 96.62 18.6 100.0 0.0 100.0
Cooking 60.53 0.0 25.0 N/A N/A
Exercising 73.00 0.0 50.0 N/A N/A
Reading 53.36 77.78 75.0 N/A N/A
Presentation 87.06 N/A N/A N/A N/A
Dogs 66.09 N/A N/A N/A N/A
Resting 45.45 N/A N/A N/A N/A
Eating 83.12 11.48 76.92 30.68 100.0
Working 95.19 31.59 98.32 39.14 94.44
Chatting 17.39 0.0 86.67 0.0 96.72
TV 81.75 0.0 33.33 N/A N/A
Meeting 81.47 0.0 100.0 0.0 60.0
Cleaning 46.09 0.0 0.0 N/A N/A
Socializing 45.08 0.0 0.0 0.0 83.33
Shopping 64.75 40.0 50.0 N/A N/A
Biking 81.88 N/A N/A N/A N/A
Walking N/A 0.0 57.14 N/A N/A
Family 90.15 N/A N/A N/A N/A
Hygiene 62.60 13.33 0.0 27.78 81.82
Class Acc 65.87 10.56 51.83 13.94 88.05
Total Acc 83.07 23.58 86.76 27.06 91.23
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CHAPTER IV

AMBIENT AUDIO

There are many sounds associated with, and indicative of eating activities. These include

the background noise of restaurant environments, the opening and closing of food containers

and wrappers, the sound of a microwave oven warming up food, and the softer but highly

distinguishable sounds generated by the mouth when chewing and biting. In light of the

existence of such audible patterns, I built and evaluated a system to explore whether an

eating activity can be detected exclusively from acoustic signatures.

4.1 Method and Implementation

The sound identification task presents two technical challenges: the extraction of information-

rich features from ambient audio collected with a microphone, and the design of a binary

classifier with the ability to distinguish eating sounds from non-eating sounds from audio

features. The next sections describe the entire activity recognition pipeline, from data

collection to classification.

4.1.1 Audio Data Collection

Practicality was of utmost priority in terms of audio data collection, therefore my system

did not rely on any specialized sensors. Audio was captured by a smartphone attached

to the wrist running an off-the-shelf audio recording mobile application. I chose to collect

data from the wristThe implementation run on a smartphone device and was evaluated on

the wrist in an effort to simulate a smart watch device or some other wearable piece of

technology designed for everyday use.

4.1.2 Audio Frames and Features

Audio was recorded at a sample rate of 11,025Hz (16 bits per sample), and audio frames

with size 50ms were extracted using a Hanning-filtered sliding window with an overlap of
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Figure 20: The audio processing pipeline consists of audio framing, audio feature extraction,
frame clustering, frame clustering, and classification.

50% (block size=552, step size=276). This audio frame size is larger than what is typically

chosen for speech recognition applications but adequate to capture environmental sounds.

I extracted 50 features from each frame, using the Python-based Yaafe tool [91]. Based

on previous work that also attempted to recognize human activities from audio [81, 114], I

chose the following time and frequency domain features: Zero-Crossing Rate [117], Loudness

[96], Energy, Envelope Shape Statistics, LPC [85], LSF [10, 120], Spectral Flatness, Spectral

Flux, Spectral Rolloff [117], Spectral Shape Statistics [45], and Spectral Variation.

4.1.3 Clustering and Classification

Because many ambient sounds that characterize eating activities are often much longer

than a single audio frame, I clustered 400 consecutive frames and calculated the mean and

variance of each feature across these frames (Figure 20). This step also reduced feature

“noise” that could be introduced if I had accounted for the acoustic characteristics of every

single audio frame.

For clustering, I applied a sliding window over the audio frame stream, also with 50%

overlap. This resulted in a frame cluster vector of size 100 (mean and variance of 50
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features). I chose 400 frames for each cluster because that is equivalent to a total of 10

seconds of audio, a duration that can encapsulate sounds of interest that are both short

(e.g., the clicking sound of utensils hitting plates or bowls), and long (e.g., background noise

in a restaurant). I performed classification with the Random Forest classifier available in

the Scikit-learn Python package [105].

4.2 Deployment and Evaluation

To evaluate the system, I conducted an IRB-approved in-the-wild study, where I recruited

participants and examined how the system performed when classifying ambient sounds

collected in the real-world, as individuals performed their normal everyday activities. I

recruited 21 participants (15 males and 6 females) between the ages of 21 and 55 through

my social network, word-of-mouth, flyers and mailing lists. For joining the study, they

received $20 as compensation. Participants included students, research scientists, designers,

entrepreneurs and other professionals.

The study lasted between 4 and 7 hours on a single day; for 17 participants, the study

began in the morning sometime between 8AM and 11AM and ended between 3PM and

4PM, while for 3 participants it began between 4PM and 7PM and ended before 10PM.

This time period was enough to guarantee that all study participants had at least one meal

(lunch or dinner).

Subjects wore an audio recording device on the wrist. I chose this placement for the

collection of ambient sounds because I anticipate that smart watch-type devices will become

popular in the near future. It is very likely that these devices will be capable of recording

and even analyzing audio, despite their compact size.

The audio recorder registered sounds continuously throughout the study. At the end of

the study, participants were given the opportunity to review their audio file, and delete any

audio segment that they did not want to share with us. After this initial step, I performed

a walkthrough of the 4-7 hour study period with participants using the Day Reconstruction

Method (DRM) [62]. At the end of this process, I was able to discover when individuals ate

during the study interval and segmented and labeled their audio clips accordingly.
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4.2.1 Day Reconstruction and Verification

To obtain ambient audio ground truth for the eating activities, I asked participants to recall

their activities for the day and list them in order, indicating an estimated beginning and end

time for each activity. This activity list in chronological order allowed us to discover if and

when the participant had a meal. To make sure that time periods indicated by participants

were in fact eating activities, two of the authors coded the audio files independently after

agreeing on a guideline and then compared results. Disagreements beyond a range of 5

minutes at the beginning or end of an eating activity audio segment were discussed; there

were 5 disagreements in total. The final set of ground truth data for each participant

included the audio clip referring to the reported eating activity, and another clip with all

the audio except for the eating activity segment. As expected, the eating activity audio clip

was always much shorter in duration than the audio clip of non-eating activities.

4.3 Results

To reiterate, the high-level goal is to develop and evaluate a practical approach to detect

when meals are being consumed in the wild. In this work, the primary performance metric I

wished to assess was whether the system could identify meal eating activities from ambient

sounds. This assessment was driven by collecting data in real situations and learning models

from the data to test the approach.

I evaluated the models using a person-dependent technique and reported results in terms

of precision, recall and F-score metrics (Table 11); I performed 10-fold cross-validation

on each study participant’s data and then averaged the results across all participants to

obtain an overall result. For comparison, I tested three different classifiers: Support Vector

Machines (SVM), Nearest Neighbors (n=5), and Random Forest. The Random Forest

classifier proved to be vastly superior to the other two classifiers, yielding an F-score of

79.8%. As a means of comparison, this result is equivalent to what Yatani et al. achieved

with BodyScope [143]. On one hand, BodyScope was able to recognize multiple activities.

On the other hand, the system does not require any specialized sensor, and can run in any

off-the-shelf device that is capable of recording and processing audio, such as smartphones
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Table 11: Person-dependent, 10-fold cross-validation results for each classified I evaluated.
The Random Forest classifier performed significantly better that the SVM and Nearest
Neighbors classifiers.

Classifier Precision Recall F-score

SVM 47.5% 50.5% 48.9%
5-NN 53.3% 51.9% 51.4%

Random Forest 89.6% 76.3% 79.8%

and smart watches.

A LOPO (leave-one-participant-out) cross-validation resulted in an F-score of 28.7%,

suggesting that this approach would greatly benefit from personalization. It is important

to note that F-measures below 50% are not uncommon in LOPO evaluations, particularly

in the context of free-living studies [143].

4.4 Discussion

The ambient audio dataset included meal eating activities in a wide variety of contexts.

Participants ate alone and with friends; they ate at home, at work, at school and in the

classroom. Although desirable, this level of variety in the data made the classification task

particularly challenging.

One factor that hampered the classifier’s ability to identify meal eating was the short

duration of meal events, which were shorter than 12 minutes in some cases. This resulted

in a small number of frame clusters for the classifier to examine, and a misclassification

proved very costly. Another difficulty was that some of the participants had their meals

while performing other activities such as attending a class or working in the computer,

which were not labeled as meal eating activities. It is likely that additional examples would

help with activity class separation in this case. Finally, classifying meal-eating in quiet

environments, such as one’s office or home, has obvious challenges. This suggests a design

rationale for training the classifier while emphasizing the specific characteristics of different

sounds environments (e.g. home, school, restaurant).

Despite these difficulties, it is worth noting that it would have been impractical to

evaluate the system in a controlled lab setting, since it would have been devoid of most
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of the natural environmental sounds that individuals are enveloped in when in real world

settings and conditions.

4.4.1 Ground Truth Annotation

Estimating ground truth from the audio files proved to be a challenging undertaking. In-

dividuals were asked to recall the exact time they had meals, but often could not do so

accurately. In some cases, finding this segment proved particularly difficult, especially when

the length of the meal was under 10 minutes. Moreover, while in some audio clips it was

possible to hear that participants were eating or were in a restaurant environment, in other

clips this was not clear at all. For instance, participants P9 and P14 ate in a classroom or

classroom-like environment, whose sounds could not be easily identified as those that are

characteristic of an eating activity. In these situations I had to rely on subtle cues, such as

the sound of a food container coming out of a brown bag.

Another difficulty I faced in obtaining ground truth had to do with the characterization

of an eating activity. Some participants had hour-long lunches, where they chatted with

friends extensively before, during and after the meal. On the other hand, some participants

had very short meals, eating uninterruptedly for 10 or 15 minutes. In the case of the long

lunch, a question might be raised as to whether the whole meal event should be labelled as

“eating” or only the period when individuals were actively eating.

4.4.2 Data Collection

Although the feasibility study represents a large ecologically-valid data collection effort,

it is limited in two important ways. First of all, since participants joined the study for

4-6 hours in a single day, ambient audio data was recorded for only one meal of their

day. For most participants the recorded meal was lunch. The system was evaluated on

a per-participant basis through cross-validation, but having just one example of a meal

eating activity per participant lowers the confidence that the results generalize over several

days. In the future, I plan to address this weakness by collecting data for multiple days

per participant. Additionally, the lack of multi-day audio data makes it unlikely that the

system’s capability to infer eating activities generalizes across individuals. Although I plan
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to evaluate the system using a person-independent metric in the future, I believe that most

applications and interfaces built on top of the implementation will be personalized (e.g., a

just-in-time intervention tailored to address an individual’s specific challenges).

Secondly, snacking behavior was not the focus of this study. The duration of data

collection per day combined with the times when the study began and ended precluded us

from capturing ambient audio around snack-eating activities. However, there is no question

that snacking is a highly relevant behavior, and I plan to improve the study design and

techniques to account for it in the future. Having said this, a few of the meal eating

activities logged in the feasibility study were shorter than 10 minutes, which more closely

matches snack eating duration than a “traditional” meal eating duration. The truth is that

there is a great deal of ambiguity when it comes to characterizing an eating activity as meal

eating versus snack eating.

One of the key issues in audio-based activity recognition is privacy. Understandably,

most people object to the recording and analysis of audio of their everyday lives, particularly

if it is done completely autonomously and without human input. In the implementation I

did not address this challenge, although techniques for protecting privacy in audio streams,

and conversational speech in particular, have been proposed [142].

4.5 Conclusion

Based on the results, and despite the limitations of the study, it is clear that acoustic

sensing represents a promising opportunity. The system was able to identify meal eating

with 89.6% precision and 76.3% recall in a person-dependent evaluation. Although the focus

in this work is on the binary presence of eating moments in an audio stream, there are many

other dimensions of eating that are relevant from a diet and behavior change perspective.

With audio, it might be possible to determine whether individuals are eating alone or with

friends, and whether they are eating while working (e.g. typing in a computer) or watching

television. I hope to extend the audio-based activity classification platform in the future to

capture these additional contextual parameters.
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CHAPTER V

SINGLE-POINT INERTIAL SENSING

Considering all human activities, perhaps the most distinguishable characteristic of eating

is the set of physical body movements involved in food intake, so called hand-to-mouth

gestures. These gestures are the ones involved in picking up food, with or without utensils,

and bringing it to the mouth. The first study described in this chapter hinged on the

recognition of such food intake gestures as a foundation to infer eating moments (e.g.,

breakfast, lunch, dinner, and snacking). In this study, I leveraged the inertial sensing

capabilities of wrist-mounted commodity devices for data collection.

The second study also focused on measuring body movements caused by eating, but

with inertial sensors placed on a different part of the body: the head. The hypothesis

underlying this study was that it is possible to recognize eating from naturally occurring

head movements caused by chewing and swallowing. In this final study, participants wore

a Google Glass device while performing eating and non-eating activities.

After presenting the systems used for eating moment detection and describing the data

collection processes and results for each one of the studies, the chapter concludes with a

discussion of several issues and opportunities that emerged from the experiments.

5.1 Dominant Wrist-Mounted Sensing

The aim with this work was to explore a practical solution for eating moment detection

leveraging the inertial sensor (3-axis accelerometer) contained in a popular off-the-shelf

smartwatch. This approach contrasts with methods that require either multiple sensors or

specialized forms of sensing.

The eating moment recognition method consists of two steps. First, I perform food

intake gesture spotting on the stream of inertial sensor data coming from the smartwatch,

which correlate with arm and hand movements. Secondly, I cluster these gestures across

the time dimension to unearth eating moments. To evaluate the approach, I first ran
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a formative study with 20 participants to validate the experimental design protocol and

instrumentation. Informed by this pilot, I conducted user studies that resulted in three

datasets: (1) a laboratory semi-controlled study with 20 participants; (2) an in-the-wild

study with 7 participants; and (3) 422 hours of in-the-wild data for one participant collected

over the course of 31 days.

The approach for estimating eating moments was evaluated in two contexts, in the lab

and in-the-wild. The questions I explored in the analysis were:

• How well does the model recognize food intake gestures and eating moments with

data collected in a controlled setting?

• How does a model trained with lab data perform at recognizing eating moments in

unseen in-the-wild data?

• What is the temporal stability of eating moment recognition in-the-wild using a model

trained with laboratory data?

5.1.1 System Implementation

The system was designed to learn to identity moments when individuals are eating food.

The sensor data processing pipeline consists of data capture and pre-processing, frame and

feature extraction, food intake gesture classification, and eating moment estimation (Figure

21).

5.1.1.1 Sensor Data Capture

Practicality was one of the key driving forces guiding this work. Thus, for data capture I

relied on a non-specialized, off-the-self device with inertial sensing capabilities: the Pebble

Watch1. I wrote custom logging software for capturing continuous 3-axis accelerometer

sensor data from the device. The version of the smartwatch I employed did not contain a

gyroscope. I also developed an iOS smartphone companion application for data storage and

retrieval. Subjects wore the smartwatch on the wrist of their dominant hand. Sensor data

was captured at 25Hz.

1http://www.getpebble.com
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(5) Eating Moment 
Estimation

(1) Pre-Processing (2) Frame Extraction (3) Feature Extraction

(4) Intake Gesture 
Classification
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Figure 21: The data processing pipeline of the eating moment detection system. In the
approach, food intake gestures are firstly identified from sensor data, and eating moments
are subsequently estimated by clustering intake gestures over time.

5.1.1.2 Frame & Feature Extraction

The first steps in the data processing pipeline involved filtering the sensor streams using an

exponentially-weighted moving average (EMA) filter and scaling the resulting data to unit

norm (l2 normalization).

I extracted frames from the pre-processed data streams using a traditional sliding win-

dow approach with 50% overlap. The frame size plays an important role in classification

since it needs to contain an entire food intake gesture. The gesture duration is determined

by many factors, such as individuals’ eating styles and whether they are multitasking (e.g.,

reading a book, socializing with friends) while eating. Based on data observed in the labo-

ratory user study, I noticed that an intake gesture might last between 2 and 10 seconds. An

analysis examining the sensitivity of window size suggested best classification results when

the frame size was close to the mid-point of this range, around 6 seconds.

I computed five statistical functions for each frame, shown in Table 12: the signal’s

mean, variance, skewness, kurtosis, and root mean square (RMS). These frame-level features

comprise a concise and commonly used representation for the underlying inertial sensor data.

This resulted in 5-dimensional feature vectors for each axis of the accelerometer.
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Table 12: Feature definitions used for food intake gesture classification

Feature Description Definition

mean average value of the samples of signal x µx = 1
N

N−1∑
n=0

xn

variance power of values of signal x with mean removed σ2
x = 1

N

∑N−1
n=0 |xn − µx|2

skewness measure of (lack of) symmetry in data list.
∑N

n=1(xn−x)3

(N−1)s3

kurtosis measure of the shape of the data distribution
∑N

n=1(xn−x)4

(N−1)s4

RMS square root of the average power of signal x
√
Px, where Px = Ex

N = 1
N

∑N−1
n=0 |xn|2

5.1.1.3 Food Intake Gesture Classification

The first classification task in the system is the identification of food intake gestures, which

I define as the arm and hand gestures involved in bringing food to the mouth from a resting

position on a table, for instance, and then lowering the arm and hand back to the original

resting position. In practice, this task is made much harder by intra-class diversity. For

example, individuals eat differently if compared to each other and different types of food

consumption require different gestures. Additionally, an individual might perform other

tasks while eating, such as gesticulate when talking to others, hold a mobile phone or

magazine, etc.

For food intake gesture classification, I evaluated classifiers using the Scikit-learn Python

package [105]. Best results were obtained with the Random Forest learning algorithm

(Figure 24); Random Forests typically perform well with non-linearly separable data, such

as the data in this study.

5.1.1.4 Eating Moment Estimation

I estimated eating moments by examining the temporal density of observed food intake ges-

tures. When a minimum number of inferred intake gestures were within a certain temporal

distance of each other, I called this event an eating moment. I employed the DBSCAN

clustering algorithm for this calculation [38]. DBSCAN has three characteristics that make

it especially compelling for this scenario; there is no need to specify the number of clusters
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Table 13: To evaluate the system, I conducted laboratory and in-the-wild studies that
resulted in three datasets. The duration for the Lab-20 and Wild-7 datasets above represent
average duration across all participants.

Dataset # Participants Avg Duration % Eating

Lab-20 20 31m 21s 48%

Wild-7 7 5hrs 42m 6.7%

Wild-Long 1 31 days 3.7%

Table 14: In the laboratory study, participants were assigned to one of two activity groups.
Some of the activities involved eating different types of food items while others required par-
ticipants to perform non-eating tasks. The food eating activities were categorized according
to eating style, and utensil type.

P1-P12 P13-P21

Eat (Fork & Knife) Lasagna -

Eat (Hand) Popcorn Popcorn, Sandwich

Eat (Spoon) Breakfast Cereal Rice & Beans

Non-Eating

Watch Trailer
Conversation
Take a Walk

Place Phone Call

Watch Trailer
Conversation
Take a Walk
Brush Teeth
Comb Hair

ahead of time; it is good for data that contains clusters of similar density; and it is capa-

ble of identifying outliers (i.e., food intake gestures) in low-density regions. A well-defined

method for pinpointing outliers is important because there are many gestures that could be

confused with intake ones throughout one’s day. Once areas of high intake-gesture densities

have been identified as clusters in the time domain, I calculate their centroids and report

them as eating moment occurrences.

5.1.2 Deployment and Evaluation

I conducted three user studies, a laboratory semi-controlled study with 20 participants

(Lab-20), an in-the-wild study with 7 participants over the course of one day (Wild-7), and

a naturalistic study with one participant where I collected 422 hours of in-the-wild data

over a month (Wild-Long). More details about these details are available in Table 13.
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Table 15: This table is showing the average duration of each activity in the laboratory user
study across all participants (dominant wrist-mounted sensing).

Activity Avg Duration

Eat (Fork & Knife) 5m 1s

Eat (Fork/Spoon) 5m 48s

Eat (Hand) 5m 54s

Watch Movie Trailer 3m 47s

Chat 5m 3s

Take a Walk 2m 18s

Place Phone Call 1m 28s

Brush Teeth 3m 54s

Comb Hair 39s

To evaluate the approach to eating moment detection with wrist-mounted inertial sen-

sors, I first ran a formative study with 20 participants to validate the experimental design

protocol and instrumentation for the semi-controlled laboratory study. Participants were

asked to eat a variety of foods including fruits (e.g., apple), pizza, and snacks of varying

sizes and shapes, such as cookies and M&Ms. To test the feasibility of food intake gesture

spotting from a wrist-mounted inertial sensor, I collected data from a smartphone attached

to participants’ arm, the same setup employed by Dong et al. [35]. A custom application

logged all the sensor data on the phone, and all individuals were continuously video-recorded

as they ate the food provided.

The pilot study helped us address a number of issues in the experimental procedures,

such as the foods offered to participants, the types of non-eating activities I asked par-

ticipants to perform, the amount of time in-between activities, and the data annotation

process. In particular, after observing participants wearing a smartphone attached to their

wrists, it became clear that the device’s weight and size could affect participants’ arm and

hand movements, and thus influence the study results. As a result, I transitioned to a

smartwatch platform for data collection.
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5.1.2.1 Laboratory Study (Lab-20)

I conducted a user study in the laboratory and examined how the method performed when

discriminating between eating and non-eating moments. I recruited 21 participants (13

males and 9 females) between the ages of 20 and 43. All participants were right-handed.

Due to a data collection error, I had to discard the data for one of the participants.

The study lasted an average of 31 minutes and 21 seconds and participants were invited

to arrive around lunch time, between 11AM and 1PM. Participants were asked to wear the

smartwatch on the arm they deemed dominant for eating activities. I did not compensate

subjects monetarily, but provided them lunch, which they ate as part of the study itself.

Before the activities began, I told them the foods I would be serving and gave them the

freedom to eat as much as they wanted. I never had more than one subject participating

in the study at a time.

The study was designed so that participants performed a sequence of activities (Table

15). Participants were assigned to one of two activity groups (Table 14), which contained

a mix of eating moments and non-eating activities. The order in which subjects performed

these activities varied depending on the activity group. There were no time constraints, and

activities were performed in succession without a significant pause in-between. At the end

of each activity, except for the last one, the experimenter instructed participants on what

to do next. Although this study was scripted and took place in a lab, participants were

free to eat completely naturally. Some participants chose to check news and messages on

their phone while eating; others were more social, and ate the food provided while having

a conversation with the experimenter and others non-participants who happened to be in

the lab.

The eating moments involved eating different kinds of food, such as rice and beans, and

popcorn. For consistency, all foods offered were vegetarian, even though many participants

did not have any food restrictions. Subjects were provided with utensils for the activi-

ties that required them, and a water-filled cup and napkins were made available to them

throughout the study. Although drinking is often linked with food consumption, it was not

annotated as an eating moment in this study.
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Figure 22: I estimated ground truth by recording each study session with a video camera
and then coding the data with the ChronoViz tool [41].

The non-eating activities either required physical movement, or made participants per-

form hand gestures and motions close to or in direct contact with the head. These activities

typically lasted no more than a few minutes, and as little as a few seconds, and were chosen

because they are typically performed in daily life and could be confused with food intake in

terms of the gestures associated with them. For the “Walking” activity, I asked participants

to walk down a hallway, take the stairs down to the floor below, turn around and come back

to the study area. The “Phone Call” task involved placing a phone call and leaving a voice

message. For the “Comb Hair” and “Brush Teeth” activities, I provided each participant

with a hair brush, a tooth brush, toothpaste and they performed these tasks on the spot,

with the exception of teeth brushing, which took place in the bathroom.
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Participants were continuously audio and video recorded during the study as they per-

formed their assigned activities (Figure 22). The only exceptions were the “Walking” and

“Brushing Teeth” activities, when subjects left the user study room momentarily. The ac-

quired video footage served as the foundation for the ground truth I estimated; all coding

was performed using the ChronoViz tool [41].

For eating activities, I coded every food intake gesture and differentiated between ges-

tures made with the instrumented arm versus the non-instrumented arm. For food intake,

I marked the absolute time the food reached the mouth, and then added a fixed pre and

post offset of three seconds to each intake event. This offset made it possible to model the

entirety of food intake gestures, which often begin and end moments before and after the

food is placed in the mouth. A three-second offset was chosen empirically based on obser-

vations of participants’ eating gestures. Non-eating activities were coded from the moment

they began until their conclusion. In other words, coding for non-eating activities was not

focused on modeling any specific gesture.

The reliability of the ground truth estimation scheme was verified by having an external

coder review 15% of the recorded audio and video. This was equivalent to 3 study sessions.

To account for minor temporal differences in the assigned codes, I established that as long

as they were within 3 seconds of each other, the codes referred to the same activity. By

following this protocol, there was agreement in 96.7% of the coded gestures.

5.1.2.2 In-the-Wild Studies

To evaluate the ecological validity of the method, I conducted two in-the-wild studies.

For the first one, I recruited 7 participants (2 males and 5 females, between the ages of

21 and 29), who did not participate in the laboratory study. They were asked to wear the

smartwatch on their dominant arm for an average of 5 hours and 42 minutes for one day while

performing their normal everyday activities, which included taking public transportation,

reading, walking, doing computer work, and eating. Four participants started the study in

the morning and 3 in the afternoon and at least one eating moment was documented for

each participant. Of a total data collection time of 31 hours and 28 minutes, 2 hours and
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Figure 23: Participants of the in-the-wild study wore a wearable camera that captured
photos automatically every minute. After the study, participants were asked to review the
photographs and label all eating moments using a web tool specifically designed for this
purpose.

8 minutes corresponded to eating activities (6.7% of the total).

In the second study, I (male, 38 years of age) collected and annotated free-living inertial

sensor data for 31 days. I wore the smartwatch throughout the entire day, accumulating

a total of 422 recorded hours during this period. For this dataset, 3.7% of all sensor data

collected reflected eating activities; non-eating activities spanned personal hygiene (e.g.,

brushing teeth), transportation (e.g., driving), leisure (e.g., watching tv), and work (e.g.

computer typing).

In the field of activity recognition, one of the critical challenges of in-the-wild studies

is collecting reliable ground truth data for model training and evaluation. Self-reports are
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Table 16: Confusion matrix showing the percentage of actual vs. predicted activities by the
Random Forest model. The FK and FS acronyms refer to eating activities employing fork
and knife, and fork or spoon, respectively.

Other Eat FK Eat FS Eat Hand Movie Walk Chat Phone Comb Brush Wait
Other 26% 6.6% 4% 13.2% 13.7% 1.5% 28.5% 3% 0% 3% 0%

Eat FK 2.4% 35.6% 34.2% 14.3% 1.6% 0.2% 10.2% 0.2% 0.2% 0.7% 0%
Eat FS 0.2% 6.2% 74.7% 7.1% 1.1% 0.6% 7.5% 0.5% 0% 1.7% 0%

Eat Hand 1% 4.2% 9.6% 72.9% 1.7% 0.9% 8.8% 0.2% 0% 0.1% 0.1%
Movie 2.2% 0.8% 2.9% 4.7% 77.3% 0.82% 10.1% 0.6% 0% 0% 0.2%
Walk 0.3% 0.3% 0.3% 0.7% 0% 91.3% 5.5% 0% 0% 1.3% 0%
Chat 2.6% 4.5% 15.9% 10.7% 6.9% 1.5% 53% 0.8% 0.3% 3.1% 0.3%

Phone 2.4% 2.4% 24.7% 14% 1.6% 0% 5.7% 47.1% 0% 1.6% 0%
Comb 7.1% 14.2% 17.8% 3.5% 0% 0% 7.1% 0% 39.2% 10.7% 0%
Brush 1.4% 3.3% 16.8% 16.8% 0% 11% 11% 0.9% 0.9% 37.5% 0%
Wait 3% 5.1% 17.3% 5.1% 5.1% 4% 9.1% 0% 0% 6.1% 44.9%

typically used for this purpose, but they are known to be susceptible to biases and memory

recollection errors. To improve the reliability and objectivity of ground truth for the in-the-

wild studies, I built an annotation platform around first-person images called Activiome,

described in detail in Appendix A. In addition to the smartwatch, participants wore a

wearable camera on a lanyard that captured photographs automatically every 60 seconds,

depicting participant’s activities throughout the day (Figure 5 in page 30). These images

were uploaded in real-time to a server, and participants could access and review them at any

time by logging into a password-protected web application. With this system, participants

were able to indicate when they were engaged in eating moments from photographic evidence

without having to share their photos with the research team, mitigating privacy concerns.

This method offered greater confidence for the ground truth labels, because the anno-

tation was based on picture evidence. The camera was outfitted with a wide-angle lens to

maximize the field-of-view and capture food and eating-related activities and objects even

if they were not directly in front of the individual. However, since photos were taken only

every 60 seconds, there is a small possibility that a short eating moment (e.g., a snack)

occurred in-between two photos and was not recorded. I set the interval to 60 seconds as

a compromise between maximizing battery life and photo capturing for as long as possible

on a given day.
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Random Forest vs Window Size
3-NN vs Window Size
SVM vs Window Size
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Figure 24: I evaluated the person-dependent performance of three food intake gesture clas-
sifiers with respect to window size (Lab-20 dataset). Each classifier was trained with a
different learning algorithm: Random Forest, SVM (RBF kernel), and 3-NN. I achieved
best results with the Random Forest classifier.

5.1.3 Results

To reiterate, my goal is to develop and evaluate a practical approach to detect eating mo-

ments, using sensor data from an off-the-shelf smartwatch. To that end, the primary perfor-

mance metric I wished to assess was whether the system could distinguish eating moments

from non-eating moments. In this section I first review the eating gesture classification

findings and then discuss the eating moment recognition results.

5.1.3.1 Recognizing Eating Gestures

In the system, predicting eating moments hinges on the detection of food intake gestures.

Using the Lab-20 data, I evaluated the performance of three food intake gesture classifiers

(Random Forest, SVM, and 3-NN) as a function of sliding window size for the person-

dependent (Figure 24) and person-independent cases. The Random Forest classifier outper-

formed the SVM and 3-NN classifiers using the F-score measure for comparison. I attribute

this result to the Random Forest’s powerful nonlinear modeling capability. This learning

algorithm was also appealing to us because it does not require much parameter tuning.
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Figure 25: I performed a leave-one-participant-out (LOPO) evaluation of the food intake
gesture classifier trained with the Random Forest learning method. The figure shows its
sensitivity to window size.

A person-independent evaluation of the Random Forest classifier using the leave-one-

participant-out strategy (LOPO) is shown in Figure 25. Note that the reported precision,

recall and F-score measurements in Figures 24 and 25 reflect the classifiers’ ability to spot

intake gestures at the frame level, and best performance was achieved with a frame size of

just under 6 seconds.

Table 16 provides a detailed picture of how the Random Forest model performed at

classifying eating gestures in relation to non-eating activities. The data for all laboratory

study participants was combined and randomly split into one training and one test set;

approximately one third of the data was held out for testing. This procedure was performed

with Scikit-learn’s train-test-split cross-validation function [105]. For purposes of reporting

results, I further distinguish 3 different eating gestures to gain a richer understanding of

model classification and error rates: eating with fork and knife (i.e., Eat FK), eating with

fork or spoon only (i.e., Eat FS), and eating with hands (i.e., Eat Hand).
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F-score Wild-Long vs Time Segment
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Figure 26: F-score results for a model trained with lab data (Lab-20 dataset) and tested
with in-the-wild data, Wild-7 (red), and Wild-Long (blue). The x-axis correspond to time
segment size, in minutes.

5.1.3.2 Estimating Eating Moments

As previously described, the approach for inferring eating moments depends on the temporal

density of observed food intake gestures; I cluster these intake gestures over time using the

DBSCAN algorithm, which takes two parameters, a minimum number of intake gestures

(minPts), and a distance measure given as a temporal neighborhood (eps). To assess how

well eating moments were recognized, I compared ground truth and predictions over a time

window that is longer than a frame size. This is necessary because an eating moment is

in the range of minutes, not seconds. In this paper, I refer to this longer time window

for eating moment recognition as a time segment, shown in Figure 27. When one or more

eating moments are recognized within a time segment, the entire time segment is assigned

the eating label.

One of the questions this work explores is whether it is feasible to build a model for eating

moment recognition based on semi-naturalistic behavior data captured in a laboratory. To

answer this question, I trained a model with the Lab-20 dataset and tested it on both in-

the-wild datasets (Wild-7 and Wild-Long). Figure 26 plots F-scores as a function of time
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Figure 27: Going from bottom to top, the first step to eating moment recognition involves
recognizing eating gestures (1). These are clustered temporally to identify eating moments
(2). Finally, estimated eating moments are compared against ground truth in terms of
precision and recall measurements at the level of time segments ranging from 3 to 60 minutes
(3).

segment size ranging from 5 to 60 minutes (DBSCAN parameters set to minPts=1, eps=10,

meaning at least 1 intake gesture that is within 10 seconds from another recognized intake

gesture). The charts show an upward trend in recognition performance as time segment

duration increases. This is because more data points become available in terms of recognized

and non-recognized food intake gestures, leading to improved density estimation, and thus

better eating moment recognition results. When the time segment size is set to 60 minutes,

the F-scores are 64.8% and 56.8%.

The intuition guiding eating moment recognition is that making a prediction about a

60-minute time segment would suffice for most practical applications of the work. Given

that intuition, it is valuable to understand how much one can optimize the classifier when

the time segment is fixed at 60 minutes. Varying the minPts and eps parameters of the

DBSCAN algorithm, but still using the Lab-20-trained intake gesture recognition model,

(shown in Figures 28 and 29), F-scores of 76.1% (66.7% Precision, 88.8% Recall) and 71.3%

(65.2% Precision, 78.6% Recall) could be achieved when evaluating the classifier with the

Wild-7 and Wild-Long datasets, respectively.
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5.1.4 Discussion

In this section, I discuss the classification results, the instrumentation strategy I chose,

characteristics of the data collected, and the practical implications of the findings.

5.1.4.1 Classification Challenges

To more realistically assess the system’s classification performance in the lab study, I pur-

posely included gestures that required arm movements similar to food intake gestures. Ac-

tivities such as placing a phone call, combing hair and brushing teeth are all similar to

eating in that they all require hand-arm motions around the head and mouth areas. Other

observed movements that occurred in the laboratory study closely matching eating gestures

included wiping the face with a napkin, scratching the head, and assuming a resting position

by supporting the head and chin with the instrumented hand and wrist. Because of the

semi-controlled nature of the laboratory study, these movements occurred naturally during

sessions, and did not have to be scripted.

Based on the results, shown in the confusion matrix in Table 16, I found that one of the

most challenging activities to discriminate from eating was “Chat”. This is because when

people are having a conversation, they typically gesticulate. This effect varies in intensity

amongst individuals but it was significant enough across all participants in the laboratory

study that between 7.5% and 10% of each eating intake class (Eat FK, Eat FS, Eat Hand)

was misclassified as “Chat”.

In Table 16, it is also possible to see false positives originating from the “Phone”,

“Comb”, and “Brush” activities. This is not surprising since these activities were specifically

included to induce misclassifications. Common to these non-eating activities gestures was

a movement bringing the hand close to the head; the temporality of subsequent movements

was one of the key characteristic differentiating them. In the “Phone” activity, the hand

stayed up holding the phone close to the ear; in effect there is no subsequent “hand down”
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Figure 28: F-score results for estimating eating moments given a time segment of 60 minutes
as a function of DBSCAN parameters (minPts, and eps). Tested on the Wild-7 dataset,
eating moments can be estimated with an F-score of up to 76.1% when minPts=2 and
eps=80 (at least 2 intake gestures that are within 80 seconds from another intake gesture).

gesture in this case. For the “Comb” activity, the hand was lifted up and remained in

motion, moving slowly in a pattern that depended on the hairstyle of the participant. The

“Brush” activity pattern was distinguished by quick-moving hand gestures while holding

a toothbrush. I believe the rate of false positives can be lowered by incorporating time-

dependent features that can better characterize these types of non-eating activities.

5.1.4.2 Intra-Class Diversity

I observed a large amount of variability in participants’ eating styles. Some held a sandwich

with two hands, others with one hand, sometimes alternating between them. A minority of

participants took bites of their food at regular intervals (P4 in Figure 30). Others were not

so regular; they gesticulated more while talking and eating (P5 in Figure 30).

When using utensils, and in the short intervals between bites, some participants kept

mixing their food in a regular pattern. This could be attributed to an individual’s own
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Figure 29: F-score results for estimating eating moments given a time segment of 60 minutes
as a function of DBSCAN parameters (minPts, and eps). Tested on the Wild-Long dataset,
eating moments can be estimated with an F-score of up to 71.3% when minPts=3 and
eps=40 (at least 3 intake gestures that are within 40 seconds from another intake gesture).

eating style or an attempt to cool off the food, for example. There was significant variation

in the way participants ate smaller foods as well. Several participants held several kernels

of popcorn in hand and ate them continuously until they were gone. Others liked to eat

more than one popcorn at a time.

While many participants performed the “traditional” food intake gesture of bringing

food to the mouth using utensils, hands, or by lifting a bowl, I noticed that many partici-

pants did the opposite; they bent over their plate, brought their head close to the food and

then moved their arm in a modified, shorter and subtler version of the traditional intake

gesture. This was particularly common when participants were trying to avoid food spillage

(P1 in Figure 30).

In this study I did not create a separate model for each observed eating style; all intake
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Figure 30: The accelerometer data (x-axis) of three participants as they ate a serving of
lasagna depicts personal variation in eating styles and makes intra-class diversity evident.
The red dots are intake gesture markers.

gestures were given one label: “eating”. Without any question, this posed an additional

challenge to the classification task. Fitting a model to user-specific data might be the

most effective way to address intra-class diversity, and I hope to explore this in future

work. Also, face-mounted wearable computing systems like Google Glass are becoming

more popular; these devices offer the opportunity to capture inertial sensing data reflecting

head movements, which might contribute significantly to the identification of eating and

chewing activities despite individual differences.

5.1.4.3 Instrumentation

I provided participants with one wrist-worn device, a smartwatch, and placed it on their

dominant hand. There are two key reasons why I decided on a strategy of minimal instru-

mentation. Firstly, in real-world settings, people wear only one smartwatch at a time. In

this context, with an eye towards the practical applicability of this research, I was interested

in the extent to which eating moments can be estimated with just one sensor data capture

device. Secondly, I felt that asking participants to wear one additional device would be
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unnatural, and thus result in a level of discomfort that could compromise the validity of

the data.

I chose participants’ dominant hand because it is the one that is typically used in food

intake gestures. However, the dominant hand might play different roles while eating, such

as cutting with a knife, and this has an effect in modeling intake gestures; it is possible to

observe in Table 4 that the “eating with a fork and knife” class was misclassified as “eating

with fork or spoon only”, and with “eating with hand”. This is inconsequential if the goal

is to identify “whether” eating is taking place, but it presents modeling opportunities for

characterizing “what” is being eaten.

5.1.4.4 Ecological Validity

The evaluation results demonstrate the promise of a minimally-instrumented approach to

eating moment detection. However, it is important to situate the findings in light of the

study design and aspects of the system implementation. An issue that might arise in

practice while collecting data with only one device is that certain eating gestures might

not get captured. For instance, a person might be wearing a smartwatch on the non-

dominant hand while eating with a fork held by the dominant hand. Although this scenario

represents a challenge, I believe it can be addressed in two ways: by modeling non-eating

gestures performed by the non-dominant hand during eating, and by leveraging additional

modalities such as ambient sounds. In future work, I plan to explore the combination of

these two different paths.

With regards to the validity of the results, the types of foods that I served participants

and the enforcement of which utensils they were allowed to use, if any, were in line with

current western eating traditions. I aimed for a representative sample of eating activities

and styles by picking foods such as rice, popcorn, and sandwiches apples but the scientific

claims do not and cannot generalize to all populations and cultures. For instance, none of

participants in the study ate with chopsticks.

95



5.1.4.5 Practical Applications

Despite the importance of high precision and recall measures for both benchmarking and

practical applications, the experiments showed that since there are usually many intake

gestures within one eating moment, a slightly lower recall in food intake gesture classification

does not have a large effect in the results. In contrast, consecutive false positives have a

direct effect in the misclassification of eating moments. With respect to the applications

I envision leveraging this work, there are two paths to consider. In a system designed

to facilitate food journaling, lower precision means that individuals might be frequently

prompted to provide details about meals that did not occur, which is undesirable. However,

as a tool for health researchers to determine when individuals eat meals, what is critically

important is to not miss any eating activities. In this case, false positives are preferable to

false negatives.

5.2 Head-Mounted Sensing

It is possible to observe a variety of head motions as an individual performs an eating

activity. Many of these motions are subtle and caused by the biomechanics of chewing and

swallowing food. Others are more noticeable, such as when the head tilts up or down to

place the mouth in the trajectory of an incoming fork or spoon. Despite the existence of

head movement and patterns that seem linked to food consumption, head motions are a

constant in daily life. To understand whether it is possible to uniquely identify eating head

motions from non-eating motions, I conducted a study with 20 participants in a laboratory

setting. The following sections describe the study and how the data was collected and

analyzed.

5.2.1 Laboratory Study

The study and data collection effort for the head-mounted sensing of eating took place

together with the dominant wrist-mounted eating detection experiment. In other words, the

20 participants in the dominant wrist-mounted sensing laboratory study wore two devices

with inertial sensing capability: a smartwatch and a Google Glass device.
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5.2.2 Data Capture and Analysis

Data was collected with a standard Google Glass device that participants wore throughout

the experiment. An application written for the Android OS captured 6 streams of sensor

data in real-time at 45Hz: 3-axis of accelerometer data and 3-axis of gyroscope data. The

data was saved locally on the device and downloaded at the end of each study session for

analysis.

Similarly to how I processed the inertial sensor data obtained from the wrist-mounted

device, I first filtered and scaled the data; an exponentially-weighted moving average (EMA)

filter was used to smooth the data and l2 normalization was applied to bring it to unit norm.

A sliding window extracted frames from the sensor streams (50% overlap), and 5 statistical

measures were calculated for each frame (Table 12): mean, variance, skewness, kurtosis,

and root mean square (RMS). For classification, the Random Forest learning algorithm was

used. It took as input a vector with 30 features (5 statistical measures for each one of the

6 streams of inertial data), and output an eating detection model.

5.2.3 Results

To assess the extent to which the aforementioned approach worked for eating detection, I

performed a person-independent (leave-one-participant-out) evaluation with the laboratory

data and calculated precision and recall measures. With a sliding window size of 35 seconds,

precision and recall were 72.9% and 66.5% respectively (69.6% F-Score). I experimented

with different window sizes, ranging from 10 to 50 seconds and did not observe a significant

difference in results, as shown in Figure 31.

This result compares very favorably to other efforts focused on eating detection with

head-mounted inertial sensing. Rahman et al. obtained a LOPO F0.5-Score of 49.73% in a

lab-setting where 38 participants ate their own food and performed other activities of their

choice for a total period of 2 hours [106]. The LOPO F0.5-Score of my classifier was 71.52%,

but with a smaller number of participants and a shorter lab session.
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Figure 31: I performed a leave-one-participant-out (LOPO) evaluation of the activity clas-
sifier. The Random Forest classifier was trained with inertial sensor data captured with
Google Glass. The figure shows its sensitivity to window size.

5.2.4 Conclusion

The two studies described in this chapter aimed at investigating the performance of eating

detection classifiers based on inertial sensor data. The first study hinged on the recognition

of food intake gestures and eating moments with a wrist-mounted device. The results

obtained were promising for three reasons. Firstly, they represent a baseline for practical

eating detection using a device with very limited sensing capabilities: the Pebble watch. I

anticipate performance gains when employing additional inertial sensing modalities, or using

a device with a more powerful IMU. As a means of comparison, Amft et al. obtained 84%

recall and 94% precision with accelerometer and gyroscope in drinking gesture spotting [2].

Secondly, the dominant hand study explored one type of sensing modality, inertial sensing,

but many other contextual cues could be utilized to improve eating moment detection, such

as location and perhaps even ambient sounds [130]. And thirdly, this work suggests that

it might be possible to build ecologically valid models of complex human behaviors while

minimizing the costly acquisition of annotated data in real-world conditions.

The second study also focused on measuring body movements caused by eating, but

with inertial sensors placed on a different part of the body: the head. The hypothesis
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underlying this study was that it is possible to recognize eating from naturally occurring

head movements caused by chewing and swallowing. In this study, participants wore a

Google Glass device while performing eating and non-eating activities. The results proved

to be on par, if not better, against comparable efforts aimed at detecting eating with head-

mounted inertial sensing.

Despite the promise of this method, it was evaluated in a laboratory setting; I would

expect lower performance overall in real-world conditions. One of the challenges of a model

created around the recognition of head movements is the poor signal-to-noise ratio of head-

acquired inertial sensor data. In naturalistic settings, the head is constantly moving even

when the person is performing just one activity. To make matters worse, eating is often a

social activity, with individuals often turning their heads to face each other to talk or looking

away from their food if something catches their attention. These and other causes for head

movements while eating result in noise in the data. The existence of this noise masks the

much smaller variations and patterns in the data that correspond to chewing and swallowing

motions. As a point of comparison, Hernandez et al. were successful in estimating vital

measures such as pulse and respiratory rate of 12 participants using Google Glass, but

only in a controlled experiment where participants had to be still while measurement were

taken[50].
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CHAPTER VI

TWO-HANDED INERTIAL SENSING

As noted, one of the limitations of the dominant wrist-mounted sensing study was that

gestural data was captured on only one arm. Although it is reasonable to assume that most

eating gestures engage the dominant hand, there are situations when that is not the case.

If the only instrumented arm is the dominant one, missing an eating gesture due to the use

of the non-dominant hand results in a false negative. These types of false negatives indicate

that an eating gesture went undetected, but not because the food intake gesture classifier

produced an incorrect result. From a scientific perspective, it is valuable to measure the

performance of an inertial sensor-based food intake gesture classifier irrespective of which

arm performs the gesture. I addressed this research question by conducting a laboratory

study where participant wore a wrist-mounted inertial sensor on each wrist.

Additionally, while the dominant wrist-mounted sensing experiment examined the per-

formance of eating moment detection in real-world settings for multiple individuals, it did

so for just one day. There was one exception; data was collected for one participant for

a month, but additional validation with more participants is warranted. Considering that

individuals have unique eating styles, it would be valuable to know if an eating moment clas-

sifier can be tailored to a person from data compiled in laboratory and real world conditions.

This was the motivation for the in-the-wild study presented in this section.

6.1 Implementation and Data Capture

In the dominant wrist-mounted sensing experiment, participants wore a Pebble watch. By

means of the watch’s accelerometer, inertial data was recorded as participants performed

eating gestures and engaged in other activities. Recently, wrist-mounted consumer devices

with more powerful inertial measurement units have become available. For this study, I
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Table 17: This table is showing the average duration of each activity in the laboratory user
study across all participants (double wrist-mounted sensing).

Activity Avg Duration

Eat (Fork & Knife) 12m 41s

Eat (Spoon) 5m 39s

Eat (Hand) 5m 28s

Drink (Hand) 0m 44s

Watch Movie Trailer 2m 19s

Read Magazine 6m 38s

Take a Walk 4m 14s

Use Mobile Phone 5m 34s

Place Phone Call 1m 26s

User Computer 6m 14s

Brush Teeth 4m 5s

relied on one of these newer devices, the Microsoft Band1. It contains both an accelerometer

and a gyroscope, thus providing 6 DoF inertial sensor data. I adapted the Activiome iOS

smartphone companion application to work with the Microsoft Band, and captured sensor

data at 30Hz. The Activiome system is described in detail in Appendix A.

The pipeline used for data processing was exactly the same as the one I employed for

the dominant wrist-mounted sensing experiment, with one exception. Participants wore

two Bands; each Band recorded 6 channels of inertial data: 3 for accelerometry and 3

for gyroscopic data. Therefore the data processing pipeline was modified to take in these

additional data channels.

6.2 Food Intake Gesture Spotting

I conducted a laboratory study to compare the performance of an inertial sensor-based

food intake gesture classifier with gestural data from both hands, only the dominant hand,

and only the non-dominant one. Like previous lab experiments, it centered on collecting

behavioral sensor data as participants ate a variety of foods and performed non-eating

activities in a semi-controlled environment. Four participants (3 males, 1 female) were

1http://www.microsoft.com/microsoft-band
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Figure 32: Participants were video-recorded as they performed eating and non-eating ac-
tivities in the laboratory study.

recruited for the studies; they were graduate students between the ages of 19 and 26, and

all of them claimed to be right-handed.

The protocol I employed was very similar to the one used in the dominant wrist-mounted

sensing experiment. The study lasted an average of 55 minutes and took place around

lunchtime. I instrumented participants with two Microsoft Bands, one on each wrist, for

collecting accelerometer and gyroscope inertial sensor data. A video camera was setup in

front of participants and video recordings were used for annotating gestures and activities

(Figure 32).

Participants performed eating and non-eating activities (Table 17) and there were no

time constraints for completing them. The eating activities revolved around a pre-defined

set of foods which included popcorn, a serving of lasagna, and yogurt (Figure 33). All

participants were offered the exact same food types and amount for each food. Some eating

activities required the use of utensils and some did not. Participants were told which foods

would be served and allowed to eat as much as they wanted, and drinking activities were
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Figure 33: A participant in the study wearing two Microsoft Bands, one on each wrist, and
eating a serving of lasagna with fork and knife.

coded as separate from eating activities.

A variety of non-eating activities were included in the study. One of them required

physical movement (i.e., walking), some were mundane everyday tasks (i.e., use computer

or mobile phone), and some involved performing hand gestures and motions close to or in

direct contact to the head (i.e., brush teeth). These activities involving hand gestures were

included because they could be confused with food intake gestures and pose an additional

challenge to the intake gesture classifier.

The annotation process involved coding food intake gestures using the same method

employed in the the dominant wrist-mounted sensing experiment. Based on empirical ob-

servations, I considered each intake event to last 9 seconds, 2 seconds before and ending 7

seconds after the time the food reached the mouth. Like before, I used the ChronoViz tool

[41] for annotating the video and data streams.
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6.2.1 Results & Discussion

In total, participants performed 295 food intake gestures in the laboratory study. Of the

total, 161 were performed with the right-hand, and 134 with the left hand (Figure 36).

Interestingly, all participants claimed to be right-handed prior to the study. The charts in

Figure 36 show, for each participant, the distribution of intake gestures by hand and eating

activity type. While P1 and P2 were clearly right handed, P3 and P4 made extensive use

of their left hand while eating. For P4, the left hand was used in hand-to-mouth gestures

while the right, and dominant hand, was dedicated to cutting with a knife. Although the

experiment was limited to only 4 participants, the right-hand–left-hand utilization ratio

reveals how much the non-dominant hand gets used during eating. This suggests that

monitoring food intake gestures by tracking the non-dominant hand with a smartwatch

device is feasible.

The balanced use of both hands while eating is also reflected in the recognition of intake

gestures. The graph in Figure 36 shows the effect of sliding window size on food intake

gesture recognition performance (F-Score) as a function of wrist instrumentation across

all participants in the lab study (leave-one-participant-out cross-validation). When best

performance is achieved, with a window size around 60 seconds, instrumenting the left and

right wrists proves to be superior to instrumenting only either one of the wrists, but only

marginally.

It is worth noting that with a window size of 60 seconds, what gets modeled is not

a single intake gesture, but a period of eating activity that encompasses multiple intake

gestures and other non-eating gestures as well. When performing inference with a larger

window size, examining eating moments from a more “holistic” perspective, it is to be

expected that analyzing hand gestural data from both hands would lead to better results.

On the other hand, with a shorter window size, the model that gets created with data from

either one of the wrist-mounted devices is a better fit for individual intake gestures.
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Figure 34: In this graph, it is possible to see the effect of sliding window size (SWS) on
food intake gesture recognition performance (F-Score) as a function of wrist instrumentation
across all participants in the lab study. When best performance is achieved, with SWS above
50 seconds, instrumenting the left and right wrists proves to be superior to instrumenting
only either one of the wrists.

6.3 Fully Personalized Eating Detection Model

To reiterate, one the goals of this work was to assess whether an eating moment classifier

can be tailored to a person from data compiled in laboratory and real world conditions.

This was motivated by the observation that eating styles vary greatly between people. For

example, some individuals bend down to eat, bringing their head close to the plate of food.

Others eat while sitting upright, requiring their arm to traverse a longer distance to bring

food to the mouth.

To answer this question, I conducted an in-the-wild study. The experiment had three

phases. In the first phase, which was described in the previous section, 4 participants

wore two wrist-mounted devices, one on each arm, and collected inertial sensor data in

the lab while performing eating and non-eating activities. An eating activity detector was

created for each participant. In the second phase of the study, the same 4 participants who

completed the laboratory study were asked to wear the sensing devices on their wrists for
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Figure 35: As shown in this chart, out of 295 food intake gestures performed by 4 par-
ticipants in the laboratory study, 161 were performed with the right-hand, and 134 were
performed with the left hand. Prior to the study, all participants claimed to be right-handed.

several days while they performed their normal everyday activities. Following this period of

data collection in naturalistic settings, each participant’s lab-trained eating activity detector

was tested on the in-the-wild dataset. Finally, the third phase of the experiment involved

building and evaluating personalized eating detection classifiers by combining lab and in-

the-wild data in different proportions.

The Activiome system, described in the appendix of this thesis document, was used for

ground truth data collection in-the-wild. Participants wore a wearable camera with a wide-

angle lens that was programmed to take first person photos every 60 seconds. At the end

of each photo capture cycle, the camera uploaded the images in real-time to the Activiome

server. The photos portrayed participant’s activities throughout the day, and were used as

a memory aid to participants as they recollected and annotated their activities.

Participants were instructed to label the photographs and associated sensor data as

eating when the image provided enough evidence that an eating activity was taking place.

This could have been because a plate of food was visible in the image, or participants simply

recalled eating food during that time. We provided some directions for how to complete the

annotation process (available in Appendix B), but participants were asked to use their own

judgment as needed. To minimize privacy concerns, study participants were the only ones
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to see their own first-person point-of-view images, therefore their annotations could not be

externally validated.

Table 18: The amount of time participants performed eating vs. non-eating activities in
the wild according to their own photo-assisted annotations.

Participant Non-Eating Time Eating Time % of Eating Time

P2 49hrs 26mins 1hr 42mins 3.43
P3 59hrs 4mins 55mins 1.55
P4 49hrs 6hrs 4mins 12.37

6.3.1 Results & Discussion

In total, 3 participants collected 166 hours and 12 minutes of inertial sensor data in real-

world settings over a period of at least 5 days per person (Table 18). One of the participants

failed to complete the annotation of images and his data was excluded from the study.

The photo-aided annotations of eating versus non-eating activities were assigned with a

resolution of one minute, the interval at which photographs were taken.

As described, the first phase of the study was completed in the laboratory study and

consisted of building a personalized eating detector for each participant. To evaluate the

eating detectors, the in-the-wild data for each participant was split into 5 segments. Pre-

cision, Recall and F-Score measures were then calculated for the eating detectors under 5

evaluation sessions as shown in Table 19.

The evaluation was structured this way to test how a model trained with increasingly

more data from one participant performs at recognizing eating moment for the same partic-

ipant. To illustrate this process and starting with Session 0, the model is trained with lab

data only and is evaluated with all in-the-wild data segments. In Session 1, the model is

trained with lab data plus one of the in-the-wild segments and is tested on the remaining in-

the-wild segments. This pattern repeats, with the trained model incorporating increasingly

more data for one participant, until there is only one segment left for evaluation.

Figure 37 shows how the personalized model for P4 performed when trained with in-

creasingly more personal data acquired in-the-wild. Precision followed an upward trajectory
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up to Session 3 at slightly over 40%, and then dropped close to 10% in Session 4. Recall

never rose above 20%.

Table 19: The amount of time participants performed eating vs. non-eating activities in
the wild according to their own photo-assisted annotations.

Session Training Data Evaluation Data

0 Lab Segments 1 + 2 + 3 + 4 + 5
1 Lab + 1 Segments 2 + 3 + 4 + 5
2 Lab + 1 + 2 Segments 3 + 4 + 5
3 Lab + 1 + 2 + 3 Segments 4 + 5
4 Lab + 1 + 2 + 3 + 4 + 5 Segments 5

Except for P4, the personalized models performed very poorly, with F-Scores under 10%

throughout all sessions. I hypothesize that the subpar P2 and P3 results were due in large

part to the low ratio of eating vs. non-eating activities, as shown in Table 18. For example,

only 1.55% of the data compiled in the field by P3 was annotated as an eating activity;

considering that eating-related sensor data was acquired in the laboratory for no more than

22 minutes on average (Table 17), it is possible to see that there is in fact very little data

for training a personalized model.

Another explanation for the underwhelming results is that participants might have an-

notated the ground truth labels incompletely. Due to privacy concerns, the study protocol

prevented me from seeing the first-person photographs captured by participants, and used

for ground truth annotation. Therefore, there could have been problems in this stage of the

process.

Finally, I also examined how a personalized model trained with lab data for one par-

ticipant compares to a model trained with lab-data for all participants (personalized+all).

As shown in Figure 38, the F-Scores for both models is low, but the personalized model

consistently outscores the personalized+all model. This result suggests that in the context

of eating detection, with reduced training data, it might be best to train a model with

personal data only versus with all the training data available. But additional studies with

a larger number of participants must be conducted to validate this hypothesis.

In conclusion, due to the poor results in these experiments, it is difficult to derive
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any significant findings with regards to model personalization with wrist-mounted inertial

sensors. This is especially true considering the small number of participants in the studies

and the singular laboratory session per participant whose data led to the creation of the

models.
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Figure 36: The charts above show, for each participant, the distribution of intake gestures
by hand and eating activity type. While P1 and P2 were clearly right handed, P3 and
P4 made extensive use of their left hand while eating. For P4, the left hand was used in
hand-to-mouth gestures while the right, and dominant hand, was dedicated to cutting with
a knife.
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Figure 37: Precision and recall measures for the personalized eating detection model for
P4. The data combination used for each evaluation session can be found in Table 19.
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Figure 38: Performance comparison between P4’s personalized eating detection model ver-
sus a model trained with all participants’ lab data.

111



CHAPTER VII

CONCLUSION AND FUTURE OPPORTUNITIES

With the goal of defending the thesis that everyday eating moments can be automat-

ically detected in real-world settings by opportunistically leveraging sensors in

practical, off-the-shelf wearable devices, the work I present in this document touched

on a variety of research contributions around the study and evaluation of three sensing

modalities for eating moment detection: first-person images, acoustic sensing and inertial

sensing. In total, I conducted 2 laboratory studies and 6 in-the-wild studies with 106 par-

ticipants, which resulted in 5 conference publications and the release of public datasets that

other researchers can leverage to both validate and extend my work [127, 129, 130, 22, 128].

I first discussed eating moment detection with first-person point-of-view images taken

with wearable cameras. Photographs automatically shot at regularly-spaced time intervals

throughout the day represents one of the best ways to capture the richness of everyday

activities without requiring direct human feedback. To examine the potential of first-person

point-of-view images in eating detection, I conducted two studies. In the first study, I used

human computation to identify eating activities in photographs. The second study had

the same objective, eating detection, but I employed a combination of computer vision and

machine learning techniques as opposed to human computation.

Despite promising results, a difficulty that emerges with first-person photographs taken

in naturalistic settings is privacy. Pictures taken automatically with on-body cameras might

result in the recording of undesirable moments and scenes. To make matters worse, photos

taken of computer screens might capture sensitive information such as computer passwords

and credit card numbers. These problems are amplified when these photographs are exam-

ined with human computation services like Amazon Mechanical Turk, which are populated

by individuals whose real identities are unknown. The process of understanding the pri-

vacy implications of these types of images and evaluating computational techniques for
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minimizing them led to the development of the Privacy-Saliency Matrix framework.

Leveraging context-rich first-person images while minimizing privacy concerns motivated

he study of an alternative inference technique; the method uses metadata and computer

vision features to classify images without human input. In particular, the technique lever-

ages a machine learning method, convolutional neural networks (CNN), that has been lately

shown to perform well at image recognition tasks. A performance analysis was done for

eating detection while also examining the approach’s ability to recognize a much larger set

of everyday activities in real world settings. This method proved to work quite well both

in the general and in the personalized cases.

Images reflecting everyday experiences are compelling, but one must continuously wear

a camera in order to compile a meaningful set of photographs portraying daily life. In the

interest of practicality, I investigated whether eating moments can be inferred through the

sensing capabilities of more practical devices such as mobile phones, smartwatches, and

other wearable technologies. In a feasibility study in real world settings, I implemented and

evaluated a system that recognized eating moments from ambient audio. Participants wore

a wrist-mounted audio recorder that captured audio of their everyday experience throughout

the day. Results were positive, and demonstrated that identifying certain acoustic signatures

of eating might be one way to infer eating moments, while making use of one of the most

ubiquitous sensors: a microphone.

Over the last decade, inertial sensors have become commonplace and are now an integral

part of personal devices, from phones to activity trackers. A large portion of my dissertation

work focused on the use of devices imbued with inertial sensors to detect food intake gestures

and eating moments. I built recognition systems for detecting eating activities and evaluated

them with a series of studies with human subjects. One experiment looked at the system’s

ability to detect eating from a head-mounted inertial sensor. Others centered on intake

gesture and eating moment detection from the wrist. Inference with wrist-mounted devices

was evaluated both in a laboratory setting and also in the wild, and I also examined the

impact of having gestural data from one wrist (more practical) versus both wrists (less

practical). One of the highlights of the inertial sensing analysis was the exploration of
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whether a model trained in the lab can be successfully used in naturalistic conditions. This

strategy is highly compelling since acquiring and annotating real world data is a difficult

and time-consuming undertaking. Although more studies are needed, my results showed

that this is indeed possible.

Overall, I found inertial sensing to be a highly desirable and practical modality for

eating detection. There is a very direct link between the physical body movements involved

in eating (e.g., hand-to-mouth gestures), and the types of measures that can be obtained

with inertial sensors. Moreover, it is likely that we will see a rapid evolution in inertial

sensing technology in the next several years, as more powerful inertial measurement units

(IMUs) become available and are miniaturized to be integrated in personal devices.

The wrist proved to be a particularly good location for sensing eating activity, since

that is exactly where most people wear smartwatches and activity tracking devices today.

Despite promising results with head-mounted sensing, I found it challenging to discriminate

eating-related head movements from other types of head motions. Another limitation of

head-mounted sensing is the need for instrumenting the head with sensors; there is currently

not a practical and socially-acceptable way to realize this instrumentation.

7.1 Performance Results and Applications

In chapter 1, I motivated the need for automatic eating detection with applications in four

domains: population health, nutritional epidemiology, dietary self-monitoring, and patient

and elder care. After exploring a variety of sensing modalities and approaches, it is now

possible to ask whether the performance of the eating detection systems presented in this

dissertation satisfy the requirements imposed by these applications.

To answer this question, it is useful to distill the motivating applications in two cate-

gories. The first category is characterized by applications of eating detection where eating

is a matter of concern for the individual who is performing the eating activities, such as

dietary self-monitoring. The second category includes applications where eating detection

is applied to assist one or more individuals, typically researchers, track and understand the

eating habits of other individuals. Population health and nutritional epidemiology are some
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of the motivating applications.

Starting with the first category, it is widely known that dietary self-monitoring is one

of the most effective methods for weight control [20, 12]. As individuals recall and log what

they consume, they become aware of foods eaten and often change their eating habits to-

wards healthier food choices. Therefore, the fundamental element of dietary self-monitoring

is the self-reflection process triggered by the journaling task, which cannot be measured in

terms of accuracies and F-scores the same way as an automatic eating detection system or

approach. However, automatic eating detection is not irrelevant to dietary self-monitoring.

In fact, the opposite is true; in a study examining barriers to food journaling, we noted that

forgetting to journal is one of the major barriers to reliable journals [30]. Food journalers

reported that missed entries discourages logging and causes them to abandon journaling

altogether.

Emerging, semi-automated journaling approaches that combine manual logging with

automated support (i.e., eating detection) show promise as a way to facilitate dietary self-

monitoring. For these applications, it is undeniable that eating detection performance close

to 100% would be preferred. However, since these semi-automated approaches feature some

level of end-user involvement, a degree of inaccuracy might be tolerated if individuals can

be prompted for verification and correction of low-certainty inferences.

The second category of applications is centered on a model where researchers or care-

givers track the eating habits of individuals and populations. As previously discussed, this

tracking model is based on survey instruments that have been deemed unreliable. As a

result, tools and methods that can inject some level of objectivity into the food tracking

process are desirable. In terms of performance, the perfect scenario would again involve an

approach that can detect eating moments without any errors. Unfortunately, this is unre-

alistic in practice. To make matters worse, having participants correct recognition errors

might not be an option since individuals are not personally invested in the data collection

process for this class of applications.

Reviewing study results, best eating detection performance was observed with first-

person images and inertial sensors. With first-person images, eating moment detection
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with 83.12% accuracy was achieved. Although this result was obtained using data for

just one person, I showed evidence that the corresponding technique can be successfully

generalized to other individuals. One advantage of this method is that it operates on data

that is immediately available once an image is captured: the image itself and timestamp

information. Leveraging this data makes the eating detector suitable for real-time or near

real-time applications, such as just-in-time interventions. However, a significant limitation

is the need for individuals to continuously wear a portable camera. This requirement lowers

the practicality of the approach.

Inertial sensors on the wrist offer a good balance in terms of performance and usability.

With wrist-mounted devices, best eating detection performance was achieved with a F-

score of 76.1% in real-world settings. This result is very promising considering that it

requires only one off-the-shelf smartwatch device placed on individuals’ non-dominant hand.

However, a caveat of this result is that it hinges on the examination of one hour of sensor

data preceding the moment of inference. This limitation renders the approach unsuitable

for situations when it is critically important to detect eating during or immediately after

an eating moment, such as for just-in-time interventions and also when researchers are

evaluating dietary self-tracking techniques (e.g., to study how the timing of journaling

affects the effectiveness of food logging).

One strategy for applying imperfect automated eating detectors in nutritional epidemi-

ology and population health studies is to combine them with other validated instruments.

By triangulating results originating from multiple survey methods, it is often possible to

attenuate inaccuracies. This technique is already used today, and could be expanded to in-

clude computational instruments and classifiers such as the ones described in this document.

In the machine learning community, this approach is known as an “ensemble” method and

hinges on the implementation of “weak” classifiers. These classifiers perform poorly, with

results just above average, but it has been shown that ensembles of weak classifiers can often

perform better than any single classifier. Most of the eating detection classifiers presented

in this dissertation performed significantly better than average, but they can be adapted

or “weakened” as required to fit into an ensemble configuration with other classifiers and
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survey methods. Therefore, these eating detection classifiers presented can indeed add value

to health applications today and continue to do so over time as their performance improves.

7.1.1 Snacking Behavior

One topic that often arises in discussions involving automatic dietary monitoring is how

systems perform at detecting snacking activity. Before this question can be answered, it

is useful to first establish what a snack is. Unfortunately, even nutritional epidemiologists

disagree on an exact definition. The dictionary1 describes it as “a small amount of food

eaten between meals”. However, in practice, eating small amounts of foods throughout the

day has become a habit for many individuals to the detriment of traditional sit-down meals.

For thousands of people, if not millions, snacking has become synonymous with eating.

What makes snacking particularly hard to identify is that it occurs within a short time

window; snacks are often bite-sized foods and consumed relatively quickly. A cup of yogurt,

an apple, and a granola bar are often considered to be snack-type foods. In my laboratory

studies, I incorporated these kinds of foods in eating sessions with the goal of modeling

a variety of forms of eating. Thus, my study design took snacking into account, and my

results incorporate the impact of snacking on eating detection.

One scenario I did not investigate in my eating detection studies is the consumption of

very small quantities of food, such as grabbing and eating only a handful of popcorn kernels

or M&Ms. To identify these very short eating moments with inertial sensing alone, it is

necessary to spot individual food intake gestures with high accuracy. Since the inertial-

based eating moment detection approach I proposed hinges on the discovery of clusters

of food intake gestures, it was not designed for this condition. This insight is evident

from the clustering algorithm parameters that optimized results for the Wild-Long study;

at least 3 predicted intake gestures within 40 seconds were needed for an eating moment

to be recognized. Due to the difficulty of detecting every single intake gesture with high

certainty, I believe the key to recognizing very short eating moments lies in multimodal

sensing. Although further research is necessary, the combination of audio and inertial

1http://www.oxforddictionaries.com/
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sensing seems particularly promising for this scenario.

7.2 Future Opportunities

In this section, I outline opportunities that I have identified for expanding and improving

upon the automatic eating detection work presented in this document.

7.2.1 Multimodal Sensing

This dissertation presents results showing how different sensing modalities fare at the task

of eating moment detection. Amongst others, I showed how wrist-mounted inertial sensing

and first-person photographs can be successfully used as indicators that an eating activity

is taking place. However, one direction I did not explore in my work, which represents a

large opportunity to improve eating detection inference, is multimodal sensing. In other

words, combining eating evidence from gestures, environmental sounds and other contextual

sources such as location, time of day and even appointments in an individual’s electronic

calendar, is very likely to result in estimates that surpass those obtained with individual

sensing modalities alone. Albeit simple conceptually, much work lies ahead when it comes

to understanding how to best model activities in light of multiple streams of data, and

whose types are so different from each other.

7.2.2 Personalized Models

Although one might be led to believe that the problem of eating detection can be solved

by identifying the canonical hand-to-mouth gesture, in reality there is enormous variability

in how individuals eat. This problem of intra-class diversity in food intake gestures is

illustrated in Figure 30 of Chapter 5. Given the existence of intake gesture styles that

diverge from person to person but that are stable for an individual, building eating moment

detection models that are personalized is a natural way to proceed. This personalization

might be implemented either at the level of one person, or by eating style cohort.

Additionally, and beyond intake gestures, individuals typically adopt habits that also

remain stable over time. People usually eat around the same times and in a relatively small

number of locations. When considering the opportunity to personalize in a multimodal
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context, the notion of tailoring a model to a person or group of individuals becomes even

more powerful. Clearly, one of the challenges of personalization is acquiring enough data for

just one person to make personalization possible. Many opportunities related to acquiring

training data exist, some of which are described in the sections below.

7.2.3 Modeling Full Set of Eating Gestures

In the work presented in this dissertation, I gave the problem of eating detection the same

treatment that is commonly applied to identifying other activities such as standing, running

and sitting. In reality, eating is a more complex, multifaceted activity. While there might

only be a frequency difference in the sensor signal whether a person is running quickly or

slowly, it is possible to consider two activities that are widely regarded as “eating” but

that are very different from each other. My studies made evident how arm, wrist and hand

gestures differ significantly whether people are eating with a spoon, fork or holding food

with their bare hands.

Therefore, there is an opportunity to piece apart the many gestures commonly associ-

ated with eating and build specific classifiers for them. In this scenario, “eating” is not

modeled as one activity but at a lower-level and through multiple classifiers, each taking a

“gestural” aspect of eating into account. In practice, recognizing an eating activity would

involve querying various classifiers and combining their output. This strategy could be put

in practice through majority voting or by combining probability distributions. I believe

this approach could lead to improved eating detection accuracy since classifiers would be

specifically tuned to relevant eating gestures.

7.2.4 More Powerful Features and Representations

When converting the stream of inertial sensor data into a feature representation, I employed

a sliding window and extracted frames from the signal. I calculated a traditional set of

statistical features for each frame, including mean, variance and kurtosis. Although these

features have been successfully used in activity recognition and been shown to serve as a

compact representation of the underlying data, I am certain that using more sophisticated,

and domain-specific features will have a positive impact in performance. For instance, I
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expect that methods such as Dynamic Time Warping (DTW) and features that involve

wrist rotation will positively impact the accuracy of eating detection.

In the context of features and representations, one area that is also worth noting is sensor

complexity. As more powerful sensors become available, and continue to be embedded in

consumer electronics devices, sensor data streams are likely to change as well. For example,

the Invensense MPU-9150 IMU used in RisQ [102] outputs a 3D orientation in the form of

a quaternion. These new representations will certainly contribute to improved inference,

but they will also demand new features and new ways to process the data.

7.2.5 Improved Annotation Methods

There is no question that one of the most significant challenges of automatic eating detection

is to build a system that works in real-world settings. However, in order to train a system

to work well in naturalistic settings, it is necessary to compile realistic training data, ideally

from real world conditions as well. The hurdles of obtaining annotated ground truth data

in the field has been discussed in this document. In fact, this issue is what motivated

the development of the Activiome system and the use of wearable cameras in many of the

in-the-wild studies.

Unfortunately, capturing photographs every 30 seconds or so is not enough for finely-

grained annotations at the level of food intake gestures, for example. A continuous video

recording would be more effective for annotation, but at the expense of much more storage

capacity and battery consumption. These increased resource demands render video capture

impractical for continuous data collection in real-world conditions. Even if continuous video

capture were possible, it would require tremendous effort during annotation, since it would

take significantly longer to review and label video events than a set of photographs. Thus,

improved data collection and annotation methods are needed.

7.2.6 New Model Learning Approaches

The previous section discussed the issue of collecting and annotating training data. Train-

ing data is required to build a model using supervised machine learning techniques, the

predominant approach for building activity recognition classifiers. However, I am confident
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there is a large opportunity in exploring how one might build an activity classifier, such as

a food intake gesture recognizer, without relying so much on previously acquired training

data. Techniques such as semi-supervised machine learning and active learning might offer

an alternative to the traditional supervised method. One direction that is also worth inves-

tigating with more depth is that of transfer learning. The dominant wrist-mounted sensing

study results showed that it is possible to train a classifier with data compiled in a semi-

controlled laboratory setting, instead of having to acquire all training data in real-world

conditions.

7.3 Final Thoughts

Building a truly generalizable system for eating moment detection, and automatic food

intake monitoring in general, represents a significant challenge. I believe such a system

could provide the foundation for a new class of practical applications, benefiting individuals

and health researchers. Despite limitations and opportunities for improvement, I believe

the work outlined in this document provides compelling evidence that a practical solution

based on commodity sensing can play an important role towards this vision.
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APPENDIX A

THE ACTIVIOME SYSTEM

One of the biggest challenges of building activity recognition systems that work in real world

settings is that training these systems using supervised machine learning techniques requires

large amounts of labeled ground truth data. The difficulty of collecting and annotating said

data is well known, and has been discussed in the “Techniques for Estimating Ground Truth

in Real World Settings” section of this dissertation.

Directly observing an individual is considered to be the best method for compiling a log

of activities performed in-the-wild, but it is often not practical and could, in principle, alter

the person’s natural behavior. An alternative method involves instrumenting individuals

with a wearable camera that captures front-facing photographs at regular intervals (e.g.,

every minute) throughout the day. In this configuration, the photos taken by the camera are

rich in contextual detail, showing individuals perform everyday tasks. This is the primary

method I chose for estimating ground truth in naturalistic settings for many of the studies

described in this document.

To facilitate the acquisition of sensor data and ground truth labels based on images

taken with first-person cameras, I developed a system around a mobile phone application,

a backend server database, and a web application called Activiome. Although there are

commercial wearable cameras designed for capturing everyday experiences, they do not

offer programmatic access and configurability. Moreover, photo capture constitutes just the

first step of the annotation process. A mechanism that allows individuals to review and

label their own photos is as critical as the photo taking process itself. The sections that

follow describe the Activiome system in detail.

122



Figure 39: The Activiome mobile application user interface. The main screen, on the left,
has a dark background and features an indicator of how much inertial sensor data was
received in the last cycle. The settings screen on the right is used to configure parameters
and sync up the mobile phone, the sensing device and the Activiome user account.

A.1 Mobile Application

The mobile application, designed for the iOS and thus iPhone, is a key element of the

Activiome system and accumulates many functions. These functions are performed as part

of a data acquisition cycle that is illustrated in Figure 40:

• Captures first-person point-of-view photographs at regular intervals: The

mobile application is programmed to take a photo with the back-facing camera at

a user-configurable interval. In other words, the mobile application repurposes the

phone as the wearable camera, and captures the first-person point-of-view photographs

that are later used for estimating ground truth activity labels. Consequently the phone
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Sensor Data Capture

Audio Capture

Photo Capture

Data Upload

t=0s t=60s t=65s

Figure 40: The data acquisition cycle of the Activiome mobile app. In this example, the
cycle is set to 60 seconds. After 60 seconds, the app first captures 5 seconds of audio and
then takes a picture. Inertial sensor data is captured throughout the entire cycle. At the
completion of data acquisition, the data is packaged as a HTTP POST request and uploaded
to the Activiome server. This cycle repeats until the application quits.

running the application should be the one that individuals wear on a lanyard around

the neck. Additionally, the mobile application leverages the location tracking capa-

bility of the phone itself to geotag the images with latitude and longitude metadata.

• Record a 5-second audio clip prior to photo capture: To provide more context

about the activity and setting recorded by the photograph, the mobile app also records

a 5-second audio clip immediately prior to capturing an image.

• Collect and store inertial sensor streams: The mobile application interfaces

with devices such as the Pebble watch and the Microsoft Band to record inertial

data wirelessly using the Bluetooth protocol. This interface is possible through the

SDKs provided by the developers of these respective devices. Data collection begins

immediately after the application launches and takes place uninterruptedly even while

the 5-second audio clip is being recorded. The sensor data is sent to the server and

also saved locally on the mobile device as flat files following the iOS Property List

format.

• Upload data to server: At the end of each cycle, the sensor data, metadata, photo

and audio clip are uploaded to the server as one HTTP POST request.
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The interface of the mobile application can be seen in Figure 39. The UI was inten-

tionally designed to be black with the goal of reducing battery consumption, since the

application needs to be running continuously throughout the day to perform the aforemen-

tioned tasks. The main screen features a settings button and two indicators that provide

feedback about how much sensor data is being recorded by the phone. The settings screen

is used to set up communication between the sensing device, the mobile application, and

the Activiome server.

A.2 Backend Server Database

The backend infrastructure of Activiome was designed around well-established web tech-

nologies; it centers around a set of PHP scripts and a MySQL database. A PHP script

is called by the mobile application with all the collected data in the HTTP POST, and

proceeds to parse and validate it. A new entry is created on the database and is populated

with the sensor data, metadata (i.e., geo-location and timestamps), and links to the audio

and image files.

A.3 Web Application

Individuals interact with their data using the Activiome web application. Prior to data

collection, study participants create an account on the system with a username and password

such that they are the only ones with access to their own sensor data and, more importantly,

their photographs (Figure 41). Once individuals log in, they see a list of their most recent

data entries for the day. Each entry on the web app interface, which maps to an entry on

the database, includes a first-person photo, the audio clip and a graphical representation

of the sensor data (Figure 42). It is also possible to browse activities of previous days by

changing the date.

Typically, the reason why participants log onto the system is to perform annotations of

the data. Using the Activiome web application interface, study participants can review the

images, listen to the audio clips and recall their activities at the time. A drop-down menu

is available for each entry, and participants select an item to indicate an activity out of a

pre-defined activity list. For eating moment detection, for instance, all participants needed
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Figure 41: The Activiome web application login screen. Each participant creates a personal
account on the Activiome system and can login to review and annotate the acquired data.

to do was to indicate which images portrayed themselves during an eating activity.

When the Activiome mobile application is running and set to record photographs ev-

ery minute, a large number of images and associated data are recorded every single day.

Associating activities with individual images becomes a time-consuming and tedious pro-

cess. To aid the ground truth labeling process of large photo collections, the Activiome

web application also offers a mosaic view, where thumbnails of all first-person point-of-view

photographs taken on a given day are shown together (Figure 43). Using this view, partic-

ipants can select multiple photos at a time using the keyboard or mouse and annotate all

of them at once, reducing the time required for image labelling significantly.
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Figure 42: The Activiome main screen. Once participants log in, they are shown a detailed
list of recorded activities for the most recent hour

A.4 Performance Considerations

Considering the workload of the Activiome mobile application, it is not surprising that

battery consumption is a serious concern when it comes to recording first-person photos,

audio clips and other forms of data for many hours at a time. My experiments showed that

lab studies lasting shorter than one hour did not present any battery utilizations problems.

For instance, one lab study wherein sessions lasted 31 minutes and 21 seconds on average,

battery performance was never an issue. In this case, the data capture setup employed

a Pebble smartwatch and an iPhone 4S. Smartwatch accelerometer data was captured at

25Hz and transmitted to the smartphone every second using Bluetooth. The sensor data
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Figure 43: The Activiome mosaic screen. To facilitate annotating large numbers of images,
I created a photo view that shows thumbnails of the captured first-person point-of-view
images and makes it easy to select and label multiple images at a time.

was saved locally on the phone and retrieved at the end of each session.

On the other hand, long in-the-wild studies posed a significant challenge in terms of

power consumption. In one study, starting on a full charge, the smartphone collected data

continuously for an average of 5 hours and 42 minutes without problems. However, for a

31-day in-the-wild study that aimed at recording data for as long as possible during the day,

an additional battery pack had to be connected to the phone. Carrying the battery pack

proved to be an additional inconvenience, but it allowed data collection to take place for

the entire day. Throughout these studies, the smartwatch, the smartphone and the battery
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pack were restored to full charge overnight and used again the following day. The Pebble

watch never represented a limiting factor in data collection; this was most likely due to

the low power consumption of its e-ink display and lack of a more sophisticated inertial

measurement unit (IMU).
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APPENDIX B

STUDY MATERIALS AND PROTOCOLS

The documents that follow represent supporting materials produced in support of the user

studies presented in this dissertation. Some of these documents, and particularly the consent

forms, were prepared to be applicable and shared across studies.

• Day reconstruction form for ambient audio sensing study

• Instructions for operating iPhone and Pebble watch devices

• Instructions for operating iPhone and Microsoft Band devices

• Instructions for annotating first-person images using Activiome system

• Consent form for one-day sensor data collection in-the-wild study

• Consent form for multiway sensor data collection in-the-wild study
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Participant #: 

Age: ________________  Profession: ____________________________________

Please describe your activities since the study began. Think of your activities as a 
continuous series of scenes or episodes in a film. Give each episode a brief name, for 
example, “commuting to work”, or “at lunch with B”, where B is a person or a group of 
people. Write down the approximate times at which each episode began and ended. 

The episodes people identify usually last between 15 minutes and 2 hours. Indications 
of the end of an episode might be going to a different location, ending one activity and 
starting another, or a change in the people you are interacting with. There is room to list 
20 episodes , although you may not need that many, depending on your day.

      Episode Name Began Ended 

1.   ________________________ ___________ ____________  
2.   ________________________ ___________ ____________
3.   ________________________ ___________ ____________
4.   ________________________ ___________ ____________
5.   ________________________ ___________ ____________
6.   ________________________ ___________ ____________
7.   ________________________ ___________ ____________
8.   ________________________ ___________ ____________
9.   ________________________ ___________ ____________
10. ________________________ ___________ ____________
11. ________________________ ___________ ____________
12. ________________________ ___________ ____________
13. ________________________ ___________ ____________
14. ________________________ ___________ ____________
15. ________________________ ___________ ____________
16. ________________________ ___________ ____________
17. ________________________ ___________ ____________
18. ________________________ ___________ ____________
19. ________________________ ___________ ____________
20. ________________________ ___________ ____________



Operating the Pebble watch and iPhone

Prerequisites

1. Knowing how to operate a Pebble watch, including launching apps
2. Knowing how to operate an iPhone, including launching and quitting apps

To start a new logging session (e.g., at the beginning of the day)

1. Make sure the Activiome app on the phone is *not* running. If so, quit it.
2. Launch the Pebble app on the phone
3. Launch the Activiome app on the phone
4. Start the pebble_live app on the Pebble watch.

If the “ack” number on the pebble_live increments every second, then everything is 
working correctly.
If instead the “faild” number is going up, finish the logging session as described below 
and try again.

If you continue having problems, reboot the iPhone, the Pebble and try again.

(To reboot the Pebble, hold the button on the left and the middle button on the right for 
10 seconds. When the Pebble reboots you will see the logo (just “Pebble” really) on the 
screen for a second or less. The booting process is quick)

If that doesn’t do it, please get in touch with Edison at 617-733-6215 or 
ethomaz@gatech.edu.

To finish a logging session (e.g., at the end of the day)

1. Quit the Activiome app on the phone
2. Quit the Pebble watch app on the phone if it is running
3. Quit the pebble_live app on the Pebble watch (press the button on the left side of the 
watch)

What if the phone or Pebble runs out of battery mid-day?

No problem. If you are going to be collecting more data, plug in the device(s). 
When the device(s) come back to life, finish the logging session as described above.

What if the “ack” number on the pebble_live stops incrementing?

The app on the phone and the Pebble are having problems communicating with each 
other. Follow the instructions for finishing a logging session above and immediately start 
a new one (as described above as well).





Operating the Microsoft Bands and iPhone

Pre-requisites

1. Knowing how to operate an iPhone: including powering on/off phone, launching and 
quitting apps, check Bluetooth settings
1. Knowing how the basics of how to navigate the MS Band watch interface, turn band 
on and off

At the beginning of the day

1. Turn phone on
2. Launch the Activiome app on the phone
3. Make sure the MS Bands are on (press one of the button to light up the display)
4. Wait 1 or 2 minutes
5. Check the Left/Right numbers on the main app screen

- If they are both higher than 0, you are set.
- If they are still at zero, try:

(1) Reboot phone, turn bands off and on and repeat steps 2-5. If it works, 
you are set. If not, read below.

(2) Check if bands and phone are connected:
1. Go to phone Settings>Bluetooth, make sure there are four 

connected items under ‘My Devices’. If yes, try steps 2-5 one more time.
2. If there are unconnected devices, tap on them to connect. After 

connecting them, try steps 2-5.

If you are still having problems, please get in touch with Edison at 617-733-6215 or 
ethomaz@gatech.edu.

At the end of each the day

1. Quit the Activiome app on the phone
2. Turn phone off (you don’t need to turn bands off)
3. Recharge the devices

- Phone
- 2 Microsoft Bands
- Battery pack

What if the phone or bands runs out of battery mid-day?

You are done collecting data for the day. Follow the steps under ‘At the end of each the 
day’ above.



Annotating Images

1. Login to web application at http://www.activiome.com/auth/login with 
your username/password 

2. Click on the “Activities” link on the left sidebar



 

2. Select active eating images per eating session

Throughout the day, you probably eat multiple times - breakfast, lunch, snack, dinner, etc. We 
call each one of these an “eating session”. You will probably see between 2-10 images per 
eating session. In these images, there might a plate or bowl in front of you, or you will be 
holding some food with your hand(s), which could be a snack or fruit. 

We would like you to:

1. Select all the images that correspond to an eating moment (i.e., lunch)
2. Annotate them with a label (described in more detail below)
3. Repeat 1 & 2 until all eating moments have been labeled

Note that there might be times during an eating session when you are not actually eating. For 
example, if you go to a restaurant, you will order some food and then wait until it comes. You 
might chat with friends or use your mobile phone in the meantime. When the food comes you 
will start eating per se - this is what we call the active eating session. We would like you to 
select the images that show you actively eating. Some of the images might depict you moving 
food towards your mouth, but most of the images will probably be of the food in front of you, 
most likely in a plate, bowl, or in your hands. Once you are done actively eating, you might chat 
with friends a bit more, wait for the check, etc. Again, we want you to select only the images that 
show you in the active eating session.

How to select images

To select one image just click on it. When it is selected, the image’s border becomes yellow. You 
can use the mouse to select multiple images (multi-select). To add/remove images to a 
selection, you can use the command key (on the Mac).



3. Annotate eating session (selection of images)

With eating images selected (corresponding to one eating session), scroll down towards the 
end of the web page, choose one of the “Eating” options and hit the submit button. The 
options are: Eating Fork, Eating Fork Knife, Eating Spoon, Eating Hand, Eating Other.

Eating Fork: Eating with a fork
Eating Fork Knife: Eating with fork and knife
Eating Spoon: Eating with a spoon
Eating Hand: Eating while holding the food with one or two hands (e.g., sandwich)
Eating Other: Eating in some other way or with some other utensil (e.g., chopsticks)

If the eating session involved a combination of these (e.g., eating with utensils and hand), 
pick the one that best represents, in your view, the way you ate. Optionally, you could sub-
divide the eating session even more and accurately label each image of set of images. For 
us, the more accurate the annotation the better.



CONSENT DOCUMENT FOR ENROLLING ADULT PARTICIPANTS 
IN A RESEARCH STUDY 

 
Georgia Institute of Technology 

Project Title: Everyday Activity Recognition with Multimodal Sensing 
Investigators: Gregory Abowd, Irfan Essa, Edison Thomaz 

 
 
You are being asked to be a volunteer in a research study.  
 
Purpose:   
 
In our research we are exploring the use of multimodal sensing approaches to 
recognize people's everyday activities, such as sleeping, exercising, socializing, 
eating, etc. The ultimate goal is to build systems that can recognize what people 
are doing in real-time and act on that knowledge, either by providing relevant 
information or nudging people for behavior change purposes (e.g. help them eat 
healthier meals). 
 
The study consists of providing participants with (a) lightweight wearable 
sensor(s) (e.g. activity tracker) and/or (a) smartphone(s) and asking them to 
perform their normal activities for one day while wearing these devices. At the 
end of the study we will collect the sensor data and use it to build systems that 
can classify activities based on sensor signals. 
 
Exclusion/Inclusion Criteria: 
 

• You must be willing to wear the sensor(s) and/or device(s) 
continuously throughout the duration of the study. 

• You must agree that we will collect and examine images and sensor 
data reflecting your everyday activities.  

 
Procedures:  
 

• If you agree to be in this study, we will provide you with one or more 
wearable sensors and possibly (a) smartphone(s) as well. 

• We will assist you with the setup of the sensor(s) and/or device(s). 
• One of the smartphones, if any, might be setup to be worn around the 

neck and take photos automatically every 30 seconds. All images 
taken will be stored in the device and you will be able to see and 
delete them at any point. Also, at the end of the study you will be 
able to review all images and have an opportunity to delete any of 
them before returning the device to us. 

• We understand that it may not be feasible to wear the sensor(s) 
and/or device(s) continuously for hours at a time. When not possible 
or desirable to wear them, you may take them off. 



• We will collect the sensor(s) and/or device(s) at the end of the study. 
 

 
 

 
Risks or Discomforts:  
 

• Wearing the wearable sensor(s) and/or device(s) might prove 
uncomfortable. 

• You may be concerned about the images that we might collect. You 
will be able to review and delete images before you make them 
available to researchers. 

 
Benefits:  
 

• You are not likely to benefit in any way from joining this study. We 
hope that what we learn will someday help you and others. 

 
Compensation to You: 
 

• We will give you $10 as compensation for being in the study 
 
Confidentiality: 
 

• We will not share any of your sensor data with anyone. 
• To make sure that this research is being carried out in the proper way, the Georgia 

Institute of Technology IRB may review study records.  The Office of Human 
Research Protections may also look over study records during required reviews. 

 
Costs to You:  
 

• There are no costs to you, other than your time, for being in this study. 
 
In Case of Injury/Harm: 
 

• If you are injured as a result of being in this study, please contact Prof. 
Gregory Abowd at telephone (404) 385-5055 or via email at 
abowd@gatech.edu.  Neither the Principal Investigator nor Georgia 
Institute of Technology has made provision for payment of costs 
associated with any injury resulting from participation in this study. 

 
Participant Rights: 
 

• Your participation in this study is voluntary. You do not have to be in 
this study if you don't want to be. 



• You have the right to change your mind and leave the study at any time 
without giving any reason and without penalty. 

• Any new information that may make you change your mind about being 
in this study will be given to you. 

• You will be given a copy of this consent form to keep. 
• You do not waive any of your legal rights by signing this consent form. 

 
 
Questions about the Study: 
 

• If you have any questions about the study, please contact Prof. Gregory 
Abowd at telephone (404) 385-5055 or via email at abowd@gatech.edu. 

 
Questions about Your Rights as a Research Participant: 
 
If you have any questions about your rights as a research participant, you may 
contact: 

 
Ms. Melanie Clark, Georgia Institute of Technology 
Office of Research Compliance, at (404) 894-6942. 

or 
Ms. Kelly Winn, Georgia Institute of Technology 

Office of Research Compliance, at (404) 385- 2175. 
 
If you sign below, it means that you have read (or have had read to you) the 
information given in this consent form, and you would like to be a volunteer in 
this study. 
 
______________________________________________ 
Participant Name (printed) 
 
 
______________________________________________ ______________ 
Participant Signature     Date  
 
 
______________________________________________ ______________ 
Signature of Person Obtaining Consent  Date 
 
 



CONSENT DOCUMENT FOR ENROLLING ADULT PARTICIPANTS 
IN A RESEARCH STUDY 

 
Longitudinal Tracking and Inference of Everyday Activities with Multimodal Sensing 

Investigators: Gregory Abowd, Irfan Essa, Edison Thomaz, Rushil Khurana 
Georgia Institute of Technology 

 
 
 
You are being asked to be a volunteer in a research study.  
 
Purpose:   
 
In our research we are exploring the use of multimodal sensing approaches to 
recognize people's everyday activities, such as sleeping, exercising, socializing, 
and eating. The ultimate goal is to build systems that can recognize what people 
are doing in real-time and act on that knowledge, either by providing relevant 
information or nudging people for behavior change purposes (e.g. help them eat 
healthier meals). 
 
The study consists of providing participants with wearable sensor(s) (e.g. 
activity trackers, physiological sensors, wearable cameras) and asking them to 
perform their normal activities while wearing these devices over multiple days. 
Participants will be asked to login to a web site on a regular basis (e.g., every 
evening) and annotate their sensor data for the day, indicating their activities. 
We will collect the annotated sensor data and use it to build systems that can 
classify activities based on sensor signals.  
 
We will delete all the raw data, including images and sensor data after a 
period of two weeks from data collection. 
 
 
Exclusion/Inclusion Criteria: 
 

• You must be willing to wear the sensor(s) and/or device(s) 
throughout the duration of the study as much as possible. 

• You must agree to care for and recharge the sensor(s) and/or 
device(s) throughout the duration of the study. 

• You must agree that we will collect sensor data reflecting your 
everyday activities.  

• You must agree to annotate the sensor data collected, indicating your 
everyday activities.  

• You must be willing to receive short text messages or notifications 
on your phone asking for confirmation about activities you are 
performing. 
 



 
 
 
 
Procedures:  
 

• If you agree to be in this study, we will provide you with one or more 
wearable sensors and a smartphone. 

• We will assist you with the setup of the sensor(s) and/or device(s). 
• We understand that it may not be feasible to wear the sensor(s) 

and/or device(s) continuously. When not possible or desirable to 
wear them, you may take them off. 

• You will need to recharge the sensor(s) and smartphone every night. 
• During the study, the sensors will be uploading data to a server in 

real-time through a cellular connection mediated by the phone we 
will provide. 

• All the sensor data collected will be available to you through a 
password-protected web site that only you will have access to. By 
logging in you will be able to visualize and/or delete any of the data. 

• You will be asked to annotate the sensor data using the password-
protected web site on a regular basis (e.g., every evening). You will 
be given specific instructions for how to perform said annotation. 

• You might be asked through a text message or phone notification to 
confirm whether you are performing a specific activity at a particular 
time during the day. 

• We will collect the sensor(s) and/or device(s) at the end of the study. 
 

 
Risks or Discomforts:  
 

• Wearing the wearable sensor(s) and/or device(s) might prove 
uncomfortable. 

• We tried to make the sensor data annotation process as efficient as 
possible but it might still prove tedious over multiple days. 

 
Benefits:  
 

• One of the domains this study aims to impact is that of automated dietary 
assessment; being able to automatically detect when and what people are 
eating. For decades, researchers have been trying to build systems that 
automatically recognize what people eat. A system like this would 
enable health researchers to develop a better understanding of dietary 
habits at the population level. Additionally, as has been shown in 
numerous studies, people also benefit from food journaling; by becoming 
more aware of what they eat, people tend to eat better. 



 
Compensation to You: 
 

• We will give you $10 per day as compensation for being in the study. 
We will consider a day if data collection has been collected for at least 5 
hours. 

 
Confidentiality: 
 

• All of you sensor data will be uploaded to a server and you will be the 
only one with access to it. You will be able to review all the data and/or 
delete it if you wish. 
 

• To make sure that this research is being carried out in the proper way, the Georgia 
Institute of Technology IRB may review study records.  The Office of Human 
Research Protections may also look over study records during required reviews. 

 
Costs to You:  
 

• There are no costs to you, other than your time, for being in this study. 
 
In Case of Injury/Harm: 
 

• If you are injured as a result of being in this study, please contact Prof. 
Gregory Abowd at telephone (404) 385-5055 or via email at 
abowd@gatech.edu.  Neither the Principal Investigator nor Georgia 
Institute of Technology has made provision for payment of costs 
associated with any injury resulting from participation in this study. 

 
Participant Rights: 
 

• Your participation in this study is voluntary. You do not have to be in 
this study if you don't want to be. 

• You have the right to change your mind and leave the study at any time 
without giving any reason and without penalty. 

• Any new information that may make you change your mind about being 
in this study will be given to you. 

• You will be given a copy of this consent form to keep. 
• You do not waive any of your legal rights by signing this consent form. 

 
 
Questions about the Study: 
 

• If you have any questions about the study, please contact Prof. Gregory 
Abowd at telephone (404) 385-5055 or via email at abowd@gatech.edu. 



 
Questions about Your Rights as a Research Participant: 
 
If you have any questions about your rights as a research participant, you may 
contact: 

 
 

Ms. Melanie Clark, Georgia Institute of Technology 
Office of Research Compliance, at (404) 894-6942. 

or 
Ms. Kelly Winn, Georgia Institute of Technology 

Office of Research Compliance, at (404) 385- 2175. 
 
If you sign below, it means that you have read (or have had read to you) the 
information given in this consent form, and you would like to be a volunteer in 
this study. 
 
______________________________________________ 
Participant Name (printed) 
 
 
______________________________________________ ______________ 
Participant Signature     Date  
 
 
______________________________________________ ______________ 
Signature of Person Obtaining Consent  Date 
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[10] Bäckström, T. and Magi, C., “Properties of line spectrum pair polynomials—A
review,” Signal Processing, vol. 86, pp. 3286–3298, Nov. 2006.

[11] Bai, Y., Li, C., Yue, Y., Jia, W., Li, J., Mao, Z.-H., and Sun, M., “Designing a
wearable computer for lifestyle evaluation,” in Bioengineering Conference (NEBEC),
2012 38th Annual Northeast, pp. 93–94, 2012.

[12] Baker, R. C. and Kirschenbaum, D. S., “Self-monitoring may be necessary for
successful weight control,” Behavior Therapy, vol. 24, no. 3, pp. 377–394, 1993.

145



[13] Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B., Ackerman,
M. S., Karger, D. R., Crowell, D., and Panovich, K., “Soylent: a word pro-
cessor with a crowd inside.,” UIST, pp. 313–322, 2010.

[14] Biagioni, J. and Krumm, J., “Days of Our Lives: Assessing Day Similarity from
Location Traces,” User Modeling, 2013.

[15] Bingham, S. A., The dietary assessment of individuals; methods, accuracy, new
techniques and recommendations. 1987.

[16] Blanke, U. and Schiele, B., “Daily routine recognition through activity spotting,”
International Symposium on Location and Context Awareness (LoCA), pp. 192–206,
2009.

[17] Boushey, C. J., Coulston, A. M., Rock, C. L., and Monsen, E., Nutrition in
the Prevention and Treatment of Disease. Academic Press, 2001.

[18] Bradski, G., “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[19] Burke, L. E., Swigart, V., Warziski Turk, M., Derro, N., and Ewing,
L. J., “Experiences of Self-Monitoring: Successes and Struggles During Treatment
for Weight Loss,” Qualitative Health Research, vol. 19, pp. 815–828, May 2009.

[20] Burke, L. E., Wang, J., and Sevick, M. A., “Self-Monitoring in Weight Loss: A
Systematic Review of the Literature,” YJADA, vol. 111, pp. 92–102, Jan. 2011.

[21] Byrne, D., Doherty, A. R., Jones, G. J. F., Smeaton, A. F., Kumpulainen,
S., and Järvelin, K., “The SenseCam as a tool for task observation,” in Proceedings
of the 22nd British HCI Group Annual Conference on People and Computers: Culture,
Creativity, Interaction, British Computer Society, Sept. 2008.

[22] Castro, D., Hickson, S., Bettadapura, V., Thomaz, E., Abowd, G., Chris-
tensen, H., and Essa, I., “Predicting daily activities from egocentric images using
deep learning,” in the 2015 ACM International Symposium, (New York, New York,
USA), pp. 75–82, ACM Press, 2015.

[23] Chang, K., Liu, S., Chu, H., Hsu, J., Chen, C., Lin, T., and Huang, P.,
“The diet-aware dining table: Observing dietary behaviors over a tabletop surface,”
Pervasive Computing, pp. 366–382, 2006.

[24] Chen, F., Wang, R., Zhou, X., and Campbell, A. T., “My smartphone knows
i am hungry,” in the 2014 workshop, (New York, New York, USA), pp. 9–14, ACM
Press, 2014.

[25] Chen, J., Kam, A., Zhang, J., Liu, N., and Shue, L., “Bathroom activity moni-
toring based on sound,” Pervasive Computing, pp. 65–76, 2005.

[26] Cheng, J., Zhou, B., Kunze, K., Rheinländer, C. C., Wille, S., Wehn, N.,
Weppner, J., and Lukowicz, P., “Activity recognition and nutrition monitoring in
every day situations with a textile capacitive neckband,” in the 2013 ACM conference,
(New York, New York, USA), p. 155, ACM Press, 2013.

146



[27] Choe, E. K., Consolvo, S., Jung, J., Harrison, B., and Kientz, J. A., “Living
in a glass house: a survey of private moments in the home,” Proceedings of the 13th
international conference on Ubiquitous computing, pp. 41–44, 2011.

[28] Clarkson, B., Basu, S., Eagle, N., Choudhury, T., and Pentland, A.,
“Learning your life: wearables and familiars,” in Development and Learning, 2002.
Proceedings. The 2nd International Conference on, 2002.

[29] Clarkson, B. P. ., “Life patterns : structure from wearable sensors,” Thesis (Ph.
D.) Massachusetts Institute of Technology, School of Architecture and Planning, Pro-
gram in Media Arts and Sciences, 2005.

[30] Cordeiro, F., Epstein, D. A., Thomaz, E., Bales, E., Jagannathan, A. K.,
Abowd, G. D., and Fogarty, J., “Barriers and Negative Nudges: Exploring Chal-
lenges in Food Journaling ,” in the 33rd Annual ACM Conference, (New York, New
York, USA), pp. 1159–1162, ACM Press, 2015.

[31] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L., “Imagenet:
A large-scale hierarchical image database,” in CVPR, pp. 248–255, IEEE, 2009.

[32] Dhurandhar, N. V., Schoeller, D., Brown, A. W., Heymsfield, S. B.,
Thomas, D., Sorensen, T. I. A., Speakman, J. R., Jeansonne, M., and Al-
lison, D. B., “Energy balance measurement: when something is not better than
nothing,” International Journal of Obesity, Nov. 2014.

[33] Doherty, A. R. A., Hodges, S. E. S., King, A. C. A., Smeaton, A. F. A.,
Berry, E. E., Moulin, C. J. A. C., Lindley, S. S., Kelly, P. P., and Foster,
C. C., “Wearable cameras in health: the state of the art and future possibilities.,”
American journal of preventive medicine, vol. 44, pp. 320–323, Mar. 2013.

[34] Dong, Y., “Tracking Wrist Motion to Detect and Measure the Eating Intake of
Free-Living Humans,” Thesis (Ph. D.) Clemson University, pp. 1–106, May 2012.

[35] Dong, Y., Scisco, J., Wilson, M., Muth, E., and Hoover, A., “Detecting peri-
ods of eating during free living by tracking wrist motion,” IEEE Journal of Biomedical
Health Informatics, Sept. 2013.

[36] Eagle, N. and Pentland, A., “Reality mining: sensing complex social systems,”
Personal and Ubiquitous Computing, vol. 10, no. 4, pp. 255–268, 2006.

[37] Eagle, N. and Pentland, A. S., “Eigenbehaviors: identifying structure in routine,”
Behavioral Ecology and Sociobiology, vol. 63, no. 7, pp. 1057–1066, 2009.

[38] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X., “A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise.,” KDD, pp. 226–231,
1996.

[39] Estruch, R., Ros, E., Salas-Salvadó, J., Covas, M.-I., Corella, D., Arós,
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body-worn inertial sensors to detect user activities,” Pattern Recognition, vol. 41,
pp. 2010–2024, June 2008.

[61] Kadomura, A., Li, C.-Y., Tsukada, K., Chu, H.-H., and Siio, I., “Persuasive
technology to improve eating behavior using a sensor-embedded fork,” in the 2014
ACM International Joint Conference, (New York, New York, USA), pp. 319–329,
ACM Press, 2014.

[62] Kahneman, D., Krueger, A. B., Schkade, D. A., and Schwarz, N., “A Survey
Method for Characterizing Daily Life Experience: The Day Reconstruction Method,”
Science, 2004.

[63] Kalantarian, H., Alshurafa, N., and Sarrafzadeh, M., “A Wearable Nutrition
Monitoring System,” in Wearable and Implantable Body Sensor Networks (BSN), 2014
11th International Conference on, pp. 75–80, 2014.

149



[64] Kanfer, F. H., “Self-monitoring: Methodological limitations and clinical applica-
tions,” Journal of Consulting and Clinical Psychology, vol. 35 (2), pp. 148–152, Oct.
1970.

[65] Kang, J. H., Welbourne, W., Stewart, B., and Borriello, G., “Extracting
places from traces of locations,” in Proceedings of the 2nd ACM international workshop
on Wireless mobile applications and services on WLAN hotspots, (New York, NY,
USA), pp. 110–118, ACM, 2004.

[66] Karen S Hamrick, M. A. J. G. D. H. and McClelland, K., “How Much Time
Do Americans Spend on Food?,” pp. 1–64, Nov. 2011.

[67] Kelly, P., Doherty, A., Berry, E., Hodges, S., Batterham, A. M., and
Foster, C., “Can we use digital life-log images to investigate active and sedentary
travel behaviour? Results from a pilot study,” International Journal of Behavioral
Nutrition and Physical Activity, vol. 8, p. 44, May 2011.

[68] Kelly, P., Marshall, S. J., Badland, H., Kerr, J., Oliver, M., Doherty,
A. R., and Foster, C., “An ethical framework for automated, wearable cameras in
health behavior research.,” American journal of preventive medicine, vol. 44, pp. 314–
319, Mar. 2013.

[69] Kim, H.-J., Kim, M., Lee, S.-J., and Choi, Y. S., “An analysis of eating activities
for automatic food type recognition,” in Signal & Information Processing Association
Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, pp. 1–5, 2012.

[70] Kindig, D. and Stoddart, G., “What is population health?,” American Journal of
Public Health, vol. 93, no. 3, pp. 380–383, 2003.

[71] Kittur, A., Chi, E. H., and Suh, B., “Crowdsourcing user studies with Mechanical
Turk,” in CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems, ACM Request Permissions, Apr. 2008.

[72] Kleitman, N., Sleep and wakefulness. Chicago: The University of Chicago Press,
July 1963.

[73] Krizhevsky, A., Sutskever, I., and Hinton, G. E., “Imagenet classification with
deep convolutional neural networks,” in NIPS, pp. 1097–1105, 2012.

[74] Larson, R. and Csikszentmihalyi, M., “The Experience Sampling Method,” in
Flow and the Foundations of Positive Psychology (Reis, H. T., ed.), pp. 21–34,
Dordrecht: Springer Netherlands, 2014.

[75] Lasecki, W. S., Song, Y. C., Kautz, H., and Bigham, J. P., “Real-time crowd
labeling for deployable activity recognition,” Proceedings of the 2013 conference on
Computer supported cooperative work, pp. 1203–1212, 2013.

[76] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., “Gradient-based learning
applied to document recognition,” IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[77] Lester, J., Tan, D., Patel, S., and Brush, A., “Automatic classification of daily
fluid intake,” Audio, Transactions of the IRE Professional Group on, pp. 1–8, Mar.
2010.

150



[78] Li, C.-Y., Chen, Y.-C., Chen, W.-J., and Huang, P., “Sensor-Embedded Teeth
for Oral Activity Recognition,” ISWC 2013, vol. 42, Sept. 2013.

[79] Lifson, N. and McClintock, R., “Theory of use of the turnover rates of body water
for measuring energy and material balance,” Journal of theoretical biology, vol. 12,
no. 1, pp. 46–74, 1966.

[80] Liu, J., Johns, E., Atallah, L., Pettitt, C., Lo, B., Frost, G., and Yang,
G.-Z., “An Intelligent Food-Intake Monitoring System Using Wearable Sensors,” in
Wearable and Implantable Body Sensor Networks (BSN), 2012 Ninth International
Conference on, pp. 154–160, IEEE Computer Society, 2012.

[81] Lu, H., Pan, W., Lane, N., Choudhury, T., and Campbell, A., “SoundSense:
scalable sound sensing for people-centric applications on mobile phones,” Proceedings
of the 7th international conference on Mobile systems, applications, and services,
pp. 165–178, 2009.

[82] Lukowicz, P., Pentland, A. S., and Ferscha, A., “From Context Awareness
to Socially Aware Computing,” IEEE pervasive computing, vol. 11, no. 1, pp. 32–40,
2012.

[83] Maekawa, T., “A sensor device for automatic food lifelogging that is embedded in
home ceiling light: A preliminary investigation,” in Pervasive Computing Technologies
for Healthcare (PervasiveHealth), 2013 7th International Conference on, pp. 405–407,
2013.

[84] Makeyev, O., Lopez-Meyer, P., Schuckers, S., Besio, W., and Sazonov,
E., “Biomedical Signal Processing and Control,” Biomedical Signal Processing and
Control, vol. 7, pp. 649–656, Nov. 2012.

[85] Makhoul, J., “Linear prediction: A tutorial review,” Proceedings of the IEEE,
vol. 63, pp. 561–580, Apr. 1975.

[86] Mankoff, J., Hsieh, G., Hung, H. C., Lee, S., and Nitao, E., “Using Low-Cost
Sensing to Support Nutritional Awareness,” in UbiComp ’02: Proceedings of the 4th
international conference on Ubiquitous Computing, Springer-Verlag, Sept. 2002.

[87] Marder, S. R., Essock, S. M., Miller, A. L., Buchanan, R. W., Casey, D. E.,
Davis, J. M., Kane, J. M., Lieberman, J. A., Schooler, N. R., Covell, N.,
and others, “Physical health monitoring of patients with schizophrenia,” American
Journal of Psychiatry, 2014.

[88] Markson, E. W., “Functional, social, and psychological disability as causes of loss
of weight and independence in older community-living people.,” Clinics in geriatric
medicine, vol. 13, no. 4, pp. 639–652, 1997.

[89] Marshall, T. A., Stumbo, P. J., Warren, J. J., and Xie, X. J., “Inade-
quate nutrient intakes are common and are associated with low diet variety in rural,
community-dwelling elderly.,” The Journal of nutrition, vol. 131, pp. 2192–2196, Aug.
2001.

151



[90] Mason, W. and Watts, D. J., “Financial incentives and the ”performance of
crowds”,” in HCOMP ’09: Proceedings of the ACM SIGKDD Workshop on Human
Computation, ACM Request Permissions, June 2009.

[91] Mathieu, B., Essid, S., Fillon, T., Prado, J., and Richard, G., “YAAFE, an
Easy to Use and Efficient Audio Feature Extraction Software,” in proceedings of the
11th ISMIR conference, 2010, Sept. 2010.

[92] McCormack, P., “Undernutrition in the elderly population living at home in the
community: a review of the literature,” Journal of advanced nursing, vol. 26, no. 5,
pp. 856–863, 1997.

[93] Michels, K. B., “A renaissance for measurement error.,” International journal of
epidemiology, vol. 30, pp. 421–422, June 2001.

[94] Michels, K. B., “Nutritional epidemiology–past, present, future,” International
journal of epidemiology, vol. 32, pp. 486–488, Aug. 2003.

[95] Mintz, S. W. and Du Bois, C. M., “The anthropology of food and eating,” Annual
review of anthropology, pp. 99–119, 2002.

[96] Moore, B. C. J., Glasberg, B. R., and Baer, T., “A Model for the Prediction
of Thresholds, Loudness, and Partial Loudness,” Journal of the Audio Engineering
Society, vol. 45, no. 4, pp. 224–240, 1997.

[97] Newman, S. C. and Bland, R. C., “Mortality in a cohort of patients with
schizophrenia: a record linkage study.,” The Canadian Journal of Psychiatry/La Re-
vue canadienne de psychiatrie, 1991.

[98] Nguyen, D. H., Marcu, G., Hayes, G. R., Truong, K. N., Scott, J.,
Langheinrich, M., and Roduner, C., “Encountering SenseCam: personal record-
ing technologies in everyday life,” pp. 165–174, 2009.

[99] Noronha, J., Hysen, E., Zhang, H., and Gajos, K. Z., “Platemate: crowdsourc-
ing nutritional analysis from food photographs,” Proceedings of the 24th annual ACM
symposium on User interface software and technology, pp. 1–12, 2011.

[100] Oliva, A. and Torralba, A., “Modeling the shape of the scene: A holistic repre-
sentation of the spatial envelope,” IJCV, vol. 42, no. 3, pp. 145–175, 2001.

[101] O’Loughlin, G., Cullen, S. J., McGoldrick, A., O’Connor, S., Blain, R.,
O’Malley, S., and Warrington, G. D., “Using a wearable camera to increase
the accuracy of dietary analysis.,” American journal of preventive medicine, vol. 44,
pp. 297–301, Mar. 2013.

[102] Parate, A., Chiu, M.-C., Chadowitz, C., Ganesan, D., and Kalogerakis, E.,
“RisQ: recognizing smoking gestures with inertial sensors on a wristband,” in Mo-
biSys ’14: Proceedings of the 12th annual international conference on Mobile systems,
applications, and services, ACM Request Permissions, June 2014.

[103] Passler, S. and Fischer, W., “Acoustical method for objective food intake mon-
itoring using a wearable sensor system,” in Pervasive Computing Technologies for

152



Healthcare (PervasiveHealth), 2011 5th International Conference on, pp. 266–269,
2011.
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