Vortex Model Based Adaptive Flight Control Using Synthetic Jets

Jonathan Muse, Andrew Tchieu, Ali Kutay, Rajeev Chandramohan, Anthony Calise, and Anthony Leonard

> Department of Aerospace Engineering Georgia Institute of Technology

> > August 20, 2008

・ロト ・回ト ・ヨト ・ヨト

Overview

- Introduction
- 2 Experiment Hardware
 - Wind Tunnel Traverse
 - Wing and Actuators
- 3 Nominal Control Design
 - Actuation Modeled as a Static Device
 - Nonlinear Vortex Model
 - "Linear" Vortex Model
 - Coupled Vortex/Rigid Body Model
 - Nominal Control Designs
- 4 Adaptive Control Design
 - Plant Dynamics/Reference Behavior
 - Adaptive Control Implementation
 - Saturation Protection
- 5 Experimental Results
 - Determining Model Parameters

◆□▶ ◆舂▶ ◆注▶ ◆注▶ 三注.

- Model Validation
- Closed Loop Experiments

Outline

1 Introduction

- 2 Experiment Hardware
 - Wind Tunnel Traverse
 - Wing and Actuators
- 3 Nominal Control Design
 - Actuation Modeled as a Static Device
 - Nonlinear Vortex Model
 - "Linear" Vortex Model
 - Coupled Vortex/Rigid Body Model
 - Nominal Control Designs
- 4 Adaptive Control Design
 - Plant Dynamics/Reference Behavior
 - Adaptive Control Implementation
 - Saturation Protection
- 5 Experimental Results
 - Determining Model Parameters

<ロト <部ト <注入 <注下 = 正

- Model Validation
- Closed Loop Experiments

Introduction

Experiment Hardware Nominal Control Design Adaptive Control Design Experimental Results

Introduction

- Aerodynamic flow control.
- Enable highly-maneuverable flight for small UAVs (e.g., in confined spaces).
 - No moving control surfaces.
 - Maneuver on convective time scale (Dragon Eye scales: 20 m/s, c 30cm, $t_{conv} = 15 msec$)
- Flight dynamics and flow dynamics are coupled.
 - Flow develops forces and moments on convective time scales.
 - Flow state is affected by both vehicle dynamics and actuation.

・ロト ・回ト ・ヨト ・ヨト

E

Outline

Introduction

- 2 Experiment Hardware
 - Wind Tunnel Traverse
 - Wing and Actuators
- 3 Nominal Control Design
 - Actuation Modeled as a Static Device
 - Nonlinear Vortex Model
 - "Linear" Vortex Model
 - Coupled Vortex/Rigid Body Model
 - Nominal Control Designs
- 4 Adaptive Control Design
 - Plant Dynamics/Reference Behavior
 - Adaptive Control Implementation
 - Saturation Protection
- 5 Experimental Results
 - Determining Model Parameters

<ロト <部ト <注入 <注下 = 正

- Model Validation
- Closed Loop Experiments

Wind Tunnel Traverse Wing and Actuators

Experiment Diagram

6/47 Jonathan Muse Vortex Model Based Adaptive Flight Control

DQC

Wind Tunnel Traverse Wing and Actuators

Traverse

・ロト ・回ト ・モト ・モト

Wind Tunnel Traverse Wing and Actuators

Force Control

- **Purpose:** Simulation of longitudinal free flight in a wind tunnel.
- A force control technique was developed to accomplish this.
- Force control maintains prescribed force/moment on model.
 - Removes effect of gravity.
 - Hides traverse nonlinearities from model.
 - Applies prescribed force commands to the traverse.
 - Feedback of wing states alters dynamics of flying model.
- Force is applied by regulating the deflection of the springs in the traverse.
- Moment applied via torque motor.

・ロト ・四ト ・ヨト ・ヨト

Wind Tunnel Traverse Wing and Actuators

Traverse Mechanism

- Inner loop PID control laws regulate the carriage positions.
- Force control law commands accelerations to the carriages.
- Allows regulation of the spring deflection on the airfoil.

Wind Tunnel Traverse Wing and Actuators

Wing Model

- 1m span NACA 4415 wing section
- Chord length is 457 mm.
- Modular and comprised of interchangeable spanwise segments for sensors.
- Includes module of a circumferential array of 70 static pressure ports located at mid-span.
- Several modules of high-frequency integrated pressure sensors for measurements of instantaneous pressure.

イロト イヨト イヨト イヨト

Wind Tunnel Traverse Wing and Actuators

Wing Section

200

Wind Tunnel Traverse Wing and Actuators

Flow Control Actuators

- Synthetic jet type actuators.
- Array of jets mounted on trailing edge of wing.
- Actuators are amplitude modulated.

- Characteristic actuation rise time O(2-3tconv).
- Usable control authority up to 30 Hz in pitch.

イロト イヨト イヨト イヨト

- Hybrid actuators on opposite sides of the trailing edge allow CM to be varied bidirectionally without moving surfaces.
 - Manipulates concentrations of trapped vorticity.
 - PS actuator increases C_M (nose-up).
 - SS actuator decreases C_M (nose-down).
- Significant changes in C_M with minimal lift and drag penalty
- Changes in actuator C_μ allow aerodynamic performance to be continuously varied

Wind Tunnel Traverse Wing and Actuators

System, Concept

14/47 Jonathan Muse Vortex Model Based Adaptive Flight Control

Э

200

Outline

- 1 Introduction
- 2 Experiment Hardware
 - Wind Tunnel Traverse
 - Wing and Actuators
- 3 Nominal Control Design
 - Actuation Modeled as a Static Device
 - Nonlinear Vortex Model
 - "Linear" Vortex Model
 - Coupled Vortex/Rigid Body Model
 - Nominal Control Designs
- 4 Adaptive Control Design
 - Plant Dynamics/Reference Behavior
 - Adaptive Control Implementation
 - Saturation Protection
- 5 Experimental Results
 - Determining Model Parameters

- Model Validation
- Closed Loop Experiments

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model

Static Actuator Model of the Wing

16/47

- The effect of an actuator is modeled as a static moment actuator.
- The lift and moment can be modeled as

$$L = QS \left(C_{L_0} + C_{L_{\alpha}} \alpha + C_{L_{\dot{\alpha}}} \dot{\alpha} \right)$$
$$M = QS\bar{c} \left(C_{M_0} + C_{M_{\alpha}} \alpha + \frac{\bar{c}}{2V_{\infty}} C_{M_{\dot{\alpha}}} \dot{\alpha} + C_{M_{\delta_a}} \delta_a \right)$$

Modeling leads to a system model of the form

Jonathan Muse

$$\begin{bmatrix} \dot{y} \\ \ddot{y} \\ \dot{\alpha} \\ \ddot{\alpha} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & a_{2,2} & a_{2,3} & a_{2,4} \\ 0 & 0 & 0 & 1 \\ 0 & a_{4,2} & a_{4,3} & a_{4,4} \end{bmatrix} \begin{bmatrix} y \\ \dot{y} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ b_{f,4} \end{bmatrix} \delta_a$$

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Concept of Vortex Model

17/47 Jonathan Muse Vortex Model Based Adaptive Flight Control

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Nonlinear Vortex Model

• From our previous work, we obtained the following lift and moment relations

$$L = -\rho\pi\left(\frac{c^2}{4}\ddot{y} + Uc\dot{y}\right) + \rho\pi\left[\frac{ac^2}{4}\ddot{\theta} + U(a + \frac{c}{2})c\dot{\theta} + \left(\frac{\dot{U}c^2}{4} + U^2c\right)\theta\right] \\ -\frac{\rho Uc}{2}\sum_{i=1}^{N}\frac{\Gamma_i}{\sqrt{\xi_i^2 - c^2/4}} + \rho U\Gamma_C$$

and

$$M(a) = aL + \frac{\rho \pi U c^2}{4} \dot{y} + \rho \pi \left[\frac{c^4}{128} \ddot{\theta} - \frac{U a c^2}{4} \dot{\theta} - \frac{U^2 c^2}{4} \theta \right]$$
$$+ \frac{\rho U c^2}{8} \sum_{i=1}^{N} \frac{\Gamma_i}{\sqrt{\xi_i^2 - c^2/4}} + \rho U \Gamma_C \xi_C$$

・ロト ・回ト ・ヨト ・ヨト

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Nonlinear Vortex Model

• The shed vortex positions, ξ_i , were given by

$$\frac{d\xi_1}{dt} = U - \frac{(\xi_1^2 - c^2/4)}{\xi_1 \Gamma_1} \frac{d\Gamma_1}{dt}$$
$$\frac{d\xi_i}{dt} = U \quad (i \ge 2)$$

• The vortex strengths, Γ_i , were defined by

$$\Gamma_1 = -\sqrt{\frac{\xi_1 - c/2}{\xi_1 + c/2}} \left(\Gamma_0 + \sum_{i=2}^N \sqrt{\frac{\xi_i + c/2}{\xi_i - c/2}} \right)$$

$$\Gamma_i = Constant$$

・ロト ・回ト ・ヨト ・ヨト

E

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Corrections for Thickness and Camber

- Corrections needed for accurate simulation.
- Corrections based on NASA legacy data.
- Effect of thickness and camber is to translate lift and moment curves.
- Lift changes as

$$\tilde{L} = L + \left(\frac{1}{2}\rho U^2 c\right) C_{L,0}$$

Moment changes as

$$ilde{M} = M - \left(rac{1}{2}
ho U^2 c^2
ight) C_{M,0} + \left(a - rac{c}{4}
ight) \left(rac{1}{2}
ho U^2 c
ight) C_{L,0}$$

• In our experiments, the c.g. is close to quarter chord and M simplifies since $\left(a - \frac{c}{4}\right) \approx 0$

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Linear Model Development

- Vortex model captures dynamics that are negligible on time scales of rigid body dynamics.
- We define a characteristic circulation as

$$\Gamma_W = c \sum_{i=1}^N rac{\Gamma_i}{\sqrt{\xi_i^2 - c^2/4}}$$

- We consider the lift and moment generated when impulsively started from rest
 - $d\Gamma_w/dt = 0$.
 - Only a single vortex is created.

・ロト ・四ト ・ヨト ・ヨト

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Linear Model Development (cont.)

• This gives the lift as

$$L = -\rho U \left(\Gamma_0 - \frac{1}{2} \Gamma_W \right)$$

- At $t = t_0$, $\Gamma_W \approx -\Gamma_0$.
- When $t \to \infty$, Lift terms should disappear as wake vortices move downstream.
- To model as linear, we propose the following model

$$\frac{d\Gamma_W}{dt} = -\frac{d\Gamma_0}{dt} - \beta\Gamma_W$$

where β is a constant and the initial condition of the differential is

$$\Gamma_W(t_0) = \Gamma_0(t_0)$$

・ロト ・四ト ・ヨト ・ヨト

3

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

The Linear Model

- This induces an exponential rise in lift $(1 e^{\beta t})$ for a constant Γ_0 .
 - This is contrary to the classical square root type growth for lift.
 - This is contrary to the decay in lift that is geometric at best.
- One can compute the best fit for β at a given Δt .
- Hence, the "linearized" characteristic circulation is

$$\dot{\Gamma}_{W} + \beta \Gamma_{W} = -\pi c \left(\ddot{y} + \left(a + \frac{c}{4} \right) \ddot{\theta} + U \dot{\theta} \right)$$

with an initial condition of

$$\Gamma_W(t_0) = -\pi c \left(\ddot{y} + \left(a + rac{c}{4}
ight) \ddot{ heta} + U \dot{ heta}
ight) \bigg|_{t=t_0}$$

イロト イヨト イヨト イヨト

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Linear Lift/Moment Relationships

• The lift and moment expressions simplify to:

$$L = -\rho\pi \left(\frac{c^2}{4}\ddot{y} + Uc\dot{y}\right) - \rho U\left(\frac{1}{2}\Gamma_W + \Gamma_C\right)$$
$$-\rho\pi \left[\frac{ac^2}{4}\ddot{\theta} + U\left(a + \frac{c}{2}\right)c\dot{\theta} + \left(\frac{\dot{U}c^2}{4} + U^2c\right)\theta\right]$$

and

$$M = aL + \frac{\rho \pi Uc^2}{4} \dot{y} + \rho \pi \left[\frac{Uac^2}{4} \dot{\theta} + \frac{U^2c^2}{4} \theta - \frac{ac^2}{128} \ddot{\theta} \right] + \rho U \left(\frac{c}{8} \Gamma_W - \Gamma_C \xi_C \right)$$

The above equations include added mass, quasi-steady lift, lift due to wake, and control terms.

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Coupled Model Assumptions

• Assume the rigid body dynamics are given by

$$\begin{array}{lll} m\ddot{y}+b_y\dot{y}+k_yy&=&L\\ I\ddot{\theta}+b_\theta\dot{\theta}+k_\theta\theta&=&M(a) \end{array}$$

- L is the lift.
- *M*(*a*) is the moment about the location *a*.

イロト イヨト イヨト イヨト

E

• Neglect thickness and camber corrections for control design purposes.

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Redefining Lift and Moment as Matrix Equations

• The "Linear" Vortex Model can be written as

$$\dot{x} = Ax + B\Gamma_C$$

where $x = \begin{bmatrix} y & \theta & \dot{y} & \dot{\theta} & \Gamma_w \end{bmatrix}^T$.

- How does Γ_C relate to the physical world?
- Γ_C can be related to applied moment as

$$\Gamma_{C}(u_{f},\theta) = \frac{1}{2}Uc\left(\frac{a+\xi_{C}}{c}\right)\Delta C_{M}(u_{f},\theta)$$

- $C_M(u_f, \theta)$ is determined from static experimental data.
- Hence, the model becomes nonlinear!
- Luckily, $\Gamma_C(u_f, \theta)$ is invertible for fixed θ .

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Nominal Control Designs

- The vortex model is nonlinear.
- $\Gamma_C(u_f, \theta)$ is invertible for fixed θ
- We employ an inversion technique to make the control design effectively linear.

- Inversion of $\Gamma_C(u_f, \theta)$ is pre-computed in a lookup table.
- Now, one can use standard linear analysis tools to develop control laws based on the static actuator model and the vortex model.

・ロト ・四ト ・ヨト ・ヨト

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Linear Control Law Design

• Defining the tracking error

$$e = y - r$$

• We must design a control law to ensure

$$e(t) \rightarrow 0$$
 as $t \rightarrow \infty$

- Using a modified robust servomechanism LQR like formulation, feedback gains, K_e and K_x , are computed.
- Results in a control law of the form

$$u = -K_e \int_0^t e(\tau) d\tau - K_x x + Zr$$

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Nominal Control Architecture

Robust Servo LQR with feedforward element

イロト イヨト イヨト イヨト

E

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Avoiding State Estimation for Vortex Control Law

- State feedback is not possible for vortex model.
- Aerodynamic state is unmeasurable.
- We modify the nominal vortex design using projective control.
- Augmenting the model dynamics with the control law dynamics, the closed loop system is given by

$$\begin{bmatrix} e \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & C \\ -\bar{B}K_e & \bar{A} - \bar{B}K_X \end{bmatrix} \begin{bmatrix} \int e \\ x \end{bmatrix} + \begin{bmatrix} -1 \\ \bar{B}Z \end{bmatrix} r$$
$$y = \begin{bmatrix} 0 & C \end{bmatrix} \begin{bmatrix} e \\ x \end{bmatrix}$$

where C is a matrix that multiplied by x gives the position.

イロト イポト イヨト イヨト

Actuation Modeled as a Static Device Nonlinear Vortex Model "Linear" Vortex Model Coupled Vortex/Rigid Body Model Nominal Control Designs

Avoiding State Estimation for Vortex Control Law

- We can retain all but one of the closed loop eigenvalues.
- Let $K = [K_e \ K_x]$ and X_y be the eigenvectors corresponding to the closed loop eigenvalues we wish to retain.
- The required output feedback gain is given by

$$ar{K} = KX_y \left(ar{C}_{measured}X_y
ight)^{-1}$$

where $\bar{C}_{measured}$ corresponds to the rigid body states of x.

Outline

- 1 Introduction
- 2 Experiment Hardware
 - Wind Tunnel Traverse
 - Wing and Actuators
- 3 Nominal Control Design
 - Actuation Modeled as a Static Device
 - Nonlinear Vortex Model
 - "Linear" Vortex Model
 - Coupled Vortex/Rigid Body Model
 - Nominal Control Designs
- 4 Adaptive Control Design
 - Plant Dynamics/Reference Behavior
 - Adaptive Control Implementation
 - Saturation Protection
- 5 Experimental Results
 - Determining Model Parameters

- Model Validation
- Closed Loop Experiments

Plant Dynamics/Reference Behavior Adaptive Control Implementation Saturation Protection

Plant Dynamics/Reference Behavior

• We assume that our plant can be expressed as

$$\dot{x}(t) = Ax(t) + B\Lambda [\Gamma_C(t) + f(x, \Gamma_C)]$$

$$y(t) = Cx(t)$$

• The nominal control law can be expressed as

$$\Gamma_{C,n} = -K_y y + K_r r$$

• Assuming $f(x, \Gamma_C) = 0$, we form the desired behavior

$$\dot{x}_m(t) = A_m x_m(t) + B_m r$$
$$y_m(t) = C x_m(t)$$

where $A_m = A - BK_r$ is Hurwitz and $B_m = BK_r$.

Plant Dynamics/Reference Behavior Adaptive Control Implementation Saturation Protection

Approximating System Uncertainty

- We want to design an adaptive signal $\Gamma_{C,ad}$ to approximately cancel the modeling error $f(x, \Gamma_C)$.
- The total control effort becomes

$$\Gamma_{C}(t) = \Gamma_{C,n}(t) - \Gamma_{C,ad}(t)$$

We will try to approximate Λf(x, Γ_C) with a SHL neural network

$$\Lambda f(x, u) = W^{\mathsf{T}} \bar{\sigma}(V^{\mathsf{T}} \eta(t)) + \epsilon(x, u), \quad (x, u) \in \mathcal{D}_x \times \mathcal{D}_u$$

where ϵ , W, and V are unknown but bounded.

• We reconstruct the nonlinearity via delayed values of system outputs and inputs as inputs to the neural network $(\eta(t))$.

Plant Dynamics/Reference Behavior Adaptive Control Implementation Saturation Protection

Error Observer

• Since all of the states are not observable, we need an error observer.

$$\dot{\xi} = A_m \xi + L(y - y_\xi - y_m)$$

 $y_\xi = C\xi$

where $\tilde{A} = A_m - LC$ is Hurwitz and satisfies the following Lyapunov equation

$$ilde{A}^{\mathcal{T}} ilde{P}+ ilde{P} ilde{A}=- ilde{Q}, \quad ilde{Q}= ilde{Q}^{\mathcal{T}}>0, \quad ilde{Q}\in \mathbb{R}^{n imes n}$$

• The observer allows us to estimate the error state, $x_m - x$, of the system.

・ロト ・回ト ・ヨト ・ヨト

Plant Dynamics/Reference Behavior Adaptive Control Implementation Saturation Protection

Adaptive Weight Update Laws

• The adaptive update laws are

$$\begin{split} \dot{\hat{W}}(t) &= -\Gamma_{W} Proj \left[\hat{W}(t), \tilde{\sigma} \left(\hat{V}(t), \eta(t) \right) \xi(t)^{T} PB \right] \\ \dot{\hat{V}}(t) &= -\Gamma_{V} Proj \left[\hat{V}(t), \eta(t) \xi^{T} PBH \left(\hat{W}(t), \hat{V}(t), \eta(t) \right) \right] \\ \dot{\delta} \dot{\Lambda}^{T}(t) &= -\Gamma_{\delta} Proj \left[\delta \hat{\Lambda}^{T}(t), u(t) \xi^{T}(t) PB \right] \end{split}$$

where

1

$$\begin{split} \tilde{\sigma}\left(\hat{V}(t),\eta(t)\right) &= \bar{\sigma}\left(\hat{V}(t)^{T}\eta(t)\right) - \bar{\sigma}'\left(\hat{V}(t),\eta(t)\right)\hat{V}^{T}(t)\eta(t) \\ \mathcal{H}\left(\hat{W}(t),\hat{V}(t),\eta(t)\right) &= \hat{W}^{T}(t)\bar{\sigma}'\left(\hat{V}(t),\eta(t)\right) \end{split}$$

- These laws use parameter projection.
- See the paper for additional details.

イロト イヨト イヨト イヨト

Plant Dynamics/Reference Behavior Adaptive Control Implementation Saturation Protection

Compensating for Saturation

• Hedged reference model

$$\dot{x}_m = A_m x_m + B_m r + B_h \Gamma_{C,h}$$

37/47 Jon

Jonathan Muse

Vortex Model Based Adaptive Flight Control

Plant Dynamics/Reference Behavior Adaptive Control Implementation Saturation Protection

System Conceptual Review

Э

200

Outline

- 1 Introduction
- 2 Experiment Hardware
 - Wind Tunnel Traverse
 - Wing and Actuators
- 3 Nominal Control Design
 - Actuation Modeled as a Static Device
 - Nonlinear Vortex Model
 - "Linear" Vortex Model
 - Coupled Vortex/Rigid Body Model
 - Nominal Control Designs
- 4 Adaptive Control Design
 - Plant Dynamics/Reference Behavior
 - Adaptive Control Implementation
 - Saturation Protection
- 5 Experimental Results
 - Determining Model Parameters

- Model Validation
- Closed Loop Experiments

Determining Model Parameters Model Validation Closed Loop Experiments

Model Validation

- Static actuator model parameters were determined from static tests.
- Γ_C map was determined from static pitching moment measurements.

40/47

イロト イヨト イヨト イヨト

• Saturation of Γ_C ensures invertability.

Determining Model Parameters Model Validation Closed Loop Experiments

Model Validation

• Experiment response to open loop actuator excitation has been compared with simulation results.

Determining Model Parameters Model Validation Closed Loop Experiments

Torque Motor Case

• Lets look at the flight response using a torque motor for actuation.

 This indicates that the experiment is closely representing a free flying wing.

Determining Model Parameters Model Validation Closed Loop Experiments

Control Law Comparisons

• Square Wave Tracking:

Determining Model Parameters Closed Loop Experiments

Rise Time Stability Barrier

- Rise time: 10% 90%
- Static actuator limit: 0.31 sec
- Linear vortex model limit: 0.19 sec

Jonathan Muse Vortex Model Based Adaptive Flight Control

Determining Model Parameters Model Validation Closed Loop Experiments

Disturbance Rejection

イロト イヨト イヨト イヨト

Determining Model Parameters Model Validation Closed Loop Experiments

Conclusions

- Demonstrated closed loop longitudinal control of a wing model using synthetic jet type actuation.
- As the wing moves faster, the actuators can no longer be considered static.
- Simple vortex model developed to allow linear control designs to reach higher bandwidth.
- Unmodeled dynamics destabilize linear control designs at a high enough bandwidth.
- Adaptive control is able to deal with unmodelled dynamics and maintain stability.

・ロト ・回ト ・ヨト ・ヨト

Determining Model Parameters Model Validation Closed Loop Experiments

Questions?

