
AUTONOMOUS RALLY RACING WITH AUTORALLY AND MODEL
PREDICTIVE CONTROL

A PhD Dissertation
Presented to

The Academic Faculty

By

Brian Goldfain

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

Georgia Institute of Technology

August 2019

Copyright © Brian Goldfain 2019

AUTONOMOUS RALLY RACING WITH AUTORALLY AND MODEL
PREDICTIVE CONTROL

Approved by:

Dr. James M. Rehg, Advisor
School of Interactive Computing
Georgia Institute of Technology

Dr. Evangelos A. Theodorou,
Co-Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Panagiotis Tsiotras
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Tucker Balch
School of Interactive Computing
Georgia Institute of Technology

Dr. Ryan Eustice
Department of Naval Architecture
and Marine Engineering
University of Michigan

Date Approved: June 11, 2019

TABLE OF CONTENTS

List of Tables . vi

List of Figures . viii

Chapter 1: Introduction . 1

1.1 Related Work . 3

1.1.1 Scaled Autonomous Driving Platforms 4

1.1.2 Autonomous Driving . 8

1.1.3 Cost Function Optimization . 9

Chapter 2: The AutoRally Platform . 10

2.1 Hardware . 13

2.1.1 Chassis . 14

2.1.2 Compute Box . 17

2.2 Software Interface . 22

2.2.1 Time Synchronization . 22

2.2.2 Safety System . 24

2.2.3 AutoRally Chassis Interface . 26

2.2.4 Operator Control Station . 28

2.2.5 Simulation . 29

iii

2.3 Georgia Tech Autonomous Racing Facility 31

Chapter 3: Stochastic Model Predictive Control 33

3.1 Model Predictive Path Integral Control . 34

3.1.1 Dynamics Model . 35

3.1.2 Cost Function . 36

3.2 Cost Function Representation for Optimization 37

Chapter 4: Cost Function Optimization . 40

4.1 Cost Function Representations . 41

4.1.1 Image . 42

4.1.2 Radial Basis Function . 44

4.2 Cost Function Optimization Methods . 48

4.3 Experimental Results . 53

4.3.1 Testing Environments . 53

4.3.2 Ground Truth Simulation . 58

4.3.3 Gazebo Simulation . 62

4.3.4 Real World Experiments with AutoRally 66

4.3.5 Cost Function Optimization Effect on MPPI 76

4.3.6 Cost Function Optimization Generalization 82

Chapter 5: Rally Racing . 86

5.1 Gaming Competitions . 86

5.2 Vehicle Racing . 87

iv

5.3 Rally Race at Georgia Tech Autonomous Racing Facility 89

5.3.1 Skilled Human Driver . 91

5.3.2 Expert Human Driver . 92

5.3.3 Baseline Autonomous Driver . 96

5.3.4 MPC-CFO Driver . 97

5.3.5 Driver Comparison . 99

Chapter 6: Conclusion . 102

References . 108

v

LIST OF TABLES

1.1 Comparison of open source scaled autonomous platforms. All platforms
are based on 1:10 scale radio controlled cars and include C++ and Python
software interfaces that use the Robot Operating System software libraries,
except for the Donkey Car. The Donkey Car is 1:16 scale and includes a
Python interface. The build time and cost of each platform does not include
3D printed parts, which will vary based on the printer used. In addition to
the platforms themselves, the availability of a simulation world and public
data sets are indicated. 6

2.1 AutoRally compute box components. Major computing and power parts
are listed along with their specifications. 21

4.1 Minimum lap times achieves across all cost function optimization condi-
tions in ground truth simulation. 56

4.2 Minimum lap times achieves across all cost function optimization condi-
tions in the Gazebo simulation. 62

4.3 Minimum lap times achieves across all cost function optimization condi-
tions in the Gazebo simulation. An ‘X’ indicates a condition where no
experimental data was collected. 68

4.4 Difference between desired speed specified in optimized speed cost and
actual speed driven by MPPI in simulation environments. A negative value
indicates that the actual speed was less than the desired speed. 82

4.5 Example cost function evaluation at two points in the debug simulation
environment. Selected points are shown in Figure 4.27. The individual
component values for the minimum cost rollout are broken out and statistics
for all 1920 rollouts are presented. 82

5.1 Driving statistics for skilled human driver. 92

vi

5.2 Driving statistics for expert human driver. 94

5.3 Driving statistics for hand tuned MPPI. 97

5.4 Driving statistics for expert human driver. 98

5.5 Fast lap comparison for all drivers. 100

vii

LIST OF FIGURES

1.1 Model predictive control, cost function optimization framework for opti-
mizing a cost function used by a model predictive controller by interact-
ing with a system. For this work, the task of rally racing is used with an
AutoRally platform driven by the MPPI algorithm at the Georgia Tech Au-
tonomous Racing Facility. 3

2.1 Autonomous driving with AutoRally at the Georgia Tech Autonomous Rac-
ing Facility. 10

2.2 AutoRally platform during autonomous experiments at the Georgia Tech
Autonomous Racing Facility tracks. (a) Airborne from bouncing over rough
terrain. (b) Two platforms driving autonomously. (c) At the end of a muddy
day of testing. The platform carried 12 kg of mud stuck to the inside of the
body and chassis, increasing the total weight by almost 50 %. (d) AutoRally
platform airborne during a jump. 12

2.3 AutoRally system diagram. All major electronic system components and
their connections to the rest of the system are shown. The setup includes
the AutoRally robot composed of a chassis and compute box along with a
remote operator control station connected by three wireless communication
links. 13

2.4 Assembled AutoRally chassis. 14

2.5 AutoRally mini-ITX compute box. (a) Assembled computer-aided design
(CAD) model. (b) Fully assembled compute box ready to be mounted on
a chassis. (c) Front of compute box viewed from above with motherboard
and compute components visible. (d) Rear of compute box viewed from
above with power system components visible. 20

viii

2.6 AutoRally time synchronization diagram. Clocks on computers and sen-
sors that support clock control are synchronized to global positioning sys-
tem (GPS) time with a combination of the pulse-per-second (PPS) signal
that marks the beginning of a second, and timing messages that identify
which second the PPS signal represents. On the AutoRally robot and oper-
ator control station (OCS) computers, the system utilities gpsd and Chrony
are used for clock synchronization. The two cameras rely on an external
tigger signal to capture frames at the same time. The Arduino Micro mi-
crocontroller generates the camera trigger signal. 23

2.7 AutoRally safety system. The human operated radio control (RC) trans-
mitter sends signals to the RC receiver in the AutoRally chassis. The RC
receiver provides actuator signals from the human driver, controls a safety
relay to enable and disable the throttle signal into the electronic speed con-
troller (ESC), and switch between human and computer control. Informa-
tion relating to the state of the safety system is presented to the human op-
erator in the operator control station (OCS) graphical user interface (GUI).
Layer 1 of the safety system, shown in purple, is the throttle relay that
acts as a wireless throttle live man switch. Layer 2, shown in green, al-
lows seamless, remote switching between autonomous and manual control
modes. Layer 3, shown in blue and yellow, is the software runstop used to
disable autonomous motion. 25

2.8 AutoRally chassis interface program information flow. The program, which
runs on the compute box onboard the robot, uses a combination of configu-
ration files loaded at runtime and messages arriving from the Robot Operat-
ing System (ROS) interface to send the highest priority actuator commands
over a universal serial bus (USB) connection to the microcontroller in the
AutoRally chassis. Simultaneously, the AutoRally chassis sends state infor-
mation back to the chassis interface program that includes electronic speed
controller (ESC) data, wheel speeds, and human provided actuator com-
mands from the radio controlled (RC) receiver. The information received
from the chassis is published into the ROS system, and can be viewed in
the Operator Control Station (OCS) graphical user interface. 27

2.9 Operator Control Station (OCS) graphical user interface (GUI) that display
diagnostic, sensor, and actuator information in real time to a remote opera-
tor, captured during autonomous testing. 29

ix

2.10 Simulation environments for AutoRally built using Gazebo and modelled
after the Georgia Tech Autonomous Racing Facility tracks. Multiple Au-
toRally robots can be simulated together and each simulated platform has
the same Robot Operating System (ROS) messaging interface and simu-
lated sensors as the physical AutoRally platform. All simulation vehicle
parameters such as mass, moments of inertia, and sensor placement and
characteristics are set according to their experimentally determined values
from a physical robot. (a) Small oval track. (b) Large track. 30

2.11 Georgia Tech Autonomous Racing Facility oval track located on main cam-
pus. 32

2.12 Georgia Tech Autonomous Racing Facility large track located at Cobb
County Research Facility. 32

3.1 Model predictive path integral control. MPPI is a stochastic nonlinear
model predictive control method that optimizes control plans on-the-fly
and can handle general dynamic models and cost criteria. The algorithm
executes the first step of its control plan, receives state feedback from the
system, then re-optimizes the control plan using a dynamics model of the
system and task description, encoded as a cost function. 34

4.1 Example fixed speed cost component visualized as an image with track
boundaries overlaid. The value of each pixel is the cost at that location in
the local fixed coordinate frame. Large GT-ARF cost map. 43

4.2 Grid radial basis function speed map represented as images for the large
CCRF track. The value of each pixel is the cost at that location in the local
fixed coordinate frame. 45

4.3 Track centerline spline, shown in green, along with inner and outer track
boundaries. The track boundaries are computed from a GPS survey col-
lected at the CCRF large track. The centerline spline is computed as the
middle of the two boundaries. 46

4.4 Track centerline radial basis function speed map represented as images for
the large CCRF track. The value of each pixel is the cost at that location in
the local fixed coordinate frame. 47

x

4.5 Testing environments for MPC-CFO. All tracks have identical layouts and
coorindate frames. (a) Ground truth simulation where the MPC has per-
fect knowedge of dynamics. (b) Gazebo-based simulation with simulated
AutoRally platform, simulated sensors, and an identical software interface
as the physical robot. (c) Georgia Tech Autonomous Racing Facility large
track located at Georgia Tech’s Cobb County Research Facility. 54

4.6 Single speed target cost function optimization in the ground truth simula-
tion environment. Lap times are shown over 24 epochs of optimization,
264 total laps around the track. (a) Performance with the cross entropy
optimization method, optimized target speed is 16.6 m/s. (b) Performance
with the PI squared optimization method, optimized target speed is 16.4 m/s. 56

4.7 Grid RBF cost function representation with CE optimization in the ground
truth simulation environment. (a) Lap time performance over 24 epochs of
optimization, 264 total laps around the track.(b) Visualization of the speed
cost at the end of optimization, direction of motion is counter clockwise. . . 56

4.8 Grid RBF cost function representation with PI2 optimization in the ground
truth simulation environment. (a) Lap time performance over 24 epochs of
optimization, 264 total laps around the track.(b) Visualization of the speed
cost at the end of optimization, direction of motion is counter clockwise. . . 57

4.9 Centerline RBF cost function representation with CE optimization in the
ground truth simulation environment. (a) Lap time performance over 24
epochs of optimization, 264 total laps around the track. (b) Visualization
of the speed cost at the end of optimization, direction of motion is counter
clockwise. 57

4.10 Centerline RBF cost function representation with PI2 optimization in the
ground truth simulation environment. (a) Speed map optimization with
image model and RBF noise at GR-ARF large track. (b) Visualization of
the speed cost at the end of optimization, direction of motion is counter
clockwise. 58

4.11 Model size effect on convergence, RBF centerline representation with 20
RBFs, model size of 61 parameters, CE optimization. (a) Lap time per-
formance over 24 epochs of optimization, 264 total laps around the track.
(b) Visualization of the speed cost at the end of optimization, direction of
motion is counter clockwise. 60

xi

4.12 Model size effect on convergence, RBF centerline representation with 20
RBFs, model size of 91 parameters, CE optimization. (a) Speed map op-
timization with image model and RBF noise at GR-ARF large track. (b)
Visualization of the speed cost at the end of optimization, direction of mo-
tion is counter clockwise. 61

4.13 Single speed target cost function optimization in the Gazebo simulation en-
vironment. Lap times are shown over 24 epochs of optimization, 264 total
laps around the track. (a) Performance with the cross entropy optimization
method, optimized target speed is 9.2 m/s. (b) Performance with the PI
squared optimization method, optimized target speed is 8.8 m/s. 62

4.14 Grid RBF cost function representaiton with CE optimization in the Gazebo
simulation environment. (a) Lap time performance over 24 epochs of opti-
mization, 264 total laps around the track.(b) Visualization of the speed cost
at the end of optimization, direction of motion is counter clockwise. 63

4.15 Grid RBF cost function representaiton with PI2 optimization in the Gazebo
simulation environment. (a) Lap time performance over 24 epochs of opti-
mization, 264 total laps around the track.(b) Visualization of the speed cost
at the end of optimization, direction of motion is counter clockwise. 63

4.16 Centerline RBF cost function representaiton with CE optimization in the
Gazebo simulation environment. (a) Lap time performance over 24 epochs
of optimization, 264 total laps around the track. (b) Visualization of the
speed cost at the end of optimization, direction of motion is counter clockwise. 64

4.17 Centerline RBF cost function representaiton with PI2 optimization in the
ground truth simulation environment. (a) Speed map optimization with
image model and RBF noise at GR-ARF large track. (b) Visualization of
the speed cost at the end of optimization, direction of motion is counter
clockwise. 64

4.18 Single speed target cost function optimization at the GT-ARF large track.
Lap times are shown over 8 epochs of optimization, 87 total laps around
the track. (a) Performance with the cross entropy optimization method,
optimized target speed is 9.9 m/s. 68

4.19 Centerline RBF cost function representation with CE optimization at the
GT-ARF large track. (a) Lap time performance over 6 epochs of optimiza-
tion, 56 total laps around the track. (b) Visualization of the speed cost that
produced the fastest lap time, direction of motion is counter clockwise. . . . 69

xii

4.20 Centerline RBF cost function representation with PI2 optimization in the
ground truth simulation environment. (a) Lap time performance over 5
epochs of optimization, 45 total laps around the track. (b) Visualization
of the speed cost that produced the fastest lap time, direction of motion is
counter clockwise. 69

4.21 Comparison of cross entropy and PI2 optimization methods with RBF cen-
terline representation during testing at GT-ARF large track. The best three
sampled speed cost functions from one epoch along with their lap times are
shown left, followed by the computed speed cost functions and the associ-
ated lap times for each optimization method. 70

4.22 Timing gates for cost function optimization. After one complete lap is com-
pleted, the start/finish line for the next lap is moved one position counter
clockwise around the track to take into account the time it takes to update
the cost function MPPI is using while the robots is moving. 72

4.23 Sequence of images captured from offboard video of a multiple rollover
crash during cost function optimization at GT-ARF large track. The crash
was a result of excessive speed and side slip going through a turn. 72

4.24 Comparison of new tires and worn tires after aggressive driving tests with
the AutoRally platform at GT-ARF. (a) New tires with zero laps of wear.
(b) Worn tires after 120 laps (about 12 miles) of aggressive driving. 74

4.25 Lap time as a function of target speed during single speed target optimiza-
tion experiment. Lap times are colored according to which of the two chas-
sis battery packs used the in the test was powering the chassis. 76

4.26 Trajectory traces colored by speed for MPPI driving overlaid on the con-
stant speed map provided in the ground truth simulation environment. . . . 78

4.27 Trajectory traces colored by speeed for MPPI driving overlaid on the center-
line RBF speed map provided in the ground truth simulation environment.
Example points selected to evaluate cost function behavior at two parts of
the track. 79

4.28 Trajectory traces colored by speed for MPPI driving overlaid on the center-
line RBF speed map provided in the Gazebo simulation environment. 80

4.29 Target speed function used to test generalization from Gazebo to ground
truth simulation. Optimized in Gazebo with CE and centerline RBF repre-
sentation. 84

xiii

4.30 Examples of track surface variability during testing. (a) A dry and dusty
track where traction is low. (b) A wet but not muddy track that offers a
high traction environment surface. 85

5.1 Rally racing competition between MPC-CFO and an expert human driver
using AutoRally at the Georgia Tech Autonomous Racing Facility. 87

5.2 Turn numbers at the GT-ARF large track. Direction of travel is counter
clockwise in all experiments with turn numbering beginning at the end of
the main straight. 90

5.3 Skilled human driver data. (a) All laps colored according to speed. Breaks
in trajectories around the start line on the straight are an artifact of breaking
the dataset into individual laps for analysis and visualization. (b) Average
trajectory along with 1-σ bound. 93

5.4 Expert human driver dataset. (a) All laps colored according to speed. Breaks
in trajectories around the start line on the straight are an artifact of breaking
the dataset into individual laps for analysis and visualization. (b) Average
trajectory along with 1-σ bound. 95

5.5 Baseline autonomous driving performance from hand tuned MPPI, five laps. 96

5.6 MPC-CFO fast lap. 98

5.7 Comparison of all drivers. (a) Average trajectory for each driver. (b) Fast
lap trajectories for each driver. 101

xiv

SUMMARY

Rally racing is an especially difficult driving task that requires a tight coupling of task

objectives and low level control. The goal of rally racing is to drive a vehicle as quickly

as possible in pursuit of the lowest course time while navigating an unpaved road at the

limits of handling. We chose to study autonomous rally racing, which has broad applica-

tions to safe autonomous driving. We use a scaled self-driving vehicle testbed driven by

a model predictive controller and human driver. The testbed we created is AutoRally, a

robust 1:5 scale autonomous vehicle that enables the study of autonomy in the domain of

aggressive driving on the real world dirt surfaces. Model predictive path integral control, a

stochastic optimal controller, is tasked with driving AutoRally around a dirt track as fast as

possible. To move from driving quickly to the task of racing, a second optimization layer

is added on top of the controller to optimize the cost function used by the controller. The

cost function optimization layer operates on the time scale of laps and uses the lap times

as the reward signal. A human analogy to this setup is when an expert human driver ar-

rives at a new race course and is allowed practice laps to tailor their skills to the particular

track before a competition. We extend previous work with the model predictive controller

to enable the optimization of the task description, encoded as a cost function. We inves-

tigate a variety of representations for cost function components and compare performance

of sampling based optimization methods. Finally, we compare the optimized autonomous

driving system against a non-optimized baseline and human drivers as the first time trial

rally race between an expert human and autonomous agent where both drivers operate iden-

tical AutoRally platforms at the Georgia Tech Autonomous Racing Facility. The analysis

provides insights into how the coupling of platform design, stochastic model predictive

control, and cost function optimization enables autonomous rally racing in a real world

setting. The data collected for the rally race provides a real world performance benchmark

for state-of-the-art model predictive control with expert human driving on an open testbed.

xv

CHAPTER 1

INTRODUCTION

Creating self-driving vehicles that are as capable as human drivers remains an open prob-

lem, despite significant advancements from universities, car manufacturers, and technology

companies. The holy grail for self driving vehicles is full autonomy, defined by the Society

of Automotive Engineers (SAE) as level 5 in the SAE levels of automated driving. Level 5

autonomy is the full-time performance by an automated driving system of all aspects of the

dynamic driving task under all roadway and environmental conditions that can be managed

by a human driver. It is estimated that level 5 autonomous vehicles on public roads will

help eliminate more than 90 percent [1] of the 35,000 annual traffic fatalities caused by

human error in the United States [2], free up commute time for other activities, reduce road

congestion and pollution, and increase driving resource utilization [3].

Rally racing, where a driver operates a vehicle on unpaved surfaces as quickly as possi-

ble, offers an alternative to the typical urban driving scenario in which the many scenarios

that are difficult for control and perception algorithms to handle occur relatively frequently.

The existence of expert human drivers for this task offers a real world performance bench-

mark that can be used for comparison and analysis. However, rally racing requires robust

vehicles to withstand the punishment of operating a vehicle at the limits of its capabilities

on unpaved surfaces. In the pursuit of creating the most capable autonomous vehicles,

this work opens the domain of autonomous rally racing to roboticists. We demonstrate a

custom scaled autonomous driving platform being driven by a state-of-the-art control algo-

rithm up to the dynamics limits of the system and present a comparison to an expert human

performing the same task with the same platform.

Traditionally, the self-driving vehicle software stack is broken into many modules that

independently solve sub-tasks. This architecture was partially a result of the theory and

1

hardware limitations at the time the vehicles were fielded for the DARPA Grand and Urban

Challenges [4, 5, 6]. While these methods made the current wave of self-driving vehicles

possible, it is now apparent that these approaches are not sufficient to achieve full au-

tonomy, partially due to information and performance bottlenecks created by the modular

design.

Recent advances in stochastic model predictive control (MPC) with the model predic-

tive path integral (MPPI) algorithm have been shown to work well in challenging driving

situations [7, 8, 9]. A key benefit of this method is that it combines some of the tradi-

tionally separate planning and control modules by creating one optimization framework

that operates on a task description and dynamics model of the system to directly generate

low level actuator commands. Within MPPI, the task encoding, also referred to as the cost

function, is hand-coded by an expert and the dynamics model is learned from data. Cost

functions encode the best guess for what the designer believes is important to solving a task,

but are prone to misspecification. A current solution to achieve robust performance with

hand-coded cost functions is cost shaping, or reward hacking, in which an expert iteratively

modifies weights until the exhibited behavior is acceptable. This process is time-consuming

and requires an expert to achieve the best performance.

An alternative approach to hand-tuning cost functions is to optimize them from data.

This data-driven solution can still take advantage of domain knowledge in the representa-

tion and initialization of model parameters, if available. One potential difficulty for cost

function optimization is that interactions with the real system are required to achieve the

best performance because the available models and simulation tools are not accurate. Suc-

cessive interactions with a real system, especially in the domain of aggressive off-road

driving, require a robust hardware platform able to withstand constantly pushing the limits

of the system as well as the inevitable crashes during the optimization process.

We introduce, for the autonomous racing scenario, an optimization module that is able

to adapt the behavior of an underlying model predictive controller to suit the high-level task

2

Figure 1.1: Model predictive control, cost function optimization framework for optimizing a cost function
used by a model predictive controller by interacting with a system. For this work, the task of rally racing
is used with an AutoRally platform driven by the MPPI algorithm at the Georgia Tech Autonomous Racing
Facility.

objective through repeated interactions with the system. The platform we develop for the

domain of rally racing is the AutoRally robot. Given only the stochastic model predictive

controller with a pre-trained dynamics model and cost function optimized using interac-

tions with the system to generate lap times, we achieve a level of performance than exceeds

previous methods as measured by lap time. We investigate multiple representations for the

cost function as well as multiple methods to optimize the cost function. Additionally, we

compare the autonomous driving results with the performance of a human expert and other

agents operating the same platform.

1.1 Related Work

This thesis draws on prior work from autonomous systems, stochastic optimal control, and

stochastic optimization. There is a long history of custom, scaled autonomous testbeds.

We attempt to summarize and discuss some of the shortcomings. We have shown in previ-

ous work involving the MPPI controller with AutoRally at the Georgia Tech Autonomous

Racing Facility (GT-ARF) oval track, that the autonomous system can drive up to the me-

chanical limits of the system [8]. When a tube MPC formulation of the controller [9] is

3

used at the larger GT-ARF track that includes a varied layout of turns and straights, we

found empirically that no one set of hand-coded cost function parameters is sufficient for

the controller to drive up to the limits of the system all the way around the track so a

different approach is needed to reach the performance limit.

1.1.1 Scaled Autonomous Driving Platforms

It is vital to conduct extensive experimental testing to develop and validate technology ap-

plied to self-driving vehicles, but cost and safety considerations are major barriers that pro-

hibit routine testing and experimentation using full-scale vehicles, especially in tasks that

involve aggressive maneuvering such as racing. Large investments, often up to US$1 mil-

lion per vehicle, are required for vehicle development and testing, the maintenance of in-

frastructure and personnel, and the implementation of safety precautions, before any data

can be collected. No company, let alone university, is prepared to conduct tests at the limits

of performance where damage to the vehicle or injuries to the operator are very likely to oc-

cur. Autonomous vehicle researchers traditionally rely on custom platforms, often derived

from scaled vehicles, designed for one set of experiments. Below, we briefly summarize

some prior efforts in scaled autonomous vehicle research. This review of prior work pro-

vides context for the current activities. Full size platforms based on passenger vehicles are

not discussed in this section, as any attempt to summarize that ecosystem would be out of

date in a matter of months given the current pace of development.

Scaled platforms constructed from modified RC cars are popular in the academic and

hobby communities. These platforms are typically 0.2 m to 1 m long and weigh between

1 kg and 25 kg. Costs range from a few hundred to tens of thousands of dollars, largely

determined by the size, sensors, and computing. Construction, maintenance, and program-

ming is typically handled by a small team of students or researchers. Recently, several open

source projects released complete documentation and interface software, which is in con-

trast to the one-off nature of older work that often lacked enough information to replicate.

4

Documentation for open source platforms normally includes parts lists, build instruc-

tions, and interface software for the sensors and actuators. Availability of tutorials, simu-

lation environments, and public datasets vary by project. Common sensors include wheel

speed, inertial measurement unit (IMU), cameras, depth sensors, ultrasonic, and light de-

tection and ranging (Lidar) units. The target environment for these platforms is typically

indoors on a smooth surface. The Donkey Car [10] is an easy to build 1:16 scale au-

tonomous platform for the DIY Roborace events targeted at hobbyists. Onboard comput-

ing and sensing are a Raspberry Pi 3 with a matching wide angle camera. The Berke-

ley Autonomous Race Car (BARC) [11] is a 1:10 scale vehicle designed as a simple

and affordable research platform for self-driving vehicle technologies that has been suc-

cessfully used to demonstrate various control algorithms. The onboard ODROID-XU4

is similar in computational performance to the Raspberry Pi 3, and the sensor suite in-

cludes a hobby grade camera, IMU, four ultrasonic range finders, and Hall effect wheel

speed sensors. The F1/10 project [12] and accompanying Autonomous Racing Competi-

tion allows teams to race against one another using a common 1:10 scale platform devel-

oped at the University of Pennsylvania. Computing on the F1/10 platform is performed

by an Nvidia Jetson. The sensor suite includes a hobby IMU, compact indoor Hokuyo

2D Lidar, and optional Structure and Zed depth and motion sensing cameras. The 1:10

scale Rapid Autonomous Complex-Environment Competing Ackermann-steering Robot

(RACECAR) [13] from Massachusetts Institute of Technology is a platform for researchers

creating applications for self driving cars. RACECAR also uses the Nvidia Jetson for com-

puting, and includes the same Hokuyo Lidar and Zed stereo camera as the F1/10 platform.

Table 1.1 provides a comparison of these open source scaled platforms.

While all of these platforms are easy to build, moderately priced, and offer some on-

board sensing and compute capabilities, their design limits their use to smooth surfaces,

typically indoors. All of the platforms lack a global position system (GPS) device, which

is a common sensor for outdoor vehicles. Instead of GPS, global position information

5

Table 1.1: Comparison of open source scaled autonomous platforms. All platforms are based on 1:10 scale
radio controlled cars and include C++ and Python software interfaces that use the Robot Operating System
software libraries, except for the Donkey Car. The Donkey Car is 1:16 scale and includes a Python interface.
The build time and cost of each platform does not include 3D printed parts, which will vary based on the
printer used. In addition to the platforms themselves, the availability of a simulation world and public data
sets are indicated.

Platform Cost [$] Build Time [h] Weight [kg] Computing Simulation Data Sets
Donkey Car 200 2 2 Raspberry Pi Y Y
BARC 500 3 3.2 Odroid XU4 Y Y
MIT RACECAR 3,383 10 4.5 Nvidia Jetson Y N
F1/10 3,628 3 4.5 Nvidia Jetson N Y

can be provided by instrumenting the environment such as a VICON external motion cap-

ture system or beacons rigidly mounted around the environment. These systems restrict

the possible operating space to a couple hundred square meters because of sensor field of

view and resolution restrictions, and are priced in the tens of thousands of dollars for out-

of-the-box solutions. The chassis, mounts, and enclosures of the platforms are typically

not designed for repeated crashes and collisions that are inevitable when testing novel au-

tonomous vehicle technologies, so the delicate sensors and electronics are easily damaged

when something goes wrong. Onboard computing is inadequate for much of the state of

the art research because of size and power limitations. This necessitates significant code

optimization or offloading of computation to a remote computer. Off board computation

introduces its own set of problems including increased latency, dependence on a reliable,

high bandwidth wireless connection, which dictates the size and configuration of testing

environments. The limited payload capacity and power availability also severely limits the

ability to test new sensors such as a Lidar and high frame rate machine vision cameras

because the size, weight, and data rates quickly overwhelm the platforms.

Many one-off experimental platforms have been created for specific projects. In [14], a

model predictive control (MPC) algorithm running on a stationary desktop computer with

a motion capture system has been used to drive a custom 1:10 scale RC platform around an

indoor track with banked turns, jumps, and a loop-the-loop. Platforms were developed to

test autonomous drifting controllers in [15] and [11], and to push scaled autonomous driv-

6

ing to the friction limits of the system in [16]. A framework with multi-fidelity simulation

and accompanying hardware platform for use in reinforcement learning problems relating

to autonomous driving was presented in [17]. A 1:5 scale autonomous platform was devel-

oped to investigate stability control in [18, 19]. While these platforms were successfully

used for the experiments in their respective publications, there is not enough public infor-

mation available to be able to build, operate, and program one without essentially starting

from scratch.

Traditionally, scaled autonomous driving platforms were purpose-built for one experi-

ment, but a new wave of open source platforms are emerging. Still, none are robust enough

to survive repeatedly pushing the vehicle to its mechanical and software limits, let alone

operate in outdoor environments with the payload capacity to carry a variety of popular

sensors and powerful onboard computing. Scaled platforms therefore show great promise

in the wide variety of experiments they enable, but previous attempts fall short in terms of

design, fidelity, and repeatable performance.

Computer simulations offer an alternative to testing with full-scale vehicles or scaled

models. Indeed, the fidelity of computer simulations has improved significantly in recent

years [20, 21]. They can be used to generate an almost unlimited amount of simulated

driving conditions cheaply, but they cannot completely replicate the complex interactions

of an autonomous vehicle with the real world. For autonomous vehicles to be safe, the fail-

ures and unforeseen circumstances encountered during real world testing, many of which

are impossible to duplicate in simulation, must be overcome. Development and evaluation

of new autonomous driving technologies may not be based solely on computer simula-

tions, which may fail to capture critical aspects of the real world such as difficult driving

dynamics.

7

1.1.2 Autonomous Driving

Several different approaches have been taken to investigate the problem of aggressive au-

tonomous driving, and autonomous driving in general. In [laurense2017path, 22, 23],

analytic approaches are explored. The performance limits of a vehicle are pushed using

a simple model-based feedback controller and extensive precomputation of a racing line

to follow around a track. [14], showed the benefits of model predictive control on a 1:10

scale radio-controlled car following waypoints through a challenging obstacle course. The

benefits of real-time MPC in an outdoor, dirt environment are shown in [8, 9].

All of these methods rely on a fixed description of the task which is prespecified by

a human or extensive precomputations. In all cases, there is no opportunity to adapt per-

formance during additional interactions to improve performance. Further, models used

to precompute trajectories inevitably are brittle in the face of disturbances and unable to

account for changes to the environment.

More recently, [24] directly learns affordances necessary for autonomous driving by a

low level controller and [25] uses an end-to-end approach to learn a mapping from images

to steering commands from about 20 minutes of human driving. However, these end-to-end

approaches cannot be used to drive with a model predictive control framework such as [8]

used for aggressive control, and the lack interpretability of the final systems precludes their

usefulness for creating safer self-driving vehicles.

An analysis of expert human race car drivers was conducted in [26]. This work also

includes a public dataset of sensor and control information logged during testing. While the

data is valuable for training and testing a model offline, the testing platform is inaccessible

so new results cannot be generated. Driving behavior for a novice and expert given the

same task of driving as fast as possible in a circular pattern was compared in [27] along

with a method to instrument a full size car for data capture.

Some early evaluation and examples of autonomous driving systems were developed

at Carnegie Mellon University including Navlab [28, 29] and projects to understand high

8

speed autonomous navigation [30] and the combination of multiple goals to achieve a de-

sired task [31, 32].

1.1.3 Cost Function Optimization

A classical approach to optimization in the reinforcement learning community is pol-

icy gradient methods [33], of which finite-differencing methods are popular, also some-

times referred to as the simultaneous perturbation algorithm for stochastic optimization

(SPSA) [34]. SPSA is a straightforward algorithm to implement and can handle stochas-

tic and deterministic policies, but it is mostly limited to simulation with a deterministic

world. The parameter perturbations must be performed very carefully as bad choices tend

to cause instability in the system. Policy gradient methods also struggle to make optimiza-

tion progress in the face of noise in the real system. Therefore, policy gradient methods are

generally unsuitable for the application of aggressive off-road racing operating in the real

world with significant noise in the system.

More recently, the Cross Entropy Method (CE) has been used for motion planning [35]

and path integral policy improvement (PI2) [36]. Both are appealing sampling-based op-

timization method because they can handle arbitrary cost functions, which matches the

generality of the underlying model predictive path integral controller used to drive the Au-

toRally platform. A common criticism of CE is fast convergence, which can be mitigated,

to some extend, through covariance matrix adaptation, which sets the sampling covariances

at each iteration according to how large of a performance step was achieved. The result-

ing algorithm, known as Cross Entropy Covariance Matrix Adaptation (CE-CMA) [36]

works well with system noise and is much less sensitive to the initial choice and parame-

ter sampling scheme than policy gradient methods. A common criticism of the method is

premature convergence, potentially to a local minimum.

9

CHAPTER 2

THE AUTORALLY PLATFORM

Figure 2.1: Autonomous driving with AutoRally at the Georgia Tech Autonomous Racing Facility.

This section describes AutoRally [37], shown in Figure 2.1, a 1:5 scale robotics testbed

developed at Georgia Tech for autonomous vehicle research. AutoRally is designed for ro-

bustness, ease of use, and reproducibility, so that a team of two people with limited knowl-

edge of mechanical engineering, electrical engineering, and computer science can construct

and then operate the testbed to collect real world autonomous driving data in whatever do-

main they wish to study. Complete construction and configuration instructions for the

AutoRally platform are publicly available, and include all required computer-aided design

(CAD) files for custom part fabrication, a complete parts list, and wiring diagrams [38].

In addition, operating procedures, a simulation environment, core software and reference

controllers written with the Robot Operating System (ROS) [39] in C++ and Python, along

10

with a collection of human and autonomous driving data are publicly available [40]. To

date, the fleet of six AutoRally robots at Georgia Tech have collectively driven under au-

tonomous and manual control at the two GT-ARF tracks for hundreds of kilometers. The

complete system diagram for the AutoRally robot with a remote operator control station

(OCS) is shown in Figure 2.3.

Construction time for an AutoRally chassis is 40 hours, and 60 hours for a compute box.

The full platform construction time of 100 hours does not include custom part fabrication

time that depends on the tools available. AutoRally can take significantly less than 100

hours to construct if you already have experience with radio controlled (RC) electronics,

soldering, computer construction and wiring, or Ubuntu configuration. Conversely, the

platform can take much more time to construct if individual assemblies are not thoroughly

tested before integration, which can result in time consuming rebuilds during verification.

For fabrication of custom components, access to a 3D printer, laser cutter, water jet

cutter, and aluminum welding are suggested. If you do not have access to a 3D printer, all

custom parts provided as stereolithography (STL) files with the build documentation can be

fabricated by a 3D printing service, many of which are available online. If you do not have

access to a laser cutter, the custom foam and acrylic parts can be cut by hand with a blade

by using the provided portable document format (PDF) files printed on US Letter paper as

stencils. If you do not have access to a water jet for cutting aluminum parts or welding

equipment for aluminum, most local metal fabrication shops should be able to fabricate the

compute box enclosure and front brake bracket using the drawing interchange (DXF) files

and bend patterns included in the instruction materials.

As a research tool, AutoRally has been part of numerous publications [7, 41, 42, 8, 43,

9, 44, 45, 46, 37, 47]. The remainder of this chapter describes the main components that

comprise the AutoRally platform, broken into hardware and software sections.

11

(a) (b)

(c) (d)

Figure 2.2: AutoRally platform during autonomous experiments at the Georgia Tech Autonomous Racing
Facility tracks. (a) Airborne from bouncing over rough terrain. (b) Two platforms driving autonomously. (c)
At the end of a muddy day of testing. The platform carried 12 kg of mud stuck to the inside of the body and
chassis, increasing the total weight by almost 50 %. (d) AutoRally platform airborne during a jump.

12

2.1 Hardware

AutoRally is based on a 1:5 scale RC truck and is approximately 1 m long, 0.6 m wide,

0.4 m high, weighs almost 22 kg, and has a top speed of 90 kph. The platform is capable

of autonomous driving using only onboard sensing, computing, and power. While larger

than many other scaled autonomous ground vehicles, the platform offers a cost-effective,

robust, high performance, and safe alternative to operating full-sized autonomous vehicles

while retaining a large payload capacity. The AutoRally capabilities offer a large perfor-

mance improvement over traditional scaled autonomous vehicles without the need for large

infrastructure investments and safety considerations of full sized autonomous vehicles.

Figure 2.3: AutoRally system diagram. All major electronic system components and their connections to the
rest of the system are shown. The setup includes the AutoRally robot composed of a chassis and compute
box along with a remote operator control station connected by three wireless communication links.

13

2.1.1 Chassis

The chassis is designed as a self-contained system that can easily interface to a wide variety

of computing and sensor packages. Similarly to a standard RC car, the chassis can be driven

manually using the included transmitter. Computer control and chassis state feedback are

provided by a single universal serial bus (USB) cable connected to an onboard computer.

Feedback from the chassis to an attached computer includes wheel speed data, electronic

speed controller (ESC) diagnostic information, and the manually-provided actuator com-

mands read from the RC receiver.

1:5 Scale Radio Controlled Truck

Figure 2.4: Assembled AutoRally chassis.

The chassis is based on a HPI Baja 5SC RC trophy truck. Figure 2.4 shows the as-

14

sembled chassis with all modifications installed and the plastic protective body removed.

The total weight of the assembled chassis is 13 kg. The major upgrades from the stock

chassis are an electric powertrain conversion, front brake installation, and electronics box

replacement. The electric conversion replaces the stock 3 hp, 26 cc 2-stroke gasoline en-

gine with a 10 hp peak output electric motor and ESC from Castle Creations. Compared

to the stock engine, the electric motor is much more powerful, more responsive, and more

reliable. It also provides an integrated electronic rear brake, generates less heat and no

exhaust residue, and requires minimal maintenance. The motor and chassis electronics are

powered by two, 4-cell 14.8 V 6500 mAh Lithium-Polymer (LiPo) batteries connected in

series. A full charge lasts between 20 and 90 minutes, depending on usage. Front hydraulic

brakes are actuated by a separate brake servo.

Parts of the chassis structure were upgraded to handle the increased weight of the sen-

sor and computing package. The stock plastic steering linkage was replaced with billet

aluminum parts to withstand the increased steering torque of the upgraded steering servo

and weight on the linkage. The plastic side rail guards used as mount points for the com-

pute box were replaced with billet aluminum parts to carry the weight of the compute box

without deflecting. Axle extenders were installed to increase the track of the vehicle by

3.8 cm in order to improve lateral stability and make room to mount the front brakes and

the wheel rotation sensors.

The stock suspension springs were replaced with stiffer springs of similar overall di-

mensions to reduce body roll and improve driving dynamics. A full AutoRally platform

weighs 58% more than the stock chassis, so the spring constants were increased by roughly

the same percentage. Custom springs are prohibitively expensive, so off-the-shelf springs

were sourced as close to the desired dimensions and stiffnesses as possible. The front spring

constant increased from 8.48 lb/in to 15 lb/in and the rear spring constant from 11.17 lb/in

to 19.09 lb/in. The shock oil viscosity was also increased roughly 58% from 500 cSt to

850 cSt to properly damp the upgraded springs.

15

The stock 2-channel transmitter was replaced with a programmable 4-channel trans-

mitter as part of the electronics box upgrade. The first two channels control the steering

and throttle, respectively, and the remaining channels are used in the vehicle safety system

discussed in the Safety System section.

Sensors

To sense wheel speeds, a Hall-effect sensor and magnets arranged in a circular pattern

to trigger the sensor were installed on each wheel hub. The chosen sensor is a Hallogic

OH090U unipolar switch and the magnets are N52 grade 0.3175 cm diameter, 0.1588 cm

thick magnets. The magnet can trigger the sensor from up to 0.58 cm away. Larger mag-

nets could be used to increase the maximum tripping distance but the chosen setup works

reliably and fits easily in the wheel hub assemblies. Hardware timers in the Arduino Due in

the electronics box are used to accurately measure the time between magnets. Inter-magnet

timing information is translated to rotation rates and sent to the compute box at 70 Hz.

Inside the electronics box, the RC signals from the receiver are read by the Arduino Due

at 50 Hz and sent to the compute box so that, even under manual control, the control signals

sent to the actuators can be recorded. This is especially useful for collecting training data

where human control signals are required. The Due also receives diagnostic information

from the ESC that is forwarded to the compute box.

A Hemisphere P307 GPS receiver provides absolute position at 20 Hz, accurate to

approximately 2 cm under ideal conditions with real time kinematic (RTK) corrections

from a GPS base station. The GPS antenna is mounted on top of a ground plane at the back

of the chassis along with the receiver. The antenna is located at the maximum distance

from the compute box to reduce interference and maximize the view of the sky while still

being protected during rollovers. The ground plane is an acrylic sheet coated with a copper

conductive sheet and is designed to break before the GPS antenna or sensitive GPS board

in the event of a severe crash.

16

Actuators

The chassis requires one servo to operate the steering linkage and one to actuate the master

cylinder for the front brakes. Both servos use the 7.4 V digital hobby servo standard which

offers more precise, higher torque output, faster response time, and a reduced dead band

compared to traditional 6.0 V analog servos. All control signals, for both servos and the

ESC, are standard 50 Hz hobby pulse width modulation (PWM) signals with a duty cycle

from 1 ms to 2 ms, with a neutral value of 1.5 ms. The servos do not have position feedback.

Custom Components

The custom 3D printed ABS plastic parts installed in the AutoRally chassis are a new

electronics box, a GPS box, mounts for the back wheel rotation sensors and magnets, and

alignment guides for the front brake disks. ABS plastic is an easy and lightweight medium

for quickly manufacturing complex geometries for components that do not experience sig-

nificant loading. The electronics box replaces the stock one mounted in the front of the

chassis superstructure, just behind the steering servo and linkage. Contained within the

box are the radio receiver, Arduino Due, servo multiplexer, runstop relay, communication

board for the ESC, and servo glitch capacitor. The GPS box contains the GPS board, a

Cui 3.3 V, 10 W isolated power supply, a small fan, and the GPS antenna mounted to the

ground plane, which is the lid. Front brake disk aligners and mounts for the rear wheel

rotation sensors and magnets are installed on the chassis. The front brake disk aligners are

needed to keep the disks rotating smoothly because the front wheel rotation sensor magnets

unbalance the disks if left to freely rotate.

2.1.2 Compute Box

Most modern control and perception algorithms are CPU- and GPU-intensive. In order to

maximize performance and reduce hardware development and software optimization time,

the compute box employs standard components instead of specialized embedded hardware

17

typical of scaled autonomous platforms. The compute box design provides a robust enclo-

sure that mounts to the chassis and fits inside the stock protective body. The weight of the

empty compute box is 3.3 kg, and 8.8 kg with all components installed.

Enclosure Design

The enclosure is designed to withstand a 10 g direct impact from any angle without dam-

aging internal electronic components and fabricated out of 2.286 mm thick 3003 aluminum

sheet. The 10 g impact is larger than impacts experienced when testing at GT-ARF ac-

cording to IMU data that include collisions with fixed objects and rollovers. The box’s

impact tolerance was verified with finite element analysis (FEA) of the CAD model before

fabrication. The 3003 aluminum alloy was chosen for its strength, ductility, and relatively

light weight. The sides of the box are tungsten inert gas (TIG) welded to the bottom to

accurately join the large panels of relatively thick aluminum sheet without leaving gaps.

Aluminum dust filters coupled with a foam membrane allow continuous airflow through

the box while keeping out environmental contaminants such as dust and rocks. Combined

with the all-aluminum exterior, the assembled compute box provides excellent electromag-

netic interference (EMI) containment.

The cameras and lenses are mounted facing forward on the top of the box on an alu-

minum plate for rigidity and are protected by covers made from structural fiberglass that

does not affect the signal quality for the antennas mounted on the top of the box. Each cam-

era cover is secured to the compute box with four clevis and cotter pins for quick access to

the lens and cameras as needed.

Four 3D printed components are inside the compute box: a battery holder, a SSD holder,

a GPU holder, and a RAM holder. The battery holder tightly secures the compute box

battery and power supply. The battery slot is slightly undersized and lined with foam so

that the battery press-fits into the mount and can be removed for charging and maintenance

without removing any internal screws. The SSD holder is used to securely mount a 2.5 inch

18

SSD to the side wall of the compute box. The GPU holder fits over the GPU and secures it

to the main internal strut while still allowing adequate airflow.

The compute box attaches to the chassis with four 3D printed mounts attached to the

bottom of the compute box. The mounts fit over vertical posts on the chassis rail guards and

are secured to the chassis with a cotter pin though the mount and post. Special consideration

was taken to design the mounts as break-away points for the compute box in the event of

a catastrophic crash. The mounts are easy and inexpensive to replace and break away

before any of the aluminum compute box parts fail to protect the electronics within the

compute box. By applying lateral forces with FEA and the CAD models, the failure point

of the mounts is designed to be at 8 g of force on the compute box compared to the 10 g

design load for the rest of the compute box. In practice, the compute box mounts break

away during hard rollover crashes and leaves the internal components undamaged. All

panel mount components such as the power button, LEDs, and ports are dust resistant or

protected with a plug to keep out debris.

Sensors

A Lord Microstrain 3DM-GX4-25 IMU provides raw acceleration and angular rate data at

200 Hz (max 1 kHz) and fused orientation estimates at 200 Hz (max 500 Hz). The two

machine vision cameras are mounted on top of the compute box are Point Grey Flea3 FL3-

U3-13E4C-C color cameras with a global shutter that run up to 60 Hz. Lenses are 70 degree

field of view (FOV), 4.5 mm fixed focal length. Each camera connects to the motherboard

with a USB3.0 cable and is externally triggered by an Arduino Micro microcontroller with

the general purpose input/output (GPIO) connector. Both cameras are connected to the

same trigger signal which runs at a configurable rate. Internal battery voltage and computer

temperature sensors are used to monitor system health.

19

(a) (b)

(c) (d)

Figure 2.5: AutoRally mini-ITX compute box. (a) Assembled computer-aided design (CAD) model. (b)
Fully assembled compute box ready to be mounted on a chassis. (c) Front of compute box viewed from
above with motherboard and compute components visible. (d) Rear of compute box viewed from above with
power system components visible.

20

Table 2.1: AutoRally compute box components. Major computing and power parts are listed along with their
specifications.

Component Detail
Motherboard Asus Z170I Pro Gaming, Mini-ITX
CPU Intel i7-6700, 3.4 GHz quad-core 65 W
RAM 32 GB DDR4, 2133 MHz
GPU Nvidia GTX-750ti SC, 640 cores, 2 GB, 1176 MHz
SSD storage 512 GB M.2 and 1 TB SATA3
Wireless 802.11ac WiFi, 900 MHz XBee, and 2.4 GHz RC
Power supply Mini-Box M4-ATX, 250 W
Battery 22.2 V, 11 Ah LiPo, 244 Wh

Computing

A modular, reconfigurable onboard computing solution was designed that uses standard

consumer computer components based on the Mini-ITX form factor. Computing hard-

ware development outpaces advancements in almost all other components so the standard

form factor, mounting method, and data connections enables the reconfiguration of sensing

and computing payloads without mechanical modifications as requirements evolve. Ta-

ble 2.1 lists the details of the compute box components. WiFi is used to remotely monitor

high bandwidth, non-time critical data from the platform such as images and diagnostic

information. A 900 MHz XBee Pro provides a low-latency, low-bandwidth wireless com-

munication channel. The GPS on the robot receives RTK corrections from the GPS base

station, transmitted over the XBee radio, at about 2 Hz to improve GPS performance. The

XBee radio onboard the robot also receives a global software runstop signal at 5 Hz, and

the position and velocity of other AutoRally robots within communication range at up to

10 Hz.

The base station XBee, connected to the same computer as the base station GPS, trans-

mits the software runstop message and RTK correction messages to all AutoRally robots

in communication range. The runstop message allows all robots within radio range, each

running its own self-contained software system, to be stopped simultaneously with one

button.

21

2.2 Software Interface

The AutoRally software was designed to leverage existing tools wherever possible. All

computers in the system run the latest long term support (LTS) version of Ubuntu Desktop

to take advantage of the wide availability of compiled packages and minimal configura-

tion requirements. All AutoRally software is developed using the Robot Operating System

(ROS) [39]. ROS is a flexible framework for writing robot software. It is a collection

of tools, libraries, and conventions that aim to simplify the task of creating complex and

robust robot behavior across a wide variety of robotic platforms. Custom ROS interface

programs were developed for each AutoRally component that lacked a publicly available

interface. The time synchronization and safety systems presented in this section are crit-

ical components often overlooked in other scaled platforms, that enable a safe and robust

autonomous system. They are a combination of electronics and software. The software

interface, OCS graphical user interface (GUI), and simulation environment for the robot

are also presented.

2.2.1 Time Synchronization

Distributed system design requires robust time synchronization across all components in

the system. Accurate timing is especially important as asynchronous data and control rates

increase. Time synchronization is performed within the AutoRally system on all computing

and sensing components with a combination of Ubuntu tools. Figure 2.6 shows how timing

information is propagated for time synchronization. The time source for the entire sys-

tem is the GPS board on the chassis which emits National Marine Electronics Association

(NMEA) 0183 messages and a pulse-per-second (PPS) signal. The PPS signal provides a

marker that is accurate to within a few nanoseconds of the start of every second according

to GPS time. NMEA 0183 time messages corresponding to each PPS pulse provide tim-

ing information about that pulse. NMEA 0183 and PPS signals are widely supported by

22

AutoRally RobotOCS Computer

Chrony

IMU

Right
Camera

Arduino
Micro

Left
Camera

GPS

Chrony

Connection Types
GPS Time
PPS Signal
WiFi
Trigger

gpsd

System
Clock

System
Clock

Figure 2.6: AutoRally time synchronization diagram. Clocks on computers and sensors that support clock
control are synchronized to global positioning system (GPS) time with a combination of the pulse-per-second
(PPS) signal that marks the beginning of a second, and timing messages that identify which second the PPS
signal represents. On the AutoRally robot and operator control station (OCS) computers, the system utilities
gpsd and Chrony are used for clock synchronization. The two cameras rely on an external tigger signal to
capture frames at the same time. The Arduino Micro microcontroller generates the camera trigger signal.

devices that require time synchronization. The PPS signal is routed into GPSD running on

the motherboard, the IMU, and the Arduino Micro.

GPSD is a daemon used to bridge GPS time sources with traditional time servers. GPSD

runs on the compute box and receives the GPS PPS signal and NMEA messages. Pro-

cessed timing information is communicated through a low latency shared memory channel

to Chrony, the time server running on the computer. Compared to traditional Network Time

Protocol (NTP) servers, Chrony is designed to perform well in a wide range of conditions

including intermittent network connections, heavily congested networks, changing temper-

atures, and systems that do not run continuously. Chrony’s control of system time makes

time synchronization transparent to programs running on the computer. The system time

of the OCS computer is synchronized to the AutoRally robot by a second Chrony instance

on the OCS Computer that communicates over WiFi with Chrony on the robot.

The IMU provides a dedicated pin for a PPS input. In addition to the PPS signal,

23

it requires the current GPS second (GPS time is given in seconds since Jan 6, 1980) to

resolve the time of the PPS pulse. This value can be derived from the computer’s system

clock. The IMU uses these two pieces of information to synchronize its own clock and

time stamp each measurement with an accuracy of significantly less than one millisecond

to system time.

The cameras provide an external trigger interface to control when each image is cap-

tured. The Arduino Micro is used to provide the cameras with the triggering pulse at a

specified frame rate. Each time a PPS pulse comes from the GPS, a train of evenly spaced

pulses at the rate specified in the ROS system is sent to the cameras. The cameras images

are time stamped with the system time when they are received by the computer.

2.2.2 Safety System

The three layer AutoRally safety system is designed to remotely disable robot motion in

the event of any software or electronics failure. The three layers, shown in Figure 2.7,

are a wireless deadman relay located in the electronics box to disconnect the throttle sig-

nal, remote switching between autonomous and manual control with a PWM signal multi-

plexer, and a software based runstop message. The relay and autonomous/manual modes

are controlled by the state of buttons on the transmitter which circumvent the Wifi, XBee,

and software control on the compute box by using the additional RF link between the RC

transmitter and receiver located in the electronics box of the chassis. The deadman re-

lay monitors the quality of the incoming PWM control signal so that the throttle signal

is automatically disabled in the event of a signal failure between the transmitter and re-

ceiver. Additionally, the throttle signal is connected through the normally open contact of

the deadman relay so that the throttle signal disengages in the case of a power failure on

the robot.

Runstop is implemented in software by the AutoRally chassis interface program, shown

in Figure 2.8, using incoming runstop ROS messages to enable and disable software control

24

AutoRally Chassis

Autonomous ControlsManual Controls

Multiplexer

RC Relay

Steering
ESC

(Throttle)

RC
Transmitter

Front Brake

MicrocontrollerRC Receiver

Compute
Box

3

2
1 Signal Types

Wireless
Steering
Throttle
Front Brake
Control Mode
Throttle Enable

OCS Computer

Runstop Box

OCS GUI

runstop

Figure 2.7: AutoRally safety system. The human operated radio control (RC) transmitter sends signals to
the RC receiver in the AutoRally chassis. The RC receiver provides actuator signals from the human driver,
controls a safety relay to enable and disable the throttle signal into the electronic speed controller (ESC),
and switch between human and computer control. Information relating to the state of the safety system is
presented to the human operator in the operator control station (OCS) graphical user interface (GUI). Layer
1 of the safety system, shown in purple, is the throttle relay that acts as a wireless throttle live man switch.
Layer 2, shown in green, allows seamless, remote switching between autonomous and manual control modes.
Layer 3, shown in blue and yellow, is the software runstop used to disable autonomous motion.

25

of the robot. Any program in the AutoRally system can publish a runstop ROS message.

The chassis interface determines whether autonomous control is enabled with a bitwise OR

operation of the most recently received runstop message from each message source. By

default, the OCS GUI and runstop box send runstop messages. The OCS runstop message

is controlled by a button in the GUI and is transmitted over WiFi from the OCS computer

to the robot. The runstop box sends a runstop message, controlled by the button state of

the runstop box, over XBee to the robot. Data transmitted over the base station XBee

is delivered to every robot within communication range. This means that, even though

there could be multiple AutoRally robots running at the same time, each with its own

self-contained ROS system, the runstop box signal controls autonomous motion for all

of the robots simultaneously. The AutoRally robot does not have a true emergency stop

that disconnects actuator power because the size, cost, and power requirements for such a

system do not fit within the current package. In practice, the three layer AutoRally safety

system allows an operator to disable motion and assume manual control of the platform

without delay.

2.2.3 AutoRally Chassis Interface

The AutoRally chassis interface software is implemented as a ROS nodelet and commu-

nicates with the micro-controller in the chassis electronics box through a USB cable. The

interface sends actuator commands to the chassis and receives chassis state information

including wheel speeds, the human provided control commands read from the RC receiver,

ESC diagnostic information, and safety system state information.

The throttle, steering, and front brake of the robot are controlled by 50 Hz PWM signals

standard in the hobby RC community. The AutoRally chassis software interface provides a

calibration layer above the PWM signal for standardization across platforms and to prevent

physical damage so commands do not exceed the mechanical limits in the steering and

brake linkages. The chassis calibration is stored in a file loaded at runtime by the chassis

26

AutoRally Chassis Interface

runstopchassisState

Chassis Command Priorities

Priority Commander

0 controllerA

1 joystick

2 OCS

4 RC

Chassis Calibration (PWM μs)

Actuator Min Center Max

Steering 1000 1520 1980

Throttle 1050 1514 1965

Front Brake - 1500 2000

Runstop

Sender Value

runstop true

OCS true

Joystick false

Chassis Commands

Commander Data

RC

steering

throttle

front brake

controllerA

steering

throttle

front brake

Actuator
Commands

Data loaded from files
Data from ROS

Program Logic

chassisCommand

Signal Types
ROS topics
Serial Data

ESC Data,
wheel speeds,
RC commands

wheelSpeeds

AutoRally Chassis

ROS System

Figure 2.8: AutoRally chassis interface program information flow. The program, which runs on the compute
box onboard the robot, uses a combination of configuration files loaded at runtime and messages arriving
from the Robot Operating System (ROS) interface to send the highest priority actuator commands over a
universal serial bus (USB) connection to the microcontroller in the AutoRally chassis. Simultaneously, the
AutoRally chassis sends state information back to the chassis interface program that includes electronic speed
controller (ESC) data, wheel speeds, and human provided actuator commands from the radio controlled (RC)
receiver. The information received from the chassis is published into the ROS system, and can be viewed in
the Operator Control Station (OCS) graphical user interface.

27

interface software. Specified in the file is the minimum, center, and maximum pulse width

for each actuator in µs. When properly calibrated, a /chassisCommand ROS message on

any AutoRally platform will elicit the same behavior. For example, commanding a steering

value of zero will make any calibrated AutoRally platform drive in a straight line. Valid

actuator command values in the /chassisCommand message are between [-1,1]. A steering

value of -1 will turn the steering all the way left and a value of 1 will steer all the way right.

A throttle value of -1 is full (rear) brake and 1 is full throttle. The front brake value ranges

from 0 for no brake to 1 for full front brake while negative values are undefined.

On startup, the chassis interface loads a priority list of controllers from a configuration

file. The priority list is used while operating to determine which actuator commands ar-

riving from various controllers are sent to the actuators. The priorities encode a hierarchy

of controllers and define a mechanism to dynamically switch between controllers and use

multiple controllers simultaneously. This system allows high priority controllers to sub-

sume control from lower priority controllers, as desired. Additionally, each actuator can be

controlled by a separate controller such as a waypoint following controller for the steering

and a separate velocity controller for the throttle and front brake.

2.2.4 Operator Control Station

The OCS GUI is a tab-based program built using QT that presents real-time diagnostic

information, debugging capabilities, and a software runstop to a remote human operator for

the AutoRally robot. Wheel speed data, real time images from the onboard cameras, and all

diagnostic messages from the ROS /diagnostics topic which contain detailed information

about the health of running nodes are displayed. Diagnostic messages are color-coded by

status and grouped by source for fast status recognition by the human operator. All of the

data between the OCS GUI running on a laptop and the robot travels over a local WiFi

network.

The OCS GUI also provides an interface for direct control of the robot’s actuators

28

Figure 2.9: Operator Control Station (OCS) graphical user interface (GUI) that display diagnostic, sensor,
and actuator information in real time to a remote operator, captured during autonomous testing.

via sliders. While this interface is not appropriate for driving the car, it is used to debug

software and hardware issues related to the actuators.

2.2.5 Simulation

Despite the robust AutoRally hardware platform, there are still high-risk maneuvers and

software testing that are best run in a simulation environment before executing them on the

physical platform. A simulation also allows the careful control of environmental parame-

ters for gathering statistical data which requires performing repetitive or time-consuming

experiments that would take weeks or more of testing on the physical platform.

The simulation environments, shown in Figure 2.10 are based on Gazebo. Gazebo is

a robot simulator with tight ROS integration that includes graphical interfaces and multi-

ple physics engines to choose from. The AutoRally Gazebo simulation environments and

robot model match their real-world counterparts and support the same software interface

through ROS messages as the real hardware. The simulated track environments are the

29

(a) (b)

Figure 2.10: Simulation environments for AutoRally built using Gazebo and modelled after the Georgia
Tech Autonomous Racing Facility tracks. Multiple AutoRally robots can be simulated together and each
simulated platform has the same Robot Operating System (ROS) messaging interface and simulated sensors
as the physical AutoRally platform. All simulation vehicle parameters such as mass, moments of inertia,
and sensor placement and characteristics are set according to their experimentally determined values from a
physical robot. (a) Small oval track. (b) Large track.

same size and configuration as the GT-ARF small oval and large tracks. For the simulated

AutoRally platform, the steering servo and Ackermann linkage of the are approximated by

ROS joint effort controllers that apply torque to turn each front wheel about the vertical

axis. The no-load rotation speed, maximum torque, and joint limits used in simulation

are measured from the steering servo specification provided by the manufacturer and by

measuring the steering linkage angles relative to the chassis center line. The powertrain is

approximated by another ROS effort controller that applies torque on the rear axle of the

Gazebo model. The maximum applied torque and angular velocity are calculated from the

motor manufacturers’ specifications. The differential in the physical platform is neglected

in the simulation. The suspension for each wheel is modeled with a proportional-integral-

derivative (PID) controller on a linear actuator with a target set-point which determines

the ride height of the vehicle. The I and D terms are calculated from the dimensions and

coefficients of the robot’s spring configuration.

The simulation and physical platform implement identical ROS messaging interfaces

to enable seamless software migration between hardware and simulation. Simulated GPS,

IMU, and cameras come from the hector gazebo plugins ROS package from TU Darm-

30

stadt [48] and are configured according to the specifications of their physical analogs. We

developed our own wheel speed sensor node, as no similar functionality was publicly avail-

able.

Overall, Gazebo is not considered a high fidelity simulator with respect to graphics ren-

dering and physics realism for autonomous vehicles, especially as the vehicle approaches

and surpasses the friction limits of the system. The main reason for using Gazebo as the

simulator was as part of the hardware and software infrastructure that allows for a smooth

testing of software with ROS and the AutoRally platform, and to easily debug the control,

perception, and communication software. The fidelity of computer simulations has im-

proved significantly in recent years, but they still cannot completely replicate the complex

interactions of an autonomous vehicle with the real world. Specifically for the task of rac-

ing on dirt roads, the tire-ground interactions are not handled well by the physucs engine.

Therefore, simulations are a helpful, but not final, step on the path to proving self-driving

technologies in the real world.

2.3 Georgia Tech Autonomous Racing Facility

To enable testing with AutoRally platforms, Georgia Tech Autonomous Racing Facility

(GT-ARF) has been created with two tracks on Georgia Tech propetry. Both tracks have

the same dirt surface and boundaries made of six inch diameter black corrugated pipe and

infrastructure on site such as power, water, and storage for equipment. An oval track is

located on main campus and a large track with much more complex features, is located

at Gerogia Tech’s Cobb County Research Facility, which is a 20 minute drive North from

main campus. The oval track covering an area of 30 m by 15 m, with a track surface 3

m wide and centerline length of 68 m. The second track, which is much larger and the

location for the experimental results with the AutoRally platform in this work, is designed

to have a variety of road features, and covers an area of 42 m by 30 m, and has a track

surface 4.5 m wide and a centerline length of 183 m.

31

Figure 2.11: Georgia Tech Autonomous Racing Facility oval track located on main campus.

Figure 2.12: Georgia Tech Autonomous Racing Facility large track located at Cobb County Research Facility.

32

CHAPTER 3

STOCHASTIC MODEL PREDICTIVE CONTROL

In order for AutoRally to be driven autonomously, control method is required that can han-

dle the nonlinear dynamics, general cost criteria, and operate in real time onboard the Au-

toRally platform. Model predictive control (MPC) is an increasingly active area of research

in control theory for nonlinear systems [49]. In traditional MPC problems, the optimization

is tasked with a stabilization or tracking task, but in the case of autonomous rally racing

the task is much more complicated. This objective complexity increases the computa-

tional cost of the optimization, a major problem since optimization must occur in real time.

A tractable approach is receding-horizon differential dynamic programming (DDP) [50],

which is capable of controlling complex animated characters in realistic physics simula-

tors and has been shown to work well with AutoRally [44]. However, DDP still requires

a differentiable cost function, which restricts the ability to encode hard constraints such

as enforcing the constraint of staying within track boundaries for the racing case. A more

flexible MPC method is model predictive path integral (MPPI) control, a sampling-based

algorithm which can optimize for general cost criteria, convex or not, and has been shown

to work well on a variety of tasks in simulation including the canonical cart-pole swing-up

task, quadcopter navigation, helicopter landing, and in the real world driving aggressively

in an off-road setting with AutoRally [7, 8, 46].

The remainder of this chapter presents MPPI with an emphasis on the task descrip-

tion, encoded as a cost function, used during online optimization of control plans in the

next chapter. MPPI is the control method we have selected to operate AutoRally in the

autonomous rally racing domain and we have implemented and tuned the MPPI controller

on the AutoRally platform at GT-ARF.

33

Figure 3.1: Model predictive path integral control. MPPI is a stochastic nonlinear model predictive control
method that optimizes control plans on-the-fly and can handle general dynamic models and cost criteria. The
algorithm executes the first step of its control plan, receives state feedback from the system, then re-optimizes
the control plan using a dynamics model of the system and task description, encoded as a cost function.

3.1 Model Predictive Path Integral Control

In MPC, optimization and execution take place simultaneously: a control sequence is com-

puted, and then the first element of the sequence is executed. This process is repeated using

the un-executed portion of the previous control sequence as the importance sampling tra-

jectory for the next iteration. The key requirement for sampling-based MPC is to produce a

large number of samples in real time. Sampling is performed in parallel on a graphics pro-

cessing unit (GPU) using Nvidia's CUDA architecture. Additionally, MPPI does not rely

on derivatives, and does not impose any restrictions on the structure of the cost function or

dynamics model.

34

3.1.1 Dynamics Model

Prior work used a dynamics model inspired by a a bicycle model augmented with slip terms.

This model was fit from data collected on the real system, and was used, in part, because

the original MPPI derivation required the dynamics model to be control-affine. While

physics-based model proved useful, it was not very accurate on dirt surfaces and struggled

to capture the wide range of dynamics exhibited by AutoRally across all regimes in the

high-speed dirt driving task including sliding. The more general information theoretic

derivation of MPPI [8], eliminated the control-affine restriction and demonstrated that a

neural network dynamics model can provide a comparable level of performance to the

physics-based approach. The current version of MPPI uses a vehicle dynamics model

represented as two-layer neural network, learned from data, to optimize a series of control

actions under a given cost function at 50 Hz on a low power desktop GPU.

To train the model, we collected a system identification dataset of approximately 30

minutes of human-controlled driving at speeds varying between 4 and 10 m/s at the large

GT-ARF track. The driving was broken into five distinct behaviors: (1) normal driving at

low speeds (4–6 m/s), (2) zig-zag maneuvers performed at low speeds (4–6 m/s), (3) linear

acceleration maneuvers which consist of accelerating the vehicle as much as possible in

a straight line, and then braking or coasting to a stop, (4) drifting maneuvers, where the

pilot attempts to slide the vehicle as much as possible, and (5) high speed driving where

the pilot simply tries to drive the vehicle around the track as fast as possible. Each one

of these maneuvers was performed by a skilled, but non-expert driver, for three minutes

while moving around the track clockwise and for another three minutes moving counter-

clockwise.

35

3.1.2 Cost Function

The cost function is of particular interest to this work. The cost function for the task of

driving continuously around a dirt track consists of several parts:

q(x) = ω1CT (px, py) + ω2(vx − vdx)2 + ω30.9tI + ω4

(
vy
vx

)2

. (3.1)

where term (1), CT (px, py), is the positional cost of being at the body frame position

(px, py). This term is currently determined using the estimated vehicle state and a pre-

surveyed map. Term (2), (vx − vdx)2, is a cost for achieving a desired forward speed, in the

body frame, vdx, set by the operator and fixed for the duration of a test. Term (3), I , is an

indicator variable which is turned on if the track cost, roll angle, or heading velocity be-

come too high, and (4),
(
vy
vx

)2
, is a penalty on the slip angle of the vehicle. The coefficient

vector used in our experiments was w = (200, 4.25, 10000, 100). Note that the first two

terms encode the objective of staying on the track surface and traveling at a desired speed.

The last two terms penalize undesirable behavior such as driving on to non-driving surface,

rolling over, or sliding out, and are trivial to compute given the vehicle’s state estimate.

During the cost function optimization work in the next chapter, we look to optimize

the speed cost component in the cost function. The other terms in the cost function are

not optimized because the task constraints do not change: the robot is still not allowed

to crash or slide out, which would change the direction of travel around the track, for

autonomous rally racing. All other parameters that influence the behavior of the controller

remain fixed for all tests, including the sampling variances for throttle and steering within

the rollouts, and the terminal cost of each rollout. This is due to our exploration of cost

function optimization as a black box optimization tool for an MPC. If components of the

MPC are changing during optimization, that would create a non-stationary distribution we

are trying to optimize for, which is a potential area for future investigation, but not the focus

of the work contained in this thesis.

36

3.2 Cost Function Representation for Optimization

An update to the form of the cost function used in prior work is required to use MPPI in the

cost function optimization framework. The task constraints encoded in the cost function,

the crash and slip penalties, are kept the same because, for the task of racing, the vehicle

still cannot crash or change direction of travel on the track. Prior work represented the

speed cost as ω2(vx − vdx)2, penalizing deviation from a desired speed single value set by

the human operator, that is fixed for the duration of an experiment. In practice, the value

was used as a desired upper speed limit for the vehicle during a testing. This worked well

for the simple oval track in simulation and the real world because the track has a relatively

narrow speed range from 5.5 m/s on the turns to 10 m/s on the straight. However, the single

speed target value limits performance when testing at the large CCRF track that includes

a variety of track features. On the large track, the possible velocity range is much wider,

from approximately 3 m/s around a hairpin turn, to at least 13 m/s on the longest straight.

Currently, the upper speed limit for the straight is not known. The single speed target set

around around 8 m/s for the large track results in MPPI successfully navigating the hairpin,

but generates slow (large) lap times by traveling at speeds well below the limits of the

system on the straights. Setting the speed target close to the expected maximum achievable

speed on the straight causes the speed cost term to overwhelm the other cost terms within

MPPI, which results in the vehicle crashing off the track when attempting to navigate turns

at speeds that exceed what the algorithm predicts are possible.

An alternative speed cost function could be to use a L1 norm instead of L2, similar to

what was used in Tube-MPPI /citewilliams2018robust, which took the form ω2

∣∣∣vx − vdx∣∣∣,
and used a target speed, vdx = 25 m/s for experiments. This reformulation allows for a con-

stant gradient relative to the desired speed, so that setting a high target speed does not cause

the optimization to just focus on achieving a high speed to the detriment of the other task

objectives and constraints in the cost function. In the case of an MPC where the dynamics

37

model is very accurate, the optimization is then left to choose the actual speed to drive. In

practice this works well, as measured by lap times, but results in brittle performance that

requires careful tuning of cost function component weights and results in the MPC being

prone to getting stuck in local optima due to a lack of meaningful gradient information. The

L1 representation for speed cost would also not be desirable for cost function optimization

because, by design, changing the value does not provide meaningfully different informa-

tion to the MPC. The purpose of an L1 representation serves the opposite purpose of our

goal in cost function optimization: determine precisely what speed the vehicle should be

traveling at each point on the track. Instead, it provides a weak signal to generally travel

at a higher speed, while passing off the determination of the exact speed to travel to other

parts of the MPC.

One possibility for cost function optimization is to use a L1 speed cost component

would be to optimize the component weight, ω2, instead of the desired speed, which would

be set to a speed higher than what is known to be possible. This would be changing the slope

of speed cost, instead of the zero crossing in the case of changing the target speed. While

experiments in simulation indicate that it is possible to perform this type of cost function

optimization with MPPI, it tends to push the dynamics model into unstable driving regimes

that result in degenerate behavior instead of accomplishing the task such as stopping on the

track or spinning in tight circles indefinitely. The relationship between the cost function and

unstable modes of the neural network dynamics model within MPPI was not investigated

here as it is outside of the scope of this work to use MPPI as a MPC for the purposes of

cost function optimization.

The cost function representation that will be used keeps the L2 form and replaces the

desired speed value with a speed cost function, CS , that parameterizes the speed cost with

the vehicle x and y position in a local coordinate frame like the track cost function and

38

additional set of model parameters θS

q(x, θ) = ω1CT (px, py) + ω2(vx − CS(px, py, θS))2 + ω30.9tI + ω4

(
vy
vx

)2

. (3.2)

Using this updated cost function, the cost function optimization problem can be posed

as finding the parameters θ∗ = θ∗T , θ
∗
S that results in the minimum lap time, t∗lap, when used

by the MPPI algorithm to drive AutoRally around a track

J(θ∗) = arg max
θ

(MPPI(θT , θS)) . (3.3)

A diagram of this optimization is shown in Figure 1.1. Note that there are two different

optimization loops in this setup. The first is MPPI optimizing control plans at 50 Hz using

the cost function and dynamics model to drive AutoRally. The second, that the next chapter

focuses on, is the cost function optimization, that occurs on the time scale of lap times, and

can be viewed as a meta-optimization for the MPC. This hierarchical optimization is in

contrast to a more traditional reinforcement learning approach that could replace all of

MPPI with a neural network and then attempt to directly optimize the parameters of the

neural network. This approach would not be tractable on a real system because of the

number of interactions (laps) that would be required, and it is not apparent how to create a

parameterization of the lap time that we could optimize over.

39

CHAPTER 4

COST FUNCTION OPTIMIZATION

In this chapter, we present a methodology to automatically tune a cost function used by a

MPC through interactions with the system. This work specifically investigates replacing a

hand-coded task description, or cost function, that the MPPI MPC uses with one optimized

automatically through interactions with a system. Another view of this methodology is

as a hierarchical cost function optimization where the inner loop is the MPC optimizing

control plans in real time, which is on the order of 50 Hz, to drive AutoRally around an

environment. The second level of optimization works on the timescale of laps, which range

from around 10 to 30 seconds to complete in the available environments, and optimizes

components of the cost function using lap times as the reward signal.

An analogy to expert drivers is that of a racer preparing and then competing in an

event. When a professional driver arrives at a track, they bring with themselves years of

training and practice and racing knowledge for how best to approach the track. In the

model predictive control, cost function optimization (MPC-CFO) framework, this can be

thought of as the MPC. Before a race begins, each driver performs a series of practice

laps to specialize their skills to the particular track, driving conditions, and vehicle for the

race. This specialization by the human driver for the purposes of attaining the highest level

of performance on a track is analogous to the cost function optimization portion of the

MPC-CFO framework. In essence, the goal is the opposite of generalization: take all prior

knowledge of a capable driver and perform a limited number of additional interactions with

the system in the deployment environment to tailor performance as much as possible.

In the remainder of this chapter, we explore various ways to represent the speed cost

component of the cost function for the task of rally racing, the stochastic optimization

methods used to perform the cost function optimization, and experimental results on the

40

AutoRally platform in simulations and the real world. For all representations presented in

this work, the vehicle position px, py is at the body frame of the AutoRally platform and is

in a fixed, local coordinate frame with the east-north-up convention. The velocities, vx, vy,

used in the cost function are in the body frame.

4.1 Cost Function Representations

A key question we seek to investigate in this work is what type of cost function component

representation enables task performance improvement for the task of racing. Specifically,

we will be dealing with the speed cost component, CS , of the MPPI cost function, which

can loosely be interpreted as a desired speed for the vehicle to drive. In all previous work

the desired speed was a single value determined by a human operator. In practice, this speed

cost acted as a loose upper speed bound when operating on a track. The single value target

speed will be used as the baseline comparison method when evaluating representation. Two

other representations based on radial basis functions RBFs will be explored that allow for

increased representational power to capture how the desired speed varies around a track

while retaining relatively low model complexity.

All previous versions of MPPI assume static cost function components that are loaded

at run time and did not support cost function component modification while the controller

runs. A new interface was added to MPPI to enable dynamic cost function loading for

this work. The interface allows ROS Image messages to be sent to the controller using the

standard ROS publisher-subscriber paradigm and standard image format where each pixel

is represented by one byte. This paradigm is consistent with how the AutoRally system

is designed and allows for easy integration into the existing software stack. The imple-

mentation also allows for a clean separation in execution of the cost function optimization

and controller driving the robot as depicted in the MPC-CFO diagram in Figure 1.1. The

remainder of this section discusses the pixel-based cost function form required by MPPI

in order to run and the RBF-based cost function representations used in the cost function

41

optimization framework.

4.1.1 Image

Because the MPPI controller is implemented in CUDA and runs on a GPU, we must keep

in mind the form that the cost function must take for use by the MPC running on the

robot. The cost function for MPPI is stored in GPU texture memory, and can be efficiently

indexed when it is in a 2-dimensional array that can be thought of as a top-down view of

the environment, where the value of each pixel represents the cost function component at

that point. This means that in practice, a parameterized model can be used to represent cost

function components during cost function optimization, but then for use by MPPI on the

GPU these cost components must be sampled out to a 2-dimensional array and passed down

to the controller for use. This array also allows for efficient look-ups on the GPU, which

is a requirements because the cost function is evaluated over a million times per second by

the controller. The cost function is evaluated at each of the 100 time increments for each of

the 1920 rollouts MPPI computes per iteration, where runs at 50 Hz. All together, the cost

function is evaluated almost 10 million times per second.

All cost function component images for use by MPPI at simulated and real versions of

the CCRF track are 1,000 by 900 pixels, at a pixel density of 20 pixels per meter. Each

pixel is represented as a one-byte unsigned integer with valid integer values of 0 to 255. A

scaling factor parameter is used in the representation to scale the pixel values to meters per

second that the representation expects. Using a scaling factor of 10 allows for one decimal

point of precision and speeds in the range of 0.0 to 25.5 m/s. This range is sufficient to

represent roughly double the range of possible speeds in our testing environments, which

have maximum speeds of roughly of 14 m/s. From previous hand tuned experiments with

MPPI and AutoRally, one decimal place is sufficient precision for the purpose of setting a

target speed. The image size allows MPPI to optimize for tracks that cover a 50 m by 45 m

area. In practice, the discretization and overall size of the environments are selected by

42

Figure 4.1: Example fixed speed cost component visualized as an image with track boundaries overlaid. The
value of each pixel is the cost at that location in the local fixed coordinate frame. Large GT-ARF cost map.

the MPPI designers. While the image representation allows for intuitive understanding of

the components by humans, it would not be practical for direct optimization for the task of

racing. Working with the image representation for the CCRF track, the optimization would

have to operate on 900,000 parameters per cost function component image. That parameter

space is hopelessly large give that we are limited to around 100 samples per condition in

the real world for our task, where each sample represents a complete lap around a track.

These limitations are due to the time it takes to collect data, longevity of the hardware,

and environmental degradation (ruts forming) caused by repeated hard accelerations on

dirt surfaces. Further, many of the pixels represent regions outside of the driveable surface

in an environment, so no direct interactions with large portions of an image cost function

representation are possible.

An example speed cost image for the GT-ARF large track track for a constant target

speed of 6.5 m/s is shown in Figure 4.1 with the track boundaries overlaid. The track

43

boundaries are automatically generated from GPS survey data collected at the real track.

Cost function component images are interchangeable between all environments because

the simulation world share the same local coordinate frame origin as the real world.

4.1.2 Radial Basis Function

An alternative representation to the single speed target and image representations would be

one with more representational power offered by the single speed target value, but require

orders of magnitude fewer parameters than the number of pixels in the image representa-

tion. Gaussian radial basis functions (RBFs) are a representation that we investigate here

to model the speed cost component. A single Gaussian RBF has the form:

K(p, h, µ, σ) = he−
‖µ−p‖2

2σn , (4.1)

where p is the evaluation point, h is the weight, µ is the mean, and σ is the standard

deviation, or size, of the RBF. N RBFs can be combined with a background value similar

to the single speed value, to create a cost function speed model. The resulting model has

the form

CS(p) = B(p) +
N∑
n=1

hne
− ‖µn−p‖

2

2σn , (4.2)

where p = (px, py) is the feature vector representing the evaluation point, h is the weight

of the RBF, and ‖µn − p‖2 is the squared Euclidean distance between the current RBF and

the sample point. The term B(p) is a background term to provide support for the model.

If B(p) is not used, areas within the parameter space that do not have any support from a

RBF evaluate to 0, which for the speed cost will cause the robot to stop indefinitely during

optimization. For initialization, the background is initialized to a constant value. During

optimization, the RBFs then represent the deviation from the background portion of the

model. An example RBF grid speed cost function for the GT-ARF large track track is

shown in Figure 4.2. The coordinate system used for the location of the RBF in this model

44

is the local coordinate frame of the track, which can be transformed into pixel location with

a simple change of basis using the pixels per meter and origin location infromation for a

track. The model size is 1+4N , whereN is the number of RBFs. The number of RBFs can

be be chosen either automatically through a search, or determined by the operator based

roughly on the number of driving features such as turns and straights that make up the

environment. No prior knowledge of track geometry is explicitly encoded in the model, so

the RBF locations are distributed uniformly around the space for initialization. In practice,

the number of RBFs chosen are 16, 25, or 36, which creates models with 65, 101, and 145

parameters, respectively.

Figure 4.2: Grid radial basis function speed map represented as images for the large CCRF track. The value
of each pixel is the cost at that location in the local fixed coordinate frame.

While the coordinate system of the grid RBF representation allows for efficient integra-

tion with the MPPI algorithm, and is intuitive for the cost function designer, there are two

drawbacks that we encountered during experiments. First, many of the parameters repre-

sent regions of the space that are not driveable area, so perturbations to those parameters

45

during optimization do little to effect task performance. One possibility would be to clip the

representation to only the track surface using the known track boundaries, but that would

require us to include prior knowledge of track geometry into the representation, which we

specifically want to avoid, since this would be duplicating the track boundary information

already present in the track cost component. Second, the grid representation allows track

sections that are close to each other in space may be far away from each other when driv-

ing around a track, but their close proximity in the representation’s coordinate space causes

them to interfere with each other during the optimization, which leads to premature conver-

gence and incorrect optimization results. An example is a hairpin turn that butts up along a

very long straight. The target speed along the straight will be very high relative to the tight

turn, but because they are close together in coordinate system used, the tight turn can cause

a portion of the long straight to have a slow section.

Figure 4.3: Track centerline spline, shown in green, along with inner and outer track boundaries. The track
boundaries are computed from a GPS survey collected at the CCRF large track. The centerline spline is
computed as the middle of the two boundaries.

To address these shortcomings of the grid RBF representation, we propose to use a new

coordinate system, based on the centerline of the track, for the speed cost representation.

46

Figure 4.4: Track centerline radial basis function speed map represented as images for the large CCRF track.
The value of each pixel is the cost at that location in the local fixed coordinate frame.

This centerline RBF representation reduces the model dimensionality by one per RBF by

only having one position parameter, which represents the distance along the spline that the

RBF is located. This centerline distance ranges from zero to one, where zero represents the

starting line of the track. As the position value increases, the RBF location moves along

the centerline of the track in a counter clockwise direction. A centerline representation

allows us to implicitly take into consideration the geometry of the track through the spline

fitting process, without having to enforce any track geometry in the representation. In other

words, our representation maintains generality by rolling the specific track geometry into

the change of coordinates that takes place when creating the speed cost image for use by

MPPI from the speed cost model.

The centerline spline can be fit from the surveyed track boundaries by sampling the

boundary splines at regular intervals, interpolating the position of the middle point, and

then spline the computed middle points. The centerline spline representation also acts as

47

the coordinate transformation method to move between the spline coordinate system that

is single dimensional from 0 to 1, and the image coordinate system. A spline of degree 10

has been found empirically to work well for all of the tracks that have been evaluated to

date, and an example is shown in Figure 4.3. The centerline RBF representation eliminates

the possibility for unrelated track features that are close in our final coordinate space to

interfere with each other over the course of cost function optimization. The centerline

model size is 1 + 3N , where the first parameter is the background speed and N is the

number of RBFs. In practice, the number of RBFs chosen should be a function of the

number of distinct driving features on a track, but values in the range of 12 to 25 have

been found to work well. Even though no samples are collected where the vehicle drive on

non-track regions, the rollouts that MPPI computes often results in the vehicle departing

the track. While these rollouts incur a crash penalty, it was found that a non-zero target

speed in non-track regions improves performance, especially in difficult sections of a track

where many of the rollouts computed by MPPI end up off of the track.

In summary, there are three speed cost representations that are explored: the single

speed target from prior work will act as a baseline, the grid RBF method, and the track

centerline RBF representation.

4.2 Cost Function Optimization Methods

This section describes the cost function optimization methods investigated as part of the

MPC-CFO framework. Building on top of the possible representations for cost function

components, the goal is to use optimization methods that do not restrict the form of cost

function representations, can optimize models that have 10s to low 100s of parameters in

real time, and can function in the face large amounts of system noise and with relatively

few samples. For the purpose of the task of racing, real time means that all required com-

putations must be completed in less than one lap, which can range from around 10 to 30

seconds. This is a practical limitation for data collection so that the robot can run continu-

48

ously without having to drive a lap and then wait some time for computations to complete

before continuing again. Gradient-based methods are not suitable for cost function opti-

mization for all of those reasons, the most prominent is the inability to deal with relatively

high-dimensional models and handle significant system noise. Therefore, we will explore

using two different sampling-based optimization methods in the MPC-CFO framework.

The general procedure for sampling-based optimization methods can be summarized in

two steps given a parameterized model:

1. generate samples from a distribution and compute their costs,

2. update the distribution using a ranking scheme based on the sample costs,

which is repeated to convergence.

For the task of racing where the goal is to achieve the minimum lap time, generating

samples means providing a sampled component to MPPI as it drives around a track gener-

ating lap times. One sample is completed when a lap time is generated from MPPI driving

for that entire lap. The ranking portion of the optimization is based purely on the lap times

generated.

Cross entropy (CE) is a stochastic optimization method that has been shown to work

well for motion planning and optimization problems in robotics[35, 36], and in aggres-

sive off road driving [41]. It is related to simulated annealing and genetic algorithms and

suitable for non-linear and high-dimensional systems. The update step for CE involves

computing an average of elite sample parameters. Elite samples are the samples that gen-

erated the lowest costs. In practice it has been found that a good value for the eliteness

threshold, which ranges from 0 to 1, isKe = 0.2, which means that the top 20% of samples

are used to compute the output from each optimization iteration. Another stochastic opti-

mization optimization method related to CE is pi squared (PI2), which maintains all of the

benefits of stochastic optimization, but uses a different update rule for the samples. Instead

of an average of the elite samples, PI2 uses a weighting scheme that is proportional to the

49

normalized relative performance difference among all of the samples in each optimization

iteration. Instead of the eliteness threshold required by CE, the one parameter required to

be set for PI2 is a different eliteness parameter h , which controls how quickly the weight

for a sample drops off as a sample cost is further from the best sample of the epoch. In

practice, h = 10 was found to work well been found to work well in [36], and is used in

this work.

As a vehicle approaches the limits of performance, even small changes in strategy can

results in task failure or significant departures from a desired racing line such as an unin-

tended skid or over correcting through a turn. However, when first starting an optimization

it is not known exactly how far the solution is from the initial conditions, so the sampling

variances must be high enough to make significant progress if the number of samples is lim-

ited. Because of these two competing goals: fast progress early in the optimization, then

slow refinement approaching a solution, the covariance matrix adaptation (CMA) variant of

each optimization algorithm is employed. CMA provides an update scheme for the param-

eter covariances that is a function of the magnitude of progress made each iteration which

can address the limitations of choosing fixed parameters that results in unstable optimiza-

tion or no meaningful progress. In practice, the convergence rates are still related to the

magnitude of the initial parameters, but not to the same extent as without CMA.

For the application of cost function optimization to task of autonomous rally racing,

candidate cost maps are generated by sampling model parameters, then MPPI is tasked

with driving around a test track for a specified number of laps, normally set to N = 1,

with each sample. After laps for each sample are complete, the samples are ranked by

the lap times they produced, and then the model parameters are updated according to the

optimization method. Algorithmically, the process is as follows:

Note that the for PI2-CMA, temporal averaging is not included as it is not required

when samples have only one time step (each cost of each sample is a single lap time as

opposed to an evaluated trajectory in the case of applications in control and motion plan-

50

Given: MPC method: MPPI;
CS: cost function;
θ̂S,0, Σ̂S,0: initial cost function model parameters;
K: number of samples;
N : laps per sample;
δ: cross entropy eliteness threshold (< 1.0);
Ke ← round(Kδ): elite samples;
σ: parameter variance decay rate;

1 while tasknotcomplete do
2 α← epochnumber;
3 sample θS,k=1...K from N (θ̂S, Σ̂S)
4 for k ← 1 to K do
5 for n← 1 to N do
6 t+ = MPPI (CS(θS,k))

end
7 t̄lap,k = 1

N
t

end
8 θS,k=1...K ← sort(θS,k=1...K , key = t̄lap,1...K)

9 θ̂S =
∑Ke
k=1

1
Ke
θS,k

10 Σ̂S =
∑Ke
k=1

1
Ke

(θS,k − θ̂S)(θS,k − θ̂S)T

11 Σ̂S = min{Σ̂S, Σ̂S,0e
−σα}

end
12 return {θ̂S, Σ̂S}

Algorithm 1: Model Predictive Control - Cost Function Optimization with the Cross
Entropy method.

51

Given: MPC method: MPPI;
CS: cost function;
θ̂S,0, Σ̂S,0: initial cost function model parameters;
K: number of samples;
N : laps per sample;
h: PI squared eliteness parameter;
σ: parameter variance decay rate;

1 while tasknotcomplete do
2 α← epochnumber;
3 sample θS,k=1...K from N (θ̂S, Σ̂S)
4 for k ← 1 to K do
5 for n← 1 to N do
6 t+ = MPPI (CS(θS,k))

end
7 t̄lap,k = 1

N
t

end
8 for k ← 1 to K do
9 − 1

λ
Sk =

−h(t̄lap,k−min(t̄lap,k))

max(t̄lap,k)−min(t̄lapk)

10 Pk = e
− 1
λ
Sk∑K

k=1
[e
− 1
λ
Sk]

end
θ̂S =

∑K
k=1 PkθS,k

11 Σ̂S =
∑K
k=1 Pk(θS,k − θ̂S)(θS,k − θ̂S)T

12 Σ̂S = min{Σ̂S, Σ̂S,0e
−σα}

end
13 return {θ̂S, Σ̂S}

Algorithm 2: Model Predictive Control - Cost Function Optimization with the PI
Squared optimization method. Note that optimal baselining is used for − 1

λ
Sk.

52

ning). A common criticism of CE and PI2 is that of premature convergence. We experience

this issue, especially in the real world experimental results that have many environmental

conditions out of our control and significant system noise, but we address it by adding an

exponentially decaying lower bound in the CMA update step. This bound is initialized to

the initial sampling variances, and decays as a function of the optimization epoch, α at a

rate controlled by σ. For all of the experiments that use MPC-CFO, a value of 0.4 for σ

was used, which is based on the observation that performance is often converges between

epochs five to ten of the cost function optimization when using K = 10 samples per epoch

with all of the representations.

4.3 Experimental Results

For experimental results, we work through multiple environments of increasing fidelity

with all representations and optimization methods from a simple simulation world, to a

physics-based simulation world with a simulated robot and visual rendering, and finally

complete tests at a real track running hardware. As part of the real world experiments,

we also discuss the level of performance obtained versus prior results at the track with the

MPPI controller.

4.3.1 Testing Environments

To study MPC-CFO with MPPI and our chosen cost function representations and cost func-

tion optimization methods, three testing environments shown in Figure 4.5 were selected,

all of them with an identical track layout.

The first is ground truth simulation, which is simple simulation environment where the

dynamics model used by MPPI is used as physics model of the world. The key feature

of this environment is that the controller has perfect knowledge of the dynamics. In this

environment the vehicle will never crash, though it can occasionally encounter unstable

modes in the dynamics model and gets stuck spinning in tight circles. That behavior has

53

(a) (b)

(c)

Figure 4.5: Testing environments for MPC-CFO. All tracks have identical layouts and coorindate frames. (a)
Ground truth simulation where the MPC has perfect knowedge of dynamics. (b) Gazebo-based simulation
with simulated AutoRally platform, simulated sensors, and an identical software interface as the physical
robot. (c) Georgia Tech Autonomous Racing Facility large track located at Georgia Tech’s Cobb County
Research Facility.

54

been occasionally observed if trying to drive faster then what is possible in the real world,

and was not encountered during any experiments presented here.

The second testing environment was built using Gazebo, and includes a simulated Au-

toRally platform with sensors and actuators and is part of the publicly available AutoRally

software. A significant limitation of the Gazebo simulation is that the physics engine in

Gazebo becomes numerically unstable when the simulated AutoRally vehicle approaches

the friction limits of the system. This is due to the cone contact model employed by the

physics engine that is designed primarily for rigid body dynamics with manipulators, slow

moving ground vehicles. The result of these instabilities is that large spikes in the simulated

sensors are seen, which also propagates through the objects in the simulation environment

causing sudden changes in direction. Another limit of the cone friction model for wheeled

ground vehicles moving quickly in Gazebo is that instead of smoothly transitioning be-

tween static and sliding friction regimes as would happen when tires lose grip in the real

world, the vehicle oscillates between small slides and no sliding, which causes significant

shaking in the vehicle that typically ends in the vehicle rolling over at speeds well below

what is capable on the same turn at the real track. Both simulated tracks were developed

from the track boundary survey conducted at the real GT-ARF large track and share identi-

cal coordinate frames.

The third testing environment is the real world GT-ARF large track with AutoRally

vehicles. A feature of the real world that will be discussed in some detail at the end of

the experimental results is that, no matter how much one attempts to control external en-

vironmental factors in an experiment, the use of hardware on a dirt track for extended

experiments results in changing driving conditions hour to hour and day to day. Many of

these variables could be more easily controlled if the chosen task was on road driving with

an automotive grade platform, but that is beyond the scope of this thesis.

55

(a) (b)

Figure 4.6: Single speed target cost function optimization in the ground truth simulation environment. Lap
times are shown over 24 epochs of optimization, 264 total laps around the track. (a) Performance with the
cross entropy optimization method, optimized target speed is 16.6 m/s. (b) Performance with the PI squared
optimization method, optimized target speed is 16.4 m/s.

(a) (b)

Figure 4.7: Grid RBF cost function representation with CE optimization in the ground truth simulation en-
vironment. (a) Lap time performance over 24 epochs of optimization, 264 total laps around the track.(b)
Visualization of the speed cost at the end of optimization, direction of motion is counter clockwise.

Table 4.1: Minimum lap times achieves across all cost function optimization conditions in ground truth
simulation.

Cost Function Representation
Single Speed Target Grid RBF Centerline RBF

Opt. Method
Cross Entropy 27.32 26.78 26.97

PI Squared 27.35 27.06 26.93

56

(a) (b)

Figure 4.8: Grid RBF cost function representation with PI2 optimization in the ground truth simulation
environment. (a) Lap time performance over 24 epochs of optimization, 264 total laps around the track.(b)
Visualization of the speed cost at the end of optimization, direction of motion is counter clockwise.

(a) (b)

Figure 4.9: Centerline RBF cost function representation with CE optimization in the ground truth simulation
environment. (a) Lap time performance over 24 epochs of optimization, 264 total laps around the track. (b)
Visualization of the speed cost at the end of optimization, direction of motion is counter clockwise.

57

(a) (b)

Figure 4.10: Centerline RBF cost function representation with PI2 optimization in the ground truth simulation
environment. (a) Speed map optimization with image model and RBF noise at GR-ARF large track. (b)
Visualization of the speed cost at the end of optimization, direction of motion is counter clockwise.

4.3.2 Ground Truth Simulation

The first set of cost function optimization experiments was conducting using the ground

truth simulation where the the MPC has perfect knowledge of the world dynamics. For

every combination of speed cost representation and optimization method, MPC-CFO was

run for 24 epochs which required 264 laps. Performance converged after 5 or 10 epochs of

optimization for all experiments, which took approximately 2 hours to run on a computer

with equivalent computing to an AutoRally Compute box. The simulations cannot be run

faster than real time because MPPI is configured to run in real time on the GPU available

for computational limits. The dynamics model used for all ground truth simulation scenar-

ios is one trained from a system identification dataset collected on an AutoRally platform

and publicly available on the AutoRally Github repository. The model is contained in the

file autorally nnet 09 12 2018.npz. This is the same dynamics model used by MPPI for

experiments collected at GT-ARF.

Overall, the performance difference, as measure by fastest lap time generated, across

all ground truth simulation experiments, is about 0.57 s with the best minimum lap time

58

was 26.78 s generated by grid RBF with CE and the worst minimum lap time was 27.35 s

generated by single speed target representation and PI2 optimization. The minimum lap

time results are presented in Table 4.1.

Results for optimizing the single speed target are shown in Figure 4.6, where the speed

targets that the produced the best performance are 16.6 m/s with CE and 16.4 m/s with PI2.

The seed value for the optimization was a target speed of 6.5 m/s and a sampling variance

of 1.0. These optimized speed targets are much higher than what we know to be possible

in the real world, but with perfect knowledge of the world dynamics, the controller is able

to push the target speed beyond what would cause a crash in the real world. In simulations,

the vehicle never achieves a speed faster than 12.4 m/s. In essence, a speed target above

what is possible on a track is a signal to the MPC to always try to drive faster, regardless

of the current speed or position on the track. Implicit in these results is that for the ground

truth simulation, regardless of what speed MPPI is instructed to drive at, the vehicle will

not crash. Further discussion on this topic is presented in 4.3.5.

The performance for the grid RBF representations appear to converge at approximately

the same rate as for single speed target. Results with CE are shown in Figure 4.14 and

with PI2 in Figure 4.15. The grid RBF model used in both experiments has 25 RBFs for

a total of 101 parameters, and is initialized with a background speed of 7.0 m/s, 2.5 m/s

variance. The RBFs are spread uniformly around the space in a 5 by 5 grid, each with an

initial height of 1.0 m/s, height variance of 0.5 m/s, size of 90 pixels with size variance

of 15 pixels, and x and y position variances of 100 pixels. At the end of both CE and

PI2 optimizations the speed maps are almost uniformly 20 m/s, which is higher than either

of the optimized single target speeds, although task performance is almost identical. This

suggests that, as was the case with the single speed results, in the case where the MPC

method has perfect knowledge of the world dynamics, the cost function is optimized to

constantly ask the controller to drive faster, regardless of the track geometry and actual

speed driven by the vehicle.

59

(a) (b)

Figure 4.11: Model size effect on convergence, RBF centerline representation with 20 RBFs, model size of
61 parameters, CE optimization. (a) Lap time performance over 24 epochs of optimization, 264 total laps
around the track. (b) Visualization of the speed cost at the end of optimization, direction of motion is counter
clockwise.

Optimization experiments with the centerline RBF representation produce more visu-

ally interesting speed maps, shown in Figures 4.16 and 4.17, although the task performance

does not vary significantly from the other representations. The initial background speed and

background speed variance was the same for the grid RBF representation, but instead of

25 RBFs, only 10 were used that were evenly distributed along the centerline of the track

with initial heights of 1.0 m/s, height variance of 0.5 m/s, size of 0.06, which is percentage

of the total track length that ranges from zero to one, with variance of 0.015. The number

of RBFs was selected in part because the centerline track representation confines RBFs to

the driveable surfaces of the environment which are less than half of the total area in the

environment. The minimum speed targets range from about 14 m/s to 20 m/s, and show

similar speed patterns on track features. In particular, the target speed is high at the end of

the long straight through the next three turns, and is at the lowest value just before the main

straight. Similar to the other optimized speed maps, the target speed at every point on the

track is higher than the realized speed by a significant amount. The total model size is 31

parameters.

60

(a) (b)

Figure 4.12: Model size effect on convergence, RBF centerline representation with 20 RBFs, model size of
91 parameters, CE optimization. (a) Speed map optimization with image model and RBF noise at GR-ARF
large track. (b) Visualization of the speed cost at the end of optimization, direction of motion is counter
clockwise.

The rate of convergence and level of performance attained for the cost function opti-

mization in the ground truth simulation does not appear to be effected by the number of pa-

rameters in the model as the grid RBF model has 101 parameters, the centerline RBF model

has 31 parameters, and the single speed value has one parameter. Figures 4.11 and 4.12

show two experiments with the RBF centerline representation and CE optimization where

the number of RBFs was set to 20 and 30, respectively. The fast lap time during optimiza-

tion with the 20 RBF model was 27.02 s, and for the 30 RBF model the fast lap was 27.37.

Both experiments converge at indistinguishable rates compared to the other experiments in

the debug simulation, including the single speed target that has a model size of one, and

result in similar lap times. Instead, the choice of initial sampling variance has more of an

effect on the convergence rate. If the set too low, performance plateaus somewhere above

27 s lap.

Given that the MPC has perfect knowledge of the world dynamics for these experi-

ments, it appears that the optimization is using the speed costs as a general rule to push

the MPC to drive faster as opposed to determining the exact speed to drive at each point.

61

(a) (b)

Figure 4.13: Single speed target cost function optimization in the Gazebo simulation environment. Lap
times are shown over 24 epochs of optimization, 264 total laps around the track. (a) Performance with the
cross entropy optimization method, optimized target speed is 9.2 m/s. (b) Performance with the PI squared
optimization method, optimized target speed is 8.8 m/s.

Table 4.2: Minimum lap times achieves across all cost function optimization conditions in the Gazebo simu-
lation.

Cost Function Representation
Single Speed Target Grid RBF Centerline RBF

Opt. Method
Cross Entropy 29.45 29.73 29.84

PI Squared 29.34 29.86 30.11

Another way to think of this is that referring to the parameters we are optimizing as target

speeds is useful for intuitive understanding, but not completely correct. A second order

behavior of this parameter optimization is a tuning of the sensitivity of the optimization to

the speed target, with respect to the other components in the cost function. In the passed,

all cost function component weights were tuned by experts, and are likely specified incor-

rectly for the task we are considering. Further analysis on this topic is presented later in

the chapter.

4.3.3 Gazebo Simulation

The Gazebo test environment offers a different type of optimization challenge for the MPC-

CFO framework than the ground truth simulation where the MPC has perfect knowledge

of the world dynamics. In the Gazebo simulation environment, the dynamics model of the

62

(a) (b)

Figure 4.14: Grid RBF cost function representaiton with CE optimization in the Gazebo simulation en-
vironment. (a) Lap time performance over 24 epochs of optimization, 264 total laps around the track.(b)
Visualization of the speed cost at the end of optimization, direction of motion is counter clockwise.

(a) (b)

Figure 4.15: Grid RBF cost function representaiton with PI2 optimization in the Gazebo simulation en-
vironment. (a) Lap time performance over 24 epochs of optimization, 264 total laps around the track.(b)
Visualization of the speed cost at the end of optimization, direction of motion is counter clockwise.

63

(a) (b)

Figure 4.16: Centerline RBF cost function representaiton with CE optimization in the Gazebo simulation
environment. (a) Lap time performance over 24 epochs of optimization, 264 total laps around the track. (b)
Visualization of the speed cost at the end of optimization, direction of motion is counter clockwise.

(a) (b)

Figure 4.17: Centerline RBF cost function representaiton with PI2 optimization in the ground truth simulation
environment. (a) Speed map optimization with image model and RBF noise at GR-ARF large track. (b)
Visualization of the speed cost at the end of optimization, direction of motion is counter clockwise.

64

MPC differs greatly from that of the environment but because of numerical instabilities in

the simulation environment and use of a dynamics model trained in a different environment.

The MPC is given the same dynamics model trained from data collected on a real AutoRally

platform that is used in the other experiments. A good dynamics model tailored to Gazebo

was able to be trained because the system identification dataset was unreliable because

human drivers cannot drive the simulated robot in a wide variety of driving conditions.

Even if a high quality system identification dataset were to be captured in Gazebo, the

model would likely not be able to capture the highly oscillatory behavior when the vehicle

drive close to the friction limits that is the hallmark of the Gazebo simulation. Because of

these differences, the optimized speed functions are qualitatively very different than those

produced in the ground truth simulation environment.

Overall, the performance difference, as measure by fastest lap time generated, across all

Gazebo simulation experiments, is about 0.77 s with the best minimum lap time was 29.34 s

generated by single speed target with PI2 and the worst minimum lap time was 30.11 s

generated by centerline RBF representation and PI2 optimization. The minimum lap time

results are presented in Table 4.1. The fact that the smoothest speed function resulted in

the best task performance in the Gazebo simulation is reasonable because it eliminates one

potential source of variability when the MPC is already tasked with handling significant

noise from the simulation. This behavior is shown in the difference of lap times of about

3 seconds within later optimization epochs when the speed functions change very little

compared to lap time differences well below 1 second at the later epochs of optimization

in the ground truth simulation.

Across the grid RBF and centerline RBF representations, the optimized speed maps

look qualitatively similar, but much different than those from the ground truth simulation.

For the grid RBFs, the same 25 RBFs arranged in a 5 by 5 grid were used, and with the

centerline RBF representation the number of RBF was 15 for CE and 20 for PI2. Despite

the varying number of RBFs, there was no significant difference in convergence rate nor

65

level of performance during cost function optimization, supporting the conclusion from

the ground truth experiments that the dominant factor to determine rate of convergence

is the initial sampling variances. The target speeds in the optimized speed functions for

Gazebo range in value from around 8 m/s to about 12 m/s. These speeds are consistently

much closer to the speed that the simulated platform drives than results from the ground

truth simulation. In Gazebo, the dynamics model that the MPC is using is significantly

different from the actual physics of the environment. Because of this, over the course of

cost function optimization, the MPC is not free to just drive as fast as it wants, but must

rely on the target speed component of the cost function to make up for a lack predictive

capability of the dynamics model. We see minimal second order optimization effects of

tuning the sensitivity of the cost function to the speed component as the MPC relies on the

function in order to decide what speed to drive without crashing.

4.3.4 Real World Experiments with AutoRally

Cost function optimization experiments were performed with an AutoRally platform on

the large GT-ARF. All experiments were performed with the same chassis for consistency.

Due to the time required for the cost function optimization experiments, we selected three

experiments to perform instead of the full six across all representations and optimization

methods. The first is single speed target optimization with cross entropy, and other two are

centerline RBF using CE and PI2. The single speed target optimization is a baseline and

serves as a direct comparison to previous MPPI results that used the same form of speed

cost component, but was selected by hand tuning instead of automatically. The centerline

RBF representation was chosen for the other experiments because we believe that it offers

a better representation for our task of minimizing lap times than grid RBFs.

All three experiments were run on a damp track from rain a few days prior, but without

mud and standing water. Depending on the time of year in Atlanta, the track may never

completely dry out for more than a month, and other times it is bone dry for months. The

66

conditions were a result of testing in the Spring in between regular rain storms. From

previous work, we know that these are among the best track conditions for testing, and

further discuss how track conditions effect performance and generalization later in this

chapter. The single speed target optimization ran for 87 laps over 8 epochs, and resulted

in a minimum lap time of 29.6 s generated by a target speed of 9.9 m/s. Optimization

performance is shown in Figure 4.18. The initial parameter values were the same for CE

and PI2 optimization tests with 15 RBFs of size 0.04, size variance of 0.01, height of

1.5 m/s, height variance of 1.5 m/s, and location variance of 0.04.

Examining the speed cost functions that produced the fastest lap times for each op-

timization method shown in Figures 4.16 and 4.17, they appear to resemble the maps

generated in the Gazebo simulation more closely then those from the ground truth simula-

tion. From our previous analysis, this indicates that the primary focus of the cost function

optimization in the real world is to determine the target speed at each point on the task with

little regard to the adapting sensitivity of the optimization to the speed cost. As a result, it

appears that, although the dynamics model MPPI used for the experiments was trained from

data collected on a real AutoRally platform, that dynamics model differs from the system

dynamics on the day of testing. From previous MPPI analysis, it was also shown that the

dynamics model is only capable of accurately predicting motions about 0.5 seconds into

the future. Despite this fast, a high level of performance is achieved in the experiments due

to both the fast feedback and optimization of the MPPI algorithm as well as the optimized

speed map.

The speed map that produced the fastest lap in the CE optimization one that has higher

speeds after turns which then slowly decrease as approaching the next turn. Keep in mind

the overall direction of travel in all of the experiments is counter clockwise. The speed

map from PI2 optimization indicates some sensitivity optimization as a high speed target

region just before the tightest turn on the track would be relatively far from the actual speed

driven through that portion of the track. Across all experiments, both optimization methods

67

(a)

Figure 4.18: Single speed target cost function optimization at the GT-ARF large track. Lap times are shown
over 8 epochs of optimization, 87 total laps around the track. (a) Performance with the cross entropy opti-
mization method, optimized target speed is 9.9 m/s.

Table 4.3: Minimum lap times achieves across all cost function optimization conditions in the Gazebo simu-
lation. An ‘X’ indicates a condition where no experimental data was collected.

Cost Function Representation
Single Speed Target Grid RBF Centerline RBF

Opt. Method
Cross Entropy 29.6 X 27.91

PI Squared X X 27.68

produce similar results. An example of how the two methods differ in computing the output

from an epoch of optimization from the real world experiments is shown in Figure 4.21.

The lap times and speed cost functions are shown for the three fastest speed functions.

With the eliteness threshold of 0.2 used in CE, the top three samples are averaged together

to create the output. For PI2, the weight of each sample is computed according to the

time differences between the samples. For the example in the figure, PI2 is better able to

focus on the one sample that outperforms the others, and one sample in the next epoch

generates an even faster lap time, whereas the CE experiment does not produce a faster lap

time. Note that both methods incorporate information from multiple speed maps, so the lap

time generated from the output from an epoch are usually slower than the fastest map of

the previous epoch. A primary reason for that is because samples can achieve a good lap

time many different ways in the early epochs of optimization, but the differing samples can

interfere with each other when combined.

68

(a) (b)

Figure 4.19: Centerline RBF cost function representation with CE optimization at the GT-ARF large track.
(a) Lap time performance over 6 epochs of optimization, 56 total laps around the track. (b) Visualization of
the speed cost that produced the fastest lap time, direction of motion is counter clockwise.

(a) (b)

Figure 4.20: Centerline RBF cost function representation with PI2 optimization in the ground truth simulation
environment. (a) Lap time performance over 5 epochs of optimization, 45 total laps around the track. (b)
Visualization of the speed cost that produced the fastest lap time, direction of motion is counter clockwise.

69

Figure 4.21: Comparison of cross entropy and PI2 optimization methods with RBF centerline representation
during testing at GT-ARF large track. The best three sampled speed cost functions from one epoch along with
their lap times are shown left, followed by the computed speed cost functions and the associated lap times for
each optimization method.

A common factor in all of the real world cost function optimization results are that the

fastest laps came during the first few optimization epochs, which were then followed by

a slow increase in lap times as optimization continued. We believe there are a variety of

reasons for this behavior, mainly due to environmental factor such as track surface wear,

battery levels, and hardware health.

Many fewer laps were completed for these two experiments than the simulations be-

cause real world experiments are much more difficult and time consuming. Over the course

of the cost function optimization, the AutoRally vehicles crashed several times with a vari-

ety of severity and causes. Some crashes involved the platform sliding wide on a turn into

the track barriers while others had the robot roll over at high speed when attempting to drift.

If the platform was still operational after a crash, we would restart the optimization after

assigning the map that caused the crash a high lap time as a penalty. Over the course of

the experiments at GR-ARF, 186 laps were completed which represents about 20 miles of

autonomous driving, and 9 rollover crashes which were the only unplanned times that the

human safety driver had to assume manual control. An image sequence taken from an off

board camera shows an example rollover crash due to excessive side slip at high speed in

70

Figure 4.23. The scheduled human takeovers occurred every two epochs of optimization to

bring the platform back to the pit lane to swap chassis batteries and then continue running.

At the end of each lap during cost function optimization, a new speed map is fed to

MPPI. This process takes some non-zero amount of time, so one option is to discard the

lap time generated from the lap when the speed map occurred. That is not desirable to

have to discard half of your driving, especially in real world testing dealing with hardware.

Instead, we implemented a series of timing gates around the track that allow adequate space

after a lap is completed for a new speed map to be passed to MPPI before starting timing

on a new lap. The eight timing gates are shown in Figure 4.22. The lap timing works

by incrementing the start/stop line by one gate in the direction of travel around the track

(counter clockwise), so that the switching time is not counted into driving performance,

and only 1/8 of a lap of driving is discarded instead of 1 full lap if the start/stop line were

to remain stationary.

Prior to this work, the best performance of the MPPI controller at the GT-ARF large

track was from [47] that reported a fast lap time of 27.9 s during a five lap batch of driving

as fast as possible. This dataset was collected after multiple days of a controls theoreti-

cian tuning the algorithm and adjusting the setup of the AutoRally platform to ensure the

most favorable testing conditions possible. The centerline RBF representation with CE

optimization recorded a fast lap time of 27.91 s to match previous performance through

cost function optimization without the MPC designer on site for tuning after just a few

minutes of driving on the track. Further, the centerline RBF representation with PI2 opti-

mization recorded a lap time of 27.68 s, which outperforms all previous results with the

MPPI controller driving an AutoRally platform at the GT-ARF large track.

Robots in the Real World

The MPC-CFO experiments have been the longest set of experiments run on the platforms

to date. All together, in preparation for the experiments and running intermediate versions

71

Figure 4.22: Timing gates for cost function optimization. After one complete lap is completed, the start/finish
line for the next lap is moved one position counter clockwise around the track to take into account the time it
takes to update the cost function MPPI is using while the robots is moving.

Figure 4.23: Sequence of images captured from offboard video of a multiple rollover crash during cost
function optimization at GT-ARF large track. The crash was a result of excessive speed and side slip going
through a turn.

72

of the cost function algorithm resulted in more than 500 laps of autonomous driving, which

represents more than 50 miles. Over the course of the experiments at the GT-ARF track,

many parts wore out and were replaced, but it became apparent that a few critical com-

ponents on the platform that had an effect on the overall performance level of the vehicle

wore down regularly during experiments. One example, which we have not yet been able

to quantify the extend to which it effects performance, is tire wear, shown in Figure 4.24.

The wear occurs over the same time scales as the cost function optimization experiments,

so in order to minimize the amount that tire wear effected performance, the rear tires were

swapped for a set with new tread every 80 laps, or sooner if the tread showed signs of

deterioration. One reason that the tires wear down so fast during these experiments is that

every lap is pushing the vehicle to the performance limits with hard accelerations several

times per lap and significant side slip angles at a variety of speed. That aggressive driving,

coupled with an overall platform that weighs about 50% more than the stock platform, con-

tributes to tires that wear out much faster than in previous testing. Additionally, testing in

high traction conditions when there is still moisture in the track results in the highest level

of performance, but also the fastest tire wear because of the relatively high grip driving

surface.

Anecdotally, running with relative new tires on the AutoRally platform rarely results

in the spin-outs, but when the tires are worn, spin-outs and significant fish-tailing when

attempting hard accelerations out of sharp turns become common. Breaking from high

speed in preparation for a slow turn with worn tires can also cause the robot to slide through

a turn into a barrier due to an inability to slow down as fast as expected. Combine worn

tires with a dry and dusty track and the problem is just made worse. One potential solution

to vehicle dynamics that change on the time scale of high 10s of laps would be model

adaptation. Model adaptation has been explored on AutoRally, but was explicitly excluded

from use with cost function optimization as it would mean that MPC-CFO is optimizing

over a non-stationary distribution. This could be a future direction of work focused on

73

(a) (b)

Figure 4.24: Comparison of new tires and worn tires after aggressive driving tests with the AutoRally platform
at GT-ARF. (a) New tires with zero laps of wear. (b) Worn tires after 120 laps (about 12 miles) of aggressive
driving.

74

generalization of MPC-CFO.

Over the course of testing in the real world, the chassis battery packs have to be changed

regularly. The standard packs will last for for 20 to 25 laps of aggressive driving at the GT-

ARF large track. With six AutoRally platforms, there are plenty of spare battery packs so

standard practice when testing is to use two or three packs of chassis batteries at each test

so that the robot can run as much as possible as the batteries are cycled between draining

on the robot and charging.

During the MPC-CFO experiment for single speed target optimization, oscillations in

lap times were noted toward the end of the optimization that did not appear to correlate

with the target speed that was being tested. Upon further inspection of the hardware there

were no apparent mechanical or electrical failures or signs of wear that could cause that

behavior. When combing through the data from the experiment shown in Figure 4.18,

we decided to plot the lap times as a function of the target speed and color code the lap

times according to which of the two battery packs were install in the chassis at that time

(we swapped between the two battery packs every 2 epochs that day, for the duration of

the test). What this analysis shows, presented in Figure 4.25, is that the selected battery

pack can have a significant effect on performance when attempting to drive at the limits of

performance. Under casual driving behaviors, we see that the performance of each battery

pack is indistinguishable from the other. However, under high load conditions one battery

pack is able to keep up with the power demands of the robot while the other pack lags. The

result is two distinct clusters of lap times about 1.5 seconds apart when operating with target

speeds that push the limits of performance of the platform on the GT-ARF large track. This

difference is likely due to the natural wear and tear that battery packs endure over their life

cycle, and is another reminder for how much seemingly insignificant variations in hardware

configuration can have large effects on real world performance.

Consider the following scenario: the strong battery pack is run for two epochs of cost

function optimization. At the end of those epochs the vehicle is driving close to the perfor-

75

(a)

Figure 4.25: Lap time as a function of target speed during single speed target optimization experiment. Lap
times are colored according to which of the two chassis battery packs used the in the test was powering the
chassis.

mance limits, requiring consistently high power draw form the batteries. Then, the weaker

pack is swapped in under standard testing conditions and the result is a performance plateau

or degradation in subsequent epochs. One would normally conclude that the optimization

has converged, but in fact that perceived converges could have just been a result of swap-

ping in a battery pack that is not capable of driving at the level of the previous pack.

The difference in battery pack performance was a also noted by the human expert driver,

which will be discussed in the next chapter, with the comment that one of the battery packs

felt “squishy.” When asked to clarify, the driver indicated that one of the battery packs

provided much more responsive throttle behavior than other other pack.

4.3.5 Cost Function Optimization Effect on MPPI

The question this chapter seeks to answer is whether MPC-CFO is a methodology that can

automatically tune a cost function as a vehicle drives around a track over the course of a few

minutes of driving in order to achieve a high level of performance. It views the particular

76

MPC method used as a black box that is being optimized given lap times. This section

departs from that goal to open that box and analyze what the cost function optimization

is doing with the MPPI controller. It was hinted at in previous sections to describe the

qualitative differences between optimized speed maps across the testing environments, but

this section will present a more in-depth analysis of the claim that MPC-CFO is doing

essentially to things for MPPI. At the first level, the cost function optimization performs as

intended to determine what speed the vehicle should be traveling at each point along a track.

However, MPPI uses more than the cost function to determine how to drive. Specifically,

the other major component in MPPI is the dynamics model, and the difference between that

dynamics model and the dynamics of the environment MPPI is driving in has a secondary

effect on the cost function optimization. This secondary effect is for the cost function

optimization operating on speed maps used by MPPI adjusts the sensitivity of MPPI to

speed component of the cost function.

To dig deeper into what is happening we first need a metric to quantify what if happen-

ing with the cost functions. Our metric is the average difference between the speed map

and the actual speed when a vehicle is driven by MPPI using that speed map. To collect

the data for this metric, MPPI is run for about 20 laps with the speed map to be studied.

Then, the trajectory MPPI driven is overlaid on top of the speed map to generate our metric

and the graphs in this section. We chose a subset of the total experiments to conduct this

analysis on: single speed target and centerline RBF representations from the debug simu-

lation, and a centerline RBF representation from the Gazebo simulation environment. As a

baseline for the comparison, we see that in the case of MPPI operating in the ground truth

simulation environment with a single speed target map, shown in Figure 4.26, the speed

target acts as an upper bound on speed. At the fastest point on the track, which a little fur-

ther than half way down the longest straight, the vehicle reaches speeds close to the speed

target. Everywhere else around the track, the actual speed is far below the speed target.

The speed difference results are presented in Table 4.4.

77

Figure 4.26: Trajectory traces colored by speed for MPPI driving overlaid on the constant speed map provided
in the ground truth simulation environment.

78

1

2

Figure 4.27: Trajectory traces colored by speeed for MPPI driving overlaid on the centerline RBF speed
map provided in the ground truth simulation environment. Example points selected to evaluate cost function
behavior at two parts of the track.

79

Figure 4.28: Trajectory traces colored by speed for MPPI driving overlaid on the centerline RBF speed map
provided in the Gazebo simulation environment.

80

To understand more about why this secondary effect of sensitivity optimization is hap-

pening, we examined the cost function component values at a few chosen points with the

RBF centerline speed map in the ground truth simulation environment. The weight vector

for all of the test was ω1 = 200, ω2 = 4.25, ω3 = 10, 000, ω4 = 100. The two examination

points shown in Figure 4.28 were selected as “easy” and “difficult” areas of the track for

MPPI to determine a high quality control plan. The individual cost function component

values for the minimum cost rollout are shown as well as the minimum, average, and max-

imum costs for one iteration of MPPI in Table 4.5. At point 1, the “easy” location, the

vehicle is in the middle of the track, travels close to the desired speed, few rollouts end up

off the track, and slip is minimal, so the min cost trajectory has a low cost. The difficulty for

MPPI to find a solution is also reflected in the rollout cost statistics in addition to the com-

position of the minimum cost rollout. Relative to each other, the track cost and slip penalty

are the dominant terms indicating that MPPI is primarily focused on positioning on the

track and how aggressive to drive around the upcoming turn as opposed to worried about

crashing or driving at a different speed. Examining the cost function components at point 2,

their relative weights have shifted dramatically with the speed cost and crash penalty acting

as the dominant terms, and the magnitude of each component has increased significantly,

indicating a much more difficult situation for MPPI than point 1. In regards to how the

specific cost map is able to produce fast lap times compared to one that aligned well with

the actual speed of the vehicle, we can see that at difficult points in the track, which are de-

fined as locations where MPPI can only find high cost rollouts, the high desired speed acts

to balance the high crash penalty in the cost function to keep the vehicle moving forward

faster than it would have if the target speed was low. Another interpretation, keeping in

mind that MPPI was operating with perfect knowledge of the dynamics in this scenario, is

that cost function optimization places an out-sized emphasis on low probability trajectories

in difficult situations by tuning the sensitivity of the cost function to speed. It is able to do

that in this environment, whereas in Gazebo and the real world it is not, due to the fact that

81

Table 4.4: Difference between desired speed specified in optimized speed cost and actual speed driven by
MPPI in simulation environments. A negative value indicates that the actual speed was less than the desired
speed.

Environment Speed Cost Representation Avg Speed Difference (m/s) Speed Difference %
Ground Truth Single Speed Target -10.29 -1.63
Ground Truth Centerline RBF -8.94 1.41

Gazebo Centerline RBF -1.67 -0.31

Table 4.5: Example cost function evaluation at two points in the debug simulation environment. Selected
points are shown in Figure 4.27. The individual component values for the minimum cost rollout are broken
out and statistics for all 1920 rollouts are presented.

Min Cost Rollout Components Rollout Cost Statistics
Point Track Cost Speed Cost Crash Penalty Slip Penalty Min Avg Max

1 72 5 39 77 171 1,280 9,048
2 40 352 324 130 846 4,268 17,288

when it is operating with perfect dynamics knowledge, the algorithm can determine exactly

if a crash will or will not occur.

4.3.6 Cost Function Optimization Generalization

Although the goal of cost function optimization and the CFO-MPC framework as whole, is

to explore what level of performance is attainable by specializing performance of an MPC

to a specific track, it can insightful to understand where, and to what extent, MPC-CFO

performance can or cannot generalize.

From our experiments we have three separate versions of the same track in two simu-

lated and one real environment. The first simulation environment is one in which the MPC

method has perfect knowledge of the dynamics. The second simulation environment is one

built using Gazebo and offer the full software interface to the AutoRally platform including

simulated sensors and actuators, but the physics of the simulation world cannot simulate

tire-ground interactions well. As a result, the simulation is numerically unstable as the ve-

hicle approached sliding regimes and the dynamics model used by the MPC does not do a

good job capturing the world dynamics. With these two environments in mind, we can ex-

plore if a cost function we optimize in on simulation can be used by MPPI in the other, and

82

what level of performance does it enable. Providing MPPI with a cost function optimized

in the ground truth simulation when driving AutoRally in the Gazebo simulation results in

immediate crashes. In no experiment was the vehicle able to even complete one turn, often

times the vehicle immediately drove out of control and rolled when attempting to accelerate

on a straight. For the direction of ground truth simulation to Gazebo, it is not possible to

transfer cost functions for use by MPPI. This result in unsurprising considering the anal-

ysis of the difference between optimized cost functions that showed for the ground truth

environment the target speed was, on average, about 9 m/s or more faster than the realized

speed, whereas for the Gazebo simulation, the target speed was only 1.67 m/s faster than

the realized speeds. Testing the transfer from Gazebo to ground truth, we would expect the

vehicle to successfully navigate around the track, but the level of performance would be

lower than for speed cost functions optimized in that map. For this test, we selected the

fastest speed cost function from the centerline RBF representation in Gazebo that achieved

a lap time of 29.84 s, shown in Figure 4.29. As expected, MPPI is successfully able to

navigate around the track without crashing, and produces an average lap time of 32.85 ±

0.04 s over 26 laps of driving. There was no reason to expect that the test would fail given

the previous understanding of performance in the ground truth simulation environment, but

it is interesting to see that there is a performance loss of about 3 s in lap time, or 10%.

Considering that one of the primary differences in simulation environments is how

closely the MPC dynamics model captures the environment dynamics, we elected to not

attempt to test transferability of any speed maps optimized in simulation to the real world

because we would expect a high likelihood of crashes. The results from the cost func-

tion optimization at the real world GT-ARF track indicate the dynamics model is closer in

difference to the Gazebo simulation than the ground truth simulation. One generalization

test that we unexpectedly conducted was attempting to collect MPC-CFO driving with an

optimized speed map on a different day than the optimization was performed on. In an

attempt to characterize the driving performance at GT-ARF, we tasked MPPI with driving

83

Figure 4.29: Target speed function used to test generalization from Gazebo to ground truth simulation. Opti-
mized in Gazebo with CE and centerline RBF representation.

using the speed map that generated the 27.68 s lap time. That lap time was generated in

the late morning on the track that was damp in some parts. The next day we returned to

the track, now completely dry and dusty from testing, and started the experiment with the

fixed speed map. On the first turn of test the AutoRally robot initiated its turn too late and

slid off the track. After confirming that the state estimator was converged and accurate, we

found that the path MPPI expected to follow and the one the platform actually followed

were very different due to the low traction environment compared to the day prior. An

example of dry and wet track conditions is shown in Figure 4.30. What we learned from

this experiment is that not only is MPC-CFO specializing performance to a specific track,

it is also specializing to the testing conditions of the day. Also, MPPI has been shown to

be able to drive AutoRally aggressively across track conditions, but that is no longer the

case for MPC-CFO when the goal si to squeeze every last bit of performance out of the

track on a particular day. For this reason, cost function optimization performed on one day

84

(a) (b)

Figure 4.30: Examples of track surface variability during testing. (a) A dry and dusty track where traction is
low. (b) A wet but not muddy track that offers a high traction environment surface.

is only useful if the same testing conditions are encountered again, otherwise cost function

optimization must be repeated at the beginning of every test if the world has changed in any

way. A question of generalization within the same world is an interesting question, such as

to other track geometries, but not one that we have explored in this work.

85

CHAPTER 5

RALLY RACING

In previous chapters, we presented a system capable of autonomously performing the task

of rally racing using the AutoRally platform, the MPPI algorithm, and cost function op-

timization at the GT-ARF track. Using cost function optimization we demonstrated the

capability to increase performance of the MPPI algorithm beyond what was possible with

expert tuning. In this chapter, we present a comparison of autonomous and human agent

performance driving an AutoRally platform in a time trial style rally race at the GT-ARF

large track. To the best of our knowledge, this work will constitute the first dirt track racing

competition of an autonomous system and human expert. Further, to control as many fac-

tors as possible, all drivers will use the same AutoRally platform. This competition is an

effort to quantify the level of performance of our autonomous system and the MPC-CFO

framework with respect to what we believe is is the highest level of performance possible,

and provide a quantitative, implementation agnostic benchmark based on lap times. This

benchmark allows comparison of past and future work with the AutoRally vehicles. To the

best of our knowledge, this comparison the first of its kind to bring together an expert hu-

man and state-of-the-art AI research in a real world task. Further, the data will be publicly

released as part of the AutoRally dataset.

5.1 Gaming Competitions

Competitions have long been a way to benchmark and compare AI agents with each other

and against humans. One classic example of an AI system able to achieve super-human

performance is Deep Blue, which defeated Garry Kasparov, the reigning world chess cham-

pion, in a six-game match [51]. Recent advancements in deep learning have shown super-

human performance in many classic arcade-style video games [52] from the Atari platform.

86

Figure 5.1: Rally racing competition between MPC-CFO and an expert human driver using AutoRally at the
Georgia Tech Autonomous Racing Facility.

AlphaGo and AlphaGo Zero bested the best humans in the world in the game of Go [53],

which is a difficult problem for an AI to solve because of the large branching factor. Direct

competitions between AI and a single human or teams of humans were conducted with the

real time strategy games StarCraft by DeepMind [54] and Dota 2 by OpenAI. The OpenAI

Dota 1v1 bot was able to defeat expert humans at the game utilizes 60,000 CPU cores and

256 K80 GPUs and collects 300 years of game play experience per day during training.

Despite demonstrating super-human performance in many games, these competitions all

leverage simulations where the interactions with the environment can be modeled, whereas

in the real world racing domain, there is no way to model all of the interaction inherent .

5.2 Vehicle Racing

For the task of racing in the real world, the number of interactions are severely limited

as experiments need constant human supervision and hardware has limited durability. A

dataset of two expert human racers driving five vintage race cars outfitted with sensors at

Laguna Seca was collected, analyzed, and publicly released in [26]. This dataset repre-

sents the closest related work to our goal of comparing human to autonomous performance

in the real world setting of vehicle racing. However, the vehicles in the study are not

available for further testing so no direct comparison is possible and the vehicles were not

87

equipped for autonomous driving. A vehicle outfitted for data logging human driving be-

haviors was used in [27] to record a human performing circular drifts, but also lacks the

capability for autonomous driving. In [23, 55], an Audi TT outfitted for autonomous drove

pre-planned paths generated from first principles vehicle models and racing lines at the

Pikes Peak Hill Climb the Thunderhill Raceway. This work was the first to show an au-

tonomous vehicle operating at a high level of performance in a racing scenario, but no

direct performance comparison to human performance exists, there is no outside access to

the platform for future work, and the reliance on tracking a pre-planned trajectory assumes

a nearly perfect model of the environment and vehicle dynamics means that the vehicle

cannot recover from large disturbances or variations in conditions during test. A follow-on

to that work, [laurense2017path] quantified the acceptable error between computed and

measured tire friction components of 2% is required for stability of the method.

The Roborace event [56], is an announced racing event that is an offshoot of the elec-

tric car racing competition Formula E, which is itself an offshoot of Formula 1 racing.

Roborace promises to pit autonomous electric vehicles against one another in a head-to-

head race on the same track as Formula 1 and Formula E events currently race on. To

date, no competition dates or list of competitors have been announced and available in-

formation is limited to press releases and videos of two development platforms following

GPS waypoints at moderate speeds through Formula 1 race courses. Current performance

places the autonomous driver about 10% behind an expert human where the expert human

is Roborace’s CEO and current Formula E driver Lucas di Grassi. The RACECAR project

at MIT [13] and F1/10 Autonomous Vehicle [12] have been used for autonomous driving

competitions as part of undergraduate courses on self-driving vehicles where the goal is

to navigate indoor hallways as fast as possible. The limited computational and battery ca-

pacity, lack of protective housing, and design for indoor conditions limits the platform to

a teaching tool, and it cannot run state-of-the-art self-driving vehicle algorithms, operate

outdoors on a dirt surface up to the mechanical limits of the system, and no performance

88

to humans has been presented. The CARLA Autonomous Driving Challenge [20] is a

simulation-based autonomous vehicle challenge where teams can choose from different

competition tracks and compete in driving competency in urban driving scenarios. This

competition focuses on following road rules and driving safely at all times in urban envi-

ronments. The competition will take place Summer 2019, and while it is a competition

evaluating self-driving vehicle performance, it is not directly comparable as urban driving

requires a very different set of capabilities than closed track racing.

5.3 Rally Race at Georgia Tech Autonomous Racing Facility

To conduct the competition, multiple human and autonomous driver were tasked with driv-

ing AutoRally around the GT-ARF large track as fast as possible while all actuator and

sensor data was logged. Altogether, four drivers participated in the competition, two hu-

mans and two autonomous. The human drivers were allowed to walk around and inspect

the track and then drive AutoRally however they wanted for the duration of a battery pack,

about 20 minutes of driving, to warm up. Human drivers stood on top of a one story tall

scaffolding tower at the side of the track while they drove to provide an improved vantage

point from a small ladder or ground level perspective.

For each of the human drivers, the data was broken down into individual laps for anal-

ysis. The most important metric for the competition is the fastest recorded lap time over

the course of testing as an overall rank of driving performance. Lap time includes the abil-

ity of a driver to navigate turns, control positioning on the track, and smoothly accelerate

and brake all in one number that is independent of any particular approach to tackling the

task. Many other metrics can help quantify and understand performance differences, and

inspection of the trajectories driven can provide insights into strengths and weaknesses.

Figure 5.2 shows the turn numbering around the GT-ARF large track, starting with turn

one at the end of the main straight, and counting up to turn nine as the last turn each lap.

For each human driver, an average trajectory was computed from all laps of data. Even

89

1

2
3

4

5

6

7 8
9

Figure 5.2: Turn numbers at the GT-ARF large track. Direction of travel is counter clockwise in all experi-
ments with turn numbering beginning at the end of the main straight.

though each lap begins at the same location on the track, one cannot just average all of

the laps together to generate the average lap for each driver since each lap is a different

length of time. Instead, the raw positions and velocities from the state estimator must were

splined and resampled at constant intervals to align the trajectories. The computed average

trajectories for each driver are shown in addition to the raw laps.

Tracing through the turns, the first sequence at the end of the straight is one-two. To

successfully navigate these first two turns it is critical for a driver to slow sufficiently from

the straight to allow for an early turn entry and not slide wide. These two turns should

be cut as straight as possible so that AutoRally can accelerate for the next urn sequence.

Turns three-four-five can all be driven as one large left turn if a driver is able to use the full

width of the turns for positioning. In reality, the track surface between three and four has

a significant off-camber slope that causes vehicles to slide wider than expected, frequently

off the track if too much speed is carried. As a result, most drivers navigate those turn

cautiously by hugging the inner barrier and treating turns three to five as separate features.

90

Turn six is the slowest turn of the track. The best lines through this track are to enter the turn

early and accelerate hard onto the small straight before turn seven. Turns seven-eight are

the same diameter, and can be linked together if the driver is able to quickly shift steering

from side to side. The exit from turn eight is critical to carry speed into turn nine and then

onto the main straight. Turn nine is the largest diameter and therefore fastest turn on the

track, but a driver must be careful to not enter the turn with excessive speed and give up

track position in order to avoid sliding out right before the straight. Driver have a tendency

to try and take turn nine faster than their skills allow in anticipation of the main straight.

The most difficult part of the turn nine exit is keeping AutoRally pointed down the straight

under high acceleration. Across the entire track, the highest speed of the lap is normally

seen just after halfway down the straight before braking must start, and the slowest speed

is seen on the turn one or six.

The rest of this section presents the data from each driver, and then compares their

performance.

5.3.1 Skilled Human Driver

The skilled human driver is a project member who has acted as the primary safety driver

during test runs over the course of five years, was the person driving AutoRally for all of

the system identification data, and raced RC cars as a hobby growing up. This human driver

was, by far, the most skilled driver working on the AutoRally project.

Examining the average trajectory of the skilled human driver, they are able to reliably

link multiple maneuvers together as they navigate turn sequences of tighter turns such as

turns one-two and five-six as demonstrated by the trajectory cutting a low curvature path

through these turn sequences as opposed to closely following the centerline of the track.

On the larger turns, sequences, three-four, and seven-eight, and nine, the driving line taken

by the human tends to stay to the inside of the track instead of using the full width for

positioning and accelerations. This indicates a much much more cautious approach to large

91

turn sequences that require much higher speeds. Turns three-four are especially challenging

because the track has an off-camber slope. This results in very different driving behavior

on that turn sequence where AutoRally easily slides off the outside of the track if there

is excess speed. Turns eight and nine prove difficult for a different reason: they must be

taken at high speed while accelerating in preparation for the large straight to generate good

lap times. Acceleration through turns requires precise throttle and steering control to keep

AutoRally pointed down the track while minimizing fishtailing due to rear wheel slip.

Number of laps 44
Fast lap time (s) 27.09
Average lap time (s) 28.43 ± 0.73
Maximum speed (m/s) 13.02 ± 0.42
Minimum speed (m/s) 2.46 ± 0.44
Average speed (m/s) 6.11 ± 0.16
Average distance (m) 179.66 ± 3.04

Table 5.1: Driving statistics for skilled human driver.

5.3.2 Expert Human Driver

An expert for the task of racing a scaled vehicle in an off road setting is someone who

has successfully raced at the competition level in events sanctioned by Remotely Operated

Auto Racers (ROAR), the North American representative to the International Federation

of Model Car Racing (IFMAR), which is the sanctioning body for RC car races around

the world and has been active since 1985. In addition to competing in sanctioned compe-

titions, many professional drivers also consult for RC car companies about the handling

characteristics and overall impressions during development of new products.

The expert human we recruited for the study raced professionally for a decade with a

carer that included several podium finishes at national and international competitions racing

a variety of vehicle sizes on dirt and paved surfaces. He has since retired as a racer, but

regularly participates in local competitions.

The track conditions during the human expert experiment proved to be the limiting

92

(a)

(b)

Figure 5.3: Skilled human driver data. (a) All laps colored according to speed. Breaks in trajectories around
the start line on the straight are an artifact of breaking the dataset into individual laps for analysis and visual-
ization. (b) Average trajectory along with 1-σ bound.

93

factor for data collection. Over the two days the expert was on site, the first day was cold,

and the track was muddy from recent rain. By the afternoon of the second day, the track

was sufficiently dry to collect one battery pack of fast running with the remaining testing

time. The full speed run laps driven by the human expert are shown in Figure 5.4. Overall,

the human expert fast lap of 25.56 s bests the skilled human fast lap time of 27.09 s by

a margin of 1.53 seconds. The expert average lap time is also almost a half second faster

than the skilled human. The expert human is able to better position the vehicle on the

track to maintain speed through turns which results in a faster average lap time and higher

top speeds but longer average path length. In particular, the human cuts every turn except

nine very tightly, skillfully links multiple turn sequences in a row, and allows AutoRally

to use more of the track width in search of faster lap times. The way in which the human

expert navigates turns eight and nine is of particular interest. Instead of linking turns eight

and nine to carry as much speed as possible, the human expert turns sharply around both

turns, resulting in slower speeds than the other drivers during the turns, in order to focus on

straight line acceleration in between turns. The sharper turning allows for AutoRally to be

pointed straight for longer in between turn. This strategy sacrifices the quality of the racing

line and speed in turns in order to have more time accelerating hard in a straight line, which

overall appears to give a lap time advantage compared to other drivers. It allows the driver

to mostly separate maneuvering around turns and hard accelerations.

Number of laps 18
Fast lap time (s) 25.56
Average lap time (s) 28.00 ± 1.05
Maximum speed (m/s) 13.34 ± 1.10
Minimum speed (m/s) 2.24 ± 0.47
Average speed (m/s) 6.24 ± 0.19
Average distance (m) 180.60 ± 2.51

Table 5.2: Driving statistics for expert human driver.

94

(a)

(b)

Figure 5.4: Expert human driver dataset. (a) All laps colored according to speed. Breaks in trajectories
around the start line on the straight are an artifact of breaking the dataset into individual laps for analysis and
visualization. (b) Average trajectory along with 1-σ bound.

95

−10 0 10 20 30

X-Position (m)

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Y-
Po

si
tio

n
(m

)

0

5

15

20

S
peed

(m
/s)

Figure 5.5: Baseline autonomous driving performance from hand tuned MPPI, five laps.

5.3.3 Baseline Autonomous Driver

The baseline autonomous driving system is the the MPPI controller that was extensively

tuned by the algorithm designer over the course of a few days of testing. It is the same

controller as the MPC-CFO experiments, but without any cost function adaptation. The

dataset was collected and presented as the main experiments in [47]. The focus of this work

was GPS-free navigation through the use of a vision-based localization system. The dataset

for this paper only presented five laps of autonomous driving, but was able to achieve the

fastest lap time for the MPPI controller prior to cost function optimization. In the analysis

of the data, the track centerline computation was omitted due to the limited number of laps

available and the consistency of the path taken by the MPPI controller from lap to lap.

Examining the path followed by the controller in Figure 5.5, the driving line is more

centered through the track instead of using as much of the track width for positioning. The

96

Number of laps 5
Fast lap time (s) 27.96
Average lap time (s) 28.72 ± 0.72
Maximum speed (m/s) 12.15 ± 0.29
Minimum speed (m/s) 1.84
Average speed (m/s) 6.24 ± 0.19
Average distance (m) 177.18

Table 5.3: Driving statistics for hand tuned MPPI.

exceptions appear to be turns one-two and five-six, where the paths cut the turn. In one lap

of the data a significant mistake was made when the entrance to turn one off the straight was

initiated too early, which required corrective action to avoid hitting the inner barrier that

results in a hard slide to keep driving. Overall, the autonomous driver was more consistent

than the human drivers from lap to lap, but proved overall slower around the track. An

interesting point is that the average path distance for MPPI is shorter than either human

driver, but the slower speeds still result in longer lap times. We can see that, on average,

the driver that takes the longer path around the track wins as they are able to maintain

higher overall speeds that more than make up for the extra distance traveled each lap.

5.3.4 MPC-CFO Driver

The generalization capabilities of MPC-CFO were discussed previously, but because the

framework specializes performance to the track conditions, vehicle configuration, and many

of the other factors that effect performance on the day of testing, a dataset of CFO-MPC

driving with the speed map that generated the fast lap time was not able to be collected. As

a result, the driving performance analysis in this section will rely on the fast lap generated

during cost function optimization. From the previous chapter, we know that the MPC-CFO

driver is able to outperform the previous best hand tuned results, but there is still a per-

formance gap to reach the best lap times of the human drivers. The two most interesting

metrics to compare with the other drivers are the average and maximum speeds. MPC-CFO

has a top speed lower than the skilled and expert human driver, but a higher average speed.

97

Figure 5.6: MPC-CFO fast lap.

This suggests that on the slower portions of the track, MPC-CFO is consistently driving

faster than the human drivers, but then the human drivers make up for that difference in

their ability to reach higher speeds on the straights. The MPC-CFO driver also has late

entries into turn three, four, and five, which result require fairly aggressive steering ma-

neuvers to get into position for the subsequent turns. The result of the late turning is slow

speeds and lost time at these points on the track. Despite a few abrupt maneuvers, more

of the overall track width is used than the baseline MPPI. In particular, the lines taken on

turns three-four and the exit of six show significant deviations from the track centerline in

pursuit of a good racing line.

Number of laps 1
Fast lap time (s) 27.68
Maximum speed (m/s) 11.45
Minimum speed (m/s) 2.27
Average speed (m/s) 6.52
Distance (m) 179.89

Table 5.4: Driving statistics for expert human driver.

98

5.3.5 Driver Comparison

After the performance of each driver was analyzed in isolation, we can bring the average

and fast laps of each driver together for a direct comparison of their driving data. That

comparison is shown in Figure 5.7. Note that for both autonomous drivers, the fast lap

from each driver was used for the average trajectory figure.

The human expert fast lap took an especially short path through the track, one that was

9 m shorter than their average lap, all while having the highest top speed and average speed

compared to all of the other fast laps. Interestingly, the expert human also had the lowest

minimum speed of all of the fast laps, which occurs at the end of the straight in turn one

where they almost overshot the track. All together, this performance resulted in a margin

of 1.53 s over the next closest lap time. To date, the human expert lap time is the fastest

lap that any driver has accomplished at the GT-ARF large track. In discussion after the test

was over, the driver suggested that if he were able to drive at the track every weekend for a

few months and adjust the configuration of the AutoRally chassis, a lap time another 0.5 s

faster may be possible, but only with favorable track conditions.

In the end, the performance gap between the human and baseline MPPI was too much

for the current versions of cost function optimization to make up for in the competition.

It was also shown that the track conditions on the day of testing effect the potential level

of performance more than previously realized. The damp and packed conditions for the

dataset collected with the human expert provided the ideal conditions the achieve fast lap

times. If the amount of time it took to collect data could be reduced for the autonomous

systems, it could be foreseeable to conduct another competition where driving data for all

drivers is collected on the same day to manage as many environment related variables that

effect driving performance.

While one expert driver provided an example for what the best level of performance

may look like, an continuation of this work could be to bring more expert humans to GT-

ARF for data collection. A prime candidate would be a professional racer who is currently

99

active in the sport. A difficulty with finding drivers who have experience with driving 1/5

scale dirt track RC platforms is that almost all of the tracks and competitions in the US are

on the West coast. Indeed, the expert who participated in our study currently lives in the

Southwest.

With all of the project infrastructure in place for AutoRally at Georgia Tech including

the testing tracks and fleet of platforms, newer autonomous controllers may also best the

performance of the current version of MPC-CFO. As designed, the framework can offer

improved performance for the task of racing for any other promising MPC methods that

use a cost function or other representation within their optimization that can be updated

from lap to lap.

Skilled Human Expert Human Baeline MPC MPC-CFO
Lap time (s) 27.09 25.56 27.96 27.68
Maximum speed (m/s) 13.88 14.52 12.15 11.45
Minimum speed (m/s) 3.01 1.66 1.84 2.27
Average speed (m/s) 6.41 6.68 6.17 6.52
Distance (m) 173.55 171.53 177.18 179.89

Table 5.5: Fast lap comparison for all drivers.

100

(a)

(b)

Figure 5.7: Comparison of all drivers. (a) Average trajectory for each driver. (b) Fast lap trajectories for each
driver.

101

CHAPTER 6

CONCLUSION

The ability to conduct experiments in the real world is a critical step for roboticists working

to create autonomous systems that achieve human-level task performance. Self-driving

vehicles have received significant interest in recent years, in part because of their potential

societal benefit, but have not demonstrated human-level performance. The task of off-

road rally racing is an especially difficult driving task where the goal is to drive through a

course as quickly as possible. Many of the open challenges for self-driving vehicles occur

frequently in this domain because of the need to operate the vehicle up to the dynamical

limits to achieve the best performance. We chose to study autonomous rally racing as a

new domain for self-driving vehicle technologies on the path to safe autonomous vehicles.

To race in the real world, a robust hardware platform is required. One potential ap-

proach is to use a scaled vehicle platform that offers a robust, cheaper alternative to full

size cars. In this work, we created a scaled self-driving vehicle platform that enables us to

work in the space of autonomous rally racing without the cost, safety, and space concerns

that a full sized autonomous rally car would create. From the first AutoRally platform, the

design has been refined and updated to withstand all of the harsh driving conditions en-

countered in high speed driving on dirt roads. The fleet has been expanded to six vehicles

at Georgia Tech. For the first of its kind fast autonomous driving on dirt roads, a stochastic

model predictive controller was brought to the AutoRally platform and tasked with driv-

ing as fast as possible with the help of extensive hand tuning from experts. In pursuit of

the highest level of performance, a new framework was proposed and tested that layered

an optimization scheme on top of the model predictive path integral (MPPI) controller to

optimize part of the cost function through successive interactions with the system. The

reward in this optimization was lap times, which allows optimize for the task, instead of

102

the task of driving as fast as possible for the time horizon of the MPC. We demonstrated

the effectiveness of this approach, named model predictive control cost function optimiza-

tion (MPC-CFO), with the MPPI controller driving the AutoRally platform in simulations

and in the real world at the Georgia Tech Autonomous Racing Facility. Within the MPC-

CFO framework, cost function representations and stochastic optimization methods were

explored in search of the fastest lap times in three different environments. An analysis of

the how CFO influenced the performance of the MPPI control was performed with experi-

mental results in a simulation environment in which the controller had perfect knowledge

of the world dynamics and one in which the controller dynamics and world dynamics were

dissimilar. The MPC-CFO framework was shown to outperform the previous best level of

performance with a given controller with only a few interactions with a system in the real

world. Two humans participated in a rally race where their time trial driving data was com-

pared to MPC-CFO and a hand tuned version of MPPI. While the humans still outperform

the autonomous drivers, the data offers a performance benchmark for future research where

human performance can easily be compared to autonomous systems.

With the open source design of the AutoRally hardware and software and the initial rally

competition between humans and autonomous agents, our hope is that this thesis opens the

area of off road racing to study and provides an approach agnostic performance benchmark

by which we can evaluate future work against.

103

REFERENCES

[1] D. Schaper. Human Errors Drive Growing Death Toll in Auto Crashes. Available
online at http://www.npr.org/2016/10/20/498406570/tech-
human-errors-drive-growing-death-toll-in-auto-crashes
(last accessed August, 2018).

[2] K. Henry. Traffic fatalities up sharply in 2015. Available online at https://www.
nhtsa.gov/press- releases/traffic- fatalities- sharply-
2015 (last accessed August, 2018).

[3] M. Bertoncello and D. Wee, “Ten ways autonomous driving could redefine the auto-
motive world,” Retrieved from McKinsey & Company website: http://www. mckinsey.
com/insights/automotive and assembly/ten ways autonomous driving could redefine the automotive world,
2015.

[4] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley: The robot that won the darpa
grand challenge,” Journal of field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[5] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Dug-
gins, T. Galatali, C. Geyer, et al., “Autonomous driving in urban environments: Boss
and the urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466,
2008.

[6] M. Buehler, K. Iagnemma, and S. Singh, The DARPA urban challenge: Autonomous
vehicles in city traffic. Springer, 2009, vol. 56.

[7] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive
driving with model predictive path integral control,” in International Conference on
Robotics and Automation (ICRA), IEEE, 2016, pp. 1433–1440.

[8] G. Williams, N. Wagener, B. Goldfain, P. Drews, B. Boots, J. M. Rehg, and E. A.
Theodorou, “Information theoretic MPC for model-based reinforcement learning,”
2017.

[9] G. Williams, B. Goldfain, P. Drews, K. Saigol, J. M. Rehg, and E. A. Theodorou,
“Robust sampling based model predictive control with sparse objective information,”
2018.

[10] Donkey Car. Available online at http://www.donkeycar.com/ (last accessed
August, 2018).

104

http://www.npr.org/2016/10/20/498406570/tech-human-errors-drive-growing-death-toll-in-auto-crashes
http://www.npr.org/2016/10/20/498406570/tech-human-errors-drive-growing-death-toll-in-auto-crashes
https://www.nhtsa.gov/press-releases/traffic-fatalities-sharply-2015
https://www.nhtsa.gov/press-releases/traffic-fatalities-sharply-2015
https://www.nhtsa.gov/press-releases/traffic-fatalities-sharply-2015
http://www.donkeycar.com/

[11] J Gonzales, F Zhang, K Li, and F Borrelli, “Autonomous drifting with onboard
sensors,” in Advanced Vehicle Control: Proceedings of the 13th International Sym-
posium on Advanced Vehicle Control (AVEC’16), September 13-16, 2016, Munich,
Germany, CRC Press, 2016, p. 133.

[12] F1/10 Autonomous Racing Competition. Available online at http://f1tenth.
org/competition (last accessed August, 2018).

[13] Rapid Autonomous Complex-Environment Competing Ackermann-steering Robot
(RACECAR). Available online at https://mit-racecar.github.io/ (last
accessed August, 2018).

[14] N. Keivan and G. Sibley, “Realtime simulation-in-the-loop control for agile ground
vehicles,” in Conference Towards Autonomous Robotic Systems, Springer, 2013,
pp. 276–287.

[15] J. L. Jakobsen, Autonomous drifting of a 1:5 scale model car, 2011.

[16] S. Song, “Towards autonomous driving at the limit of friction,” 2015.

[17] M. Cutler, T. J. Walsh, and J. P. How, “Reinforcement learning with multi-fidelity
simulators,” in Robotics and Automation (ICRA), 2014 IEEE International Confer-
ence on, IEEE, 2014, pp. 3888–3895.

[18] D. I. Katzourakis, I. Papaefstathiou, and M. G. Lagoudakis, “An open-source scaled
automobile platform for fault-tolerant electronic stability control,” Instrumentation
and Measurement, IEEE Transactions on, vol. 59, no. 9, pp. 2303–2314, 2010.

[19] W. E. Travis, R. J. Whitehead, D. M. Bevly, and G. T. Flowers, “Using scaled ve-
hicles to investigate the influence of various properties on rollover propensity,” in
American Control Conference, 2004., IEEE, vol. 4, 2004, pp. 3381–3386.

[20] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open
urban driving simulator,” in Proceedings of the 1st Annual Conference on Robot
Learning, 2017, pp. 1–16.

[21] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), IEEE, vol. 3, pp. 2149–
2154.

[22] P. A. Theodosis and J. C. Gerdes, “Generating a racing line for an autonomous race-
car using professional driving techniques,” in ASME 2011 Dynamic Systems and
Control Conference and Bath/ASME Symposium on Fluid Power and Motion Con-
trol, American Society of Mechanical Engineers, 2011, pp. 853–860.

105

http://f1tenth.org/competition
http://f1tenth.org/competition
https://mit-racecar.github.io/

[23] J. Funke, P. Theodosis, R. Hindiyeh, G. Stanek, K. Kritatakirana, C. Gerdes, D.
Langer, M. Hernandez, B. Muller-Bessler, and B. Huhnke, “Up to the limits: Au-
tonomous audi tts,” in Intelligent Vehicles Symposium (IV), IEEE, 2012, pp. 541–
547.

[24] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for
direct perception in autonomous driving,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2722–2730.

[25] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end learning for self-driving
cars,” arXiv preprint arXiv:1604.07316, 2016.

[26] J. C. Kegelman, L. K. Harbott, and J. C. Gerdes, “Insights into vehicle trajectories
at the handling limits: Analysing open data from race car drivers,” Vehicle system
dynamics, vol. 55, no. 2, pp. 191–207, 2017.

[27] D. I. Katzourakis, E. Velenis, D. Abbink, R. Happee, and E. Holweg, “Race-car
instrumentation for driving behavior studies,” IEEE Transactions on Instrumentation
and Measurement, vol. 61, no. 2, pp. 462–474, 2012.

[28] C. Thorpe and T. Kanade, “Vision and navigation for the cmu navlab,” in Mobile
Robots I, International Society for Optics and Photonics, vol. 727, 1987, pp. 261–
267.

[29] C. Thorpe, M. Herbert, T. Kanade, and S. Shafer, “Toward autonomous driving: The
cmu navlab,” IEEE expert, vol. 6, no. 4, pp. 31–42, 1991.

[30] A. Kelly, “A partial analysis of the high speed autonomous navigation problem,”
CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS INST, Tech. Rep.,
1994.

[31] A. Stentz and M. Hebert, “A complete navigation system for goal acquisition in
unknown environments,” Autonomous Robots, vol. 2, no. 2, pp. 127–145, 1995.

[32] J. K. Rosenblatt and C. E. Thorpe, “Combining multiple goals in a behavior-based
architecture,” in Proceedings 1995 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. Human Robot Interaction and Cooperative Robots, IEEE,
vol. 1, 1995, pp. 136–141.

[33] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, IEEE, 2006, pp. 2219–
2225.

106

[34] J. C. Spall, “Implementation of the simultaneous perturbation algorithm for stochas-
tic optimization,” IEEE Transactions on aerospace and electronic systems, vol. 34,
no. 3, pp. 817–823, 1998.

[35] M. Kobilarov, “Cross-entropy motion planning,” The International Journal of Robotics
Research, vol. 31, no. 7, pp. 855–871, 2012.

[36] F. Stulp and O. Sigaud, “Path integral policy improvement with covariance matrix
adaptation,” in Proceedings of the 29th International Coference on International
Conference on Machine Learning, Omnipress, 2012, pp. 1547–1554.

[37] B. Goldfain, P. Drews, C. You, M. Barulic, O. Velev, P. Tsiotras, and J. M. Rehg,
“Autorally: An open platform for aggressive autonomous driving,” IEEE Control
Systems Magazine, vol. 39, no. 1, pp. 26–55, 2019.

[38] AutoRally Platform Instructions. Available online at https://github.com/
AutoRally/autorally_platform_instructions (last accessed Au-
gust, 2018).

[39] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng, “ROS: An open-source robot operating system,” in ICRA workshop on
open source software, vol. 3, 2009.

[40] AutoRally Software. Available online at https://github.com/AutoRally/
autorally (last accessed August, 2018).

[41] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Information
theoretic model predictive control: Theory and applications to autonomous driving,”
arXiv preprint arXiv:1707.02342, 2017.

[42] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg, “Aggressive
deep driving: Combining convolutional neural networks and model predictive con-
trol,” in Proceedings of the 1st Annual Conference on Robot Learning, S. Levine, V.
Vanhoucke, and K. Goldberg, Eds., ser. Proceedings of Machine Learning Research,
vol. 78, PMLR, 2017, pp. 133–142.

[43] C. You and P. Tsiotras, “Vehicle modeling and parameter estimation using adaptive
limited memory joint-state UKF,” in American Control Conference (ACC), 2017,
IEEE, 2017, pp. 322–327.

[44] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and B. Boots, “Agile
off-road autonomous driving using end-to-end deep imitation learning,” 2018.

107

https://github.com/AutoRally/autorally_platform_instructions
https://github.com/AutoRally/autorally_platform_instructions
https://github.com/AutoRally/autorally
https://github.com/AutoRally/autorally

[45] G. Williams, B. Goldfain, P. Drews, J. M. Rehg, and E. A. Theodorou, “Best re-
sponse model predictive control for agile interactions between autonomous ground
vehicles,” 2018.

[46] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Information-
theoretic model predictive control: Theory and applications to autonomous driving,”
IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1603–1622, 2018.

[47] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg, “Vision-based
high-speed driving with a deep dynamic observer,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 1564–1571, 2019.

[48] Hector Gazebo Plugins ROS Package. Available online at http://wiki.ros.
org/hector_gazebo_plugins (last accessed August, 2018).

[49] D. Q. Mayne, “Model predictive control: Recent developments and future promise,”
Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[50] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov, “An integrated
system for real-time model predictive control of humanoid robots,” in Humanoid
Robots (Humanoids), 2013 13th IEEE-RAS International Conference on, IEEE, 2013,
pp. 292–299.

[51] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,” Artificial intelligence,
vol. 134, no. 1-2, pp. 57–83, 2002.

[52] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[53] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human
knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[54] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A.
Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al., “Starcraft ii: A new chal-
lenge for reinforcement learning,” arXiv preprint arXiv:1708.04782, 2017.

[55] K. Kritayakirana and J. C. Gerdes, “Autonomous vehicle control at the limits of han-
dling,” International Journal of Vehicle Autonomous Systems, vol. 10, no. 4, pp. 271–
296, 2012.

[56] Roborace. Available online at https://roborace.com/ (last accessed August,
2018).

108

http://wiki.ros.org/hector_gazebo_plugins
http://wiki.ros.org/hector_gazebo_plugins
https://roborace.com/

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Related Work
	Scaled Autonomous Driving Platforms
	Autonomous Driving
	Cost Function Optimization

	The AutoRally Platform
	Hardware
	Chassis
	Compute Box

	Software Interface
	Time Synchronization
	Safety System
	AutoRally Chassis Interface
	Operator Control Station
	Simulation

	Georgia Tech Autonomous Racing Facility

	Stochastic Model Predictive Control
	Model Predictive Path Integral Control
	Dynamics Model
	Cost Function

	Cost Function Representation for Optimization

	Cost Function Optimization
	Cost Function Representations
	Image
	Radial Basis Function

	Cost Function Optimization Methods
	Experimental Results
	Testing Environments
	Ground Truth Simulation
	Gazebo Simulation
	Real World Experiments with AutoRally
	Cost Function Optimization Effect on MPPI
	Cost Function Optimization Generalization

	Rally Racing
	Gaming Competitions
	Vehicle Racing
	Rally Race at Georgia Tech Autonomous Racing Facility
	Skilled Human Driver
	Expert Human Driver
	Baseline Autonomous Driver
	MPC-CFO Driver
	Driver Comparison

	Conclusion
	References

