
Final Manuscript 14-0179

1

 

Abstract—Certain robot missions need to perform predictably

in a physical environment that may have significant uncertainty.

One approach is to leverage automatic software verification

techniques to establish a performance guarantee. The addition of

an environment model and uncertainty in both program and

environment, however, means the state-space of a model-checking

solution to the problem can be prohibitively large. An approach

based on behavior-based controllers in a process-algebra

framework that avoids state-space combinatorics is presented

here. In this approach, verification of the robot program in the

uncertain environment is reduced to a filtering problem for a

Bayesian Network. Validation results are presented for the

verification of a multiple-waypoint and an autonomous

exploration robot mission.

Index Terms— Program Verification, Autonomous Agents,

Behavior-based Systems, Control Architectures and

Programming.

I. INTRODUCTION

In research being conducted for the Defense Threat Reduction
Agency (DTRA), we are concerned with robot missions that
may only have a single opportunity for successful completion,
with serious consequences if the mission is not completed
properly. In particular the focus is on missions for Counter-
Weapons of Mass Destruction (C-WMD) operations, which
require discovering a WMD within a structure and then either
neutralizing it or reporting its location and existence to the
command authority. Typical scenarios consist of situations
where the environment may have significant uncertainty, and
have time-critical performance requirements. The goal is to
provide reliable performance guarantees for whether or not the
mission as specified may be successfully completed under these
circumstances. Towards that end, a set of specialized software
tools have been developed to provide guidance to an
operator/commander prior to deployment of a robot tasked with
such a mission. These tools can be highly valuable in other
settings also – for example, in a manufacturing setting to verify
performance or safety whenever anything is changed.

A. Automatic Verification

Automatic verification of software is a very desirable
functionality in any application where software failure can
incur heavy penalties [1]. While a general solution is ruled out

Submitted for review June 2013. Resubmitted April 2014. This research

is supported by the Defense Threat Reduction Agency, Basic Research Award

#HDTRA1-11-1-0038.

by the undecidability of the halting problem, much research has
been conducted on restricted instances of the problem. Model
checking [2] [3] is a collection of techniques that conduct an
exhaustive exploration of the state-space of a program to
determine whether the program satisfies a temporal logic
constraint on its behavior.

More recently, some researchers have effectively leveraged
model-checking techniques to address the correct-by-
construction robot control problem [4] [5]. A solution to the
correct-by-construction problem takes as input a temporal logic
description of the desired behavior of the robot controller and
then fabricates a controller guaranteed to abide by this
description.

The problem addressed by this paper differs from the correct-
by-construction problem, and is similar to the general-purpose
software verification problem, in that the input is mission
software designed using the MissionLab toolkit [6], and the
objective is to verify that this software abides by a performance
constraint. It is similar to the correct-by-construction problem
in that we require a model of the environment in which the
software is to be carried out, something not typically explicit in
general-purpose software verification [3].

However, the problem addressed by this paper differs from
both in needing to efficiently process probabilistic software and
environment models, continuous environment characteristics
and asynchronous and concurrent environment dynamics.
These problem aspects are troublesome for model-checking
approaches: One of the biggest contributions to state-space
explosion in model-checking is the translation from program to
formal model. It is exponential in the number of program
variables. Asynchronous concurrent modules are another
formidable contributor to complexity, since the concurrent
system state space grows as the Cartesian product of the
component spaces.

B. Process-Algebra Approach

For all of these reasons, the approach to the problem presented
in this paper focuses on avoiding an explicit state-space
representation and especially one in which the number of
program variables will introduce exponential complexity.
Instead a process-algebra representation is leveraged to develop
a solution in which the program is translated to a set of
equations over the program variables (which can include
random variables). The reason a process algebra is used is that
it can formally capture the concept of a recursive process and

D. Lyons, T-M Liu and P. Nirmal are with the Department of Computer and
Information Science, Fordham University NY 10458 (email: {dlyons, tliu17,

pnirmal}@fordham.edu).

R. Arkin and S. Jiang are with the College of Computing, Georgia Institute
of Technology GA 30332 (email: {arkin, sjiang}@cc.gatech.edu).

Performance Verification for Behavior-based

Robot Missions

Damian M. Lyons, Senior Member, IEEE, Ronald C. Arkin, Fellow, IEEE, Shu Jiang, Student

Member, IEEE, Tsung-Ming Liu, Student Member, IEEE, Paramesh Nirmal, Student Member, IEEE

Final Manuscript 14-0179

2

the way variables are modified by a process during recursion in
a direct and concise manner.

In overview, the proposed approach will leverage four results.

 First, it is demonstrated that a process written in a tail-
recursive (TR) form admits the extraction of a flow
function f, a function that maps the values of the process
variables in one recursion to that in the next. Any behavior
of the process can be tested by inspecting f n where n  0 is
a positive integer.

 Second, it is shown that under certain assumptions, any
concurrent communicating network of TR processes can be
rewritten as a single TR process.

 Third, it is shown that MissionLab missions can be mapped
to a network of TR processes.

 Fourth, the set of flow functions from the network of TR
processes can be tested for a performance constraint by
mapping them to a Dynamic Bayesian Network and
applying a filtering algorithm.

C. Performance Guarantee

Using process-algebra as the formal representation for the
mission software means that there is the option to also use this,
rather than a temporal logic, as the language for the
performance guarantee and for the description of the
environment models. When process-algebra is used for
specification [7] [8], a major difficulty encountered is
specifying proscription (e.g., the safety property that the robot
does not collide). The performance guarantee used here
separates constraints on process ordering from conditions on
variable values, enabling proscription.

D. Environment Models

It is not proposed that MissionLab designers build, in detail,
their own environment models (including robot and sensor
models) against which to verify the mission. Instead, it is
proposed that a set of standard environment models be
constructed a-priori and provided as a library from which robot,
sensor and environment features can be selected and composed
automatically into an environment model.

The process-algebra used here employs communication ports
and port-to-port connections [9] for concurrent modules. This
facilitates specifying plug-and-play compatible environment
models, since the formal model of the mission software just
communicates over a set of ports with any selected environment
model. The development of a standard set of environment
models is not something we have pursued however beyond
those we have developed and used in validation.

E. Validation

To demonstrate the accuracy of the verification results
achievable by the method proposed here, predicted
performance guarantees are validated by carrying out physical
robot experimentation. Calibration data is collected on the
robots and sensors used in missions, and suitable environment
models constructed. Both of the example missions presented in
the paper are verified and validated. Because the resulting
robot/environment system is probabilistic, the verification
answer is not a binary yes/no, but a probability landscape
capturing the system’s performance. Each mission is validated
by carrying out multiple physical runs and collecting

performance statistics on real robots. The validation and
verification results are then compared to evaluate the quality of
the verification prediction.

The remainder of this article is organized as follows. Section
II presents a review of prior work. Section III introduces robot
mission design using MissionLab and the two example missions
which will later be verified and validated. Section IV
introduces the process-algebra, PARS (Process Algebra for
Robot Schemas), for representing MissionLab mission
programs, robot, sensor and environment models, and
performance guarantees. Section V builds the process algebra
results on which VIPARS (Verification in PARS), the
verification module within MissionLab, is based. Section VI
maps these results to the filtering problem for Bayesian
Networks. Section VII presents the verification of the two
example missions and the experimental validation of those
verification results. Section VIII summarizes the contributions
of the paper and discusses the next key research challenges in
extending this approach.

II. PRIOR WORK

Model checking has been a very successful approach to the
automatic verification of software [2]. A program is cast as a
state-based transition system in which states are labeled with
sets of logical propositions, a Kripke system. This labelling
means that logical formulas may be satisfied by a state, and
temporal logical formulas by sequences of states. The
instructions in the program map values from one state to a
successor state. If the program has n variables, and if each
variable ri can have values from a set val(ri), then the state space
of the program is i val(ri) = val(r0) … val(rn-1) [2]. The
verification problem in model-checking is, at its heart, a test of
the reachability of a state or set of states from the start state
given the program instructions. The combinatorics involved in
i val(ri) have always been clear, and model-checking
approaches are typically divided into enumerative methods that
search this (perhaps huge) graph of states, and symbolic
methods which instead explore (a smaller number of) sets of
these states [3].

Automated verification of robot and multirobot software has
several characteristics that distinguish it from general purpose
software verification. The first is that the robot program does
not execute based on static inputs, but rather interacts with an
environment in an ongoing fashion. This is recognized in the
related field of discrete-event control by considering the system
as a parallel composition of the robot program (controller) and
an environment (plant) model [10]. From a model-checking
perspective, the system’s state-space is now increased beyond
the program state-space by the product of environment
variables. A second characteristic is that there may be a
necessary continuous nature to some aspects of the
environment. Various hybrid continuous-discrete systems [11]
have been introduced to handle this. Finally, significant
uncertainty pertains to the result of robot sensing and motion;
this cannot be ignored or the results are not realistic.

Uncertainty plays a major role in real-life robotic
performance and needs to be included in any useful approach to
robot verification. Napp and Klavins [12] introduce a guarded
command language CCL for programming and reasoning about
robot programs and environments. They address uncertainty by
adding a concept of rates and exponential probability
distributions to CCL, which allows them to reason about the

Final Manuscript 14-0179

3

robustness of programs. Johnson and Kress-Gazit [13] develop
a model-checking algorithm that handles uncertainty based on
Discrete Time Markov Chains; however, they comment on the
intractability of their approach for large state spaces.

A state-based approach will experience significant
combinatorial problems due to these characteristics. So rather
than a state-based hybrid state/continuous approach, we have
opted to avoid discussing state at all costs.

In [14] a process algebra approach for representing robot
programs and environment models is introduced. Karaman et
al. [8] also use a process algebra as a specification language for
multiple UAV missions and develop a polynomial time
algorithm that produces a plan to satisfy the specification. That
work, and our previous work in process algebra for
performance analysis of robot programs [15], leveraged the
trace, or history of events, of a process. In this paper, however,
the focus will be on how a process transforms its inputs to
produce outputs without reference to states.

The proposed approach targets a specific kind of robot
programming: behavior-based robot programming [16]. A
behavior-based robot interacting with its environment will
respond to a specific set of environmental percepts as
programmed by its behaviors. Once a percept is responded to,
the robot may return to this behavioral state or move to another
that handles a different set of percepts.

III. MISSION SPECIFICATION

Dull, dirty, and dangerous missions are considered to be the
natural niche for robots, and they have been a major driving
force behind the advancement of robot technology. Over the
past decades, we have seen an increasing number of robots
being deployed to accomplish dangerous missions (e.g.,
disarming IEDs). Missions in the domains of urban search and
rescue (USAR) and counter weapons of mass destruction (C-
WMD) are not only dangerous, but their failures usually have
dire consequences. It is highly desirable then to have the ability
to verify the performance of a robot before it is deployed to
carry out a mission. However, verification of robotic missions
poses a unique and great challenge that is different from
traditional software verification – the robot has to work in the
real world, and the real world is inherently unpredictable. For
example, robots were deployed during the World Trade Center
rescue response, where the environment had become highly
unstructured and filled with rubble piles [17]. In this article, we
present our research [14] [18] on a mission design and
verification framework for performance guarantees for critical
missions where failure is not an option – the robot has to get it
right the first time.

A. Mission Design Software Environment

The robot mission verification framework is built upon
MissionLab, a behavior-based robot programming environment
[6] [19]. MissionLab provides a graphical user interface CfgEdit
where robot programs can be constructed as a finite state
automaton (FSA) that sequences behaviors from a library of
primitive behaviors. One of the many unique features of
MissionLab is that it generates hardware-independent
executables from user-constructed FSAs, which allows the
desired robot platform to be chosen at run time. For critical
missions where performance guarantees are desirable, a
verification framework is developed in this paper for

MissionLab where the mission can be verified before the
software executable generation step.

Figure 1. MissionLab robot mission specification toolset

with VIPARS verification module.

The proposed verification framework is shown in Figure 1
as an extension to the MissionLab programming environment.
To initiate the verification of a mission, the robot mission
specification is compiled into PARS. The core of the
framework is the process algebra based verification module,
VIPARS. Two additional inputs are necessary for verification:

1) Robot, Sensor & Environment Models:
The robot operator specifies to MissionLab the models of

robot, sensors and environment with which to conduct
verification. It is not proposed that MissionLab designers build
their own environment models against which to test the
mission. Instead, just as MissionLab provides a set of robot
drivers for simulation (Pioneer, Amigobot, ATRV-Jr etc) a set
of standard robot, sensor and environment models will be
constructed a-priori and provided as a library from which robot,
sensor and environment features can be selected and composed
automatically into an environment model. The development of
a standard canonical set of environment models is not
something we have pursued beyond those we have developed
and used in validation. MissionLab also provides within its suite
of tools data logging mechanisms for recording the
performance of missions in terms of distance and time, and also
has mechanisms for recording operator interaction [19].

2) Performance Criterion:
Performance criteria are mission constraints (e.g., safety and

time constraints) that the robot system has to meet in order to
assert “mission accomplished.” The criterion consists of two
parts: a probabilistic condition on a state variable of the robot,
sensor and/or environment model and a time constraint on that
condition. An example of a state variable is the position p(t) of
a robot at time t. An example of a performance criterion is that
the robot have an 80% chance of arriving at a destination, L1
before a time limit, T.

P(p(t)=L1)  0.8 for some t < T (1)

Another example is that two robots at locations p1(t) and p2(t)
are never closer to each other than a safety radius r:

P(|p1(t)-p2(t)|  r)  0.8 for all t < T (2)

 Executable

Operator

MissionLab

Programming

Environment
VIPARS

S
PARS

Models:
Sensor,

Robot,

Environment

Performance

Criteria

Final Manuscript 14-0179

4

The output of VIPARS provided to the operator is a

performance guarantee for the mission indicating whether the

performance criteria were met. The verification module

supports a feedback design loop, where the operator iteratively

refines the robot program based on the performance

information provided by VIPARS.

B. Mission Design

To illustrate the process of designing a mission with

MissionLab and verifying it with VIPARS, two biohazard

search scenarios are presented in which the robot needs to

access a room inside the basement of a building where potential

biological weapons might be located. This is representative of

the types of C-WMD mission we are focusing on, i.e., where an

approximate location of the weapon has been discovered and

the building has been evacuated, thus no longer having any

humans present in the setting. The robot’s task is to confirm the

location of the WMD and either remediate it itself via

containment or manipulation (which we leave for future work)

or provide the location to a well-protected human operator to

subsequently enter and address the event. Any a-priori

knowledge of the structure of the building if available can also

be incorporated to guide the search.

 In our example, the layout of the basement is shown in Figure

2, and the room the robot needs to access is shown with a

biohazard symbol. Given a known layout of the environment,

the simplest solution to accomplish the mission is to designate

waypoints that the robot can follow to access the room

containing the potential threat. The waypoints and the path of

travel are shown in Figure 2. This is the first example mission.

It is more often the case, however, that there is not such strong

knowledge of the operating environment. In these cases,

autonomous exploration is necessary to find the biohazard. That

scenario will be the second example mission.

1) Multiple Waypoint Mission

The design of the FSA for the multi-waypoint mission of Figure

2 is shown in Figure 3 and was created with CfgEdit in

MissionLab. The FSA consists of a series of GoToGuarded and

Spin behaviors with AtGoal and HasTurned triggers. The

GoToGuarded behavior drives the robot to a specified goal

location (i.e., waypoint) with a guarded radius of velocity

dropoff around the goal location. The AtGoal trigger causes a

transition to the next state when the robot reaches the goal

location. The Spin behavior circulates the robot around an

obstacle with a given velocity. The HasTurned behavior causes

a state transition when the robot has turned a desired angle.

The performance criterion is a specification of the desired

result for mission. The performance criterion for the waypoint

mission is that the robot reach its final waypoint within the time

limit, as in eq. (1).

2) Autonomous Exploration Mission

The second example mission is a Biohazard Search mission: a

robot is tasked to search an area for biohazard, Figure 4.

Figure 4. Indoor Biohazard Search Scenario

The control program for the mission, shown in Figure 5, is

constructed in MissionLab as a behavioral assemblage in the

form of an FSA. The FSA consists of three behaviors (Wander,

MoveToward, and Stop) and three triggers (Detect, NotDetected,

and Near). With this behavioral assemblage, the robot starts

with random exploration of the environment. However, when

Detect is triggered, the robot switches from random exploration

to moving toward the detected biohazard. This mission is

completed once the robot is within a certain distance of the

biohazard.

The performance criterion in this case is that the robot find

(i.e., approach) the biohazard within the time limit:

P(|p(t)-B|  )  0.8 for some t < T (3)

where B is the location of the biohazard, p(t) is the robot

position, and  is an approach distance constant.

Figure 2. Building layout with mission waypoints labeled.

Figure 3. Mission design with MissionLab’s CfgEdit.

x

y

Final Manuscript 14-0179

5

C. Verification of Performance Criterion

Designs rarely work coming off the drawing board the first

time. Final working products usually emerge only through

numerous “going back to the drawing board” moments. The

design of robot missions is no exception. However, for time-

critical C-WMD and USAR missions where there might only

be one opportunity to attempt the mission, it’s necessary to have

some guarantee that the designed robotic system will succeed

before its deployment. To obtain a performance guarantee for

the robot FSA in Figures 3 and 5, the operator needs to compile

the robot program into PARS and provide VIPARS with the

performance criteria and models of sensor, robot, and the

environment (Figure 1).The details of the verification and

validation of these two missions will be presented in Section

VIII, after the theoretical basis of the approach has been

introduced.

The robot used for both missions is a four-wheeled skid-

steered mobile robot, the Pioneer 3-AT, shown in Figure 6. The

robot is equipped with wheel encoders for localization, a gyro

for heading correction, and a SICK laser for obstacle avoidance.

For the exploration mission, the Pioneer 3-AT robot is equipped

with a camera for biohazard. The principal source of

uncertainty for these missions will be the sensor and actuator

uncertainty and not uncertainty relating to the number and

location of obstacles or terrain features.

Figure 6. Pioneer 3-AT Robot used in both Missions

VIPARS outputs 1) a Boolean answer to whether the mission

will be successful as specified, and 2) a set of the variables in

the performance criteria and their values at the time verification

ended. When the performance criterion is probabilistic, the

values returned are distributions.

If the predicted performance of the mission does not meet

the necessary performance criteria, the operator can refine the

robot program based on the feedback provided by VIPARS.

This iterative process can continue until the operator is satisfied

with the performance guarantee and sufficiently confident to

deploy the robot.

IV. REPRESENTING MISSIONS IN PARS

PARS is a process algebra for representing robot programs

and environments for automated verification. PARS provides a

formal representation for capturing tail-recursion and it allows

verification to be cast as the solution of a system of equations

rather than as state enumeration and state checking and its

associated combinatorics.

A. Process Composition

A process is written in PARS using a bolded capital letter, e.g.,

P, and using a common set of process composition operations

(e.g., [20, 7]):

Definition 1 A process is defined as a composition of other

processes as follows:

<processdef> ::= <process> ‘=’ <processexpr>

<processexpr> ::= <processeq> ‘|’ <processeq>

<processeq> ::= <processexpr> ‘;’ <processexpr> |

 ‘(‘ <processexpr> ’)’ |

 <processname>

Where ‘|’ denotes parallel composition and ‘;’ denotes

sequential composition, and where <process> and

<processname> are a bolded capital letter or word.

Example 1. The process P is defined as the process Q followed

by the process R and S in parallel, and when both terminate,

followed by the process T:

P = Q ; (R | S) ; T

The process description is modified to include the variables

used by a process and a way to specify initial values for these

variables and to return values as results. In general, process

variables are written in lower case.

Definition 2. A process that takes initial variable values u1, u2,

…,un and maps these to new values v1, v2, …,vm is written as:

P u1, u2, …, un v1, v2 ,…, vm

A function fP(u1,u2,…,un)=(v1,v2,…,vm) is associated with P

that maps the values u1, u2, …,un to v1, v2, …,vm in the same

way. This is called the flow function associated with the process.

Composition operators can be used to funnel value calculations

through a chain of processes.

Extending the syntax in Definition 1, a <processname> is now

written as in Definition 2, and <process> is written as a bolded

capital letter or word followed by a list of variable and result

names between angle brackets.

Definition 3. The flow function of a composition is constructed

from the flow functions of each member of the composition as

the composition of flow functions on any common variable

values.

Example 2. The flow function fT of the process T defined as

Tac = Pab ; Qbc

is fT(a) = fQ ○ fP(a) since b is common to both processes. The

flow function of the process X defined as

Xa,cb,d = Yab | Zcd

Figure 5. CfgEdit FSA for the Biohazard Search Mission

Final Manuscript 14-0179

6

is fX(a,c) = (fY (a), fZ(c)) since none of the variables are common

to both process.

In practice there may be a mix of both of these cases.

B. Conditional Composition

PARS does not have a choice composition operator, used in

many process algebras to implement conditional behavior.

Instead, a sequence is conditional, as in LOTOS (Language of

Temporal Ordering Specifications) [7]. A sequential chain is

terminated immediately by a process ending in an abort

condition.

Definition 4. Any process P can terminate in one of two

conditions, a stop condition or an abort condition. The process

T = P ; Q is defined to be the process P if P ends in an abort

condition and the process P followed by the process Q if P ends

in a stop condition.

Table 1. Examples of Finite Basic Processes

Process Stop Abort

Delayt  After time t Never

Ran v  returns a random sample v from

a distribution 

Never

Inp x  , Outp,x perform input and output,
respectively, on port p

Never

Eqa,b , Neqa,b ,
Gtra,b , etc.

a=b, ab, a>b, etc. Otherwise

Definition 5. A basic process P  Basic is a process whose

behavior and flow function is defined a-priori, not by a

composition of other processes.

Table 1 shows some basic processes that are used in this article.

These are basic processes that always terminate, and are

grouped in the set Finite  Basic. Some that do not terminate

will be introduced later. The last row shows several processes

that calculate conditions, basic condition processes.

Definition 6. Each basic condition process P  Cond, where

Cond  Finite  Basic, terminates in stop if its condition,

denoted cond(P), is true, and in abort if the condition is false.

Example 3. A conditional statement that carries out P if a=b

and Q otherwise is written as follows:

T = (Eqa,b  ; P | Neqa,b ; Q)

The sequential chain Eqa,b  ; P only continues to P if Eq stops,

that is, if a=b. Similarly Neqa,b ; Q only continues if ab.

Definition 7. The mapping (Pu1,u2,…,un) maps a process P

to a well formed logical condition expression over conditions

with names of the process variables, u1, u2,…,un and condition

operations (=,,>,,<,), and logical operations between

condition expressions (,,) that specifies the condition under

which the process stops. For convenience, the abort condition,

℧(P) is defined as ℧(P)= (P).

The mapping  is defined a-priori for basic condition processes

PCond by cond(P). The mapping must be calculated for

compositions of processes.

Definition 8: (P) is defined by:

 If P  Basic,

 (P) = cond(P) if PCond,

 (P) = (P Finite), else.

 If P  Basic,

(P | Q) = ((P)  (Q))

(P ; Q) = ((P)  (Q))

Example 4. The  mapping for the basic condition process Eq

is defined as follows: (Eqa,b ) = cond(Eqa,b ) =“a=b”.

A flow function can now be defined for a chain of processes as

in Example 3.

Definition 9. The flow function fT of the process T defined as

T = P1; P2

is fT = fP2○ fP1 if (P1) evaluates to true and fT = fP1 otherwise.

Example 5. The flow function for T = (Eqa,b  ; P | Neqa,b ; Q)

is fT = fP if (a=b), and fT = fQ if (ab).

C. Tail Recursive Processes

Definition 10. A tail-recursive (TR) process T is a process

defined as a sequential composition of a non-recursive process

expression (the body of the TR process) followed by a recursive

reference to T.

Example 6. The process T = P ; T is a TR process if P is not

recursive; P is the body of the TR process.

Definition 11. The process Tab = Pab ; Tb is a TR

process if P is not recursive.

 The flow function associated with T will be of the form
 fT = fP

n (a) for n0. Furthermore,
 The value of n is the smallest n such that ℧(P fP

n-1(a) )
evaluates to True.

Note 1. Recursion and iteration are equally expressive, and

there is a method to transform general recursion to tail-

recursion [21]. Hence tail recursion does not limit expressive

power.

Note 2. Any language that implements sequence, condition and

repetitive constructs is sufficient to represent any program [22];

thus, we can be confident that PARS can represent any program.

Note 3. Any computation of the TR process T can be examined

as fT = fP
n (a) for some n>0.

 Input ports Output ports

 i1,i2,…,ik o1,o2,…,oj

Initial

variable values Final results

 u1,u2,…,un v1,v2,…,vm

 (a) (b)
Figure 7. PARS Process Model (a) and Process Network

Model (b)

D. Communicating Processes

The process algebra is now extended with a mechanism for

parallel processes to exchange messages.

Definition 12. A process C with initial variable values

u1,u2,…,un input port connections i1,i2,…,ik output port

C

C E

Final Manuscript 14-0179

7

connections o1,o2,…,oj and final result values v1,v2,…,vm (see

Figure 7(a)) is written as:

Cu1,u2,…,un (i1,i2,…,ik) (o1,o2,…,oj) v1,v2,…,vm

The input and output ports can be used by C for communicating

with other, parallel processes while it is calculating its final

values. A collection of connected, parallel processes will be

referred to as a network. For example, in the network in Figure

7(b) the results calculated by C can be influenced by the process

E to which it is connected. If C is a behavior-based robot control

program, and E a model of its environment, then the results of

that program may thus depend on the environment E in which

the program is executed. Table 1, 3rd row, lists the basic

processes for port communication.

Definition 13. Inpx is a process that takes the name of a port

p as an initial variable value, carries out a read operation on the

port, and produces the value read, x, as a result; and Outp, x is

a process that takes the name of an output port p and a value to

send on that port, x, as initial variable values and writes the

value to the port.

Example 7. A process C that inputs a value on input port pos

and then always outputs a value on port vel is defined as a

sequential composition as follows:

C (pos)(vel) = Inposx  ; Outvel ,k*(g-x)

The value k*(g-x) is the difference between a constant g and the

value x read from the pos port, times a gain constant k. Initial

variable values and results can be specified using standard

arithmetic expressions and functions.

Example 8. The parallel composition:

S = C(c1)(c2) | E(c2)(c1)

specifies two parallel processes C and E as shown in Figure 7(b),

with the input and output ports connected correspondingly. The

labels c1 and c2 are called port connection labels and their only

purpose is to specify the connection map between the ports of

the parallel processes.

Note 4. The addition of port communication complicates the

relatively simple definition of flow functions! The flow

function associated with a process no longer just depends on the

variables of that process, but could depend on variables and

computations of other parallel processes. This issue will be

addressed by the addition of some structural constraints to the

class of network to be analyzed in Theorem 1 of Section V.

Note 5. Port connections labels are a general way to describe

port-to-port connections, and this is what the PARS/VIPARS

implementation uses. However, they result in longer, more

verbose process expressions. For many examples in this article,

this is simplified by giving connected ports on parallel

processes the same names (however cf. CSP or Promela

channels [2]).

One more extension is made to PARS for the purpose of

easily representing behavior-based programs. While a parallel-

max composition ‘|’ terminates when both processes terminate,

a parallel-min composition called disabling composition is also

introduced.

Definition 14. A disabling composition, written ‘#’, is a

parallel composition operation that terminates when any one of

its arguments terminates (cf. LOTOS disabling [7]). The

syntactic binding order is ‘;’, ‘#’ and ‘|’.

Definition 15. For the composition T = P # Q:

 (P#Q)= (P) (Q)

 fT = fP if (P) holds, fQ if (Q) holds, nondeterministic if

both hold.

Definition 16. The basic process Delayt  terminates after a

time t has elapsed. Its effect is similar to a condition process in

that it indicates when a process ends rather than computes a

value. elapsed(t) is added to the list of conditions in Definition

7 indicating the condition that time t has elapsed.

Example 9. The process T1 = (Delayt1 # Delayt2) has
(T1)= elapsed(min(t1,t2)).

The process T2 = (Delayt1 | Delayt2) has (T2) =

elapsed(max(t1,t2)).

The process T3 = (Delayt1 ; Delayt2) has (T3) =

elapsed(t1+t2).

E. PARS Controllers

In MissionLab a designer specifies the robot mission as a

Finite State Automaton (FSA) (examples in Figure 3 and 5).

Each state in the CfgEdit FSA involves the execution of a

behavior which may result in many sensing and motor actions

and interactions with the environment. Hence verification must

occur at a greater level of the detail than that provided by simply

using a model-checking approach with the states of the FSA.

Prior work has investigated simply using a more detailed FSA

for the problem [1] [2] [3], but this incurs the state-explosion

issues discussed in Section II, and hence we do not take that

approach.

1) TR Behavior Library

The states in the FSA (i.e., the circles in the CfgEdit diagram in

Figure 3) correspond to behaviors from a library of robot

behaviors in MissionLab. MissionLab behaviors are specified

in the Configuration Network Language (CNL) [23]. To

support the translation of CNL to PARS, a corresponding

library of PARS behaviors was built. Only behaviors used in

the kind of missions described in this article have been

implemented to date. Each such behavior has been constructed

as a TR process. The initial variable values for these processes

can be used to parameterize behaviors, for example to provide

a goal location to a GotoGuarded behavior. These processes use

port communications to transfer information to other behaviors,

or to the robot model, and acquire information from sensor

models.

Example 10. An internal process in the PARS implementation

of the GoToGuarded behavior, the MoveTo TR process, is

defined as:

MoveTo g  = Inp rp ; Gtr|rp-g |, ;
 Outv, d(g-rp)  ; MoveTo g 

Final Manuscript 14-0179

8

The process inputs a value on the position input port p, checks

to see if the position reported is close to the goal g, and if not

(i.e., if the condition process Gtr stops) then it outputs an

appropriate velocity d(g-rp) to reach the goal on the port v. The

function d() is an arithmetic function that generates an

appropriate velocity based on the distance from the goal, e.g.,

k*(g-rp). As per Note 4, nothing can be stated about the flow

function for this process yet. However, the ℧ mapping for this

process is:

℧ (MoveTo) = |rp-g |  

2) Triggers

The transitions between the states of the FSA are mediated by

triggers (the rectangles in the CfgEdit diagram in Figure 3).

These continually monitor some sensor condition and initiate

the transition to a new behavior when the condition is satisfied.

It is quite easy to see how a trigger can be phrased as a TR

process, since it is principally a repeated condition process. A

library of trigger processes was also constructed, sufficient to

support the kind of missions described here.

Example 11. As an example, the AtGoal TR process is shown:

AtGoal g  = Inp rp  ; Gtr|rp-g |, ; AtGoal g

The position of the robot is read on port p, and if the position

is close to g, then the tail recursion stops as in Example 10.

3) Mission and System Processes

The CfgEdit FSA is translated (through CNL [23]) to a PARS

process called Mission by:

1. Identifying the library process associated with the trigger

or behavior state.

2. Identifying the values of the parameters associated with the

trigger or state and providing them as initial variable values

for the process.

3. Composing the trigger and behavior processes based on

their relationship within the FSA.

Example 12. This conversion is illustrated using the last two

GoToGuarded states and intervening trigger in Figure 3. These

can be composed as

 Mission = GoToGuardedloc3  |
 AtGoalloc3  ; GoToGuardedloc4 

The values loc3 and loc4 are the corresponding locations from

the CfgEdit FSA, and GoToGuarded and AtGoal are the TR

processes from the behavior library.

F. PARS Environments

An environment model in PARS is a causal model of the

environment in which the robot program is carried out.

Example 13. A robot model, Robot, which includes both

position and heading uncertainty is shown below as a TR

process:

Robotr, a, s = (Delay  # Odor # Atr1, r ) ;
 (Inh a  # Inv s) ;
 (Ranh z | Ranv w ) ;

 Robotr+u(a+z)*(s+w)* , a, s 

Odor = Ran e  ; Out p, r+e ; Odor

The environment model accepts a heading input on port h or

a speed in the direction of the heading on port v. The process

Atr1,r , an infinite basic process, represents robot r1 at location

r. The process Odo (short for Odometry sensor) makes position

information (with noise e ~ ) available in a loop on port p until

terminated by Delay. The new position of the robot is calculated

as the old position r incremented by a noisy speed command

(s+w) in the direction of the noisy heading (a+z) (where u()

returns the unit vector). The actuator and odometer noise (the

variables z, w, and e) are characterized by the distributions for

speed, heading and sensor noise, e.g., h = N(h,h), v =

N(v,v), and  = N(m,m).

G. PARS Goals

One of the strengths of model-checking is the established

relationship between the state-based transition model for the

program and a temporal logic specification of the property to be

verified [2]. However, a process algebra can be just as intuitive

a language to specify event orderings [7] as a temporal logic

language. Of course, in a logic it is possible to concisely

proscribe, i.e., to state what should not hold, whereas a process

algebra is prescriptive. It will be shown that this is not a

limitation for the proposed approach.

First, consider how a property is related to a program.

Implementation is distinguished from specification: A property

to be verified, a specification, is a more abstract process

network, while an implementation is a process network with all

the details filled in [7] [24].

Definition 17. PQ denotes process P and process Q are

observationally equivalent by a specification implementation

bisimulation. The details of PQ are postponed to Section V.

A performance criterion network is written using process

composition operations and basic processes along with

constraints on the values of the variables to the processes.

Example 14. A simple liveness criterion is that robot r1 reach

a specific location (cf. Eq. (1)) ; this is written as follows:

Q = Delayt1  ; (Delayt2  # Atr1,p)

for some t1 T, |p-L|<

The basic process Atr,p represents robot r at position p. This

process never terminates unless run in a disabling composition

with a process that will terminate (such as Delay). This

specification states that r1 arrives at location p by time T at the

latest and the final position be within  of location L. Notice

there is no constraint on t2 (how long the robot is at the final

location p).

Example 15. In this two robot example, robot r1 must arrive at

its location before r2 arrives at its location. Process variables in

the proposed framework may be random variables. An example

constraint on a random variable can be its probability of

meeting some condition. In this case, the criterion specifies that

the location of robot r1 must have at least an 80% probability

of being within a distance R of location L1 by time t1.

Q = Delayt1 ; (Delayt2  # Atr1,p) |
 Delayt3 ; (Delayt4  # Atr2,q)

for some t1,t3 T, t1<t3,

 P (|p-L1|<R)>0.8, P (|q-L2|<R)>0.8

Final Manuscript 14-0179

9

Example 16. Consider a safety criterion: that two robots never

approach too closely (cf. Eq. (2)). Notice this involves

proscription – that a specific process composition never

happens – difficult with process algebra. It is handled here by

moving the proscription to a constraint on the variable values.

The probability of the robots being at least a distance  away

from each other must be at least 80% for all times:

Q = Delayt1  ; (Delayt2  # Atr1,p) |
 Delayt3  ; (Delayt4  # Atr2,q)

for all t1,t3>0, P (|p-q|>)>0.8

A performance criterion is defined as follows:
Definition 18. G(Q,C) is a performance criterion, where

 Q is the process network associated with the criterion,

 C is a boolean function on the process variables in Q that

is true if the constraints on the variables hold.

If u are the variables in Q, then C(u) holds iff the constraints in

C hold on the variable values of u. In the performance criterion

in Example 16, C(t1,t2,t3,t4,p,q) is true iff for all t1,t3>0,

P (|p-q|>)>0.8.

As usual, a safety criterion, will be handled during verification

as a negated liveness condition. A performance criterion is

negated by negating the constraint on variable values: G(Q,C)

= G(Q,C).

V. VERIFICATION IN PARS

Given a parallel communicating composition of a controller

Mission and environment model Robot:

 Sys = Missionu1,…(a1,…)(b1,…) |

 Robote1,…(b1,…)(a1,…)
(4)

our objective is to automatically verify that Sys will achieve

some desired performance criterion G(Q,C). Section IV has

introduced a lot of the methodology needed to support this but

with one significant gap: While it is possible to express the

flow-function of a TR process (Definition 11, Note 3), eq. (4)

is not a TR process, so there is no way to express its

computation as a flow-function (Note 4).

This section will present an approach to determining the

flow-function for a parallel, communicating composition of

processes with the assumption that the component processes are

themselves TR processes. This is a reasonable assumption; in

the previous section it was shown that MissionLab behavior-

based programs can be translated to TR processes, and that the

environment model can also be constructed as a TR process.

Furthermore, tail-recursion does not restrict what can be

represented in either.

Determining this flow-function will require two steps:

1. Translate the network of TR processes into a single TR

process (SysGen algorithm, presented in subsection A).

2. Combine the flow-functions for the individual TR

processes with the port connection mappings for the

network to produce the flow-function for the single TR

process constructed in step 1 (FloGen algorithm, presented

in subsection B).

With a procedure to determine the flow-function for a network

such as eq. (4), it is only necessary to then describe how to use

this to verify whether the network satisfies the performance

criterion G(Q,C) (presented in subsection C).

A. SysGen Interleaving Theorem and Algorithm

Consider a parallel composition of TR processes P1, P2, …, Pm

as follows:

Sys = P1 | P2 | … | Pm

 An interleaving theorem in process algebra relates sequential

and parallel operations.

Theorem 1. A parallel, communicating composition of TR

processes can be written as a single TR process:

Sys = P1 | P2 | … | Pm = S(P1, P2 ,..., Pm) ; Sys

iff a system period process, S(P1, P2 ,..., Pm) can be constructed.

 Informally, Sys is a collection of TR processes, each of which is

in the form 𝐏i = 𝐏̂i ; 𝐏i where 𝑷̂i is the non-recursive body of the

ith TR process. The port communications between any process i

and any other process j are what synchronize the execution of

the bodies of these two processes, 𝑷̂i and 𝑷̂j. For example, if the

bodies were synchronized by communication to all start at the

same time, then we could say that the system period process

S(P1, P2 ,..., Pm) was just equal to the parallel composition of all

the body processes 𝑷̂1|𝑷̂2| … |𝑷̂𝑚. However, if there are more

than just a single such synchronizing communication between

processes, then some 𝑷̂i may have to repeat several times more

or less than other 𝑷̂j. The system period process is similar to

the concept of the hyper-period (LCM of all the task periods in

a scheduling problem) [25].

The proof of Theorem 1 is by construction of the system

period process (and we call the resulting algorithm SysGen).

SysGen starts with the non-recursive body 𝑷̂i of the ith TR

process. The body is then restricted to just the port

communication processes, hiding other processes as internal

operations. The abs operation is introduced to formalize this

hiding here (and in later sections).

Definition 19. P abs S is the process in which any processes in
P not named in the set S are hidden by the internal action i. This
can be defined recursively:

 (P ; Q) abs S = (P ; i) = P if Q S or = (i ; Q) = Q if P  S

 (P | Q) abs S = (P | i) = P if Q S

 (P # Q) abs S = (P # i) = P if Q S

For convenience, P abs Q is written to mean the process where
any processes not named in Q are hidden. Compositions of
internal actions can be grouped:

i ; i = i, i | i = i and i #i = i

Restriction to just port operations will allow the matching of

input and output port operations between the parallel 𝐏̂i.

𝐈𝐎i= 𝐏i abs { In, Out } (5)

From the port connection labels in a parallel composition, a

communication map cm can be built which specifies how ports

on one process connect to ports on another in Sys. Call 𝐈𝐎i(𝑗)

the jth port operation in 𝐈𝐎i and let 𝑝(𝐈𝐎i(𝑗)) be the portname in

that operation. Then SysGen starts with 𝐈𝐎i(𝑗
𝑖

= 0) for each

process Pi and checks for the following:

𝑐𝑚(𝑝(𝐈𝐎i(𝑗𝑖)), 𝑝(𝐈𝐎k(𝑗𝑘))) (6)

Final Manuscript 14-0179

10

For sequential and disabling compositions in 𝐈𝐎i, as soon as (6)

produces a match with some other process 𝐈𝐎k, ji and jk can be

incremented to the next operation, since only one

communication happens for the composition to terminate. For

parallel composition however, all the communications in the

composition need to be matched before ji is incremented.

If at any point, two processes cannot be found for which (6)

holds, but one or more processes have previously matched all

their operations, then those processes can be unwound. For

example, if 𝐈𝐎i has been completely matched already, then we

can replace it with 𝐈𝐎i = 𝐈𝐎i ; 𝐈𝐎i which is just an unwinding

(e.g., T = P ; T = P ; P ; T) of a tail recursion and in this way

extend the body of the process and the opportunity to continue

to match port connections. Informally: this unwinding in

general means that this component process needs to loop twice

(or more) to handle multiple communications from a single loop

of another component process.

When all 𝐈𝐎i are completely matched (including any

unwound processes), the system period process has been built.

However, if (6) fails and no processes can be unwound, then no

system period process exists. If it exists, the system period

process will be given by:

𝐒(𝐏𝟏, 𝐏𝟐 , . . . , 𝐏𝐦) = 𝐏̂𝟏
𝑘1

| 𝐏̂𝟐
𝑘2

| … |𝐏̂𝐦
𝑘𝑚

 (7)

for some unwinding constants k1,…,km. For a discussion of the

computation complexity of SysGen, see Appendix I.

B. FloGen Algorithm

SysGen recasts the analysis of Sys into the analysis of a single

period process S(Sys)=S(P1,…,Pm). S(Sys) transforms the

values of the variables in P1,…,Pm at start of repetition k of the

system period process to those at the start of repetition k+1.

Within S(Sys) variables may have their values transformed in

two ways:

 By operations within the processes P1,…,Pm: This

information is obtained directly from each process flow

function.

 By message passing: Variable values may be sent via port

communications to be included in other processes.

When a process receives a value from another process, the value

arrives as a result variable of the In process. For example the

TR process

Ty = Inpx ; Tx+y

repeatedly accepts a value on port p and then adds it to its

variable y. It has a flow-function

fT(y) = x+y,

which includes a value x that is not one of the process variables,

and which can only be disambiguated by following the

connection for port p and determining which process and which

variable in that process produces x. Such variables will be

referred to message variables.

Definition 20. Let R be set of variables of the processes

P1,…,Pm and let val(ri) be the value set of the variable ri R.

The system period process flow function maps all variables in

the kth iteration of the system period process to their values in

the (k+1)th iteration:

) val(r..)): val(r,...,r(rf nnsys  .11
 (8)

)val(r..) val(r n .1

A variable’s transformation is traced through the processes and

port communications in S(Sys) to generate a single flow

function fsys defined in terms of flow functions for each

variables in the system process fsys,ri as follows:

,...,,(12,11,1),...,r(rf),...,r(rf),...,r(rf nrsysnrsysnsys  (9)

)1,),...,r(rf nrnsys

The FloGen algorithm (Figure 8) implements the following of

connections in S(Sys) to replace all the message variables with

process variables and hence generate the system period process

flow function, eq. (9).

FloGen(FS = {fP1,…fPm}, cm): // remove message variables from all FS

1. For each fPi  FS

2. For each vj not in R for Pi //i.e. from an In

3. aport variable of In that generated vj

4. Replace vj with FloFollow(a, FS, cm)

FloFollow(a, FS, cm): // replace a single message variable

1. Find port b on Pk connected to a on Pi using cm

2. expr  variable expression in Out on port b in Pk

3. For each uj in expr not in R for Pk

4. a  port in pk that generated uj
5. Replace uj in expr with FloFollow(a, FS, cm)

6. Replace vj with expr

Figure 8. Flow Function Generation Algorithm, FloGen and

recursive helper function FloFollow.

For a discussion of the computational complexity of FloGen,

see Appendix II.

Figure 9 shows an illustrative example of this kind of variable

value transformation between two processes. Recall that there

are two ways a variable can have its value modified: by

operations within the process, and/or by message passing with

another process. In Figure 9, P1 transmits its variable r to P2,

which then modifies its variable a by a transformation g(r,a)

and transmits this back to P1. Process P1 transforms its variable

first to h(r) and then, on receiving g(r,a), to f(h(r),g(r,a). The

FloFollow algorithm follows the chain of transformations

indicated by the dotted line in Figure 9 to resolve f(h(r),g(r,a)).

The FloGen algorithm uses FloFollow to replace all the

message variables in every flow function.

Variable values: r h(r) f(h(r), x) …

Process P1

Port to port x

communications y

Process P2
Variable values: a g(y,a)

Figure 9. Example of variable value transformation (dotted lines)

for variables r and a in a single system period process composed

of two processes P1 and P2. The message variables x and y are

resolved by FloGen as y=r and x=g(y,a)=g(r,a).

Final Manuscript 14-0179

11

Example 17. Consider the system process defined as

Sysg, r, a, s=MoveTo g  | Robotr, a, s

where the component processes have been defined in Examples

10 and 13 respectively, and where the port communication is

simplified to ports with the same name on different processes

being connected (Note 5). Sys has a system period process that

is simply the body processes of each of the component

processes since communication on port p acts to synchronize

the start of both body processes.

 S(Sys) = (Inp rp  ; Gtr|rp-g |, ; Outv, d(g-rp) ) |

 ((Delay  # Odor # Atr1,r ) ;
 (Inh a  # Inv s) ;
 (Ranv w  | Ranh z))

The flow function for the system is arrived at as follows. The

flow function fsys,r2 (r2 is the ‘r’ variable) with its original

message variable s (from Robot in Example 13) is:

fsys,r2(g,r,a,s)=r+u(a+z)*(s+w)*

FloGen identifies s as a message variable (it’s not one of the

variables in the definition of Robot) and calls FloFollow which

follows the port v from which s came to port v on MoveTo. It

replaces s with the expression from MoveTo d(g-rp); but rp is

a message variable in MoveTo generated on port p. FloFollow

follows the p port back to Robot, replacing rp with r.

The system flow function is therefore calculated as:

fsys,r1(g,r,a,s)=g

fsys,r2(g,r,a,s)=r+u(a+z)*(d(g-r)+w)*, z ~ h ,w ~ v

fsys,r3(g,r,a,s)=a

fsys,r4(g,r,a,s)=s

fsys(g,r,a,s)=(fsys,r1(g,r,a,s), fsys,r2(g,r,a,s), fsys,r3(g,r,a,s),

 fsys,r4(g,r,a,s))

The metric time behavior of a network is characterized

completely by the Delay  processes in the network. Time

behavior is restricted to discrete-time in this paper. To

determine the time behavior of a network, the network is

restricted to a network of just delay processes, and elapsed is

calculated by combining the values of the variable for each

process using the three results in Example 9.

The network obtained from P by hiding all process except the

delay process is written P abs Delay.

Definition 21. The time behavior of P is defined to be:

  (P abs Delay).

The time behavior of the system period process S(Sys) in

Example 17 is given by  (S abs Delay) =  (Delay ) = .

C. Satisfying Performance Guarantees

Given that a flow-function can be built for a network of

interest, it now remains to be seen how this can be used in

verifying whether or not the network satisfies a performance

criterion. Recall that a performance criterion G(Q,C) consists

(Definition 18) of a process network Q and constraints C on the

variables of Q.

Definition 22. Let Sys be a TR process with system period

process S=S(Sys), system flow function f and initial variable

values uo and let G(Q,C) be a performance criterion, then

 Sys satisfies G(Q,C) iff, for some n0, Sn  Q, and C(fn(uo))

Where P1=P, Pk=Pk-1; P is repeated sequential composition.

To use satisfies, it is necessary to define how it can be

established that P  Q. This is accomplished in two steps. First

P is restricted to contain just the processes in Q, by evaluating

P abs Q. Secondly, the networks, now containing the same

processes are compared structurally (P abs Q) s Q. If this is

successful, a mapping can be made between processes in (P abs

Q) and processes in Q and the constraint function C can be

applied to the variables in (P abs Q).

Definition 23. P s Q holds iff

P=Q or P= P1  P2, Q = Q1  Q2 where,

P1 sQ1, P2 sQ2, = {‘;’,’|’,’#’}

Structural equivalence is more restrictive (P sQ  P  Q but

not vice-versa) but is fast.

Example 17 (Cont). Consider verifying SysL1, L0, H0, V0

where these initial values are those for the system in Example

17, i.e., the goal location L1, the initial position L0, heading H0

and velocity V0. We verify against the performance constraint
Q in Example 14, that the robot reaches its goal L1 by time T.

Applying the two step process, using filtering and structural

equivalence, we have that:

1. (Sn abs Q)=

 Delay(n-1)  ; (Delay  # Atr1, fr2
n(L1,L0,H0))

2. (Sn abs Q) s Q  t1=(n-1), t2=, L1 =fr2
n(L1,L0,H0)

Establishing P s Q established a mapping between the initial

variable values in P and those in Q, shown as the RHS of the

implication in step 2. The constraint function C is now applied

to the mapped variables in P. The final step in verification is to

determine whether the constraints C will be met given the

system flow function. This final verification step is

implemented using a Bayesian Network approach, and

described in Section VI. An important extension to Definition

22 is addressed first. However, those readers eager to finish the

story could skip the next section.

D. Non-TR Missions

A behavior-based program continually and concurrently

responds to affordances in its environment. MissionLab CfgEdit

missions represent this with triggers and behaviors, and these

are mapped to parallel compositions of sequences of processes

in Section IV.E. Such a sequence is not a TR process, and any

Mission process thus generated will be non-TR. The definition

of a system satisfying a performance criterion must be extended

to cover a system with sequences of TR processes. This is

accomplished in two steps.

Let P = P1 ; P2 ; P3 ... Pm be a single non-TR process in the

system Sys where each Pi is a TR process. Let Sysi be Sys, but
where P is replaced by Pi . Let Si be the system period process

for Sysi and let fi be the Sysi flow function.. In that case:

Definition 24. Sys satisfies G(Q,C) iff for n1,n2,..,nm0

 S1
n1; S2

n2 ; ... ; Sm
nm  Q, and

 C(f1
n1(uo), f2

n2(u1), fm
nm(um-1)),

Final Manuscript 14-0179

12

Note 6. If u1= f1
n1(uo) and so forth for u1 through um-1, then each

subproblem depends on the previous. This can be very useful

for example to propagate position uncertainty through the

system of subproblems. However, it is also useful to be able to

isolate each subproblem by re-initializing between

subproblems. This allows each subproblem, e.g., each waypoint

in a multiple waypoint mission, to be treated independently.

This definition breaks the verification problem into the

verifications of a sequence of TR subsystems, matching the

sequence to the performance criterion network. This can be

used to enforce the constraint that a robot visit locations in

sequence, or just reach the last location.

However, a difficulty of multirobot systems is each agent

could have one (or more) non-TR mission processes. Thus for

k agents, this definition of satisfy would require km different

sequences to be tested! To avoid these combinatorics, an

approach is proposed below which only needs to test one

sequence.

A TR process terminates when its body aborts (Definition

11). Let Sys be composed of k non-TR processes, each of which

is m TR processes in sequence. Pij is written for non-TR

component i{1...k} and sequential component j{1...m}. Let

Sys1 include all Pi1 for i{1...k}, and any other TR processes,

R1,…,Rh that are in the system. (The TR processes might

include for example, the TR robot process as in eq. (4).) To

determine what should be in Sys2 we proceed as in Definition

24 except that ⋁ ℧(𝐏𝑖1)𝑖 is evaluated to determine which trigger

process achieves its termination conditions first; If this

condition contains random variables, then its satisfaction gives

the most likely process to terminate first

Sys2 is constructed from Sys1 with any Pi1 for which ℧(Pi1)

evaluates to True replaced by Pi2. A single sequence of systems

is thus constructed, each representing the most likely next

system given the previous systems.

Definition 25. Let Sys be composed of k non-TR processes,

Sys satisfies G(Q,C) iff for n1,n2,..,nm0

S1
n1; S2

n2 ; .. ; Sm
nm  Q, where

 Sys1 = (P11 | P21 |... | Pk1) | (R1 |...| Rh) and

 each subsequent system Sys+ is the previous system Sys- with
each Pij for which ℧(Pij) evaluates to True replaced by Pil, l=j+1,

and

 C(f1
n1(uo), f2

n2(u1), fm
nm(um-1)).

VI. VERIFICATION BY FILTERING

Definition 22, and its extensions, Definitions 24 and 25, specify

how to automatically verify that a parallel communicating

network will satisfy a performance criterion. However they

require the solution of a Boolean expression C(fn(uo)). This

section will introduce an approach to solving this expression

based on using a Dynamic Bayesian Network: A Dynamic

Bayesian Network (DBN) is a Bayesian Network which relates

variables to each other within a time step and also between

time-steps [26]. Solving C(fn(uo)) will be mapped onto the

filtering problem for a DBN in subsection A. Several short

examples of the results of applying this verification approach

are presented in subsection B.

A. Filtering Algorithm

Recall the system flow function fsys,ri relates the value of ri  R

at time step k to its value in time step k+1. Since all the flow

functions in the following relate to a single Sys, the flow

function fsys,ri will be written below as fri for better readability.

Let the set of variable values at time k be Rk = { (ri, ri,k) | ri,k

val(ri) }. Not all variables in Rk may be needed to calculate

each ri,k+1. Any particular variable ri may only depend on some

of the variables in Rk as given by the structure of the processes

and process communications; this subset is written Ri,k.

Definition 26. The posterior probability ri,k+1 is defined by

P(ri,k+1 | Ri,k) = fri(Ri,k), Ri,k  Rk

The resulting structure can be drawn as a Bayesian network as

shown in Figure 10. As long as flow functions can include the

effect of program conditionals [27] it can be assumed Ri,k is

independent of k and hence that the evolution of variable values

is a stationary process that can be captured as the Dynamic

Bayesian Network shown in Figure 11.

Figure 11. Dynamic Bayesian Network

Definition 27. The transition model of the DBN constructed for

flow functions fr1, fr2, … is F, where

F(Rk) = (fr1(R1,k), fr2(R2,k),…)

Sys satisfies G(Q,C) identifies a subset of the variables V  R,

where V contains those variables whose values are constrained

by the performance criterion G(Q,C).

Definition 28. A performance criterion G(Q, C) is verified if

for some k

P(C(Vk) | R1:k) > Pmin

where Pmin is either specified in C (as the probabilities were in

the performance criterion Examples 14-16,) or is a default

value, and where R1:k means the sequence of variable values

from the first step to step k and where Vk are the values of the

variables constrained by C at step k.

An observation model GF(Rk) is introduced to implement

this evaluation:

GF(Rk) = P(C(Vk) | Rk) (10)
The verification conditions may be achieved on any filtering

step, so the probability of achieving this is the disjunction of the

probabilities on each step.

Figure 10. Flow function fri(r1…rn)=ri evaluation shown as a

Bayesian Network

 r1

 rn

 fri ri

Rk

F Rk+1

Final Manuscript 14-0179

13

P(C(Vk)| R1:k) = P(C(V1)|R1) + P(C(V2)|R2)P(R2|R1)

 + ..

 + P(C(Vk-1)|Rk-1)P(Rk-1|R1:k-2).

(11)

This is written more compactly as:





k

j

jjjjkk RRPRVCPRVCP
1

1:1:1)|()|)(()|)(((12)

Since each Rj is linked to the one before in the DBN by the

transition model Rj+1 = F(Rj), and verification condition

satisfaction is related to Rj by the observation model GF(Rj):

While Pmin gives a way to determine a successful verification,

it does not allow the determination of a non-successful

verification. One solution is to bound k as follows.

Definition 29. A performance criterion G(Q, C) is verified for

Sys iff:
P(C(Vk)| R1:k) > Pmin and k<Kmax

where GF and Kmax are determined from Sys satisfies G(Q ,C).

GF is determine from eq. (10), and Kmax, the number of DBN

iteration steps is determined from the time behavior of Sys

(Definition 21) and the time constraint on the mission.

B. Verification Examples

In this subsection, several examples are presented to illustrate

how verification is accomplished using VIPARS and what

verification results from this method look like. In [27] the issue

of selecting a representation for PARS random variables is

discussed and a Mixture of Gaussian model proposed. The

example results presented here were calculated using that

mixture model, but the representation issue is not addressed

further here.

Example 17 (Cont.) The robot controller in this example
moves the robot from a point L0 to a point L1. The condition
being verified is that the robot is at the point L1 after some time
t<Tmax with probability p>Pmin .

Figure 12 shows the value of a position distribution at several

steps during verification of that mission, that is, at several steps

during the filtering per Definition 27. The robot position is a

single peak distribution, and during filtering, the mean moves

towards L1 and the variance expands (due to the influence of

the noise in the robot model).

 Figure 13 shows the value of the probability of the goal

condition as a function of filtering iteration step (k in Definition

29). Figure 13(a) shows the case for this running example. The

cumulative probability of being at L1 rises monotonically as the

robot approaches L1. The initial low probabilities represent the

cases when the robot motion error is so small that the robot

arrives at the goal relatively quickly. Also output from

verification is the position distribution (e.g., that in Figure 12)

for this mission at the iteration step where the probability of

having arrived at L1 exceeds the (mission-designer) specified

threshold; 80% in this example.

Example 18. The MoveTo process in the running example

(Example 17) is replaced with a version in which the velocity

calculated is  to one side of the goal, d(g-r) is replaced with

d(g-r+). Figure 13(b) shows the cumulative probability for

this logically defective controller, which never reaches the

threshold probability of 80%.

Example 19. The Robot process in the running example is

replaced with a version in which the noise h ,v is increased.

Figure 13(c) shows the cumulative probability for this (overly)

noisy case, which again never reaches the threshold probability

of 80%

Example 20. The PARS environment models need to be able

to represent objects and obstacles when they are known. Figure

14 shows a Mixture of Gaussian (MoG) position distribution

result for a waypoint mission through a narrow doorway and

corridor. The MoG members are shown as shaded 1 Standard

Deviation (SD) ellipses, the shading indicating the weight of the

member. The smaller clusters to each side of the doorway in

Figure 14(b,c) indicate the probability of missing the door and

hitting the wall. The member cluster smeared out in the corridor

represents the ‘safe’ motion of the robot moving towards its

 
 


k

j

i

l

lljjkk RRPRVCPRVCP
1 1

1:1)|()|)(()|)((

)()|)((1

1

RFRVCP j
k

j

jj




))((1

1

RFGF j
k

j






(13)

(a) (b) (c)

Figure 14. Position distribution snapshots for increasing time from

start (a) through a door (b) and into a corridor (c).

 Time

 (a) (b) (c)

Figure 12. Three snapshots of the robot position distribution

for increasing time, from motion start L0 (a) to end L1(c)
 Doorway

 Corridor

L1 L0 L1

L1 L0 L0

Time

Figure 13. Cumulative probability of the Goal Condition versus

DBN iteration step for three examples.

(a) ‘running example’

 (b) ‘defective controller’

 (c) ‘noisy environment’

t = Tmax

P=0.8

Final Manuscript 14-0179

14

goal. The environment and controller model for this example

are outside the scope of this paper, but are presented in [27].

VII. VALIDATION RESULTS

It is not sufficient to demonstrate verification results for critical

applications such as C-WMD robot missions; It is crucial to

show also that the verification results correspond to the

behavior of physical robots. In prior work [28], a series of

measurements on a Pioneer 3-AT robot were conducted, so that

the robot motion and sensing uncertainty distributions used in

VIPARS could be calibrated for the Pioneer 3-AT robot on an

indoor surface. The results of a validation of the performance

predictions for the two missions described in Section III are

now presented: first, for a multiple waypoint mission; and

second, for an autonomous exploration mission. In each case,

the details of the validation experiment are presented, then the

PARS mission and VIPARS verification, and then the results

are compared. Section IV.E describes the translation process

from MissionLab to PARS; for each of the examples here, this

procedure was followed manually.

a) Moving up the

ramp that leads to

the building entrance

 b) Entering the

building through the

entrance at the

loading dock

c) Traveling down

the long hallway

f) Entering the

room with potential

biohazard threat

e) Moving toward

the room entrance

d) Rounding a

corner

Figure 15. Snapshots of Pioneer 3-AT carrying out the

multiple waypoint mission.

A. Multiple Waypoint Mission

The multiple waypoint mission was described in Section III.B.1

and the MissionLab FSA for that mission shown in Figure 3.

1) Validation Procedure

The mission was carried out with a Pioneer 3-AT robot

(Figure 6). The mission area is approximately 6020 meters.

The robot started at the bottom of the ramp (Figures 2 and 15).

Following the waypoints, the robot moved up the ramp that

leads to the loading dock where an entrance to the building is

located. The robot then entered the building and traveled down

a hallway (approximately 40 meters in length), which leads to

the room of interest located at the end of the hallway.

The performance criterion for the mission is whether the

robot had gained access to the room of interest (i.e., reached the

final waypoint, which resides in the room). The mission was

run 40 times and the numbers of successes and failures were

recorded. The result is shown in Table 2. No obstacle avoidance

was active and only dead reckoning was used. Most failures

observed were due to the robot being stuck at the corner near

the third waypoint as in Figure 15d.

Table 2. Validation Result

of Runs # of Failures # of Successes P(Success)

40 12 28 70%

2) VIPARS Prediction

The waypoint MissionLab FSA of Section III, Figure 3 is

translated to PARS as a sequence of behavior processes:

Missiong1,g2,g3,g4 (p,hi)(v,ho) =

 Turng1 (p,hi)(ho) ; MoveToVCg1 (p)(v) ;

 Turng2 (p,hi)(ho) ; MoveToVCg2 (p)(v) ;

 Turng3 (p,hi)(ho) ; MoveToVCg3 (p)(v) ;

 Turng4 (p,hi)(ho) ; MoveToVCg4 (p)(v) ;

 Turng5 (p,hi)(ho) ; MoveToVCg5 (p)(v) .

The mission is five instances of processes that turn the robot

to face the goal Turng1, and then move the robot towards that

goal, MoveToVCg1. This information specifies the connections

for the position input (p), the heading input (hi), the heading

output (ho) and the velocity output (v). The system process is

the parallel, communicating composition of the mission and

environment processes. The Robot process is that used in

Example 13 but with the information about heading and

rotational uncertainty included. The process contains no

information about walls or laser sensing to detect and respond

to walls and obstacles and just moves the robot from waypoint

to waypoint.

 Sys = RobotP0,H0 (c2,c3)(c1,c4) |

 MissionG1,G2,G3,G4 (c1,c4)(c2,c3)

The capital letter variable values P0, H0, G1,G2 and so forth

are the initial conditions for the system: the initial position,

heading, goal locations etc. The port connections c1,...,c4

connect the position, heading and velocity ports on the mission

to those in the environment model.

The performance criterion is the same as that Example 14,

that the robot reach its final goal location by time T with a

probability p>Pmin. The system is analyzed by VIPARS using

Definition 25, and keeping the subproblems independent as

described in Note 6.

VIPARS reported a successful verification for this mission

with final position distributions (in mm) shown in Table 3. We

ran VIPARS several times with increasing values of Pmin to

determine a maximum value Pmax for a successful verification,

where Pmax was calculated as largest probability threshold Pmin

(from Def. 28) where the mission still ended before the

maximum time elapsed Tmax). These are shown as the last

column in Table 3 and the distribution data for the row is for

that case. Since a failure could occur at any waypoint and the

problems are independent, the probability for success is

calculated as the product of success probabilities at each

waypoint: Psucc =71.5%. The lowest Pmax was for the third

waypoint, with Pmax=81%.

Final Manuscript 14-0179

15

Table 3. VIPARS Waypoint Distributions. WP# is the waypoint

number. (x , y) is the 2D mean position (mm) and  is the

covariance for each waypoint. Pmax is the largest Pmin before Tmax.

WP# (x , y)  Pmax

1 (17468, 23585) [2610, 0; 0,8830] 0.91

2 (17850, 21206) [4675, 286; 286, 9449] 0.99

3 (59411,21639) [14986, -608; -608, 48005] 0.81

4 (59092,33444) [24717, -218; -218, 50625] 0.99

5 (60422, 39764) [30051,-1048; -1048, 52273] 0.99

3) Comparison of Predicted and Measured Results

Experiments show a success probability of 70% for this

mission, given 40 runs with 12 failures. The predicted success

rate is (rounding up) 72%. Predictions are statistically

compared with the validation results using a z-statistic

proportion test. The null hypothesis is H0: psucc=0.72 and Ha:

Psucc<0.72. For applicability of the test, its necessary that

np0=400.72>10. The z-statistic is calculated as z =-0.28, and

p(Z<-0.28)=0.3897 from the standard distribution tables. Since

0.05<<0.3897 this (emphatically) fails to reject H0: p=0.72 at

the 95% confidence level. The waypoint with the lowest Pmax is

the third waypoint. During validation it was observed that it was

at this waypoint experimental trials most frequently had

failures. A mission designer could leverage this information

from verification, for example, to modify the motion behavior

for the third waypoint to improve the probability of success for

the overall mission.

B. Autonomous Exploration Mission

The autonomous exploration mission was described in Section

III.B.2 and the MissionLab mission FSA shown in Figure 5.

1) Validation

For the Biohazard Search mission, the operating environment

of the robot is a room of dimension approx. 1012 meters,

Figure 4. The room is covered with tile flooring and is well lit

by florescent lights. The major area of the room is empty except

some items along the walls (e.g., cabinets, storage crates).

The Pioneer 3-AT has a laser scanner for obstacle avoidance

and a forward-facing camera for biohazard detection. The

camera has a field of view of 39.6 degrees. The biohazard is

represented by a red biohazard bucket, Figure 4. The color of

the biohazard bucket is used for biohazard detection.

Table 4. Validation Result

Mission # Trials # Successes Performance

Biohazard

Search
106 88 83.0 %

The complete validation experiment consists of 106 trial runs

of the Biohazard Search mission. The location of the biohazard

was uniformly distributed with respect to the room, requiring a

total of 106 trials. For each trial, the robot starts at the entrance

of the room and proceeds to search the room with the control

program described in Figure 5. Each trial is completed when the

robot locates the biohazard. Mission success is defined by the

performance criteria. For this mission, the criterion is that the

robot needs to find the biohazard in 60 seconds. The time it

takes for the robot to locate the biohazard is recorded for each

trial. Table 4 shows result of the validation experiment.

2) VIPARS Prediction

The PARS representation of the Biohazard Search mission is:

Mission = NotDetected ; (Detected # Wander) |
Detected ; (Near # MoveToward) |
Near ; Stop

The Mission process consists of trigger processes, such as

Detected and Near, and behavior processes such as Wander and
MoveToward. Some are implemented as basic processes and

others as PARS networks, to replicate the equivalent

MissionLab behaviors, as discussed previously in Section IV.E.

Different missions have different requirements that the robot

has to meet. For the Biohazard Search mission, we are

interested in time performance, successful detection of

biohazard, and correct identification of the biohazard. These

performance criteria are expressed in PARS as a performance

specification network based on eq. (3):

 Q = Delayt ; (Atp | Biohazardq)

for some t<Tmax , P(| p – q |<)>Pmin

The Biohazardp process indicates the location of the

biohazard. Verification asks whether the mission will achieve

this liveness condition for t<Tmax with at least probability Pmin.

The robot model used in this verification is the same as for

the previous. However, additional sensor and environment

modelling is necessary.The sensor models are separated from

the robot model for modularity; the same robot platform can be

equipped with different external sensors. For this mission, the

Pioneer 3-AT robot is equipped with a camera for biohazard

detection and a SICK laser scanner for obstacle avoidance. The

sensor model is a composite model of these sensors, which can

be expressed in PARS as:

Sensors = (Camera | Laser)
Camera = (Inpr | Incsc) ; Outcs, fc(r,c) ; Camera

Laser = (Inpr | Inwssp) ; Outls, fl(ws,sp) ; Laser

The structure of the sensor models are similar. They accept data

from an environment model including the robot position (r),

carrry out a sensor specific model function (fc for the camera

model and fl for the laser model) on that data and make it

available on a port which the Mission process can read.

The fundamental problem for the verification of robot

behavior is the interaction between the robot and the

environment. Undesirable robot behaviors might emerge

through this interaction which might not have been foreseen by

the robot programmer/operator. The targeted environment for

the Biohazard Search mission is an indoor environment, Figure

4. The PARS model of the environment is:

Envg,b,ws = (Outps,ws # Outcs,b #

 Inpr # Biohazardb) ;

 (Insideg,rfs |

 Outsideg,rws) ; Envg,b,ws

Random variable values, such as the robot position (r) and the

location of the biohazard (b) are represented as Gaussian

Mixtures [27]. Where r is calculated by the Robot process, b is

a constant that expresses what is known about the biohazard

location: in this case, it’s a uniform distribution within the

Final Manuscript 14-0179

16

room, which is directed to the camera sensor. The variable value

g captures what is known about the room, which in this case is

that it’s an empty rectangle. There are no obstacles in this room;

the problem being addressed is whether this controller, using a

wander behavior will find its target within the time limit with a

sufficiently high probability given the sensor and actuator

probabilities. The Env process tests the robot position

probability distribution and separates it into two mixtures: one

representing the portion of the distribution that is inside the

room (fs), and one that represents the portion that would collide

with the room walls (ws) which is channeled to the sensors.

The PARS models of the control program, robot, sensors, and

the environment form the System process Sys, which is the

parallel, communicating network (dropping port connection

labels for better clarity):

Sys = Mission | (Env | Robot | Sensors)

The Sys process is then analyzed by VIPARS to determine if it

satisfies all the constraints specified by the property

specification process network (i.e., the Q process).

3) Comparison of Verification and Validation Results

Verification of the Biohazard Search mission predicted an 85%

mission success probability, while the validation experiments

showed an actual robot succeeds 83% of the time based on 106

trials with 18 failures. Validation and verification results are

compared using a z-statistic proportion test to determine if any

statistical significant difference exists between these results.

The null hypothesis is H0: psucc=0.85, and the alternative

hypothesis is Ha: Psucc<0.85. The z-statistic is z = -0.58, which

resulted in P(Z<-0.58)= 0.28 from the standard distribution

table. Since 0.28>0.05, this fails to find any statistically

significant difference between the verifier’s performance

prediction and the actual performance from the validation

experiments. It is safe to conclude that the VIPARS’

performance guarantee, the 85% probability of mission success

with respect to the performance criteria for the Biohazard

Search mission, is a valid prediction.

VIII. CONCLUSIONS

A novel approach to verification of performance guarantees

for behavior-based robot programs was proposed in this paper.

The approach differs from prior work in its avoidance of the

concept of state via the use of a process algebra framework. The

general case of software verification runs afoul of the halting

problem. To address this fundamental limitation, most work

therefore focuses on specific cases; this paper focused on a

process algebra structure that captures behavior-based

programming well: parallel interacting systems of tail recursive

(TR) processes. TR processes have the useful feature that they

easily allow the construction of recurrent flow-functions that

capture how the TR processes transform variable values on each

recursive step. The SysGen algorithm constructs a single system

period process from the bodies of each component process, if

one exists. The algorithm, FloGen that extracts the flow-

function for the system period process by following and

resolving communications over port connections between the

processes in the system period process, was also presented.

This approach was developed to work with MissionLab so

that the verification process could be completely automatic.

This could be done because TR processes can be generated

directly from the MissionLab behavior-based robot programs.

We argue that other behavior-based robot programming

approaches will also transfer fairly easily to the TR process

representation, but other robot programing approaches and

general purpose programs may not be as easy to map.

Furthermore, MissionLab can generate software for a variety of

robot software architectures.

To model uncertainty, which is a sine qua non for realistic

robot results, the process algebra is extended to allow processes

to have random variables. It is shown that the system flow

function in this case can be mapped to a Dynamic Bayesian

Network (DBN). The verification problem can then be recast as

a DBN filtering problem.

Prior work [28] using the method described here reported a

validation of one and two move missions for a Pioneer 3-AT

robot in indoor conditions at various velocities. The results

show strong statistical evidence of the predictive power of the

approach. In this article, that validation is extended to a multiple

waypoint mission and an autonomous exploration mission.

Empirical testing of the multiple waypoint mission yielded a

70% success probability. The VIPARS prediction was 72%.

The environmental model used in VIPARS for this example did

not include walls or wall sensing. The second example, an

autonomous exploration mission, did include these features as

well as a more flexible control strategy. Empirical testing

yielded an 83% success probability. The VIPARS prediction

was 85%. Both experiments yielded statistically strong results.

There are two important extensions of this work in progress:

dealing with multiple robots and dealing with environments that

include obstacles. Although a C-WMD mission might involve

single robot missions, multiple robot missions are also

important. A crucial next stage in this work is to determine if it

is effective for multi-agent as well as single-agent scenarios.

Although Example 20 (Figure 14) showed interaction with

obstacles/walls, the verification missions presented here did not

include this work. Future missions will include environments

that have uncertainty related to obstacle locations and terrain

features as well as sensor and actuator uncertainty.

IX. BIBLIOGRAPHY

[1] M. Hinchey and J. Bowen, High Integrity System Specification

and Design, London: FACIT Series, Springer-Verlag, 1999.

[2] C. Baeir and J.-P. Katoen, Introduction to Model Checking,

Cambridge MA: MIT Press, 2008.

[3] R. Jhala and R. Majumdar, "Software Model Checking," ACM

Computing Surveys, vol. 41, no. 4, 2009.

[4] H. Kress-Gazit, E. Fainekos and G. Pappas, "Temporal Logic

based Reactive Mission and Motion Planning," IEEE Trans. on

Rob., vol. 25, no. 6, pp. 1370-1381, 2009.

[5] M. Kloetzer and C. Belta, "Automatic Deployment of

Distributed Teams of Robots from Temporal Logic

Specifications," IEEE Trans. on Rob., vol. 26, no. 1, pp. 48-61,

2010.

Final Manuscript 14-0179

17

[6] D. MacKenzie, R. Arkin and R. Cameron, "Multiagent Mission

Specification and Execution," Autonomous Robots, vol. 4, no. 1,

pp. 29-52, 1997.

[7] T. Bolognesi and E. Brinksma, "Introduction to the ISO

Specification Language LOTOS," Computer Networks & ISDN

Sys, vol. 14, no. 1, pp. 25-59, 1987.

[8] S. Karaman, S. Rasmussen, D. Kingston and E. Frazzoli,

"Specification and Planning of UAV Missions: A Process

Algebra Approach," Amer. Contr. Conf., St Louis MO, 2009.

[9] M. Steenstrup, M. Arbib and E. Manes, "Port Automata and the

Algebra of Concurrent Processes," JCSS, vol. 27, no. 1, pp. 29-

50, 1983.

[10] R. Ramadge and W. Wonham, "Supervisory Control of a Class

of Discrete Event Processes," SIAM J. Control and

Optimization, vol. 25, no. 1, pp. 206-230, 1987.

[11] G. Labinaz, M. Bayonmi and K. Rudie, "Modeling and Control

of Hybrid Systems: A Survey," IFAC 13th World Cngr., 1996.

[12] N. Napp and E. Klavins, "A Compositional Framework for

Programming Stochastically Interacting Robots," Int. Journal of

Robotics Research, vol. 33, no. 2, 2011.

[13] B. Johnson and H. Kress-Gazit, "Probabilistic Analysis of

Correctness of High-Level Robot Behavior with Sensor Error,"

in Robotics Science and Systems, Los Angeles CA, 2011.

[14] D. Lyons, R. Arkin, P. Nirmal and S. Jiang, "Designing

Autonomous Robot Missions with Performance Guarantees," in

Proc. IEEE/RSJ IROS, Vilamoura Portugal, 2012.

[15] D. Lyons and R. Arkin, "Towards Performance Guarantees for

Emergent Behavior," in IEEE Int. Conf. on Rob. & Aut., 2004.

[16] R. C. Arkin, Behavior-Based Robots, Cambridge MA: MIT

Press, 1998.

[17] J. Casper and R. R. Murphy, "Human-robot Interactions during

the Robot-assisted Urban Search and Rescue Response at the

World Trade Center," IEEE Trans. on SMC Part B, vol. 33, no.

3, pp. 367-385, 2003.

[18] R. Arkin, D. Lyons, S. Jiang, P. Nirmal and M. Zafar, "Getting

it Right the First Time: Predicted Performance Guarantees from

the Analysis of Emergent Behavior in Autonomous and Semi-

autonomous Systems," in Proceedings of SPIE. Vol. 8387.,

Baltimore MD, 2012.

[19] D. MacKenzie and R. Arkin, "Evaluating the Usability of Robot

Programming Toolsets," Int. Journal of Robotics Research, vol.

4, no. 7, pp. 381-401, 1998.

[20] J. Baeten, "A Brief History of Process Algebra," Elsevier

Journal of Theoretical Computer Science – Process Algebra,

vol. 335, no. 2-3, 2005.

[21] D. Friedman and M. Wand, Essentials of Programming

Languages, Cambridge MA: MIT Press, 2008.

[22] C. Boem and G. Jacopini, "Flow Diagrams, Turing Machines

and Languages with only Two Formation Rules," CACM, vol. 9,

no. 6, 1966.

[23] D. MacKenzie, "Configuration Network Language (CNL) User

Manual," College of Computing, GATech, Atlanta GA, 1996.

[24] R. De Nicola, "Extensional Equivalences for Transition

Systems,," Acta Informatica, vol. 26, no. 2, pp. 211-237, 1987.

[25] I. Ripoll and R. Ballester-Ripoll, "Period Selection for Minimal

Hyperperiod in Periodic Task Systems," IEEE Trans.

Computers, no. 62, pp. 1813-1822, 2013.

[26] S. Russel and P. Norvig, Artificial Intelligence, Prentice-Hall,

2010.

[27] D. Lyons, R. Arkin, T.-L. Liu, S. Jiang and P. Nirmal,

"Verifying Performance for Autonomous Robot Missions with

Uncertainty," in IFAC Intelligent Vehicle Symposium, Gold

Coast Australia, 2013.

[28] D. Lyons, R. Arkin, P. Nirmal, S. Jiang and T.-L. Liu, "A

Software Tool for the Design of Critical Robot Missions with

Performance Guarantees," in Conference on Systems

Engineering Research (CSER’13), Atlanta GA, 2013.

Appendix I: Computational Complexity of SysGen.

Let np be the number of processes in the system. Let each process have

at most nio port communication operations. Let the communication

map, cm, specify which ports are connected to which other ports. This

map must obey the following constraints:

1. Input ports are connected only to output ports, and output ports

are connected only to input ports.

2. Each port is connected to at least one other port in the system,

with the worst-case fan-in or fan-out of connections being kf.

3. No port is connected to another on the same process.

A port is considered ready to communicate only when during the

execution of the process, an In or Out process is using the port for

communication. cm and the system of processes are constrained for

complexity reasons so that if a port is ready to communicate, then

either

 at most one of its kf connected ports is also ready, or

 it makes no difference to the computation which of the kf

connected ports receives the communication.

Without this constraint, all potential connected ports have to be

checked, and backtracking may be necessary if a candidate connected

port eventually results in a deadlock. This branching search introduces

exponential complexity. However, introducing the constraint does not

significantly restrict what can be represented: it just means that if, for

example, the Robot process sends position information to a Laser and

a Camera process, it does so in sequence (second bullet item above).

There are np* nio communication operations in the system of

processes. When a communication operation is ready, there is one, and

at most one, other port with which it communicates. If that port is not

ready to communicate, then SysGen identifies it. Otherwise, SysGen

completes the system period process after making (np* nio)/2

connections. Since each port could have kf possible partners, the worst

case complexity is

 kf *(np* nio)/2. (A1)

 Notice that disabling (parallel-min) and parallel (parallel-max)

compositions of communication operations y simply add choices for

each of the (np* nio)/2 connections, but with kf still being the maximum

number of choices.

Appendix II: Computational Complexity of Flogen.

The complexity of FloGen depends on the number of component

processes, np, and the number of variables of each, nv, since each

variable will generate one flow function. If there are nio

communication operations in each process, then in the worst case, each

variable will be involved in every communication, and each

communication will go through all np processes for substitutions. That

will require

nv*np*nio (A2)

substitutions in total in this worst case.

