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  

Abstract—Certain robot missions need to perform predictably 

in a physical environment that may have significant uncertainty. 

One approach is to leverage automatic software verification 

techniques to establish a performance guarantee. The addition of 

an environment model and uncertainty in both program and 

environment, however, means the state-space of a model-checking 

solution to the problem can be prohibitively large.  An approach 

based on behavior-based controllers in a process-algebra 

framework that avoids state-space combinatorics is presented 

here. In this approach, verification of the robot program in the 

uncertain environment is reduced to a filtering problem for a 

Bayesian Network. Validation results are presented for the 

verification of a multiple-waypoint and an autonomous 

exploration robot mission.  

 
Index Terms— Program Verification, Autonomous Agents, 

Behavior-based Systems, Control Architectures and 

Programming. 

I. INTRODUCTION 

In research being conducted for the Defense Threat Reduction 
Agency (DTRA), we are concerned with robot missions that 
may only have a single opportunity for successful completion, 
with serious consequences if the mission is not completed 
properly. In particular the focus is on missions for Counter-
Weapons of Mass Destruction (C-WMD) operations, which 
require discovering a WMD within a structure and then either 
neutralizing it or reporting its location and existence to the 
command authority. Typical scenarios consist of situations 
where the environment may have significant uncertainty, and 
have time-critical performance requirements. The goal is to 
provide reliable performance guarantees for whether or not the 
mission as specified may be successfully completed under these 
circumstances. Towards that end, a set of specialized software 
tools have been developed to provide guidance to an 
operator/commander prior to deployment of a robot tasked with 
such a mission. These tools can be highly valuable in other 
settings also – for example, in a manufacturing setting to verify 
performance or safety whenever anything is changed.  

A. Automatic Verification 

Automatic verification of software is a very desirable 
functionality in any application where software failure can 
incur heavy penalties [1]. While a general solution is ruled out 
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by the undecidability of the halting problem, much research has 
been conducted on restricted instances of the problem. Model 
checking [2] [3]  is a collection of techniques that conduct an 
exhaustive exploration of the state-space of a program  to 
determine whether the program satisfies a temporal logic 
constraint on its behavior.  

More recently, some researchers have effectively leveraged 
model-checking techniques to address the correct-by-
construction robot control problem [4] [5]. A solution to the 
correct-by-construction problem takes as input a temporal logic 
description of the desired behavior of the robot controller and 
then fabricates a controller guaranteed to abide by this 
description.  

The problem addressed by this paper differs from the correct-
by-construction problem, and is similar to the general-purpose 
software verification problem, in that the input is mission 
software designed using the MissionLab toolkit [6], and the 
objective is to verify that this software abides by a performance 
constraint. It is similar to the correct-by-construction problem 
in that we require a model of the environment in which the 
software is to be carried out, something not typically explicit in 
general-purpose software verification [3]. 

However, the problem addressed by this paper differs from 
both in needing to efficiently process probabilistic software and 
environment models, continuous environment characteristics 
and asynchronous and concurrent environment dynamics. 
These problem aspects are troublesome for model-checking 
approaches: One of the biggest contributions to state-space 
explosion in model-checking is the translation from program to 
formal model. It is exponential in the number of program 
variables. Asynchronous concurrent modules are another 
formidable contributor to complexity, since the concurrent 
system state space grows as the Cartesian product of the 
component spaces. 

B. Process-Algebra Approach 

For all of these reasons, the approach to the problem presented 
in this paper focuses on avoiding an explicit state-space 
representation and especially one in which the number of 
program variables will introduce exponential complexity. 
Instead a process-algebra representation is leveraged to develop 
a solution in which the program is translated to a set of 
equations over the program variables (which can include 
random variables). The reason a process algebra is used is that 
it can formally capture the concept of a recursive process and 
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the way variables are modified by a process during recursion in 
a direct and concise manner. 

In overview, the proposed approach will leverage four results.  

 First, it is demonstrated that a process written in a tail-
recursive (TR) form admits the extraction of a flow 
function f, a function that maps the values of the process 
variables in one recursion to that in the next. Any behavior 
of the process can be tested by inspecting f n where n  0 is 
a positive integer.  

 Second, it is shown that under certain assumptions, any 
concurrent communicating network of TR processes can be 
rewritten as a single TR process.  

 Third, it is shown that MissionLab missions can be mapped 
to a network of TR processes. 

 Fourth, the set of flow functions from the network of TR 
processes can be tested for a performance constraint by 
mapping them to a Dynamic Bayesian Network and 
applying a filtering algorithm. 

C. Performance Guarantee 

Using process-algebra as the formal representation for the 
mission software means that there is the option to also use this, 
rather than a temporal logic, as the language for the 
performance guarantee and for the description of the 
environment models. When process-algebra is used for 
specification [7] [8], a major difficulty encountered is 
specifying proscription (e.g., the safety property that the robot 
does not collide). The performance guarantee used here 
separates constraints on process ordering from conditions on 
variable values, enabling proscription. 

D. Environment Models 

It is not proposed that MissionLab designers build, in detail, 
their own environment models (including robot and sensor 
models) against which to verify the mission. Instead, it is 
proposed that a set of standard environment models be 
constructed a-priori and provided as a library from which robot, 
sensor and environment features can be selected and composed 
automatically into an environment model.  

The process-algebra used here employs communication ports 
and port-to-port connections [9] for concurrent modules. This 
facilitates specifying plug-and-play compatible environment 
models, since the formal model of the mission software just 
communicates over a set of ports with any selected environment 
model. The development of a standard set of environment 
models is not something we have pursued however beyond 
those we have developed and used in validation. 

E. Validation 

To demonstrate the accuracy of the verification results 
achievable by the method proposed here, predicted 
performance guarantees are validated by carrying out physical 
robot experimentation. Calibration data is collected on the 
robots and sensors used in missions, and suitable environment 
models constructed. Both of the example missions presented in 
the paper are verified and validated. Because the resulting 
robot/environment system is probabilistic, the verification 
answer is not a binary yes/no, but a probability landscape 
capturing the system’s performance. Each mission is validated 
by carrying out multiple physical runs and collecting 

performance statistics on real robots. The validation and 
verification results are then compared to evaluate the quality of 
the verification prediction. 

The remainder of this article is organized as follows. Section 
II presents a review of prior work. Section III introduces robot 
mission design using MissionLab and the two example missions 
which will later be verified and validated.  Section IV 
introduces the process-algebra, PARS (Process Algebra for 
Robot Schemas), for representing MissionLab mission 
programs, robot, sensor and environment models, and 
performance guarantees.  Section V builds the process algebra 
results on which VIPARS (Verification in PARS), the 
verification module within MissionLab, is based. Section VI 
maps these results to the filtering problem for Bayesian 
Networks. Section VII presents the verification of the two 
example missions and the experimental validation of those 
verification results. Section VIII summarizes the contributions 
of the paper and discusses the next key research challenges in 
extending this approach. 

II. PRIOR WORK 

Model checking has been a very successful approach to the 
automatic verification of software [2]. A program is cast as a 
state-based transition system in which states are labeled with 
sets of logical propositions, a Kripke system. This labelling 
means that logical formulas may be satisfied by a state, and 
temporal logical formulas by sequences of states. The 
instructions in the program map values from one state to a 
successor state.  If the program has n variables, and if each 
variable ri can have values from a set val(ri), then the state space 
of the program is i val(ri) = val(r0) … val(rn-1) [2].  The 
verification problem in model-checking is, at its heart, a test of 
the reachability of a state or set of states from the start state 
given the program instructions. The combinatorics involved in 
i val(ri)  have always been clear, and model-checking 
approaches are typically divided into enumerative methods that 
search this (perhaps huge) graph of states, and symbolic 
methods which instead explore (a smaller number of) sets of 
these states [3]. 

Automated verification of robot and multirobot software has 
several characteristics that distinguish it from general purpose 
software verification. The first is that the robot program does 
not execute based on static inputs, but rather interacts with an 
environment in an ongoing fashion. This is recognized in the 
related field of discrete-event control by considering the system 
as a parallel composition of the robot program (controller) and 
an environment (plant) model [10]. From a model-checking 
perspective, the system’s state-space is now increased beyond 
the program state-space by the product of environment 
variables. A second characteristic is that there may be a 
necessary continuous nature to some aspects of the 
environment. Various hybrid continuous-discrete systems [11] 
have been introduced to handle this. Finally, significant 
uncertainty pertains to the result of robot sensing and motion; 
this cannot be ignored or the results are not realistic. 

Uncertainty plays a major role in real-life robotic 
performance and needs to be included in any useful approach to 
robot verification. Napp and Klavins [12] introduce a guarded 
command language CCL for programming and reasoning about 
robot programs and environments. They address uncertainty by 
adding a concept of rates and exponential probability 
distributions to CCL, which allows them to reason about the 
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robustness of programs. Johnson and Kress-Gazit [13] develop 
a model-checking algorithm that handles uncertainty based on 
Discrete Time Markov Chains; however, they comment on the 
intractability of their approach for large state spaces. 

A state-based approach will experience significant 
combinatorial problems due to these characteristics. So rather 
than a state-based hybrid state/continuous approach, we have 
opted to avoid discussing state at all costs.  

In [14] a process algebra approach for representing robot 
programs and environment models is introduced.  Karaman et 
al. [8] also use a process algebra as a specification language for 
multiple UAV missions and develop a polynomial time 
algorithm that produces a plan to satisfy the specification.  That 
work, and our previous work in process algebra for 
performance analysis of robot programs [15], leveraged the 
trace, or history of events, of a process. In this paper, however, 
the focus will be on how a process transforms its inputs to 
produce outputs without reference to states.  

The proposed approach targets a specific kind of robot 
programming: behavior-based robot programming [16]. A 
behavior-based robot interacting with its environment will 
respond to a specific set of environmental percepts as 
programmed by its behaviors. Once a percept is responded to, 
the robot may return to this behavioral state or move to another 
that handles a different set of percepts.  

III. MISSION SPECIFICATION  

Dull, dirty, and dangerous missions are considered to be the 
natural niche for robots, and they have been a major driving 
force behind the advancement of robot technology. Over the 
past decades, we have seen an increasing number of robots 
being deployed to accomplish dangerous missions (e.g., 
disarming IEDs). Missions in the domains of urban search and 
rescue (USAR) and counter weapons of mass destruction (C-
WMD) are not only dangerous, but their failures usually have 
dire consequences. It is highly desirable then to have the ability 
to verify the performance of a robot before it is deployed to 
carry out a mission. However, verification of robotic missions 
poses a unique and great challenge that is different from 
traditional software verification – the robot has to work in the 
real world, and the real world is inherently unpredictable. For 
example, robots were deployed during the World Trade Center 
rescue response, where the environment had become highly 
unstructured and filled with rubble piles [17]. In this article, we 
present our research [14] [18] on a mission design and 
verification framework for performance guarantees for critical 
missions where failure is not an option – the robot has to get it 
right the first time.  

A. Mission Design Software Environment 

The robot mission verification framework is built upon 
MissionLab, a behavior-based robot programming environment 
[6] [19]. MissionLab provides a graphical user interface CfgEdit 
where robot programs can be constructed as a finite state 
automaton (FSA) that sequences behaviors from a library of 
primitive behaviors. One of the many unique features of 
MissionLab is that it generates hardware-independent 
executables from user-constructed FSAs, which allows the 
desired robot platform to be chosen at run time. For critical 
missions where performance guarantees are desirable, a 
verification framework is developed in this paper for 

MissionLab where the mission can be verified before the 
software executable generation step.  

 

Figure 1. MissionLab robot mission specification toolset 

with VIPARS verification module. 
 

The proposed verification framework is shown in Figure 1 
as an extension to the MissionLab programming environment. 
To initiate the verification of a mission, the robot mission 
specification is compiled into PARS. The core of the 
framework is the process algebra based verification module, 
VIPARS.  Two additional inputs are necessary for verification: 

1) Robot, Sensor & Environment Models: 
The robot operator specifies to MissionLab the models of 

robot, sensors and environment with which to conduct 
verification. It is not proposed that MissionLab designers build 
their own environment models against which to test the 
mission. Instead, just as MissionLab provides a set of robot 
drivers for simulation (Pioneer, Amigobot, ATRV-Jr etc) a set 
of standard robot, sensor and environment models will be 
constructed a-priori and provided as a library from which robot, 
sensor and environment features can be selected and composed 
automatically into an environment model. The development of 
a standard canonical set of environment models is not 
something we have pursued beyond those we have developed 
and used in validation. MissionLab also provides within its suite 
of tools data logging mechanisms for recording the 
performance of missions in terms of distance and time, and also 
has mechanisms for recording operator interaction [19].  

2) Performance Criterion: 
Performance criteria are mission constraints (e.g., safety and 

time constraints) that the robot system has to meet in order to 
assert “mission accomplished.” The criterion consists of two 
parts: a probabilistic condition on a state variable of the robot, 
sensor and/or environment model and a time constraint on that 
condition. An example of a state variable is the position p(t) of 
a robot at time t. An example of a performance criterion is that 
the robot have an 80% chance of arriving at a destination, L1 
before a time limit, T. 

P( p(t)=L1 )  0.8 for some t < T (1) 

Another example is that two robots at locations p1(t) and p2(t)  
are never closer to each other than a safety radius r: 

P( |p1(t)-p2(t)|   r )  0.8 for all t < T (2) 

  Executable 
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The output of VIPARS provided to the operator is a 

performance guarantee for the mission indicating whether the 

performance criteria were met. The verification module 

supports a feedback design loop, where the operator iteratively 

refines the robot program based on the performance 

information provided by VIPARS. 

B. Mission Design 

To illustrate the process of designing a mission with 

MissionLab and verifying it with VIPARS, two biohazard 

search scenarios are presented in which the robot needs to 

access a room inside the basement of a building where potential 

biological weapons might be located. This is representative of 

the types of C-WMD mission we are focusing on, i.e., where an 

approximate location of the weapon has been discovered and 

the building has been evacuated, thus no longer having any 

humans present in the setting. The robot’s task is to confirm the 

location of the WMD and either remediate it itself via 

containment or manipulation (which we leave for future work) 

or provide the location to a well-protected human operator to 

subsequently enter and address the event. Any a-priori 

knowledge of the structure of the building if available can also 

be incorporated to guide the search.  

 In our example, the layout of the basement is shown in Figure 

2, and the room the robot needs to access is shown with a 

biohazard symbol. Given a known layout of the environment, 

the simplest solution to accomplish the mission is to designate 

waypoints that the robot can follow to access the room 

containing the potential threat. The waypoints and the path of 

travel are shown in Figure 2. This is the first example mission. 

It is more often the case, however, that there is not such strong 

knowledge of the operating environment. In these cases, 

autonomous exploration is necessary to find the biohazard. That 

scenario will be the second example mission. 

1) Multiple Waypoint Mission 

The design of the FSA for the multi-waypoint mission of Figure 

2 is shown in Figure 3 and was created with CfgEdit in 

MissionLab. The FSA consists of a series of GoToGuarded and 

Spin behaviors with AtGoal and HasTurned triggers. The 

GoToGuarded behavior drives the robot to a specified goal 

location (i.e., waypoint) with a guarded radius of velocity 

dropoff around the goal location. The AtGoal trigger causes a 

transition to the next state when the robot reaches the goal 

location. The Spin behavior circulates the robot around an 

obstacle with a given velocity. The HasTurned behavior causes 

a state transition when the robot has turned a desired angle.  

The performance criterion is a specification of the desired 

result for mission. The performance criterion for the waypoint 

mission is that the robot reach its final waypoint within the time 

limit, as in eq. (1).  

2) Autonomous Exploration Mission 

The second example mission is a Biohazard Search mission: a 

robot is tasked to search an area for biohazard, Figure 4. 

 

Figure 4. Indoor Biohazard Search Scenario 

The control program for the mission, shown in Figure 5, is 

constructed in MissionLab as a behavioral assemblage in the 

form of an FSA. The FSA consists of three behaviors (Wander, 

MoveToward, and Stop) and three triggers (Detect, NotDetected, 

and Near). With this behavioral assemblage, the robot starts 

with random exploration of the environment.  However, when 

Detect is triggered, the robot switches from random exploration 

to moving toward the detected biohazard. This mission is 

completed once the robot is within a certain distance of the 

biohazard. 

The performance criterion in this case is that the robot find 

(i.e., approach) the biohazard within the time limit: 

P( |p(t)-B|   )  0.8 for some t < T (3) 

where B is the location of the biohazard, p(t) is the robot 

position,  and  is an approach distance constant. 

 

Figure 2. Building layout with mission waypoints labeled. 

 

Figure 3. Mission design with MissionLab’s CfgEdit.  
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C. Verification of Performance Criterion 

Designs rarely work coming off the drawing board the first 

time. Final working products usually emerge only through 

numerous “going back to the drawing board” moments. The 

design of robot missions is no exception. However, for time-

critical C-WMD and USAR missions where there might only 

be one opportunity to attempt the mission, it’s necessary to have 

some guarantee that the designed robotic system will succeed 

before its deployment. To obtain a performance guarantee for 

the robot FSA in Figures 3 and 5, the operator needs to compile 

the robot program into PARS and provide VIPARS with the 

performance criteria and models of sensor, robot, and the 

environment (Figure 1).The details of the verification and 

validation of these two missions will be presented in Section 

VIII, after the theoretical basis of the approach has been 

introduced.  

The robot used for both missions is a four-wheeled skid-

steered mobile robot, the Pioneer 3-AT, shown in Figure 6. The 

robot is equipped with wheel encoders for localization, a gyro 

for heading correction, and a SICK laser for obstacle avoidance. 

For the exploration mission, the Pioneer 3-AT robot is equipped 

with a camera for biohazard. The principal source of 

uncertainty for these missions will be the sensor and actuator 

uncertainty and not uncertainty relating to the number and 

location of obstacles or terrain features. 

 

Figure 6. Pioneer 3-AT Robot used in both Missions  

VIPARS outputs 1) a Boolean answer to whether the mission 

will be successful as specified, and 2) a set of the variables in 

the performance criteria and their values at the time verification 

ended. When the performance criterion is probabilistic, the 

values returned are distributions.  

If the predicted performance of the mission does not meet 

the necessary performance criteria, the operator can refine the 

robot program based on the feedback provided by VIPARS. 

This iterative process can continue until the operator is satisfied 

with the performance guarantee and sufficiently confident to 

deploy the robot. 

IV. REPRESENTING MISSIONS IN PARS 

PARS is a process algebra for representing robot programs 

and environments for automated verification. PARS provides a 

formal representation for capturing tail-recursion and it allows 

verification to be cast as the solution of a system of equations 

rather than as state enumeration and state checking and its 

associated combinatorics.   

A. Process Composition 

A process is written in PARS using a bolded capital letter, e.g., 

P, and using a common set of process composition operations 

(e.g., [20, 7] ): 

Definition 1 A process is defined as a composition of other 

processes as follows: 

<processdef>   ::= <process> ‘=’ <processexpr> 

<processexpr>  ::= <processeq> ‘|’ <processeq>  

<processeq>     ::= <processexpr> ‘;’ <processexpr>  | 

                                ‘(‘ <processexpr> ’)’                     | 

                                <processname> 

Where ‘|’ denotes parallel composition and ‘;’ denotes 

sequential composition, and where <process> and 

<processname> are a bolded capital letter or word. 

Example 1. The process P is defined as the process Q followed 

by the process R and S in parallel, and when both terminate, 

followed by the process T: 

P = Q ; ( R | S ) ; T 

The process description is modified to include the variables 

used by a process and a way to specify initial values for these 

variables and to return values as results. In general, process 

variables are written in lower case. 

Definition 2.  A process that takes initial variable values u1, u2, 

…,un and maps these to new values v1, v2, …,vm  is written as: 

P u1, u2, …, un v1, v2 ,…, vm 

A function fP(u1,u2,…,un)=(v1,v2,…,vm) is associated with P 

that maps the values u1, u2, …,un  to v1, v2, …,vm in the same 

way. This is called the flow function associated with the process.  

Composition operators can be used to funnel value calculations 

through a chain of processes.  

Extending the syntax in Definition 1, a <processname> is now 

written as in Definition 2, and <process> is written as a bolded 

capital letter or word followed by a list of variable and result 

names between angle brackets. 

Definition 3. The flow function of a composition is constructed 

from the flow functions of each member of the composition as 

the composition of flow functions on any common variable 

values. 

Example 2. The flow function fT of the process T defined as 

Tac = Pab ; Qbc 

is fT(a) = fQ ○ fP(a) since b is common to both processes. The 

flow function of the process X defined as 

Xa,cb,d  = Yab | Zcd 

 

Figure 5. CfgEdit FSA for the Biohazard Search Mission 
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is fX(a,c) = (fY (a), fZ(c)) since none of the variables are common 

to both process. 

In practice there may be a mix of both of these cases. 

B. Conditional Composition 

PARS does not have a choice composition operator, used in 

many process algebras to implement conditional behavior. 

Instead, a sequence is conditional, as in LOTOS (Language of 

Temporal Ordering Specifications) [7]. A sequential chain is 

terminated immediately by a process ending in an abort 

condition.  

Definition 4. Any process P can terminate in one of two 

conditions, a stop condition or an abort condition. The process 

T = P ; Q is defined to be the process P if P ends in an abort 

condition and the process P followed by the process Q if P ends 

in a stop condition. 

Table 1. Examples of Finite Basic Processes 

Process Stop Abort 

Delayt  After time t Never 

Ran v  returns a random sample v from 

a distribution  

Never 

Inp x  , Outp,x perform input and output, 
respectively, on port p 

Never 

Eqa,b , Neqa,b , 
Gtra,b , etc. 

a=b, ab, a>b, etc. Otherwise 

Definition 5. A basic process P  Basic is a process whose 

behavior and flow function is defined a-priori, not by a 

composition of other processes.  

Table 1 shows some basic processes that are used in this article. 

These are basic processes that always terminate, and are 

grouped in the set Finite  Basic. Some that do not terminate 

will be introduced later. The last row shows several processes 

that calculate conditions, basic condition processes.   

Definition 6. Each basic condition process P  Cond, where 

Cond   Finite  Basic, terminates in stop if its condition, 

denoted cond(P), is true, and in abort if the condition is false.  

Example 3. A conditional statement that carries out P if a=b 

and Q otherwise is written as follows: 

T = ( Eqa,b  ; P | Neqa,b ; Q ) 

The sequential chain Eqa,b  ; P only continues to P if Eq stops, 

that is, if a=b. Similarly Neqa,b ; Q only continues if ab. 

Definition 7. The mapping ( Pu1,u2,…,un ) maps a process P 

to a well formed logical condition expression over  conditions 

with names of the process variables, u1, u2,…,un and condition 

operations (=,,>,,<,), and logical operations between 

condition expressions (,,) that specifies the condition under 

which the process stops.   For convenience, the abort condition, 

℧(P) is defined as ℧(P)= (P). 

The mapping  is defined a-priori for basic condition processes 

PCond by cond(P). The mapping must be calculated for 

compositions of processes. 

Definition 8:  (P) is defined by: 

   If P  Basic,  

        (P) = cond(P)         if PCond,  

        (P) = (P Finite),  else. 

   If P  Basic, 

(P | Q) = ((P)  (Q)) 

(P ; Q) =  ((P)  (Q)) 

Example 4. The  mapping for the basic condition process Eq 

is defined as follows: ( Eqa,b  ) = cond(Eqa,b  ) =“a=b”. 

A flow function can now be defined for a chain of processes as 

in Example 3. 

Definition 9. The flow function fT of the process T defined as 

T = P1; P2 

is fT = fP2○ fP1  if  (P1) evaluates to true and  fT = fP1 otherwise. 

Example 5. The flow function for T = (Eqa,b  ; P | Neqa,b ; Q) 

is fT = fP  if  (a=b), and  fT = fQ if (ab). 

C. Tail Recursive Processes 

Definition 10.  A tail-recursive (TR) process T is a process 

defined as a sequential composition of a non-recursive process 

expression (the body of the TR process) followed by a recursive 

reference to T. 

Example 6. The process T = P ; T is a TR process if P is not 

recursive; P is the body of the TR process.  

Definition 11. The process Tab  = Pab ; Tb  is a TR 

process if P is not recursive.  

 The flow function associated with T will be of the form 
 fT = fP

n (a) for n0. Furthermore,   
 The value of n is the smallest n such that ℧( P  fP

n-1(a)   ) 
evaluates to True. 

Note 1. Recursion and iteration are equally expressive, and 

there is a method to transform general recursion to tail-

recursion [21]. Hence tail recursion does not limit expressive 

power. 

Note 2. Any language that implements sequence, condition and 

repetitive constructs is sufficient to represent any program [22]; 

thus, we can be confident that PARS can represent any program. 

Note 3. Any computation of the TR process T can be examined 

as fT = fP
n (a) for some n>0. 

                Input ports                 Output ports 

                  i1,i2,…,ik                     o1,o2,…,oj 

 

Initial 

variable values                            Final results  

 

   u1,u2,…,un                                           v1,v2,…,vm 

                              (a)                                               (b) 
Figure 7. PARS Process Model (a) and Process Network 

Model (b) 
 

D. Communicating Processes 

The process algebra is now extended with a mechanism for 

parallel processes to exchange messages. 

Definition 12. A process C with initial variable values 

u1,u2,…,un input port connections i1,i2,…,ik output port 

C 

C E 
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connections o1,o2,…,oj and final result values v1,v2,…,vm (see 

Figure 7(a)) is written as: 

Cu1,u2,…,un (i1,i2,…,ik) (o1,o2,…,oj) v1,v2,…,vm 

The input and output ports can be used by C for communicating 

with other, parallel processes while it is calculating its final 

values. A collection of connected, parallel processes will be 

referred to as a network. For example, in the network in Figure 

7(b) the results calculated by C can be influenced by the process 

E to which it is connected. If C is a behavior-based robot control 

program, and E a model of its environment, then the results of 

that program may thus depend on the environment E in which 

the program is executed. Table 1, 3rd row, lists the basic 

processes for port communication. 

Definition 13. Inpx is a process that takes the name of a port 

p as an initial variable value, carries out a read operation on the 

port, and produces the value read, x, as a result; and Outp, x is 

a process that takes the name of an output port p and a value to 

send on that port, x, as initial variable values and writes the 

value to the port. 

Example 7. A process C that inputs a value on input port pos 

and then always outputs a value on port vel is defined as a 

sequential composition as follows: 

C (pos)(vel) = Inposx  ;  Outvel ,k*(g-x) 

The value k*(g-x) is the difference between a constant g and the 

value x read from the pos port, times a gain constant k. Initial 

variable values and results can be specified using standard 

arithmetic expressions and functions. 

Example 8. The parallel composition: 

S = C(c1)(c2)   |  E(c2)(c1) 

specifies two parallel processes C and E as shown in Figure 7(b), 

with the input and output ports connected correspondingly. The 

labels c1 and c2 are called port connection labels and their only 

purpose is to specify the connection map between the ports of 

the parallel processes.  

Note 4.  The addition of port communication complicates the 

relatively simple definition of flow functions! The flow 

function associated with a process no longer just depends on the 

variables of that process, but could depend on variables and 

computations of other parallel processes. This issue will be 

addressed by the addition of some structural constraints to the 

class of network to be analyzed in Theorem 1 of Section V. 

Note 5.  Port connections labels are a general way to describe 

port-to-port connections, and this is what the PARS/VIPARS 

implementation uses. However, they result in longer, more 

verbose process expressions. For many examples in this article, 

this is simplified by giving connected ports on parallel 

processes the same names (however cf. CSP or Promela 

channels [2]). 

One more extension is made to PARS for the purpose of 

easily representing behavior-based programs. While a parallel-

max composition ‘|’ terminates when both processes terminate, 

a parallel-min composition called disabling composition is also 

introduced. 

Definition 14.  A disabling composition, written ‘#’, is a 

parallel composition operation that terminates when any one of 

its arguments terminates (cf. LOTOS disabling [7]). The 

syntactic binding order is ‘;’, ‘#’ and ‘|’.  

Definition 15. For the composition T = P # Q: 

 (P#Q)= ( P) (Q) 

 fT = fP if ( P) holds,  fQ if ( Q) holds, nondeterministic if 

both hold.  

Definition 16. The basic process Delayt  terminates after a 

time t has elapsed. Its effect is similar to a condition process in 

that it indicates when a process ends rather than computes a 

value. elapsed(t) is added to the list of conditions in Definition 

7 indicating the condition that time t has elapsed. 

Example 9. The process T1 = (Delayt1 # Delayt2) has 
(T1)= elapsed(min(t1,t2)).  

The process T2 = (Delayt1 | Delayt2) has (T2) = 

elapsed(max(t1,t2)). 

The process T3 = (Delayt1 ; Delayt2) has (T3) = 

elapsed(t1+t2). 

E. PARS Controllers 

In MissionLab a designer specifies the robot mission as a 

Finite State Automaton (FSA) (examples in Figure 3 and 5). 

Each state in the CfgEdit FSA involves the execution of a 

behavior which may result in many sensing and motor actions 

and interactions with the environment. Hence verification must 

occur at a greater level of the detail than that provided by simply 

using a model-checking approach with the states of the FSA. 

Prior work has investigated simply using a more detailed FSA 

for the problem [1] [2] [3], but this incurs the state-explosion 

issues discussed in Section II, and hence we do not take that 

approach. 

1) TR Behavior Library  

The states in the FSA (i.e., the circles in the CfgEdit diagram in 

Figure 3) correspond to behaviors from a library of robot 

behaviors in MissionLab. MissionLab behaviors are specified 

in the Configuration Network Language (CNL) [23]. To 

support the translation of CNL to PARS, a corresponding 

library of PARS behaviors was built. Only behaviors used in 

the kind of missions described in this article have been 

implemented to date. Each such behavior has been constructed 

as a TR process. The initial variable values for these processes 

can be used to parameterize behaviors, for example to provide 

a goal location to a GotoGuarded behavior. These processes use 

port communications to transfer information to other behaviors, 

or to the robot model, and acquire information from sensor 

models.  

Example 10. An internal process in the PARS implementation 

of the GoToGuarded behavior, the MoveTo TR process, is 

defined as: 

MoveTo g  = Inp rp ; Gtr|rp-g |, ;  
              Outv, d(g-rp )  ; MoveTo g      
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The process inputs a value on the position input port p, checks 

to see if the position reported is close to the goal g, and if not 

(i.e., if the condition process Gtr stops) then it outputs an 

appropriate velocity d(g-rp) to reach the goal on the port v. The 

function d() is an arithmetic function that generates an 

appropriate velocity based on the distance from the goal, e.g., 

k*(g-rp). As per Note 4, nothing can be stated about the flow 

function for this process yet. However, the ℧ mapping for this 

process is: 

℧ ( MoveTo) = |rp-g |   

 

2) Triggers 

The transitions between the states of the FSA are mediated by 

triggers (the rectangles in the CfgEdit diagram in Figure 3). 

These continually monitor some sensor condition and initiate 

the transition to a new behavior when the condition is satisfied. 

It is quite easy to see how a trigger can be phrased as a TR 

process, since it is principally a repeated condition process. A 

library of trigger processes was also constructed, sufficient to 

support the kind of missions described here. 

Example 11. As an example, the AtGoal TR process is shown:  

AtGoal g  = Inp rp  ; Gtr|rp-g |,  ; AtGoal g 

The position of the robot is read on port p, and if the position 

is close to g, then the tail recursion stops as in Example 10.  

 

3) Mission and System Processes 

The CfgEdit FSA is translated (through CNL [23]) to a PARS 

process called Mission by: 

1. Identifying the library process associated with the trigger 

or behavior state. 

2. Identifying the values of the parameters associated with the 

trigger or state and providing them as initial variable values 

for the process. 

3. Composing the trigger and behavior processes based on 

their relationship within the FSA. 

Example 12. This conversion is illustrated using the last two 

GoToGuarded states and intervening trigger in Figure 3. These 

can be composed as 

               Mission  =  GoToGuardedloc3   |  
                                     AtGoalloc3  ;  GoToGuardedloc4  

The values loc3 and loc4 are the corresponding locations from 

the CfgEdit FSA, and GoToGuarded and AtGoal are the TR 

processes from the behavior library. 

F. PARS Environments 

An environment model in PARS is a causal model of the 

environment in which the robot program is carried out.  

Example 13.  A robot model, Robot, which includes both 

position and heading uncertainty is shown below as a TR 

process: 

Robotr, a, s  = ( Delay    #  Odor #  Atr1, r  ) ;                                 
                                      ( Inh a  #   Inv s ) ;   
                                          (Ranh z  | Ranv w   ) ; 

                                             Robotr+u(a+z)*(s+w)* ,  a,  s  

Odor        =  Ran e   ; Out p, r+e   ;  Odor 

The environment model accepts a heading input on port h or 

a speed in the direction of the heading on port v. The process 

Atr1,r , an infinite basic process, represents robot r1 at location 

r. The process Odo (short for Odometry sensor) makes position 

information (with noise e ~ ) available in a loop on port p until 

terminated by Delay. The new position of the robot is calculated 

as the old position r incremented by a noisy speed command 

(s+w) in the direction of the noisy heading (a+z) (where u() 

returns the unit vector). The actuator and odometer noise (the 

variables z, w, and e) are characterized by the distributions for 

speed, heading and sensor noise, e.g., h = N(h,h), v = 

N(v,v), and  = N(m,m). 

G. PARS Goals 

One of the strengths of model-checking is the established 

relationship between the state-based transition model for the 

program and a temporal logic specification of the property to be 

verified [2]. However, a process algebra can be just as intuitive 

a language to specify event orderings [7] as a temporal logic 

language. Of course, in a logic it is possible to concisely 

proscribe, i.e., to state what should not hold, whereas a process 

algebra is prescriptive. It will be shown that this is not a 

limitation for the proposed approach.  

First, consider how a property is related to a program. 

Implementation is distinguished from specification: A property 

to be verified, a specification, is a more abstract process 

network, while an implementation is a process network with all 

the details filled in [7] [24].  

Definition 17. PQ denotes process P and process Q are 

observationally equivalent by a specification implementation 

bisimulation. The details of PQ are postponed to Section V. 

A performance criterion network is written using process 

composition operations and basic processes along with 

constraints on the values of the variables to the processes. 

Example 14. A simple liveness criterion is that robot r1 reach 

a specific location (cf. Eq. (1)) ; this is written as follows:  

Q = Delayt1  ; (Delayt2  # Atr1,p) 

for some t1 T, |p-L|< 

The basic process Atr,p represents robot r at position p. This 

process never terminates unless run in a disabling composition 

with a process that will terminate (such as Delay). This 

specification states that r1 arrives at location p by time T at the 

latest and the final position be within  of location L. Notice 

there is no constraint on t2 (how long the robot is at the final 

location p). 

Example 15. In this two robot example, robot r1 must arrive at 

its location before r2 arrives at its location. Process variables in 

the proposed framework may be random variables. An example 

constraint on a random variable can be its probability of 

meeting some condition. In this case, the criterion specifies that 

the location of robot r1 must have at least an 80% probability 

of being within a distance R of location L1 by time t1. 

Q = Delayt1 ;  (Delayt2  # Atr1,p) | 
                               Delayt3 ;  (Delayt4  # Atr2,q) 

for some t1,t3 T, t1<t3,  

       P (|p-L1|<R)>0.8, P (|q-L2|<R)>0.8 
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Example 16. Consider a safety criterion: that two robots never 

approach too closely (cf. Eq. (2)). Notice this involves 

proscription – that a specific process composition never 

happens – difficult with process algebra. It is handled here by 

moving the proscription to a constraint on the variable values. 

The  probability of the robots being at least a distance  away 

from each other must be at least 80% for all times: 

Q = Delayt1  ;  (Delayt2  # Atr1,p) | 
                            Delayt3  ;  (Delayt4  # Atr2,q) 

for all t1,t3>0, P (|p-q|>)>0.8 

A performance criterion is defined as follows: 
Definition 18. G(Q,C) is a performance criterion, where 

 Q is the process network associated with the criterion, 

 C is a boolean function on the process variables in Q that 

is true if the constraints on the variables hold. 

If u are the variables in Q, then C(u) holds iff the constraints in 

C hold on the variable values of u. In the performance criterion 

in Example 16, C(t1,t2,t3,t4,p,q) is true iff  for all t1,t3>0,  

P (|p-q|>)>0.8. 

As usual, a safety criterion, will be handled during verification 

as a negated liveness condition. A performance criterion is 

negated by negating the constraint on variable values: G(Q,C) 

= G(Q,C). 

V. VERIFICATION IN PARS 

Given a parallel communicating composition of a controller 

Mission and environment model Robot: 

            Sys = Missionu1,…(a1,…)(b1,…) |  

                         Robote1,…(b1,…)(a1,…) 
(4) 

our objective is to automatically verify that Sys will achieve 

some desired performance criterion G(Q,C). Section IV has 

introduced a lot of the methodology needed to support this but 

with one significant gap: While it is possible to express the 

flow-function of a TR process (Definition 11, Note 3), eq. (4) 

is not a TR process, so there is no way to express its 

computation as a flow-function (Note 4). 

This section will present an approach to determining the 

flow-function for a parallel, communicating composition of 

processes with the assumption that the component processes are 

themselves TR processes. This is a reasonable assumption; in 

the previous section it was shown that MissionLab behavior-

based programs can be translated to TR processes, and that the 

environment model can also be constructed as a TR process. 

Furthermore, tail-recursion does not restrict what can be 

represented in either. 

Determining this flow-function will require two steps: 

1. Translate the network of TR processes into a single TR 

process (SysGen algorithm, presented in subsection A). 

2. Combine the flow-functions for the individual TR 

processes with the port connection mappings for the 

network to produce the flow-function for the single TR 

process constructed in step 1 (FloGen algorithm, presented 

in subsection B). 

With a procedure to determine the flow-function for a network 

such as eq. (4), it is only necessary to then describe how to use 

this to verify whether the network satisfies the performance 

criterion G(Q,C) (presented in subsection C). 

A. SysGen Interleaving Theorem and Algorithm 

Consider a parallel composition of TR processes P1, P2, …, Pm  

as follows: 

Sys = P1 | P2 | … | Pm 

 An interleaving theorem in process algebra relates sequential 

and parallel operations. 

Theorem 1. A parallel, communicating composition of TR 

processes can be written as a single TR process: 

Sys = P1 | P2 | … | Pm = S(P1, P2 ,..., Pm)  ;  Sys 

iff a system period process, S(P1, P2 ,..., Pm) can be constructed. 

 Informally, Sys is a collection of TR processes, each of which is 

in the form  𝐏i =  𝐏̂i ; 𝐏i where 𝑷̂i is the non-recursive body of the 

ith TR process. The port communications between any process i 

and any other process j are what synchronize the execution of 

the bodies of these two processes, 𝑷̂i and 𝑷̂j. For example, if the 

bodies were synchronized by communication to all start at the 

same time, then we could say that the system period process 

S(P1, P2 ,..., Pm) was just equal to the parallel composition of all 

the body processes 𝑷̂1|𝑷̂2| … |𝑷̂𝑚. However, if there are more 

than just a single such synchronizing communication between 

processes, then some 𝑷̂i may have to repeat several times more 

or less than other 𝑷̂j.  The system period process is similar to 

the concept of the hyper-period (LCM of all the task periods in 

a scheduling problem) [25].  

The proof of Theorem 1 is by construction of the system 

period process (and we call the resulting algorithm SysGen). 

SysGen starts with the non-recursive body 𝑷̂i of the ith TR 

process. The body is then restricted to just the port 

communication processes, hiding other processes as internal 

operations. The abs operation is introduced to formalize this 

hiding here (and in later sections). 

Definition 19. P abs S is the process in which any processes in 
P not named in the set S are hidden by the internal action i. This 
can be defined recursively: 

 (P  ; Q) abs S = (P  ; i) = P if Q S or = (i  ; Q) = Q if P  S 

 (P  | Q) abs S = (P  |  i) = P if Q S 

 (P # Q) abs S = (P #  i) = P if Q S 

For convenience, P abs Q is written to mean the process where 
any processes not named in Q are hidden. Compositions of 
internal actions can be grouped: 

i ; i = i,     i | i = i     and    i #i = i 

Restriction to just port operations will allow the matching of 

input and output port operations between the parallel  𝐏̂i. 

𝐈𝐎i= 𝐏i abs { In, Out } (5) 

From the port connection labels in a parallel composition, a 

communication map cm can be built which specifies how ports 

on one process connect to ports on another in Sys.  Call 𝐈𝐎i(𝑗) 

the jth port operation in 𝐈𝐎i and let 𝑝(𝐈𝐎i(𝑗)) be the portname in 

that operation. Then SysGen starts with 𝐈𝐎i(𝑗
𝑖

= 0) for each 

process Pi and checks for the following: 

𝑐𝑚( 𝑝(𝐈𝐎i(𝑗𝑖)), 𝑝(𝐈𝐎k(𝑗𝑘) ) ) (6) 
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For sequential and disabling compositions in 𝐈𝐎i, as soon as (6) 

produces a match with some other process 𝐈𝐎k, ji and jk  can be 

incremented to the next operation, since only one 

communication happens for the composition to terminate. For 

parallel composition however, all the communications in the 

composition need to be matched before ji is incremented.  

If at any point, two processes cannot be found for which (6) 

holds, but one or more processes have previously matched all 

their operations, then those processes can be unwound. For 

example, if 𝐈𝐎i has been completely matched already, then we 

can replace it with 𝐈𝐎i = 𝐈𝐎i ; 𝐈𝐎i which is just an unwinding 

(e.g., T = P ; T = P ; P ; T ) of a tail recursion and in this way 

extend the body of the process and the opportunity to continue 

to match port connections. Informally: this unwinding in 

general means that this component process needs to loop twice 

(or more) to handle multiple communications from a single loop 

of another component process. 

When all 𝐈𝐎i are completely matched (including any 

unwound processes), the system period process has been built. 

However, if (6) fails and no processes can be unwound, then no 

system period process exists.  If it exists, the system period 

process will be given by: 

𝐒(𝐏𝟏, 𝐏𝟐 , . . . , 𝐏𝐦)  =  𝐏̂𝟏
𝑘1

| 𝐏̂𝟐
𝑘2

| … |𝐏̂𝐦
𝑘𝑚

           (7) 

for some unwinding constants k1,…,km.  For a discussion of the 

computation complexity of SysGen, see Appendix I. 

B. FloGen Algorithm  

SysGen recasts the analysis of Sys into the analysis of a single 

period process S(Sys)=S(P1,…,Pm).  S(Sys) transforms the 

values of the variables in P1,…,Pm at start of repetition k of the 

system period process to those at the start of repetition k+1. 

Within S(Sys) variables may have their values transformed in 

two ways: 

 By operations within the processes P1,…,Pm: This 

information is obtained directly from each process flow 

function.  

 By message passing: Variable values may be sent via port 

communications to be included in other processes. 

When a process receives a value from another process, the value 

arrives as a result variable of the In process. For example the 

TR process  

Ty = Inpx ; Tx+y 

repeatedly accepts a value on port p and then adds it to its 

variable y. It has a flow-function  

fT(y) = x+y, 

which includes a value x that is not one of the process variables, 

and which can only be disambiguated by following the 

connection for port p and determining which process and which 

variable in that process produces x. Such variables will be 

referred to message variables. 

Definition 20. Let R be set of variables of the processes 

P1,…,Pm and let val(ri) be the value set of the variable ri R. 

The system period process flow function maps all variables in 

the kth iteration of the system period process to their values in 

the (k+1)th iteration: 

 ) val(r..)):   val(r,...,r(rf nnsys  .11
 (8) 

                                                   )val(r..) val(r n .1
  

A variable’s transformation is traced through the processes and 

port communications in S(Sys) to generate a single flow 

function fsys defined in terms of flow functions for each 

variables in the system process fsys,ri as follows: 

,...,,( 12,11,1 ),...,r(rf),...,r(rf),...,r(rf nrsysnrsysnsys   (9) 

                                                             )1, ),...,r(rf nrnsys
  

The FloGen algorithm (Figure 8) implements the following of 

connections in S(Sys) to replace all the message variables with 

process variables and hence generate the system period process 

flow function, eq. (9). 

FloGen( FS = {fP1,…fPm}, cm): // remove message variables from all FS 

1.   For each fPi  FS 

2.      For each vj not in R for Pi //i.e. from an In 

3.         aport variable of In that generated vj 

4.         Replace vj with FloFollow(a, FS, cm) 

 

FloFollow( a, FS, cm): // replace a single message variable 

1.   Find port b on Pk connected to a on Pi using cm 

2.    expr  variable expression in Out on port b in Pk 

3.   For each uj in expr  not in R for Pk 

4.      a  port in pk that generated uj 
5.      Replace uj in expr with FloFollow(a, FS, cm) 

6.   Replace vj with expr 
 

Figure 8. Flow Function Generation Algorithm, FloGen and 

recursive helper function FloFollow. 

For a discussion of the computational complexity of FloGen, 

see Appendix II. 

 

Figure 9 shows an illustrative example of this kind of variable 

value transformation between two processes. Recall that there 

are two ways a variable can have its value modified: by 

operations within the process, and/or by message passing with 

another process. In Figure 9, P1 transmits its variable r to P2, 

which then modifies its variable a by a transformation g(r,a) 

and transmits this back to P1. Process P1 transforms its variable 

first to h(r) and then, on receiving g(r,a), to f(h(r),g(r,a). The 

FloFollow algorithm follows the chain of transformations 

indicated by the dotted line in Figure 9 to resolve f(h(r),g(r,a)). 

The FloGen algorithm uses FloFollow to replace all the 

message variables in every flow function. 

 

Variable values:       r        h(r)      f(h(r), x) … 

Process P1 
 

Port to port                                          x 

communications             y                 

Process P2 
Variable values:      a         g(y,a) 
 

Figure 9. Example of variable value transformation (dotted lines) 

for variables r and a in a single system period process composed 

of two processes P1 and P2. The message variables x and y are 

resolved by FloGen as y=r and x=g(y,a)=g(r,a). 
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Example 17. Consider the system process defined as 

Sysg, r, a, s=MoveTo g  | Robotr, a, s 

where the component processes have been defined in Examples 

10 and 13 respectively, and where the port communication is 

simplified to ports with the same name on different processes 

being connected (Note 5). Sys has a system period process that 

is simply the body processes of each of the component 

processes since communication on port p acts to synchronize 

the start of both body processes. 

 S(Sys) = ( Inp rp  ; Gtr|rp-g |, ; Outv, d(g-rp ) )             | 

    (( Delay    #  Odor #  Atr1,r  ) ;                                 
                                      ( Inh a  #   Inv s ) ;   
                                          (Ranv w   | Ranh z  )) 

The flow function for the system is arrived at as follows. The 

flow function fsys,r2  (r2 is the ‘r’ variable) with its original 

message variable s (from Robot in Example 13) is:  

fsys,r2(g,r,a,s)=r+u(a+z)*(s+w)* 

FloGen identifies s as a message variable (it’s not one of the 

variables in the definition of Robot) and calls FloFollow which 

follows the port v from which s came to port v on MoveTo. It 

replaces s with the expression from MoveTo  d(g-rp); but rp is 

a message variable in MoveTo generated on port p. FloFollow 

follows the p port back to Robot, replacing rp with r. 

The system flow function is therefore calculated as: 

fsys,r1(g,r,a,s)=g 

fsys,r2(g,r,a,s)=r+u(a+z)*(d(g-r)+w)*, z ~ h ,w ~ v 

fsys,r3(g,r,a,s)=a 

fsys,r4(g,r,a,s)=s 

fsys(g,r,a,s)=( fsys,r1(g,r,a,s), fsys,r2(g,r,a,s), fsys,r3(g,r,a,s),   

                     fsys,r4(g,r,a,s) ) 

The metric time behavior of a network is characterized 

completely by the Delay   processes in the network. Time 

behavior is restricted to discrete-time in this paper. To 

determine the time behavior of a network, the network is 

restricted to a network of just delay processes, and elapsed is 

calculated by combining the values of the variable for each 

process using the three results in Example 9.  

The network obtained from P by hiding all process except the 

delay process is written P abs Delay. 

Definition 21. The time behavior of P is defined to be: 

  (P abs Delay). 

The time behavior of the system period process S(Sys) in 

Example 17 is given by   (S abs Delay) =  (Delay    ) = .    

C. Satisfying Performance Guarantees 

Given that a flow-function can be built for a network of 

interest, it now remains to be seen how this can be used in 

verifying whether or not the network satisfies a performance 

criterion.  Recall that a performance criterion G(Q,C) consists 

(Definition 18) of a process network Q and constraints C on the 

variables of Q.  

Definition 22. Let Sys be a TR process with system period 

process S=S(Sys), system flow function f and initial variable 

values uo and let G(Q,C) be a performance criterion, then 

         Sys satisfies G(Q,C) iff, for some n0, Sn  Q, and C( fn(uo)) 

Where P1=P, Pk=Pk-1; P is repeated sequential composition. 

To use satisfies, it is necessary to define how it can be 

established that P  Q.  This is accomplished in two steps. First 

P is restricted to contain just the processes in Q, by evaluating 

P abs Q. Secondly, the networks, now containing the same 

processes are compared structurally (P abs Q ) s Q.  If this is 

successful, a mapping can be made between processes in (P abs 

Q) and processes in Q and the constraint function C can be 

applied to the variables in (P abs Q). 

Definition 23. P s Q holds iff 

P=Q or P= P1  P2, Q = Q1  Q2 where,  

P1 sQ1, P2 sQ2, = {‘;’,’|’,’#’} 

Structural equivalence is more restrictive (P sQ  P  Q but 

not vice-versa) but is fast.  

Example 17 (Cont). Consider verifying SysL1, L0, H0, V0 

where these initial values are those for the system in Example 

17, i.e., the goal location L1, the initial position L0, heading H0 

and velocity V0. We verify against the performance constraint 
Q in Example 14, that the robot reaches its goal L1 by time T. 

Applying the two step process, using filtering and structural 

equivalence, we have that: 

1. (Sn abs Q)= 

           Delay(n-1)  ; (Delay  # Atr1, fr2
n(L1,L0,H0)) 

2. (Sn abs Q) s Q  t1=(n-1), t2=, L1 =fr2
n(L1,L0,H0)  

Establishing P s Q established a mapping between the initial 

variable values in P and those in Q, shown as the RHS of the 

implication in step 2. The constraint function C is now applied 

to the mapped variables in P. The final step in verification is to 

determine whether the constraints C will be met given the 

system flow function. This final verification step is 

implemented using a Bayesian Network approach, and 

described in Section VI. An important extension to Definition 

22 is addressed first. However, those readers eager to finish the 

story could skip the next section. 

D. Non-TR Missions 

A behavior-based program continually and concurrently 

responds to affordances in its environment. MissionLab CfgEdit 

missions represent this with triggers and behaviors, and these 

are mapped to parallel compositions of sequences of processes 

in Section IV.E. Such a sequence is not a TR process, and any 

Mission process thus generated will be non-TR. The definition 

of a system satisfying a performance criterion must be extended 

to cover a system with sequences of TR processes. This is 

accomplished in two steps. 

Let P = P1 ; P2 ; P3 ... Pm be a single non-TR process in the 

system Sys where each Pi is a TR process. Let Sysi be Sys, but 
where P is replaced by Pi . Let Si be the system period process 

for Sysi  and let fi be the Sysi flow function.. In that case: 

 

Definition 24. Sys satisfies G(Q,C) iff for n1,n2,..,nm0 

 S1
n1; S2

n2 ; ... ; Sm
nm  Q, and 

 C(f1
n1(uo), f2

n2(u1), fm
nm(um-1)),  
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Note 6.  If u1= f1
n1(uo) and so forth for u1 through um-1, then each 

subproblem depends on the previous. This can be very useful 

for example to propagate position uncertainty through the 

system of subproblems. However, it is also useful to be able to 

isolate each subproblem by re-initializing between 

subproblems. This allows each subproblem, e.g., each waypoint 

in a multiple waypoint mission, to be treated independently.  

This definition breaks the verification problem into the 

verifications of a sequence of TR subsystems, matching the 

sequence to the performance criterion network. This can be 

used to enforce the constraint that a robot visit locations in 

sequence, or just reach the last location.  

However, a difficulty of multirobot systems is each agent 

could have one (or more) non-TR mission processes. Thus for 

k agents, this definition of satisfy would require km different 

sequences to be tested! To avoid these combinatorics, an 

approach is proposed below which only needs to test one 

sequence. 

A TR process terminates when its body aborts (Definition 

11). Let Sys be composed of k non-TR processes, each of which 

is m TR processes in sequence. Pij is written for non-TR 

component i{1...k} and sequential component j{1...m}.  Let 

Sys1 include all Pi1 for i{1...k}, and any other TR processes, 

R1,…,Rh that are in the system. (The TR processes might 

include for example, the TR robot process as in eq. (4).) To 

determine what should be in Sys2 we proceed as in Definition 

24 except that ⋁ ℧(𝐏𝑖1)𝑖  is evaluated to determine which trigger 

process achieves its termination conditions first; If this 

condition contains random variables, then its satisfaction gives 

the most likely process to terminate first 

Sys2 is constructed from Sys1 with any Pi1 for which ℧(Pi1) 

evaluates to True replaced by Pi2. A single sequence of systems 

is thus constructed, each representing the most likely next 

system given the previous systems.  

Definition 25. Let Sys be composed of k non-TR processes, 

Sys satisfies G(Q,C) iff for n1,n2,..,nm0  

S1
n1; S2

n2 ; .. ; Sm
nm  Q, where 

 Sys1 = ( P11 | P21 |... | Pk1)  | (R1 |...| Rh ) and 

 each subsequent system Sys+ is the previous system Sys- with 
each Pij for which ℧(Pij) evaluates to True replaced by Pil, l=j+1, 

and 

 C(f1
n1(uo), f2

n2(u1), fm
nm(um-1)). 

VI. VERIFICATION BY FILTERING 

Definition 22, and its extensions, Definitions 24 and 25, specify 

how to automatically verify that a parallel communicating 

network will satisfy a performance criterion. However they 

require the solution of a Boolean expression C( fn(uo)). This 

section will introduce an approach to solving this expression 

based on using a Dynamic Bayesian Network: A Dynamic 

Bayesian Network (DBN) is a Bayesian Network which relates 

variables to each other within a time step and also between 

time-steps [26]. Solving C( fn(uo)) will be mapped onto the 

filtering problem for a DBN in subsection A. Several short 

examples of the results of applying this verification approach 

are presented in subsection B. 

A. Filtering Algorithm 

Recall the system flow function fsys,ri relates the value of ri  R 

at time step k to its value in time step k+1. Since all the flow 

functions in the following relate to a single Sys, the flow 

function fsys,ri will be written below as  fri  for better readability. 

Let the set of variable values at time k be Rk = { (ri, ri,k) | ri,k 

val(ri) }. Not all variables in Rk may be needed to calculate 

each ri,k+1. Any particular variable ri  may only depend on some 

of the variables in Rk as given by the structure of the processes 

and process communications; this subset is written Ri,k.  

Definition 26.  The posterior probability ri,k+1 is defined by 

P( ri,k+1 | Ri,k )  = fri( Ri,k ), Ri,k  Rk                  

The resulting structure can be drawn as a Bayesian network as 

shown in Figure 10. As long as flow functions can include the 

effect of program conditionals [27] it can be assumed Ri,k is 

independent of k and hence that the evolution of variable values 

is a stationary process that can be captured as the Dynamic 

Bayesian Network shown in Figure 11. 

 
 

 

 

 
Figure 11.   Dynamic Bayesian Network 

Definition 27. The transition model of the DBN constructed for 

flow functions fr1, fr2, … is F, where 

F(Rk) = (  fr1(R1,k),  fr2(R2,k),… ) 

Sys satisfies G(Q,C) identifies a subset of the variables V  R, 

where V contains those variables whose values are constrained 

by the performance criterion G(Q,C).  

Definition 28.  A performance criterion G(Q, C) is verified if 

for some k 

P(C(Vk) | R1:k) > Pmin 

where Pmin is either specified in C (as the probabilities were in 

the performance criterion Examples 14-16,) or is a default 

value, and where R1:k means the sequence of variable values 

from the first step to step k and where Vk are the values of the 

variables constrained by C at step k. 

An observation model GF(Rk) is introduced to implement 

this evaluation: 

GF(Rk)   =    P(C(Vk)  | Rk) (10) 
The verification conditions may be achieved on any filtering 

step, so the probability of achieving this is the disjunction of the 

probabilities on each step. 

 

 

 

 

 

 

 

Figure 10. Flow function fri(r1…rn)=ri evaluation shown as a 

Bayesian Network 
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P(C(Vk )| R1:k) = P(C(V1)|R1) + P(C(V2)|R2)P(R2|R1) 

                         + .. 

                         + P(C(Vk-1)|Rk-1)P(Rk-1|R1:k-2). 

(11) 

This is written more compactly as:  





k

j

jjjjkk RRPRVCPRVCP
1

1:1:1 )|()|)(()|)((  (12) 

Since each Rj is linked to the one before in the DBN by the 

transition model Rj+1 = F(Rj), and verification condition 

satisfaction is related to Rj by the observation model GF(Rj): 

While Pmin gives a way to determine a successful verification, 

it does not allow the determination of a non-successful 

verification. One solution is to bound k as follows. 

Definition 29. A performance criterion G(Q, C) is verified for 

Sys iff: 
P(C(Vk )| R1:k) > Pmin and k<Kmax 

where GF and Kmax are determined from Sys satisfies G(Q ,C). 

GF is determine from eq. (10), and Kmax, the number of DBN 

iteration steps is determined from the time behavior of Sys 

(Definition 21) and the time constraint on the mission. 

B. Verification Examples 

In this subsection, several examples are presented to illustrate 

how verification is accomplished using VIPARS and what 

verification results from this method look like. In [27] the issue 

of selecting a representation for PARS random variables is 

discussed and a Mixture of Gaussian model proposed. The 

example results presented here were calculated using that 

mixture model, but the representation issue is not addressed 

further here. 

Example 17 (Cont.) The robot controller in this example 
moves the robot from a point L0 to a point L1. The condition 
being verified is  that the robot is at the point L1 after some time 
t<Tmax with probability p>Pmin . 

Figure 12 shows the value of a position distribution at several 

steps during verification of that mission, that is, at several steps 

during the filtering per Definition 27. The robot position is a 

single peak distribution, and during filtering, the mean moves 

towards L1 and the variance expands (due to the influence of 

the noise in the robot model). 

 Figure 13 shows the value of the probability of the goal 

condition as a function of filtering iteration step (k in Definition 

29). Figure 13(a) shows the case for this running example. The 

cumulative probability of being at L1 rises monotonically as the 

robot approaches L1. The initial low probabilities represent the 

cases when the robot motion error is so small that the robot 

arrives at the goal relatively quickly. Also output from 

verification is the position distribution (e.g., that in Figure 12) 

for this mission at the iteration step where the probability of 

having arrived at L1 exceeds the (mission-designer) specified 

threshold; 80% in this example. 

Example 18. The MoveTo process in the running example 

(Example 17) is replaced with a version in which the velocity 

calculated is  to one side of the goal, d(g-r) is replaced with 

d(g-r+). Figure 13(b) shows the cumulative probability for 

this logically defective controller, which never reaches the 

threshold probability of 80%. 

Example 19. The Robot process in the running example is 

replaced with a version in which the noise h ,v is increased. 

Figure 13(c) shows the cumulative probability for this (overly) 

noisy case, which again never reaches the threshold probability 

of 80% 

Example 20. The PARS environment models need to be able 

to represent objects and obstacles when they are known. Figure 

14 shows a Mixture of Gaussian (MoG) position distribution 

result for a waypoint mission through a narrow doorway and 

corridor. The MoG members are shown as shaded 1 Standard 

Deviation (SD) ellipses, the shading indicating the weight of the 

member.  The smaller clusters to each side of the doorway in 

Figure 14(b,c) indicate the probability of missing the door and 

hitting the wall. The member cluster smeared out in the corridor 

represents the ‘safe’ motion of the robot moving towards its 

 
 


k

j

i

l

lljjkk RRPRVCPRVCP
1 1

1:1 )|()|)(()|)((  

                             )()|)(( 1

1

RFRVCP j
k

j

jj


  

                             ))(( 1

1

RFGF j
k

j




  

(13) 

 
(a)                             (b)                              (c) 

 
Figure 14. Position distribution snapshots for increasing time from 

start (a) through a door (b) and into a corridor (c). 

 Time 

 

         
                (a)                          (b)                           (c) 

 

Figure 12. Three snapshots of the robot position distribution 

for increasing time, from motion start L0 (a) to end L1(c) 
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Figure 13. Cumulative probability of the Goal Condition versus 

DBN iteration step for three examples.         

(a) ‘running example’ 

 
 

 

    (b)   ‘defective controller’ 
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goal. The environment and controller model for this example 

are outside the scope of this paper, but are presented in [27]. 

VII. VALIDATION RESULTS  

It is not sufficient to demonstrate verification results for critical 

applications such as C-WMD robot missions; It is crucial to 

show also that the verification results correspond to the 

behavior of physical robots. In prior work [28], a series of 

measurements on a Pioneer 3-AT robot were conducted, so that 

the robot motion and sensing uncertainty distributions used in 

VIPARS could be calibrated for the Pioneer 3-AT robot on an 

indoor surface. The results of a validation of the performance 

predictions for the two missions described in Section III are 

now presented: first, for a multiple waypoint mission; and 

second, for an autonomous exploration mission. In each case, 

the details of the validation experiment are presented, then the 

PARS mission and VIPARS verification, and then the results 

are compared. Section IV.E describes the translation process 

from MissionLab to PARS; for each of the examples here, this 

procedure was followed manually. 

 

a) Moving up the 

ramp that leads to 

the building entrance 

 b) Entering the 

building through the 

entrance at the 

loading dock 

c) Traveling down 

the long hallway  

   

f) Entering the 

room with potential 

biohazard threat  

e) Moving toward 

the room entrance  

d) Rounding a 

corner  

Figure 15. Snapshots of Pioneer 3-AT carrying out the 

multiple waypoint mission. 

A. Multiple Waypoint Mission 

The multiple waypoint mission was described in Section III.B.1 

and the MissionLab FSA for that mission shown in Figure 3. 

1) Validation Procedure 

The mission was carried out with a Pioneer 3-AT robot 

(Figure 6). The mission area is approximately 6020 meters. 

The robot started at the bottom of the ramp (Figures 2 and 15). 

Following the waypoints, the robot moved up the ramp that 

leads to the loading dock where an entrance to the building is 

located. The robot then entered the building and traveled down 

a hallway (approximately 40 meters in length), which leads to 

the room of interest located at the end of the hallway.  

The performance criterion for the mission is whether the 

robot had gained access to the room of interest (i.e., reached the 

final waypoint, which resides in the room). The mission was 

run 40 times and the numbers of successes and failures were 

recorded. The result is shown in Table 2. No obstacle avoidance 

was active and only dead reckoning was used. Most failures 

observed were due to the robot being stuck at the corner near 

the third waypoint as in Figure 15d. 

Table 2. Validation Result 

# of Runs # of Failures # of Successes P( Success) 

40 12 28 70% 

2) VIPARS Prediction 

The waypoint MissionLab FSA of Section III, Figure 3 is 

translated to PARS as a sequence of behavior processes: 

Missiong1,g2,g3,g4 (p,hi)(v,ho) =  

  Turng1 (p,hi)(ho) ; MoveToVCg1 (p)(v)  ; 

  Turng2 (p,hi)(ho) ; MoveToVCg2 (p)(v)  ; 

  Turng3 (p,hi)(ho) ; MoveToVCg3 (p)(v)  ; 

  Turng4 (p,hi)(ho) ; MoveToVCg4 (p)(v)  ; 

  Turng5 (p,hi)(ho) ; MoveToVCg5 (p)(v)  . 

The mission is five instances of processes that turn the robot 

to face the goal Turng1, and then move the robot towards that 

goal, MoveToVCg1. This information specifies the connections 

for the position input (p), the heading input (hi), the heading 

output (ho) and the velocity output (v).  The system process is 

the parallel, communicating composition of the mission and 

environment processes. The Robot process is that used in 

Example 13 but with the information about heading and 

rotational uncertainty included. The process contains no 

information about walls or laser sensing to detect and respond 

to walls and obstacles and just moves the robot from waypoint 

to waypoint. 

                     Sys =  RobotP0,H0 (c2,c3 )(c1,c4 )  |   

                                   MissionG1,G2,G3,G4 (c1,c4 )(c2,c3 ) 

The capital letter variable values P0, H0, G1,G2 and so forth 

are the initial conditions for the system: the initial position, 

heading, goal locations etc. The port connections c1,...,c4 

connect the position, heading and velocity ports on the mission 

to those in the environment model.  

The performance criterion is the same as that Example 14, 

that the robot reach its final goal location by time T with a 

probability p>Pmin.  The system is analyzed by VIPARS using 

Definition 25, and keeping the subproblems independent as 

described in Note 6. 

VIPARS reported a successful verification for this mission 

with final position distributions (in mm) shown in Table 3. We 

ran VIPARS several times with increasing values of Pmin to 

determine a maximum value Pmax for a successful verification, 

where Pmax was calculated as largest probability threshold Pmin 

(from Def. 28) where the mission still ended before the 

maximum time elapsed Tmax). These are shown as the last 

column in Table 3 and the distribution data for the row is for 

that case. Since a failure could occur at any waypoint and the 

problems are independent, the probability for success is 

calculated as the product of success probabilities at each 

waypoint: Psucc =71.5%. The lowest Pmax was for the third 

waypoint, with Pmax=81%.  
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Table 3. VIPARS Waypoint Distributions. WP# is the waypoint 

number. (x , y ) is the 2D mean position (mm) and  is the 

covariance for each waypoint. Pmax is the largest Pmin before Tmax. 

WP# (x , y )  Pmax 

1 (17468, 23585) [ 2610,         0;        0,8830] 0.91 

2 (17850, 21206) [4675,      286;    286, 9449] 0.99 

3 (59411,21639) [14986,  -608;   -608, 48005] 0.81 

4 (59092,33444) [24717,  -218;   -218, 50625] 0.99 

5 (60422, 39764) [30051,-1048; -1048, 52273] 0.99 

3) Comparison of Predicted and Measured Results 

Experiments show a success probability of 70% for this 

mission, given 40 runs with 12 failures. The predicted success 

rate is (rounding up) 72%. Predictions are statistically 

compared with the validation results using a z-statistic 

proportion test. The null hypothesis is H0: psucc=0.72 and Ha: 

Psucc<0.72. For applicability of the test, its necessary that 

np0=400.72>10. The z-statistic is calculated as z =-0.28, and 

p(Z<-0.28)=0.3897 from the standard distribution tables. Since 

0.05<<0.3897 this (emphatically) fails to reject H0: p=0.72 at 

the 95% confidence level. The waypoint with the lowest Pmax is 

the third waypoint. During validation it was observed that it was 

at this waypoint experimental trials most frequently had 

failures. A mission designer could leverage this information 

from verification, for example, to modify the motion behavior 

for the third waypoint to improve the probability of success for 

the overall mission.  

B. Autonomous Exploration Mission 

The autonomous exploration mission was described in Section 

III.B.2 and the MissionLab mission FSA shown in Figure 5. 

1) Validation 

For the Biohazard Search mission, the operating environment 

of the robot is a room of dimension approx. 1012 meters, 

Figure 4. The room is covered with tile flooring and is well lit 

by florescent lights. The major area of the room is empty except 

some items along the walls (e.g., cabinets, storage crates). 

The Pioneer 3-AT has a laser scanner for obstacle avoidance 

and a forward-facing camera for biohazard detection. The 

camera has a field of view of 39.6 degrees. The biohazard is 

represented by a red biohazard bucket, Figure 4. The color of 

the biohazard bucket is used for biohazard detection. 

Table 4. Validation Result 

Mission # Trials # Successes Performance 

Biohazard 

Search 
106 88 83.0 % 

The complete validation experiment consists of 106 trial runs 

of the Biohazard Search mission. The location of the biohazard 

was uniformly distributed with respect to the room, requiring a 

total of 106 trials. For each trial, the robot starts at the entrance 

of the room and proceeds to search the room with the control 

program described in Figure 5. Each trial is completed when the 

robot locates the biohazard. Mission success is defined by the 

performance criteria. For this mission, the criterion is that the 

robot needs to find the biohazard in 60 seconds. The time it 

takes for the robot to locate the biohazard is recorded for each 

trial. Table 4 shows result of the validation experiment. 

2) VIPARS Prediction 

The PARS representation of the Biohazard Search mission is: 

Mission = NotDetected ; (Detected # Wander) | 
Detected ; (Near # MoveToward)    |  
Near ; Stop 

The Mission process consists of trigger processes, such as 

Detected and Near, and behavior processes such as Wander and 
MoveToward. Some are implemented as basic processes and 

others as PARS networks, to replicate the equivalent 

MissionLab behaviors, as discussed previously in Section IV.E. 

Different missions have different requirements that the robot 

has to meet. For the Biohazard Search mission, we are 

interested in time performance, successful detection of 

biohazard, and correct identification of the biohazard. These 

performance criteria are expressed in PARS as a performance 

specification network based on eq. (3): 

        Q = Delayt ; ( Atp | Biohazardq ) 

for some t<Tmax , P(| p – q |<)>Pmin   

The Biohazardp process indicates the location of the 

biohazard. Verification asks whether the mission will achieve 

this liveness condition for t<Tmax with at least probability Pmin.  

The robot model used in this verification is the same as for 

the previous. However, additional sensor and environment 

modelling is necessary.The sensor models are separated from 

the robot model for modularity; the same robot platform can be 

equipped with different external sensors. For this mission, the 

Pioneer 3-AT robot is equipped with a camera for biohazard 

detection and a SICK laser scanner for obstacle avoidance. The 

sensor model is a composite model of these sensors, which can 

be expressed in PARS as:   

Sensors = ( Camera | Laser ) 
Camera = (Inpr | Incsc ) ; Outcs, fc(r,c) ; Camera 

Laser = (Inpr | Inwssp) ; Outls, fl(ws,sp) ; Laser 

The structure of the sensor models are similar. They accept data 

from an environment model including the robot position (r), 

carrry out a sensor specific model function (fc for the camera 

model and fl for the laser model) on that data and make it 

available on a port which the Mission process can read.  

The fundamental problem for the verification of robot 

behavior is the interaction between the robot and the 

environment. Undesirable robot behaviors might emerge 

through this interaction which might not have been foreseen by 

the robot programmer/operator. The targeted environment for 

the Biohazard Search mission is an indoor environment, Figure 

4. The PARS model of the environment is: 

Envg,b,ws = (Outps,ws # Outcs,b #  

  Inpr  # Biohazardb ) ; 

     (Insideg,rfs |  

       Outsideg,rws )  ;   Envg,b,ws 

Random variable values, such as the robot position (r) and the 

location of the biohazard (b) are represented as Gaussian 

Mixtures [27]. Where r is calculated by the Robot process, b is 

a constant that expresses what is known about the biohazard 

location: in this case, it’s a uniform distribution within the 
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room, which is directed to the camera sensor. The variable value 

g captures what is known about the room, which in this case is 

that it’s an empty rectangle. There are no obstacles in this room; 

the problem being addressed is whether this controller, using a 

wander behavior will find its target within the time limit with a 

sufficiently high probability given the sensor and actuator 

probabilities.  The Env process tests the robot position 

probability distribution and separates it into two mixtures: one 

representing the portion of the distribution that is inside the 

room (fs), and one that represents the portion that would collide 

with the room walls (ws) which is channeled to the sensors. 

The PARS models of the control program, robot, sensors, and 

the environment form the System process Sys, which is the 

parallel, communicating network (dropping port connection 

labels for better clarity): 

Sys = Mission | (Env | Robot | Sensors) 

The Sys process is then analyzed by VIPARS to determine if it 

satisfies all the constraints specified by the property 

specification process network (i.e., the Q process). 

3) Comparison of Verification and Validation Results 

Verification of the Biohazard Search mission predicted an 85% 

mission success probability, while the validation experiments 

showed an actual robot succeeds 83% of the time based on 106 

trials with 18 failures. Validation and verification results are 

compared using a z-statistic proportion test to determine if any 

statistical significant difference exists between these results. 

The null hypothesis is H0: psucc=0.85, and the alternative 

hypothesis is Ha: Psucc<0.85. The z-statistic is z = -0.58, which 

resulted in P(Z<-0.58)= 0.28 from the standard distribution 

table. Since 0.28>0.05, this fails to find any statistically 

significant difference between the verifier’s performance 

prediction and the actual performance from the validation 

experiments. It is safe to conclude that the VIPARS’ 

performance guarantee, the 85% probability of mission success 

with respect to the performance criteria for the Biohazard 

Search mission, is a valid prediction. 

VIII. CONCLUSIONS 

A novel approach to verification of performance guarantees 

for behavior-based robot programs was proposed in this paper. 

The approach differs from prior work in its avoidance of the 

concept of state via the use of a process algebra framework. The 

general case of software verification runs afoul of the halting 

problem. To address this fundamental limitation, most work 

therefore focuses on specific cases; this paper focused on a 

process algebra structure that captures behavior-based 

programming well: parallel interacting systems of tail recursive 

(TR) processes. TR processes have the useful feature that they 

easily allow the construction of recurrent flow-functions that 

capture how the TR processes transform variable values on each 

recursive step. The SysGen algorithm constructs a single system 

period process from the bodies of each component process, if 

one exists. The algorithm, FloGen that extracts the flow-

function for the system period process by following and 

resolving communications over port connections between the 

processes in the system period process, was also presented. 

This approach was developed to work with MissionLab so 

that the verification process could be completely automatic. 

This could be done because TR processes can be generated 

directly from the MissionLab behavior-based robot programs. 

We argue that other behavior-based robot programming 

approaches will also transfer fairly easily to the TR process 

representation, but other robot programing approaches and 

general purpose programs may not be as easy to map. 

Furthermore, MissionLab can generate software for a variety of 

robot software architectures. 

To model uncertainty, which is a sine qua non for realistic 

robot results, the process algebra is extended to allow processes 

to have random variables. It is shown that the system flow 

function in this case can be mapped to a Dynamic Bayesian 

Network (DBN). The verification problem can then be recast as 

a DBN filtering problem.  

Prior work [28] using the method described here reported a 

validation of one and two move missions for a Pioneer 3-AT 

robot in indoor conditions at various velocities. The results 

show strong statistical evidence of the predictive power of the 

approach. In this article, that validation is extended to a multiple 

waypoint mission and an autonomous exploration mission. 

Empirical testing of the multiple waypoint mission yielded a 

70% success probability. The VIPARS prediction was 72%. 

The environmental model used in VIPARS for this example did 

not include walls or wall sensing. The second example, an 

autonomous exploration mission, did include these features as 

well as a more flexible control strategy. Empirical testing 

yielded an 83% success probability. The VIPARS prediction 

was 85%. Both experiments yielded statistically strong results. 

There are two important extensions of this work in progress: 

dealing with multiple robots and dealing with environments that 

include obstacles. Although a C-WMD mission might involve 

single robot missions, multiple robot missions are also 

important. A crucial next stage in this work is to determine if it 

is effective for multi-agent as well as single-agent scenarios. 

Although Example 20 (Figure 14) showed interaction with 

obstacles/walls, the verification missions presented here did not 

include this work. Future missions will include environments 

that have uncertainty related to obstacle locations and terrain 

features as well as sensor and actuator uncertainty.  
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Appendix I: Computational Complexity of SysGen. 

Let np be the number of processes in the system. Let each process have 

at most nio port communication operations. Let the communication 

map, cm, specify which ports are connected to which other ports. This 

map must obey the following constraints: 

1. Input ports are connected only to output ports, and output ports 

are connected only to input ports.  

2. Each port is connected to at least one other port in the system, 

with the worst-case fan-in or fan-out of connections being kf. 

3. No port is connected to another on the same process. 

A port is considered ready to communicate only when during the 

execution of the process, an In or Out process is using the port for 

communication. cm and the system of processes are constrained for 

complexity reasons so that if a port is ready to communicate, then 

either 

 at most one of its kf connected ports is also ready, or 

 it makes no difference to the computation which of the kf 

connected ports receives the communication. 

Without this constraint, all potential connected ports have to be 

checked, and backtracking may be necessary if a candidate connected 

port eventually results in a deadlock. This branching search introduces 

exponential complexity. However, introducing the constraint does not 

significantly restrict what can be represented: it just means that if, for 

example, the Robot process sends position information to a Laser and 

a Camera process, it does so in sequence (second bullet item above). 

There are np* nio communication operations in the system of 

processes. When a communication operation is ready, there is one, and 

at most one, other port with which it communicates. If that port is not 

ready to communicate, then SysGen identifies it. Otherwise, SysGen 

completes the system period process after making (np* nio)/2 

connections. Since each port could have kf possible partners, the worst 

case complexity is 

 kf *(np* nio)/2.                                  (A1) 

 Notice that disabling (parallel-min) and parallel (parallel-max) 

compositions of communication operations y simply add choices for 

each of the (np* nio)/2 connections, but with kf  still being the maximum 

number of choices. 
 

Appendix II: Computational Complexity of Flogen. 

The complexity of FloGen depends on the number of component 

processes, np,  and the number of variables of each, nv, since each 

variable will generate one flow function. If there are nio 

communication operations in each process, then in the worst case, each 

variable will be involved in every communication, and each 

communication will go through all np  processes for substitutions. That 

will require  

nv*np*nio                                           (A2) 

substitutions in total in this worst case. 


