an investigation of thi practicability
OF TUNED FGRDULUK TYFE VIBRATION ABSORBEES
FOR USE ON ROTARY WING AIPCRAFT
e 1
a THMSIS
Presented to
the Faculty of the Division of Graduate Studies Georgia School of Technology
In Partial Fulfillmentof the Requirements for the Degree
Master of Science in Aeronautical Mngineering
by
Robin Bryant GrayJune 1947

AN INVESTIGATION OF THE PRACTICABILITY

OF TUNED TYPE PENDULUM VIBRATION ABSORBERS

 FOR USE ON ROTARY WING AIRCRAFT
Approved:

Date Approved by Chairman gene

AOKIO WLEDSMENTS

Upon completion of this paper, the author wishes to express his sincerest appreciation to Professor Walter Casties, Jr., both for his suggestion of the thesis topic and for his most valuable aid and guidance in its prosecution.

TABLE OF CONTENTS

PAGE
Acknowledsment ii
Preface: Meaning of Symbola Used ∇i
Summary 1
FAFT I. Tuning and Amplitude Fquations. 2
PAPT II. Alteranting Forces to be Absorbed 13
PAFT III. Design of Pendulum Absorberg. 18
Conclusions 27
HRFRTENCES 28
AFPENDIX 29

LIST OP FIGURES

FIGURE PAGE
(1) Peniulum Thrust Absorber 4
(2) Pendulum Toroue Absorber. 9
(3) Chart for Tuning Thrust Absorber. 31
(4) Chart for Determination of Amplitude of
Thrust Absorber 32
(5) Chart for Tuning Torque Absorber. 33
(6) Chart for Determination of Amplitude of
Torque Absorber. 34

Preface

Meaning of Symbols Used

$\mathrm{g}=32.2 \mathrm{ft} / \mathrm{sec} / \mathrm{sec}$, acceleration of gravity
$\mathrm{KE}=$ Kinetic Energy
$\mathrm{m}=$ hass per unit length of pendulura arm
$M=$ lass of pendulum bob (assumed to approximete point mass)
$m=$ Kass of whole ship, including penduluns
$p=n \Omega$ where $n=$ order of harmonic beinc considered
Q = Generalized force
$\mathrm{t}=$ Time
$X=$ Axis along axis of pendulum hinge offset arm
$Y=$ Aris perpendicular to X and Z
$Z=A x i s$ along Axis of drive shaft
$t=A n g l e ~ o f ~ X-a x i s$ from down wind direction, measured positive in direction of rotation
$\psi_{i}=$ Fhase angle of harmonic forces
$\Omega=$ Rate of angular rotation of drive shaft = constant (average)

Thrust Pendulum:

$a=$ Iength of pendulum pivot offset from cirive shaft axis
$b=$ length of pendulum arm
$k_{\alpha}=$ Gravity monent of pendulun about hinge/ $\boldsymbol{\alpha}_{\text {static }}$
$N_{0}=$ Amplituade of thrust unbalance

```
\delta Assumed deflection of whole ship uncer vibration
\sigma}=\mp@code{Amplitude of vibration of whole ship
\alpha= Angle of flep of pendulum absorber measured from \alphasiatc;
    positive domnwards
\alpha}= Lleximum ancle of flep
\alphasr= Angle of flem ot which centrifugal force of pendulum absorber
    balances gravity moment of pendulum arm and bob
```

Foraue Fendulum:
$c=$ Lensth of pendulum pivot offset from drive shaft axis
d $=$ Length of pendulum erm
$I_{R}=$ Joment of inertia of one blade about Z axis
$\mathbb{K}_{L}=$ Assumed spring constant brought into action by assumed existonce of ancle of rotation β
$L_{0}=$ Anplituae of torque unoalance
$\beta=A s s u m e c$ ancie of rotation between rotor blade and X axis
$\beta_{0}=$ Laximum angle of rotation between rotor blade and X axis
$\gamma_{1}=$ Angle between α and line through c.s. of pendulum bod and Z axis in plane of rotation
$\gamma_{2}=$ Ancle between d and line through c.g. of pendulum arm and
2 axis in plane of rotation
$\phi=$ Ancle ot leg of torove pendulun absorber, posivive in
direction of rotation, Ω, measured from X axis
$\phi_{0}=$ Maximum ancrle of lage

Alternating Forces:

```
a}=\mp@code{Slope of lift curve of blade airfoll section
CDO
c
ct}=\mathrm{ Blade tip chord
CQ = Torque coefficient = average torque/\rho\pi \Omega
```



```
L = Harmonic instantaneous torque
N = Harmonic instantaneous thrust
R = Blade radius
R}=\mathrm{ Blade taper ratio
T = Average thrust
V = Forward velocity, ft/sec.
Vi
W = Longitudinal induced velocity variation par*meter
W=Gross weight of ship
z = 斯 - - 1
0 = Blade angle of incidence, radians
\epsilon = Profile drag polar constant
\lambda}=\mp@subsup{v}{i}{}/\Omega\mathrm{ & for particular ship considered
\mu = V/\Omega\Omega for particular ship considered
\mp@subsup{\sigma}{t}{}}=\mathrm{ Rotor Solidity = ctel/r R (one rotor)
X = Ultimate angle of rotor slipstream downwash
\psi= Azimuth angle of bledes, measured from downwind position in
        direction of rotation
\Omega= Angular rotation of blades (average)
```

AN INVESTIGATION OF THE PRACTICABII,ITY
OF TURB PEMDULIN TYPS VIBRATICN ABSOBBERS
FOR USE ON HDTARY WING AIRCRAFTT

SUMMARY

The tuning and amplitude equations derived herein for undamped pendulum type vibration absorbers may be applied, with slight modificetions, eoually well to any type of rotary wing aircraft to absorb the respective karmonic unbalanced forces and moments. Four assumptions were made that effect the derivations. One is that the angles involved are small enough so that the sine of the angle is equal to the angle itself, and the cosine equals one. The second is that the concentrated mass of the absorber approximates a point mass. The third is that the system is completely rigid, and the fourth is that the ship itself is in unaccelerated flight. These assumptions are involved in the design of the absorber itself, so that the degree of accuracy attained is dependent on the designer and the practical aspects of the problem to be solved.

The equations derived herein are limited to the case of forward filght at a constant velocity only. Conditions involving roll, pitch, or a combination of the t wo, and accelerated flight conditions are beyond the scope of this investigation.

A practical application is included in the paper, following the derivations. A first and second harmonic thrust absorler and a first
harmonic torque absorber are designed to indicate a method of attacking a problem for a ship having counterrotating, single bladed, counterweighted rotors without cyclic pitch thrust equalization. No experimental results are included, as none were available at the time of writing.

Kethods of mounting the absorbers, the incorporation of centrifugal unloading devices which free the absorbers when the rotors reach operating speed, and position of pendulum stops are not treated in this paper.

PAFIC I. Tuning and Amplitude Equations.

Consider the system composed of the rotor blades and the pendulum vibration absorbers, rotating about the axis of the drive shaft, Z, with a constant angular velocity. Superposed on this rotation are forcing torques of the form, $I_{i}=L_{j o} \cos \left(p t-t_{i}\right)$, and forced vibrations of tine form. $\mathbb{N}_{1}=\mathbb{N}_{10} \cos \left(p t-\downarrow_{N}\right)$. The former is due to the variation of the forces on the rotors in the plane of rotation, and the latter, to the veriation of forces on the rotors in a direction perpendicular to the plane of rotation, acting along the axis of rotation.

Due to the placing of the vibration absorvers on the shaft, very nearly in the rotor plane of rotetion, the vibrating forces for winch the absorbers are tuned will not be transmitted throush the shaft to the ship itself. However, for analytical purposes, assune that the forced Vibration, N_{j}, acting along the shaft causes the whole ship of mass m. to vibrate with a veriical amplitude, δ_{0}, causing its correspondingly
t uned pendulum absorber to vibrate at an angle α. Assume that the forcing torque, L_{i}, causes the rotors to cyclically rotate at an angle β with respect to a line through the pivots of the torsional vioration absorbers rotating at the average rotor angular velocity, causing these absorbers to swing at an angle ϕ from their mean position.

The equations of motion are derived by the use of the LaGrange equations considering the relative motion of the system with respect to the uniformly rotating coordinete system, Ω. This method of arriving at the equations of motion of a moving system is covered in references (2), (3), (4), (5), and (7).

The system is assumed rigid enough so that no bending deflections occur.
A. Thrust ainsorber, single degree of freedom, flapping hinge only.

From figure 1, page 4, the coordinates of 4 are:

$$
\begin{aligned}
& x_{m}=a+b \cos \left(\alpha+\alpha_{s 1}\right) \\
& y_{m}=0 \\
& z_{m}=\delta+b \sin \left(\alpha+\alpha_{s 1}\right)
\end{aligned}
$$

differentiating with respect to time, t, yields

$$
\begin{aligned}
& \dot{x}_{m}=-b \dot{\alpha} \sin \left(\alpha+\alpha_{s 7}\right) \\
& \dot{z}_{\mu}=\dot{\delta}+b \dot{\alpha} \cos \left(\alpha+\alpha_{57}\right)
\end{aligned}
$$

Also from figure 1 , the coordinates of mb are:

$$
\begin{aligned}
& x_{m}=a+(b / 2) \cos \left(\alpha+\alpha_{s r}\right) \\
& y_{m}=0 \\
& z_{m}=\delta+(b / 2) \sin \left(\alpha+\alpha_{s r}\right)
\end{aligned}
$$

(a) Position of absorbers on irive shaft.

(b) Schematic diagram of absorber.

> FIGUEE 1. Fendulum Thrust Absorber.
differentiating with respect to time, t, yields

$$
\begin{aligned}
& \dot{x}_{m}=-(b / 2) \sin \left(\alpha+\alpha_{s T}\right) \dot{\alpha} \\
& \dot{z}_{m}=\dot{\delta}+(b / 2) \cos \left(\alpha+\alpha_{s t}\right) \dot{\alpha}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \nabla_{m}^{2}=\dot{x}_{m}^{d}+\dot{y}_{m}^{2}+\dot{z}_{m}^{a}=b^{2} \dot{\alpha^{2}}+\dot{g}^{2}+2 b \dot{\delta} \dot{\alpha} \cos \left(\alpha+\alpha_{s T}\right) \\
& \nabla_{m}^{2}=\dot{x}_{m}^{u}+\dot{y}_{m}^{a}+\dot{z}_{m}^{2}=(b / 2)^{2} \dot{\alpha}^{2}+\dot{\delta}^{2}+\dot{d} \dot{\delta} \dot{\alpha} \cos \left(\alpha+\alpha_{s T}\right)
\end{aligned}
$$

The Kinetic Energy of the system is then

$$
\begin{align*}
\mathrm{KE}= & (1 / 2) \dot{M}\left[b^{2} \dot{\alpha}^{2}+\dot{\delta}{ }^{2}+2 b \dot{\delta} \dot{\alpha} \cos \left(\alpha+\alpha_{s 1}\right)\right]+(1 / 2) m b\left[(b / 2) \dot{\alpha}^{2}+\dot{\delta}^{2}\right. \\
& \left.+b \dot{\delta} \dot{\alpha} \cos \left(\alpha+\alpha_{s 1}\right)\right]+(2 / 2) \operatorname{man}_{n}^{2} \dot{\alpha}^{a}+(1 / 2) m^{2} b b^{2} \dot{\alpha}^{2} / 12 \\
& +(1 / 2)\left[m-(k+m b) \dot{\delta}^{2} .\right. \tag{1-A}
\end{align*}
$$

The LaGrange eouation of motion takes the form

$$
\frac{d}{d t}\left[\frac{\partial(K E)}{\partial \dot{q}_{i}}\right]-\frac{\partial(K E)}{\partial q_{i}}=Q_{i}
$$

The generalized force with respect to δ is the undesirable force that is to be absorbed and is of the form

$$
\begin{equation*}
Q_{\delta}=N_{0} \cos \left(p t-\psi_{N}\right) . \tag{2-A}
\end{equation*}
$$

where $p=n \Omega$ and ${ }^{1} n^{\prime}$ represents the order of the harmonic force to be absorbed.

The generalized force with respect to α is considered as an effective spring constant times the deflection angle, α, of the pendulum.

$$
\theta_{\alpha}=-K_{\alpha} \alpha
$$

and K_{α} is defined as

$$
\mathrm{K}_{\alpha}=\frac{\text { Gravity moment of pendulum weight about hinge }}{\alpha_{\text {sintic }}}
$$

and $\alpha_{\text {snac }}$ is defined as the angle of deflection at which the centrifugal restoring moment about the hinge line is equivalent to that of the gravity moment.

$$
\begin{gathered}
{\left[(\mu+(1 / 2) m b] b g=M\left[a+b \cos \alpha_{s y}\right] \Omega^{a} b s \ln \alpha_{s t}+m b\left[a+(b / 2) \cos \alpha_{s t}\right] \Omega^{2}(b / 2) \sin \alpha_{s r}\right.} \\
+(1 / 12) m b \Omega 2_{b}{ }^{2} \cos \alpha_{s r} \sin \alpha_{s r} .
\end{gathered}
$$

where the first two terms on the risht represent the centrifugal torque about the hinge axis of the pendulum bob and pendulum arm respectively due to their rotation about the shaft. The third term represents the centrifupal couple due to rotation of the arm about an axis parallel to the shaft and through its center of gravity tending to move the arm into a plane perpendicular to the axis of rotation. The centrifugal force due to rotation about the hinge axis has no effect as its line of action passes through the hinge axis. Now assuming α_{ϕ}, small so that $\cos \alpha_{s T}^{\prime}=1 ; \sin \alpha_{s \bar{T}} \alpha_{s T}$ and solving for $\alpha_{\text {sTATIG }}$
and \mathbb{K}_{α} then becomes

$$
\mathbb{K}_{\alpha}=\frac{\left.g\left[\frac{M}{}+(1 / 2) \mathrm{mb}\right]\left[\frac{M}{4}+(1 / 2) \mathrm{mb}\right] \mathrm{a}+[\mathrm{M}+(1 / 3) \mathrm{mb}] \mathrm{b}\right] \Omega^{a} \mathrm{~b}}{[M+(1 / 2) \mathrm{mb}] g}
$$

For which the generalized force with respect to α becomes

$$
\begin{equation*}
Q=-\{[4+(1 / 2) m b] a+[44+(1 / 3) m b] b\} \Omega^{2} b \alpha \tag{3-A}
\end{equation*}
$$

Assuming small oscillations, i.e. $\cos \left(\alpha+\alpha_{s r}\right)=1 ; \sin \left(\alpha+\alpha_{s r}\right)=\alpha+\alpha_{s r}$
and that the pendulum bob mass approximates a point mass, the Kinetic Energy equation is

$$
\begin{equation*}
K\left[=(1 / 2)[M+(1 / 3) m b] b^{2} \dot{\alpha}^{2}+(1 / 2) m \dot{\delta}^{2}+[M+(1 / 2) m b] b \dot{\varepsilon} \dot{\alpha}\right. \tag{4-A}
\end{equation*}
$$

Applying LaGrange's equation for the coordinates δ and α gives respectively:

$$
\begin{align*}
& m \ddot{\delta}+[M+(1 / 2) m b] b \ddot{\alpha}=N_{0} \cos \left(p t-t_{N}\right) . \tag{5-A}\\
& {[M+(1 / 3) m b] b^{2} \ddot{\alpha}+[M+(1 / 2) m b] b \ddot{\delta}=} \\
& \\
& \quad-\{[M+(1 / 2) m b] a+[M+(1 / 3) \mathrm{mb}] \mathrm{b}\} \Omega^{2} \mathrm{~b} \alpha
\end{align*}
$$

Assuming no domping, the variation of α and δ will be of the form:

$$
\begin{aligned}
\alpha & =\alpha_{0} \cos \left(p t-\psi_{N}\right) \\
\delta & =\delta_{0} \cos \left(p t-\psi_{N}\right)
\end{aligned}
$$

Substituting in equations (5-A) and (6-A) give

$$
\begin{gather*}
-m \delta_{0} p^{2} \cos \left(p t-y_{N}\right)-[M+(1 / 2) m b] b \alpha_{0} p^{2} \cos \left(p t-\psi_{N}\right)= \\
N_{0} \cos \left(p t-y_{N}\right) \quad(7-A) \tag{7-A}\\
-[M+(1 / 3) m b] b \alpha_{0} p^{2} \cos \left(p t-\psi_{N}\right)-[M+(1 / 2) m b] \delta_{0} p^{2} \cos \left(p t-\psi_{N}\right)= \\
-\Omega^{2}\left[M+(1 / 2)_{m b}\right] a+[M+(1 / 3) m b] b \propto_{0} \cos \left(p t-t_{N}\right) \tag{8-A}
\end{gather*}
$$

Solving equations $(7-A)$ and $(B-A)$ for α_{θ} and δ_{0}

If the ship does not vibrate, $\delta_{o m u s t ~ e q u a l ~ z e r o . ~ T h e r e f o r e ~}^{\text {o }}$

$$
[M+(1 / 3) m b] b p^{2}-\{[M+(1 / 2) m b] a+[M+(1 / 3) m b] b\} \Omega^{2}=0
$$

The tuning equation then becomes, solving for 'p'

$$
\begin{equation*}
p=\Omega\left\{\frac{[w+(1 / 2) m b] a+[m+(1 / 3) m b] b}{[m+(1 / 3) m b] b}\right\}^{\frac{1}{2}} \tag{A}
\end{equation*}
$$

The amplitude equation becomes

$$
\begin{equation*}
\alpha_{0}=\frac{-N_{0}}{[3 i+(1 / 2) m b] b p^{2}} \tag{12~A}
\end{equation*}
$$

where α is measured from $\alpha_{\text {static }}$
B. Torque absorber, single degree of freedom, lag hinge only.

From figure 2, page 9 , the coordinates of M are:

$$
\begin{aligned}
& x_{n}=c \cos \beta+d \cos (\beta+\phi) \\
& y_{\mu}=c \sin \beta+d \sin (\beta+\phi) \\
& x_{M}=0
\end{aligned}
$$

differentiating with respect to time, t, yields

$$
\begin{aligned}
& \dot{x}_{m}=-c \dot{\beta} \sin \beta-d(\dot{\beta}+\dot{\phi}) \sin (\beta+\phi) \\
& \dot{y}_{m}=c \dot{\beta} \cos \beta+d(\dot{\beta}+\dot{\phi}) \cos (\beta+\phi)
\end{aligned}
$$

Also from figure 2, the coordinates of md are

$$
\begin{aligned}
& x_{m}=c \cos \beta+(\alpha / 2) \cos (\beta+\phi) \\
& \mathbf{y}_{m}=c \sin \beta+(\alpha / 2) \sin (\beta+\phi)
\end{aligned}
$$

(a) Position of absurbers on drive shaft,

Fisuza 2. Pendulum Toroue Absorber.
differentiating with respect to time, t, fields*

$$
\begin{aligned}
& \dot{x}_{m}=-c \dot{\beta} \sin \beta-(\alpha / 2)(\dot{\beta}+\dot{\phi}) \sin (\beta+\phi) \\
& \dot{y}_{m}=c \dot{\beta} \cos \beta+(d / 2)(\dot{\beta}+\dot{\phi}) \cos (\beta+\phi)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \nabla_{n}^{2}=\dot{x}_{m}^{a}+\dot{y}_{n}^{q}=c^{a} \dot{\beta}^{a}+d^{2}(\dot{\beta}+\dot{\beta})^{a}+2 c d \dot{\beta}(\dot{\beta}+\dot{\phi}) \cos \phi \\
& \nabla_{n}^{2}=\dot{x}_{m}^{2}+\dot{y}_{m}^{a}=c^{2} \dot{\beta}^{2}+(d / 2)^{2}(\dot{\beta}+\dot{\phi})^{2}+\operatorname{cd} \dot{\beta}(\dot{\beta}+\dot{\phi}) \cos \phi
\end{aligned}
$$

The Kinetic Energy of the system is

$$
\begin{align*}
\mathrm{KE}= & (1 / 2) M\left[c^{2} \dot{\beta}^{2}+d^{2}(\dot{\beta}+\dot{\phi})^{2}+2 c \operatorname{cod}^{\dot{\beta}}(\dot{\beta}+\dot{\phi}) \cos \dot{\phi}\right] \\
& +(1 / 2) \operatorname{md}\left[c^{2} \dot{\beta}^{2}+(d / 2)^{2}(\dot{\beta}+\dot{\phi})^{2}+\operatorname{cd} \dot{\beta}(\dot{\beta}+\dot{\phi}) \cos \phi\right] \\
& +(1 / 2) \operatorname{mem}_{M}^{2}(\dot{\beta}+\dot{\phi})^{2}+(1 / 2) \operatorname{mdd}^{\dot{\alpha}}(\dot{\beta}+\dot{\phi})^{2} / 12+(1 / 2) \mathrm{I}_{\mathrm{R}^{2}} \dot{\beta}^{2} \tag{1-B}
\end{align*}
$$

The LaGrange equation of motion takes the form

$$
\frac{\partial}{d t}\left[\frac{\partial(X E)}{\partial \dot{\dot{\phi}}_{i}}\right]-\frac{\partial(K E)}{\partial \dot{q}_{i}}=a_{i} .
$$

The generalized force with respect to β is

$$
\begin{equation*}
Q_{\beta}=L_{0} \cos \left(p t-\psi_{L}\right)-K_{L} \beta \tag{2-B}
\end{equation*}
$$

The generalized force with respect to ϕ is composed of a centrifugal restoring torque and a Coriolis torque due to the conservation of ancular momentum, both torques acting about the hinge axis. From figure 2, page 9

$$
\text { Centrifugal toroue }=M \Omega \overline{\mathrm{OA}} \mathrm{~d} \sin \gamma_{1}+m \Omega^{2} \overline{\mathrm{OB}}(\mathrm{~d} / 2) \sin \gamma_{2}
$$

$$
\sin \gamma_{1}=\frac{\varepsilon \sin \phi}{O A} \quad \text { and } \quad \sin \gamma_{2}=\frac{c \sin \phi}{O B} .
$$

Then

$$
\text { Centrifugal torque }=M \Omega^{2} \operatorname{cd} \sin \phi+(1 / 2) \operatorname{md} \Omega^{2} \operatorname{cd} \sin \phi \quad \text {. }
$$

and the

$$
\text { foriolis Torque }=24 \Omega d^{2} \dot{\phi} \sin \phi+2 m d \Omega(d / 2)^{2} \dot{\phi} \sin \phi .
$$

The generalized force with respect to ϕ is then

$$
\begin{equation*}
Q_{\phi}=-[M+(1 / 2) \operatorname{md}]\left[\Omega^{z} c d-2 \Omega d^{2} \phi\right] \sin \phi \tag{3-B}
\end{equation*}
$$

Assuming small oscillations, ice. $\cos \phi=1 ; \sin \phi=\phi$, and that the pendulum bob approximates a point mass, equations (1-B) and (3-B) become

$$
\begin{align*}
K E= & (1 / 2) M\left[c^{2} \dot{\beta}{ }^{2}+d^{2}(\dot{\beta}+\dot{\phi})^{2}+2 c d \dot{\beta}(\dot{\beta}+\dot{\phi})\right] \\
& +(1 / 2) \operatorname{md}\left[c^{2} \dot{\beta}^{2}+(d / 2)^{2}(\dot{\beta}+\dot{\phi})^{z}+\operatorname{cd} \dot{\beta}(\dot{\beta}+\dot{\phi})\right] \\
& +(1 / 24) \operatorname{mdd}^{2}(\dot{\beta}+\dot{\phi})^{2}+(1 / 2) I_{R} \dot{\beta}^{2} \tag{4-B}\\
Q_{\phi}= & -[M+(1 / 2) \operatorname{md}]\left[\Omega^{2} c d-2 \Omega d^{2} \dot{\phi}\right] \phi \tag{5-B}
\end{align*}
$$

Applying LaGrange's equation for the coordinates β and ϕ gives respectively

$$
\begin{align*}
& \left\{I_{R^{2}} M\left[c^{2}+d^{d}+2 c d\right]+m d\left[c^{2}+(1 / 3) d^{d}+c d\right]\right] \ddot{\beta}+\left\{M\left[d^{2}+c d\right]+\operatorname{md}\left[(1 / 3) d^{\dot{d}}+(1 / 2) c d\right]\right\} \ddot{\phi} \\
& =I_{0} \cos \left(n t-\psi_{L}\right)-K_{L} \beta \tag{6-B}\\
& \left\{M[d+c]+m d[(1 / 3) d+(1 / 2) d] \dddot{\beta}+\left[M d+(1 / 3) m d{ }^{2}\right] \ddot{\phi}\right. \\
& =-[M+(1 / 2) m a]\left[\Omega^{2} c \phi-2 \Omega d \dot{\phi} \phi\right] \tag{7-B}
\end{align*}
$$

Assuming no damping, the variation of β and ϕ will be of the form:

$$
\begin{aligned}
& \beta=\beta_{0} \cos \left(p t-\psi_{L}\right) \\
& \phi=\phi_{0} \cos \left(p t-\psi_{L}\right)
\end{aligned}
$$

Substituting in equations ($6-B$) and ($7-B$) gives:

$$
\begin{align*}
& \left.-\left\{I_{H^{+}} M\left[c^{2}+\mathrm{d}^{2}+2 \mathrm{c} d\right]+m \mathrm{~m}^{2}+(1 / 3) \mathrm{d}^{2}+c \mathrm{c}\right\}\right\} \beta_{0} \mathrm{p}^{2} \cos \left(\mathrm{pt}-\psi_{4}\right) \\
& -\left\{M\left[\mathrm{~d}^{2}+c \mathrm{~d}\right]+m d\left[(1 / 3) \mathrm{d}^{2}+(1 / 2) c d\right]\right\} \phi_{0} \mathrm{p}^{2} \cos \left(\mathrm{pt}-\psi_{0}\right) \\
& =L_{0} \cos \left(p t-\gamma_{L}\right)-K_{L} \beta_{0} \cos \left(p t-\psi_{L}\right) \tag{8-B}
\end{align*}
$$

$$
\begin{aligned}
& -\left\{M[d+c]+\operatorname{md}[(1 / 3) d+(1 / 2) c] \beta_{o^{2}}{ }^{2} \cos \left(p t-t_{1}\right)\right. \\
& -\left\{\operatorname{Md}+(1 / 3) m d^{2}\right\} \phi_{o} p^{2} \cos \left(p t-t_{L}\right) \\
& =-[\Omega+(1 / 2) \operatorname{md}]\left[\Omega{ }^{2} \mathrm{c} \phi_{0} \cos \left(\mathrm{pt}-\chi_{L}\right)+2 \Omega \mathrm{p} \phi_{0}^{2} \sin \left(\mathrm{pt}-\boldsymbol{f}_{L}\right) \cos \left(\mathrm{pt}-\gamma_{1}\right) \mathrm{d}\right]
\end{aligned}
$$

Neglecting the coriolis torque for smell arcs, equations ($8-B$) and ($9-B$) may be solved for β_{0} and ϕ_{0}. Then

$$
\begin{equation*}
-n \rightarrow-\{\mathbb{L}[a+c]+m d[(1 / 3) d+(1 / 2) c]\}^{2} d p^{n} \tag{10-B}
\end{equation*}
$$

$$
\begin{equation*}
-\infty=\frac{-M[\mathrm{~d}+\mathrm{c}]+\operatorname{ma}[(1 / 3) \alpha+(1 / 2) c]\}^{2} \mathrm{dp}}{}{ }^{4} \tag{11-B}
\end{equation*}
$$

If there is no torsional vibration, β_{0} must equal zero. Therefore

$$
[M+(1 / 2) m d] \Omega^{2} c-\left[M \alpha+(1 / 3) m d^{2}\right] p^{2}=0
$$

The tuning and amplitude equations then become

$$
\begin{align*}
& p=\Omega\left\{\frac{\mathrm{c}[\mathrm{M}+(1 / 2) \mathrm{md}]}{\mathrm{d}[\mathrm{M}+(1 / 3) \mathrm{md}]}\right\}^{\frac{1}{2}} \tag{12-B}\\
& \phi_{0}=\frac{-L_{0}}{\left\{\operatorname{Md}[d+c]+\mathrm{md}^{2}[(1 / 3) d+(1 / 2) c] p^{2}\right.} \tag{13-B}
\end{align*}
$$

PART II. Alternating Forces to de Absorbed.

The variations in forces are calculated by means of the formalae derived in reference: (1) for rotary wing aircreft with counter rotating, single bladed rotors so controlled that the planes of rotation remein horizontal and the ship is propelled by a pusher propeller. The blades are so mounted on the drive shaft and the shafts so phased by gearing, that they cross in a plane through the drive shaft perpendicular to the longitudinal axis of the ship, which is assumed parallel to the flight path. This configuration results in a force-phase angle relationship of 180 degrees between the two blades. For the first harmonic thrust and torque components, the advancing blade approaches its maximum value and the receding blade approaches its minimum as the two blades cross. The maximum and minimum values do not occur at the crossing point due to a phase angle with respect to the zero reference line. For the second harmonic thrust component, the two blades approach a maximum and a minimum together. That is, as the blades cross, the second harmonic thrust component for both blades reaches its maximum value. Higher torque harmonics than of the first order and thrust harmonics of the second order are neglected.

The procedure is as follows. The necessary thrust coefficient is calculated from the design specifications. Having this value, the inducea velocity, V_{i}, and the ultimate angle of slipstream downwash, X, may be found. The blade angle of incidence, θ, is found from the constant portion of the C_{T} equation, and the different values of the harmonic forces are calculated by separating the thrust and torque equations into their component harmonic parts.
Design Specifications:
Gross weight of ship 1800 lbs.
Destgn velocity, V 100 MIPH
Angular rotation of blades 25 radians/second
Blade taper ratio, R_{t} 3
Blade radiius 25 feet
$z=R_{t}-1=2$

$$
p=0.002378
$$

Airfoil Section:

$$
\text { N.A.C.A. } 23015
$$

$$
\text { Slope of lift curve, } a_{0}=2 \pi
$$

$$
\text { Profile drag coefficient, } C_{D 0}=C_{D o 0}+\epsilon\left(C_{J} / a_{0}\right)^{2}
$$

$$
\begin{gathered}
C_{D o O}=0.012 \\
\epsilon=0.894
\end{gathered}
$$

Hotor weight:

- Blaçe weight $=80$ lbs. at 40% span (radius)
From reference (I) the following equations are used.

$$
\begin{align*}
C_{T}= & T / \rho \pi \Omega^{z} R^{4} \tag{1}\\
\mu= & V / \Omega R \tag{2}\\
\lambda= & V_{i} / \Omega R \text { (for level flight with pusher propeller) } \tag{3}\\
V_{i}= & C_{T} \Omega R /\left(\mu^{2}+\lambda^{2}\right)^{k} R=C_{T} \Omega^{2} R^{2} /\left(V^{2}+V_{i}^{z}\right)^{\frac{1}{2}} 2 \tag{4}\\
X= & \operatorname{arc} \cot \left[\{\| / \mu]+\left[C_{T} / 2 \mu\left(\mu^{2}+\lambda^{z}\right)^{1 / 2}\right]\right\} \tag{5}\\
W= & {\left[V_{i} / \Omega R\right]_{t a n}(X / 2) } \tag{6}\\
= & \text { longitudinal induced velocity variation } \\
& \text { parameter. }
\end{align*}
$$

$$
\begin{align*}
& C_{I I}=\left(a_{0} \sigma_{t} / 2\right)\left[\left\{\theta R_{t}\left[(1 / 3\rangle+\left(\mu^{2} / 2\right)\right]-(1 / 2) R_{t} \lambda-\theta_{z}\left[(1 / 4)+/ \mu^{2} / 4\right)\right]\right. \\
& \left.+(1 / 3)_{z} \lambda+(1 / 4) R_{t} \lambda \mu^{a}-(1 / 32) z \theta \mu^{4}\right\} \\
& +\left\{P_{t} \theta \mu-R_{t} \lambda \mu-(2 / 3) z \theta \mu+(1 / 2) z \lambda \mu-(1 / 4) R_{t} \theta^{3}+(1 / 8) z \lambda \mu^{3}\right\} \sin -\psi \\
& +\left\{(-1 / 3) P_{t} W+(1 / 4)_{2 W}-(1 / 96) 2 \pi \mu^{4}\right\} \cos \psi \\
& +\left\{(-1 / 2) R_{t} w \mu+(1 / 6) 2 w \mu-(1 / 24) R_{t} w \mu^{3}\right\} \sin 2+ \\
& +\left\{(-1 / 2) F_{t} \theta \mu^{2}+(1 / 4) 2 \theta \mu^{2}-(1 / 4) E_{t} \lambda \mu^{2}+(1 / 24) z \theta \mu^{4}\right\} \cos 2 \psi \\
& + \text { higher harronics }] \tag{7}\\
& C_{Q}=\left(\sigma_{t} / 2\right)\left[[C _ { D O O ^ { + } } t \theta ^ { 2 }] \left[(1 / 4) R_{t}+(1 / 4) R_{t} \mu^{2}-(1 / 5) z-(1 / 6) z_{\mu} \mu^{2}\right.\right. \\
& \left.+(1 / 32) R_{t} \mu^{4}\right]+\left[a_{0} \theta-2 \in \theta\right]\left[(1 / 3) R_{t} \lambda-(1 / 4) z \lambda+(1 / 32) z \lambda \mu^{4}\right] \\
& +\left[\epsilon-a_{0}\right]\left[(1 / 2) R_{t} \lambda^{2}+(1 / 8) R_{t} w^{2}-(1 / 3) z \lambda^{2}-(1 / 10) z w^{2}\right. \\
& \left.+(1 / 4) R_{\tau} \mu^{2}\left(\lambda^{2}+(11 / 16) w^{2} \mu^{2}\right)\right] \\
& +\left\{\left[C_{D 00^{+}} \epsilon \theta^{2}\right]\left[(2 / 3) R_{t} \mu-(I / 2) z \mu+(1 / 48) z \mu^{5}\right]\right. \\
& +\left[a_{0} \theta-2 \in \theta\right]\left[(1 / 2) \lambda \mu R_{t}-(1 / 3) z \lambda \mu+(1 / 8) R_{t} \mu^{3} \lambda\right] \\
& \left.+\left[\epsilon-a_{0}\right]\left[(1 / 4) z \lambda^{2} \mu^{3}\right]\right\} \sin \psi \\
& +\left\{[a _ { 0 } \theta - 2 \in \theta] \left[(1 / 4) w R_{t}+(1 / 3) w R_{t} \mu-(1 / 5)_{z w}-(1 / 4) z w \mu\right.\right. \\
& \left.-(1 / 32) 2 \pi \mu^{5}+(1 / 32) A_{t} w \mu^{4}\right] \\
& \left.+\left[\epsilon-a_{0}\right]\left[(2 / 3) R_{t} \lambda-(1 / 2) 2 w \lambda-(1 / 16) 2 w \lambda \mu^{4}\right]\right] \cos \psi \\
& + \text { higher harmonics] } \tag{8}
\end{align*}
$$

Substituting the proper values in equations (1) through (6) give:

$$
\begin{aligned}
& C_{T}=0.00763 \\
& \mu=0.391 \\
& \nabla_{i}=3.66 \mathrm{ft} / \mathrm{sec} \\
& \lambda=0.00976 \\
& X=87^{\circ} 8^{\prime} \\
& W=0.00927
\end{aligned}
$$

Equating the constent part of equation (7) to the value of equation (i), since both of these valwes represent the average over the rotor disk, and solving for the blade angle of incidence, θ, gives for both blades:

$$
\begin{gathered}
C_{T}=2\left(a_{0} \sigma_{t} / 2\right)\left\{\theta R_{t}\left[(1 / 3)+\left(\mu^{2} / 2\right)\right]-(1 / 2) R_{t} \lambda-\theta z\left[(1 / 4)+\left(\mu^{2} / 4\right)\right]\right. \\
\left.+(1 / 3) z \lambda+(1 / 4) R_{t} \lambda_{\mu}{ }^{2}-(1 / 32) z \theta \mu^{4}\right\}
\end{gathered}
$$

from which

$$
\theta=0.0984 \text { radians or } 5.64^{\circ}
$$

A. First harmonic thrust component.

The first harmonic thrust component for one blade may be found by solving terms 2 and 3 in equation (7). For two blades, substitute for sin ψ $[\sin \psi+\sin (180+\psi)]$ and for $\cos \psi,[\cos \psi+\cos (180+\psi)]$. These two substitutions are zero, so the result is that the first harmonic thrust variation cancels between the two blades. This result could have been seen immediately since the first harmonic thrust phase angle relationship between the two blades is 180 degrees.
B. Second harmonic thrust component.

The second hamonic thrust component may be found similarly from equation (7), using the fourthi and fifth terms. For two blades this becomes

$$
\begin{aligned}
N_{2}= & \left(a_{0} \sigma_{t} / 2\right)\left[\left\{W^{\prime} \mu\left[(-1 / a) R_{t}+(1 / 6) z\right]-(1 / 24) R_{t} \nabla^{3}\right\}[\sin 2 \psi+\sin 2(280+\psi)]\right. \\
& +\left\{\theta \mu^{3}\left[(-1 / 2) R_{t}+(1 / 4) z\right]-(1 / 4) R_{t} \lambda \mu^{z}\right. \\
& \left.\left.+(1 / 2 A)_{z} \theta \mu^{\prime}\right\}[\cos 2 \psi+\cos 2(180+\psi)]\right] \rho \pi^{2} R^{4}
\end{aligned}
$$

which upon substituting values gives

$$
\begin{aligned}
& N_{2}=-50 \sin 2 \psi-505 \cos 2 \psi \\
& N_{2}=-509 \cos [2 \Omega t-(2 / 63)] \quad \text { (pounds) }
\end{aligned}
$$

C. First haxmonic toroue component.

The first harmonic torque component is found in a like manner excep that the component is found for each blade separately.

$$
\begin{aligned}
I_{1}= & \left(\sigma_{t} / 2\right)\left[\left\{\left[C_{D_{00}+} \epsilon \theta a\right]\left[(2 / 3) R_{t \mu}-(1 / 2) z \mu+(1 / 48) z \mu^{5}\right]\right.\right. \\
& +\theta\left[a_{0}-2 t\right]\left[(1 / 2) \lambda_{\mu} R_{t}-(1 / 3) z \lambda \mu+(1 / 8) R_{t} \lambda \mu^{3}\right] \\
& \left.+\left[\epsilon-a_{0}\right]\left[(1 / 4) z \lambda^{3} \mu^{3}\right]\right\} \sin \psi \\
& +\left\{\theta [\varepsilon _ { 0 } - 2 \epsilon] \left[(1 / 4) R_{t}+(1 / 3) R_{t} \mu-(1 / 5) z-(1 / 4) z \mu-(1 / 32) z \mu^{5}\right.\right. \\
& \left.\left.\left.+(1 / 32) R_{t \mu^{4}}\right]_{w}+\left[\epsilon-a_{0}\right]\left[(2 / 3) B_{t}-(1 / 2) z-(1 / 16) z \mu^{4}\right\} h_{w}\right\} \cos \psi\right] \rho \pi^{3} R^{5}
\end{aligned}
$$

which upon substituting values gives

$$
I_{1}=358 \sin \psi+66 \cos \psi
$$

$$
L=364 \cos [\Omega t-(4 / 9) \pi], \quad(\text { foot-pounds) }
$$

the first harmonic toraue component of one rotor.

PARII III. Design of Pendulum Absorbers.

Three tuned penduium type vibration absorbers are to be designed. One tuned to the first harmonic thrust component, one tuned to the second harmonic thrust component and the last, tuned to the first harmonic torque component.

The thrust vibration absorbers are designed to act not only as vibration absorbers; but also as counterveights for the single bladed rotors. This will nedessitate mounting the absorbers on the drive shaft at some distance belon the blade, so that the average centrifugel moment of the absorbar about the intersection of the blade axis and drive shaft axis will be equal and opposite to the average thrust moment about the same point. The first harmonic thrust absorber is to be mounted between the rotor planes of rotation, acting as a first harmonic vibration absorber for both blades, and as a counterweight for the top blade. The second harmonic thrust absorber is to be mounted on the drive shaft below the lower blade, acting as a second harmonic vibration absorber for both blades, and as a counterweight for the lower blade. By so designing the thrust absorbers, no additional weight need be added which is an important consideration in the design of rotary wing aircraft.

It was shown in PArm II, that the first harmonic thrust component cancels out between the two blades due to a phase angle difference of 180 degrees, thereby making a first harmonic thrust absorioer unnecessary. However, since it does not add any additional weight to the ship, the counterweisht of the top rotor will be designed as a first harmonic thrust ansorber. This will allow for any first hamonic transient vibrations, and the possibility that the forces between the two blades do not cancel. Such a condition would occur in a yaved flight condition, which is not
treated in this paper.
The first harmonic torque component, however, must be absorbed by two pains of tuned pendulums, one pair mounted on the drive shaft at each blade. This is necessary because the manner in which the engine is geared to the counterrotating drive shafts, causes the toroue unbalances between the two blades to add absolutely, instead of algebraically. The advantage gained by usine two pairs of absorbers, being that of absorbing the vibration before it is transmitted into the drive shaft.

The pendulum arms are designed from stainless steel streamine tubing. A load factor of four in tension and two in bending is used to allow for possible overspeeding of the rotors and design is made to the ultimate strencth of the material. The design is checked for fatigue at normal operating conditions with a load factor of one, in tension and in bending.

The weisht of each blade is eighty pounds and its center of gravity is at the 40% radius which for this particular ship is six feet. Arbitrarily setting seven feet as the distance from shaft axis to pendulum center of gravity, it is found that the necessary mass of each counterweight is $2.13 \mathrm{Ibs-cec}^{2} / \mathrm{ft}$.
A. Design of first harmonic thrust pendulum.

From Part I, Section A, the tuning equation for the thrust absorber is found to be

$$
p=\Omega\left\{\frac{[M+(1 / 2) m b] a+[M+(1 / 3) m b] b}{[M+(1 / 3) m b] b}\right\}^{\frac{1}{2}}
$$

Which for a first harmonic variation, $p=$, becomes

$$
1=\frac{[M+(1 / 2) m b] a+[M+(1 / 3) m b] b}{[M+(1 / 3) m b] b}
$$

Assuming mb $=.150 \mathrm{M}$; this equation then becomes

$$
M(1+.075) a+M(1+.050) b=M(1+.050) b
$$

or

$$
\frac{a}{b}=0
$$

Setting the limitation that $a+b=7.51$, gives

$$
\begin{aligned}
0+b & =7.5 \\
b & =7.51 \\
a & =0 .
\end{aligned}
$$

The mass of the bob and arm are

$$
\begin{aligned}
\mathrm{M}+\mathrm{mb} & =2.13 \mathrm{lbs} \cdot \mathrm{sec}^{2} / \mathrm{ft} \\
\mathrm{M}(1+.15) & =2.13 \mathrm{lbs.sec}^{2} / \mathrm{ft} \\
\mathrm{M} & =1.85 \mathrm{lbs.sec}^{2} / \mathrm{ft} \\
\mathrm{mb} & =.28 \mathrm{lbs.sec}^{2} / \mathrm{ft}
\end{aligned}
$$

Check on assumed penduium center of gravity of 7.0^{\prime}

$$
\begin{aligned}
\text { Moment about hince }=68.6 r & =7.5(59.6)+(7.5 / 2)(9.0) \\
r & =7.01
\end{aligned}
$$

$$
\text { Distance to c.E゚. }=a+r=0+7.00=7.00^{\prime}
$$

Use stainless steel streamline tubing (reference 6)

$$
\text { Equivalent round }=2^{\prime \prime} \times .058^{\prime \prime}
$$

Major axis $=2.70^{\prime \prime}$; Minor axis $=1.14^{1}$
Area $=0.354$ in. $; \mathrm{wt} / \mathrm{ft}=1.203 \mathrm{lbs} ; \mathrm{Z}($ minor $)=.1732$
Fatigue strength $=75,000 \mathrm{psi}$
Oltimate atrength $=185,000 \mathrm{psi}$
Critical station will be at hinge pin. for the overspeed condition.

$$
\text { Tensile stress, } \begin{aligned}
f_{t} & =4\left[M \Omega^{2}(a+b)+m b \Omega^{2}(a+b / 2)\right] / A \\
f_{t} & =4\left[(1.85)(25)^{2}(7.5)+(.28)(25)^{2}(3.75)\right] / .354 \\
f^{\prime} & =104.200 \mathrm{psi}
\end{aligned}
$$

Fatigue is not considered since first harmonic thrust components cancel, and pendulum does not oscillate constantly.

$$
\text { Margin of safety }=\frac{185,000}{104,200}-1=.77
$$

B. Design of second harmonic thrust absorber.

From Pard I, Section A, The tuning equation for the thrust absorber is found to be

$$
p=\Omega\left\{\frac{[M+(1 / 2) \mathrm{mb}] a+[M+(1 / 3) m b] b}{[M+(1 / 3) m b] b}\right\}^{\frac{1}{2}}
$$

which for a secont harmonic variation, $p=2 \Omega$, becomes

$$
4=\frac{[M+(1 / 2) \operatorname{mb}] a+[M+(1 / 3) m b] b}{[M+(1 / 3) m b] b}
$$

Assming $m b=.0375 \mathrm{M}$, this equation in turn becomes

$$
M(1+.01875) a+M(1+.0125) b=4 M(1+.0125) b
$$

or

$$
\frac{a}{b}=\frac{3.0375}{1.0187}
$$

Setting the limitation that $a+b=7.5^{1}$, gives

$$
\begin{aligned}
1.0187(7.5-\mathrm{b}) & =3.0375 \mathrm{~b} \\
\mathrm{~b} & =1.88^{\prime} \\
\mathrm{a} & =5.62^{\prime}
\end{aligned}
$$

From Section A, above, the mass of the bob is found to be $1.85 \mathrm{lbs}_{\mathrm{sec}} \mathrm{sec}^{2} / \mathrm{ft}$. Therefore

$$
m b=.0375(1.85)=.0694 \mathrm{lbs} . \mathrm{sec}^{2} / \mathrm{ft}
$$

The amplitude equation from PARP I, Section A is

$$
\alpha_{0}=\frac{-\mathbb{N}_{0}}{[\mathrm{M}+(1 / 2) \operatorname{mb}] \mathrm{bp}^{2}}
$$

The value of N_{0} is 509 lbs . from PART II, Section B. The amplitude of oscillations is then

$$
\begin{aligned}
& \alpha_{0}=[1.85+(1 / 2)(.0694)](1.88)\left(25^{2}\right)(2)^{2} \\
& \alpha_{0}=-.0569 \text { radians or }-3.16^{\circ}
\end{aligned}
$$

wich is in the allowable range of small angles.
Use the same size strealine tubing for the second as for the first harmonic absorber. The critical station is at the shaft. Since both absorbers are identical as to mass distribution, the tensile stress in the tube at the shaft will be the same as for the first plus an additional term due to $\dot{\alpha}$.

The noment at the shaft due to the conservation of angular momentum when the pendulum moves through an angle is found as follows:

Moment at shaft $=2 M \Omega(a+b)^{2} \dot{\alpha} \alpha+2 m b \Omega(a+b / 2)^{2} \dot{\alpha} \alpha$
where α and $\dot{\alpha}$ are found as above, and the moment is a maximum when $\left(\mathrm{pt}-\psi_{N}\right)=\pi / 4$ at wich $\alpha=.0402$ radians and $\dot{\alpha}=2.02 \mathrm{radiang} / \mathrm{sec}$.

Moment at shaft $=\left[2(1.85)(25)(7.5)^{2}+2(.0694)(25)(6.56)^{2}\right](.0402)(2.02)$

$$
=435 \mathrm{ft}-1 \mathrm{bs} .
$$

Bending stress, $f_{b}=$ Moment $/ z=435(22) /(.1732)$

$$
f_{b}=30,200 \mathrm{psi}
$$

Then the maximum tensile stress $=26,400+30,200$

$$
=56,600 \mathrm{psi}
$$

$$
\text { Margin of safety }=75,000 / 56,600-1=.322
$$

biargin of safety in overspeed condition;

$$
\begin{gathered}
f_{T}=4(26,400)+2(30,200)=165,800 \mathrm{pai} \\
\text { Margin of gafety }=185,000 / 165,800-1=.117
\end{gathered}
$$

$$
\begin{aligned}
& f_{t}=26,300+\left[\mathrm{Mb} \dot{\alpha}^{2}+m b(b / 2) \dot{\alpha}^{2}\right] / A \\
& \alpha=\frac{-N_{0} \cos \left(\mathrm{pt}-t_{\mathrm{t}}\right)}{[\mathrm{M}+(1 / 2) \mathrm{mb}] \mathrm{bp}{ }^{d}} \\
& \dot{\alpha}=\frac{N\left(\operatorname{Nasin}\left(p t-\psi_{N}\right)\right.}{[M+(1 / 2) m b] p^{2}} \\
& \dot{\alpha}=509 /(1.88)(1.88)(2)(25) \\
& \dot{\alpha}=2.86 \mathrm{radians} / \mathrm{sec} \text {. } \\
& f_{t}=26,300+[(1.88)(1.85)+(.0694)(1.88 / 2)](2.86)^{2} / .354 \\
& f_{t}=26,400 \mathrm{psi}
\end{aligned}
$$

C. Design of first harmonic torque pendulum,

From PART I, Section B, the tuning equation for the torque absorber is found to be

$$
\mathrm{p}=\Omega\left\{\frac{\mathrm{c}[M+(1 / 2) \mathrm{md}]}{\mathrm{d}[M+(1 / 3) \mathrm{md}]}\right\}^{\frac{1}{2}}
$$

which for a first harmonic variation, $p=\Omega$, becomes

$$
\frac{c[M+(1 / 2) m d]}{d[M+(1 / 3) m d]}=1 .
$$

From PAPT I, Section B, the amplitude equation is found to be

$$
\phi_{0}=\frac{-L_{0}}{\left[M d(d+c)+m d^{2}(d / 3+c / 2)\right] p^{2}}
$$

Setting $\left|\phi_{0}\right|<12^{\circ}$ for wide $\sin \phi_{0} z \phi_{0}$ and $\cos \phi_{0}=1$, the amplitude equation becomes, for a first harmonic variation, and from Par II, Section C, for $L_{0}=(364 / 2)$ (since a pair of pendulums is to be used in each absorber)
or

$$
-.208=\frac{-182}{\{M+(1 / 3) \mathrm{md}] d+M+(1 / 2) \mathrm{md}] c\} \alpha^{2}}
$$

$$
\frac{[M+(1 / 2) \operatorname{md}] c}{[M+(1 / 3) m d] d}=\frac{35}{[M+(1 / 3) m d] d^{2}}=1
$$

As a trial solution, take md $=.10 \mathrm{M}$. Then substituting into

$$
\begin{array}{r}
\frac{c[M+(1 / 2) \operatorname{md}]}{d[M+(1 / 3) \mathrm{mdT}}=1 \\
\frac{c M(1+.050)}{d M(1+.033)}=1 \\
\frac{c}{d}=\frac{1.033}{1.050}
\end{array}
$$

Settine the limitation that $c+d=7.51$

$$
\begin{aligned}
c=7.5-d & =(1.037 / 1.050) \mathrm{d} \\
d & =3.78^{\prime} \\
c & =3.72^{\prime}
\end{aligned}
$$

Then combining the tuning and amplitude equations gives

$$
\frac{[M+(1 / 2) \mathrm{md}] \mathrm{c}}{[\mathrm{M}+(1 / 3) \mathrm{md}] \mathrm{d}}=1=\frac{35}{[\mathrm{M}+(1 / 3) \mathrm{md}] \mathrm{d}^{2}}-1
$$

or

$$
\frac{35}{M(1+.033) d^{2}}=2
$$

and

$$
\begin{aligned}
\mathrm{M} & =1.194 \mathrm{lbs}-\mathrm{sec}^{2} / \mathrm{ft} \\
\mathrm{md} & =.1194{\mathrm{Lbs}-\mathrm{sec}^{2} / \mathrm{ft}}
\end{aligned}
$$

For a design of the pendulum arm, try stainless steel streamline tubing (reference 6)

$$
\begin{aligned}
& \text { Equivalent Round }=2^{\prime} ' \mathrm{X} .049^{\prime \prime} \\
& \text { Liajor axis }=2.70^{\prime \prime} ; \text { Minor axis }=1.14^{\prime \prime} \\
& \text { Area }=.3003 \text { in }^{2} ; \text { Wt } / \mathrm{ft}=1.021 \text { los; } Z(\text { major })=.0893 \\
& \text { Fatigue strength }=75,000 \mathrm{psi} \\
& \text { Ultimate strength }=125,000 \mathrm{psi}
\end{aligned}
$$

Critical station will be at hinge pin. The tensile stress,

$$
\begin{aligned}
& f_{t}=\left[M \Omega^{2}(c+d)+m d \Omega^{2}(c+d / 2)+\left(M \alpha+(1 / 2) \operatorname{md}^{2}\right) \dot{\phi}^{2}\right] \quad / \text { Area } \\
& \phi=\frac{-I_{0} \cos (p t-\sqrt{2})}{\{0 .(1 / 3) \operatorname{mad} d+M+(1 / 2) m d c\} d \Omega^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\phi}=\frac{I_{0}}{\{[M+(1 / 3) \mathrm{md}] d+[M+(1 / 2) \mathrm{md}] \mathrm{c}\} \mathrm{d} \Omega}=.254 \mathrm{rad} / \mathrm{sec} .
\end{aligned}
$$

$$
\begin{aligned}
f_{t}= & \left\{[(1.194)(7.5)+(.1194)(5.61)](25)^{2}\right. \\
& \left.+[(1.194)(3.78)+(1 / 2)(.1194)(3.78)](.254)^{2}\right\} / .3003 \\
f_{t}= & 19.800 \mathrm{psi}
\end{aligned}
$$

Bending stress, $f_{b}=$ Moment about hinge/ z

$$
\begin{aligned}
\text { Moment } & =g(k+m d / 2) d \\
& =120 \text { ft-1bs. }
\end{aligned}
$$

$$
f_{b}=(125)(12) /(.0893)
$$

$$
\mathbf{f}_{\mathrm{b}}=16,800 \mathrm{psi}
$$

Total stress (tensile) $=19,800+16,800$

$$
=36,600 \mathrm{psi}
$$

$$
\begin{aligned}
\text { Margin of Safety } & =(75,000 / 36,600)-1 \\
& =1.05
\end{aligned}
$$

Liargin of Safety in overspeed condition:

$$
\begin{aligned}
\text { Tensile stress } \begin{aligned}
(\text { total }) & =4(19,800)+2(16,800) \\
& =112,800 \mathrm{psi}
\end{aligned}, ~
\end{aligned}
$$

$$
\text { Margin of Safety }=(125,000 / 112,800)-1=.11
$$

CONCLUSI ONS

Thus, for the particular ship under consideration, the theory developed in this paper indicates that the use of pendulum type thrust and torque variation absorbers, in lieu of cyclic pitch control, is practical insofar as forward flight at a constant speed is concerned. Due to the incorporation of the counterweights as thrust variation absorbers, the only additional weight is from the first harmonic torque absorbers. This aditional weight amounts to two-hundred and sixty-nine pounds and is probably prohibitive in magnituie.

Since no experimental verification has, as yet, been made on the practicability of such absorbers, it appears that such experimentatation would be well worth while before application of the theory to an actual design.

1) Castles, Walter Jr., and A. L. Ducoffe, 'Thrust and Torque Equations for a Rotary Wing Aircreft with Counterrotating, Single Rigid Bladed, Counterveighted Rotors,' Unpublished report, Daniel Guggenheim School of Aeronautics, Georgia School of Technology, 194^{7}.
2) Gray, Andrew, Gyrostatics and Rotational fotion, Boston: Macmillan \& Co. Ltd., 1918, pp. 404-431.
3) Jeans, Sir James Hopwood, Theoretical Hechanics, New Fork: Ginn and Co. . 1907 .
4) Kelvin, Lord, and Peter Guthrie Tait, Treatise on Natural Philosophy, Vol. I, Cambridge: At the University Press, 1923, pp. 202-204.
5) Lamb, Horace, Higher Hechanjcs, Cambridge: At the University Press, 1943, pp. 181-259.
6) Sumperill Tubing Company, Aircraft Tubing Data, Phiiadelphia: Edward Stern \& Co. . Inc. : 1943.
7) Filson, W. Ker, Practical Solution of Torsional Vibration Problemg, Vol.II, New York: John Wiley \& Sons, 1941, pp. 512-596.

APPTRNDIX

DESIGN CHARMS

Included in this appendix are design charts for the tuning and for the determination of the amplitude for both the thrust and torque absorbers. Only the thrust absorber will be illustrated for the deaign of the toroue absorber is exactiy similar. The method is as follows.

Finter the tuning chart at the order of the undesirable force to be absorbed. Choose a suitable m / mb ratio and read the corresponding a / b ratio on the ordinate. Both a and b may then be determined from the practical limitations placed on the length of the pendulum. The value of $\mathrm{N}_{\mathrm{o}} / \operatorname{amb}(\mathrm{k} / \mathrm{mb}+1 / 2) \mathrm{p}^{\mathrm{a}}$ may then be calculated for the given problem. Having this value, enter the Amplitude Chart at the previously determined a / b ratio. The ampliture is then read on the ordinate.

Should the value of the amplitude read be undesirable due to the Iimitations of the problem, a second choice of M / mb should be made and the process repeated. For most cases, only one trace through the charts need be made.

The included charts, therefore, offer a quick, simple method for designing unbalanced force absorbers of the type herein treated.

