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SUMMARY

This thesis studies three topics. First of all, in text classification, one may use Principal

Components Analysis (PCA) as a dimension reduction technique, or with few topics even

as unsupervised classification method. We investigate how useful it is for real life problems.

The problem is that, often times the spectrum of the covariance matrix is wrongly estimated

due to the ratio between sample space dimension over feature space dimension not being

large enough. We show how to reconstruct the spectrum of the ground truth covariance

matrix, given the spectrum of the estimated covariance for multivariate normal vectors. We

then present an algorithm for reconstruction the spectrum in the case of sparse matrices

related to text classification.

In the second part, we concentrate on schemes of PCA estimators. Consider the prob-

lem of finding the least eigenvalue and eigenvector of ground truth covariance matrix, a fa-

mous classical estimator are due to Krasulina. We state the convergence proof of Krasulina

for the least eigenvalue and corresponding eigenvector, and then find their convergence

rate.

In the last part, we consider the application problem, text classification, in the super-

vised view with traditional Naive-Bayes method. We find out an updated Naive-Bayes

method with a new loss function, which loses the unbiased property of traditional Naive-

Bayes method, but obtains a smaller variance of the estimator.

xiii



CHAPTER 1

SIZE OF THE SAMPLE NEEDED TO BE ABLE TO USE PRINCIPAL

COMPONENT FOR DIMENSION REDUCTION

1.1 Introduction

Principal Components is often used in high dimensional statistics and machine learning to

reduce dimension before applying another algorithm. Many times without the dimension

reduction, over-fitting would happen. The principal components of a covariance matrix can

be decomposed into two classes: the Principal Components which contain the structural

information and the noise ones.

Consider a data matrixX of dimension n×p, where the rows are i.i.d copies of a random

vector ~X . The largest eigenvectors (called Principal Components) of the covariance matrix

COV [ ~X] contain the structural information. So projecting the data onto the span of the

leading eigenvectors usually operates a dimension reduction without loss of information.

The problem is, in reality, we are not given the population covarianceCOV [ ~X], instead,

we only know the estimated covariance, which is defined as the sample covariance

ˆCOV [ ~X] =
X tX

n
.

Thus, instead of taking the eigenvectors with large eigenvalues of the population covari-

ance, we take instead the eigenvectors with large eigevalues from the sample covariance.

The covariance estimation error matrix E given by

E = ˆCOV [ ~X]− COV [ ~X],

which usually perturbs things a lot in the high dimensional where n and p are of same order.
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Typically the eigenvectors (PCA) with leading eigenvalues get mixed up by E.

Since in many cases, we only want to reconstruct the span of the structural principal

components and not reconstruct them individually, we only need the structural eigenvectors

to not get mixed up with noise eigenvectors. Because in most cases, the principal compo-

nents are not directly the partitions, but the linear combinations of them, see our examples

about customer reviews in below.

Using a bound [1] of Koltchinskii and Lounici for the l2-norm of E, we are able to

show that by just increasing the sample size by a quantity O(1), we are able to reconstruct

without noise eigenvectors. We also need the eigenvalues of the eigenvectors, whose span

we wish to reconstruct, to be separated from the noisy eigenvalues. We show that this is

not the case for reconstructing the eigenvectors individually. Our proof involves a detailed

look at the magnitude of the error E in different direction of the space, since in different

regions, there will be vastly different orders. If one just uses the classical inequality from

perturbation theory and applies the bound [1], one gets a bound which is often too large. In

many theoretical models, they are in larger order. We show a numerical example, where the

structural eigenvalues are only order O(1) away from the noise eigenvalues. This is why

our analysis is relevant.

Say you want to predict stars from customer reviews, that is you have a collection of

customer’s reviews where the customer also included a star ranking of product. You use

this collection as training set. Trying to predict the number of stars given the review. Then,

when you have some costumer’s reviews which lacks the star-ranking you can predict it

using your algorithm. Now, you can make each word in the texts as a feature and try any

machine learning algorithm on it. Typically this will not work at all because of overfitting,

thus, we need to reduce the dimension with Principal Components. Once your texts are hot-

encoded you find the Principal Components of the data set and keep only a small number.

Then you project the data on the principal components and use this as input for whatever

machine learning algorithm you use. It is important to note that for this task it is not
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important to retrieve the eigenvectors, but only be able to retrieve the eigenspace generated

by the leading eigenvectors. Thus, if the eigenvectors get mixed up among themselves, it

does not matter.

Now, one of the problems is that you are getting the eigenvectors from the sample

covariance matrix instead of the true covariance matrix. But the structural information is

contained in the eigenvectors of the true covariance matrix. We know that when the sample

size becomes large the sample covariance approaches the true covariance. The question is

how large does the sample need to be, in order to be able to retrieve the subspace generated

by the structural eigenvectors.

In this chapter, we are able to give the exact order up to a constant given the eigenvalues

of the true covariance matrix for the case when the data is normal and under a few additional

realistic assumptions.

Let us first give a simple example in financial stocks to clarify things. We know that the

stocks may not be the best place of applications, but it is easy to understand

Let ~X = (X1, X2, X3, . . . , X2p) be the vector containing the daily returns of 2p differ-

ent stocks on a given day. Assuming a two sector model and a general economy index M .

Let S be the index of the first sector and T be an index of the second sector whilst M is the

index of the general economy. We assume that the first p stocks depend only on S and M ,

so that for i = 1, 2, . . . , p, we have

Xi = aiS + ciM + εi.

And the stocks with indices from p + 1 to 2p depend only on T and M , so that for i =

p+ 1, . . . , 2p

Xi = biT + ciM + εi.

Here the coefficients ai, bi and ci are supposed to be constants. The term εi is a firm specific

term. We assume that S, T , M and the εi’s are uncorrelated. Let us also assume all the εi’s
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have the same covariance σ2.

Then the covariance matrix of the stocks is given by:

COV [ ~X] = ~a⊗ ~aT +~b⊗~bT + ~c⊗ ~cT + σ2I,

where

~a = (a1, a2, . . . , ap, 0, . . . , 0)T ,~b = (0, 0, . . . , 0, b1, b2, . . . , bp)
T ,~c = (c1, c2, . . . , . . . , c2p)

T ,

and I is the 2p× 2p identity matrix.

If we assume that the general economy has no influence, that is: c1 = c2 = . . . = c2p =

0, we will have two eigenvectors: ~µ1 = ~a, ~µ2 = ~b with leading eigenvalues:

λ1 =
∑
i

a2
i + σ2, λ2 =

∑
i

b2
i + σ2. (1.1.1)

And all the other eigenvalues will equal to σ2.

At this stage ~a and ~b are the leading principal components, because they have the two

largest eigenvalues, while all other eigenvalues are of smaller order. Also note that these

two vectors have non-zero entries only where the stock belongs to the corresponding sec-

tors. So, these eigenvectors carry the structural information about which stocks belong

to which sector.

Now, since we often work with standardized data, assuming also that S and T are

standardized so that they have variance 1. Thus, the ai’s and bi’s are simply the correlation

coefficients between stock i and the corresponding sector index. We also assume that the

daily return of the stock is standardized. The coefficients are less than 1 in absolute value,

in each sector they should also be bounded away from 0. Hence, for standardized data,

since V AR[Xi] = 1 from 1.1.1 we find the order λ1, λ2 = O(p) and σ2 < 1.

This gives the general setting when you have a finite number of eigenvalues of order
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O(p), which carry the structural information, while the other eigenvalues are of orderO(1).

When the coefficients ci 6= 0, we have:

COV [ ~X] = ~a⊗ ~a+~b⊗~b+ ~c⊗ ~c+ σ2I.

Since the vectors ~a, ~b and ~c are not necessarily orthogonal, these three vectors in general

will not be eigenvectors. Instead, the three leading eigenvectors of the covariance matrix

will be in the linear span of< ~a,~b,~c > . So, in this case it would be of no use to reconstruct

the principal components separately: we only need the span of the three largest eigenvec-

tors, rather then having them separately. And anyhow, the vectors ~a,~b are not themselves’

eigenvectors if ~c is not an eigenvector.

In general, the term εi will also not have all the same standard deviation. Put σεi := σi,

then:

COV [ ~X] = ~a⊗ ~a+~b⊗~b+ ~c⊗ ~c+ Diag(σ2
1, σ

2
2, · · · , σ2

2p),

where Diag(σ2
1, σ

2
2, · · · , σ2

2p) is a diagonal matrix with entries σ2
1, σ

2
2, · · · , σ2

2p. In that case,

there will be 3 large eigenvalues and all others will be of order 1. These others will be

refered to as noise eigenvalues and the corresponding eigenvectors as noise eigenvector.

So the next question is how do we find out the span generated by the leading principal

components. The answer is: we estimate the covariance matrix, and take the eigenvectors

of the estimated covariance with largest eigenvectors for estimating the leading principal

components.

For example, as the daily returns for n days for our 2p stocks, let ~Xi be the i-th day

return vector:

~Xi = (Xi1, Xi2, . . . , Xi(2p)),

where Xij is the return of stock j on day i. Let X be the n × (2p) matrix obtained by

stacking the ~Xi, and assuming the rows to be i.i.d. normal. Since on the daily return basis,

the expectation is a smaller order than standard deviation, we can assume it is 0 and thus
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we have estimated covariance:

ˆCOV [ ~X] :=
X t ·X
n

.

Note that when n < 2p, the estimated covariance above is defective, it has at least half

the eigenvalues 0. Hence, half the eigenvalues of the estimate in that case would be wrong

by a size O(1). So using the estimated (also called sample) covariance matrix for finding

the eigenvectors with largest eigenvalues can be problematic. Furthermore, often in theory,

the eigenvalues corresponding to structural eigenvectors are of order O(p). However, in

real applications they are not very big for most of the times, and not that far from 1. The

reason is as follows: take stocks for example. How many are there? Maybe 1000 but

certainly not a million. So even though the leading eigenvalues theoretically grow linearly,

often this does not help since we can not grow the data set too large.

From now on assume that the dimension of ~X = (X1, X2, . . . , Xp) is p and not 2p. Let

n be the sample size. Then X is a n × p matrix with i.i.d multivariate normal rows with

expectation 0 and each distributed like ~X . Let λi be the i-the eigenvalues (in decreasing

order) of COV [ ~X] with corresponding unit eigenvector ~µi. That is to say, ~µi is the i-the

Principal Component of COV [ ~Xi].

Let λ̂i be the i-the eigenvalue (in decreasing order) of the estimated covariance matrix

ˆCOV [ ~X] = X tX/n with corresponding unit eigenvector ~̂µi (Also in decreasing order). To

simplify discussion, we assume that the noise eigenvalues are between 1 and 0. So, say λk

is the first eigenvalue corresponding to noise, and λk = 1. Then we have the spectrum:

λ1 > λ2 > λ3 > ... > λk > λk+1 > ... > λp.

By the assumption above, the eigenvectors ~µ1, ~µ2, . . . , ~µk−1 are structural ones.

Now for i < k, you compute ~̂µi from estimated covariance, is this a reliable estima-

tion of ~µi? So λ̂i is i-th eigenvalue of estimated covariance matrix XtX
n

, corresponding to

6



eigenvector ~̂µi. As we discussed before, we do not care that ~̂µi gets mixed up with the

structural eigenvectors, since anyhow we just need to retrieve the linear span of the struc-

tural eigenvectors for dimension reduction. We only want to assure that we don’t get a lot

of the eigevectors ~µj with j ≥ k in our estimate ~̂µi. In other words, we want to keep the

projection of ~̂µi onto the span < ~µk, ~µk+1, . . . , ~µp > smaller than a given constant ε > 0.

What is the condition for this? First we assume that λi ≥ 2λk, and the estimated

eigenvalues λ̂i will in general be larger than λi, by the fact large eigenvalues tend to be

overestimated. Thus we also assume λ̂i ≥ 2λk. With that assumption, we are able to use

the result of Koltschinskii and Lounici to find that condition (1.1.5).

It is interestingly enough to increase the sample size by a O(1) to be able to achieve the

desired result, whereas we show that to retrieve the structural eigenvalues separately, this

is not enough.

Let E denote the covariance estimation error matrix:

E := ˆCOV [ ~X]− COV [ ~X].

Then we can view the estimated covariance as the true covariance plus the perturbation E:

ˆCOV [ ~X] = COV [ ~X] + E.

Now, the true covariance COV [ ~X] contains the structural information. But we are not

given that ground truth covariance, instead we are given a perturbed version COV [ ~X]+E.

Consider the coordinate system of the Principal components, let Yj := ~X~̇uj where ~uj is the

j-th eigenvector (Principal Component) of the covariance matrix. So, we work with

~Y = (Y1, Y2, . . . , Yp),

which has a diagonal covariance matrix since the yj’s are independent of each other. (It is

7



known that, for normal vector, when we express the vector in basis of pca, we get indepen-

dent coordinates). Furthermore, the covariance matrix is equal to

COV [~Y ] = Diag(σ2
j ),

where σ2
j :=

√
V AR[Yj], and assume σ1 > σ2 > . . . > σp. With this notation, the

eigenvalues can be written as λj = σ2
j for all j = 1, 2, 3, . . . , p.

Note that COV [~Y ] and COV [ ~X] have the same eigenvalues since one is obtained from

the other by applying a unitary transformation. Assuming that ~Y (i) is an i-th independent

copy of ~Y . In the new coordinate system, the estimated covariance is now equal to:

Σ̂ := ˆCOV [~Y ] =
1

n

n∑
i=1

[
~Y (i)
]T
~Y (i).

and the true covariance is:

Σ := Diag(σ2
1, . . . , σ

2
p).

Note that this does not change the spectral norm of the estimation error E, nor the

eigenvalues of Σ or Σ̂, nor any inner products between vectors, as Q is orthogonal. But the

new coordinate system renders the analysis simpler, since all off-diagonal coefficients of Σ

are zero and its eigenvectors are the canonical unit vectors ~µi, (i = 1, . . . , p).

We denote the spectral norm of the estimation error by |E|. It was long know that when

σi = 1, (i = 1, . . . , p), then |E| is typically of order a constant times
√
p, but in the case

where the eigenvalues are not all of the same order of magnitude, the order of |E| was

unknown until the recent work of Koltchinskii and Lounici [1, 2], who proved that up to an

unknown universal constant C1 > 0, |E| is typically bounded by

|E| ≤ C1 ×
maxi∈{1,2,...,p} σi√

n
×
√
σ2

1 + σ2
2 + . . .+ σ2

p, (1.1.2)

with high probability.
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They also proved that this is a tight bound. Since the approximation error in the i-th

eigenvector of Σ can be bounded by |E|
spectral gapi

, this error is significantly smaller than ε ∈

(0, 1) as long as n is large enough to guarantee that |E|
spectral gapi

< ε with high probability.

Using (1.1.2), this yields the requirement

√
n ≥ C1

ε
× maxj=1,...,p σj

spectral gapi
×
√
σ2

1 + σ2
2 + . . .+ σ2

p. (1.1.3)

In the present paper we show that this bound can be improved to

√
n ≥ log(p)

C

ε
× σi∗√

spectral gapi∗
×

√√√√∑
j 6=i∗

σ2
j

|σ2
j − σ2

i∗ |
, (1.1.4)

which is to hold with high probability for some universal constant C > 0. Here i∗ is the

random index, which is the value for s so that |σ2
s − σ̂2

i | gets minimized, and we added the

term log(p) for later technical use. Note that 1.1.4 is satisfied when we have

√
n ≥ log(p)C

ε

σi∗

spectral gapi∗

√∑
j 6=i∗

σ2
j .

In other words, it is the index of the eigenvalue of the original covariance matrix which

comes closest to the i-th estimated eigenvalue σ̂2
i . Actually, in formula 1.1.4, we could re-

place σ2
i∗ by σ̂2

i , but later on, this would be more problematic. So here 1.1.4 is the condition

to be added to retrieve eigenvector number i individually.

We numerate the estimated eigenvalues in descending order. Then typically, σ̂2
i often

does not vary a lot, and we could thus think of i∗ as being very close to a constant. Note

that for the (random) eigenvalues σ2
i∗ , the new bound (1.1.4) is of strictly smaller order than

(1.1.3) due to the factor maxj=1,2,...,p σj having been replaced by σi∗ and to the square root

in the spectral gap, the latter often being smaller than 1. In general, expression (1.1.4) is

less than or equal to expression (1.1.3).

After having given the conditions to be able to retrieve eigenvector under 1.1.4, the

9



main aim of the current chapter is to show what sample size is needed to ensure that a

structural eigenvector does not get mixed up with the noise eigenvectors. We assume that

the noise eigenvalues start at σ2
k and σ̂2

i > 2σ2
k, (i > k). We find the bound:

√
n ≥ C

ε

σi∗

Gapi

√∑
j 6=i∗

σ2
j (1.1.5)

to guaranty this (see 1.3.24). Here Gapi := |σ̂2
i − σ2

k|, hence Gapi is not spectral gap, but

the distance to the closest noise eigenvalue (So not the distance to the closest eigenvalue).

The key point is that, on the right side of 1.1.5 we have σ̂i instead of σ1. With the classical

bound is what we would get and it would be in most real life situations (Note: to prove this

bound, we are slightly less precise than for the proof of 1.1.4, which is why we do not have

the term log(p) in front).

To get the bound of the form (1.1.4), we need to avoid the trouble that the denominator

might equal to 0, so we make the following mild condition on σ2
i :

Condition 1.1.1. The spectrum {σ2
1, σ

2
2, ..., σ

2
p} of Σ satisfis: spectral gapi 6= 0, where

spectral gapi := min{|σ2j − σ2i| : j 6= i}.

Note that Condition1.1.1 does not necessarily mean that σ̂2
i is the i-th largest eigenvalue

of Σ̂, and that it is not guaranteed that the condition is satisfied for all i. However, if all

eigenvalues of Σ are non-coalescent, Condition 1.1.1 is asymptotically met for all i, and

σ̂2
i is asymptotically the i-th largest eigenvalue of Σ̂. So let β be some constant number,

for β > 0.5 we can reconstruct the eigenvalues of order O(pβ) in sub-linear time, whilst

for β < 0.5 we can not. Of course, often time in PCA as mentioned, we do not even

want to reconstruct each eigenvector separately: rather we want to reconstruct a subspace

of eigenvectors with large eigenvalues as a whole, for dimension reduction.
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1.2 Numerical evaluation of text classification

Every thing in below, we test using real data. We test on real data but also re-simulate

data to get synthetic data and test. The re-simulation is done because our real data sets are

limited in size and we would like in many cases to see how large we need to take n to be

able to have the structural eigenvectors not mixed up. So, we estimate the parameters from

real data and then with that we re-simulate.

For text classification problem, let us first consider a simple example, which all doc-

uments ~D are samples generated by only 2 class. We treat each word as a independent

feature with a fixed probability to appear in one document, then each document can be

considered as a sample generated from a multinomial distribution. Now, assuming that

first np documents are from class C1, we have di = piC1 + εi,and assume the second nq

documents are from by class C2, we have di = qiC2 + εi, where εi is the random noise.

Then the covariance matrix of the documents is given by:

COV [ ~D] = ~p⊗ ~p+ ~q ⊗ ~q +Dε,

where

~p = (p1, p2, . . . , pnp , 0, . . . , 0)T , ~q = (0, 0, . . . , 0, q1, q2, . . . , qnq)
T ,

and Dε is a diagonal matrix correspondence for the noise eigenvectors.

Now consider estimated covariance matrix E[XtX]
n

, where X is the matrix whose row i

corresponding to the document i and has 0 and 1 entries depending on if the word appears.

We encode the documents with the way we mentioned above in Reuter’s data [3], we

pick the documents with sample size between 100 to 500, and only keep the highest corre-

lation words for each topics (we finally keep 1000 words). After encoding, we get 8 classes

and a big matrix with about 2000 rows and 1000 columns, each row is a sample, and each

column is a feature, if the feature appears in that sample, we encode the corresponding

11



Table 1.1: Result of PCA clustering, each entry tells how many documents in that class are
classified as corresponding Principal Component

Classes PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
’money-supply’ 0 0 110 0 30 10 3 0

’coffee’ 0 0 55 1 0 2 0 58
’sugar’ 0 0 140 2 0 0 0 1
’trade’ 7 82 171 95 1 2 0 1
’ship’ 0 0 154 0 0 2 0 1

’crude’ 0 0 315 0 1 3 2 83
’interest’ 10 1 120 2 26 122 3 0

’money-fx’ 90 0 110 3 28 10 62 2

entry 1, otherwise, we encode the corresponding entry 0.

Now we want to see if we can correctly classify these samples by this matrix.

PCA of XX t is the traditional way to solve the problem: we first compute the covari-

ance matrix of the samples, and operate the eigen-decomposition to the covariance matrix,

then clustering samples by k-means algorithm to each of the eigenvector. This method

works when the number of classes less than 3, when number of class greater than 3, it be-

haves terrible. See Table.1.1, we can see that most of the documents are classified in the

direction of PC3, which means naive PCA does not work well in Reuter’s dataset. As we

mentioned above, there are two reasons why this method doesn’t work: 1) there are errors

between estimated covariance matrix and true covariance matrix; 2) the true distribution

vector should lie in the span of principal components, not the same direction of principal

component.

In order to make it works, We firstly tried to see how eigen-decompostion works in

recovery vector ~p. We can estimate vector ~p by adding all samples from same class, and

normalize it. The following figure 1.2 shows how eigen-decompostion works.

We can see that when we take the number of principal components around 20, the pro-

jection of distribution onto principal component span get around 90%. Here the eigenvec-

tors are obtained by first using our formula to compute eigenvalues, and then re-simulate

with enough samples, and finally compute top 20 eigenvectors from the re-simulated ma-
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Figure 1.1: We take 100 principal components in estimated covariance, and project ~p onto
the principal component plane. x-axis is the number of principal components we use, y-axis
is the portion of projection.
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trix.

So we take top 20 eigenvectors to get our PC space S1. And for each of the classes

i, we take 3 samples, compute the average distribution ~si, and project this sample onto

our S . We consider the distribution of class i as normalized vector: s̄i = ProjS~si. The

following figure.1.2 shows the accuracy of text classification by using cosine similarity of

s̄i and the document, compared with using cosine similarity of the average distribution ~si

and the document. We can see our method actually works better.

1 2 3 4 5 6 7 8

class
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1

a
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c
u
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c
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Figure 1.2: Accuracy of cosine similarity, using our estimator vs the average estimator.
x-axis represents each class, y-xis shows the accuracy of that class. Two lines are average
accuracy of two estimators.

1.3 Calculations

Next we do the calculation to prove our bounds for recovering a single eigenvector and

also for recovering a span. For the span of eigenvectors we want to reconstruct only the
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span of those eigenvectors which contain structural information. So, we only have to prove

that the eigenvectors of the sample covariance matrix with high index (we take σ̂2
i to be an

eigenvalue of the sample covariance matrix) which is larger than the noise-eigenvalues of

the covariance matrix. For this we assume that at the index k, the noise eigenvalues start:

that is σ2
k, σ

2
k+1, . . . , σ

2
p are the eigenvalues corresponding to noise.

In what follows we have three subsections: the first one is for reconstructing a lin-

ear subspace of the structural eigenvector. Then we consider the finite dimensional case.

Finally is about reconstructing a single eigenvector. In each there is slightly different nota-

tions about the eigenvector, let us summarize here:

1. For structural span reconstruction. We consider an eigenvalue of the sample covari-

ance denoted by σ̂2
i with i > k. We assume that it is larger than at least two times the

largest noise-eigenvalues σ2
k. The eigenvector corresponding to the eigenvalue σ̂2

i is

an eigenvector of the sample covariance matrix Σ̂. We decompose that eigenvector

into two orthogonal parts, so that the eigenvector corresponding to the eigenvalues σ̂2

can be written as the orthogonal sum: ~u + ∆~µi. Here, ~u is not an eigenvector of the

covariance matrix. Merely, ~u is contained in the structural part of the spectrum. That

means that ~u is orthogonal to any noise-eigenvector of the covariance matrix, that is

any eigenvector with index larger or equal to k. At the same time ∆~µi is the part of

the eigenvector which is the projection of the eigenvector onto the noise part of the

spectrum. In other words, the projection onto the linear span of the eigenvectors of

Σ having index larger equal to k. We also assume that the size of the eigenvector

is 1. We simply assume the bound 1.1.2 on the norm of the covariance error matric

|E| = |Σ̂ − Σ| from Kolschinksii and Lounici [1] to hold with high probability in

this part. We will just mention high probability, without quantifying it since any how

we have a hard edge property. In the section 1.3.2, on getting a single eigenvector we

are more precise and quantify the probabilities.

2. For reconstructing a single eigenvector ~µi of the covariance matrix Σ with eigenvalue
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λi. We have following setting:let ~µi + ∆~µi be the corresponding eigenvector of the

sample covariance matrix with corresponding eigenvalue σ̂i2. Here ∆~µi is taken

orthogonal to ~µi. Then, we show a condition allowing to bound ∆~µi.

1.3.1 Bounding a sample eigenvector projection onto the noise PCA part

So here is the situation: We have a diagonal matrix Σ with entries

σ2
1 > σ2

2 > . . . > σ2
p

, and we perturb it with the matrix E. Now, assume that starting at k, the eigenvectors of Σ

are noise, hence only the eigenvectors corresponding to the eigenvalues

σ2
1, σ

2
2, . . . , σ

2
k−1

are “structural eigenvalues”.

Let the perturbed matrix Σ +E eigenvalue number i be denote by σ̂2
i = λ+ ∆λ, where

i < k. So in principal, with that index it should not be a noise eigenvalue, at least the

corresponding eigenvector of Σ according to our assumption is structural.

The question is: does the same thing hold for the i-th eigenvector of the perturbed

matrix? Let the i-th unit eigenvector of the perturbed matrix be denoted by ~̂µi. Now, we

decompose orthogonally into two pieces ~u and ∆~µi, so that

~̂µi = ~u+ ∆~µi

where ∆~µi is the projection of ~̂µi onto the noise part of the spectrum that is onto the span

< ~µk, ~µk + 1, . . . , ~µp >. We also assume ~̂µi to have norm 1 and hence |~u| ≤ 1.
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Then ~µ is the part in the structural part of the spectrum meaning that we can write

~µ = (u1, u2, . . . , uk−1, 0, 0, 0, . . . , 0),

for some coefficients u1, u2, . . . , uk−1. (Unlike what we do in singular eigenvalue recon-

struction section, here, ~u is not necessarily an eigenvector of Σ). Now, we have the bound:

|∆~µi| ≤
|E|
gapi

, (1.3.1)

where

gapi = |σ̂2
i − σ2

k|,

here gapi does not represent the spectral gap to the next eigenvalue, but to the closest

eigenvalues from a noise eigenvector. Now our inequality is a general inquality from per-

turbation theory. When we use the bound provided by Lounici and Koltchinskii to |E|, the

inequality 1.3.1 yields

|∆~µi| ≤ C
σ1

√
σ2

1 + σ2
2 + . . .+ σ2

p
√
n · gapi

, (1.3.2)

where C is a universal constant.

In the applied situations, we have in mind that the above inequality is not always opti-

mal. Why? Typically σ1 is of order O(
√
p), which is about O(

√
n) since in big data we of-

ten assume hand p of same order. Due to the normalization, we have 1 = σ2
1 +σ2

2 + . . .+σ2
p .

So the bound in inequality 1.3.2 is of order

O(σ1/gapi). (1.3.3)

In most real data application the first eigenvalue is gigantic, and then you have only a few

eigenvalues which detach, but many eigenvalues which are structural are to be considered
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of order O(1).

That means if you could increase things, then they would sometimes grow linearly in

p, but often you can’t see so even though theoretically these quantities would grow linearly

with p, in reality we can not increase p. and hence have to think of some of the structural

eigenvalues as being best modeled by O(1). For example, in text classification. Take X

to be the matrix documents by words. So, the i, j-the entry would be 1 if the j-th word

appears in the i-th document and zero otherwise. Now, once you have all your vocabulary,

you can not increase it. So if p is the number of words,you may not be able to increase.

But say you analyze E-mails. You can probably increase their number. Often times in the

applications we have in mind, we have values of 2 or 3 for eigenvalues which are important

structurally.

In that case the ratio 1.3.3 is to be considerd of same order as σ1 which typically would

be order O(
√
p). In other words, in that case, we have no useful bound in 1.3.2. The goal

now roughly speaking is to improve inequality given in 1.3.2 by having σ1 being replaced

by σ̂i, then we get the inequality:

|∆~µi| ≤ C
σ̂i

√
σ2

1 + σ2
2 + . . .+ σ2

p
√
n · gapi

. (1.3.4)

In that case, it will be possible to get |∆~ui| to be small with just having the ratio n
p

increase by a constant factor. (For this, note that gapi and σ2
i have the same order. This is

the case when we assume that σ̂2
i is at least twice σ2

k.)

Let us see how we can prove inequality 1.3.4. Let ~u+ ∆~µi be an eigenvector of Σ +E

with eigenvalue σ̂2
i . Again Σ is the p × p covariance matrix whilst Σ + E is the estimated

covariance matrix Σ̂. As before ∆~µi is in the span of the eigenvectors of Σ which are

“noise”. That is, with index≥ k which the eigenvectors are ordered according to decreasing

eigenvalue. Furthermore ~µ is the projection onto the orthogonal complement to the span

generated by the “noise” eigenvalue. Hence, ~µ has only the first k− 1 entries which can be
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non zero. Since it is an eigenvector, we have:

(Σ + E)(~u+ ∆~µi) = σ̂2
i · (~u+ ∆~µi),

which yields:

(Σ− I · σ̂2
i + E)(∆~µi) = −~uΣ + σ̂2

i · ~u− E~u. (1.3.5)

Now, when we apply the canonical orthogonal projection along the first k − 1 coordinates,

the terms −~uΣ and σ̂2
i · ~u disappear. This is the same as taking the system of p equations

given by 1.3.5 and leaving out the first k − 1 equations. This yields (similarly to 1.3.35)

∆~µi = D0.5
i ·

(
I−D0.5

i EiD
0.5
i

)−1 ·D0.5
i ·



Ek1 Ek2 . . . Ek(k−1)

E(k+1)1 E(k+1)2 . . . E(k+1)(k−1)

...
... . . . ...

Ep1 Ep2 . . . Ep(k−1)


~u,

(1.3.6)

where Ei designate the square (p− k+ 1)× (p− k+ 1) submatrix of E, which is obtained

by deleting the first k − 1 rows and the first k − 1 columns:

Ei := E[k : p, k : p] =



Ekk Ekk+1 . . . Ekp

Ek+1,k Ek+1,k+1 . . . Ek+1,p

...
... . . . ...

Epk Epk+1 . . . Epp


Finally, we have Di is the square matrix given by
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Di =



1
λk−σ̂2

i
0 0 . . . 0

0 1
λk+1−σ̂2

i
0 . . . 0

0 0 1
λk+2−σ̂2

i
. . . 0

...
...

... . . . ...

0 0 0 . . . 1
λp−σ̂2

i


.

Note that D0.5
i designates a square root of the matrix Di, that is we replace each diagonal

entry by its square root, even if the square root is a complex number.

Now, the first thing we want is to get

D0.5
i EiD

0.5
i (1.3.7)

to be small. Let Σi be obtained from the diagonal covarianc matrix Σ by deleting the first

k − 1 rows and the first k − 1 columns. Recall that ~Y is a vector of independent normal

entries where the j-th entry has variance σ2
j = λj . Then we can write the random row

vector Y as ~Y = ~NΣ0.5, where ~N designates a row vector of length p with independent

standard normal entries. If Y designates a matrix of dimension n× p with i.i.d. rows each

having distribution like ~Y , then our estimated covariance matrix is

Σ̂ =
Y t · Y
n

=
Σ0.5N ·N tΣ0.5

n
,

where N is a n× p matrix with standard normal entries.

So, for the covariance error matrix we get

E = Σ̂− Σ =
Σ0.5(N ·N t − I)Σ0.5

n
. (1.3.8)
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We can now apply formula 1.3.8 to the expression D0.5
i EiD

0.5
i to get that:

D0.5
i EiD

0.5
i =

D0.5
i Σ0.5

i (N ·N t − I)iΣ
0.5
i D0.5

i

n
, (1.3.9)

where Σ0.5
i is obtained by deleting the first k−1 rows and columns from Σ0.5, (N ·N t−I)i

is obtained from (N ·N t− I) by the same process. So the matrix on the right side of 1.3.9,

is an estimated covariance matrix, but with coefficients σj being replaced by σj√
σ2
j−σ̂2

i

, and j

ranging over k, k+ 1, . . . , p. Hence we can apply the formula of Koltchinskii and Klounici

to find that, with high probability, the spectral norm:

|D0.5
i EiD

0.5
i | ≤

C√
n
·max
j≥k

σj√
|σ2
j − σ̂2

i |
·

√
Σj≥k

σ2
j

|σ2
j − σ̂2

i |
, (1.3.10)

where again C > 0 is their universal constant. Now we assume that σ̂2
i ≥ 2σ2

k, then

max
j≥k

σj√
|σ2
j − σ̂2

i |
≤ 1.

So if we want the right side of 1.3.10 to be less than a quantity ε, we just need the following

inequality to hold:
√
n ≥ C

ε
·

√
Σj≥k

σ2
j

|σ2
j − σ̂2

i |
. (1.3.11)

Now we just have one more thing to bound in order to get ∆~µi small according to 1.3.6.

Note that we have:

D0.5
i ·



Ek1 Ek2 . . . Ek(k−1)

E(k+1)1 E(k+1)2 . . . E(k+1)(k−1)

...
... . . . ...

Ep1 Ep2 . . . Ep(k−1)


= (1.3.12)

D0.5
i Σ0.5

i

((
N tN − I

)
[k:p,1:(k−1)]

)
· diag(σ1, σ2, . . . , σk−1)) (1.3.13)
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where the restriction (N tN − I)[k:p,1:(k−1)] is obtained from the matrix N tN − I by

taking the first k−1 columns and the last k rows. Thus we have that 1.3.13 is the restriction

of an estimated covariance matrix, and hence we could bound it using the Koltschinkii and

Lounici formula. That estimated covariance matrix is equal to

diag(~c) ·
(
N tN − I

)
· diag(~c), (1.3.14)

where ~c is the concatenation of the two vectors (σ1, σ2, . . . , σk−1) and the vector obtained

from taking the diagonal of D0.5
i Σ0.5

i . Also, we should mention that diag(~c) refers to the

diagonal matrix, with ~c as diagonal. Now, you get 1.3.13 from the estimated covariance

matrix 1.3.14 by deleting the first k − 1 rows and the columns k to p. So a sum matrix has

a smaller l2 norm than the full matrix. Thus we can bound 1.3.14 using the koltschinskii

and lounici formula and this gives us a bound on 1.3.13. That bound would be:

C max
j
cj

√∑
j c

2
j

√
n

, (1.3.15)

where ~c = (c1, c2, . . . , cp). Now, maxj cj = σ1(Recall for this that typically gapi > 1, or at

least that order of magnitude, which makes σ1 = c1 be the largest term of the vector ~c). So

in that bound we would have to use σ1 instead of σ̂i, which would be needed to have our

formula be useful in many cases (Assuming σ̂i being of smaller order than σ1).

Here is what we do: so far we had the first k − 1 equations being the structural ones

and we left them out and only used the other equations to obtain 1.3.6 from 1.3.5. This

time we will leave out much less equations. For this, k1 > k2 are two integers so that:

k1 := max{j|σ2
j > 2σ̂2

i } and k2 := min{j|σ2
j j < σ̂2

i /2}.

Note that since we assume σ̂2
i > 2σk, we have that k2 ≤ k. So this time from the system

of equations 1.3.5 we keep the first k1 and then those with index large than k2, that is the last

p− k2− 1. This time ∆~µi is defined to be orthogonal projection of the eigenvector in 1.3.5

along the subspace generated by the subset of canonical vectors {~ej|j ∈ [k1, k2]}, where
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~ej refers to the k-th canonical vector. Similarly, vector ~u is now contained in subspace

generated by the subset of canonical vectors {~ej|j~[k1, k2]}.

We obtain then the same equation 1.3.35, but where Ei is the sub-matrix obtained from

E by keeping the first k1 rows and columns as well as those with index larger than k2, as

well as Di and Σi.

Now, instead of having to bound 1.3.12, we will have to bound:

D0.5
i ·



E1k1 E1(k1)+1 . . . E1(k2−1)

E2k1 E2(k1+1) . . . E2(k2−1)

...
...

...
...

Ek1k1 Ek1(k1+1) . . . Ek1(k2−1)

Ek2k1 Ek2(k1)+1 . . . Ek2(k2−1)

E(k2+1)k1 E(k2+1)(k1+1) . . . E(k2+1)(k2−1)

...
...

...
...

Epk1 Ep(k1+1) . . . Ep(k2−1)



= (1.3.16)

D0.5
i Σ0.5

i

((
N tN − I

)
[1:k1]U [k2:p],[k1:k2]

)
· diag(σk1 , σk1+1, . . . , σk2)) = (1.3.17)

D0.5
i Σ0.5

i

((
N tN − I

)
[1:k1]U [k2:p],[k1:k2]

)
· diag(

σk1
σ̂i
,
σk1+1

σ̂i
, . . . ,

σk2
σ̂i

) · σ̂i. (1.3.18)

By our definition, we have
σj
σ̂i
≤ 2 (1.3.19)

for all j ∈ (k1, k2), We can use this to bound expression 1.3.18. Expression 1.3.18 is a

sub-matrix of an estimated covariance matrix times σ̂i, that estimated covariance matrix is

similar to 1.3.14 with ~c = (c1, c2, . . . , cp) different: cj :=
σj√
|σ2
j−σ̂2

i |
for j /∈ [k1, k2], and

cj :=
σj
σ̂i

for j ∈ [k1, k2].

Thus we get the upper bound 1.3.15. Note that this time maxj cj ≤ 2, hence by plug-
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ging into the bound 1.3.15, we get that:

D0.5
i E[1:k1]∪[k2:p],[k1:k2] ≤ 2C

√∑
j c

2
j

√
n
· σ̂i

= 2C
σ̂i√
n

√√√√ ∑
j∈[k1,k2]

σ2
j

σ̂2
i

+
∑

j /∈[k1,k2]

σ2
j

|σ2
j − σ̂2

i |

≤ 2C
σ̂i√
n

√√√√ ∑
j∈[k1,k2]

2 +
∑

j /∈[k1,k2]

σ2
j

|σ2
j − σ̂2

i |
,

where the last inequality is obtained by 1.3.19.

Note that for j /∈ [k1, k2], we have |σ2
j − σ̂2

i | ≥ 0.5 · gapi, hence

2C
σ̂i√
n

√√√√ ∑
j∈[k1,k2]

2 +
∑

j /∈[k1,k2]

σ2
j

|σ2
j − σ̂2

i |
≤ 2C

σ̂i√
gapi
√
n

√ ∑
j∈[k1,k2]

2 · gapi +
∑

j /∈[k1,k2]

2σ2
j

≤ 16C
σ̂i√

gapi
√
n

√∑
j∈[1,p]

σ2
j ,

where the very last inequality above is obtained by the fact that 4gapi ≥ σ2
j for all j ∈

[k1, k2].

Thus we have:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D0.5
i ·



E1k1 E1(k1)+1 . . . E1(k2−1)

E2k1 E2(k1+1) . . . E2(k2−1)

...
...

...
...

Ek1k1 Ek1(k1+1) . . . Ek1(k2−1)

Ek2k1 Ek2(k1)+1 . . . Ek2(k2−1)

E(k2+1)k1 E(k2+1)(k1+1) . . . E(k2+1)(k2−1)

...
...

...
...

Epk1 Ep(k1+1) . . . Ep(k2−1)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ 16C
σ̂i√

gapi
√
n

√∑
j∈[1,p]

σ2
j ,

(1.3.20)
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where gapi = |σ̂2
i − σ2

k|.

So, let us assume ε ∈ [0, 0.5]. Then, we have

1

1− ε
= 1 + ε+ ε2 + ε3 + . . . = 1 + ε(1 + ε+ ε2 + . . .) ≤ 1 + 2ε ≤ 2. (1.3.21)

Assume that

|D0.5
i EiD

0.5
i | ≤ ε, (1.3.22)

where ε ∈ [0, 0.5]. Then because of 1.3.21, we have

|I −D0.5
i EiD

0.5
i |−1 ≤ 2. (1.3.23)

From equation 1.3.6, and using 1.3.20, we get the following inequality:

|∆~µi| ≤ |D0.5
i | ·

∣∣∣(I−D0.5
i EiD

0.5
i

)−1
∣∣∣ 16C

σ̂i√
gapi
√
n

√∑
j∈[1,p]

σ2
j · |~u|.

The last inequality above together with the fact that by definition: |D0.5
i | ≤ 1√

Gapi
, and

assuming that 1.3.23 holds, implies that

|∆~µi| ≤ 32C · σ̂i√
n

√∑
j∈[1,p] σ

2
j

gapi
. (1.3.24)

We also used the fact that by definition |~u| ≤ 1.

Now we have only one problem left: the bound 1.3.24 was obtained assuming 1.3.23.

So, we need to see when 1.3.23 holds, or actually we need a bound of the type 1.3.22, for

ε ∈ [0, 0.5].

To obtain this, first note that since by definition σ̂2
i > 2σ2

k, and since gapi = σ̂2
i − σ2

k,
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we find σ̂2
i

gapi
≤ 2, applied to 1.3.24, leads to

|∆~µi| ≤ 32C ·
√

2√
n

√∑
j∈[1,p] σ

2
j

√
gapi

(1.3.25)

Next we rewrite inequality 1.3.10 considering that this time we have j in the integer set

J := [1, k1] ∪ [k2, p]. We obtain:

|D0.5
i EiD

0.5
i | ≤

C√
n
·max
j∈J

σj√
|σ2
j − σ̂2

i |
·

√
Σj∈J

σ2
j

|σ2
j − σ̂2

i |
, (1.3.26)

which since in the current case the maximum on the right side of 1.3.26 is less than 2, we

get

|D0.5
i EiD

0.5
i | ≤

2C√
n
·

√
Σj∈J

σ2
j

|σ2
j − σ̂2

i |
≤ 2C√

n
·

√
2Σjσ2

j

√
gapi

. (1.3.27)

For the very last inequality above, we used the fact that 2|σ2
j − σ̂2

i | ≥ gapi for all j ∈ J .

Now, considering the bound on the right most side of 1.3.27, and note that it is bounded by

the right side of 1.3.24. We assume σ̂i > 1, assume that 0.5 > ε > 0, if right side of 1.3.24

is less than ε, then by 1.3.27 we have

|D0.5EiD
0.5| ≤ ε ≤ 0.5,

and hence we get 1.3.23 to hold, which implies that the bound 1.3.24 holds. To summarize:

if the expreession on the right side of 1.3.24 is less or equal to 0.5, than inequality 1.3.24

holds. So, we don’t have to worry that inequality 1.3.24 only holds when 1.3.23 holds.

Because, when the bound on the right side of inequality 1.3.24 is small, then automatically

inequality 1.3.24 is also true. Hence, inequality 1.3.24 holds as soon as the expression on

the right side is less than 0.5.
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1.3.2 Finite dimension case: reconstruct a single eigenvector

Take σ2
i to satisfy Condition 1.1.1 and write λi = σ2

i and λi + ∆λi = σ̂2
i , as well as

~µi and ~µi + ∆~µi for eigenvectors of Σ and Σ̂ that are associated with these eigenvalues.

Furthermore, we take ~µi to be a unit vector, and ∆~µi to be orthogonal to ~µi, so that ~µi+∆~µi

is not a unit vector. We denote the associated unit vector by

~̂µi =
~µi + ∆~µi
‖~µi + ∆~µi‖

,

but find it easier to work with ~µi+∆~µi, because the i-th component of the latter is zero. We

may thus think of ∆λi and ∆~µi as the perturbations to the eigenvalue λi and eigenvector ~µi

caused by adding the estimation error E to the ground truth covariance Σ = COV[ ~X].

Anderson [4] showed that for fixed p and n going to infinity,

∆~µi ≈
σi√
n
Zi, (1.3.28)

where Zi = [Z1i, . . . , Zpi] is a random vector of size p with coefficients

Zji =


σj

σ2
j − σ2

i

Nji, (j 6= i),

0, (j = i),

and where the random variables Nji converge (jointly, in distribution) to independent stan-

dard Gaussians when n → ∞. Thus, to guarantee that ‖∆~µi‖ < ε with high confidence,

we need σi‖Zi‖/
√
n < ε with high probability. Assuming the variables Nij to be close to

i.i.d. standard Gaussians and the approximation (1.3.28) to hold, one finds

‖∆~µi‖ ≈
σi√
n
×

√√√√∑
j 6=i

σ2
j

(σ2
j − σ2

i )
2
,
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which would imply that ‖∆µi‖ < ε for

√
n >

C

ε
× σi ×

√√√√∑
j 6=i

σ2
j

(σ2
j − σ2

i )
2
,

with C depending on the required confidence level. This bound would be of smaller order

than (1.1.4), but unfortunately, the more stringent condition (1.1.4) is necessary for the

approximation (1.3.28) to hold for n large enough independently of p.

Let us gain a quick oversight of how (1.3.28) arises in the finite-dimensional case, and

how the argument has to be amended in the infinite-dimensional case: We have

Σ ~µi = λi~µi, (1.3.29)

Σ̂ [~µi + ∆~µi] = (λi + ∆λi)[~µi + ∆~µi]. (1.3.30)

Subtracting (1.3.29) from (1.3.30) and using Σ̂ = Σ + E yields

[Σ− (λi + ∆λi) Ip] ∆~µi + E∆~µi = −E~µi + ∆λi~µi (1.3.31)

where Ip is the p × p identity matrix. Now, in the finite-dimensional case where p is fixed

and n tends to infinity, E, ∆~µi and ∆λi are all of order 1/
√
n, hence the terms ∆λi∆~µi

and E∆~µi are of the smaller order 1/n and can be neglected in the asymptotics, so as to

arrive at the approximation

[Σ− λi Ip] ∆~µi ≈ −E~µi + ∆λi~µi (1.3.32)

Using the facts that Σ = Diag(λj), ~µi is the i-th unit vector and that ~µi and ∆~µi are

mutually orthogonal by construction, the i-th equation of system (1.3.32) yields

∆λi ≈ Eii,
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and dividing the j-th equation of the system (1.3.32) by λj − λi (j 6= i) yields

∆~µi ≈ −



E1i

σ2
1 − σ2

i
E2i

σ2
2 − σ2

i
...

E(i−1)i

σ2
i−1 − σi

0

E(i+1)i

σ2
i+1 − σ2

i
...
Epi

σ2
p − σ2

i



=
−σi√
n



σ1

σ1
1 − σ2

i

N1i

σ2

σ2
2 − σ2

i

N2i

...
σi−1

σ2
i−1 − σi

N(i−1)i

0

σi+1

σ2
i+1 − σ2

i

N(i+1)i

...
σp

σ2
p − σ2

i

Npi



, (1.3.33)

where

Nst :=

√
n

σsσt
Est (1.3.34)

for all s, t ∈ 1, . . . , p with s 6= t. The random variables N1i, N2i, . . . , Npi typically con-

verge in joint distribution to i.i.d. standard Gaussians.

1.3.3 Infinite dimension case: reconstruct a single eigenvector

In contrast, in the infinite-dimensional case the terms ∆λi∆~µi and E∆~µi can no longer be

asymptotically disregarded, as p is also allowed to tend to infinity at up to a linear rate in

n. Let Pi denote the orthogonal projection into the orthogonal complement ~µ⊥i of ~µi, and
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define the (p− 1)× (p− 1) diagonal matrix Di as follows:

Di =



1
λ1−(λi+∆λi)

0 . . . 0 0 . . . 0

0 1
λ2−(λi+∆λi)

. . . 0 0 . . . 0

...
... . . . ...

... · · · ...

0 0 . . . 1
λi−1−(λi+∆λi)

0 . . . 0

0 0 . . . 0 1
λi+1−(λi+∆λi)

. . . 0

...
... · · · ...

... . . . ...

0 0 . . . 0 0 . . . 1
λp−(λi+∆λi)



.

After removing the i-the equation from (1.3.31), multiply by Di and solving for ∆~µi so

as to get:

∆~µi = (Ip−1−DiEi)
−1Di



E1i

E2i

...

E(i−1)i

E(i+1)i

...

Epi



= − σi√
n

(Ip−1−DiEi)
−1



σ1
σ1
1−σ2

i−∆λi
N1i

σ2
σ2
2−σ2

i−∆λi
N2i

...

σi−1

σ2
i−1−σ2

i−∆λi
N(i−1)i

σi+1

σ2
i+1−σ2

i−∆λi
N(i+1)i

...

σp
σ2
p−σ2

i−∆λi
Npi


(1.3.35)

where Ei is the (p − 1) × (p − 1) matrix obtained from E by deleting the i-th row and

column. Here, we commit a small language abuse, sincer in 1.3.35 the vector ∆~µi is

taken to be (p − 1)-dimensional. So, if we wanted to be very precise, we should replace

in 1.3.35 ∆~µi by Pi(∆~µi), where Pi is the orthogonal projection along the i-th canonical

basis-vectors. In other words, the vector ∆~µi in 1.3.35 is obtained from the previous ∆~µi

by simply removing the i-entry (which is 0 anyhow). Also, Nst is defined as in (1.3.34).

Comparing (1.3.35) with formula (1.3.33) from the finite-dimensional case, we note the
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following:

Firstly (1.3.35) is an exact formula, whilst (1.3.33) is an approximation.

Secondly, instead of the term σ2
i in the finite dimensional formula, it is the term σ2

i +

∆λi in the denominators on the r.h.s. of (1.3.35). If we take a fixed distribution for the

eigenvalues σ2
j , and let n and p go to infinity at the same time, then the difference ∆λεn

converges to a non-zero value for any ε ∈ (0, 1).

We are going to replace σ2
i + ∆λi by the eigenvalue among the σ2

j ’s which comes the

closest, that is σ2
i∗ . The lemma below shows that any upper bound we have for ∆~µi based

on formula 1.3.35, when we replace λ2
i + ∆λi by σ2

i∗ , we need to multiply the bound by at

most a factor 2.

Lemma 1.3.1. For all j 6= i∗, it is true that

1∣∣σ2
j − σ2

i −∆λi
∣∣ ≤ 2∣∣σ2

j − σ2
i∗

∣∣ , (1.3.36)

where i∗ is the random index j for which |σ2
j − σ2

i − ∆λi| gets minimized. So, in other

words, it is the index of the σ2
j which comes closest to σ2

i −∆λi.

Proof. By definition of i∗ we have that

|σ2
i∗ − (λi + ∆λi)| ≤ |σ2

j − (λi + ∆λi)|, ∀j 6= i,

and

1∣∣σ2
j − σ2

i −∆λi
∣∣ =

∣∣σ2
j − (λi + ∆λi)− [σ2

i∗ − (λi + ∆λi]
∣∣∣∣σ2

j − (λi + ∆λi∗)
∣∣ × 1∣∣σ2

j − σ2
i

∣∣ ≤ 2∣∣σ2
j − σ2

i∗

∣∣ ,
as claimed.

Thirdly, and most significantly, the term DiE appears in the r.h.s. of (1.3.35). Let Ei be

the matrix obtained by deleting the i-th row and column of E. If it is possible to prove that
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|DiEi| � 1, then by the Neumann Series Formula,

(Ip−1−DiEi)
−1 = Ip−1 +DiEi + (DiEi)

2 + (DiEi)
3 + . . . , (1.3.37)

we can argue along the lines of the finite-dimensional case. However, instead of bounding

|DiEi|, we will bound

Λi :=
∣∣ |Di|0.5Ei|Di|0.5

∣∣ , (1.3.38)

where |Di| denotes the matrix obtained by replacing the coefficients ofDi by their absolute

values. Note that there exists a diagonal matrix J with diagonal coefficients±1, depending

on the sign of the corresponding coefficient of Di, such that

(DiEi)
k = J |Di|0.5 ·

(
|Di|0.5Ei|Di|0.5J

)k · |Di|−0.5J.

This implies that if Λi ≤ ε ∈ (0, 1), then the Neumann series (1.3.37) converges and

∣∣DiEi + (DiEi)
2 + (DiEi)

3 + . . .
∣∣ ≤ |D0.5

i | ·
ε

1− ε
· |D−0.5

i |. (1.3.39)

Now, with the convergence of this Von Neumann series, we get that equation 1.3.35 can

be rewritten as

∆~µi = − σi√
n
|Di|0.5J

(
Ip−1 +

∞∑
k=1

(
|Di|0.5Ei|Di|0.5

)k
J

)
~Wi, (1.3.40)

where :

~Wi =

(
σ1√
|σ1

1 − σ̂2
i |
N1i, . . . ,

σi−1√
|σ2
i−1 − σ̂2

i |
N(i−1)i,

σi+1√
|σ2
i+1 − σ̂2

i |
N(i+1)i, . . . ,

σp√
|σ2
p − σ̂2

i |
Npi),

and σ̂2
i = σi + ∆λi.
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Now, if Λi ≤ ε < 1, Equation 1.3.40 implies:

|∆~µi| ≤
σi∗√
n

1√
spectral gapi∗

(
1 +

ε

1− ε

)
· | ~Wi|. (1.3.41)

where we used the following inequality:

|Di| ≤
√

2

spectral gapi∗
.

In order to have this last inequality above hold, we replace the expression σ2
i + ∆λi by the

closest σ2
j in Di and incur at most a factor 2 according to Lemma 1.3.1. We do the same

replacement in the wector ~Wi and obtain a vector ~Vi (see 1.4.1). In Lemma 1.4.1 below,

we obtain a bound for the Euclidian norm of ~Vi, which for ~Wi translates into the following

likely bound:

| ~Wi| ≤ C ln(p)

√√√√∑
j 6=i∗

σ2
j

|σ2
j − σ2

i∗|
(1.3.42)

We can now replace |Wi∗| in 1.3.41 by the right side of inequality 1.3.42, with condition

1.1.4, we obtain the following:

|∆~µi| ≤ ε ·
(

1 +
ε

1− ε

)
. (1.3.43)

Our main result on single eigenvector reconstruction, is that the bound 1.3.43 follows

with high probability from inequality 1.1.4. This main result is stated precisely below in

Theorem 1.5.3.

We have explained somewhat informally so far, how inequality 1.3.43 follows from two

things: the bound on Λi and the bound on |~Vi|. Below, in Lemma 1.4.2 we will show this

one more time, but more in detail. The high probability of the bound used for the norm |~Vi|

is proven in Lemma 1.4.1 and 1.5.1.

One more thing needed: to bound Λi with high probability. This is done in Lemma

1.5.2 below. For the proof of that lemma, we employ the already mentionned bound on
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the spectral norm of the error in covariance matrix estimation developed Koltschinksii and

Klounici’s recent papers [1]. Their formula is applicable to (1.3.38), as |Di|0.5Ei|Di|0.5 has

an interpretation as covariance estimation error matrix for a multivariate Gaussian random

vector with zero mean, independent coefficients, and whose j-th coefficient has standard

deviation
σj√∣∣σ2

j − σ2
i −∆λi

∣∣ , (j 6= i∗). (1.3.44)

The bound on Λi is thus given by (1.1.2) and with σj replaced by expression (1.3.44),

and the requirement that this bound be smaller than ε ∈ (0, 1) yields (1.1.4). To see why

this is so, hold i fixed and let j vary. Then, the expression 1.3.44 decreases in value as σ2
j

goes away from σ2
i −∆λi. This implies that the maximum of expression 1.3.44 (for fixed

i) is found in the σ2
j closest to σ2

i −∆λi either to the right or to the left. So, that maximum

is then of order σi∗√
spectral gapi∗

. Which leads to formula 1.1.4.

1.3.4 Which eigenvectors should we compare?

Note that our formula 1.3.35 has been derived for comparing the i-th eigenvector of the

original covariance matrix to the i-th eigenvector of the estimated covariance matrix. We

had mentionned that we would numerate the eigenvalues in decreasing order. However,

we have not used this. In other words, formula 1.3.35 holds for any numeration of the

eigenvalues and their corresponding eigenvectors. This is to say, that suprisingly enough,

Formula 1.3.35 can be used, for comparing any pair of eigenvectors where one is from the

original covariance and the second is from the estimated covariance. Thus formula 1.3.35

can be written out for comparing the i1-th eigenvector of the original covariance matrix,

with the i2-th eigenvector of the estimated one for any pair (i1, ii) ∈ {1, 2, . . . , p}2. In this

sense we can write ∆~µi1,i2 , for the difference between the i1-th eigenvector of the original

covariance matrix, and the i2-th eigenvector of the estimated covariance. Note that, with

that notation, we have to replace all the i’s in formula 1.3.35 by i1, except in one place:
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the eigenvalue of the eigenvector of the estimated covariance matrix to which we wish to

compare the original eigenvector, should be i2.

This means that σ̂2
i = λ̂i = σ2

i +∆λi has to be replace by σ̂2
i2

= λ̂i2 . And this is the only

place, where in formula 1.3.35 will appear! It is quite surprising that formula 1.3.35 mainly

depends on i1 and only in one place does the index i2 appear! But, then again, formula

1.3.35 will not work unless we take the eigenvalue of the original covariance matrix, which

comes closest to the eigenvalue of the estimated covariance matrix. Because, otherwise

there is potentially a enormous term in the sum:

∑
j 6=i1

1

σ2
j − λ̂i2

=
∑
j 6=i1

1

σ2
j − σ̂2

i2

. (1.3.45)

that is the term for the index j for which σ2
j comes closest to λ̂i2 . By taking i1 to be the

index j for which σ2
j comes closest to σ̂i2 the largest term in the sum 1.3.45 gets kicked

out. This is what we are going to do. That is we take i = i2 where i is a non-random

given integer. Then for i1 we take i∗, that is the index, by taking the index i1 so that for the

compared eigenvalues comes closest to the estimated eigenvalue, (assuming that the values

of σ2
j are close to equidistant around σ2

i1
), the smallest term in the sum 1.3.45, will be of

linear order in O( 1
spectral gapi1

) and not otherwise uncontrollably large.

Without this choice of i1, formula 1.3.35 is not useful, because DiEi will not have a

small norm. So, in what follows, i will refer to the index of the estimated eigenvalue σ̂2
i

which we consider. Then i1 is the index of the eigenvalue of the orginal covariance matrix,

which comes closest to σ̂2
i , that is

i1 = i∗.

This means that with this new notation, our original ∆~µi is equal to:

∆~µi := ∆~µi∗,i.
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In formula 1.3.35, the index i has to be replaced everywhere else by i∗, except for σ2
i +

∆λi = σ̂2
i , where we keep σ̂2

i So, the new formula 1.3.35 can be written as:

∆~µi = − σi
∗
√
n

(Ip−1−Di∗ Ei∗)
−1



σ1
σ1
1−σ̂2

i
N1i∗

σ2
σ2
2−σ̂2

i
N2i∗

...
σi∗−1

σ2
i∗−1
−σ̂2

i
N(i∗−1)i∗

σi∗+1

σ2
i∗+1
−σ̂2

i
N(i∗+1)i∗

...

σp
σ2
p−σ̂2

i
Npi∗



(1.3.46)

Again, we take ∆~µi to be (p − 1)-dimensional. Later in the formula above, we replace σ̂2
i

by σ2
i∗ and incur whilst doing so at most a factor 2 in the norm, as explained in Lemma

1.3.1.

1.3.5 How our bound can be used by practitioners.

Our bound 1.1.4 is given as a probabilistic bound. Indeed in it you have the random index

i∗. In real life data, due to the concentration of measure, i∗ has a fluctuation which is of

smaller order than its average size. By this, we mean that typically E[i∗] is of larger order

than
√
V AR[i∗]. So if the map: i 7→ spectral gapi is quite regular (meaning that if

you change i only microscopically, then the order of magnitude of spectral gapi remains

about the same), then the bound given in 1.1.4 is also to be considered largely non-random,

despite the i∗ in it being random. This is to say that the bound’s expected value is of

larger order than its fluctuation, given regularity of the spectral gap function. Note that

the formula on the right side of 1.1.4 only depends on the ground truth eigenvalues (that

is the σ2
j ’s) and on i∗. The σ2

j ’s are not known at prior. But, there are recovery algorithms

for the true spectrum for big data, which work much faster than the time it would take to

reconstruct all the eigenvectors.
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In such a situation, we don’t want to simulate the data by using the ”reconstructed true

spectrum” to determine approximately the value of i∗. Instead, here is what we do:

• We propose that practitioners use our bound 1.1.4 as non-random bound by simply

replacing the random index i∗ by i, where i is the index of the eigenvector they wish

to reconstruct.

• In our simulation, when we use the bound 1.1.4 with i∗ replaced by i, we always

get the correct order of magnitude for the sample size needed to reconstruct the i-th

eigenvector as can be seen in table 1.2 below. (We took the spectral gap: spectral gapi

to be quite regular as a function of i. Otherwise, this might not work.)

See the result of these simulation below in table 1.2.

For these simulations we took a data set of 800 stocks and 2000 days of daily returns.

We recover the spectrum of ”ground-truth” covariance matrix using our algorithm. (One

can check that one gets close to the true ground covariance spectrum by re-simulating using

that new-found spectrum, and checking that it produces the same spectrum in the sample

covariance from the one observed in the original sample covariance from data. The recon-

structed “ground-truth” spectrum used to re-simulate the data will be very regular. That

is to say that microscopically it seems to tend to behave like a local renewal process. Of

course, we can not be sure about the regularity of the “real ground truth” spectrum. Indeed,

if we have to spectrum which are very identical macroscopically, but microscopically they

are different, then we might not be able to tell. Indeed, both spectral will generate approx-

imately the same observable spectrum in the sample covariance matrix. We believe that

the true ground truth spectrum is somewhat regular however. the reason is that, in real life

there are always some noises which tend to smoother things out. )

Having recovered the “ground-truth” covariance’s spectrum, we use it to simulate data

and check how big the sample size n needs to be in order to be able to recover the i-

th eigenvalue. For using the bound 1.1.4 in practice, we leave out the logarithmic term,
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replace i∗ by i, and put the constant C equal to 1. The new formula is then:

nour =
σ2
i

spectral gapi

∑
j 6=i

σ2
j

|σ2
j − σ2

i |
. (1.3.47)

Then, we also calculate the bound from 1.1.3:

n1.2 =
σ2

1

(spectral gapi)
2
·
∑
j 6=i

σ2
j .

In what follows, ~µi is the i-th unit eigenvector of the true covariance matrix and ~̂µi is the

i-th unite eigenvector of the estimated covariance matrix. The eigenvector are numbered in

decreasing order of their corresponding eigenvalues. Then how close these two are to each

other can be seen in the value of the dot product: ~̂µi · ~µi. If that product is close to one in

absolute value, then our estimate of the i-th eigenvector is good.

In the next table below (Table.1.2), in every row, ~̂µi · ~µi is simulated for three different

sample sizes, which are: 0.5nour, nour and 2nour. We see that in each case (depending on

p and i), the value nour is indeed the right order of magnitude for where the estimated i-th

unit eigenvector starts getting close to the i-th eigenvector. In our simulation, nour has been

verified that it always gives the right order of magnitude of where the estimated and the

ground truth i-th eigenvectors get close. We can see that in each case, the bound n1.2 is

completely off, sometime by an order of a million! In other words, for ε < 1, requesting:

|E|
spectral gapi

< ε, (1.3.48)

replacing |E| by the formula 1.1.2 of Koltchinskii and Lounici, gives a bound on n which

is very much not tight, except for first eigenvector which in general is irrelevant! That is:

the sample size needed to reconstruct a given eigenvector of the ground truth covariance

matrix, is well approximated according to our finding by nour, but not by n1.2.

The next question is: why does the bound nour work so well with real data even though
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Table 1.2: Simulation of 800 stocks data set of daily returns
p i nour bound nbound 1.2 ~µi · ~̂µi(0.5nour) ~µi · ~̂µi(nour) ~µi · ~̂µi(2nour)

800 10 2458 2740 · 106 0.56 0.78 0.93
800 5 651 1.1 · 106 0.79 0.9 0.95
800 30 185000 3.8 · 1012

200 15 131000 147 · 106 0.5 0.6 0.71

we replace the random i∗ by i, whilst our theoretical proof is for i∗?

We have following three reasons:

• Regularity of σ2
i paired with lower order of the fluctuation of i∗. By this, we mean

that, if we vary i in the neighborhoodE[i∗]−const
√
V AR[i∗], E[i∗]+const

√
V AR[i∗],

then the order of spectral gapi remains about the same, for a integer constant

const > 2, which is not too small. This insures that, in practice, the bound 1.1.4

can be treated as non-random, despite it containing the random i∗.

• Assuming that the σ2
i ’s are in decreasing order σ2

1 > σ2
2 > . . . > σ2

p . The map

i 7→ nour =
σ2
i

spectral gapi

∑
j 6=i

σ2
j

|σ2
j − σ2

i |
(1.3.49)

should be increasing in i. According to our experience, this condition is almost

always satisfied with real life data provided the regularity of the spectral gap as a

function of the index i. What properties of the spectrum make this condition be

satisfied? Roughly speaking we can say that it should be satisfied when there is

regularity and enough convexity of the spectrum i 7→ σ2
i . To have a heuristic of why

this holds, note that nour can be roughly approximated as

i 7→ σ4
i

(spectral gapi)
2
. (1.3.50)

(For this we assume regularity, so that the σ2
j ’s are close to being on a ladder for

j close to i. Like if they would be generated locally by a renewal process). So if
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i 7→ σ2
i is convex enough, 1.3.50 is going to be increasing, hence 1.3.49 should

also be increasing. (However when i 7→ σ2
i is strictly linear, then 1.3.50 becomes

decreasing and not increasing!)

• The larger eigenvalues (the only ones we want to reconstruct) get over-estimated (due

to min, max property) meaning that typically σ2
i ≤ σ̂2

i , for those indexes i which we

want to reconstruct the corresponding eigenvector. Again, this condition is usually

met in real-life data according to our experience. But it is easy, to construct coun-

terexamples like step functions, where every step is part over and under estimated at

the same time.

These three reasons above imply that a sample size larger than n′our, where

n′our =
log2(p) · C2

ε2
· nour

is enough to reconstruct with high probability correctly the i-th eigenvector. Here as usual

ε� 1 is a constant less than 1.

Let us explain a little informally why n′our is enough a sample size to reconstruct the

i-th eigenvector correctly provided our three conditions hold:

Let p, i1 and n > nour(p, i1) be three non-random integers. Here i1 will designate the

index of the eigenvector which we wish to reconstruct.

Now, we assume that we are dealing with the higher part of the spectrum where the

eigenvalues get over-estimated. (These are the only eigenvectors we are interested to re-

construct). This means that i∗ ≥ i1 with high probability (Here i∗ = i∗(n, p, i1)).

Assuming that i∗(n, p, i1) ≤ i1, then n′our(p, i
∗) < n′our(p, i1), and hence n ≥ n′our(p, i

∗),

thus the map i 7→ n′our is increasing. According to the main result of this article that i1-th

eigenvector of the sample covariance matrix (when we take sample size n) is close to an

eigenvector from the ground truth covariance matrix with index i ≥ i1. This argument can

be repeated for any i2 ≥ i1.
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Indeed, since by definition, i 7→ σ̂2
i is decreasing, we find that i∗(n, p, i2) > i∗(n, p, i1),

hence we get n′our(p, i2) < n′our(p, i1) since the function nour is assumed increasing in i.

So, n ≥ n′our(p, i2). According to our main result implies that the i2-th eigenvector of the

sample covariance matrix (estimated with sample size n) is close to an eigenvector of the

ground truth covariance matrix with index i ≥ i2. This argument can also be made for any

index i2 ≥ i1.

So all the eigenvectors of the sample covariance matrix (estimated with n samples),

with index greater or equal to i1 are close to an eigenvector of the true covariance matrix

with an index less or equal to i1. The eigenvector of the estimated covariance matrix are

orthogonal to each other. So two of them can not be close to the same eigenvector of

the true covariance matrix at the same time. Thus the only way this is possible is if each

eigenvector of the sample covariance matrix with index i ≥ i1 is close to i-th eigenvector

of the ground truth covariance matrix.

This finishes explaining why it follows from the main result of this paper, that if n >

n′our(p, i1), then all eigenvectors of the sample covariance matrix with index i ≥ i1, are

closed to their respective eigenvectors of the ground-truth covariance matrix with high

probability.

The above argument is an outline of a rigorous proof and not a heuristic argument. In

reality, in our opinion, we do not need the log2(p) factor which is present in the bound n′our.

This factor is only there to allow an easier formal proof. The problem is that the formula of

Koltschinskii and Lounici 1.1.2 has been proven only for non-random σ2
i ’s. But, the main

part of our proof is to bound the spectral norm of

|Di∗(0)|0.5Ei∗|Di∗(0)|0.5 (1.3.51)

using the formula 1.1.2. It turns out that the matrix 1.3.51 is the error matrix of estimating
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a covariance where the ground truth eigenvalues σ2
j are replaced by

σ2
j

|σ2
j − σ2

i∗|
(1.3.52)

for j 6= i∗. Except that the formula 1.1.2 has been proven for non-random eigenvalues of

the ground truth. Whilst expression 1.3.52 is random through i∗. To avoid this problem we

replace i∗ by i in 1.3.52 and in |D∗i (0)|0.5| and then go on bounding

||Di(0)|0.5Ei|Di(0)|0.5| (1.3.53)

with the help of formula 1.1.2 for every i ∈ {1, 2, . . . , p}. In order to bound 1.3.53 for

every i ∈ {1, 2, . . . , p}, we need a smaller probability, and this is where the factor log(p)

in the bound 1.1.4 comes from. But in practice, if we would think of i∗ as non-random we

would not need the log(p) factor.

The next question is why is our bound nour not just a lower bound, but the right order

of magnitude for the sample size needed to reconstruct the i-th eigenvector?

In our opinion the reason is as following: we can rewrite equation 1.3.35 as

∆~µi = |Di|0.5J ·
(
Ip−1 − |Di|0.5Ei|Di|0.5

)−1 · |Di|0.5J



E1i

E2i

...

E(i−1)i

E(i+1)i

...

Epi



.

Note that the expression on the right side of 1.1.2, according to Koltchinskii and Lounici,

is not just a bound, but the actual order of magnitude of |E|. So, we can apply this to the
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matrix

|Di|0.5Ei|Di|0.5, (1.3.54)

replacing σ2
j in formula 1.1.2 by

σ2
j

|σ2
j−σ2

i |
, for j 6= i. This yields that, if n is below nour by

a big enough constant factor, then with high probability, 1.3.54 has a norm quite above 1.

Since the spectrum of 1.3.54 is going to be dense, there will be some eigenvalues of 1.3.54

which are close to 1. So, the identity minus 1.3.54 must have eigenvalues close to 0, which

leads (
Ip−1 − |Di|0.5Ei|Di|0.5

)−1

to have a very large spectral norm. This then ensures that expression 1.3.53 is not small and

hence we can not reconstruct the i-th eigenvector. To make this a formal argument would

of course require more precise calculations.

To explain what the potentially tremendous applications of our formula 1.3.47 for the

order of the sample size, what are needed for reconstructionof the i-th eigenvector is:

1. When a practitioner ask you: ”What is the meaning of this principal component

(eigen vector of covariance matrix) that I have computed from this large data set?”

You can calculate the sample size needed for getting this eigenvector back. If he/she

has used a lesser sample size, then you can answer: “no meaning since the eigenvec-

tor is messed up with the noise eigenvectors.”

2. For big data one can now calculate how to chose n and p to calculate the i-th eigen-

vector, so as to incur last calculation time. Indeed, when we increase p, the dimension

of the matrix increases, potentially leads to more computation time. But the spectral

gap is also increasing, which leads to less computation time. Thus, finding the ideal

p and n can be done by our formula 1.3.47 for nour.

43



1.4 Detailed evalutation of the perturbated eigenvectors

We define the vector:

~Vi =

(
σi√
|σ2

1−σ2
i |
N1i . . . σi−1√

|σ2
i−1−σ2

i |
N(i−1),i

σi+1√
|σ2
i+1−σ2

i |
N(i+1),i . . . σp√

|σ2
p−σ2

i |
Npi

)T

.

(1.4.1)

Lemma 1.4.1. Assume that inequality 1.1.4 holds when we replace i∗ by i. Then, there

exists a universal constant C > 0 not depending on n or p so that:

P

‖~Vi‖ ≤ C · ln(p)

√√√√∑
j 6=i

σ2
j

|σ2
j − σ2

i |

 ≥ 1− p− ln(p).

Proof. Note that
Nj,i√
n

=
Eij
σiσj

(1.4.2)

where we recall that Eij is the ij-th entry of the matrix E. Again, E is the error matrix in

estimating the covariance, hence

E = Σ̂− Σ =
n∑
i=1

[
~Y (i)

√
n

]T
·
~Y (i)

√
n
− Σ, (1.4.3)

where

Σ = Diag(σ2
1, σ

2
2, . . . , σ

2
p).

Note that Eij
σiσj

is the i, j-th entry of the matrix Σ−0.5EΣ−0.5, where

Σ−0.5 = Diag(σ−1
1 , σ−1

2 , . . . , σ−1
p ).
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Now, with the help of 1.4.3, we find

Σ−0.5EΣ−0.5 =
1

n

n∑
i=1

[
~Y (i)Σ−0.5

]T
· ~Y (i)Σ−0.5 − I, (1.4.4)

where I is the p × p identity matrix. Now, ~Y (i)Σ−0.5 is a vector with i.i.d. standard

normal entries. Let Σ0.5
ν = Diag(ν1, ν2, . . . , νp) and Σν = Diag(ν2

1 , ν
2
2 , . . . , ν

2
p) where,

ν1, ν2, . . . , νp is a sequence of positive numbers. Then, ~Y (i)Σ−0.5Σ0.5
ν is a normal vector

with independent entries, where the j-th entry has standard deviation νj . Furthermore, the

random vector ~Y (i)Σ−0.5Σ0.5
ν has covariance matrix Σν . From 1.4.4, we find

Σ0.5
ν Σ−0.5EΣ−0.5Σ0.5

ν =
1

n

n∑
i=1

[
~Y (i)Σ−0.5Σ0.5

ν

]T
· ~Y (i)Σ−0.5Σ0.5

ν − Σν . (1.4.5)

We see that on the right side of equation 1.4.5, we have the error matrix when esti-

mating a covariance matrix of the random vectors ~Y (i)Σ−0.5Σ0.5
ν . These are vectors with

independent normal entries where the j-th entry has standard deviation νj . So, we can ap-

ply the formula (2.4) of Theorem 2 of Koltschinskii and Klounici [2] for the spectral norm

of that matrix. The formula given by Koltschinskii and Lounici is that

||Σ̂− Σ||∞ ≤ C||Σ||∞max

(√
r(Σ)

n
,
r(Σ)

n
,

√
t

n
,
t

n

)
, (1.4.6)

holds with probability at least e−t, where

r(Σ) :=

∑p
j=1 σ

2
j

maxj σ2
j

is the effective rank of Σ. We are going to apply inequality 1.4.6 to the covariance matrix

Σν . So, in 1.4.6 we replace Σ by Σν .

Now, for j 6= i take νj :=
σj√
|σ2
j−σ2

i |
and νi := maxj 6=i νj . Note that maxj 6=i νj is

approximately σi
|spectral gapi|

, because νj decreases in both directions when j goes away
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from i. So then condition 1.1.4 implies that

√
r(Σν)

n
≤ C3

1

log2(p) · ||Σν ||∞
, (1.4.7)

where C3 > 0 is a universal constant. Assuming that ||Σν ||∞ = maxj νj ≥ O(1). So

r(Σν)
n
≤ O( 1

ln(p)
), and we hence assume that r(Σν)

n
< 1, which then implies that

√
r(Σν)

n
>
r(Σν)

n
. (1.4.8)

Let us put t = log2(p)r(Σν). By inequality 1.4.7, we find:

√
t

n
= log(p)

√
r(Σν)

n
≤ O(

1

ln(p)
). (1.4.9)

If we assume that
√
t/n < 1, then

√
t/n > t/n. This together with 1.4.8 in 1.4.6 yields

the next inequality:

||Σ̂ν − Σν ||∞ ≤ C||Σν ||∞
√
t

n
= C · ln(p) · ||Σν ||∞

√
r(Σν)

n
, (1.4.10)

which must hold with probability at least

1− e−t = 1− e− ln2(p)·r(Σν) ≥ 1− e− ln2(p) = 1− p− ln(p),

where we used that r(Σν) ≥ 1 by definition. Here Σ̂ν designates the estimated covariance

matrix when the true covariance matrix is Σν instead of Σ. For this we keep the same

sample size. So, the estimation error in covariance matrix when the true covariance is Σν

can be written as

Σ̂ν − Σν = Σ0.5
ν Σ−0.5EΣ−0.5Σ0.5

ν .
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Thus we can rewrite 1.4.10 as:

P

‖Σ0.5
ν Σ−0.5EΣ−0.5Σ0.5

ν ‖ ≤ ln(p)
C√
n
· (max

j
νj) ·

√√√√ p∑
j=1

ν2
j

 ≥ 1− p− ln(p),

(1.4.11)

where the norm is the spectral norm of the matrix. Now, the spectral norm of a matrix is

larger equal than the Euclidian norm of any column. so, take the i-th column for example.

You find then that 1.4.11 implies that

P

νi
√√√√∑

j

(
νj
Eij
σiσj

)2

≤ ln(p)
C√
n
· (max

j
νj) ·

√√√√ p∑
j=1

ν2
j

 ≥ 1− e−p,

with the help of 1.4.2, we get:

P

νi√∑
j

(νjNij)
2 ≤ ln(p)C · (max

j
νj) ·

√√√√ p∑
j=1

ν2
j

 ≥ 1− e−p. (1.4.12)

Now, recall that for j 6= i we have taken νj :=
σj√
|σ2
j−σ2

i |
and νi := maxj 6=i νj . Then,

inside the probability νi and maxj νj cancel each other out. Thus:

P

√∑
j 6=i

(νjNij)
2 ≤ ln(p)C ·

√√√√ p∑
j=1

ν2
j

 ≥ 1− p− ln(p)

Plugging into the last inequality above for νj , we find:

P


√√√√√∑

j 6=i

 σjNij√
|σ2
j − σ2

i |

2

≤ ln(p)2C ·

√√√√ p∑
j 6=i

σ2
j

|σ2
j − σ2

i |

 ≥ 1− p− ln(p),

which can also be written as:

P

|~Vi| ≤ ln(p)2C ·

√√√√ p∑
j 6=i

σ2
j

|σ2
j − σ2

i |

 ≥ 1− p− ln(p),
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which finishes our proof.

So, what we want to do is to show that |∆~µi| is small, given condition 1.1.4. So far, we

have explained a little informally, why when condition 1.1.4 holds, then thanks to equation

1.3.46 we get |∆~µi| to be small with high probability.

Next we are going to go through the argument one more time in a slightly more formal

manner: first we introduce two events An,p and Bn,p. Then, in Lemma 1.4.2 we show that

the events An,p and Bn,p jointly imply that |∆~µi| is small given condition 1.1.4. From there

we need then only the high probability of the events An,p and Bn,p to guaranty that |∆~µi| is

small with high probability. This is then the content of Theorem 1.5.3. The high probability

of An,p and Bn,p follows quite directly from our Lemma 1.4.1.

We are now ready to put all of this formally. For this we define formal events:

• Let An,p be the event that the random vector related to the expression on the right

side of 1.3.46 is bounded as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



σ1√
|σ2

1−σ2
i∗ |
N1i∗

σ2√
|σ2

2−σ2
i∗ |
N2i∗

...
σi∗−1√
|σ2
i∗−1
−σ2

i∗ |
N(i∗−1)i∗

σi∗+1√
|σ2
i∗+1
−σ2

i∗ |
N(i∗+1)i∗

...

σp√
|σ2
p−σ2

i∗ |
Npi∗



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ C · log(p)

√√√√∑
j 6=i

σ2
j

|σ2
j − σ2

i∗|
, (1.4.13)

where C > 0 is the constant from Lemma 1.4.1.

Note that the above expression implies that the vector in the expression on the right

side of 1.3.46 satisfies the same bound but with an additional factor 2 according to

48



Lemma 1.3.1. In other words, the above inequality 1.4.13 also holds, if we replace

everywhere σ2
i∗ by λi + ∆λi and multiply the bound by a factor 2.

• Let Bn,p be the event that the spectral norm of the random Wishart matrix

|Di∗(0)|0.5Ei∗|Di∗(0)|0.5 (1.4.14)

is bounded according to our formula in Lemma 1.4.1. Hence, Bnp is the event that

inequality 1.4.10 (as well as the inside part of 1.4.11) holds for 1.4.14, note that

1.4.14 is an estimated covariance matrix. That is, 1.4.10 holds for Σν and Σ̂ν , which

is a vector with j-th entry equal to

σj√
|σ2
j −

σ2
i∗+1

+σ2
i∗−1

2
|
.

Note that An,p and Bn,p are both depending on the parameter i used to chose the eigen-

value of the estimated covariance matrix. We do not include it into the notation of our

events to not make notations too cumbersome. Our main combinatorial lemma is given

next. It shows that given that the events An,p and Bn,p, and that n satisfies condition 1.1.4,

then |∆~µi| is going to be small.

Lemma 1.4.2. Let i ∈ {1, 2, . . . , p}. Assuming thatAn,p andBn,p both hold. Let ε ∈ (0, 1).

Assuming also that σi∗ over the spectral gap i is bigger than 2/
√

3. Assume that the sample

size n is sufficiently large so that it satisfies:

2C log2(p)
σi∗ · 2

√
2

ε · √spectral gapi∗

√√√√∑
i 6=j

σ2
j

|σ2
j − σ2

i∗|
≤
√
n (1.4.15)
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where C > 1 is the constant from our Lemma 1.4.1. Then, we have

σi∗√
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



σ1
σ2
1−σ2

i−∆λi
N1i∗

σ2
σ2
2−σ2

1−∆λi
N2i∗

...
σi∗−1

σ2
i∗−1
−σ2

i−∆λi
N(i∗−1)i∗

σi∗+1

σ2
i∗+1
−σ2

i−∆λi
N(i∗+1)i∗

...

σp
σ2
p−σ2

i−∆λi
Npi∗



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ ε (1.4.16)

and ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(∑
k≥1

(Di∗ · Ei∗)k
)
· σi

∗
√
n



σ1
σ2
1−σ2

i−∆λi
N1i∗

σ2
σ2
2−σ2

1−∆λi
N2i∗

...
σi∗−1

σ2
i∗−1
−σ2

i−∆λi
N(i∗−1)i∗

σi∗+1

σ2
i∗+1
−σ2

i−∆λi
N(i∗+1)i∗

...

σp
σ2
p−σ2

i−∆λi
Npi∗



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ ε2

1− ε
. (1.4.17)

Hence

|∆~µi| ≤ ε+
ε2

1− ε
. (1.4.18)

Proof. • In order to bound the left side of 1.4.16, apply the main inequality 1.4.15 and

event Anp. This way we find that the expression on the left side of inequality 1.4.16

is bounded by

C log2(p) · 2σi∗√
n ·
√
spectral gapi∗

√√√√∑
j 6=i∗

σ2
j

|σ2
j − σ2

i∗ |
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which according to inequality 1.4.15 is less than ε. So, this finishes proving inequality

1.4.16.

• Let ~N denote the random vector given by

~N := (σ1N1i∗ , σ2N2i∗ , . . . , σi∗−1N(i∗−1)i∗ , σ(i∗+1)i∗N(i∗+1)1, . . . , σpNpi∗),

where Nji is defined in 1.3.34. Then, we have that the right side of inequality 1.4.17

can be written as:

∥∥∥∥∥|Di∗|0.5J
∑
k≥1

(
|Di∗|0.5Ei∗ |Di∗|0.5J

)k |Di∗|0.5
σi∗√
n
~N

∥∥∥∥∥ = (1.4.19)∥∥∥∥∥|Di∗|0.5J
∑
k≥1

(
|Di∗ |0.5

|Di∗(0)|0.5
|Di∗(0)|0.5Ei∗|Di∗(0)|0.5 |Di∗|0.5

|Di∗(0)|0.5
J

)k
|Di∗|0.5

σi∗√
n
~N

∥∥∥∥∥ ,
(1.4.20)

where |Di∗ |0.5
|Di∗ (0)|0.5 designates the (p−1)× (p−1)-diagonal matrix having as j-th entry

the j-th entry of |Di∗ |0.5 divided by the j-th entry of |Dj(0)|0.5.

Now, by the event Bn,p and using 1.3.36, we get:

|||Di∗(0)|0.5Ei∗|Di∗(0)|0.5| ≤ log(p) · 2C√
n

(
σi∗√

spectral gapi∗

)
·

√√√√∑
j 6=i∗

σ2
j

|σ2
j − σ2

i∗|
.

(1.4.21)

Now due to our condition 1.4.15, we get that the right side of 1.4.21 is less than 0.5ε

leading to

|||Di∗(0)|0.5Ei∗|Di∗(0)|0.5| ≤ 0.5ε. (1.4.22)

As mentioned, we chose the eigenvector of the estimated covariance matrix first and

then the eigenvector of the true covariance matrix with closest eigenvalue. This im-

plies that, the largest entry of |Di∗ |
|Di∗ (0)| is at most 2. (Here |Di∗ |

|Di∗ (0)| designate the diagonal
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entry whose j-th entry is the absolute value of the j-th entry of Di∗ divided by the

absolute value of the j-th entry of Di∗(0)). Hence, the spectral norm of the matrix

|Di∗ |0.5
|Di∗ (0)|0.5 is less or equal to

√
2.

Now using this with the bound 1.4.22, we finally find out that expression 1.4.20 is

less or equal to

∣∣|Di∗ |0.5
∣∣·∑
k≥1

(ε)k · σi
∗
√
n
·
∣∣∣|Di∗|0.5 ~N

∣∣∣ ≤ 1
√
spectral gapi∗

· ε

1− ε
· σi

∗
√
n
·
∣∣∣|Di∗|0.5 ~N

∣∣∣ .
(1.4.23)

When the event An,p holds,

||Di∗|0.5 ~N | ≤ 2C log(p)

√√√√∑
j 6=i∗

σ2
j

|σ2
j − σ2

i∗|
.

Applying this last inequality to 1.4.23, we find out that expression 1.4.20 is less or

equal to

C log(p)
√
spectral gapi∗

· ε

1− ε
· 2σi∗√

n
·

√√√√∑
j 6=i∗

σ2
j

|σ2
j − σ2

i∗|

which due to condition 1.4.15 is bounded from above by: ε2

1−ε . Thus the left side of

1.4.17 is less or equal to ε2

1−ε .

• We are now ready to bound |∆~µi|. We use 1.4.22 together with the fact that the

largest entry of |Di∗ |
|Di∗ (0)| is at most 2, gets us

(
|Di∗|0.5Ei∗|Di∗ |0.5

)
≤ ε

thus we have convergence of the following series:

(I −Di∗Ei∗)
−1 = I +Di∗Ei∗ + (Di∗Ei∗)

2 + (Di∗Ei∗)
3 + . . . .
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When we apply the last equation above to 1.3.46, we obtain:

∆~µi =

σi∗√
n



σ1
σ2
1−σ2

i−∆λi
N1i∗

σ2
σ2
2−σ2

1−∆λi
N2i∗

...
σi∗−1

σ2
i∗−1
−σ2

i−∆λi
N(i∗−1)i∗

σi∗+1

σ2
i∗+1
−σ2

i−∆λi
N(i∗+1)i∗

...

σp
σ2
p−σ2

i−∆λi
Npi∗



+

(∑
k≥1

(Di · Ei∗)k
)
· σi

∗
√
n



σ1
σ2
1−σ2

i−∆λi
N1i∗

σ2
σ2
2−σ2

1−∆λi
N2i∗

...
σi∗−1

σ2
i∗−1
−σ2

i−∆λi
N(i∗−1)i∗

σi∗+1

σ2
i∗+1
−σ2

i−∆λi
N(i∗+1)i∗

...

σp
σ2
p−σ2

i−∆λi
Npi∗



.

Applying inequality 1.4.16 to the first term in the last sum above and inequality

1.4.17, yields finally

|∆~µi| ≤ ε+
ε2

1− ε

which finishes to prove 1.4.18

1.5 High probability of the events and main theorem

In the last lemma above, we have shown that the events An,p and Bn,p when condition

1.4.15, make |∆~µi| small. Now it just remains to show that An,p and Bn,p have high prob-

ability when that condition holds. That is what we will do next. We will denote by An,p,c

and Bn,p,c the complement of An,p and Bn,p respectively.

Lemma 1.5.1. Let n, p be two natural numbers. Let i ∈ {1, 2, . . . , p}. Then, if condition

1.4.15 is satisfied, the event An,p has high probability. More precisely, we have that

P (An,p,c ∩ Cn,p,i) ≤ p−(ln(p)−1),
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where Cn,p,i is the event that inequality 1.4.15 holds.

Proof. Let s be an non-random integer in [1, p]. Let An,p,s designate the event that An,p

holds for i∗ being replaced by s, and when condition 1.4.15 is met when we replace in it i∗

by s. This means that when condition 1.4.15 does not hold, with i∗ replaced by s, then the

event An,p,s always holds. Thus An,p,s is an intersection of two events.

First the event that inequality 1.4.13 holds, for i∗ replaced by s. Second that inequality

1.4.15 does not hold, for i∗ replaced by s. Then, according to Lemma 1.4.1, we find

P (An,p,s) ≥ 1− plog(p). (1.5.1)

But we have

∩ps=1A
n,p,s ⊂ An,p ∪ Cn,p,i,c,

hence

P (An,p,c ∩ Cn,p,i,c) ≤
p∑
s=1

(1− P (An,p,s),

which together with 1.5.1 leads to our desired bound:

P (An,p,c ∩ Cn,p,i) ≤ p · p− log(p).

Lemma 1.5.2. Let n, p be two natural numbers. Let i ∈ {1, 2, . . . , p}. Then, if condition

1.4.15 is satisfied, the event Bn,p has high probability. More precisely, we have that

P (Bn,p,c ∩ Cn,p,i) ≤ p−(ln(p)−1),

where Cn,p,i is the event that inequality 1.4.15 holds.

Proof. Similar to the proof for the event An,p.
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We are now ready for our Main Theorem which bounds the difference ∆~µi between

original and estimated eigenvector of the covariance matrix. Let us quickly remind one

more time how we define ∆~µi:

We take the i-th eigenvalue of the estimated covariance matrix and the corresponding

eigenvector. (Assuming singular eigenvalues. In principle one can take any numeration

one wants of the eigenvalues of the estimated covariance matrix.) Then, we take ~µi∗ to

be the eigenvector of the original covariance matrix, whose eigenvalue comes the closest.

Finally, we take the eigenvector of the original covariance matrix to be unitary and ∆~µi to

be orthogonal to it. ( In this manner, the eigenvector of the estimated matrix considered

will typically not be exactly unitary).

With this setting, we get now our main Theorem:

Theorem 1.5.3. Let n, p be two natural numbers and let i ∈ [1, p]. Let i∗ designated the

(random) index of the eigenvalue of the original covariance matrix, which is the closest one

to the i-th eigenvalue of the estimated covariance matrix. When the sample size n satisfies

2C
log (p) · σi∗ · 2

√
2

ε · √spectral gapi∗

√√√√∑
i 6=j

σ2
j

|σ2
j − σ2

i∗|
≤
√
n, (1.5.2)

the difference ∆~µi between the i-th eigenvectors of the estimated covariance and the i∗

eigenvector of the original covariance can be bounded with high probability. More pre-

cisely:

P (

{
|∆~µi| ≥ ε+

ε2

1− ε

}
∩ Cn,p,i) ≤ 2p−(p−1).

Proof. Just apply Lemma 1.5.1 and 1.5.2 to lemma 1.4.2
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CHAPTER 2

CONVERGENCE OF KRASULINA ESTIMATOR

2.1 Introduction

Principal component analysis (PCA) is one of the most widely used dimension reduction

techniques in data analysis. Suppose X1, X2, ..., Xn are vectors drawn i.i.d. from a distri-

bution with mean zero and covariance Σ, where Σ ∈ Rd×d is unknown. Let An = XnX
T
n ,

then E[An] = Σ. We are interested in finding eigenvalues of matrix Σ and the correspond-

ing eigenvectors if identifiable. In this Chapter, we are going to talk about the famous

eigenvalue and eigenvector estimators recently, and focus on the convergence proof of Kra-

sulina estimator[5].

2.1.1 Offline setting

This problem has been intensively studied especially in the offline setting where all the

observations are available at once, see [6, 7, 8, 9, 10, 11, 12]. For instance, [8] derived

the sharp minimax rate of estimation of the eigenvectors for the following Frobenius risk

E[‖ΘΘT − Θ̂Θ̂T‖2
F ], where Θ = [θ1, θ2, ..., θr] is the matrix of eigenvectors and Θ̂ is the

corresponding estimator.

Recently, [1, 2, 13] derived subtle results about the behavior of the standard PCA

method in an infinite-dimensional setting. They showed that:

E‖Σ̂− Σ‖ � ‖Σ‖(
√
r(Σ)

n

∨ r(Σ)

n
),

where

r(Σ) =
(E‖X‖)2

‖Σ‖
.
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Moreover, under the assumption that r(Σ) . n, they proved that, for all t ≥ 1, with

probability at least 1et,

|‖Σ̂− Σ‖ − E‖Σ̂− Σ‖| . ‖Σ‖(
√
t

n

∨ t

n
).

2.1.2 Online setting

In the high dimensional setting and for massive data sets, the computational complexity of

PCA may become an issue. Indeed, for data in Rd, the default method needs storage space

in the order of O(d2). Therefore, it is interesting to develop online incremental schemes

that only take one data point at a time to update estimators of eigenvectors and eigenvalues.

The least storage consuming methods only need O(d) space to compute one eigenvector.

Assume matrix Σ has the standard decomposition:

Σ =
d∑
j=1

λjθj ⊗ θj, (2.1.1)

where eigenvalues λj’s satisfy: λ1 < λ2 ≤ λ3 ≤ ... < λd and θj are the corresponding

eigenvectors. We assume here that λ1 < λ2 so that θ1 is identifiable up to sign. To compute

the smallest eigenvalue and corresponding eigenvector, Krasulina[5] suggested the follow-

ing stochastic gradient scheme. At time n+1, the estimate of the smallest eigenvector Vn+1

is updated as follows:

Vn+1 = Vn − γn+1ξn+1, (2.1.2)

where {γn} is the learning rate, typically, {γn} is chosen such that

∑
γn =∞,

∑
γ2
n <∞. (2.1.3)
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For example, γn = c
n

where c is an absolute constant. And

ξn+1 =< Xn+1, Vn > ·Xn+1 −
< Xn+1, Vn >

2

‖Vn‖2
· Vn

= An+1 · Vn −
< An+1Vn, Vn >

‖Vn‖2
· Vn.

There has been a lot of effort to compute the spectrum decomposition. Oja and Karhunen[14]

suggested a method which is closely related to Krasulina’s, they use the update for the lead-

ing eigenvector as follows:

Vn+1 =
Vn + γn+1 < Xn+1, Vn > Xn+1

‖Vn + γn+1 < Xn+1, Vn > Xn+1‖
. (2.1.4)

[5, 14] proved that these estimators converge almost surely under the assumption (2.1.1),

(2.1.3) and E[‖Xn‖k] <∞ for some suitable k.

There are many other incremental estimators whose convergence has not been estab-

lished yet. [15] introduces a candid covariance-free incremental PCA algorithm with as-

sumption (2.1.1), they suggest the estimator:

Vn+1 =
n− 1− l

n
Vn−1 +

1 + l

n
XnX

T
n

Vn−1

‖Vn−1‖
, (2.1.5)

where l is called the amnesic parameter. With the presence of l, larger weight is given

to new samples and the effect of old samples will fade out gradually. Typically, l ranges

from 2 to 4. They also addressed the estimation of additional eigenvectors by first sub-

tracting from the data its projection on the estimated eigenvectors, then applying (2.1.5).

[16] considers PCA problem as stochastic optimization problem, it considers an unknown

source distribution over Rd, and would like to find the k-dimensional subspace maximizing

the variance of the distribution inside the subspace. They solve the problem by stochastic
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gradient descent, and suggests the updates:

Vn+1 = Porth(Vn + ηnXnX
T
n Vn),

where Porth(V ) performs a projection with respect to the spectral norm of V V T onto the

set of d× d matrices with k eigenvalues equal to 1 and the rest 0, ηn is the step size.

There also exist many results which analyze incremental PCA from the statistical per-

spective. They mainly show the asymptotic consistency of estimators under certain condi-

tions. For example, [17] suggests a Block-Stochastic Power Method with the assumption:

Xn = AZn + En, (2.1.6)

where A is a fixed matrix, Zn is a multivariate normal random variable, i.e. Zn ∼ N(0, I),

and En is the noise vector, also sampled from multivariate normal random variable, i.e.

En ∼ N(0, σ2I). For a fixed block size B, they update the estimator as:

Vn+1 =
1
B

∑
t∈(n−B,n] < Vn, Xt > Xt

‖ 1
B

∑
t∈(n−B,n] < Vn, Xt > Xt‖

. (2.1.7)

It proves that under (2.1.6), for any ε > 0, estimator (2.1.7) satisfies

P(‖Vn − θ1‖ ≤ ε) = 0.99,

given n = O( log(d/ε)
log((σ2+0.75)(σ2+0.5))

) and block size B = O( (1+3(σ+σ2)
√
d)2

ε2
). [18] finds an

upper bound in probability 1−δ of alignment loss function 1− <Vn,θ1>2

‖Vn‖2 for Oja’s estimator

(2.1.4) with assumption:

‖Ai − Σ‖ ≤ A and ‖E[(Ai − Σ)2]‖ ≤ B,

for the following choice of step size γn = O( α
g1(β+n)

), where α > 1
2
, g1 = λ1 − λ2,
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β = O(Aα
g1

∨ (B+λ21)α2

g21+δ
), and n > β.

As for non-asymptotic result, [19] derives sub-optimal bound on the alignment loss

L(Vn, θ1) := E

[
1− < Vn, θ1 >

2

‖Vn‖2

]
,

for the following choice of the learning rate: γn = 1
g1n

, where g1 = λ1 − λ2, provided that

n &p
d2

g21
.

[20] introduces Mini-batch Power Method, for batch size B:

Vn+1 =
1
B

∑
t∈(n−B,n] < Vn, Xt > Xt − βVn−1

‖ 1
B

∑
t∈(n−B,n] < Vn, Xt > Xt − βVn−1‖

, (2.1.8)

where β is the Momentum parameter. When

β ∈ [
λ2

2

4
,
λ2

1

4
), ‖V0‖ = 1, and | < V0, θ1 > | ≥

1

2
,

for any δ ∈ (0, 1) and ε ∈ (0, 1), we have P (L(Vn, θ1) ≤ ε) ≥ 1 − 2δ., with assumption:

n =
√
β√

λ21−4β
log(32

δε
) and ‖E[(Ai − Σ)2]‖ ≤ (λ21−4β)δε

256
√
dn

.

Krasulina states the convergence of the smallest eigenvalue and eigenvector estimators,

but did not provide convergence rate. In this Chapter, we find the rate of convergence

for both eigenvalue and eigenvector estimators of Krasulina (2.1.2) under a relatively mild

assumption. Our analysis reveals a slower rate of convergence of eigenvalue estimator

λ̂1 = <AnVn,Vn>
‖Vn‖2 and corresponding eigenvector estimator θ̂1 = Vn

‖Vn‖ as compared to the

offline setting for Krasulina’s scheme.

Notations: for any vector x ∈ Rd, we denote by ‖x‖ the l2 − norm of x. For the sake

of simplicity, for any matrix A, ‖A‖ will refer to the operator norm of A, specifically,

‖A‖ = supu,v
<Au,v>
‖u‖‖v‖ . For series {x}n, {y}n, xn �p yn is defined as: ∀ε > 0, there exists

a finite M > 0 and a finite N > 0, such that P ( 1
M

< | yn
xn
| < M) < 1 − ε, ∀n > N .

yn .p xn is defined as: ∀ε > 0, there exists a finite M > 0 and a finite N > 0, such that
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P (| yn
xn
| < M) < 1− ε.

2.2 Main Results

We now state our main result:

Theorem 2.2.1. Assume λ1 < λ2, (2.1.3) and E‖An‖2 < ∞, Set g = λ2 − λ1. Then the

Krasulina estimator (2.1.2) satisfies as n→∞,

|λ̂1 − λ1| �p
‖Σ‖√
n
· (
√
E[‖An‖2]

∨
‖Σ‖)

and

L(Vn, θ1) �p
‖Σ‖
g
√
n
· (
√
E[‖An‖2]

∨
‖Σ‖).

In Particular, if we require the Xk’s to be normal random vectors, then

‖An‖ = ‖Xn‖2 d
=

d∑
j=1

λjZ
2
j ,

where Zj
i.i.d.∼ N(0, 1). Consequently, we get

E[‖An‖2] = E[
d∑
j=1

λ2
jZ

4
j + 2

∑
i 6=j

λiλjZ
2
i Z

2
j ] = 2tr(Σ2) + tr(Σ)2 .p tr(Σ)2.

Thus we have following corollary:

Corollary 2.2.2. Let the Assumptions of Theorem 2.2.1 be satisfied. Assume in addition

that {Xk} are i.i.d. zero mean normal random vectors with covariance matrix Σ. We have

for the Krasulina scheme (2.1.2) as n→∞ that

|λ̂1 − λ1| �p
‖Σ‖tr(Σ)√

n
,
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and

L(Vn, θ1) �p
‖Σ‖tr(Σ)

g
√
n

.

2.3 Proof of the Theorem

We first state a basic result in probability that will be used throughout the paper.

Lemma 2.3.1. Let {Yn}n be a sequence of real-valued random variable. We assume

that for all n ≥ 1, Yn is zero mean and square integrable. Define Sn =
∑n

k=1 Yk. If∑
n≥1E[Y 2

n ] <∞, then {Sn}n converges to a real-valued random variable in probability.

Proof. By definition, Sn =
∑n

k=1 Yk, since Yn is square integrable:

E[|Sn+r − Sn|2] = E[(
n+r∑
i=n+1

Yi)
2] =

n+r∑
i=n+1

E[Y 2
i ] +

∑
n+1≤i<j≤n+r

2E[Yi · Yj]. (2.3.1)

Since Yn is zero mean, then for i < j:

E[Yi · Yj] = E[E[Yi · Yj|Fi]] = E[Yi · E[Yj|Fi]] = 0,

plug it into (2.3.1), we obtain:

E[|Sn+r − Sn|2] =
n+r∑
i=n+1

E[Y 2
i ] ≤

∑
i>n

E[Y 2
i ],

this is the remainder term of a convergence series, thus {Sn}n is Cauchy, so {Sn}n con-

verges to a real-valued random variable in L2. By Kolmogorov inequality, Lemma 2.3.1

follows.

Now, we start by bounding the asymptotic expectation of ‖Vn‖2:

Lemma 2.3.2. limn→∞E‖Vn‖2 <∞.

Proof. First, we prove that Vn and ξn+1 are orthogonal for any n ≥ 1.
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Let Wn = Xn+1 − <Xn+1,Vn>
‖Vn‖2 · Vn, we have:

ξn+1 = < Xn+1, Vn > ·Xn+1 −
< Xn+1, Vn >

2

‖Vn‖2
· Vn

= < Xn+1, Vn > (Xn+1 −
< Xn+1, Vn >

‖Vn‖2
· Vn)

= < Xn+1, Vn > ·Wn.

We note that < Wn, Vn >= 0, so

‖ξn+1‖ =< Xn+1, Vn > ·‖Wn‖ ≤< Xn+1, Vn > ·‖Xn+1‖ ≤ ‖Xn+1‖2‖Vn‖,

thus:

E[‖ξn+1‖|Fn] ≤ E[‖Xn+1‖2] · ‖Vn‖ = tr(Σ)‖Vn‖. (2.3.2)

Now since ξn ⊥ Vn−1, we have

‖Vn‖2 = ‖Vn−1 − γnξn‖2 = ‖Vn−1‖2 + γ2
n‖ξn‖2,

thus:

E[‖Vn‖2|Fn−1] = ‖Vn−1‖2 + γ2
nE[‖ξn‖2|Fn−1]

≤ ‖Vn−1‖2 + γ2
ntr(Σ)2‖Vn−1‖2

= (1 + γ2
ntr(Σ)2)‖Vn−1‖2

Thus:

E‖Vn‖2 ≤ (1 + γ2
ntr(Σ)2)E‖Vn−1‖2

≤ ... ≤
n∏
i=2

(1 + γ2
i tr(Σ)2) · E‖V1‖2
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By assumption (2.1.3), we have
∑∞

i=1 γ
2
i tr(Σ)2 <∞, thus:

∏n−1
i=1 (1+γ2

i tr(Σ)2) <∞,

thus limn→∞E‖Vn‖2 <∞.

Next, let µ(Vn) = <ΣVn,Vn>
‖Vn‖2 , and a(n)

1 =< Vn, θ1 >. We first prove the convergence

in probability of the sequence of Vn and a(n)
1 . Specifically, µ(Vn) converges to λ1, and Vn

converges to a vector which is alined with θ1. To prove that, we can recursively properly

apply the inequality, to show the Cauchy property of sequence µ(Vn) and a(n)
1 .

Lemma 2.3.3. µ(Vn) = <ΣVn,Vn>
‖Vn‖2 converges a.s. to µ as n→∞.

Proof.

µ(Vn+1) =
< ΣVn − γn+1 · Σξn+1, Vn − γn+1ξn+1 >

‖Vn − γn+1ξn+1‖2

=
< ΣVn, Vn > +γ2

n+1 < Σξn+1, ξn+1 > −2γn+1 < ξn+1,ΣVn >

‖Vn‖2 + γ2
n+1‖ξn+1‖2

=
1

1 + γ2
n+1

‖ξn+1‖2
‖Vn‖2

(µ(Vn)− 2γn+1
< ξn+1,ΣVn >

‖Vn‖2

+γ2
n+1

< Σξn+1, ξn+1 >

‖Vn‖2
)

Since:

< ξn+1,ΣVn > = < An+1Vn,ΣVn > −
< An+1Vn, Vn >< ΣVn, Vn >

‖Vn‖2

= ‖ΣVn‖2 − < ΣVn, Vn >
2

‖Vn‖2
+ < An+1Vn,ΣVn > −‖ΣVn‖2

−< An+1Vn, Vn >< ΣVn, Vn >

‖Vn‖2
+
< ΣVn, Vn >

2

‖Vn‖2

= (< (An+1 − Σ)Vn,ΣVn > −
< (An+1 − Σ)Vn, Vn >

‖Vn‖2

· < ΣVn, Vn >) + (‖ΣVn‖2 − < ΣVn, Vn >
2

‖Vn‖2
)

Let

f(Vn) =
‖ΣVn‖2

‖Vn‖2
− < ΣVn, Vn >

2

‖Vn‖4
, (2.3.3)
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Zn =
< (An+1 − Σ)Vn,ΣVn >

‖Vn‖2
− < (An+1 − Σ)Vn, Vn >

‖Vn‖4
· < ΣVn, Vn >, (2.3.4)

thus: <ξn+1,ΣVn>
‖Vn‖2 = f(Vn) + Zn.

so µ(Vn+1) = 1

1+γ2n+1

‖ξn+1‖2

‖Vn‖2

(µ(Vn)− 2γn+1f(Vn)− 2γn+1Zn + γ2
n+1

<Σξn+1,ξn+1>
‖Vn‖2 ).

Let

an = γn+1Zn, bn = γ2
n+1

< Σξn+1, ξn+1 >

‖Vn‖2
, cn =

1

1 + γ2
n+1

‖ξn+1‖2
‖Vn‖2

, (2.3.5)

thus:

µ(Vn+1) = cn · (µ(Vn)− 2γn+1f(Vn)− 2an + bn).

Now we have:

µ(Vn+1)− cn · µ(Vn) = −2γn+1cnf(Vn)− 2ancn + bncn. (2.3.6)

For series {an}, since Zn is centered and E[Z2
n] is bounded, by lemma 2.3.1:

∑
i>k

V ar(ai) �p
∑
i>k

γ2
i <∞,

thus
∑∞

n=1 an <∞.

For series {bn}, by (2.3.2):

E[‖ξn‖|Fn−1] ≤ tr(Σ)‖Vn‖,

thus

E[bn|Fn] = γ2
n+1E[

< Σξn+1, ξn+1 >

‖Vn‖2
|Fn] ≤ γ2

n+1‖Σ‖tr(Σ)2.

By (2.3.2), we have
∑∞

n=1 bn <∞.
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For series {cn},
∏
cn =

∏
1

1+γ2n+1

‖ξn+1‖2

‖Vn‖2

converges when
∏

1 + γ2
n+1

‖ξn+1‖2
‖Vn‖2 con-

verges.
∏

1 + γ2
n+1

‖ξn+1‖2
‖Vn‖2 has the same convergence properties as

∑
γ2
n+1

‖ξn+1‖2
‖Vn‖2 . By

(2.3.2),

E[
‖ξn+1‖2

‖Vn‖2
|Fn] ≤ tr(Σ)2,

we have
∏∞

n=1 cn <∞.

And by Cauchy-Schwartz inequality:

f(Vn) =
‖ΣVn‖2

‖Vn‖2
− < ΣVn, Vn >

2

‖Vn‖4
≥ 0. (2.3.7)

Now, if lim inf µ(Vn) < lim supµ(Vn), choose a, b such that lim inf µ(Vn) < a < b <

lim supµ(Vn), find m1, n1 large enough, such that µ(Vn1) < a, µ(Vm1) > b, and for all

n1 < j < m1, we have a ≤ µ(Vj) ≤ b. Thus:

µ(Vm1)− µ(Vn1)

m1−1∏
i=n1

ci > b− a.

On the other hand:

µ(Vm1)− µ(Vn1)

m1−1∏
i=n1

ci =

m1−1∑
j=n1

[(−2γj+1 · f(Vj)− 2aj + bj) ·
m1−1∏
i=j

cj] (2.3.8)

≤
m1−1∑
j=n1

[(−2aj + bj) ·
m1−1∏
i=j

cj]

→ 0 as n1,m1 →∞,

which is a contradiction, thus µ(Vn)→ µ with probability 1.

Lemma 2.3.4. a(n)
1 =< Vn, θ1 >, where θ1 is the eigenvector of λ1, a(n)

1 converges to some

value a1 with probability 1 as n→∞.

Proof. Since Vn+1 = Vn − γn+1ξn+1, ξn+1 = An+1Vn − <An+1Vn,Vn>
‖Vn‖2 Vn, by definition

of a(n)
1 =< Vn, θ1 > and µ(Vn) = <ΣVn,Vn>

‖Vn‖2 , also by the nature: < ΣVn, θ1 >=<
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Vn,Σθ1 >=< Vn, λ1θ1 >= λ1a
(n)
1 , we have:

a
(n+1)
1 = < Vn+1, θ1 > = < Vn − γn+1ξn+1, θ1 >

= < Vn, θ1 > −γn+1 < An+1Vn −
< An+1Vn, Vn >

‖Vn‖2
Vn, θ1 >

= a
(n)
1 + γn+1 <

< ΣVn, Vn >

‖Vn‖2
Vn +

< (An+1 − Σ)Vn, Vn >

‖Vn‖2
Vn − ΣVn

+(Σ− An+1)Vn, θ1 >

= a
(n)
1 + γn+1(µ(Vn)− λ1)a

(n)
1 + γn+1Z

′
n

= a
(n)
1 (1 + γn+1(µ(Vn)− λ1)) + γn+1Z

′
n,

where Z ′n =< (Σ− An+1)Vn, θ1 > +<(An+1−Σ)Vn,Vn>
‖Vn‖2 a

(n)
1 .

Since E[‖Vn‖2] = E[‖Vn−1‖2] + γ2
nE[‖ξn‖2] ≤ E[‖Vn1‖2] + γ2

n‖Σ‖2E‖Vn−1‖2 ≤∏∞
n=1(1+γ2

n‖Σ‖2) ≤ ∞, Z ′n is centered andE[Z ′2n ] is bounded, by lemma 2.3.1,
∑∞

n=1 γnZ
′
n <

∞.

Now, if lim inf a
(n)
1 < lim sup a

(n)
1 , choose a, b such that lim inf a

(n)
1 < a < b <

lim sup a
(n)
1 , find m1, n1, such that: m1 ≥ n1 ≥ N , a(m1)

1 < a, a(n1)
1 > b, for j ∈ (n1,m1),

a ≤ a
(j)
1 ≤ b. Since λ1 is the smallest eigenvalue, µ(Vk) ≥ λ1.

Thus:

a
(m1)
1 − a(n1)

1

m1∏
k=n1

(1 + γk+1(µ(Vk)− λ1)) ≤ a
(m1)
1 − a(n1)

1 < a− b ≤ 0.

On the other hand:
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a
(m1)
1 − a(n1)

1

m1∏
k=n1

(1 + γk+1(µ(Vk)− λ1))

=

m1−1∑
j=n1

γjZ
′
j

m−1∏
i=j

(1 + γj+1(µ(Vj)− λ1))

≥
m1−1∑
j=n1

γjZ
′
j (2.3.9)

Since
∑∞

j=1 γjZ
′
j <∞, let n1 →∞, we can let

∑m1−1
j=n1

γjZ
′
j as closed to 0 as we want,

which is a contradiction.

Thus a(n)
1 → a1 with probability 1.

Now we get the idea that µ(Vn) and a(n)
1 are both convergence with probability 1, and

by the proof above, all coefficients in (2.3.6) are convergence with probability 1, so does

the part γn+1cnf(Vn). By find the convergence rate for each of these parts, we can find the

convergence rate for µ(Vn).

Lemma 2.3.5. (1) µ(Vn)→ λ1 as n→∞ with probability 1, and (2) the convergence rate

of <AnVn,Vn>‖Vn‖2 to λ1 is in the order of O(‖Σ‖√
n
· (
√
E[‖An‖2])

∨
‖Σ‖).

Proof. (1)

a
(n+1)
1 = < Vn+1, θ1 > = < Vn+1, θ1 > = < Vn − γn+1ξn+1, θ1 >

= < Vn, θ1 > −γn+1 < An+1Vn −
< An+1Vn, Vn >

‖Vn‖2
, θ1 >

= a
(n)
1 + γn+1

< An+1Vn, Vn >

‖Vn‖2
a

(n)
1 − γn+1 < An+1Vn, θ1 >

= a
(n)
1 + γn+1

< ΣVn, Vn >

‖Vn‖2
a

(n)
1 − γn+1 < Vn,Σθ1 >

+γn+1
< An+1Vn, Vn >

‖Vn‖2
a

(n)
1 − γn+1 < An+1Vn, θ1 >

−γn+1
< ΣVn, Vn >

‖Vn‖2
a

(n)
1 + γn+1 < Vn,Σθ1 >

= a
(n)
1 (1 + γn+1(µ(Vn)− λ1)) + γn+1Z

′
n,
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where Z ′n =< (Σ − An+1)Vn, θ1 > +<(An+1−Σ)Vn,Vn>
‖Vn‖2 a

(n)
1 , which is centered and

bounded, then by Jensen’s inequality:

E|a(n+1)
1 | ≥ E|a(n)

1 |(1 + γn+1(
E[µ(Vn)|a(n)

1 |]
E|a(n)

1 |
− λ1))

≥
n∏
k=1

(1 + γk+1(
E[µ(Vk)|a(k)

1 |]
E|a(k)

1 |
− λ1))E|a(1)

1 |

By Lemma 2.3.4, {a(n)
1 } convergence, then

∞∏
k=1

(1 + γk+1(
E[µ(Vk)|a(k)

1 |]
E|a(k)

1 |
− λ1)) <∞,

thus:
∞∑
k=1

γk+1(
E[µ(Vk)|a(k)

1 |]
E|a(k)

1 |
− λ1) <∞.

By (2.1.3), limk→∞
E[µ(Vk)|a(k)1 |]

E|a(k)1 |
− λ1 = 0.

By dominant convergence theorem: limk→∞ a
(k)
1 = a1, limk→∞ µ(Vk) = µ. Thus:

µa1
a1

= λ1, therefore, µ = λ1.

(2)

λ1 −
< AnVn, Vn >

‖Vn‖2
= (λ1 − µ(Vn)) + (µ(Vn)− < AnVn, Vn >

‖Vn‖2
)

= (λ1 − µ(Vn)) + (
< (Σ− An)Vn, Vn >

‖Vn‖2
)

Since E[<(Σ−An)Vn,Vn>
‖Vn‖2 ] = 0, we only need to consider |λ1 − µ(Vn)|. From (2.3.6) we

have:

µ(Vn+1)− cn · µ(Vn) = −2γn+1cnf(Vn)− 2ancn + bncn = (−2γn+1f(Vn)− 2an + bn)cn,

where aj , bj and cj are defined the same as (2.3.5). The same way as we get (2.3.8), keep
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increase Vn+1 to Vm recursively, we have:

µ(Vm)− µ(Vn)
m−1∏
i=n

ci =
m−1∑
j=n

(bj − 2γj+1f(Vj)− 2aj)
m−1∏
i=j

ci.

Now, by (2.3.2): E[‖ξn‖|Fn−1] ≤ tr(Σ)‖Vn‖.

For bj part,

∞∑
j=n

E[bj|Fj] =
∞∑
j=n

γ2
j+1E[

< Σξj+1, ξj+1 >

‖Vj‖2
|Fj] ≤

∞∑
j=n

γ2
j+1

‖Σ‖E[‖ξj+1‖2|Fj]
‖Vj‖2

≤
∞∑
j=n

γ2
j+1

‖Σ‖tr(Σ)2‖Vj‖2

‖Vj‖2
=
∞∑
j=n

γ2
j+1 · c,

thus its rate of convergence is O( 1
n
)

For aj part,
∑∞

j=n aj =
∑∞

j=n γj+1Zj , Zj is centered and E[Z2
j ] is bounded, by lemma

2.3.1, E[|S − Sn|2] ≤
∑

i>nE[a2
i ], whose rate of convergence is O( 1

n
), thus

∑∞
j=n aj has

the rate of convergence O( 1√
n
).

For cj part, by proof of the lemma 2.3.3,
∏∞

i=n ci has the same convergence properties

as
∑∞

i=n γ
2
i+1
‖ξi+1‖2
‖Vi‖2 . By (2.3.2):

E[
‖ξi+1‖2

‖Vi‖2
|Fi] ≤ E[

tr(Σ)2‖Vi‖2

‖Vi‖2
] = tr(Σ)2,

thus
∏∞

i=n ci has the rate of convergence O( 1
n
).

For f(Vj) part, by assumption 2, rewrite Vn =
∑d

i=1 a
(n)
i θi, where d is the dimen-

sion. From (2.3.8), we have:
∑∞

n=1 γn+1f(Vn)
∏n−1

k=1(1 + γ2
k+1

‖ξk+1‖2
‖Vk‖2

)−1 < ∞ with prob-

ability 1. Since we have γn �p 1
n

and f(Vn) ≥ 0 ∀n, if lim infn→∞ f(Vn) = c, then∑∞
n=1 γn+1f(Vn)

∏n−1
k=1(1 + γ2

k+1
‖ξk+1‖2
‖Vk‖2

)−1 =∞, thus c = 0.

Now, by nature of eigenvector and eigenvalue, as well as assumption 2: θ2
i = 1, θiθj = 0

for i 6= j, and ‖Vn‖2 =
∑d

i=1(a
(n)
i )2.
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Thus:

f(Vn) =
‖ΣVn‖2

‖Vn‖2
− < ΣVn, Vn >

2

‖Vn‖4

=
(
∑d

i=1 a
(n)
i λiθi)

2

‖Vn‖2
− µ(Vn)2

=

∑d
i=1(a

(n)
i )2(λ2

i − µ(Vn)2)

‖Vn‖2
, (2.3.10)

which leads to the result: f(Vj)→ 0 with the same rate of µ(Vn)→ λ1.

Thus, <AnVn,Vn>
‖Vn‖2 converges to λ1 the same rate as aj part, has the rate of convergence

O( 1√
n
). More precisely, by proof of the Lemma 2.3.1, E[|Sn+r − Sn|2] ≤

∑
i>nE[X2

i ] if

{Xn}n is 0 mean. Then for aj = γj+1Zj , we have

E[|S − Sn|2] ≤
∑
i>n

E[a2
i ] .p

∑
i>n

1

i2
E[Z2

i ].

Now for Zn, by (2.3.4), we have:

‖Zn‖ = ‖< (An+1 − Σ)Vn,ΣVn >

‖Vn‖2
− < (An+1 − Σ)Vn, Vn >

‖Vn‖4
· < ΣVn, Vn > ‖

≤ ‖< (An+1 − Σ)Vn,ΣVn >

‖Vn‖2
‖+ ‖< (An+1 − Σ)Vn, Vn >

‖Vn‖4
· < ΣVn, Vn > ‖

≤ ‖< (An+1 − Σ)Vn, Vn >

‖Vn‖2
‖ · ‖Σ‖+ ‖< (An+1 − Σ)Vn, Vn >

‖Vn‖2

·< ΣVn, Vn >

‖Vn‖2
‖

.p ‖
< (An+1 − Σ)Vn, Vn >

‖Vn‖2
‖ · ‖Σ‖

≤ ‖An+1 − Σ‖‖Σ‖

≤ (‖An+1‖+ ‖Σ‖)‖Σ‖.
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Thus:

E[Z2
n] ≤ ‖Σ‖2E[‖An+1‖2 + ‖Σ‖2 + 2‖An+1‖‖Σ‖]

.p ‖Σ‖2E[‖An+1‖2 + ‖Σ‖2]

�p ‖Σ‖2 · (E[‖An‖2]
∨
‖Σ‖2).

SoE[|S−Sn|2] has rate of convergenceO( 1
n
·‖Σ‖2 ·(E[‖An‖2]

∨
‖Σ‖2)), thus

∑∞
j=n aj

has rate of convergence O(‖Σ‖√
n
· (
√
E[‖An‖2]

∨
‖Σ‖)).

Lemma 2.3.6. (1) Vn → a
(n)
1 θ1 with probability 1 and (2) <Vn,θ1>2

‖Vn‖2 approach to 1 in the

order of d‖Σ‖
g
√
n
· (
√
E[‖An‖2]

∨
‖Σ‖) with probability 1.

Proof. (1) We already proved that f(Vn) → 0 and µ(Vn) → λ1 in lemma 2.3.5, thus

λi − µ(Vn) > 0 for i 6= 1 when n large enough. By (2.3.10),

0 = lim
n→∞

f(Vn) = lim
n→∞

∑d
i=1(a

(n)
i )2(λ2

i − µ(Vn)2)

‖Vn‖2
,

a
(n)
i = 0 when i 6= 1, thus Vn → a

(n)
1 θ1 with probability 1.

(2) By previous argument, we have:

f(Vn) =

∑d
i=1(a

(n)
i )2(λ2

i − µ(Vn)2)

‖Vn‖2

=
(a

(n)
1 )2(λ2

1 − µ(Vn)2)

‖Vn‖2
+

∑d
i=2(a

(n)
i )2(λ2

i − µ(Vn)2)

‖Vn‖2
,

convergence with the same rate of µ(Vn)→ λ1, we have
∑∞
i=2(a

(n)
i )2(λ2i−µ(Vn)2)

‖Vn‖2 → 0 at least

the same rate as (a
(n)
1 )2(λ21−µ(Vn)2)

‖Vn‖2 → 0.

By part (1), µ(Vn) has rate of convergence O(‖Σ‖√
n
· (
√
E[‖An‖2])

∨
‖Σ‖), we have

∑∞
i=2(a

(n)
i )2(λ2

i − λ2
1)

‖Vn‖2
�p
‖Σ‖√
n
· (
√
E[‖An‖2]

∨
‖Σ‖) · (a

(n)
1 )2λ1

‖Vn‖2
,
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let g = |λ1 − λ2|, thus:

∞∑
i=2

(a
(n)
i )2 �p

‖Σ‖√
n
· (
√
E[‖An‖2]

∨
‖Σ‖) · (a

(n)
1 )2λ1

|(λi − λ1)(λi + λ1)|

.p
‖Σ‖‖Vn‖2

g
√
n

· (
√
E[‖An‖2]

∨
‖Σ‖)

Now by assumption 2, ‖Vn‖2 =
∑d

i=1(a
(n)
i )2, thus:

‖Vn‖2 − (a
(n)
1 )2 =

∞∑
i=2

(a
(n)
i )2 .p

‖Σ‖‖Vn‖2

g
√
n

· (
√
E[‖An‖2]

∨
‖Σ‖).

Above all:

1− < Vn, θ1 >
2

‖Vn‖2
.p
‖Σ‖
g
√
n
· (
√
E[‖An‖2]

∨
‖Σ‖).

2.4 Experiment

The dataset X ∈ R106×10 was just generated through its singular value decomposition.

Specifically, we fix a 10 × 10 diagonal matrix Σ = diag{1, 0.9, · · · , 0.9} and generate

random orthogonal projection matrix U ∈ R106×10 and random orthogonal matrix V ∈

R10×10. And the dataset X =
√
nUΣV T , which guarantees that the matrix A = 1

n
XTX

has eigen-gap 0.1. See Figure.1.

2.5 Conclusion

We derived the asymptotic rate of convergence for the estimation of the smallest eigen-

value and corresponding eigenvector of the Krasulina scheme. There are several important

questions related to Online PCA.

1. The Krasulina scheme only requires O(d) storage space complexity against O(d2)

for standard PCA in the offline setting, however, we paid a price in the rate of con-
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Table 2.1: Comparison of different schemes for PCA.

Scheme
Computation
complexity

Space
complexity

Convergence rate Setting

Standard PCA O(d2n) O(nd2) O(‖Σ‖ · (
√

r(Σ)
n

∨ r(Σ)
n

)) Offline

Sparse PCA [8] O(d2n) O(nd2) O(
k∗q
nλ

(d+ log d
k∗q

)) Offline

Krasulina O(dn) O(d) O(‖Σ‖√
n
· (
√
E[‖An‖2]

∨
‖Σ‖)) Online

vergence that is significantly slower than offline setting. See Table.2.1, it compares

the different schemes. The computational complexity is correspondence to the com-

plexity of one eigenvalue and eigenvector. the convergence rates are given for the

operator norm. For the sparse PCA scheme of [8], k∗q denotes the sparsity level of

the eigenvectors.

An interesting question would be whether the Krasulina scheme can achieve the of-

fline rate of convergence.

The simulation study seems to confirm the slow convergence rate of Krasulina’s

scheme. It would be interesting to build an acceleration for this scheme. This prob-

lem has been investigated by [20] where negative numerical results were provided

for usual acceleration schemes. Therefore this question remains largely open.

2. Note that the proof argument in the original paper [5] only gives the consistency of

the smallest eigenvalue and corresponding eigenvector for the Krasulina scheme. As

we built upon this argument in this Chapter, we only provide the rate of convergence

for the smallest eigenvalue and corresponding eigenvector. The reason for this limi-

tation can be traced back to (2.3.9). The fact that λ1 is the smallest eigenvalue is key

to prove that the sequence a(n)
1 = 〈Vn, θ1〉 is Cauchy and thus converging. Tackling

other eigenvalues will require a new argument.

3. Finally, it would be of interest to derive rates of convergence for other online PCA

schemes including Oja and naive PCA.
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CHAPTER 3

UPDATED TEXT CLASSIFICATION METHODS

3.1 Introduction

Text classification problem has long been an interesting research field, the aim of text clas-

sification is to develop algorithm to find the categories of given documents. Text classifi-

cation has many applications in natural language processing (NLP), such as spam filtering,

email routing, and sentimental analysis. Despite intensive work,remains an open problem

today.

This problem has been studied for many aspects, including: supervised classification

problem, if we are given the labeled training data; unsupervised clustering problem, if we

only have documents without labeling; as well as feature selection.

For supervised problem, if we assume that all the categories are independent multino-

mial distributions, and each document is a sample generated by that distribution, a straight

forward idea is to using some linear models to distinguish them, such as support vector ma-

chine (SVM)[21, 22], which is used to find the ”maximum-margin hyperplane” that divides

the documents with different labels. The algorithm is defined so that the distance between

the hyperplane and the nearest sample di from either group is maximized. The hyperplane

can be written as the set of documents vector ~d satisfying:

~w · ~d− b = 0,

where ~w is the normal vector to the hyperplane. Under the same assumption, another ef-

fective classifier, using scores based on the probability of given documents conditioned

on the categories, is called naive Bayesian classifier[23, 24]. This classifier learns from

training data to estimate the distribution of each categories, then we can compute the con-
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ditional probability of each documents di given the class label Ci by applying Bayes rule,

then the predicting of the classes is done by choosing the highest posterior probability. The

algorithm to get the label for a given document d is given by:

label(d) = argmax
j

P (Cj)P (d|Cj).

When we understand the documents as sequence of words, to understand the order of the

words, given the data set large enough, we can using deep learning models such as Recur-

rent Neural Network (RNN)[25, 26].

For unsupervised problem. We have traditional method SVD (Singular Value Decom-

position)[27] for the dimension reduction and clustering. There also exist some algorithms

based on EM algorithm, such as pLSA (Probabilistic latent semantic analysis)[28], which

consider the probability of each co-occurrence as a mixture of conditionally independent

multinomial distributions:

P (w, d) =
∑
C

P (C)P (d|C)P (w|C)

= P (d)
∑
C

P (C|d)P (w|C),

where w and d are observed words and documents, and C been the words’ topic. As we

mentioned, the parameters are learned by EM algorithm. Using the same idea, but assum-

ing that the topic distribution has sparse Dirichlet prior, we have algorithm LDA (Latent

Dirichlet allocation)[29]. The sparse Dirichlet priors encode the intuition that documents

cover only a small set of topics and that topics use only a small set of words frequently. In

practice, this results in a better disambiguation of words and a more precise assignment of

documents to topics.

There are also many results in feature engineering, such as tf-idf[30], n-gram, or in-

proved tf-idf with other feature selection[31].
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In many circumstances, the process of labeling is distributed among less-than-expert

assessors. Therefore, their labeling for hundreds of pictures, texts, or messages a day is

error-prone. The concept of partial labeling seeks to remedy the labor: instead of offering

one or some exact labels, the annotators can offer a set of possible candidate solutions for

one sample, thus providing a ’buffer’ against potential mistakes. Other partial labeling

settings involve repeated labeling to filter out noises, or assessing the quality of the labelers

to enhance performances of the models.

As the data size in companies such as FANG(Facebook, Amazon, Netflix, Google) con-

stantly reaches the magnitude of Petabyte, the demand for quick, yet still precise labeling

is ever growing. Viewing some practices, the partial labeling frames that we know of have

certain limitations. For example, in a real-world situation concerning NLP, if the task is to

determine the class/classes of one article, an annotator with a bachelor major in American

literature might find it difficult to determine if an article with words dotted with ’viscosity’,

’gradient’, and ’Laplacian’ etc., belongs to computer science, math, physics, chemistry, or

none of the classes above. As a result, the annotator might struggle within some limited

amount of time amid a large pool of label classes and is likely to make imprecise choices

even in a lenient, positive-oriented partial labeling environment. Another issue is the cost.

Repeated labeling and keeping track of the performance of each labeler (assuming the

sources where the labels are obtained are steady) may be pricey, and the anonymity of the

labelers can raise another barrier wall to several partial labeling approaches.

Taking into consideration the real world scenarios, we present a new method to tackle

the problem of how to gather at a large scale partially correct information from diverse

annotators, while remaining efficient and budget-friendly. Still taking the above text clas-

sification as the example. Although that same annotator might not easily distinguish which

categories the above-mentioned article belongs to, he/she can tell in a few seconds the

article is not related to cuisines, TV-entertainments, or parenting. In our partial label for-

mulation, the safe choices, crossed-off categories labeled by annotators, can still be of
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benefit. Furthermore, when contradictory labels are marked on one training sample and the

identities of the labelers unknown, our introduced self-correcting estimator can select, and

learn from the categories where the labels agree.

In this Chapter, we still assume that documents are generated according to a multino-

mial event model[32]. The first section, We defined a new method to estimate centroid

based on the symmetric KL-divergence between the distribution of documents and their

class centroids, which works better than original average estimated centroid in naive Bayes

method, then in the second section, we define a new method based on traditional Naive

Bayes estimator, and in the last section, we applied our new method in partial labeled prob-

lem.

3.2 Centroid estimation based on symmetric KL divergence

Notations: In this section, document belong to class j with index i is represented as a

vector dji = (xi1 , xi2 , ..., xi|V |) of word counts where V is the vocabulary, and each xit ∈

{0, 1, 2, ...} indicates how often wt occurs in di. ci denotes the centroid of the class Ci,

since we use the assumption that documents are generated according to a multinomial event

model, ci = (ci1 , ci2 , ...ci|V |) satisfies:
∑|V |

j=1 cj = 1.

3.2.1 Our Model

Let p = (p1, p2, ..., pn), q = (q1, q2, ...qn) be two multinomial distributions, the KL-

divergence is defined as:

KL(p, q) =
n∑
i=1

pi log
pi
qi
.

KL-divergence measures how much one probability distribution is different from an-

other, it is strongly connected with naive bayes classifier. Given class prior probabilities

p(Cj) and assuming independence of the words, normalize of document vector of d, the

most likely class for a document d = (d1, d2, ..., d|V |) satisfying
∑|V |

i=1 di = 1 is computed
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as:

label(d) = argmax
j

P (Cj)P (d|Cj) (3.2.1)

= argmax
j

P (Cj)

|V |∏
i=1

(cji)
di

= argmax
j

logP (Cj) +

|V |∑
i=1

di log cji

= argmax
j

logP (Cj)−
|V |∑
i=1

di log
di
cji

= argmin
j
− logP (Cj) +KL(d, cj).

To make it symmetric of p and q, we add in another term related to q log p as regularizer

to get symmetric KL-divergence:

SKL(p, q) =
n∑
i=1

(pi − qi) log
pi
qi
.

To compare several measures of difference of two distributions, let p = (x, 1 − x),

q = (0.01, 0.99), Figure.3.1 shows how the difference of two vectors change under different

measures. We can see that for p and q far from each other, the difference of SKL decay

faster, and for closer distributions, it decreases slower than linear speed. So SKL should be

a good choice to distinguish distributions.

In the labeled training set, for each classes, we use SKL to find the centroid, whose

sum of symmetric KL-divergence to all documents in that class reaches minimum, more

specifically, the centoid is defined as following:

ci = argmin
q

∑
p∈Ci

SKL(p, q). (3.2.2)
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Figure 3.1: how difference changes between p = (x, 1 − x) and q = (0.01, 0.99) in SKL,
cosine similarity and Eclidean distance.

Let f(q) =
∑

p∈Ci SKL(p, q), since:

f(q) =

|Cj |∑
j=1

|V |∑
i=1

(pji log
pji
qi

+ qi log
qi

pji
)

=

|Cj |∑
j=1

|V |∑
i=1

pji log pji − p
j
i log qi + qi log qi

−qi log pji .

Take partial derivative to qi we obtain:

∂f

∂qi
= (

|Cj |∑
j=1

−p
j
i

qi
+ log qi + 1− log pji ).
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Thus: 
∂2f

∂q2
i

=

|Cj |∑
j=1

(
pji
q2
i

+
1

qi
)

∂2f

∂qiqk
= 0

We can see that this is a convex problem. So we can obtain the global minimizer from

minimization problem 3.2.2. After we get the estimation of centroid, we apply that in

orginal naive bayes method 3.2.1, under this estimator, we expected it works better than

original estimator of centroid.

3.2.2 Minimization problem

To solve 3.2.2 on the discrete probability manifold, the Wasserstein is used to get the gra-

dient system. To this ends, suppose the graph structure G = (V,E) is given where V are

nodes set containing all the words involved and E defines the edge set which links the

graph to be a connected graph. And in the examples below, the simplest histogram struc-

ture is used, that is, all the words are linked one by one in some order in a line. Also denote

n = |V | be the number of nodes on the graph.

Now consider a energy function F(ρ), let

Fi(ρ) =
∂

∂ρi
F(ρ)

define the orientationO onG to be that for (i, j) ∈ E, the direction is from i to j if Fi > Fj

and that is arbitrary if Fi = Fj , denoting as (i → j) ∈ O. Then the construction of the

gradient of a potential function Φ based on the orientation is

∇GΦ = (Φi − Φj)(i→j)∈O, (φi)
n
i=1 ∈ Rn
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Then, an inner product can be written as

(∇GΦ,∇GΦ)ρ =
1

2

∑
(i→j)∈O

gij(ρ)(Φi − Φj)
2

where

gij(ρ) =

 ρi if (i→ j) ∈ O

ρj if (j → i) ∈ O

and the gradient flow under this metric is known as discrete 2-Wasserstein gradient flow

since the discrete 2-Wasserstein distance is defined as

W2(ρ0, ρ1) = inf
ρ∈C{(∫ 1

0

(∇GΦ,∇GΦ)ρ

) 1
2

:
∂ρ

∂t
+∇G · (ρ∇GΦ) = 0

}

Now consider the energy function to be

F(ρ) =
∑
p∈Ci

SKL(p, ρ)

and the gradient flow can be written as

ρ̇i +
∑
j∈N(i)

gij(ρ)(Fi(ρ)− Fj(ρ)) = 0

Solving this ODE obtains the solution for problem 3.2.2.

3.2.3 Experiment

We applied our method on seven topics of single labeled documents in Reuters-21578, we

find the accuracy of naive bayes using our centroid estimator increasing faster than orig-

inal method, see Figure.3.2, and when training size is large enough, our method achieves

substantial improvements over the traditional method.
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Figure 3.2: Average accuracy ratio under seven topics.

Table 3.1: average SKL to other classes
coffee sugar trade ship crude interst money-fx
9.0348 8.9305 6.2703 9.1293 7.3662 7.4778 6.9361

For each single class, the behave of our method versus traditional naive bayes estima-

tor can be find in Figure.3.3. We can a clear increasing trend for topics as training size

becoming larger.

Table.3.1 shows the average SKL to other classes, from Figure.3.3 we can see that class

’trade’ is the only one doesn’t have trend of increasing, that might because it is very closed

to other classes, and SKL cannot distinguish it well based on our observation in Figure3.1.

3.2.4 Open problems

1. In this section, we find better estimator for centroid using naive bayes, can we find

similar result for other estimators?

2. Can this centroid estimator be extended to be used in unsupervised learning problem?
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Figure 3.3: Accuracy ratio for seven topics.

3. When we solve the minimization problem, we have a graph structure for each feature.

We are using a connecting graph now, can we use the partially connected graph to

demonstrate correlation of words?

3.3 Updated naive bayes estimator for text classification problem

3.3.1 General Setting

Consider a classification problem with sample x ∈ S and class set C, where

C = {C1, C2, ..., Ck}.

We are interested in finding our estimator:

ŷ = f(x; θ) = (f1(x; θ), f2(x; θ), ..., fk(x; θ))
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for y, where θ = {θ1, θ2, ..., θm} is the parameter, and fi(x; θ) is the likelihood function of

sample x in class Ci. Define: y = (y1, y2, ..., yk), if x is in class Ci, then yi = 1. Notice

that if this is a single label problem, then we have:
∑k

i=1 yi = 1.

3.3.2 Naive Bayes classifier in text classification problem

For Naive Bayes model. Let class Ci with centroid θi = (θi1 , θi2 , ..., θiv), where v is the

total number of the words and θi satisfies:
∑v

j=1 θij = 1. Assuming independence of the

words, the most likely class for a document d = (x1, x2, ..., xv) is computed as:

label(d) = argmax
i

P (Ci)P (d|Ci) (3.3.1)

= argmax
i

P (Ci)
v∏
j=1

(θij)
xj

= argmax
i

logP (Ci) +
v∑
j=1

xj log θij .

So we have:

log fi(d, θ) = logP (Ci) +
v∑
j=1

xj log θij .

For a class Ci, we have the standard likelihood function:

L(θ) =
∏
x∈Ci

v∏
j=1

θ
xj
ij
, (3.3.2)

Take logarithm for both side, we obtain the log-likelihood function:

logL(θ) =
∑
x∈Ci

v∑
j=1

xj log θij . (3.3.3)
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We would like to solve optimization problem:

max L(θ) (3.3.4)

subject to :
v∑
j=1

θij = 1

θij ≥ 0. (3.3.5)

The problem (3.3.4) can be solve explicitly with (3.3.3) by Lagrange Multiplier, for

class Ci, we have θi = {θi1 , θi2 , ..., θiv}, where:

θ̂ij =

∑
d∈Ci xj∑

d∈Ci

∑v
j=1 xj

. (3.3.6)

For estimator θ̂, we have following theorem.

Theorem 3.3.1. Assume we have normalized length of each document, that is:
∑v

j=1 xj =

m for all d, the estimator (3.3.6) satisfies following properties:

1. θ̂ij is unbiased.

2. E[|θ̂ij − θij |2] =
θij (1−θij )

|Ci|m .

Proof. With assumption
∑v

j=1 xj = m, we can rewrite (3.3.6) as:

θ̂ij =

∑
d∈Ci xj∑
d∈Cim

=

∑
d∈Ci xj

|Ci|m
.

Since d = (x1, x2, ..., xv) is multinomial distribution, with d in class Ci, we have: E[xj] =

m · θij , and E[x2
j ] = mθij(1− θij +mθij).

1.

θ̂ij = E[

∑
d∈Ci xj

|Ci|m
] =

∑
d∈Ci E[xj]

|Ci|m
=

∑
d∈Cim · θij
|Ci|m

= θij .

Thus θ̂ij is unbiased.
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2. By (1), we have:

E[|θ̂ij − θij |2] = E[θ̂2
ij

]− 2θijE[θ̂ij ] + θ2
ij

= E[θ̂2
ij

]− θ2
ij
.

Then

θ̂2
ij

=
(
∑

d∈Ci xj)
2

|Ci|2m2
=

∑
d∈Ci x

2
j +

∑
d1,d2∈Ci 2xd1j x

d2
j

|Ci|2m2
, (3.3.7)

where di = (xdi1 , x
di
2 , ..., x

di
v ) for i = 1, 2. Since:

E[
∑
d∈Ci

x2
j ] =

|Ci|mθij(1− θij +mθij)

|Ci|2m2
=
θij(1− θij +mθij)

|Ci|m
,

and

E[
∑

d1,d2∈Ci

2xd1j x
d2
j ] =

|Ci|(|Ci| − 1)m2θ2
ij

|Ci|2m2
=

(|Ci| − 1)θ2
ij

|Ci|
.

Plugging them into (3.3.7) obtains:

E[θ̂2
ij

] =
θij(1− θij)
|Ci|m

+ θ2
ij
,

thus: E[|θ̂ij − θij |2] =
θij (1−θij )

|Ci|m .

3.3.3 Main Result

From Theorem.3.3.1, we can see that traditional Naive Bayes estimator θ̂ is an unbiased

estimator with variance O(
θij (1−θij )

|Ci|m ). Now we are trying to get our estimators, and prove

that it can perform better than traditional Naive Bayes estimator.
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Define:

L1(θ) =
∏
x∈S

k∏
i=1

fi(x; θ)yi(x)+t

=
∏
x∈S

(
v∏
j=1

θ
xj
ij

)yi(x)+t. (3.3.8)

Take logarithm for both side, we obtain the log-likelihood function:

logL1(θ) =
∑
x∈S

(yi(x) + t)
v∑
j=1

xj log θij . (3.3.9)

We would like to solve optimization problem:

max logL1(θ) (3.3.10)

subject to :
v∑
j=1

θij = 1

θij ≥ 0. (3.3.11)

Let:

Gi = 1−
v∑
j=1

θij ,

by Lagrange multiplier, we have:


∂ log(L1)

∂θij
+ λi

∂Gi

∂θij
= 0 ∀ 1 ≤ i ≤ k and ∀ 1 ≤ j ≤ v

v∑
j=1

θij = 1, ∀ 1 ≤ i ≤ k

plug in, we obtain:



∑
x∈S

(yi(x) + t)xj
θij

− λi = 0, ∀ 1 ≤ i ≤ k and ∀ 1 ≤ j ≤ v

v∑
j=1

θij = 1, ∀ 1 ≤ i ≤ k

(3.3.12)
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Solve (3.3.12), we got the solution of optimization problem (3.3.10):

θ̂L1
ij

=

∑
x∈S(yi(x) + t)xj∑v

j=1

∑
x∈S(yi(x) + t)xj

. (3.3.13)

Assume for each classes, we have prior distribution p1, p2, ..., pk, and assume we have

normalized length of each document, that is:
∑v

j=1 xj = m. Then:

E[θ̂L1
ij

] =

∑
x∈S(yi(x) + t)E[xj]∑
x∈S(yi(x) + t)m

=

∑
x∈S tE[xj] +

∑
x∈Ci E[xj]∑

x∈S tm+
∑

x∈Cim

=
t|S|

∑k
l=1 plθlj + θij |Ci|
t|S|+ |Ci|

.

Thus:

E[|θ̂L1
ij
− θij |] =

t|S||
∑k

l=1 plθlj − θij |
t|S|+ |Ci|

. (3.3.14)

On the other hand,

E[(θ̂L1
ij

)2] =
(
∑

x∈S(yi(x) + t)E[xj])
2

(
∑

x∈S(yi(x) + t)m)2

=

∑
x∈S(2t+ 1)yi(x)E[x2

j ] +
∑

x∈S t
2E[x2

j ]∑
x∈S(2t+ 1)yi(x)m2 +

∑
x∈S t

2m2

=
(2t+ 1)|Ci|θij(1− θij +mθij) + t2|S|

∑k
l=1 plθlj(1− θlj +mθlj)

(2t+ 1)m|Ci|+ t2|S|m
.

Thus:

E[|θ̂L1
ij
− θij |2] = E[(θ̂L1

ij
)2]− 2E[θ̂L1

ij
]θij + θ2

ij

=
(2t+ 1)|Ci|θij(1− θij +mθij) + t2|S|

∑k
l=1 plθlj(1− θlj +mθlj)

(2t+ 1)m|Ci|+ t2|S|m

−2
t|S|

∑k
l=1 plθlj + θij |Ci|
t|S|+ |Ci|

θij + θ2
ij
→ 1

|S|m
as t→∞.

We can see that E[|θ̂L1
ij
− θij |2] is in O( 1

|S|) when t is large, which means it convergent
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faster than standard Naive Bayes O( 1
|Ci|), however, since E[|θ̂L1

ij
− θij |] 6= 0, it is not an

unbiased estimator. To determine parameter t, assume the cost for unbiased estimator is

c1, the cost for convergence speed is c2, then the parameter t can be solve by the following

optimization problem:

t = arg min
t

c1E[|θ̂L1
ij
− θij |] + c2E[|θ̂L1

ij
− θij |2].

3.3.4 Experiment

We applied our method on top 10 topics of single labeled documents in Reuters-21578

data[3], and 20 news group data[33]. we compare the result of traditional Naive Bayes

estimator (3.3.6): θ̂ij , and our estimator (3.3.13): θ̂L1
ij

. In the simulation, t is chosen to be 1

in all the following figures.

First of all, we run both the algorithms on these two sample sets. We know that when

sample size becomes large enough, both estimators actually convergence into something

else, but when training set small, our estimator should converge faster. Thus we first take

the training size relatively small. See Figure.3.4(a) and Figure.3.4(b). According from the

experiment, we can see our method is more accurate for most of the classes, and more

accurate in average.

Then we test our estimator θ̂L1 with larger dataset. In our analysis before, we know that

as dataset becomes large enough, our estimator converges to something else, so we expect

a better result in traditional Naive Bayes estimator. See Figure.3.5(a) and Figure.3.5(b).

According from the experiment, we can see for 20 news group, Naive Bayes already be-

comes better than our method, but our method is still more accurate than Naive Bayes in

Reuter’s data. This might because we have a huge unbalance dataset in Reuter’s data, 90%

of the training set is still not large enough for many classes.

Finally, We try to apply same training set and test the accuracy just on training set, we

find traditional Naive Bayes estimator actually achieve better result, that means it might
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Figure 3.4: We take 10 largest groups in Reuter-21578 dataset (a) and 20 news group dataset (b),
and take 10% of the data as training set. The y-axis is the accuracy, and the x-axis is the class index.
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Figure 3.5: We take 10 largest groups in Reuter-21578 dataset (a) and 20 news group dataset (b),
and take 90% of the data as training set. The y-axis is the accuracy, and the x-axis is the class index.
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Figure 3.6: We take 10 largest groups in Reuter-21578 dataset (a), and 20 news group
dataset (b), and take 10% of the data as training set. We test the result on training set. The
y-axis is the accuracy, and the x-axis is the class index.

have more over-fitting problems. This might be the reason why our method works better

when dataset is not too large: adding the parameter t help us bring some uncertainly in

training process, which help avoid over-fitting. See Figure.3.6(a) and Figure.3.6(b).

3.4 A cost-reducing partial labeling estimator in text classification problem

In this section, we are going to introduce partial labeling problem, and illustrate how to

apply our method to solve it.

3.4.1 Related work

The text classification problem is seeking a way to best distinguish different types of docu-

ments[34, 35]. Being a traditional natural language processing problem, one needs to make

full use of the words and sentences, converting them into various input features, and apply-

ing different models to process training and testing. A common way to convert words into

features is to encoding them based on the term frequency and inverse document frequency,

as well as the sequence of the words. There are many results about this, for example,
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tf-idf[30] encodes term t in document d of corpus D as:

tfidf(t, d,D) = tf(t, d) · idf(t,D),

where tf(t, d) is defined as term frequency, it can be computed as tf(t, d) = |t:t∈d|
|d| , and

idf(t,D) is defined as inverse document frequency, it can be computed as

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|
.

We also have n-gram techniques, which first combines n nearest words together as a sin-

gle term, and then encodes it with tf-idf. Recently, instead of using tf-idf, [31] defines a

new feature selection score for text classification based on the KL-divergence between the

distribution of words in training documents and their classes.

A popular model to achieve our aim is to use Naive Bayes model[23, 24], the label for

a given document d is given by:

label(d) = argmax
j

P (Cj)P (d|Cj),

where Cj is the j-th class. For example, we can treat each class as a multinomial distribu-

tion, and the corresponding documents are samples generated by the distribution. With this

assumption, we desire to find the centroid for every class, by either using the maximum

likelihood function or defining other different objective functions[36] in both supervised

and unsupervised learning version[28]. Although the assumption of this method is not

exact in this task, Naive Bayes achieves high accuracy in practical problems.

There are also other approaches to this problem, one of which is simply finding lin-

ear boundaries of classes with support vector machine[22, 21]. Recurrent Neural Network

(RNN)[26, 25] combined with word embedding is also a widely used model for this prob-

lem.
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In real life, one may have different type of labels[37], in which circumstance, semi-

supervised learning or partial-label problems need to be considered [38]. There are several

methods to encode the partial label information into the learning framework. For the partial

label data set, one can define a new loss combining all information of the possible labels,

for example, in [39], the authors modify the traditional L2 loss:

L(w) =
1

n+m

[
n∑
i=1

l(xi, yi, w) +
m∑
i=1

l(xi, Yi, w)

]
,

where Yi is the possible label set for xi and l(xi, Yi, w) is a non-negative loss function, and

in [38], they defined convex loss for partial labels as:

LΨ(g(x), y) = Ψ(
1

|y|
∑
a∈y

ga(x)) +
∑
a/∈y

Ψ(−ga(x)),

where Ψ is a convex function, y is a singleton, and ga(x) is a score function for label a as

input x. A modification of the likelihood function is as well an approach to this problem

and [40] gives the following optimization problem using Naive Bayes method

θ∗ = arg max
θ

∑
i

∑
yi∈Si

p(y|xi, θ)

where Si is the possible labels for xi.

Meanwhile, the similarity of features among data could be considered to give a con-

fidence of each potential labels for a certain data. In [41], K nearest neighbor (KNN) is

adopted to construct a graph structure with the information of features while Rocchio and

Rocchio with clustering are used in [37].
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3.4.2 General Setting

Consider a classification problem with sample x ∈ S and class set C, where

C = {C1, C2, ..., Ck}.

We are interested in finding our estimator:

ŷ = f(x; θ) = (f1(x; θ), f2(x; θ), ..., fk(x; θ))

for y, where θ = {θ1, θ2, ..., θm} is the parameter, and fi(x; θ) is the likelihood function of

sample x in class Ci. Now assuming that in training set, we have two types of dataset S1

and S2, such that S = S1 ∪ S2:

1. dataset S1: we know exactly that sample x is in a class, and not in other classes. In

this case, define: y = (y1, y2, ..., yk), if x is in class Ci, then yi = 1. Notice that if

this is a single label problem, then we have:
∑k

i=1 yi = 1.

2. dataset S2: we only have the information that sample x is not in a class, then yi = 0.

In this case, define: z = (z1, z2, ..., zk), if x is not in class Ci, we have zi = 1.

To build the model, we define the following likelihood ratio function and likelihood

function:

L1(θ) =
∏
x∈S1

k∏
i=1

fi(x; θ)yi
∏
x∈S2

k∏
i=1

fi(x; θ)
1−zi

k−
∑
j 6=i zj . (3.4.1)

L2(θ) =
∏
x∈S

∏k
i=1 fi(x; θ)yi(x)+t∏k
i=1 fi(x; θ)zi(x)

=
∏
x∈S

k∏
i=1

fi(x; θ)yi(x)−zi(x)+t. (3.4.2)

The t in L2 satisfy t > 1, which is a parameter to avoid non-convexity.

The intuition of L1 is to consider the sample labeled zi = 1 has equal probability to

be labeled in the other classes, each of the classes will have probability 1−zi
k−

∑
j 6=i zj

. And

96



the intuition of L2 is to consider this in a likelihood ratio way, the zi = 1 labeled sample

will have negative affection for class Ci, so we put it in the denominator. With t > 1, all

the terms in denominator will finally be canceled out, so that even fi(x; θ) = 0 for some

sample x ∈ S will not cause trouble. Another intuition for L2 is that, it can be self-correct

the repeated data, which has been labeled incorrectly.

Take logarithm for both side, we obtain the following functions:

log(L1(θ)) =
∑
x∈S1

k∑
i=1

yi(x) log fi(x, θ) +
∑
x∈S2

k∑
i=1

1− zi
k −

∑
j 6=i zj

log fi(x, θ), (3.4.3)

and

log(L2(θ)) =
∑
x∈S

k∑
i=1

(yi(x) + t− zi(x)) log fi(x, θ). (3.4.4)

We would like to find our estimator θ̂ such that (3.4.4) or (3.4.3) reaches maximum.

3.4.3 Main Result

From Theorem.3.3.1, we can see that traditional Naive Bayes estimator θ̂ is an unbiased

estimator with variance O(
θij (1−θij )

|Ci|m ). Now we are trying to solve our estimators, and prove

they can use the data in dataset S2, and perform better than traditional Naive Bayes estima-

tor.

Text classification with L1 setting (3.4.1)

In order to use data both in S1 and S2, we would like to solve (3.3.4) with L(θ) = L1(θ),

where L1 is defined as (3.4.1), let:

Gi = 1−
v∑
j=1

θij ,

by Lagrange multiplier, we have:
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
∂ log(L1)

∂θij
+ λi

∂Gi

∂θij
= 0 ∀ 1 ≤ i ≤ k and ∀ 1 ≤ j ≤ v

v∑
j=1

θij = 1, ∀ 1 ≤ i ≤ k

Plug in, we obtain:



∑
x∈S1

yi(x)xj
θij

+
∑
x∈S2

1− zi(x)

k −
∑

l 6=i zl(x)
· xj
θij
− λi = 0, ∀ 1 ≤ i ≤ k and ∀ 1 ≤ j ≤ v

v∑
j=1

θij = 1, ∀ 1 ≤ i ≤ k

(3.4.5)

Solve (3.4.5), we got the solution of optimization problem (3.3.4):

θ̂L1
ij

=

∑
x∈S1

yi(x)xj +
∑

x∈S2

1−zi(x)
k−

∑
l 6=i zl(x)

xj∑
x∈S1

yi(x)
∑v

j=1 xj +
∑

x∈S2

1−zi(x)
k−

∑
l 6=i zl(x)

∑v
j=1 xj

. (3.4.6)

Text classification with L2 setting (3.4.2)

Another way to use both S1 and S2 dataset is to solve (3.3.4) with L(θ) = L2(θ), where L2

is defined as (3.4.2), let:

Gi = 1−
v∑
j=1

θij ,

by Lagrange multiplier, we have:


∂ log(L2)

∂θij
+ λi

∂Gi

∂θij
= 0 ∀ 1 ≤ i ≤ k and ∀ 1 ≤ j ≤ v

v∑
j=1

θij = 1, ∀ 1 ≤ i ≤ k
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Plug in, we obtain:



∑
x∈S

(yi(x) + t− zi(x))
xj
θij
− λi = 0 ∀ 1 ≤ i ≤ k and ∀ 1 ≤ j ≤ v

v∑
j=1

θij = 1, ∀ 1 ≤ i ≤ k

(3.4.7)

Solve (3.4.7), we got the solution of optimization problem (3.3.4):

θ̂L2
ij

=

∑
x∈S(yi(x) + t− zi(x))xj∑v

j=1

∑
x∈S(yi(x) + t− zi(x))xj

. (3.4.8)

Notice that the parameter t here is used to avoid non-convexity, when 0 ≤ t < 1, the

optimization problem (3.3.4) has the optimizer located on the boundary of θ, which cannot

be solved explicitly.

Improvement of Naive Bayes estimator with only S1 dataset

Now assume that we don’t have dataset S2, but only have dataset S = S1, can we still do

better than traditional Naive Bayes estimator θ̂? To improve the estimator, we can try to

use L1 or L2 setting. With z(x) = 1− y(x), we can define function z on S1 dataset.

With simple computation, we have the estimator of L1 is the same as θ̂ij . as for the

estimator for L2, we have:

θ̂∗ij =

∑
x∈S(2yi(x) + t− 1)xj∑v

j=1

∑
x∈S(2yi(x) + t− 1)xj

, (3.4.9)

3.4.4 Experiment

We applied our method on top 10 topics of single labeled documents in Reuters-21578

data[3], and 20 news group data[33]. we compare the result of traditional Naive Bayes

estimator θ̂ij and our estimator θ̂L1
ij

, θ̂L2
ij

, as well as θ̂∗ij . t is chosen to be 2 in all the following

figures. The data in S2 is generated randomly by not belong to a class, for example, if we
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Figure 3.7: We take 10 largest groups in Reuter-21578 dataset (a) and 20 news group dataset (b),
and take 20% of the data as training set, among which |S1| = |S2|. The y-axis is the accuracy, and
the x-axis is the class index.

know a document d is in class 1 among 10 classes in Reuter’s data, to put d in S2, we

randomly pick one class from 2 to 10, and mark d not in that class.

First of all, we run all the algorithms on these two sample sets. We know that when

sample size becomes large enough, our estimators actually convergence into something

else, but when sample size small enough, our estimator should converge faster. Thus we

take the training size relatively small. See Figure.3.7(a) and Figure.3.7(b). According from

the experiment, we can see our methods are more accurate for most of the classes, and

more accurate in average.

Then we consider a more extreme case. If we have a dataset with |S1| = 0, that is to

say, we have no positive labeled data. In this setting, traditional Naive Bayes will not work,

but what will we get from our estimators? See Figure.3.8(a) and Figure.3.8(b). We can see

we can still get some information from negative labeled data. The accuracy is not as good

as Figure.3.7(b) and Figure.3.7(a), that is because for each of the sample, negative label is

only a part of information of positive label.

At last, we test our estimator θ̂L2 with only S1 dataset, see Figure.3.9(a) and Fig-

ure.3.9(b). We can see our method achieve better result than traditional Naive Bayes esti-

mator. We try to apply same training set and test the accuracy just on training set, we find
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Figure 3.8: We take 10 largest groups in Reuter-21578 dataset (a), and 20 news group
dataset (b), and take 90% of the data as S2 training set. The y-axis is the accuracy, and the
x-axis is the class index.

traditional Naive Bayes estimator actually achieve better result, that means it might have

more over-fitting problems, see Figure.3.10(a) and Figure.3.10(b).
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Figure 3.9: We take 10 largest groups in Reuter-21578 dataset (a), and 20 news group
dataset (b), and take 10% of the data as S1 training set. The y-axis is the accuracy, and the
x-axis is the class index.
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Figure 3.10: We take 10 largest groups in Reuter-21578 dataset(a), and 20 news group
dataset (b), and take 10% of the data as S1 training set. We test the result on training set.
The y-axis is the accuracy, and the x-axis is the class index.
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