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Abstract—Model predictive control can be computation- system at time with statex(¢) and control inputu(t)

ally intensive as it has to compute an optimal control whose dynamics can be expressed as
trajectory at each time instant. As such, we present a

method in which parametrized behaviors are introduced z(t) = f(a(t),u(t)), (1)
as a level of abstraction to give a finite representation ) )
to the control trajectory optimization. As these control we consider behaviors of the form(z(t), ) where 6

laws can be designed to accomplish different tasks, the is a parameter vector. This allows the dynamics to be
robot is able to use the presented framework to tune the expressed as

parameters online to achieve desirable results. Moreover,

we build on switch-time optimization techniques to allow i = f(z(t), k(z(t),0)). (2)

the model predictive control framework to optimize over

a series of given behaviors, allowing for an added level Therefore, instead of optimizing over(t) for some

of adaptability. We illustrate the utility of the framework  time horizon. we optimize over a finite dimensional

through the control of a nonholonomic mobile robot. parameter vector which is considered constant over the
I, INTRODUCTION time horizon. Thus we exchange the two-point boundary

o ) value problem for a parameter optimization problem.
Model predictive control (MPC) is a control scheme Using this concept, we extend work presented in [5]

which adds feedback to otherwise typically open-loophere MPC was used to coordinate different schema-
optimal control solutions [1]. This is beneficial as oppased behaviors. First, we generalize the approach to be
timal control allows for the satisfaction of constraint%ppncame to control schemes which can be expressed as

while minimizing some defined cost, but sometimeg, ) Second, we incorporate techniques from switched-
suffers when uncertainties are introduced, e.g., [2]. MP§ e optimization (e.g., [6], [7]) to allow the robot to

is able to add feedback by solving the optimal contreynimize over a series of behaviors during a single
problem at each time instant, applying one control inpuyimization step. These two contributions will allow for

and repeating the process, e.g., [1]. the application of this control method to a much broader
However, one drawback to MPC is the cost of comg|55g of applications.

pu'Fing the optimal control solution at every time instant. The remainder of this paper will proceed as follows.
This comes from the fact that the state needs to bg the next section we will present a framework and
simulated into the future over some time horizon tg,imality conditions for a behavior-based MPC scheme.
find the optimal control trajectory. Unless a closed forny, sections 11l and IV, we develop two control schemes
solution is known, this typically requires solving a sefor 4 nonholonomic vehicle to illustrate the utility and
of differential equations where some initial Cond't'on%ersatility of the MPC framework. We will then end the

and some final conditions are known, e.g., [2]. This iSaper with some concluding remarks in Section V.
known as a two-point boundary value problem and while

numerical solutions to this problem do exist (e.g., [2]), !l. BEHAVIOR-BASED SwITCH-TIME MPC

they are often computationally intensive, e.g., [3]. In this section, we will explain the type of behaviors
To remedy this computational burden, we look tque will utilize in our framework, layout the formulation

outsource the state trajectory generation to behaviassthe behavior-based MPC, and finish by giving the first

designed to accomplish the desired task. While behavigirder necessary optimality conditions which can be used

based control schemes constitute an entire class t6fsolve the optimization problem at each time step.

robotic control paradigms [4], we will only consider .

those behaviors which can be considered as pararie-Behavior-Based Control

terized feedback control laws. In other words, given a We use the term behavior to infer the notion that we

will be working with control laws that are capable of
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part by the DARPA M3 Program laws, as shown in (2), to generate state trajectories.



We are then able to optimize over the different tunabfehavior-Based MPC

parameters to achieve the desired result. 1) Minimize (5) with respect to the behavior param-
Moreover, it may be desirable to have the eters,f;, and the time instances to switch between

robot execute a string of such behaviors, i.e. these parameters;.

(ko,70), (K1,71), ..., (KN, TN ), Where 7, indicates 2) Apply the behavior associated with the first set of

the time when the system switch from_; to ;. This parameters for one time instant.

allows us to write the dynamics of the system as 3) Repeat.

a::f(a:(t),m(a:(t),@l)) for 7 <t < Ti+1, (3)
which we simplify as C. First Order Optimality Conditions

i = fi(x(t),0;) for 7; <t < 741. (4) In order to minimize (5) with respect to the desired
I . i i variable, we present the first order necessary conditions
Utllizing this form of behaviors, we can build uponys otimaiity which can be used with gradient decent
a wealth of different control applications which all us%trategies to find the optimal parameters (e.g. [14]).
some form of parameterized control. Examples include Theorem 2.1: The first order necessary conditions of

schema-based behaviors [4], _gait desigrll-for rObOQﬁDtimality for optimizing (5) with respect to the switch
snakes [8] and legged locomotion [9], orbiting for UNtimes, ;. and the parameter vectors, are given by
manned aerial vehicles [10] and ground vehicle obstacle > " ’

avoidance [11], and even potential fields methods which aJ (L LN\ (F o —£)) =0 6
are used in a wide variety of robotic motion applications oT; ( it it A (fi fz)) )
[12], [13], just to name a few.

oJ
B. MPC Framework 00, &i(ri) =0 (7
As a naive parameter assignment can lead to a pQghere
outcome, we present an MPC scheme which will allow . oL,  oafT
for the parameters to be optimized online, admitting A=-— 9z 9z A, 8)

feedback into the parameter selection. To do so, we build

upon results from switch time optimization (e.g., [6], [7]) for i <t <7i41,i=0,...,N

to optimize over both the parameters associated with oW
each behavior as well as the time to switch between M7v+1) = 5 (@(Th1))
behaviors.

To find the optimal parameters and switch times at . oL;" of T)\ 9
each time step, we present a cost which related to a &= 00,  06; ©)
general form found in many optimal control texts, .e.g.

[2], as follows &i(Tig1) = g_;p

N Ti+1
J(r,0) =" / Li(z,0;,0(to))dt+  (5)
=0 T Proof The proof of Theorem 2.1 follows standard varia-
O(0) + U((x(Tn11)) tional methods. We first augment (5) with the dynamics:

stx=f; x,@i for 7 <t < Tiy1, _ N Tit1
fi(w,6:) + Jr6) =3 / (L0, 00)+  (10)
i=0 " Ti

wherexz(t) € R™ is the state at time, 7 = {r;} is a
set of switch times@; denotes the parameters that will
be used on in the dynamics on the interva [7;7;11], N (fi(z,0;) — :b))dt +P(0) + V((x(n41))
0 = {0;}, and O(ty) denotes the environmental data
available to the robot at tim&, when the optimization We now vary the switch times and parameter vectors as
takes place. For ease of notation we allay= t, and 7 — T +ev and¢; — 0; +ey; which causes the state to
Tn+1 = to + A where A is the time horizon of the Vary asz — x + en. Similar to [6] and [7] we can take
optimal control problem. the Taylor expansion and write

By formulating our cost and dynamics, we can then 1(

define our MPC strategy as follows. —(J(T + €v, 0 — ey) = J(7, 9)) = (11)

€
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as
Fig. 1: This figures shows a diagram of the states of a unicycle

Titl QL 7 Of 0P robot. @1, x2) gives the position and:3 gives the orientation.
(1) = — = d , 12 '
&ilt) /t (391- A 891-) stog (12

we can simplify (11) to

) andv and w correspond to the input translational and
17 _ 7 _ rotational velocities of the vehicle, respectively.
e(J(TJFEU’H <) J(T’e)) B (13) One common method of making a unicycle robot
N follow a vector field is to use a proportional-derivative
= Z(gi(n)%ﬂiﬂ (LZ-—LZ-H +)\T(fi—fi+1)) |n+1) (PD) control, e.g., [11]. However, due to the differential
i=0 term, this type of control is difficult to use in optimiza-
which gives the partials in (6) and (7). We can als§on as the partial derivative of the control is needed.
simplify the costatet; to get the dynamics given in (9) Therefore, we present a nonlinear unicycle control which

by differentiating (12) with respect to m s capable of following a vector field while being easily
incorporated into our optimization framework.

To do so, we give an alternate expression for the
unicycle dynamics which makes our controller very
aimple to express. The unicycle dynamics given in (14),
wjth control inputu = [v w}T, can be rewritten in

artesian coordinates as

Ill. AV ECTORFIELD APPROACH TOMOTION
CONTROL FORNONHOLONOMIC MOBILE ROBOTS

To illustrate the utility of the MPC approach presente
in the previous section, we present a control meth
amenable to the proposed framework which will allow & .
nonholonomic mobile robot to follow a vector field. This p=vh (15)
has an array of applications as vector field approaches are h=wJh
the basis of many control schemes for mobile robots, e.g. . .

[4], [10], [11], [12], [13]. More importantly, however, Wherep = [z1 @3], h = [cos(x3) sin(z3)]", and
this provides for a good example for the MPC framework 0 -1
as the behavior is able to overcome the nonholonomic J = [1 0 }
constraints and the MPC scheme is able to optimize over ) )
the parameters of the behaviors. We will proceed B the 90-degree rotation matrix. The state space of (15)
outlining the control law, giving optimality conditionsiS X = R?x ) —the plane (which represents positions),
necessary for use with Theorem 2.1, and ending with gp,gqher with the circle (which represents orlgntatlons).
example utilizing the MPC framework for orbiting. Given a compact workspade C R? containing the
origin, together with positive definite,continuously-

A. Non-Linear Unicycle Control differentiable functionU : Q@ — R, we define the
To account for the motion constraint present in mobileontroller,

platforms, we utilize the unicycle motion model which w = —ky(grad U)T Jh
is a common method used to model planar motion in T
mobile robotic platforms, e.g., [11], [12]. Figure 1 shows v=—ky(gradU)"h
a diagram of a typical unicycle robot where the statwherek,,, k, > 0 are arbitrary constants.

dynamics are given as The controller, (17), globally asymptotically stabilizes
the robot to the origin of the workspace, without regard

(16)

(17)

v cos(x3)

&= |vsin(zs) | , (14) 1This positive-definiteness requirement can be omitted, icv
w case stabilization to bocal minima is guaranteed.



to the robot’s orientation. This is stated formally by th&ince « is an element of a vector field, it can be a

next theorem: function of the stateg, the environmental data present
Theorem 3.1 (Unicycle Stabilization): Let 2 < R? to the robot,O, as well as a vector of parametefs,

be a compact set (the workspace), dnd 2 — R a Defining the control as such allows us to write the

positive definite, continuously-differentiable scalaidie following theorem which can then be used to find the

Then (17) globally stabilizes the dynamics in (15) to theptimal parameters at each time step in conjunction with

setXy = {(p,h) € R? x S; | p = 0}. Theorem 2.1 and a definition of the vector field.
Proof: The proof uses LaSalle’s Theorem, and the Theorem 3.2: The partial of (22) with respect to a
candidate Lyapunov function, parametery, where~ can bexz; or an element of);

X 5 (p,h) 7 Ulp) : (18) given in (5), is g|6ven as )
2L cos(x3) — vsin(xg) S
i.e., we treat/, which is a function defined only on the of _ g sin((xg))+ vcosg;g& (23)
workspace(), as a functionl” on the entire state space oy | 3 ow 30y |
X=Qx Sl. oy
Differentiating V' in time and substituting from (15) where
and (17), we obtain @ B iuTR(gb)@ ll smw)%

V = —k, (gradU,h)> <0 , (19) oy lull o oy’
so the nonincreasing-Lyapunov-value condition of 0w _ LUT (6 — j)@ Ll COS(@%
LaSalle’s Theorem is satisfied. We will denote Bythe oy |l 270y oy’
set of states where (19) holds. cos(d)  —sin(g)

Moreover,V = 0 only whengradU L h, in which R(¢) = sin(¢)  cos(d) |’
case (17) implies
andv = ||u|| cos(¢).
(6l = ol rad U] (20) Julfeo®)

Proof The derivation comes directly from taking the
artial derivative with respect to (22) and algebraic
implification using rotation matrices. m

andz # 0 (so long as|| grad U|| # 0). Consequently,
Xp is not just positively-invariant, but also the Iargesg
positively-invariant set in®, and by LaSalle’s Theorem

is the positive limit set of (15) under the controller (17)C Orbit Example

|
To demonstrate the ability of the MPC framework

. This shovy; that the control law will fol_low a gradientpresented in Section Il to optimize the parameters of
field to a minima. For a general vector field, where he pehavior, we present an orbiting example. Orbiting
R* is an element of that field, we can modify (17) tqs often accomplished by having the vehicle follow a
follow the vector field as vector field that creates a stable limit cycle [10], [11].
—ky||ul| sin(e) As such, we parameterize the control law given in [11]
= —ky||ul| cos(¢), (21) to allow our method to adapt the vector field online and

) express it as
where ¢ = atan2(uq,u;) — x3. This can be found by

noting thatJh L h and the use of the definition of the u(z) =g { Y worb] 4 (24)

w
(%

inner product (i.e{a,b) = ||a|||b|| cos(¢))). —Worb Y
B. Partials for Cost Optimization where N,
While the given unicycle control is able to follow a V= e (T — 2] )’

vector field, it is also important in this context for itsi o — e o — [Il IQ} is the two-dimensional
o . . . . . . - P 1 P
ability to easily be incorporated into the Opt'm'zat'o'bosition of the robote € R2 is the center of the orbit,
framework presented in Section Il. To make this clea& € R is a gain on the speed
(&

. . s € R is a gain on
\(,S setk, = k., = 1 and give the control in the form of ., ergence to the limit cycley,,, € R is the desired
as

frequency of the orbit, and € R is the radius of the

O)]] cos(¢) cos(xs) orbit. To adapt the vector field using our MPC scheme
f(z,0) = | |lu(z,0,0)| cos(¢) sin(zs) | . (22) we allow the parameter vector to be optimized to be
lu(z, 8, 0)] sin(¢) 0=1[9s Gic wors 1]



(XXX

'
|
!

-

\
N

v
-
-
-
-
-
~
N
N
N
N
N
N
N

aaaam a2 PP A
PP VI I R R L LS NNN
PSPPI EE AR ANNN
damaaap AP EEEAARN

-
-
-
N
N
N
N
N
N
N
iy

TR,
Sa s asea

<
<
N
N
N
N
N
X
N
N
s

SRNANNNANA Y
SRR RN Y
OSSSSSGS
v
P

N
N
N
X
r
N
N
%
%
%

NN
NN
NNV
NN
OO
NNNNNNAN

Fig. 2: This shows different snapshots in time of the adaptadf the vector-field given in equation (24) executed by bledavior in (22).
The robot is shown with its planned trajectory extendingrfrid in each case. The middle two images are actually the saneeinstance
where the middle-left image shows the vector field producethe first time window and the middle-right image shows thetaefield
produced in the second time window.

The goal we set to accomplish is to approach a desired
orbit while maintaining a given velocityy;, and with as N,
little angular velocity as possible. Therefore we define 7. — ﬂ(v — ) + P22 03 ZT($= o), (27)
our instantaneous cost as 2 2 =

L; = p—;(v —vg)? + &wz, (25)

) (o) =ep(~(@-o)” [0 D@ 0),

and our terminal cost as 5 ,
U =—|z— x4/, 28
\I/:%(H:v—cﬂ—r)z, (26) 5 qll (28)
where z, is the goal positionp; is the i obstacle
and set® = 0. measurement o, sensor measurements, afyg} are
Figures 2 illustrates the result of using the MPGgjystable weights in the cost function. The cost structure
framework to adapt the parameters in order to minimizg 7. allows the robot to maintain a given translational
the cost. We were also able to see improvement as \ygiocity while punishing high rotational velocities and
used a string of behaviors where each behavior Wagoximity to obstacles. Also, a¥ is a terminal cost, it

the orbiting behavior with separate parameters t0 R courages progress toward the goal without the need to
optimized. This allowed for the anticipation of needegove directly towards it at each time instant.

changes especially as the robot reached the point whererg eyaluate the MPC framework, we ran the navi-

it began circling. gation simulations shown in Figure 4. We assume that

we haveN,; = 16 sensors distributed evenly about the
IV. A CIRCULAR ARC APPROACH TONAVIGATION

To further illustrate the versatility of the proposed
MPC approach, we provide a second method of control _
for unicycle motion. It builds on the concept presented in / .
[15] where the robot is able to perform well by planning ¥
circular arcs through constant velocity inputs over some
time horizon. It then re-evaluates this plan at each time
step. As opposed to [15] where the velocities are chosen
from some finite set, we allow the MPC scheme to
find the optimal values at each time step. This allows DR G
the robot to navigate around obstacles by continuously . .. O
optimizing with the most current information. Moreover,
the MPC framework allows multiple arcs to be planned
in sequence. This becomes quite useful in planning pathsg. 3: This shows an example of different trajectories geteel
through an unknown environment. using the MPC framework with two modes. The robot is shown

T £ h K K ight f he d as a triangle with the expected trajectory extending fronirte

O_ per_orm _t e task, we work straight from the ay- gy jine corresponds to the contribution from the first mauhd

namics given in (14) where our parameter vector can bene dotted line corresponds to the second mode. The smelésir
defined ag; = [w,v|. We define the costs as show the sensor measurements.




Fig. 4: This shows the different environments the robot gaidd through along with a couple of representative trajierst in each environment.
Obstacles are shown in red while the goal position is showgréen.

robot and that the robot plans only according to thg4
sensor measurements that it has at the moment withol#
any mapping. This is shown in Figure 3 which shows
multiple “snapshots” of the robot traversing through an

environment.

The results of the simulations show the utility of our
MPC framework. The robot was able to successfully nav-
igate the three different environments without changing’]
any of weights on the costs. This shows that it is able to
adapt to the different enviroments online. This examples]
also shows the benefit of allowing multiple switch times
as using a single set of parameters did not allow for the

traversal of two of the environments.

In this paper we have presented an MPC strate&;p]
which utilizes the ability of behaviors to create de-
sirable trajectories, exchanging a two-point boundafiil
value optimization problem for a parameter optimization
problem. We demonstrated the versatility of this method
in Sections Il and IV through two different exampled12]
for the control of a nonholonomic mobile robot. Both, 4
examples showed the ability of the robot to adapt the
behaviors online to achieve the desired result. In partic-
ular, in the example in Section 1V the adaptability of th&4!
MPC framework was emphasized as the robot was alyis;)
to successfully navigate through different environments
without changing any of the weights on the costs.

V. CONCLUSION

We also saw the utility of allowing the optimization

framework to anticipate changes in the behaviors through

the addition of optimal switch times.
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