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Abstract—Model predictive control can be computation-
ally intensive as it has to compute an optimal control
trajectory at each time instant. As such, we present a
method in which parametrized behaviors are introduced
as a level of abstraction to give a finite representation
to the control trajectory optimization. As these control
laws can be designed to accomplish different tasks, the
robot is able to use the presented framework to tune the
parameters online to achieve desirable results. Moreover,
we build on switch-time optimization techniques to allow
the model predictive control framework to optimize over
a series of given behaviors, allowing for an added level
of adaptability. We illustrate the utility of the framework
through the control of a nonholonomic mobile robot.

I. I NTRODUCTION

Model predictive control (MPC) is a control scheme
which adds feedback to otherwise typically open-loop
optimal control solutions [1]. This is beneficial as op-
timal control allows for the satisfaction of constraints
while minimizing some defined cost, but sometimes
suffers when uncertainties are introduced, e.g., [2]. MPC
is able to add feedback by solving the optimal control
problem at each time instant, applying one control input,
and repeating the process, e.g., [1].

However, one drawback to MPC is the cost of com-
puting the optimal control solution at every time instant.
This comes from the fact that the state needs to be
simulated into the future over some time horizon to
find the optimal control trajectory. Unless a closed form
solution is known, this typically requires solving a set
of differential equations where some initial conditions
and some final conditions are known, e.g., [2]. This is
known as a two-point boundary value problem and while
numerical solutions to this problem do exist (e.g., [2]),
they are often computationally intensive, e.g., [3].

To remedy this computational burden, we look to
outsource the state trajectory generation to behaviors
designed to accomplish the desired task. While behavior-
based control schemes constitute an entire class of
robotic control paradigms [4], we will only consider
those behaviors which can be considered as parame-
terized feedback control laws. In other words, given a
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system at timet with statex(t) and control inputu(t)
whose dynamics can be expressed as

ẋ(t) = f(x(t), u(t)), (1)

we consider behaviors of the formκ(x(t), θ) where θ
is a parameter vector. This allows the dynamics to be
expressed as

ẋ = f(x(t), κ(x(t), θ)). (2)

Therefore, instead of optimizing overu(t) for some
time horizon, we optimize over a finite dimensional
parameter vector which is considered constant over the
time horizon. Thus we exchange the two-point boundary
value problem for a parameter optimization problem.

Using this concept, we extend work presented in [5]
where MPC was used to coordinate different schema-
based behaviors. First, we generalize the approach to be
applicable to control schemes which can be expressed as
in (2). Second, we incorporate techniques from switched-
time optimization (e.g., [6], [7]) to allow the robot to
optimize over a series of behaviors during a single
optimization step. These two contributions will allow for
the application of this control method to a much broader
class of applications.

The remainder of this paper will proceed as follows.
In the next section we will present a framework and
optimality conditions for a behavior-based MPC scheme.
In sections III and IV, we develop two control schemes
for a nonholonomic vehicle to illustrate the utility and
versatility of the MPC framework. We will then end the
paper with some concluding remarks in Section V.

II. B EHAVIOR-BASED SWITCH-TIME MPC

In this section, we will explain the type of behaviors
we will utilize in our framework, layout the formulation
of the behavior-based MPC, and finish by giving the first
order necessary optimality conditions which can be used
to solve the optimization problem at each time step.

A. Behavior-Based Control

We use the term behavior to infer the notion that we
will be working with control laws that are capable of
accomplishing certain tasks. More specifically, we seek
to utilize behaviors which are tunable feedback control
laws, as shown in (2), to generate state trajectories.



We are then able to optimize over the different tunable
parameters to achieve the desired result.

Moreover, it may be desirable to have the
robot execute a string of such behaviors, i.e.
(κ0, τ0), (κ1, τ1), ..., (κN , τN ), where τi indicates
the time when the system switch fromκi−1 to κi. This
allows us to write the dynamics of the system as

ẋ = f(x(t), κi(x(t), θi)) for τi ≤ t < τi+1, (3)

which we simplify as

ẋ = fi(x(t), θi) for τi ≤ t < τi+1. (4)

Utilizing this form of behaviors, we can build upon
a wealth of different control applications which all use
some form of parameterized control. Examples include
schema-based behaviors [4], gait design for robotic
snakes [8] and legged locomotion [9], orbiting for un-
manned aerial vehicles [10] and ground vehicle obstacle
avoidance [11], and even potential fields methods which
are used in a wide variety of robotic motion applications
[12], [13], just to name a few.

B. MPC Framework

As a naive parameter assignment can lead to a poor
outcome, we present an MPC scheme which will allow
for the parameters to be optimized online, admitting
feedback into the parameter selection. To do so, we build
upon results from switch time optimization (e.g., [6], [7])
to optimize over both the parameters associated with
each behavior as well as the time to switch between
behaviors.

To find the optimal parameters and switch times at
each time step, we present a cost which related to a
general form found in many optimal control texts, .e.g.
[2], as follows

J(τ, θ) =

N
∑

i=0

∫ τi+1

τi

Li(x, θi, O(t0))dt+ (5)

Φ(θ) + Ψ((x(τN+1))

s.t. ẋ = fi(x, θi) for τi ≤ t < τi+1,

wherex(t) ∈ R
n is the state at timet, τ = {τi} is a

set of switch times,θi denotes the parameters that will
be used on in the dynamics on the intervalt ∈ [τiτi+1],
θ = {θi}, and O(t0) denotes the environmental data
available to the robot at timet0, when the optimization
takes place. For ease of notation we allowτ0 = t0 and
τN+1 = t0 + ∆ where∆ is the time horizon of the
optimal control problem.

By formulating our cost and dynamics, we can then
define our MPC strategy as follows.

Behavior-Based MPC

1) Minimize (5) with respect to the behavior param-
eters,θi, and the time instances to switch between
these parameters,τi.

2) Apply the behavior associated with the first set of
parameters for one time instant.

3) Repeat.

C. First Order Optimality Conditions

In order to minimize (5) with respect to the desired
variable, we present the first order necessary conditions
of optimality which can be used with gradient decent
strategies to find the optimal parameters (e.g. [14]).

Theorem 2.1: The first order necessary conditions of
optimality for optimizing (5) with respect to the switch
times,τi, and the parameter vectors,θi, are given by

∂J

∂τi
=

(

Li−1 − Li + λT (fi−1 − fi)
)

= 0 (6)

∂J

∂θi
= ξi(τi) = 0 (7)

where

λ̇ = −
∂Li

∂x

T

−
∂f

∂x

T

λ, (8)

for τi ≤ t < τi+1, i = 0, ..., N

λ(τN+1) =
∂Ψ

∂x
(x(τN+1))

ξ̇i = −
∂Li

∂θi

T

−
∂f

∂θi

T

λ (9)

ξi(τi+1) =
∂Φ

∂θi

Proof The proof of Theorem 2.1 follows standard varia-
tional methods. We first augment (5) with the dynamics:

J̄(τ, θ) =

N
∑

i=0

∫ τi+1

τi

(

Li(x, θi, O(t0))+ (10)

λT (fi(x, θi)− ẋ)
)

dt+Φ(θ) + Ψ((x(τN+1))

We now vary the switch times and parameter vectors as
τ → τ + ǫv andθi → θi + ǫγi which causes the state to
vary asx→ x+ ǫη. Similar to [6] and [7] we can take
the Taylor expansion and write

1

ǫ

(

J̄(τ + ǫv, θ − ǫγ)− J̄(τ, θ)
)

= (11)



=

N
∑

i=0

[

∫ τi+1

τi

(∂Li

∂x
+ λT

∂f

∂x
+ λ̇T

)

ηdt+

∫ τi+1

τi

(∂Li

∂θi
− λT

∂f

∂θi

)

dtγi+

vi+1

(

Li − Li+1 + λT (fi − fi+1)
)

|τi+1
+

∂Φ

∂θi
γi

]

+
∂Ψ

∂x
η|τN+1

Allowing λ to be defined as in (8) andξi to be defined
as

ξi(t) =

∫ τi+1

t

(∂Li

∂θi
− λT

∂f

∂θi

)

ds+
∂Φ

∂θi
, (12)

we can simplify (11) to

1

ǫ

(

J̄(τ + ǫv, θ − ǫγ)− J̄(τ, θ)
)

= (13)

=

N
∑

i=0

(

ξi(τi)γi+vi+1

(

Li−Li+1+λ
T (fi−fi+1)

)

|τi+1

)

which gives the partials in (6) and (7). We can also
simplify the costateξi to get the dynamics given in (9)
by differentiating (12) with respect tot.

III. A V ECTOR-FIELD APPROACH TOMOTION

CONTROL FORNONHOLONOMIC MOBILE ROBOTS

To illustrate the utility of the MPC approach presented
in the previous section, we present a control method
amenable to the proposed framework which will allow a
nonholonomic mobile robot to follow a vector field. This
has an array of applications as vector field approaches are
the basis of many control schemes for mobile robots, e.g.
[4], [10], [11], [12], [13]. More importantly, however,
this provides for a good example for the MPC framework
as the behavior is able to overcome the nonholonomic
constraints and the MPC scheme is able to optimize over
the parameters of the behaviors. We will proceed by
outlining the control law, giving optimality conditions
necessary for use with Theorem 2.1, and ending with an
example utilizing the MPC framework for orbiting.

A. Non-Linear Unicycle Control

To account for the motion constraint present in mobile
platforms, we utilize the unicycle motion model which
is a common method used to model planar motion in
mobile robotic platforms, e.g., [11], [12]. Figure 1 shows
a diagram of a typical unicycle robot where the state
dynamics are given as

ẋ =





v cos(x3)
v sin(x3)

ω



 , (14)

x3

x2

x1

(x1, x2)

Fig. 1: This figures shows a diagram of the states of a unicycle
robot. (x1, x2) gives the position andx3 gives the orientation.

and v andw correspond to the input translational and
rotational velocities of the vehicle, respectively.

One common method of making a unicycle robot
follow a vector field is to use a proportional-derivative
(PD) control, e.g., [11]. However, due to the differential
term, this type of control is difficult to use in optimiza-
tion as the partial derivative of the control is needed.
Therefore, we present a nonlinear unicycle control which
is capable of following a vector field while being easily
incorporated into our optimization framework.

To do so, we give an alternate expression for the
unicycle dynamics which makes our controller very
simple to express. The unicycle dynamics given in (14),
with control inputu =

[

v ω
]T

, can be rewritten in
Cartesian coordinates as

ṗ = vh

ḣ = ωJh
(15)

wherep =
[

x1 x2
]T

, h =
[

cos(x3) sin(x3)
]T

, and

J =

[

0 −1
1 0

]

(16)

is the 90-degree rotation matrix. The state space of (15)
isX , R

2×S1 – the plane (which represents positions),
together with the circle (which represents orientations).

Given a compact workspaceΩ ⊂ R
2 containing the

origin, together with positive definite,1 continuously-
differentiable functionU : Ω → R, we define the
controller,

ω = −kω(gradU)T Jh

v = −kv(gradU)Th
(17)

wherekω, kv > 0 are arbitrary constants.
The controller, (17), globally asymptotically stabilizes

the robot to the origin of the workspace, without regard

1This positive-definiteness requirement can be omitted, in which
case stabilization to alocal minima is guaranteed.



to the robot’s orientation. This is stated formally by the
next theorem:

Theorem 3.1 (Unicycle Stabilization): Let Ω ⊂ R
2

be a compact set (the workspace), andU : Ω → R a
positive definite, continuously-differentiable scalar field.
Then (17) globally stabilizes the dynamics in (15) to the
setX0 , {(p, h) ∈ R

2 × S1 | p = 0}.
Proof: The proof uses LaSalle’s Theorem, and the
candidate Lyapunov function,

X ∋ (p, h) −→
V

U(p) ; (18)

i.e., we treatU , which is a function defined only on the
workspaceΩ, as a functionV on the entire state space
X = Ω× S1.

DifferentiatingV in time and substituting from (15)
and (17), we obtain

V̇ = −kv 〈gradU, h〉
2
≤ 0 , (19)

so the nonincreasing-Lyapunov-value condition of
LaSalle’s Theorem is satisfied. We will denote byE the
set of states where (19) holds.

Moreover,V̇ = 0 only whengradU ⊥ h, in which
case (17) implies

|ω| = kω|| gradU || (20)

and ẋ 6= 0 (so long as|| gradU || 6= 0). Consequently,
X0 is not just positively-invariant, but also the largest
positively-invariant set inE, and by LaSalle’s Theorem
is the positive limit set of (15) under the controller (17).

This shows that the control law will follow a gradient
field to a minima. For a general vector field, whereu ∈
R

2 is an element of that field, we can modify (17) to
follow the vector field as

ω = −kω‖u‖ sin(φ)

v = −kv‖u‖ cos(φ),
(21)

whereφ = atan2(u2, u1) − x3. This can be found by
noting thatJh ⊥ h and the use of the definition of the
inner product (i.e.〈a, b〉 = ‖a‖‖b‖ cos(ψ)).

B. Partials for Cost Optimization

While the given unicycle control is able to follow a
vector field, it is also important in this context for its
ability to easily be incorporated into the optimization
framework presented in Section II. To make this clear,
we setkv = kω = 1 and give the control in the form of
(4) as

f(x, θ) =





‖u(x, θ, O)‖ cos(φ) cos(x3)
‖u(x, θ, O)‖ cos(φ) sin(x3)

‖u(x, θ, O)‖ sin(φ)



 . (22)

Since u is an element of a vector field, it can be a
function of the state,x, the environmental data present
to the robot,O, as well as a vector of parameters,θ.

Defining the control as such allows us to write the
following theorem which can then be used to find the
optimal parameters at each time step in conjunction with
Theorem 2.1 and a definition of the vector field.

Theorem 3.2: The partial of (22) with respect to a
parameterγ, whereγ can bexi or an element ofθi
given in (5), is given as

∂f

∂γ
=







∂v
∂γ

cos(x3)− v sin(x3)
∂x3

∂γ
∂v
∂γ

sin(x3) + v cos(x3)
∂x3

∂γ
∂w
∂γ






, (23)

where

∂v

∂γ
=

1

‖u‖
uTR(φ)

∂u

∂γ
+ ‖u‖ sin(φ)

∂x3

∂γ
,

∂w

∂γ
=

1

‖u‖
uTR(φ−

π

2
)
∂u

∂γ
− ‖u‖ cos(φ)

∂x3

∂γ
,

R(φ) =

[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]

,

andv = ‖u‖ cos(φ).

Proof The derivation comes directly from taking the
partial derivative with respect to (22) and algebraic
simplification using rotation matrices.

C. Orbit Example

To demonstrate the ability of the MPC framework
presented in Section II to optimize the parameters of
the behavior, we present an orbiting example. Orbiting
is often accomplished by having the vehicle follow a
vector field that creates a stable limit cycle [10], [11].
As such, we parameterize the control law given in [11]
to allow our method to adapt the vector field online and
express it as

u(x) = gs

[

γ ωorb

−ωorb γ

]

x̂, (24)

where
γ = glc

(

r2 − ‖x̂‖2
)

,

x̂ = xp − c, xp =
[

x1 x2
]

is the two-dimensional
position of the robot,c ∈ R

2 is the center of the orbit,
gs ∈ R is a gain on the speed,glc ∈ R is a gain on
convergence to the limit cycle,ωorb ∈ R is the desired
frequency of the orbit, andr ∈ R is the radius of the
orbit. To adapt the vector field using our MPC scheme
we allow the parameter vector to be optimized to be
θ =

[

gs glc ωorb r
]

.



Fig. 2: This shows different snapshots in time of the adaptation of the vector-field given in equation (24) executed by thebehavior in (22).
The robot is shown with its planned trajectory extending from it in each case. The middle two images are actually the same time instance
where the middle-left image shows the vector field produced in the first time window and the middle-right image shows the vector field
produced in the second time window.

The goal we set to accomplish is to approach a desired
orbit while maintaining a given velocity,vd, and with as
little angular velocity as possible. Therefore we define
our instantaneous cost as

Li =
ρ1

2
(v − vd)

2 +
ρ2

2
ω2, (25)

and our terminal cost as

Ψ =
ρ3

2

(

‖x− c‖ − r
)2
, (26)

and setΦ = 0.
Figures 2 illustrates the result of using the MPC

framework to adapt the parameters in order to minimize
the cost. We were also able to see improvement as we
used a string of behaviors where each behavior was
the orbiting behavior with separate parameters to be
optimized. This allowed for the anticipation of needed
changes especially as the robot reached the point where
it began circling.

IV. A C IRCULAR ARC APPROACH TONAVIGATION

To further illustrate the versatility of the proposed
MPC approach, we provide a second method of control
for unicycle motion. It builds on the concept presented in
[15] where the robot is able to perform well by planning
circular arcs through constant velocity inputs over some
time horizon. It then re-evaluates this plan at each time
step. As opposed to [15] where the velocities are chosen
from some finite set, we allow the MPC scheme to
find the optimal values at each time step. This allows
the robot to navigate around obstacles by continuously
optimizing with the most current information. Moreover,
the MPC framework allows multiple arcs to be planned
in sequence. This becomes quite useful in planning paths
through an unknown environment.

To perform the task, we work straight from the dy-
namics given in (14) where our parameter vector can be
defined asθi =

[

ω, v
]

. We define the costs as

Li =
ρ1

2
(v − vd)

2 +
ρ2

2
ω2 + ρ3

Ns
∑

i=1

r(x, oi), (27)

r(x, oi) = exp
(

−(x− oi)
T

[

ρ4 0
0 ρ4

]

(x− oi)
)

,

Ψ =
ρ5

2
‖x− xg‖

2, (28)

where xg is the goal position,oi is the ith obstacle
measurement ofNs sensor measurements, and{ρi} are
adjustable weights in the cost function. The cost structure
in Li allows the robot to maintain a given translational
velocity while punishing high rotational velocities and
proximity to obstacles. Also, asΨ is a terminal cost, it
encourages progress toward the goal without the need to
move directly towards it at each time instant.

To evaluate the MPC framework, we ran the navi-
gation simulations shown in Figure 4. We assume that
we haveNs = 16 sensors distributed evenly about the

Fig. 3: This shows an example of different trajectories generated
using the MPC framework with two modes. The robot is shown
as a triangle with the expected trajectory extending from it. The
solid line corresponds to the contribution from the first mode and
the dotted line corresponds to the second mode. The small circles
show the sensor measurements.



Fig. 4: This shows the different environments the robot navigated through along with a couple of representative trajectories in each environment.
Obstacles are shown in red while the goal position is shown ingreen.

robot and that the robot plans only according to the
sensor measurements that it has at the moment without
any mapping. This is shown in Figure 3 which shows
multiple “snapshots” of the robot traversing through an
environment.

The results of the simulations show the utility of our
MPC framework. The robot was able to successfully nav-
igate the three different environments without changing
any of weights on the costs. This shows that it is able to
adapt to the different enviroments online. This example
also shows the benefit of allowing multiple switch times
as using a single set of parameters did not allow for the
traversal of two of the environments.

V. CONCLUSION

In this paper we have presented an MPC strategy
which utilizes the ability of behaviors to create de-
sirable trajectories, exchanging a two-point boundary
value optimization problem for a parameter optimization
problem. We demonstrated the versatility of this method
in Sections III and IV through two different examples
for the control of a nonholonomic mobile robot. Both
examples showed the ability of the robot to adapt the
behaviors online to achieve the desired result. In partic-
ular, in the example in Section IV the adaptability of the
MPC framework was emphasized as the robot was able
to successfully navigate through different environments
without changing any of the weights on the costs.
We also saw the utility of allowing the optimization
framework to anticipate changes in the behaviors through
the addition of optimal switch times.
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