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SUMMARY

Inconel 718 is a high nickel content superalloy possessing high strength at
elevated temperatures and resistance to oxidation and corrosion. The non-traditional
manufacturing process of wire-electrical discharge machining (EDM) possesses many
advantages over traditional machining during the manufacture of Inconel 718 parts.
However, certain detrimental effects are also present. The top layer of the machined
surface is melted and resolidified to form what is known as the recast layer. This
layer demonstrates microstructural differences from the bulk workpiece, resulting in
altered material properties.

An experimental investigation was conducted to determine the main machining
parameters which contribute to recast layer formation in wire-EDM of Inconel 718. Tt
was found that average recast layer thickness increased with energy per spark, peak
discharge current, current pulse duration, and open-voltage time and decreased with
sparking frequency and table feed rate. Over the range of parameters tested, the
recast layer was observed to be between 5 and 10 um in average thickness, although
highly variable in nature.

Surface roughness of the cut parts showed an increase with energy per spark.
Electron Probe Microanalysis (EPMA) revealed the recast layer to be alloyed with
elements from the wire electrode. X-ray diffraction testing showed the residual tensile
stresses evident near the cut surface to decrease with energy per spark. Additionally,
nano-indentation hardness testing indicated that the recast layer is reduced in hard-
ness and elastic modulus compared to the bulk material. Vibratory tumbling was
found to be a moderately effective post-processing tool for recast layer removal when

using pre-formed ceramic abrasive media or fine grained aluminum oxide.

xviil



CHAPTER 1

INTRODUCTION

1.1 Background

Wire-electrical discharge machining (EDM) is a non-traditional machining process in
which a pulsed voltage difference between a wire electrode and a conductive workpiece
initiates sparks which erode workpiece material. Removing material in such a way
is often advantageous when the workpiece material would be difficult to machine
with traditional machine tools due to high strength, hardness, toughness, etc. This
process has been used in commercial machine tools for nearly half a century. It is
well known that the EDM process has a detrimental impact on the surface integrity
of machined surfaces. Each spark melts a small portion of the workpiece. A portion
of this molten material is ejected and flushed away. The remaining material re-
solidifies to form a surface layer known as the recast layer. This layer can contain an
altered microstructure, tensile stresses, microcracks, impurities, and other undesirable
features which can lead to premature part failure when put to service. Consequently,
wire-EDM cut parts must often be post-processed to remove the negatively affected
material. Furthermore, the surface integrity effects are dependent upon both the
wire-EDM process parameters and the chemical composition of the workpiece.
Much work has been devoted to the study of surface integrity in wire-EDM of com-
mon steel alloys, particularly tool and die steels. However, little research has been
reported on the effects of wire-EDM on high nickel content superalloys. Specifically,
no significant literature has been found by the author relating to surface integrity
of Inconel 718 in wire-EDM. Inconel 718 is comprised of 52% nickel, 20% chrome

and 18% iron and possesses high strength at elevated temperatures, while resisting



oxidation and corrosion. It is currently used in gas turbines, cryogenic tanks, and as
fasteners or springs for aerospace applications. Before safely usable parts of Inconel
718 can be manufactured by wire-EDM, the resulting recast layer must be character-

ized, and its formation understood.

1.2 Problem Statement

As stated above, critical Inconel 718 parts cut with wire-EDM must be post-processed
to remove the affected surface layers, primarily the recast layer. The formation and
characteristics of the recast layer must be studied. Furthermore, while recast layer
formation can be altered by process parameters, it cannot be completely eliminated.
Thus, there is still a need for some post-processing in certain applications. This thesis

will attempt to address the following:

e What wire-EDM process parameters have an effect on the formation of recast

layer in Inconel 7187
e What are the characteristics of this recast layer?

e How can post-processing techniques be used to remove this recast layer?

1.3 Research Goals

The research described in this thesis will attempt to solve the problems detailed in

the previous section. To meet these ends, the following goals have been set:

1. To design and conduct a series of experiments which will reveal the impact
of various wire-EDM process parameters on the thickness of the recast layer

formed in Inconel 718.

2. To characterize this recast layer in terms of hardness and residual stresses

though nano-indentation hardness testing and x-ray diffraction, respectively.



3. To investigate removal of the recast layer through various post-processing tech-

niques, and experimentally study one low-cost method.

1.4 Thests Outline

Chapter II will first discuss the development of electrical discharge machining, fol-
lowed by a summary of reported knowledge pertaining to the effects of various process
parameters. Additionally, currently practiced post processing techniques will be cov-
ered, along with a detailed description of Inconel 718. The experimental work con-
ducted here, including the methods, measurements and results obtained will be given
in Chapter II1. Chapter IV will discuss the findings of the two main characterizations
undertaken. Chapter V will cover post-processing for recast layer removal, while

Chapter VI will summarize the key findings of this thesis.



CHAPTER 11

LITERATURE REVIEW

2.1 Introduction to EDM

Electrical Discharge Machining (EDM) is a non-traditional manufacturing process in
which electric sparks are used to remove workpiece material. There are two main
types of EDM: ram or die-sinking EDM, and traveling-wire, wire-cut, or simply wire-
EDM. In either kind, the underlying principle is the same. A power supply initiates a
voltage potential between the electrode and the electrically conductive and grounded
workpiece. This scenario is analogous to the two plates of a parallel plate capacitor.
As the tool approaches the workpiece, the electric field strength grows in the gap
until the dielectric medium separating the tool and the workpiece breaks down. At
this point, electrical discharge is initiated and the voltage drops as the current rises.
The dielectric ionizes and a plasma channel is created, compressing the surrounding
dielectric. The plasma may reach a temperature of as high as 40,000 K and a pressure
of 3 kbar. As both electrons and ions bombard the workpiece surface, the workpiece
is heated such that a portion of the surface is melted. However, the plasma pres-
sure prevents vaporization. At the conclusion of the discharge, the plasma channel
collapses and a vapor bubble occurs causing the superheated molten material on the
surface of the workpiece to explode into the dielectric. The ejected material is flushed
away, while a portion of the molten material resolidifies onto the workpiece surface
forming a crater [10]. This resolidified material is known as the remelted, or recast
layer.

In die-sinking EDM, the electrode is a specific shape and machines the negative

of this shape into the workpiece. Typically the tool is the anode and the workpiece



is the cathode with discharges occurring over tens to hundreds of microseconds. The
dielectric medium is often a hydrocarbon such as kerosene. In wire-EDM, the tool
is a wire which can cut an extruded geometry similar to a conventional band saw.
Generally, the wire is the cathode, and the duration of each discharge is usually less
than 10 us, and often less than 1 ps. De-ionized water is the usual dielectric. Figure

displays a typical discharge in wire-EDM.
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Figure 2.1: Diagram showing the material removal mechanism in wire-EDM due to
a single discharge [2]

In wire-EDM, the wire travels perpendicular to the direction of cut from a supply
spool, though the cutting zone, and is then collected for scrap, as displayed in Figure

2.2l The speed at which the wire feeds is generally much greater then the table



feed rate. Some machines will allow the upper and lower wire guides to be moved
independently, creating a tapered cut. However, the wire guides are fixed in the
machine used in this research. One of the advantages to wire-EDM is the narrow kerf
created. The kerf width is equal to the diameter of the wire electrode, plus twice the
gap in which the electrical discharges take place. Usually, there are nozzles directing

dielectric into the cutting zone to flush out the chips.
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Figure 2.2: Diagram showing orientation of the wire electrode in wire-EDM

It is important to note that the sparking process is extremely stochastic. Observe

the situation seen in Figure The discharge will occur at the point where the



electric field is the strongest. This will primarily be located between peaks of the
wire and workpiece surface profile because the gap distance is the shortest. However,
the wire will vibrate and bend due to the electrostatic forces and explosive forces from
previous discharges [I1]. The wire is also subject to forces from the jets of dieletric. It
is held in tension, and transported through the machine. The sparking gap may also
contain swarf generated from previous cuts. Consequently, the sparking locations are
extremely difficult to predict. At the point where a discharge occurs material will be
ejected leaving behind a crater. As the table continues to feed toward wire the next

spark will now occur at a new location.
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Figure 2.3: Diagram showing the many factors which affect the spark location in
wire-EDM

Critical to analysis of electrical discharge machining is the signal from the EDM

pulse generator, shown below in Figure 2.4 While there are multiple systems for



controlling the EDM process, a general, idealized signal should be common. To
clarify the nomenclature, the words given in this diagram will be used throughout
this work. The open-voltage is usually a fixed value, and is also referred to as the
open-circuit voltage. The open-voltage period is also known as the ignition delay
time, or the build-up period. What is referred to here as the current pulse duration is
sometimes called the pulse on-time, or on-time. The sum of the open-voltage period
and the voltage off-time is sometimes known as the pulse off-time, or off-time. Some
researchers may also refer to the sum of the open voltage time and the current pulse
duration as the pulse on-time. This confusion may derive in part from the different

current pulse durations in wire-EDM and die-sinking EDM.
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Figure 2.4: Diagram of nomenclature describing the current and voltage signals in
EDM

2.2 Development of EDM

The first reported experiment in which electrical discharges were used to melt and
erode a metal workpiece was performed by Joseph Priestley in 1766. Using a battery

and a brass knob as an electrode, he found that the diameter of the crater created



depended both on the workpiece material, and the degree to which the battery was
charged [12].

The Soviets Boris and Natalie Lazarenko are credited with development of the
first machine tool to use electrical discharges as a method of material removal. Their
work was first reported in the U.S. in 1947 [I3]. A later publication describes a
converted drill press which was essentially the first die-sinking EDM, displayed in
Figure 2.5 Also discussed was a machine for grinding tools in a process similar to

electrical discharge grinding [3].
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Figure 2.5: Drawing of the first die-sinking EDM [3]



The first EDM with a traveling wire electrode, shown in Figure [2.6] was patented
in 1961 [4], although wire-EDM in its modern form did not become commonplace

until the advent of computer numerical control (CNC).

Figure 2.6: Patent drawing of the first wire-EDM [4]

2.3 Effects of Process Parameters

This section will describe the known effects of various wire-EDM parameters on the
machined workpiece as it has been long established that electrical discharges impact
the surface integrity of the workpiece [14, [15]. Although a great deal more research has
focused on die-sinking EDM, this survey will cover mainly wire-EDM. It is felt that
the dielectric media, discharge parameters and electrode materials are too different
to directly compare findings between the two types of EDM. Accordingly, die-sinking
EDM related findings will only be substituted when no relevant wire-EDM work can

be found. Also, as mentioned, nomenclature tends to vary from one research to the
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next, so every effort has been made to assure “apples to apples” comparisons.
2.3.1 Current Pulse Duration

It has been well established that increasing the current pulse duration increases the
surface roughness of the machined surface [16, 17, 18] 19, 20, 21, 22, 23]. Recast
layer depth has also been shown to increase with current pulse duration [16], 24, 21].
Surface crack density also tends to increase with increased current pulse durations

[21].
2.3.2 Voltage Off-Time

Reducing the voltage off-time has been shown to minimize the formation of an oxide

layer in Ti-6Al-4V [25].

2.3.3 Peak Discharge Current

Surface roughness is known to increase with the peak discharge current [19, 26, 27].
2.3.4 Energy per Spark

It has been found that gap width increases with the energy per spark [10], as well
as surface roughness and recast layer [16, 21]. Surfaces machined with both short
and long current pulse durations had almost identical surface roughnesses as long
as the energies per spark were equal to one another. However, a comparison of
the morphologies revealed great differences between the two cases. Over the ranges
examined, short current pulse durations created craters by vaporization, while long

current pulse durations generated craters through melting [28].
2.3.5 Dielectric Properties

Although wire-EDM can be conducted in a dry gas atmosphere [29], it is typically con-
ducted in the presence of a liquid dielectric. The dielectric flushing pressure has been

shown to have an insignificant or minor effect on the surface roughness [16, 20], 21].
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The same results were concluded when the dielectric flow rate was instead measured
[19]. Flushing pressure was found to have no effect on the recast layer thickness in D2
tool steel [16]. The microhardness distribution below the surface remains constant
in tool steels with increased dielectric flushing pressure, while the surface hardness
slightly increases. Further, the microstructure was shown to remain constant with
increased pressure [21]. Maintaining proper flushing conditions is necessary to pre-
vent wire rupture as the convective heat transfer coefficient is the most important
parameter governing the maximum wire temperature [30].

Although the electrical conductivity of the dielectric does not have an impact
on surface roughness, it can impact the discharging process. As the conductivity is
increased, current leakage due to electrolysis appears during the open-voltage period.
Electrolysis will lead to oxidation of the entire workpiece surface [22] and may also lead
to a decrease in the hardness of a wire-EDM cut surface [31]. Some researchers have
developed a non-electrolysis power supply to prevent this corrosion and alteration of

properties [32].
2.3.6 Wire Properties

Originally, copper wire was used in wire-EDM because of its high electrical conduc-
tivity. However, plain copper wire is difficult to vaporize. Consequently, zinc, with
its lower melting point, was added to the wire. During cutting, the zinc vaporizes
and helps to flush debris from the gap. One of the most common types of wire used
in non-tapered wire-EDM cutting is hard brass wire. Composed of 63% copper and
37% zinc, hard brass wire typically has a 2% elongation [33]. When using smaller di-
ameter wires, as in micro-wire EDM, tungsten wire is sometimes utilized |34, [35] [36].
It is well established that wire materials can become deposited on the machined sur-
face [37, 27, 38, [39, [40]. This phenomenon has shown some dependence on machine

polarity [38].
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Wire speed does not seem to influence surface roughness [21], though increasing
wire tension can serve to minimize surface roughness [22]. It has been proposed that
the average wire temperature distribution along the wire axis is only 100°C, thus
the local elevated temperatures must be the important factor [41]. Wire rupture,
caused by high temperature and power density, can be limited by controlling the
sparking frequency [42]. The melting temperature and work function of the wire and
its coating affect the maximum cutting speed [43]. It has also been put forth that
since the electric field increases with radius of curvature, wire with more sharp edges
might increase the cutting efficiency [44].

Many researchers have studied micro-wire-EDM [45, 46, 34, [35], 47, [48]. Although
experimentation has been done over a range of wire diameters, little work appears
to have examined wire electrode size effects. It is known that the material removal
rate decreases for thinner wires as a result of the lower allowable discharge current
[49]. Additionally, the power supply, or pulse generator, must be more sensitive
and provide a finer degree of control than is necessary in conventional wire-EDM
[45], 146, [48]. Due to the small nature of the parts and electrode (wire), handling can
become difficult [50]. The limited back tension allowed by the narrow diameter wire
causes part tolerances and accuracy to be more greatly affected by both the cutting

forces [36], and the flow of the dielectric [47].

2.3.7 Table Feed Rate

In micro-wire-EDM, it has been found that a high table feed rate will contribute to
a diminished gap, and consequently an increased short ratio [45]. Some researchers
have found that the table feed rate has no effect on the surface roughness [51]. Others
contend that there is an effect on surface roughness [20]. In trim cutting, a low table
feed rate can effectively remove surface peaks and can also have a significant effect

on the removal thickness of previously imparted recast layer [16].
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2.3.8 Miscellaneous

Surface roughness and crack density increase with the open voltage [21].

2.4 Inconel 718

2.4.1 Background Information

Inconel 718 is an age hardening nickel base superalloy. It retains its strength across
both high and low temperatures and has good corrosion resistance. It is used in
aircraft turbine engines, as high temperature fasteners, as well as in cryogenic tanks
[52]. Inconel 718 is readily weldable and machinable and was originally manufactured
by the International Nickel Company [53]. The exact chemical composition of this
alloy is shown below in Table 2.1 This alloy is also known as IN-718, Inco-718,
alloy 718 and United Numbering System (UNS) N0O7718 [52]. It has been suggested
that in recent times Inconel 718 has comprised more than 60% of total superalloy

consumption [54].

Table 2.1: Chemical composition of Inconel 718 [1]

Element Range (%)
Ni 51.5
Fe 20.24
Cr 18.16
Nb 5.02
Mo 2.91
Ti 1.05
Al 0.62
Co 0.15
Si 0.08
Mn 0.07
Cu 0.06
C 0.05
P 0.008
Ta 0.003
B 0.003

At room temperature, annealed Inconel 718 has a density of 8.19 g/cm?, thermal
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conductivity of 11.2 W/m-K, electrical resistivity of 127 microhm-cm, and an elastic
modulus of 200 GPa [55]. It has a yield strength of 434 MPa, a tensile strength of
855 MPa and a hardness of 95 HRB [I].

Inconel 718 has an austenitic face-centered cubic (FCC) structure. It is strength-
ened primarilly by the /7 precipitate. This phase consists of body-centered tetragonal
(BCT) NigNb. Alloying with chrome promotes resistance to environmental degrada-
tion [52]. Inconel 718 is often used in the solution and aged condition. In practice,
a wide variety of heat treatments are used to impart various desired combinations of
yield strength, tensile strength, toughness, grain size, fatigue properties, and corrosion

resistance [56].
2.4.2 Wire-EDM of Inconel 718

Few publications relating to the wire-EDM of Inconel 718 have been found by the
author. It has been shown that increasing the current pulse duration as well as the
open voltage period tends to increase the surface roughness [23]. In solution treated
and aged Inconel 718, it was shown that the wire-EDM cut surface increased in hard-
ness above the parent material on the Rockwell C scale [51]. In a thin membrane of
solution treated and aged Inconel 718, it was shown that the Vickers microhardness
of the wire-EDM cut surface was raised above the bulk, and decreased as the dis-
tance from the cut surface increased. However, great variation in the microhardness
was observed, and attributed to the variety of phases present. The cut surface also

demonstrated an increase in copper content after machining [37].

2.5 Post-Processing

It has been shown above that EDM can impart many undesirable characteristics on a
machined surface. These may include large surface roughness, surface cracks, residual

stresses, changes in hardness, surface contamination, surface oxidation as well as
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other metallurgical changes. Consequently, it is often necessary to post-process wire-
EDM cut parts to alleviate these problems. A variety of post-processing methods are

available and a survey of these is given below.
2.5.1 Abrasive Flow Machining

One popular abrasive finishing technique is known as abrasive flow machining (AFM).
Here, abrasive media is extruded through a machine to deburr, polish and radius part
surfaces and edges. Extrusion pressure, flow volume and speed can be controlled to
allow stock removal controllable to 30 pum. Tooling can direct media to desired areas,
including internal passageways. High viscosity media can uniformly abrade walls
of passages, while lower viscosity media can radius edges, and reach small internal
regions. AFM is a reliable method to remove EDM recast layer, yielding up to a
90% improvement in surface finish [57]. This allows for the elimination of finishing
or trim cuts in wire-EDM [58]. To avoid the cost of commercial abrasive media, a
mixture of vinyl-silicon polymer and abrasive particles can be substituted while still

satisfactorily removing wire-EDM caused recast layer [59].
2.5.2 Abrasive Micro-Blasting

A similar process to shot peening is abrasive micro-blasting, although the media is
abrasive silicon carbide (SiC). Experiments conducted with wire-EDM cut tungsten
carbide-cobalt (WC-Co) composite revealed that the EDM induced recast layer and
heat affected zone (HAZ) could be quickly eroded with 4 to 20 um SiC abrasives.

Compressive stresses can also be imparted [60].
2.5.3 Electrochemical Processes

Much work has been devoted to the realm of electrochemical processes. In electro-
chemical processing, the workpiece is immersed in an electrolyte bath and a current is

passed between a cathodic electrode and the anodic workpiece. The current, electrode
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gap distance, electrolyte flow rate, electrolyte temperature, and type of electrolyte
all impact the workpiece surface dissolution rate [61]. The current can be constant
or pulsed, and the polarity can be reversed [62]. Electrochemical machining has been
used to remove EDM imparted recast layer and improve surface finish [63, 64]. Al-
ternatively, electrochemical processes can be combined with die-sinking EDM [61], [65]
and wire-EDM [66] to form a single process.

Due to their high resistance to corrosion, nickel-base superalloys will form a thin
oxide coating on their surface during ECM. Consequently high voltage or current
is necessary to break this film. Pulse reverse current electrochemical machining
(PRECM) has displayed improved machining of Inconel 718 over direct or pulse cur-
rent electrochemical machining [62].

One issue with electrochemical processing is due to environmental concerns. Al-
though the electrolytes can be physiologically safe, heavy metals can accumulate in
the electrolyte. It is believed that toxic chromate, nitrate and ammonia may be
adsorbed to metal hydroxides in the electro-chemical slurry, causing the necessity
for detoxification of the hydroxide slurries to impact the economic efficiency of this

process [67].
2.5.4 Loose Abrasive Mass Finishing

Loose abrasive mass finishing is also known as tumbling. It has been shown to improve
part surface finish, as well as induce compressive residual stress [68] [5]. Additionally,
scale, dirt and oil can be removed with minimal part handling [5].

Tumbling can be divided into three main types: rotary, vibratory and centrifugal.
Rotary tumbling is the oldest form of form of finishing, and is characterized by the
“climb and slide” motion. In this process, parts roll around in a mass of media inside
a drum rotating about a single axis. The speed of rotation, and size and configuration

of drum can be altered. In vibratory tumbling, an eccentric weight on a drive shaft
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causes vibration of a tub or bowl. This vessel contains the media and parts, and
is mounted on springs. The amplitude of vibration and frequency of vibration can
be altered. Centrifugal equipment uses a spinning disk located at the bottom of the
vessel to cause a rotation of the parts and media. Although the action is similar
to rotary tumbling, the work is accomplished six to twenty times faster. The speed
and orientation of the rotating disk can be altered, as well as the size of the process
chamber [69)].

The media can be composed of steel, ceramic, plastic, or wood. Abrasive media
is generally aluminum oxide, either natural or synthetic, fused silicon carbide, or a
preformed ceramic or resin bonded media containing aluminum oxide, silica or silicon
carbide. The media is available in a variety of shapes, as shown in Figure It is
important to select the proper media to part ratio. Typical ratios range from 1:1 to
10:1. A higher ratio delivers a greater finish quality, but requires a greater amount
of media. Another critical factor is the compound solution. The compound should

serve to clean, lubricate and inhibit corrosion or oxidation[5].
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Figure 2.7: Media shapes which are available for tumbling [5]



2.5.5 Shot Peening

Shot peening is a process in which media, usually steel or glass, are impacted upon
the surface of a part many times. This cold working process does not remove material
but does plastically deform a shallow surface layer and induce compressive residual
stresses on the surface. Shot peening can increase the fatigue life of a part, as well as
increase its hardness and prevent stress corrosion. It effects only the surface of a part,
and is limited in how well it can reach internal radii [70]. The elevated temperature
fatigue life of nickel base super alloys has been shown to increase with shot peening
[71]. The surface roughness, hardness, and fatigue life of wire-EDM cut thin Inconel

718 membranes was also improved by shot peening [37].
2.5.6 Other Processes

Other more limited post-processing techniques have been investigated. These include
magnetic abrasive finishing (MAF) in which EDM induced recast layer and micro-
cracks are removed from a shaft using a slurry of SiC abrasive and steel grit in a
magnetic field. A method for expanding this technique to other part geometries has
been proposed, but not yet demonstrated [72]. A method of combined ball-burnishing
and EDM operation has been demonstrated and shown to improve the surface rough-
ness and eliminate surface cracks and pores [73]. Neither of these methods are suitable

for general purpose use.

2.6 Summary

Electrical discharge machining is a process which has existed in principle for 250 years,
but which was not developed in practice until the 1940s. It has since become one of
the most established non-traditional machining processes. This research focuses on
wire-EDM, in which the electrode is a traveling wire.

Numerous process variables exist, although drawing broad conclusions can at times
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be difficult due to machine and material specificities. Regardless, it is clear that
increasing the energy per spark, due to increasing the peak current or the current pulse
duration, serves to increase both the surface roughness and recast layer thickness.
Metallurgical changes, and resulting characteristics such as grain size and hardness
are specific to material classes. Dielectric and wire variables seem to have secondary
effects, although they must be set to an appropriate value to prevent wire rupture.
Although a range of wire diameters are available, no report of the wire diameter size
effect has been found. The effects of table feed rate seem somewhat in dispute, likely
due to difficulties previously mentioned.

Inonel 718 is perhaps the most commonly used superalloy. It has high nickel and
chrome content, and undoubtedly exhibits different metallurgical properties than the
tool and die steels most commonly researched in EDM. Ramakrishnan and Karunamoor-
thy [23] examined surface roughness of wire-EDM of Inconel 718, but no other aspects
of surface integrity, and did not report what heat treatment the workpieces had un-
dergone. Jeelani and Collins [51] found the Rockwell C hardness of a wire-EDM cut
surface of age hardened Inconel 718 to be higher than the original workpiece, but did
not report the wire-EDM parameters. Lastly, Fordham et. al. [37] studied wire-EDM
of a 0.33 mm thick membrane of aged and solution treated Inconel 718. They found
the Vickers microhardness to decrease with distance from the edge, but could not
measure the hardness of the actual recast layer. Again, wire-EDM parameters were
not reported. There is clear need for further investigations into the recast layer and
surface integrity in wire-EDM of Inconel 718.

It is established that the surface integrity of wire-EDM cut parts has a detrimental
effect on their service life. Consequently, a variety of post-processing steps can be
taken to rectify this fault. These may include abrasive flow machining, abrasive
micro-blasting, electrochemical machining or polishing, loose abrasive mass finishing,

and shot peening. Each has a different combination of performance, cost and time.
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While post-processing techniques for wire-EDM cut parts have been reported, they
are either expensive, inaccurate, or pose environmental hazards. There is a need for

a simple and low cost post-processing solution for wire-EDM cut parts.
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CHAPTER III

RECAST LAYER THICKNESS EXPERIMENTS

3.1 Goal € Approach

This chapter details the steps taken to find the impact of process parameters in wire-
EDM of Inconel 718 on the resulting recast layer. Before the experiments could be
undertaken, it was necessary to fully understand the process variables. The stochas-
tic nature of wire-EDM required that the pulse generator signal be recorded and
analyzed. Once this was achieved, preliminary experiments were conducted to find
the available parameters and the range over which they could be varied. An experi-
ment was designed and conducted to test the effect of each variable. The measured
output, recast layer thickness, was analyzed. Through these experiments, the major

contributing factors could be identified.

3.2 Brother HS-3100

All of the wire-EDM cuts reported here were made on a Brother HS-3100 Wire-EDM
machine, as shown in Figure [3.1] This machine is capable of CNC motion in two-axes
and with the appropriate wire guides can accept wire from a diameter of 100 um to
300 pm. The machine has a reservoir of water, which acts both as a dielectric and
as a flushing medium for the swarf. The machine controls the conductivity of the
water by de-ionizing it with a resin tank. A chiller maintains the water at a constant
temperature. This particular model is an operator-oriented machine tool. While it
has a range of parameters which can be varied, given in Table [3.1], it was often not
clear what each parameter controlled. Hence, it was necessary to develop a method to

measure the pulse generator signal directly, as explained in the next section. Also, the
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machine contained several “auto-controls” which attempted to maximize the cutting
rate while preventing wire ruptures. These features were disabled for the extent of

this research.

HS-3100

Figure 3.1: Brother HS-3100 Wire-EDM

3.3 Measurements
3.3.1 Data Acquisition

A schematic of the system for capturing the voltage and current waveforms of the
electrical discharges is shown below in Figure |[3.2l The current carrying wires con-
necting the pulse generator to the brushes were passed through a Pearson Electronics
model 110 current monitor. This sensor operates on the principle of induction and
was chosen because of its peak measurable current of 5000 A, maximum RMS current

of 65 A and its usable rise time of 13 ns. It also had a safety advantage in that it
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Table 3.1: Range of machine settings for the Brother HS-3100
Machine Parameter | Setting | Range

Table feed rate - 0.061 to 304.8 mm/min

Spark cycle - 6 to 999 us

Spark Energy 2 to 18 | 0.07340.03 to 2.00+0.16 s, 119£12 to 601+60A
Wire Speed 1 to 25 | 48 to 261 mm/sec

Wire Tension 0 to 25 | 200 to 2500 gf

Target Gap Voltage | - 30 to 70 V
Water Conductivity | 0to 6 | 8 to 65 uS/cm

Wire Diameter - 100 to 300 pum
Stabilizer 1tod |-
Dielectric Flow Rate | - 0 to 8 //min

remained electrically isolated from the machine circuitry. The voltage probe was a
Stack Electronics CP-209 and was attached to the brush. The bandwidth necessary
to accurately monitor the signal was too great for any available PC-based data ac-
quisition system. Therefore, a Tektronix model TDS420A oscilloscope was employed
to record the signal. From there it was transfered to a PC for analysis. A detailed

description of the experimental setup is given in Appendix A.
3.3.2 Data Analysis

Once the current and voltage data were obtained, it was necessary to analyze them
to determine the various aspects of a signal. A simple program was written in Matlab
to complete this task. The code for this program can be found in Appendix A. A
sample set of analyzed waveforms is given below in Figures and

A close-up of an electrical discharge, shown in Figure [3.5] reveals that at the end
of the discharge the current reverses direction and the voltage becomes negative. This
can be attributed to the inevitable inductance present in the discharge circuit [15].
It is also seen that the voltage signal indicates some presence of ringing, which can
again be attributed to the inherent inductance and capacitance of the circuit [74].

From this data, the following metrics could be calculated: average peak discharge

24



Brushes

Wire —_

Pulse Generator

\Current monitor

Electrical
Discharges

Workpiece

e

i) |\l Oscilloscope
79

Voltage Probe

Figure 3.2: Schematic of voltage and current measurements on Brother HS-3100
Wire-EDM

current, average current pulse duration, average sparking frequency, average open-
voltage time, average voltage off-time, average energy per spark, and average power.
The report generated for the sample conditions shown in Figures[3.3|and [3.4]is shown
in Table [3.2] The definitions of these measures are given in Figure [2.4, Bear in mind
that the term spark energy refers to a machine setting, while energy per spark refers
to the actual quantity of energy contained within each spark.

Due to a limitation in the oscilloscope, a maximum of 3 ms worth of data could
recorded. Thus, for any given set of parameters, numerous data sets were collected and
averaged to obtain a single set of values. From this type of analysis, it was confirmed
that the wire-EDM process is stochastic in nature. From visual inspection of Figures

[B.3] and [3.4] it can be seen that while each spark had a similar duration and peak
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Figure 3.3: Sample current [A] and voltage [V] waveforms

current, imparting a similar quantity of energy, the period of time between sparks,
largely dictated by the open-voltage time, varied greatly. This further demonstrates
the need to monitor the actual pulse signal in place of simply relying on the machine

settings.
3.3.3 Correlation with Machine Settings

Using the type of analysis shown in the preceding section, the EDM signals due to a
variety of combinations of machine settings were studied to observe the effects of each
setting. For these tests, four machine settings expected to have the greatest impact
on the signal parameters were chosen: spark energy, spark cycle, wire diameter and
table feed rate. Although choosing appropriate machine settings can be difficult [75],

once a working set of parameters was identified, the maximum ranges over which
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Figure 3.4: Sample power kW] and energy [J] waveforms

they could be varied were determined. The qualitative effects of the varied factors
are given in Table

It is apparent that the effects of the machine settings on the signal parameters
are confounded with one another. What can be concluded from this experiment is
that the spark energy machine setting tends to increase numerous factors which lead
to an increased energy per spark. The spark cycle setting is well correlated with
the voltage off-time. While not directly related to the discharge signal, increases in
table feed rate lead to increases in the sparking frequency. Lastly, it is found that
a larger diameter wire results in greater sparking frequency, peak discharge current,

and power.
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Figure 3.5: Sample close-up of current [A] and voltage [V] for a discharge

3.4 Design of Experiments

3.4.1 Process Parameters

From the literature survey conducted in Chapter II, it is clear that several factors can
contribute to recast layer formation. However, many of the factors reported in the
literature are machine specific, or cannot be directly controlled on the Brother HS-
3100. Therefore, the selected machine settings were chosen to alter the parameters
reported in literature which in turn are believed to have the largest impact on recast
layer formation. Wire-EDM differs from die-sinking EDM in that if the settings are
not chosen properly, the wire electrode will fail. This can occur either from a table

feed rate which is too high and allows the wire to come in contact with the workpiece,
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Table 3.3: Machine setting to signal parameter correlations for the Brother HS-3100

Machine Setting Signal Parameter

Spark Energy 1 Peak Discharge Current 1
Current Pulse Duration T
Sparking Frequency |
Open-Voltage Time
Voltage Off-Time |
Energy per Spark 1
Power 1

Spark Cycle T Voltage Off-Time

Table Feed Rate T Sparking Frequency T
Open Voltage Time |

Wire Diameter T Sparking Frequency
Power T
Peak Discharge Current |

or from sparking parameters under which the wire electrode is eroded to the point
that it fails under the normal tension at which it is held.

The material examined in these experiments was a sheet of annealed 3.962 mm
thick Inconel 718. The chemical composition of this alloy can be found in Table
[2.1] Tests were conducted to find the widest range of feasible machine settings when
cutting this particular alloy. Based on these results, a factorial design of experiments
was chosen, and can be seen below in Table [3.4] Note that the wire diameter and
spark energy settings are not balanced. This was done to maximize the effect of spark
energy. The 100 um diameter wire was unable to sustain a spark energy setting greater
than 8, while the 250 ym wire was able to cut up to a setting of 18. This element
of the design must be considered in the later analysis. Both size wire diameters
were made of hard brass with an electrical resistivity of 9 p{2-cm. Additionally, the
wire transport speed was altered from 261 mm/sec with the smaller diameter wire
to 48 mm/sec with the larger diameter wire. This was done to minimize excessive
consumption of the larger diameter wire. At the speeds indicated, the mass flow rate
of the two wire diameters was held to within 14%, the best achievable on the Brother

HS-3100. All other parameters were held constant across all tests. Wire tension was
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kept at 300gf, water conductivity was maintained at 37 pS/cm, and the dielectric
flow rate in the upper and lower nozzles was held at 2 ¢/min. The machine-specific
stabilizer function, which attempts to avoid wire breakage by limiting the number of
sparks that can occur in a given time, was set to a value of 1. This serves to limit the
impact of the Stabilizer as much as possible. From observation of the pulse signal, it
was obvious when the Stabilizer was engaged and consequently these machine settings

were later avoided.

Table 3.4: Experimental Design

Wire Diameter Table Feed Rate Spark Cycle Spark Energy
[pm] [mm /min] [s] [setting]
100 1.969 16 4
100 1.969 16 6
100 1.969 16 8
100 1.969 28 4
100 1.969 28 6
100 1.969 28 8
100 2.223 16 4
100 2.223 16 6
100 2.223 16 8
100 2.223 28 4
100 2.223 28 6
100 2.223 28 8
250 1.969 16 6
250 1.969 16 12
250 1.969 16 18
250 1.969 28 6
250 1.969 28 12
250 1.969 28 18
250 2.223 16 6
250 2.223 16 12
250 2.223 16 18
250 2.223 28 6
250 2.223 28 12
250 2.223 28 18
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3.4.2 Experimental Procedure

At each of the conditions listed in Table 3.4 a 6.3 mm by 12.7 mm specimen was
cut out of the Inconel 718 sheet. The nomimal chemical composition of this alloy is
detailed in Table Observation of the recast layer necessitated that each specimen
be metallographically prepared. The first step was to thoroughly clean the specimen
in acetone, then in sodium hydroxide. Using the Buehler Edgemet kit, each specimen
underwent an electroless nickel plating process to protect specimen edges. This nickel
layer was nominally 25 pum in thickness. Specimens were next mounted in EpoMet
G, a thermosetting epoxy resin to aid in further preparation. A drawing detailing the

orientation of the specimens is shown in Figure [3.6]

Mounted Specimen

Figure 3.6: Drawing demonstrating the orientation of a specimen as it is mounted
in epoxy

Specimen

Once mounted, the specimens were ground and polished on a Buehler Ecomet 6
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Variable Speed Grinder-Polisher with an Automet 2 Power Head according to the
procedure outlined in Table [3.5] This procedure is based upon advice given by an
expert at Buehler [76]. Carbimet is a silicon carbide sandpaper and MasterPrep is a

0.05 pm agglomerate-free seeded-gel alumina suspension.

Table 3.5: Grinding and polishing procedure

Time Speed Load

Step Abrasive [min] [RPM] [N] Notes

1 180 grit 8” Carbimet paper 4:00 250 comp. 36 Repeat until plane

2 240 grit 8 Carbimet paper 5:00 250 comp. 31

3 320 grit 8” Carbimet paper 5:00 250 comp. 27

4 400 grit 8” Carbimet paper 5:00 250 comp. 22

5 600 grit 8” Carbimet paper 5:00 250 comp. 22

6 3 m Diamond Suspension 3:00 150 comp. 18 Longer time if
with 8” Texmet 1500 Pad necessary

7 MasterPrep Solution with ~ 3:00 150 contra. 18 Longer time if
Microcloth necessary

At this point, the specimens could be observed under an optical microscope, as
seen in Figure 3.7 While some recast material is visible, it is necessary to etch
the specimen to fully observe the recast layer. In practice, Inconel 718 is frequently
electrolytically etched to reveal its microstructure. For simplicity, this option was
avoided in favor of a simpler method. Several resources were used to find possible
etching procedures [76, [77, [78, [79]. Approximately twenty different combinations of
etchants, concentrations and times were attempted to determine the best procedure.
Etching the specimens in a mixture composed of 25 ml HCI, 5 ml HNOj3 and 5 ml
glycerol for 3 minutes was found to provide the best results. The specimen from Figure
has been etched and is shown again in Figure [3.8] although the micrograph is of
a different region.

For the purpose of these experiments, the recast layer has been assumed to be the
region between the nickel plating and the dark horizontal lines which appear with
etching. These dark lines are not thought to be micro-cracks, primarily because they

are not revealed until after etching. Cracks would form in order to relieve tensile
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residual stresses imparted during the machining process. From the analysis of these
stresses in Chapter IV, any cracks would be expected to appear at the outer edge
of the recast material and run normal to the surface. The darkened regions of the
micrograph were most likely preferentially etched due to their chemical composition,
which has been altered during the machining process. Although only the upper
portion of this region appears darkened, the lower portion has been included in the
recast layer thickness measurements as it is bounded by the dark lines which have
also been chemically altered from the original workpiece. Notice how the thickness of

the recast layer varies across the specimen.

Mounting Compound
Nickel Plating

Recast Layer

Specimen

1052 T8 et Elehr " SEse=e———— 30 icron

Figure 3.7: Micrograph of polished, but un-etched specimen cut under the following
machine settings: wire diameter of 250 pm, table feed rate of 2.223 mm/min, spark
cycle setting of 28 us, spark energy setting of 18

The selected output for these experiments is the recast layer thickness. Due to
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Mounting Compound

Nickel Plating

Specimen

052" 1000 T Elehied e 30 micron

Figure 3.8: Micrograph of polished and etched specimen cut under the following
machine settings: wire diameter of 250 pm, table feed rate of 2.223 mm/min, spark
cycle setting of 28 us, spark energy setting of 18

the variable nature of the recast layers observed, an average must be taken. The best
results were obtained when an average recast layer thickness was calculated by mea-
suring the area of the recast material and dividing by the length of the measurement,
as shown in Figure [3.9] The recast area was always measured in three different loca-
tion on the specimen. However, in cases where the variance between measurements
was deemed sufficiently large, measurements at additional locations were taken. Area
measurements were made by importing the micrographs into AutoCAD 2007 and

tracing a polyline around the perimeter of the recast region.
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Recast Area = 978 pm?

Area _
Length 135 pm

Average Recast Layer Thickness =

052 TOB0 AT Etchssl = = 50 micron

Figure 3.9: Example of how average recast layer thickness measurements were made

3.5 Results
3.5.1 Results

The average recast layer thickness measurements for each test condition, as well as
the analyzed EDM signal parameters can be seen in Table 3.6l The measurements
comprising each average recast layer thickness measurement are found in Appendix
B. Notice the large variance in both the EDM signal parameters and in the measured
average recast layer thicknesses. While average recast layer thickness measurements
were taken from several locations of each specimen, no replicates of the actual cutting

experiments were conducted.
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Table 3.7: Analysis of Variance (ANOVA) for cases where spark energy is set to 6
to determine the effect of wire diameter on recast layer thickness
Degrees  Sequental Adjusted Adjusted

of Sum of Sum of Mean of
Source Freedom Squares Squares  Squares  F-statistic p-value
Wire Dia. 1 1.488 1.488 1.488 1.39 0.303
Feed Rate 1 0.202 0.202 0.202 0.19 0.686
Spark Cycle 1 0.108 0.108 0.108 0.1 0.766
Error 4 4.266 4.266 1.067
Total 7 6.064

3.5.2 Analysis

Due to the unbalanced design, analysis of the experiments is complicated by the
correlation between wire diameter and spark energy settings. Consequently, the first
analysis will be to determine the influence of wire diameter on average recast layer
thickness in Inconel 718. Performing an Analysis of Variance (ANOVA) on only the
cases where spark energy was set to a level of 6 will allow for such a determination
to be made. The results of the ANOVA are seen in Table [3.71 The p-value for the
effect of wire diameter on recast layer thickness is 0.303, indicating an insignificant
effect. For the following analyses, it will be assumed that, over the range of values
measured, the effect of wire diameter is negligible.

Performing an ANOVA on the complete dataset, found in Table |3.8] confirms the
assumption that wire diameter effect on recast layer thickness is negligible. With
an a=0.05 significance level, the spark energy setting is a significant parameter, and
with a @=0.10 level, table feed rate is also significant. The main effects are shown in
Figure [3.10]

By applying the machine setting to signal parameter trends given in Table |3.3]
the effect of the underlying EDM signal parameters can be found. As table feed rate
increases, average recast layer thickness decreases. This suggests that recast layer
thickness increases with decreasing sparking frequency and increasing open-voltage

time. A higher spark energy setting leads to thicker recast layer. This indicates that
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Table 3.8: Analysis of Variance (ANOVA) to determine effect of machine settings
on recast layer thickness
Degrees  Sequental Adjusted Adjusted

of Sum of Sum of Mean of
Source Freedom Squares Squares  Squares  F-statistic p-value
Wire Dia. 1 4.034 1.488 1.488 2.88 0.109
Feed Rate 1 2.042 2.042 2.042 3.96 0.064
Spark Cycle 1 0.028 0.028 0.028 0.05 0.819
Spark Energy 4 8.075 8.075 2.019 3.91 0.021
Error 16 8.253 8.253 0.516
Total 23 22.432
Wire Diameter Table Feed Rate Spark Cycle Spark Energy
81 7 p-value = 0.109 p-value = 0.064 p-value = 0.819 p-value = 0.021

Average Recast Layer Thickness [um]

(bm] [mm/min] [bs]

Figure 3.10: Main effects of machine settings on average recast layer thickness [pm]
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Table 3.9: Pearson correlation between EDM signal parameters and average recast
layer thickness

Open-
Peak Pulse Voltage Voltage  Energy
Current Duration Freq. Time Off-Time per Spark Power
Comrelation ) yoc (555 -0.560 0.516  -0.303 0475 0.190
Coefficient
p-value 0.011 0.005 0.004 0.010 0.150 0.019 0.374

recast layer thickness increases with an increasing peak discharge current, current
pulse duration, open-voltage time, energy per spark and power and with decreasing
sparking frequency and voltage off-time.

An ANOVA cannot be performed directly on the actual EDM signal parameters,
but similar results are obtained by utilizing the Pearson product moment correlation,
which measures the degree of linear relationship between two variables. Table [3.9
shows the correlation coefficients and p-values for each correlation. The correlation
coefficient ranges from -1 to +1. A positive correlation coefficient indicates that the
variables increase together, while a negative coefficient indicates that one increases
as the other decreases. A correlation coefficient of 0 indicates no relationship be-
tween the variables. A p-value less than a=0.05 indicates significance. This analysis
suggests that average recast layer thickness increases with increasing average peak
pulse current, current pulse duration, open-voltage time and energy per spark and
with decreasing frequency. This largely agrees with with what was found from the
EDM signal parameters correlated with the machine settings found to be significant
by the ANOVA. The correlated ANOVA analysis indicated that power and voltage-
off time were significant factors, while the Pearson correlation did not. This suggests
that although power and voltage-off time are tied to changes in the spark energy set-
ting, it is the other factors, peak discharge current, current pulse duration, frequency,
open-voltage time and energy per spark which have more dominant effects over this

range.
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The literature survey conducted in Chapter II found that it has been reported
by several researchers that, for other alloys, recast layer thickness tends to increase
with increased current pulse duration and increased energy per spark. The findings
from the experiments conducted here match those results, and augment them with
the fact that recast layer is also affected by peak pulse current, open-voltage time,
and decreasing frequency.

Plots of average recast layer thickness versus the aforementioned parameters are
given in Figures - In each plot, the wide dispersion in recast layer thickness
versus the varied parameter is clear. Nonetheless, over a wide enough range, the
statistically significant trends become evident. Note that the figures distinguish the
data points collected with each of the two wire diameters from each other. The linear
trend line is based on the complete data set, as the wire diameter was shown to have
an insignificant effect on recast layer thickness.

The increase in recast layer thickness with decreasing frequency can be explained
by the correlation between frequency and energy per spark. As the energy per spark
increases, the frequency correspondingly decreases, see Figure [3.16] It is likely the
increase in energy per spark that drives the increased recast layer thickness rather than
the decrease in frequency. With greater energy release in each spark, the quantity of
workpiece material which is melted is greater, resulting in a larger quantity of molten
material which resolidifies to form the recast layer. Since the voltage on the Brother
HS-3100 is fixed, the same argument could be made for increases in the current leading
to greater recast layer thicknesses. As sparking frequency decreases, with constant
table feed rate and voltage-off time, open-voltage time will correspondingly increase.
Thus, the open-voltage time is correlated with increased recast layer thickness because
sparking frequency decreases with increasing energy per spark. Recast layer thickness
decreases with increasing table feed rate because as the table feed rate increases, the

sparking frequency increases, and energy per spark decreases. The peak discharge
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Figure 3.11: Average recast layer thickness [um] plotted against average sparking
frequency [kHz]

current and current pulse duration, and equivalently the energy per spark, are the
fundamental parameters which increase recast layer thickness in wire-EDM. This is

in agreement with what has been found for other workpiece materials [16} 24], 21].

3.6 Summary

In order to find the influence of various wire-EDM parameters on the recast layer
thickness, a set of experiments were undertaken. These experiments were conducted
on a Brother HS-3100 Wire-EDM. Due to machine limitations, the exact signal para-
meters could not be varied directly. Instead, it was necessary to alter machine settings
and correlate them with more general parameters. A 36-run experimental design was
conducted. Each specimen was nickel plated, mounted, polished and etched to reveal
the recast layer. Numerous measurements were taken from each specimen to calculate
an average recast layer thickness for each condition. It was found that the diameter of
the wire electrode did not demonstrate an effect on recast layer thickness. However,

recast layer thickness decreased with increasing table feed rate. Additionally, recast
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Figure 3.12: Average recast layer thickness [um] plotted against average energy per
spark [mJ]

9.00

8.50

- . /
8.00 s - =
7.50 4

* /
7.00
// )

6.50 - .

Recast Layer Thickness [um]

.
6.00 * .
- - ’
]
5.50 ¢ + 100 pm Diameter Wire ||
» 250 um Diameter Wire
5.00 * : ; ; ‘ ‘

0.00 50.00 100.00 150.00 200.00  250.00 300.00 350.00 400.00
Open-Voltage Time [ps]

Figure 3.13: Average recast layer thickness [um] plotted against average open-
voltage time [us]
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Figure 3.16: Sparking frequency [kHz| plotted against energy per spark [mJ]

layer thickness increased with an increasing energy per spark, peak discharge current,
current pulse duration, and open-voltage time and decreasing sparking frequency.
Further, it was determined that the underlying cause for increases in average recast
layer thickness were increases in peak discharge current, current pulse duration and

energy per spark.
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CHAPTER IV

RECAST LAYER CHARACTERIZATION

4.1 Goal & Approach

In this chapter, the recast layer formed due to wire-EDM of Inconel 718 will be char-
acterized through several methods. Wherever possible, the effects of the wire-EDM
process parameters on the following characterizations will be examined: scanning elec-
tron microscopy to observe surface morphology, white light interferometry to measure
surface roughness, electron probe microanalysis to find chemical composition, x-ray
diffraction to detect and measure residual stresses and nano-indentation hardness
testing to determine hardness and elastic modulus. From what is learned, a better
understanding of the properties of the recast layer can be gained. This will serve
as a guide in understanding the effects of wire-EDM on a surface, as well as in the

post-processing steps discussed in the following chapter.

4.2 Scanning FElectron Microscopy

Several scanning electron microscope (SEM) images were taken of a specimen to
characterize surface morphology. Figures - are taken from a Hitachi S3400N
SEM with an accelerating voltage of 15.0kV and a working distance of 17.9 mm. The
specimen was machined with the following machine settings: wire diameter of 100 pm,
table feed rate of 1.969 mm/min, spark energy setting of 8 and a spark cycle setting
of 28 us. Notice the overlapping craters of the spark eroded surface. In these figures,
the wire electrode was oriented vertically, and the table fed from left to right. These
micrographs demonstrate a surface similar to what has been previously reported for

wire-EDM [16], 17, 26, 39, 27, 38]. However, since only one sample was able to be
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analyzed with SEM, no observation on the influence of the experimental variables on

crater size or morphology can be made.

Figure 4.1: SEM image of wire-EDM cut surface at 200X
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VP1265-06 15.0kV 17.9mm x500 SE 11/15/2007

Figure 4.3: SEM image of wire-EDM cut surface at 1000X
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VP1265-08 15.0kV 17.9mm x3.00k SE 11/15/2007

Figure 4.4: SEM image of wire-EDM cut surface at 3000X
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4.3 Surface Roughness Measurements

As discussed in Chapter II, surface roughness has been correlated to certain machine
settings, most notably the peak pulse current. To analyze surface roughness, four
samples, machined with two wire diameters, and two energies per spark were selected.
These particular specimens were chosen to isolate the effects of wire diameter and
energy per spark. Although the high and low levels of energy per spark are not equal
across wire diameters, the effect can still be viewed within a wire diameter. Table [4.1
shows the machine settings, selected discharge signal parameters and resulting recast
layer thicknesses for the selected samples. The complete data for these machine
settings can be found in Table |3.6]

Table 4.1: Average recast layer thickness measurements and selected EDM signal
parameters for surface roughness measurement samples

Table Current Recast
Wire Feed Spark Peak Pulse Energy | Layer
Dia. Rate Cycle Spark Current Dur. Freq. /Spark | Thickness
Sample | [gm] [mm/min] [us] Energy | [A] [us] [kHz] [mJ] [pm]
1 100 2.223 16 4 88.0 0.90 16.0  2.39 5.88
2 100 1.969 28 8 134.0 1.20 8.9 7.73 7.63
3 250 2.223 28 6 121.7 1.03 20.7 3.42 5.94
4 250 1.969 28 18 313.3 1.90 2.6 23.03 7.84

All of the surface roughness measurements were made on a Zygo NewView 200
white-light interferometer. Figure 4.5 shows a sample measurement. The instru-
ment software, MetroPro 7.2.2, calculates the RMS surface roughness over the area
of measurement. The readings were not filtered in any way other than to remove
the least-squares plane. An average was taken of three measurements, each from a
different location on a specimen. The complete surface roughness data can be found
in Appendix C. The average RMS surface roughness values are plotted by sample in
Figure 4.6, The error bars denote a single standard deviation in the data above and
below each mean value. Plotting surface roughness against energy per spark, Figure

4.7, it can clearly be seen that surface roughness increases with energy per spark.

20



surface Map 4
B ZYygo Obligue Pleot 4

+12.42004

um

-15.16987
0.53

Figure 4.5: Sample image from Zygo NewView 200

This matches what others have reported [16} 21I]. Turning now to surface roughness
as a function of wire diameter, shown in Figure 4.8 it can be seen that a similar
trend exists between energy per spark and RMS surface roughness within either wire
diameter. The data indicates that surface roughness is slightly larger with a larger
diameter wire electrode. If significant, this effect is not due to differences in spark-
ing frequency, as the average frequencies for the two wires are approximately equal.
However, with the larger wire diameter the relative wire transport speed was lower
and the gap width was larger, raising the possibility that one of these factors could

contribute to this phenomenon.
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Figure 4.6: RMS surface roughness [um], sorted by sample
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Figure 4.7: RMS surface roughness [um], sorted by energy per spark [mJ]
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Figure 4.8: RMS surface roughness [um], sorted by wire diameter [um] and energy
per spark [mJ]
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4.4 FElectron Probe Microanalysis
4.4.1 Introduction

An Electron Probe Microanalyzer (EPMA) is an instrument similar to an SEM, but
with an added x-ray detector which combines structural and compositional analysis
of a small, local region in a single operation. When the specimen to be analyzed
is bombarded with electrons, characteristic x-rays are emitted. These x-rays can be
measured using two methods, energy dispersive spectrometry (EDS) or wavelength
dispersive spectrometry (WDS). Most modern SEMs are capable of EDS. By making
use of the photoelectric effect, an energy-dispersive x-ray spectrometer is able to count
the electric pulses generated each time an x-ray strikes the detector. Each x-ray count
is associated with energy units, and a histogram can be generated across the entire
spectrum of energies to determine the elemental composition. WDS separates x-rays
of different energies by using the wave nature of photons. X-rays are diffracted off of
a crystal with a known interplanar spacing and by using Bragg’s law, the wavelength

of the x-ray can be determined [6].

Intensity ——~

Intensity —

Wavelength —

(a) EDS (b) WDS

Figure 4.9: Example comparison of spectra for EDS and WDS [0]

Figure |4.9/shows a comparison between the EDS and WDS spectra of a multicom-

ponent glass. Notice the vastly superior resolution of WDS over EDS. However, this
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resolution comes at a price. EDS can generate an observation of the entire spectrum
nearly simultaneously, while WDS requires several time consuming crystal changes in
order to observe the entire spectrum. EPMA has difficulty observing elements with
atomic numbers less than fifteen due to the low energy of the x-rays. This means that
notable elements such as oxygen and carbon are not typically viewable. A benefit
of EPMA is elemental mapping. Elemental composition can be generated in tandem
with SEM imaging, allowing the composition of a specimen to be matched with its

morphology [6].
4.4.2 Experimental Procedure

The specimen to be analyzed was cut under the same conditions as the sample from
the SEM analysis and Sample 2 from the surface roughness analysis: wire diameter of
100 pm, table feed rate of 1.969 mm/min, spark energy setting of 8 and a spark cycle
setting of 28 us. However, in this case, a 12° taper section was taken to make the
recast layer appear thicker. This sample was mounted and prepared in the manner
described in Table [3.5] To improve the microprobe image, the sample was coated
with a 5 nm thick layer of carbon in a process similar to chemical vapor deposition
(CVD). The instrument used in these measurements was a Jeol JXA-8200 SuperProbe
Electron Probe Microanalyzer (EPMA). It is an SEM and is capable of wavelength
and electron dispersive spectrometry (WDS/EDS). To form an elemental map of
the surface, two scans were required. The first scan looked at aluminum, copper,
silicon and niobium with WDS and titanium, iron, chrome and nickel with EDS. The
second scan was for phosphorus, zinc and molybdenum with WDS. Titanium, iron,
chrome and zinc exhibit characteristic energies which are sufficiently distinguishable
to appear well resolved with EDS meaning little would be gained from an additional

scan of WDS.
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4.4.3 Results

A composition view of the analyzed area is shown in Figure [£.10] This composition
view was generated through electron backscattering. White indicates higher atomic
number elements, while black indicates lower atomic number elements. The relative
intensity elemental maps of each element within the scan area are shown in the Figures
- In these images, white indicates a high intensity and black indicates a
low intensity. The reader is cautioned that the color scales from element to element
are different. It is not possible to compare elemental intensity from one element to
the next.

From observing the relative intensity of nickel in the area, Figure 4 it is
evident that the nickel plated layer contains a higher nickel content than the work-
piece, as would be expected. Figure 4 shows that a much higher content of
phosphorus is found in the nickel plating than the workpiece. This is also expected,

as electroless nickel contains between 1 - 12% phosphorous [80], and Inconel 718 con-

tains only 0.008% phosphorus. Figures 4/12(a)|and [4.16| clearly indicate the presence

of copper and zinc in the recast layer. Since Inconel 718 contains only 0.06% copper
and no zinc, it is fair to say that these elements migrated into the workpiece from
the wire electrode during cutting, as has been previously reported [27, 38| 39 40].
It does not appear as though either element has diffused into the workpiece beyond
the recast layer. It also appears that the some evidence of chrome depletion in the
recast layer is present as the chrome intensity drops by 15% in the recast material.
Additionally, nickel and iron drop by 8% and 7% respectivly when comparing the
bulk workpiece to the recast layer.

One unexpected finding from this analysis is the presence of an inhomogeneity in
the workpiece material. Chrome, iron, molybdenum and niobium all display a clear
vertical banding of relative intensities in the workpiece material. These bands do not

appear to align with the grain boundaries, which are relatively equiaxed. Although
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faint in the original pictures, the raw data indicates that relative intensities vary as
much as 3% between bands. These differences can be brought out by adjusting the
colorscale of the image, as shown in Figure [4.17] for iron and moldbdenum. The source
of this phenomenon is unknown, and it is unclear what role this may play in recast
layer formation. At the least, it would likely contribute to the large variance observed
in recast layer thickness.

A secondary electron image (SEI) of the analyzed area is displayed in Figure m
An SEI conveys topographical data about the specimen. It is seen that the nickel
plating is slightly recessed below the workpiece. This area was likely preferentially
polished during the specimen preparation. Two SEM images of the analyzed area
are shown in Figures and [£.20l These images were taken at progressively lower
magnifications. It can be seen that the varying nature of the recast layer continues

across the sample. The grains are also apparent here.
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Figure 4.10: Composition view of the taper section to be analyzed (1000X)

(a) Aluminum (WDS) (b) Chrome (EDS)

Figure 4.11: Relative intensities of aluminum (WDS) and chrome (EDS) within the
scan area
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(a) Copper (WDS) (b) Iron (EDS)

Figure 4.12: Relative intensities of copper (WDS) and iron (EDS) within the scan
area

(a) Molybdenum (WDS) (b) Niobium (WDS)

Figure 4.13: Relative intensities of molybdenum (WDS) and niobium (WDS) within
the scan area
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) Nickel (EDS) b) Phosphorous (WDS)

Figure 4.14: Relative intensities of nickel (EDS) and phosphorous (WDS) within
the scan area

) Silicon (WDS) ) Titanium (EDS)

Figure 4.15: Relative intensities of silicon (WDS) and titanium (EDS) within the
scan area
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Figure 4.16: Relative intensity of zinc (WDS) within the scan area

(a) Iron (adjusted, EDS) (b) Molybdinum (adjusted, WDS)

Figure 4.17: Adjusted intensities of iron (EDS) and molybdenum (WDS) to high-
light vertical banding inhomogenuity
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Figure 4.18: 1000X SEI image of scan area
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Figure 4.19: 400X SEM image of scan area
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Figure 4.20: 100X SEM image of scan area
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4.5 X-Ray D:iffraction

4.5.1 Overview

In this section, residual stress imparted by the wire-EDM process will be measured
using the method of x-ray diffraction. Residual stresses can originate in nearly every
type of material processing, including machining, rolling, welding, heat treatments,
and phase transformations, etc. Residual stresses will affect the strength of a part
under an applied cyclic load, and can significantly affect fatigue life [7]. The rapid
heating and cooling rates, as well as the possible resulting phase changes, present in

wire-EDM will undoubtedly lead to the presence of residual stresses.

Figure 4.21: Diffraction of x-rays from crystal atomic planes [7]

X-ray diffraction is a non-destructive testing technique for measuring residual
stresses. The fundamental principle on which x-ray diffraction operates is based
on the fact that the atoms in a specimen are arranged in crystallographic planes.

Observe Figure [4.21] Consider two parallel x-rays, ABC and DEF, impinging several
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crystallographic planes of atoms. Prior to striking the surface, the waves are in-phase
with one another. The reflected waves have now traveled different distances and may
now be out of phase. Thus, either constructive or destructive interference between
the reflected rays may result. If the distance GEH is an integral multiple (n) of the
wavelength, A, then the wave will be in constructive interference. This relationship

can be described mathematically through Bragg’s Law, Equation [4.1}

nA = 2dsinf (4.1)

where d is the interplanar, or lattice spacing and 6 is the angle of incidence. Thus,
for an x-ray beam of known Bragg angle and wavelength, the interplanar spacing can
be calculated. If the interplanar spacing of an unstressed material is known, x-ray
diffraction can be used to measure the interplanar spacing of the same material once
it has been stressed. Any difference in the two distances will dictate the strain present
in the material, which in turn can be used to find the residual stress.

A diagram of the actual orientation of the x-ray source, x-ray detector and the
specimen is shown in Figure[4.22] The 6 angle determines from which crystallographic
plane the measurements are made. Varying ® allows measurements to be made along
different directions in the sample. In a polycrystalline material, ¢ and y can be
altered to expose different grains while still measuring from the same set of planes,
as shown in Figure [£.23] ¢ is measured from the normal of the specimen face to the

bisector of the angle between the incident x-ray and the reflected x-ray.
4.5.2 Experimental Procedure

X-ray diffraction residual stress measurements were made on four 3.962 mm x 30
mm x 30 mm specimens of Inconel 718 cut under the conditions given in Table [4.1]
All experiments were conducted on a MAC Science X-Ray Diffractometer with an

18 kW rotating anode generator, Scintag PTS goniometer and parallel beam optics
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Figure 4.22: Orientation of x-ray source, x-ray detector and the specimen to be
measured by x-ray diffraction

to eliminate sample surface displacement errors. The “i)-goniometer geometry” was
employed, and in all experiments x was fixed at 0°. The specimen was not oscillated
and copper radiation of wavelength 1.54059 A was used. The current was 200 mA
and the voltage was 40 kV in all experiments.

The first step was to conduct a 6-26 scan for phase identification. The non-
wire-EDM cut face of the Sample 1 was observed at 20 varying between 10° and
154.9° at 0.02° per step, and 1° per minute. The results, shown in Figure [4.24]
revealed several peaks. Two peaks at the highest 20 values were selected for further
analysis to maximize strain measurement sensitivity. These peaks were identified and
corresponded to the (331) and (420) planes (in Miller indices) which correspond to
260 angles of 137.7° and 146.2°, respectively.

The next step was to determine the unstressed lattice spacing of the two planes.

This was accomplished by scanning the surface of the un-machined face of Sample 1,
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Figure 4.23: Varying ¢ exposes a different subset of grains to x-ray diffraction [7]
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Figure 4.24: 0-20 scan for Inconel 718, 138° and 146° peaks were further examined
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Table 4.2: Scan Table for (331) plane, repeated with 26 varying from 134° to 142°

at 0.02° per step
¢ [°] Nominal 20 7] 0[] ¢ [7] QF[]

0.0 137.5 68.8 -55.0 13.8
0.0 137.5 68.8 -45.2 23.6
0.0 137.5 68.8 -354 334
0.0 137.5 68.8 -24.2 44.6
0.0 137.5 68.8 0.0 68.8
0.0 137.5 68.8 242 93.0
0.0 137.5 68.8 354 104.2
0.0 137.5 68.8 45.2 114.0
0.0 137.5 68.8 55.0 123.8
90.0 137.5 68.8 -55.0 13.8
90.0 137.5 68.8 -45.2 23.6
90.0 137.5 68.8 -354 33.4
90.0 137.5 68.8 -24.2 44.6
90.0 137.5 68.8 0.0 68.8
90.0 137.5 68.8 242 93.0
90.0 137.5 68.8 354 104.2
90.0 137.5 68.8 45.2 114.0
90.0 137.5 68.8 55.0 123.8

assumed to be representative of the virgin, non-wire-EDM cut surface. These, and
all subsequent scans were conducted according to the scan tables given in Tables
and . For the (331) plane, scans were conducted at 26 values ranging from 134°
to 142° in 0.02° per step increments. In the (420) plane, scans were conducted at
260 values ranging from 144° to 150° in 0.02° per step increments. The scan rate was
always 14 seconds per step or slower. A measurement of both planes required around
20 hours. Since the machine was running overnight, the scan rate was adjusted to
maximize time usage. The data from each scan can be found in Appendix D.

Once the unstressed lattice spacing was found, the residual stresses on the wire-
EDM cut surface could be determined. Scans of the (331) and (420) planes were
made on the wire-EDM cut surface of each of the four samples according to the
aforementioned scan tables. The depth of penetration of the x-rays was between

4 and 11 pm, meaning the x-ray diffraction measurements were averaged over this
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Table 4.3: Scan Table for (420) plane, repeated with 26 varying from 142° to 151°

at 0.02° per step
¢ [°] Nominal 20 7] 0[] [ QF[]

0.0 1464 73.2 -55.0 18.2
0.0 1464 73.2 -45.2 28.0
0.0 1464 73.2 -354 37.8
0.0 1464 73.2 -24.2 49.0
0.0 146.4 73.2 0.0 73.2
0.0 146.4 73.2 242 974
0.0 1464 73.2 354 108.6
0.0 1464 73.2 452 1184
0.0 1464 73.2 55.0 128.2
90.0 146.4 73.2 -55.0 18.2
90.0 146.4 73.2 -45.2 28.0
90.0 146.4 73.2 -354 378
90.0 146.4 73.2 -24.2 49.0
90.0 146.4 73.2 0.0 73.2
90.0 146.4 73.2 242 974
90.0 146.4 73.2 354 108.6
90.0 146.4 73.2 452 1184
90.0 146.4 73.2 55.0 128.2

region. Three replicates of the measurements were made on Sample 2 in order to
estimate the standard deviation in the measurements based on plane and ®. It was
assumed that each sample demonstrated the same variance.

Lastly, Sample 4 was selected for further study to quantify the residual stress as a
function of depth into the wire-EDM cut surface since it contained the thickest recast
layer and would represent the worst case. To accomplish this, material removal was
necessary. The sample was lightly ground with wet P4000 grit silicon carbide sand
paper on one of the wire-EDM cut surfaces. Residual stress measurements were made
after 9 pm were removed, and again after a total of 26 ym were removed. Although
mechanical removal of material will necessarily alter the stress state, the significance

of this effect can be estimated with subsequent analysis.
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4.5.3 Results

The method of determining the unstressed lattice spacing, dy, is given by Hauk et al.

[81]. Assuming a biaxial stress state, dy can be determined by Equation ,

siny* = (1:/% (1 + %) (4.2)

where where m; and my are the slopes of the d vs. siny plot at ®=0° and ®=90°,
respectively. These plots are shown for the (331) plane in Figures and . The
sin?¢)* term can be used to determine the 1 value for which the strain is zero. In turn,
dy can be found from the d vs. sin?y) at ®=0° line. Unstressed lattice spacings of
0.8255 A and 0.8048 A for the (331) and (420) planes, respectively, were determined.

Next, the Xpert Stress software version 1.1a from PANalytical was used to cal-
culate residual stresses from the x-ray diffraction data. The uni-axial sin*y) method

was used. The stress tensor was given by Equation [,

dey — d, 1+v . v
N/do 0 _ Z oq1sin?y — EO'H (4.3)

and was evaluated separately for both ®=0° and ®=90° from the slopes of the sin?1

plots. Consequently, the relationship shown in Equation [4.4

mq)E

D) 4

011

where mg is the slope of the d vs. siny plot can be derived. For these calculations
a modulus of elasticity of 205 GPa and a Poisson’s ratio of 0.3 were assumed.

The residual stresses for each specimen, plane and ¢ angle are given in Table [1.4]
At ¢=0°, the stress was in the direction of table feed, and at $=90° the stress was
parallel to the axis of the wire electrode, as explained in Figure [£.27 The results of

each scan table can be seen in Appendix D. Notice that every stress measurement is
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Figure 4.25: d [A] vs. sin®y at ®=0° for determination of the unstressed lattice
spacing of the (331) plane
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Figure 4.26: d [A] vs. sin®) at ®=90° for determination of the unstressed lattice
spacing of the (331) plane
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Table 4.4: Residual stress [MPa] measurements of wire-EDM cut surfaces

Sample Plane ¢ [°] | Stress [MPa]
Sample 1~ (331) O 453
(331) 90 | 302
(420) 0 | 478
(420) 90 | 407
Sample 2 (331) 0 272
(331) 90 | 209
(420) 0 | 483
(420) 90 | 277
Sample 2 (331) O 249
(repeated) (331) 90 | 192
(420) 0 | 428
(420) 90 | 269
Sample 2 (331) 0 202
(repeated) (331) 90 | 220
(420) 0 | 345
(420) 90 | 250
Sample 3 (331) 0 236
(331) 90 | 268
(420) 0 | 475
(420) 90 | 392
Sample 4 (331) 0 195
(331) 90 | 227
(420) 0 | 168
(420) 90 | 281

positive, indicating that the surface of the wire-EDM cut face is in tension. This is
in accordance with what others have reported [82] [83].

To estimate the error in the residual stress measurements, the standard deviation
of the 3 replicates conducted for Sample 2 was found. These are listed in Table [4.5
Note that the variance of the stress in the ¢=0° direction is much greater than in the
¢»=90° direction. This is due to the orientation and shape of the samples. At ¢p=0°,
the direction of table feed, x-rays are able to reflect off of large portions of the width
of the sample, but with fewer x-rays given the 0.5x10 mm (wxh) beam. However,
at »=90°, the direction of the wire electrode axis, a smaller amount of material was

examined with more x-rays.

73



Wire Electrode

™~

Workpiece
/
— 1
4
Table Feed Stress in ®=0°

Stress in ®=90°

Y

Figure 4.27: Orientation of stress measurements at ¢=0° and ¢=90°

Table 4.5: Standard deviation [MPa] of residual stress measurements from Sample
2

Std. Dev. Of Stress [Mpa]
Plane P=0° | »=90°
(331) | £36 | +14
(420) | £69 | +14
Average | £53 | £14
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For the following analysis, the stresses from the (331) and (420) planes were
averaged to represent the values for the entire specimen. The residual stresses in
the directions of table feed (¢=0°) and wire electrode axis (¢=90°) are plotted versus
energy per spark in Figure [4.28 Assuming the influence of wire diameter is negligible
overall, it appears that as energy per spark increases, the magnitude of the residual
stresses decrease. This can be explained by considering that these residual stresses
are largely generated due to thermal gradients during cooling of the recast layer.
As the recast layer resolidifies and its temperature drops downs to that of the bulk
workpiece, its contraction is opposed by the bulk workpiece. This results in the wire-
EDM cut surface exhibiting tensile residual stresses and the bulk workpiece exhibiting
compressive residual stresses. Since the temperatures present during machining would
be relatively similar, regardless of energy per spark, the same thermal gradients would
be present. Consequently, the same forces due to the thermal contraction of the recast
layer would also be present. When a larger energy per spark is used, the recast layer
is thicker, and this force would be distributed over a larger region, thus lowering the
magnitude of the tensile residual stress.

It is also seen from Figure that the stresses oriented in the direction of ta-
ble feed are generally higher than in the direction of the wire-electrode axis. One
possible explanation for this phenomenon can be understood by considering the fol-
lowing simplified analysis. Consider the situation shown in Figure 4.29, The dotted
lines indicate the element of melted and resolidifying workpiece material at any in-
stantaneous moment during machining. This idealized element takes the form of an
extruded semi-circle. The heat contained within this element will dissipate in all di-
rections. It will conduct to the workpiece, and it will convect to the dielectric. It is
possible that the relative magnitudes of the heat flow rates through these two modes
differ significantly. Consider that this element is much taller than it is wide. Further,

as energy per spark increases, the proportions of the heated element will change, as
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Figure 4.28: Residual stress [MPa] versus energy per spark [mJ]in the directions of
table feed and wire electrode axis

seen in Figure Additionally, the shape of the workpiece could also have an effect
as it is much wider than it is tall. The combination of these factors may contribute
to the differences in residual stress observed in Figure [4.28]

The residual stresses versus wire diameter are displayed in Figure [£.31] At the
smaller wire diameter (and lower energy per spark) the stresses are greater in the
table feed direction than in the wire-electrode axis direction. However, at the larger
wire diameter (and higher energy per spark) the stresses in the two directions are not
significantly different from one another. This effect is likely caused by the differences
in energy per spark, as discussed previously, rather than effects from the diameter of

the wire electrode.
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Figure 4.29: Diagram showing simplified analysis of heat flow from resolidified zone
during wire-EDM with a small energy per spark
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during wire-EDM with a large energy per spark
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Figure 4.31: Residual stress [MPa] versus wire diameter [pum] in the directions of
table feed and wire electrode axis
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From the measurements made after material was removed from the surface of
Sample 4, the changes in residual stress as a function of depth into the workpiece
were analyzed. By applying the same techniques described earlier, the residual stress
at the three stages of material removal are given in Table [£.6, With 26 pm of ma-
terial removed from the wire-EDM cut surface, the residual stresses have switched
from tensile to compressive. However, the material removal process itself may induce
compressive stresses, thus clouding the data. To check this effect the peak widths
from the various planes appearing in the 6-260 scans were compared. Peak broadening
indicates that significant polishing damage has been introduced, typically resulting in
compressive stresses [84]. For each of the stages of material removal, the full width at
half maximums (FWHM) were compared. These data are given in Appendix D, and
plotted in Figure [4.32] Comparison of the FWHM for each 26 peak shows a majority
are within 15% of the value prior to material removal. This was not the case for the
(331) plane (26 value of 137°, peak 6), however, the residual stress was close to that
of the (420) plane. Consequently, it was assumed that the hand polishing material
removal process did not introduce significant compressive residual stresses.

The residual stress as a function of depth into the wire-EDM cut surface is shown
in Figure [£.33] Again, the stresses of (331) and (420) planes have been averaged.
The stress shows a clear trend of tensile residual stress transitioning to compressive
residual stress in the vicinity of between 15 and 20 pm into the workpiece. In the orig-
inal surface scan, the residual stress in direction of the wire-electrode axis appeared
greater than in the table feed direction. However, after material has been removed,

no significant difference in residual stress in the two directions can be observed.
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Table 4.6: Residual stress [MPa] measurements of Sample 4 as a function of depth
[pm] into the wire-EDM machined surface
Material Removed [pm] Plane ¢ [°] | Stress [MPa]
0 331 0 195

331 90 227

420 0 168

420 90 281
9 3310 155

331 90 152

420 0 216

420 90 198

26 331 0 -173
331 90 -258
420 0 -197
420 90 -205
26 331 0 -138
(repeated) 331 90 | -240
420 0 -209

420 90 -190

25
+ 0 ym Removed 7,,
= 9 um Removed
A 26 pm Removed
2 []
AA
6
A
E 15 5
-
=
X 3
S * 4
TS 1 = -
*
2
a 2 a *
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1 a
[}
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Figure 4.32: FWHM [°] of peaks plotted by 26 [°] and material removal
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4.6 Nano-Indentation Hardness Testing

4.6.1 Overview

The final material characterization undertaken was nano-indentation hardness testing.
In hardness testing, an indenter of known geometry is applied with a known load to
a test specimen for a known amount of time. From the amount of displacement, both
the hardness and elastic modulus can be calculated. The hardness scale is dictated
by the shape of the indenter and the applied load, so comparisons from one hardness
scale to another are not exact. Nano-indentation hardness testing is often used to
measure the properties of films as thin as a few nanometers [85]. The recast layer
observed in wire-EDM of Inconel 718 is on average five to ten microns in thickness,
and thus nano-indentation testing is necessary to quantify the changes in its hardness.

A typical load-displacement curve for an indentation test is shown in Figure [4.34]
The unloading curve differs from the loading curve due to plastic deformation of the
specimen. The slope of the unloading curve, S, is the stiffness. Two calculations
frequently made from a load-displacement curve are the reduced modulus and the

hardness. The reduced modulus is described by Equation

1 s
hols T ws

where A is the calibrated area function of the tip relating the projected contact area
to the contact depth. The reduced modulus includes contributions from both the

specimen and the indenter. These contributions are related by Equation [4.6]

1 <1 - 1/2> (1 - 1/2>
ET E specimen E indenter

where E and v are the elastic modulus and Poisson’s ratio of the specimen and the

indenter respectively. The hardness is defined by Equation [4.7]
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Figure 4.34: Typical load-displacement curve generated in an indentation test [§]

(4.7)

where P, is the maximum indentation force and A is the area function for the

projected contact area at Py,q, [S0].
4.6.2 Experimental Procedure

Four specimens of Inconel 718 to be examined were cut at the same conditions as

were studied in the surface roughness measurements and under x-ray diffraction.
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Figure 4.35: Cross-section of mounted 12° taper sections for nano-indentation mea-
surements

Their cutting conditions are shown in Table 4.1, A 12° taper section was cut, just as
in the EPMA. A cross-section of the mounted sample is shown in Figure [4.35] The
recast layer will appear cosecant 12°, or 4.81 times thicker. The samples were nickel
plated, mounted in epoxy and prepared in the manner described in Table [3.5] Care
was taken, as a flat, smooth, scratch free surface is essential in obtaining good results
in nano-indentation.

All of the experiments described here were conducted on a Hysitron TriboIndenter,
displayed in Figure 4 with a 10mN load cell. The indents were made with a
Berkovich tip, shown in Figure 4, with an included angle of 142.3° and a radius
of curvature of between 100 and 200 nm. Every test was conducted with the load
function given in Figure [£.37 The load was linearly applied for 10 seconds up to
2,500 pN, held for 5 seconds, and linearly unloaded over 10 seconds.

If the indent landed on a scratch, inclusion, grain boundary or other uneven
surface, the load displacement curve did not appear normal. Examples of a good
indent and a bad indent are shown in Figure Bad indents were identified from

an unusual load displacement curve, or from an image of the indented surface. The
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(a) TriboIndenter (b) Berkovich tip

Figure 4.36: Hysitron TriboIndenter nano-indentor[9] and Berkovich indenter[9]

TriboIndenter is capable of an imaging technique known as scanning probe microscopy
(SPM) in which the intender tip is scanned across the specimen surface in a raster
pattern. The height of the tip is controlled by a force feedback loop. SPM is able
to generate images of both the topography and gradient of an indented region on a
specimen surface, as shown in Figure [4.39] The bad indent, located near the center

of the image, is clearly evident.
4.6.3 Results
Although each sample was cut from the same original piece of material, the bulk

properties of each sample were measured. Fifteen indents were made into the bulk,
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Figure 4.37: Load function for nano-indentation hardness tests

and the results are shown in Figures and [£.41] As expected, there are no signif-
icant differences between samples. The average bulk reduced modulus is 195 GPA,
which is near the quoted material value of 200 GPa for Inconel 718. The average bulk
hardness was 6.62 GPa, although this value cannot be directly compared with the
quoted bulk macro-hardness value of 95 HRg. The data for each indent is available
in Appendix E.

To examine the impact of the wire-EDM process on the samples, elastic modulus
and hardness profile as a function of depth into the surface were generated, and can
be seen in Figures and [£.43] respectively. Note that the depth, or distance from
edge values on the x-axis of each plot are in terms of the tapered section. The edge is
defined as the interface between the recast material and the nickel plated layer. Data

from indents nearer than 5 ym to the edge would include contributions from the nickel
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Figure 4.38: Load-displacement curves demonstrating a good and a bad indent
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Figure 4.39: Sample images from Sample 4 of specimen topography and gradient
made using SPM, notice the difference between the good indents and the bad indent
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Figure 4.40: Sample to sample bulk hardness [GPa] nano-indentation tests
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Figure 4.41: Sample to sample bulk reduced modulus [GPa] nano-indentation tests

and the mounting epoxy and consequently were not included in the analysis. Some
degree of dispersion in the data is evident since nano-indentation hardness testing
is very sensitive to any surface flaws, and further, the true nano-properties can vary
from grain to grain. Consequently, a large number of indents were necessary. Between
140 and 200 indents were made on each sample, not counting any bad data points
which were removed.

From Figure [4.42|it can be seen that every indent indicates a lower reduced mod-
ulus than that of the bulk. The average bulk reduced modulus, and average recast

layer thicknesses are shown on the plot. It appears that Samples 3 and 4 demonstrate
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a distinctly higher reduced modulus than Samples 1 and 2. The linear trend line for
each sample is plotted, and each exhibits an increasing trend as the distance from
the edge of the sample increases. This indicates that the recast and sub-layers are
reduced in elastic modulus by wire-EDM. The hardness, shown in Figure dis-
plays a similar trend. Again, the bulk hardness and average recast layer thicknesses
are indicated. The hardness of each sample possesses an increasing linear trend with
distance from the edge; however, the large difference between Samples 1 and 2 and
Samples 3 and 4 is not as apparent in this case. This analysis suggests that the
wire-EDM process tends to soften the machined surface below the hardness of the
bulk material.

To more thoroughly examine the properties of the recast layer itself, the data
was analyzed by only considering the indents made within the average recast layer
thickness of each material. A box plot of the reduced modulus within the recast layer
of each sample and the bulk workpiece is shown in Figure [£.44] This type of graph
conveys a description of the distribution of the data by displaying the range as a
line, and a box from the first to the third quartile. The horizontal line through the
box represents the second quartile, or median and a star represents an outlier. This
figure clearly conveys that the recast layer in Samples 1 and 2 has a lower reduced
modulus than Sample 3 and 4, and that all four recast layers have a lower modulus
than the bulk. Samples 1 and 2 were cut on the wire-EDM with a 100 ym diameter
wire, while Samples 3 and 4 were produced with a 250 ym diameter wire. The wire
diameter factor has not been identified as having a significant effect on recast layer
thickness or residual stress, although it does have a slight effect on surface roughness.
It is unknown why it has such a pronounced effect on the reduced modulus.

A box plot of the hardness in the recast layer of each sample and the bulk work-
piece is displayed in Figure While the recast layer hardness values are more

clustered together, all four are less than in the bulk workpiece material. It has been
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Figure 4.44: The reduced modulus [GPa] in the recast layer versus the bulk material

reported that a dielectric exhibiting high conductivity can lead to electrolysis which
may soften the wire-EDM cut surface [31]. However, to preclude this possibility, the
conductivity of the dielectric was maintained at a reasonable level throughout the
experimentation performed in this thesis. The drop in hardness could be due in part
the metallurgical changes in the recast layer uncovered in EPMA. The depletion of
chrome, nickel and molybdenum and the addition of copper and zinc would conceiv-
ably lower the hardness of the recast layer. Additionally, it is well established that
tensile residual stresses can lower the measured hardness of a material [87]. To ex-
amine this possibility, hardness in the recast layer has been plotted against surface
residual stress in the table feed direction in Figure Note that as the tensile

residual stress increases in magnitude, the hardness value decreases. This effect has
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Figure 4.45: The hardness [GPa] in the recast layer versus the bulk material

also been documented when using a Berkovich tip in nano-indentation hardness test-
ing. By decreasing the slope of the initial loading curve, tensile residual stresses tend
to increase the total indentation depth. Consider a small element of material directly
below the indenter tip. The presence of tensile residual stresses will increase the
maximum shear stress in this element. A greater shear stress will therefore lead to a
greater amount of plastic deformation and a larger indentation depth. For a constant
load, a deeper indent results in a lower hardness measurement [88].

It can be concluded that, for the range of process parameters examined here, the
recast layer formed during wire-EDM of annealed Inconel 718 is lower in both elastic
modulus and hardness than the bulk material. However, these findings are in contrast
to what has been reported for wire-EDM of solution treated and aged Inconel 718

[51, B7]. A direct comparison from the current findings to these two reported cases
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Figure 4.46: The hardness [GPa] in the recast layer versus residual stress [MPa] in
the table feed direction

may be a dubious one since machining parameters were not reported in the earlier
studies and different microstructures are undoubtably present after heat treatment.

More experimentation must be conducted for this discrepancy to be further explained.

4.7 Summary

In this chapter the recast layer formed during wire-EDM of Inconel 718 was studied
using several different methods. SEM photographs revealed that the wire-EDM cut
surface was covered in pits and craters. A white-light interferometer was utilized to
study the surface roughness. It was found that the RMS surface roughness increases
mainly with increases in energy per spark, and to a much lesser extent with a larger
wire diameter. Electron probe microanalysis revealed that copper and zinc from the
wire electrode had migrated and alloyed with the recast layer. Additionally, some
degree of chrome depletion was present. X-ray diffraction measurements showed the
in-plane surface residual stresses to be tensile, and to decrease with increasing energy
per spark. The difference in stress magnitude in the table feed direction and the wire-

electrode axis direction was discussed. The tensile stresses were found to transition to
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compressive residual stresses at a depth between 15 and 20 pm into the cut surface.
Lastly, nano-indentation hardness testing showed that the recast layer exhibited a
lower modulus of elasticity as well as a lower hardness when compared with the bulk

material.
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CHAPTER V

RECAST LAYER REMOVAL

5.1 Goal €& Approach

This chapter seeks to further investigate post-processing techniques for removal of
wire-EDM induced recast layer in Inconel 718. The goal is not to completely develop
a new method, but to apply existing methods to the particular situation examined
in this thesis. Further, since it is assumed that recast layer removal is possible by
utilizing numerous well known methods, a simple, low cost solution will be sought. In
doing so, brief experimentation will be carried out, and from evaluation of the results

recommendations will be made.

5.2 Selection of Post-Processing Technique

Numerous post-processing techniques were examined in Chapter II. In order to select
one for further exploration, some aspects of each will be considered. Abrasive flow
machining (AFM) is a capable and flexible process which is often used for recast layer
removal. However, it requires large capital investment and a moderate amount of part
handling. Abrasive micro-blasting is quick process; but, the effect on part dimensional
accuracy is questionable. Internal features that cannot reached by the stream of
abrasives may only experience a limited benefit from this method. Part handling
would also be an issue. Electrochemical processes offer a possible solution. However,
the various chemicals required for this process may present a problem for a shop
not equipped for chemical handling, storage and disposal. Combined electrochemical
EDM processes are still limited to the academic realm. Although environmental

concerns are present with any of the methods discussed, they are particularly salient
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to electrochemical processing. Loose abrasive media finishing is a well established,
traditional finishing technique. Several types are practiced. While material removal
rates are lower than what can be achieved with other processes, parts can be mass
finished. Capital investment can range from small to large, depending on the scale.
The range of internal feature surfaces which can be finished is dependent on the
abrasive size and shape. Shot peening can improve the surface integrity of EDM cut

surface. However, it is only a cold working process, and thus recast material is not

removed.
Table 5.1: Summary of post-processing techniques
Proven for
Recast
Process Layer Removal Positive Aspects Negative Aspects
Abrasive flow machining  Yes Established, Expensive,
Controllable, Part handling
Internal finishing
Abrasive micro-blasting Yes Quick, Uncontrolled,
Inexpensive, Part handling,
Geometry
limitations
Electrochemical processes Yes Proven Chemicals,
Environmental
Loose abrasive media No Well established, Slow
Mass finishing
Shot Peening No Established No material
removal

Table [5.1] summarizes the aspects of each type of post-processing. Each method
required some amount of consumables. It was decided that loose abrasive media finish
would be selected for further exploration for the following reasons: it is a common
well-known process; it is a material removal process although it has not been reported
in literature as a recast layer removal tool; small machines are inexpensive; it is a mass
finishing process. Of the three loose media finishing processes, vibratory finishing was
selected because it finishes faster than than barrel tumbling, and the equipment costs

an order of magnitude less than centrifugal finishing equipment [5].
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5.3 Vaibratory Tumbling

After hand deburring, vibratory tumbling is the most popular mass finishing tech-
nique. There are two types of vibratory tumbling: tub and bowl. In tub-type vi-
bratory finishing, the parts and media are placed in a open tub mounted on springs.
In bowl-type, the parts and media are placed in a toroidal bowl, also mounted on
springs. In either type, an eccentric weight on a motor shaft causes the vibrations
[5]. In practice the selection of which type of vibratory tumbler to use should be
based on part geometry. Smaller parts are more efficiently processed in a bowl-type
tumbler while large, bulky or long parts dictate a tub-type vibratory tumbler [89].
Most smaller, less expensive vibratory tumblers are of the bowl-type. Consequently,
the bowl-type was selected for these experiments. The motion of parts and media
inside a bowl-type vibratory tumbler is shown in Figure [5.1 It can be seen that the

parts and media are continually moving about the bowl, ensuring an even finish.

5.4 Exzperimental Procedure
5.4.1 Experimental Set-Up

To test the use of vibratory tumbling as a finishing process for removal of wire-EDM
recast layer, a small bowl-type vibratory tumbler was purchased. The particular
model selected was the Ultra-Vibe 18 “Thumbler’s Tumbler” from True-Square Metal
Products. It has a polyelthelene bowl with a 5.7 liter capacity. Two small experiments
were designed to evaluate recast layer removal for parts cut with either the 100 ym

or the 250 pm diameter wire.
5.4.2 250 ym Wire Samples

The first test with the vibratory tumbler was to observe the finishing of a part cut
with the 250 pym diameter wire. Ten 25.4 mm by 25.4 mm samples were cut from

the same 3.962 mm thick sheet of Inconel 718 used in Chapter III. Each was cut
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Figure 5.1: Motion of parts and media in bowl-type vibratory tumbler [5]

with the machine setting found to impart the greatest average recast layer thickness
(table feed rate: 1.969 mm/min, spark cycle: 28 us, spark energy: 12). These settings
were found to result in a average recast layer 8.51 pm in thickness. More detailed
information regarding these settings can be found in Table [3.6]

The abrasive media chosen for these tests were preformed ceramic media contain-
ing aluminum oxide. Coarse 22° ended cylinders, Figure [5.3] and [5.4] were chosen
because they are both relatively small and are commonly used in industry. In addi-
tion, 90 ml of liquid cleaner and rust inhibitor were diluted in 3.8 liters of tap water
for use with the media.

The specimens were placed in the vibratory tumbler, along with approximately 1.6

liters (4.5 kgs) of abrasive media and 260 ml of diluted cleaner. The length and width

99



Figure 5.2: Ultra-Vibe 18 bowl-type vibratory tumbler

Y
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Figure 5.3: Coarse 22° ended cylinder preformed abrasive vibratory tumbling media
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Figure 5.4: Photograph of coarse 22° ended cylinder preformed ceramic abrasive
vibratory tumbling media

of the specimens were initially checked with a micrometer, and periodically afterward.
The average material removal is shown in Figure 5.5 and the raw data collected is
given in Appendix F. It can be seen that the cutting rate drops immediately off in
a dramatic fashion. In total, 26 um were removed from the width. Thus, 13 pum
were removed from each side, which is greater than the recast layer thickness of 8.51
pm. However, these values are average values and to see the actual extent to which
the recast layer was removed the specimen must be observed through metallography.
Note that at the conclusion of the experiment, all of the abrasive media were replaced
to check that the media had not worn. Several of the samples were tumbled for an
additional hour with the new media, but no measurable material was removed. This

indicates that the severe decrease in rate of dimensional change in the specimens was
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not due to the media having dulled or glazed. Since the wire-EDM surface is rough
and cratered, it is suspected that the part dimensions changed rapidly as the surface
peaks were removed, leaving a flatter surface behind. The overal material removal

rate may not have decreased as rapidly as Figure |5.5| would indicate.
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Figure 5.5: Average change in specimen size [um] for parts cut with 250 ym diameter
wire

A specimen was cut from one of the tumbled samples, and was prepared metal-
lographically as described in Chapter III. An example micrograph of this specimen
is shown in Figure [5.6, Recast material is still evident between the sample and the
nickel plated layer. Notice how smooth and even the surface is compared to an un-
tumbled sample cut generated under the same wire-EDM parameters, as shown in
Figure [5.7] Surface roughness measurements of the manner described in Section
were conducted on the wire-EDM cut and vibratory tumbled surface of the original
sample. These were found to exhibit an RMS surface roughness of 1.34 ym. This rep-
resents an improvement from the untumbled samples, which yielded an RMS surface
roughness of 3.42 ym. The data from these measurements are given in Appendix C.
The average recast layer thickness of the tumbled sample is 4.46 pm with a standard

deviation of 0.68 pym. Thus the for the given cutting conditions, nearly half of the
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recast layer material was removed and the surface roughness was clearly improved.
Although this experiment was only partially successful, refinement of the vibratory
tumbling parameters may enable the complete removal of the wire-EDM imparted
recast material. All of the recast layer thickness measurements in this chapter can be

found in Appendix B.

250 Wire_Sample 2 Etch — 10 micron

Figure 5.6: 1000X micrograph of etched specimen from vibratory tumbled sample
cut with 250 pm diameter wire (average recast layer thickness: 8.51 pum)

5.4.3 100 ym Wire Samples

Next, the feasibility of post-processing parts with small features was examined. The
100 pm diameter wire was used to cut the half-gears shown in Figure [5.8 on the wire-
EDM. The cuts were again made at the conditions yielding the largest average recast

layer thickness (table feed rate: 1.969 mm/min, spark cycle: 16 us, spark energy: 4).
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1056 Etched 1000X — 10 micron

Figure 5.7: 1000X micrograph of etched specimen cut with 250 pm diameter wire
before vibratory tumbling (average recast layer thickness: 4.46 pm)
The chosen part geometry will allow the effectiveness of this finishing technique on
both flat surfaces and small features to be studied. The roots of the gear teeth have
a radius of 75 pum, and thus the media used in the previous experiment will not be
adequate. To reach the entirety of the feature, a smaller abrasive was necessary. 1200
grit 99.5% pure white aluminum oxide (AL;O3) was chosen. It is the smallest grain
sized aluminum oxide generally available, with an average diameter of 3 pum. This
abrasive is typically used for making lapping compounds.

A test was first conducted with 2.2 ¢ of abrasives and 1 ¢ of diluted liquid cleaner.
It was hoped by the author that a slurry would form, however, the abrasive grains sep-
arated from the liquid to form a thick, sticky sludge. The parts and media were held

together by surface tension and did not move about in the bowl at all. Consequently,
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Figure 5.8: Profile of half-gear cut with 100 pm diameter wire

the experiment was aborted after four hours and repeated without any liquid cleaner.
Tumbling without the liquid cleaner was acceptable since Inconel 718 is resistant to
rust and oxidation. For other alloys this may not be the case and consequently some
form of rust inhibition would be necessary.

Throughout the experiments, the thickness of the half-gears was periodically
checked with a micrometer. The specimen tumbled in the media and liquid cleaner
mixture did not display any material removal. After nearly 6 days of tumbling, only
3 microns of material had been removed from the half-gear which was “dry” tumbled.
Nonetheless, the samples were metallographically prepared to quantify recast layer
removal. The half-gear which was finished in the aluminum oxide and liquid cleaner
demonstrated an average recast layer thickness of 7.4 um and a standard deviation of
2.94 pm. This represents an insignificant difference from the unfinished recast layer
thickness of 8.07 pm.

A sample micrograph of the flat side of the dry finished half-gear is shown in
Figure [5.9, while the root of a gear tooth is shown in Figure [5.10] Notice that the
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100 _Wire Sample 2 Etch —— 10 micron

Figure 5.9: Micrograph of the flat edge of the dry vibratory tumbled half-gear
(average recast layer thickness: 4.22 pm)

surface of the recast material is not as smooth as the parts finished with the much
larger preformed ceramic abrasives. However, it can still be seen that some material
was removed. In fact, the average recast layer of the flat side was measured to be 4.22
pm with a standard deviation of 0.81 pum. This does represent a significant removal
of recast layer. The average recast layer thickness at the roots of the gear teeth
was measured to be 4.39 ym with a standard deviation of 0.83 pum. Again, this is a
significant decrease in the amount of recast material. These tests were not completely
successful, but it was demonstrated that vibratory tumbling can be used to finish
wire-EDM parts by removing recast layer material. The vibratory tumbler utilized in
these experiments did not allow for adjustments to the frequency of vibrations, but

higher frequency vibrations would be required to impart enough kinetic energy to the
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ample 2 Ftch ———— 10 micron

Figure 5.10: Micrograph of the root of a gear tooth of the dry vibratory tumbled
half-gear (average recast layer thickness: 4.39 pm)

aluminum oxide grains to make material removal more feasible.

5.5 Summary

It this chapter, a simple and low cost technique for post-processing small wire-EDM
cut Inconel 718 parts was demonstrated. A survey of existing post-processing tech-
niques was taken. After examining the merits of each method, loose abrasive finishing
was selected for examination. Within this category, vibratory tumbling was deemed
the most likely method to deliver the stated goals. A small machine was purchased,
and sample parts of Inconel 718 for finishing were wire-EDM cut with two different
wire-electrode diameters.

The parts cut with the larger diameter wire electrode were tumbled with preformed
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ceramic abrasives. Although the recast layer was not entirely removed, it was reduced
in thickness by nearly 50%, and the surface roughness was markedly improved. A
half-gear was cut with the smaller diamter wire to examine vibratory tumbling for
parts with small features. Loose 1200 grit aluminum oxide was the selected abrasive
media. Again, it was found that some recast layer material was removed, however,
surface roughness did not appear to have been improved.

These experiments represent a preliminary look into a post-processing technique
for finishing of wire-EDM cut parts on improve surface integrity. The results showed
promise, but more testing is necessary to make this finishing method feasible. With
trial-and-error refinement of the process parameters, complete removal of the recast

material using this simple, low cost method seems possible.
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CHAPTER VI

CONCLUSIONS

6.1 Overview

In this thesis, recast layer formation during wire-EDM of the nickel base superalloy
Inconel 718 was examined. It is well known that wire-EDM cut parts can demonstrate
poor surface integrity, due in large part to the presence of the recast layer. This project
detailed experiments conducted to study the effects of various process parameters
on recast layer formation, different surface and mechanical characterizations of the
recast layer and preliminary investigation of post-processing techniques for recast

layer removal.

6.2 FExperimental Findings
6.2.1 Recast Layer Thickness

A set of experiments was undertaken to find the effects of various wire-EDM process
parameters on recast layer formation. A system for measuring the discharge current
and voltage signals was implemented in an attempt to avoid machine specific findings.
Four machine settings were examined: wire diameter, table feed rate, spark cycle and
spark energy. Test specimens were first nickel plated, then mounted, polished and
etched to reveal the recast layer. Average recast layer thickness measurements were

made using images from an optical microscope. The following results were obtained:
e Average recast layer thickness was generally between 5 and 10 pum

e Average recast layer thickness tended to increase with increasing spark energy

setting
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e Increases of the spark energy setting increased energy per spark, peak discharge

current, current pulse duration and open-voltage time
e Average recast layer thickness tended to decrease with increasing table feed rate
e Increases of the table feed rate increased sparking frequency

e The energy per spark appeared to be the driving factor in determining average

recast layer thickness

e The wire diameter and spark cycle (voltage-off time) settings did not display a

significant effect on average recast layer thickness
6.2.2 Characterizations

In order to fully understand the properties and effects of the recast layer, numer-
ous characterizations were undertaken. These included SEM photographs, surface
roughness measurements, EPMA, x-ray diffraction and nano-indentation hardness
testing. The wire-EDM induced recast layer of annealed Inconel 718 demonstrated

the following characteristics:
e An undulating, pitted and cratered surface morphology

e A surface roughness which increases mainly with energy per spark, and slightly

with wire diameter
e The presence of copper and zinc which has migrated from the wire electrode
e Chrome depletion near the recast layer

e Tensile in-plane surface residual stresses which decrease with increasing energy

per spark

e A transition from tensile to compressive residual stresses at a depth of between

15 and 20 pm from the wire-EDM cut surface
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e A decreased hardness and elastic modulus compared with the bulk material, in
contrast to what has been reported in literature for solution treated and aged

Inconel 718
6.2.3 Post-Processing

The post-processing technique of vibratory tumbling was examined due to the com-
bination of its performance, ease of use and cost. Brief experiments were conducted
on different Inconel 718 specimens cut with two wire diameters. Although the exper-

iments were not completely successful, the following results were found:

e Preformed ceramic abrasive media were able to remove some recast material

from flat surfaces

e Fine grain aluminum oxide media were able to remove some recast material

from small internal features

e With refinement of the process-parameters, vibratory tumbling has the poten-
tial to offer a simple and low cost finishing method for improving the surface

integrity of wire-EDM cut parts

6.3 Future Work

The author recommends the following areas of future work relating to recast layer

formation in wire-EDM of Inconel 718:

e More exhaustive experimentation should be conducted to yield greater in-processes

recast layer minimization

e Experimentation should be conducted for Inconel 718 under various heat treat-
ments, since, as the hardness characterizations demonstrated, heat treatment
can have a significant effect on the characteristics of the wire-EDM induced

recast layer
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e More in depth characterizations of the residual stress and hardness should be

made as a function of depth into the workpiece

e Vibratory tumbling process parameters should be optimized

e Experiments should be conducted with additional post-processing techniques
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APPENDIX A

EXPERIMENTAL SET-UP

A.1 Method of Data Acquisition

This section describes the method used in this thesis for measuring the discharge

current and voltage on a Brother HS-3100 wire-EDM.
A.1.1 Voltage Measurement

The method of voltage measurement is fairly straightforward. A Stack Electronics
CP-209 voltage probe was connected to a socket head cap screw on the upper head,
as shown in Figure [A.1] This location is at the same voltage potential as the wire
electrode. The ground lead was attached to a different socket head cap screw which

was directly connected to the work table, also shown in Figure

Ground
Lead

Ground
Lead

e | Voitage
(A T Probe
Measurement : Measurement | =
Lead = Lead

Figure A.1: Photograph indicating connection of voltage probe
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A.1.2 Current Measurement

The technique utilized to measure the discharge current was considerably more in-
volved. The current sensor chosen was a model 110 current monitor from Pearson
Electronics, shown in Figure[A.2] It has a usable rise time of 13 ns and is rated for a
maximum peak current of 5000 Amps. This sensor measures the net current passed

through it and outputs a proportional voltage signal.

(a) Top view (b) Front view

Figure A.2: Model 110 Pearson Current Monitor

The method given here requires access to the electrical cabinet in the back of the
wire-EDM, seen in Figure A Before opening the electrical cabinet, the hard
power switch should be turned off as shown in Figure A. Figure displays the
pulse generator of the wire-EDM. The arrows in the picture point out the twelve leads
which go from the pulse generator to the brushes which charge the wire electrode.
These wires have white labels reading 33HXX, where XX corresponds to the terminal
location where it should be connected. The twelve wires with yellow labels reading
32HXX go to ground.

In order to pass the twelve white 33HXX leads through the current sensor, it was
necessary to disconnect each of the white wires from the terminal, insert an additional

length of wire from the end of the original white wire, pass it through the current
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(a) Electrical cabinet (b) Hard power switch

Figure A.3: The hard power switch must be turned off before opening the electrical
cabinet

Figure A.4: Close-up of pulse generator, arrows denote leads going from pulse
generator to brushes

sensor and connect it back to the terminal. This is shown for the case of the 33H13
wire in Figure Once the connection had been made, the exposed metal was

wrapped in electrical tape, as seen in Figure This process was repeated for each
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of the eleven remaining leads, making sure that the current passes through the current

sensor in the same direction for each lead, as shown in Figure [A.7]

—~a 1T

GERSOILAE

PMUTB?

(a) 33H13 (b) New wire inserted

Figure A.5: A new wire is inserted so the current going through the 33H13 lead can
be measured

(a) Exposed connection (b) Insulated Connection

Figure A.6: Any exposed metal must be wrapped with electrical tape

Operation of the wire-EDM requires that the electrical cabinet doors remain open.
Consequently, the safety switch shown in Figure[A.§ must be disabled. It is imperative

that the appropriate caution be taken due to the risk of electrical shock.
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Figure A.7: All wires must be passed through the current sensor in the same direc-
tion

(a) Safety Switch (b) Warning

Figure A.8: The safety switch must be disabled to operate the wire-EDM with the
electrical cabinet open, so extreme caution must be taken
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A.1.3 Oscilloscope

Due to the high bandwidth necessary to observe the current and voltage signals, the
only system available to acquire the data was an oscilloscope. A Techtronix TDS420A
4-channel oscilloscope with a 200 MHz bandwidth was employed, and can be seen in
Figure This particular model was able to store 30,000 data points at a time. By

saving the data on a 3.5 inch floppy disk, these files could be transferred to a PC for

analysis.

Figure A.9: Techtronix TDS420A 4-channel oscilloscope
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A.2 Data Analysis

A Matlab script was written to analyze each dataset and output the average signal
parameters, as well as generate plots of the current, voltage, energy and power. The

code of the script is shown below.

1 %homas R. Newton

2 996/18/2007

4 %lhis program will take time , discharge current and discharge voltage

5 Ylata from the Brother HS-3100 Wire —-EDMand analyze it.

7 clc

s clear all

10 tic

11

12 Y%Assume "Data" is a 3 column .csv file  containing time , current and
13 % voltage.

14

15 ¥Bet directory

16 FR = 875; %.0775 ipm = 775

17 SC = 16; %6.0 us = 16

18 SE ='8";

19

20 directory = strcat( " R \Melkote \TNewton \Micro ‘Wire _[EDMResearch...

21 \Waveforms \Experiments \04 wire \New.DOE3\FR.0', num2str( FR ),
22 ' _SC.'", num2str( SC), " _SE_', num2str( SE ), "\ )

23

24 csvfile = strcat( " FR-0", num2str( FR ), ' —SC-', num2str( SC),
25 —SE-', num2str( SE ) );

26 load _data = strcat( directory, csvfile, .esv ),
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27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

data = importdata( load _data );

%set increment for plots and total

increment = 2000;

total = 30000;

%ind speed

file _char = double( csvfile );

feed _rate = char( file char( 5) );

if feed _rate == '7'

feed _rate = 0.0775; %n / min

elseif feed _rate == '8

feed _rate = 0.0875; %n / min
else
fprintf( " Unknown Feed Rate!\n'

end

YSeparate  columns

time = data( :, 1);

if abs(mean( data( :, 3 ) ))

voltage = —data( :, 3 );
current = data( :, 2 );
else
voltage = —data( :, 2 );
current = data( :, 3 );
end
%scale columns
time = (time — time(1)) +1e6;
voltage = voltage *10;
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60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

current = current *10;

%eliminate noise from current
cutoff = 6;

%urrent = current. = (abs(current )>(cutoff ));

%Analyze Current
no_pulses = 0;
pulses = 0;
end _of _pulse = 0;
for index = 1:length( current )
if end_of _pulse ==
if current( index ) > cutoff
peak _current = 0;

for index2 = index:index + 20

if index2 == total
break
end
if current( index2 ) > peak _current

peak _current = current( index2 );
peak _current _index = index2;
elseif peak _current _index < 8
break
end
if current( index2 ) < cutoff && current(
index2 + 1 ) < cutoff
start _of _pulse _index = index;
end _of _pulse _index = index2 -1,
duration _of _pulse = time( index2 -1 )— time( ..
index );

if duration _of pulse < 0.4
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91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

break

end

no_pulses = no _pulses + 1;

pulses( no _pulses, 1 ) = peak _current _index;
pulses( no _pulses, 2 ) = time(

peak _current _index);

pulses( ho _pulses, 3 ) = start _of _pulse _index;
pulses( no _pulses, 4 ) = duration _of _pulse;

pulses( no _pulses, 5 ) = end _of _pulse _index;

pulses( no _pulses, 6 ) = peak _current;
end _of _pulse = 1;
break
end
if index2 > total
break
end
end
else
current( index ) = 0;
end
elseif index > index2+1
end _of _pulse = 0;
end
end

frequency _of _pulses = no _pulses./time( length(time) ) *1e3;

%Analyze Voltage
voltage _pulses = 0;
for pulse _check = 1:no _pulses
for find _on_time = pulses( pulse _check, 3 ). -—-1:10
if pulse check > 1 && find _on_time < pulses(

pulse _check -1, 3 )
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123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

139

140

141

142

143

144

145

146

147

148

149

150

break
end
if ( voltage( find _on_time ) < 40 && voltage( find _on_time ...
— 1) < 40 && voltage( find on_time — 2 ) < 40 && voltage(
find _on_time — 3 ) < 40 && voltage( find _on_time — 4)..
< 40 && voltage( find on_time — 10) < 40) |..
find _on_time == 10
if find _on_-time < 10

on_time _start _index

]
o

else

on_time _start _index find _on_time + 1;

end

on_time = time( pulses( pulse _check, 3 ) ) — time( ...
on_time _start _index );

if on_time <0

on_time _start _index = find _on_time;

on_time = O;

end
if pulse check == 1
off _time _start _index = 1;
else
off _time _start _index = pulses( pulse _check -1, 5 );
end
off _time = time( on _time _start _index ) — time( ...

off _time _start _index );

avg _on_time _voltage = mean( voltage(

on_time _start _index:pulses( pulse _check, 3 ) ) );
avg _off _time _voltage = mean( voltage(

off _time _start _index:on _time _start _index ) );
avg _discharge _voltage = mean( voltage( pulses(

pulse _check, 3 ):pulses( pulse _check, 5) ) );

voltage _pulses( pulse _check, 1) =
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160

161

162

164

165

166

167

168

169

171

172

173

174

175

176

177

178

180

181

182

183

184

185

on_time _start _index;

voltage _pulses( pulse _check, 2 )

time( on _time _start _index );

voltage _pulses( pulse _check, 3 )

on_time;

voltage _pulses( pulse _check, 4 )

off _time;

voltage _pulses( pulse _check, 5)

avg _on_time _voltage;

voltage _pulses( pulse _check, 6 )

avg _off _time _voltage;

voltage _pulses( pulse _check, 7 )
avg _discharge _voltage;
break
end
end

end

%ind absolute  power

power = abs(current. *voltage);

o%ind energy

inst _energy = power =*( time( end )/ length(time) )/1e6;

tot _energy = inst _energy(l);

for energy _index = 2:length( inst _energy )
tot _energy( energy _index ) = tot _energy( energy
inst _energy( energy _index );

end

%ind energy per spark

spark _energy = 0;

for sparks = 1:no _pulses
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187

188

189

190

191

192

196

197

198

199

200

201

202

203

204

205

206

207

208

210

211

212

213

214

215

216

217

218

spark _energy( sparks ) = max( tot
—3:pulses( sparks, 5 )+3 ) )
sparks, 3 ) —3:pulses( sparks, 5 )+3
end

avg _spark _energy = tot

— min(

_energy( pulses( sparks, 3 )

tot _energy( pulses(

) )

_energy( end)/no _pulses;

%plot  signal

scrnsz = get(0, ' ScreenSize ');

figure( ' Nameé , [ sprintf( " Current Voltage Power & Energy...
Profiles for '), csvfile ], " NumberTitle ', " off ', 'Position ', ...

[ 0.05 =*scrnsz(3), 0.05 xscrnsz(4), 0.9
subplot(4,1,1)

plot( time, current )

xlabel( ' Time (microseconds )' )

ylabel( ' Current

(amps)’ )
subplot(4,1,2)

plot( time, voltage )

xlabel( " Time (microseconds )' )

ylabel( 'Voltage (volts )' )
subplot(4,1,3)

plot( time, power/1000 )

xlabel( ' Time (microseconds )' )
ylabel( " Power (kilowatts )' )
subplot(4,1,4)
plot( time, tot _energy )

xlabel( " Time (microseconds )' )

ylabel( ' Energy (joules )" )
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219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

filename = sprintf( ' Current , _Voltage , _Power, _& Energy '

saveas( gcf, strcat( directory, filename ), "fig '),
pause(2)

saveas( gcf, strcat( directory, filename ), "emf' );
pause(2)

close

%lot current and voltage in 100 us increments

total _adj total —increment+1;

plot _num = 0;

plot _total = floor( total/increment );

);

for dx=1:increment:total _adj
plot _num = plot _num + 1;
scrnsz = get(0, ' ScreenSize ');
figure( 'Nameé, [ 'Current & Voltage Profiles " csvfile sprintf(
", Part %10f /%1.0f ', plot _num, plot _total ) ], " NumberTitle
"off ', 'Position ', [ 0.05 =*scrnsz(3), 0.05 *scrnsz(4),
0.9 *scrnsz(3), 0.85 xscnsz(4) 1 )
subplot(2,1,1)
plot( time(dx:dx+increment —1), current(dx:dx+increment -1))
axis( [dx/10, (dx+increment)/10, —50, 250 1)
xlabel( " Time (microseconds )' )
ylabel( "Current  (amps)' )
title( [ " Current  Profile for ' csvfile sprintf( ', Part...
%210f /%21.0f ', plot _num, plot _total ) ])

%pulse  number

for check _pulse = 1: no _pulses
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260

261

262

263

264

265

267

268

269

270

271

272

274

275

276

277

278

279

280

281

282

if pulses( check _pulse, 1 ). *( pulses( check _pulse, 1) >dx...

& pulses( check _pulse, 1 ) <dx+increment —1)
text( pulses( check _pulse,2), pulses( check
+10, sprintf( " %1f ', check _pulse ) )

end

end

subplot(2,1,2)

plot( time(dx:dx+increment —1), voltage(dx:dx+increment
axis( [dx/10, (dx+increment)/10, —150, 150 1)
xlabel( ' Time (microseconds )' )

ylabel( 'Voltage (volts )' )
title( [ ' Voltage  Profile for ' csvfile sprintf(

%210f /%1.0f ', plot _num, plot _total ) ])

%show on time
for check _pulse = 1: no _pulses
avg _on_time _index = round( 0.5. *( pulses( check

+ voltage _pulses( check _pulse, 1) ) );

if (pulses( check _pulse, 3 ) > dx & pulses( check

_pulse,6)

-1))

Part...

_pulse, 3 )

_pulse, 3

) <dx+increment -—1) | (voltage _pulses( check _pulse, 1) > dx...

& voltage _pulses( check _pulse, 1 ) <dx+increment -—1)

if voltage _pulses( pulse _check, 1) > dx

patch( [ pulses( check _pulse, 3 ), pulses(

check _pulse, 3 ), voltage _pulses( check

_pulse, 1)

, voltage _pulses( check _pulse, 1) /10, [ O,

voltage _pulses( check _pulse,5), voltage
check _pulse,5),0 ], "y', ' FaceAlpha
' EdgeAlpha ', 0.15 )

else

patch( [ pulses( check _pulse, 3 ), pulses(

check _pulse, 3 ), 0, 0 }J/10, [ 0O, voltage
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283

284

285

286

287

288

290

291

292

293

294

295

296

297

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

check _pulse,5), voltage
01 'y, 'FaceAlpha ', 0.15,

end

if voltage _pulses( check _pulse, 3 )
if time( avg _on_time _index ) —
( check _pulse, 3 ) < time( dx )

text( time( dx )+ 2, voltage

check _pulse,5)/2, sprintf(

voltage _pulses( check _pulse,

elseif  time( avg _on_time _index)
voltage _pulses( check _pulse, 3 )
increment —1 )

text( time( dx + increment )

_pulses( check _pulse,5)

' EdgeAlpha ', 0.15 )

> 8

0.25. =*voltage _pulses ...

_pulses(
" %1f us',
3)))

— 0.25. *..

> time( dx +

— 8, voltage _pulses ...

( check _pulse,5)/2, sprintf( " %L1f us',
voltage _pulses( check _pulse, 3) ) )

else
text( time( avg _on_time _index) —0.25. =*..
voltage _pulses( check _pulse, 3 ),
voltage _pulses( check _pulse,5)/2, sprintf(
"%I1f us', voltage _pulses( check _pulse, 3) ) )

end

else

text( time( avg

_on_time _index), 100, sprintf

( ' %1f wus', voltage _pulses( check _pulse, 3 ) ) )

end

end

%show discharge time
if (pulses( check _pulse, 1)

1 ) <dx+increment —1)
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> dx & pulses( check _pulse,




315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

patch( [ pulses( check _pulse, 3 ), pulses( check _pulse,

3 ), pulses( check _pulse, 5 ), pulses( check _pulse,
5 ) J10, [ O, voltage _pulses( check _pulse,7),
voltage _pulses( check _pulse,7),0 ], "r', 'FaceAlpha '

0.5, ' EdgeAlpha ', 0.5)
end

end

filename = sprintf( " Current _and _Voltage _%020f _of _%020f ', ...

plot _num, plot _total );

saveas( gcf, strcat( directory, filename ), “fig ")
pause(2)
saveas( gcf, strcat( directory, filename ), "ijpg ')
pause(2)
close
%plot power and energy
scrnsz = get(0, ' ScreenSize ');
figure( 'Namé, [ ' Power & Energy Profiles " csviile sprintf(
", Part 9%210f /%1.0f ', plot _num, plot _total ) ], " NumberTitle
"off ', '"Position ', [ 0.05 =scrnsz(3), 0.05 *scrnsz(4),
0.9 *scrnsz(3), 0.85 *scrnsz(4) 1)
subplot(2,1,1)
plot( time(dx:dx+increment —1), power(dx:dx+increment —1)/1000 )

axis( [dx/10, (dx+increment)/10, 0, max(power)/1000+3 ] )

xlabel( ' Time (microseconds )' )
ylabel( " Power (kilowatts )' )
title( [ ' Power Profile for ' csvfile sprintf( ', Part...

%210f /%1.0f ', plot _num, plot _total ) ])

%pulse number
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347

348

349

351

352

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

for check _pulse = 1: no _pulses
if pulses( check _pulse, 1 ). =*( pulses( check _pulse, 1)
& pulses( check _pulse, 1 ) <dx+increment -—1)
if pulses( check _pulse,1) > 20 && pulses(
check _pulse,1) < (length( time ) — 20)
text( pulses( check _pulse,2), max( power( pulses(
check _pulse,1) —20:pulses( check  _pulse,1)+20 ))
/1000+2, sprintf( "%1f ', check _pulse ) )
elseif  pulses( check _pulse,l) < 20
text( pulses( check _pulse,2), max( power( 1l:pulses(
check _pulse,1)+20 ))/1000+2, sprintf( " %1f ',
check _pulse ) )
elseif pulses( check _pulse,1) > (length( time ) —
text( pulses( check _pulse,2), max( power( pulses(

check _pulse,1) —20:length(time) ))/1000+2,

sprintf( " %1f ', check _pulse ) )
else
end
end
end
subplot(2,1,2)
plot( time(dx:dx+increment —1), tot _energy(dx:dx+increment

xlim( [dx/10, (dx+increment)/10] )

xlabel( ' Time (microseconds )' )

ylabel( "Energy (Joules )' )

title( [ ' Energy Profile for ' csvfile sprintf( ', Part
%210f /%21.0f ', plot _num, plot _total ) ])

Yspark energy

for check _spark = 1: no _pulses
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379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

404

405

406

407

408

409

410

if pulses( check _spark, 1 ). =( pulses( check _spark, 1)
>dx & pulses( check _spark, 1 ) <dx+increment -—1)
text( pulses( check _spark,2)+ 1, tot _energy( pulses(
check _spark,1 ) ) —.002, sprintf( "%21f mJ, ..
1000 * spark _energy( check _spark) ) )
end

end

filename = sprintf( ' Power _and _Energy _%020f _of _%020f ', ...

plot _num, plot _total );

saveas( gcf, strcat( directory, filename ), “fig ")
pause(2)

saveas( gcf, strcat( directory, filename ), "emf' );
pause(2)

close

energy _per _.inch = avg _spark _energy =*frequency _of _pulses =*60...
[feed _rate; %J/in.

%

%

end

try
delete( strcat( directory, " Summary.txt ' ) );
catch

end

diary( strcat( directory, " Summary.txt ' ) )
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411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

434

435

436

437

438

439

440

441

442

fprintf( [ " \nREPORTFOR ' ' strcat( csVfile, “An" )]

fprintf( " \nAverage peak discharge current is %30f Amps\n', ...
mean( pulses( ;, 6 ) ) )

fprintf( ' Average discharge current pulse width is %Z212f...
microseconds \n', mean( pulses( :, 4) ) )

fprintf( ' Average discharge current pulse frequency is %22f...
kHz\n', frequency _of _pulses )

fprintf( ' Average voltage on-time is %22f microseconds \n', ...
mean( voltage _pulses( :;, 3 ) ) )

fprintf( ' Average voltage off —time is %22f microseconds \n', ...
mean( voltage _pulses( :, 4 ) ) )

fprintf( ' On-time average voltage is %22f volts \n', ...

mean( voltage _pulses( :, 5) ) )

fprintf( ' Off —time average voltage is %22f wvolts \n', ...

mean( voltage _pulses( :;, 6 ) ) )

fprintf( ' Discharge average voltage is %22f volts \n', ..

mean( voltage _pulses( :, 7)) )

fprintf( " Average spark energy is 9%22f millijoules \n', ...

avg _spark _energy *1000 )

fprintf( ' Average energy per inch is %22f kJ/inch \n', ..

energy _per _inch )

fprintf( "\nPulse No. \tTime \t \tDuration \tPeak Current \tOn-Time...
\t \tOff —Time \tOn—Time Voltage \tOff —Time Voltage \tDischarge  Voltage...
\tSpark Energy \n' )
for print _index = 1:no _pulses
fprintf( ' %630f \t\t\t%32f \t\t%22f \t\t%32f \t\t\t%22f \t\t..
%22f \t\t%22f \t\t\t%22f \t\t\t\t%22f \t\t\t\t%22f \n', ..

print _index, pulses( print _index, 2 ),
pulses( print _index, 4 ), pulses( print _index, 6 ),
voltage _pulses( print _index, 3 ), voltage _pulses ...
( print _index, 4 ), voltage _pulses( print _index, 5 )
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443

444

445

446

447

448

449

end

diary off

toc

, Vvoltage

( print

_pulses( print

_index, 7 ), spark

_index, 6 ), voltage

_energy( print

_pulses ...

_index )

+1000 )
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APPENDIX B

RECAST LAYER THICKNESS

MEASUREMENTS
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Table B.1: Recast layer thickness measurements

Wire Feed Rate SC Recast Layer Avg. SD
[pm]  [mm/min] [us] SE | Thicknesses [um] [pm]  [um] CoV
100 1.969 16 4 10.82, 6.73, 9.48, 6.62, | 8.07 1.74 0.216
7.95, 6.79, 7.94
100 1.969 16 6 5.16, 4.74, 5.40 5.10 0.34 0.066
100 1.969 16 8 |6.84,6.34, 6.53 6.57 0.25 0.039
100 1.969 28 4 | 7.538,7.73,6.19 717 0.85 0.119
100 1.969 28 6 5.07, 6.20, 5.11 5.46 0.65 0.118
100 1.969 28 8 |8.02,6.84, 8.05 7.63 0.69 0.090
100 2.223 16 4 5.35, 6.27, 6.03 5.88 0.48 0.081
100 2.223 16 6 | 6.20,6.85, 6.15 6.40 0.39 0.061
100 2.223 16 8 7.15, 6.20, 7.22 6.86 0.57 0.083
100 2.223 28 4 6.01, 5.96, 6.76 6.24 0.45 0.072
100 2.223 28 6 5.81, 6.65, 6.00 6.15 044 0.072
100 2.223 28 8 7.04, 6.65, 8.86, 7.45 750 0.96 0.129
250 1.969 16 6 | 7.16, 8.42, 8.70 8.09 0.82 0.101
250  1.969 16 12 | 10.19, 7.45, 7.61, 5.67, | 8.39 247 0.295
6.98, 12.45
250  1.969 16 18 | 7.77, 8.82, 6.43, 8.17 7.80 1.01 0.129
250  1.969 28 6 7.88, 6.73, 5.85 6.82 1.02 0.149
250 1.969 28 12 | 8.48,8.75, 8.32 851 0.22 0.026
250  1.969 28 18 |6.39, 7.64, 11.07, 7.22, | 7.84 1.63 0.209
741, 7.34
250  2.223 16 6 5.78, 5.23, 6.12 5.71 0.45 0.079
250  2.223 16 12 | 7.15, 9.20, 7.64 8.00 1.07 0.134
250  2.223 16 18 | 7.18, 5.55, 7.27 6.67 0.97 0.145
250  2.223 98 6 | 7.11,4.84 557,559, | 594 079 0.132
6.38, 6.15
250  2.223 28 12 | 8.23,5.16, 7.79, 741, | 7.21 1.07 0.149
7.57, 7.12
250  2.223 28 18 | 7.45,10.04, 6.34, 859, | 7.89 1.34 0.170

8.14, 6.79

135




68T°0 €80 6% | 19°€¢ ‘097 ‘91°G i 91 696'T 00T (AIp porquuny) 100y Y007, Iedx)
Z61°0 180 TT¥| TI'¥ ‘80°¢ ‘L¥'¢ i 91 696'T 001 (L1p porqumy) ooeyImg fe[q
7680 ¥6'C  0FL | 9€¢ 2009 ‘LLOT id 91 696°T 00T (1oues[d pmbiy yiIm po[quing) s0emg yef]
€610 890 9F¥ | T8ELEY LTS el 8¢ 696'T 0S¢ 90RLING YRl
AOD  [ud]  [urd] [wrf] | AS10u7 [srf]  [urw/ww] [t uo13ay]
s say sossouPIY [, | Yredg OPAD orey  IojewWRI(]
IoAerT 1sed9Yy yredg Po9q QITAN

syuowtIadxe SurquIng AI0jeIqIA I9}Je SJUSTIDINSLIU SSOUNDIY) IoAR] 1S9y :Z'q °[qelL

136



APPENDIX C

SURFACE ROUGHNESS MEASUREMENTS

Table C.1: Surface roughness data for Sample 1 (wire diameter: 100 um, table feed
rate: 2.223 mm/min, spark cycle: 16 us, spark energy: 4)

Replicate RMS [pm]

Ra [pm]

1 2.625
2 2.713
3 2.57

2.024
2.12
2.012

Average  2.636
Std. Dev. 0.072

2.052
0.059

Table C.2: Surface roughness data for Sample 2 (wire diameter: 100 pm, table feed
rate: 1.969 mm/min, spark cycle: 28 us, spark energy: 8)

Replicate RMS [pm]

Ra [pm]

1 2.899
2 3.011
3 2.926

2.258
2.323
2.27

Average  2.945
Std. Dev. 0.058

2.284
0.035

Table C.3: Surface roughness data for Sample 3 (wire diameter: 250 um, table feed
rate: 2.223 mm/min, spark cycle: 28 us, spark energy: 6)

Replicate RMS [pm]

Ra [pm]

1 2.824
2 2.854
3 2.889

2.18
2.218
2.207

Average  2.856
Std. Dev. 0.033

2.202
0.020
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Table C.4: Surface roughness data for Sample 4 (wire diameter: 250 um, table feed
rate: 1.969 mm/min, spark cycle: 28 us, spark energy: 18)

Replicate RMS [pm]

Ra [pm]

1 3.761
2 4.506
3 4.103

2.937
3.561
3.15

Average  4.123
Std. Dev. 0.373

3.216
0.317

Table C.5: Surface roughness data for vibratory tumbled sample prior to tumbling
(wire diameter: 250 pm, table feed rate: 1.969 mm/min, spark cycle: 28 us, spark

Ra [pm]

energy: 12)
Replicate RMS [um]
1 3.427
2 3.518
3 3.328

2.731
2.762
2.601

Average  3.424
Std. Dev. 0.095

2.698
0.085

Table C.6: Surface roughness data for vibratory tumbled sample (wire diameter:
250 pm, table feed rate: 1.969 mm/min, spark cycle: 28 us, spark energy: 12)

Replicate RMS [pm]

Ra [pm]

1 1.323
2 1.374
3 1.316

0.997
1.091
1.009

Average  1.338
Std. Dev. 0.032

1.032
0.051
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APPENDIX D

DATA FROM X-RAY DIFFRACTION TESTS

D.1 Results of Scan Tables for Determination of
do
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Table D.1: Results of scan table for the (331) plane of the virgin surface of Sample
1 to find dg

0] sin®1) Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-55.25 0.675 0 | 138.1919 0.82457 2.071 2.528 0.819
-55.25 0.675 0 | 138.1842 0.824592 | 2.327 2.84 0.819
-45.44 0.508 0 | 137.9783 0.825159 | 1.929 2.354 0.819
-45.44 0.508 0 | 138.0168 0.825053 | 2.173 2.651 0.819
-35.65 0.34 0 | 137.8222 0.825592 | 1.888 2.304 0.819
-35.65 0.34 0 | 137.8539 0.825504 | 2.121 2.588 0.819
-24.43 0.171 0 | 137.7386 0.825825 | 1.682 2.053 0.819
-24.43 0.171 0 | 137.7148 0.825891 | 1.908 2.329 0.819
-0.25 0 0 | 137.5235 0.826426 | 2.37 2.893 0.819
-0.25 0 0 | 137.5671 0.826303 | 1.888 2.304 0.819
23.93 0.165 0 | 137.7518 0.825788 | 1.899 2.318 0.819
23.93 0.165 0 | 137.7284 0.825853 | 2.058 2.512 0.819
35.15 0331 0 | 137.8735 0.825449 | 2.049 2.5 0.819
35.15 0331 0 | 137.8384 0.825547 | 2.102 2.565 0.819
4494 0499 0 | 137.9264 0.825303 | 2.25 2.745 0.819
4494 0499 0 | 137.9733 0.825173 | 2.536 3.094 0.819
54.75  0.667 0 | 138.07 0.824906 | 3.068 3.744 0.819
-55.25 0.675 90 | 137.8607 0.825485 | 1.996 2.436 0.819
-55.25 0.675 90 | 137.8233 0.825589 | 2.133 2.602 0.819
-45.44 0.508 90 | 137.81 0.825626 | 2.357 2.876 0.819
-45.44 0.508 90 | 137.6788 0.825991 | 2.044 2.494 0.819
-35.65 0.34 90 | 137.7066 0.825914 | 1.941 2.369 0.819
-35.65 0.34 90 | 137.5983 0.826216 | 2.077 2.534 0.819
-24.43 0.171 90 | 137.6461 0.826083 | 2.401 2.93 0.819
-24.43 0.171 90 | 137.6784 0.825992 | 1.93 2.355 0.819
-0.25 0 90 | 137.6034 0.826202 | 2.01 2.453 0.819
-0.25 0 90 | 137.5569 0.826332 | 2.273 2.774 0.819
23.93 0.165 90 | 137.6342 0.826116 | 2.173 2.652 0.819
23.93 0.165 90 | 137.6375 0.826106 | 1.684 2.056 0.819
35.15  0.331 90 | 137.6376 0.826106 | 2.389 2915 0.819
35.15  0.331 90 | 137.7466 0.825802 | 2.178 2.658 0.819
44.94 0499 90 | 137.7877 0.825688 | 2.288 2.792 0.819
4494 0.499 90 | 137.7718 0.825732 | 2.529 3.086 0.819
54.75  0.667 90 | 137.8101 0.825626 | 2.645 3.227 0.819
54.75  0.667 90 | 137.7528 0.825785 | 2.367 2.889 0.819
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Table D.2: Results of scan table for the (420) plane of the virgin surface of Sample
1 to find do

) sin®1) Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-55.05  0.672 0 | 146.6949 0.804017 | 2.348 2.866 0.819
-55.05 0.672 0 | 146.8917 0.803605 | 2.658 3.244 0.819
-45.24 0.504 0 | 146.5167 0.804392 | 2.981 3.637 0.819
-35.45 0.336 0 | 146.3998 0.804639 | 2.362 2.883 0.819
-35.45 0.336 0 | 146.3885 0.804663 | 2.713 3.31 0.819
-24.23 0.168 0 | 146.0507 0.805384 | 2.959 3.61 0.819
-24.23 0.168 0 | 146.1662 0.805137 | 3.134 3.825 0.819
-0.05 0 0 | 145.8822 0.805746 | 2.854 3.482 0.819
-0.05 0 0 | 146.0344 0.805419 | 2.623 3.2 0.819
24.13  0.167 0 | 146.1036 0.80527 2.46 3.002 0.819
35.35 0335 0 | 146.4092 0.804619 | 2.446 2.984 0.819
35.35 0335 0 | 146.3961 0.804647 | 2.953 3.604 0.819
45.14  0.502 0 | 146.6423 0.804127 | 3.11 3.795 0.819
45.14  0.502 0 | 146.3641 0.804715 | 3.243 3.957 0.819
54.95 0.67 0 | 146.6352 0.804142 | 3.19 3.893 0.819
54.95 0.67 0 | 146.5897 0.804238 | 3.869 4.722 0.819
-55.05 0.672 90 | 146.3026 0.804846 | 2.527 3.084 0.819
-55.05 0.672 90 | 146.1808 0.805105 | 3.148 3.842 0.819
-45.24 0.504 90 | 146.1809 0.805105 | 3.144 3.837 0.819
-45.24  0.504 90 | 146.2354 0.804989 | 2.915 3.557 0.819
-35.45 0.336 90 | 146.0011 0.80549 3.281 4.004 0.819
-35.45 0.336 90 | 145.9955 0.805502 | 3.182 3.883 0.819
-24.23 0.168 90 | 146.0191 0.805452 | 2.798 3.415 0.819
-24.23 0.168 90 | 145.9194 0.805666 | 2.692 3.285 0.819
-0.05 0 90 | 145.9143 0.805677 | 2.494 3.043 0.819
-0.05 0 90 | 145.8457 0.805825 | 2.33 2.844 0.819
24.13  0.167 90 | 145.9763 0.805544 | 2.753 3.36 0.819
35.35  0.335 90 | 145.9587 0.805581 | 2.944 3.593 0.819
35.35  0.335 90 | 145.9149 0.805676 | 3.435 4.192 0.819
45.14  0.502 90 | 146.0823 0.805316 | 3.614 4.41 0.819
45.14  0.502 90 | 146.1302 0.805213 | 2.368 2.89 0.819
54.95 0.67 90 | 146.119 0.805237 | 4.027 4.915 0.819
54.95 0.67 90 | 146.1058 0.805266 | 2.371 2.894 0.819
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D.2 Results of Scan Tables for Residual Stress
Measurements
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Table D.3: Results of scan table for the (331) plane of the wire-EDM cut surface of
Sample 1

{0 sin®1) Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-55.25  0.675 0 | 137.0255 0.827831 | 1.048 1.278 0.819
-45.44 0.508 0 | 137.1974 0.827344 | 1.14 1.392 0.819
-35.65 0.34 0 | 137.3922 0.826794 | 0.992 1.211 0.819
-24.43 0.171 0 | 137.552 0.826346 | 1.214 1.465 0.829
-0.25 0 0 | 137.5495 0.826353 | 1.264 1.474 0.858
23.93 0.165 0 | 137.455 0.826618 | 1.373 1.723 0.797
35.15 0331 0 | 137.416 0.826727 | 1.266 1.387 0.913
4494 0499 0 | 137.2691 0.827141 | 0.986 1.204 0.819
54.75 0.667 0 | 137.0178 0.827854 | 1.143 1.395 0.819
-55.25  0.675 90 | 137.157 0.827458 | 1.146 1.398 0.819
-45.44 0.508 90 | 137.2747 0.827126 | 1.17 1.428 0.819
-35.65 0.34 90 | 137.3943 0.826788 | 0.979 1.194 0.819
-24.43 0.171 90 | 137.4815 0.826543 | 0.974 1.189 0.819
-0.25 0 90 | 137.4722 0.826569 | 0.811 0.99 0.819
23.93 0.165 90 | 137.4696 0.826577 | 0.772 0.942 0.819
35.15  0.331 90 | 137.394 0.826789 | 0.896 1.093 0.819
44.94 0499 90 | 137.2667 0.827148 | 1.171 1.428 0.819
54.75  0.667 90 | 137.1254 0.827548 | 1.343 1.639 0.819

Table D.4: Results of scan table for the (420) plane of the wire-EDM cut surface of

Sample 1

¥ siny) @ | Peak Position d-spacing | FWHM Integ. breadth

°] [°] C] ) A [°] °] Ratio
-556.4  0.678 0 | 145.4324 0.806724 | 1.601 1.954 0.819
-45.59 0.51 0 | 145.5124 0.806549 | 1.792 2.187 0.819
-35.8  0.342 0 | 145.8731 0.805766 | 1.471 1.796 0.819
-24.58 0.173 0 | 145.9333 0.805636 | 1.048 1.279 0.819
-0.4 0 0 | 146.1444 0.805183 | 1.309 1.597 0.819
23.78 0.163 0 | 146.008 0.805476 | 1.5 1.83 0.819
35 0.329 0 | 145.7999 0.805924 | 1.105 1.348 0.819
44.79 0.496 0 | 145.6611 0.806225 | 0.906 1.106 0.819
54.6 0.664 0 | 145.3764 0.806847 | 1.543 1.883 0.819
-55.4  0.678 90 | 145.4965 0.806584 | 1.75 2.136 0.819
-45.59 0.51 90 | 145.6619 0.806223 | 2.102 2.566 0.819
-35.8  0.342 90 | 145.9239 0.805657 | 1.43 1.745 0.819
-24.58 0.173 90 | 146.0208 0.805448 | 1.39 1.696 0.819
-0.4 0 90 | 146.2492 0.80496 1.389 1.695 0.819
23.78 0.163 90 | 145.9755 0.805545 | 1.312 1.601 0.819
35 0.329 90 | 145.8727 0.805767 | 1.552 1.893 0.819
44.79  0.496 90 | 145.7081 0.806123 | 1.739 2.122 0.819
54.6 0.664 90 | 145.6504 0.806248 | 1.732 2.113 0.819
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Table D.5: Results of scan table for the (331) plane of the wire-EDM cut surface of
Sample 2

{0 sin®1) Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-55.25  0.675 0 | 136.9968 0.827913 | 1.054 1.286 0.819
-45.44 0.508 0 | 137.1537 0.827468 | 1.147 1.4 0.819
-35.65 0.34 0 | 137.3197 0.826998 | 0.85 1.037 0.819
-24.43 0.171 0 | 137.3632 0.826876 | 1.343 1.423 0.943
-0.25 0 0 | 137.3599 0.826885 | 0.642 1.315 0.488
2393 0.165 0 | 137.3985 0.826777 | 1.302 1.652 0.788
35.15 0331 0 | 137.3899 0.826801 | 1.313 1.545 0.85
4494 0499 0 | 137.2626 0.82716 1.053 1.285 0.819
54.75 0.667 0 | 137.1461 0.827489 | 1.213 1.48 0.819
-55.25  0.675 90 | 137.0652 0.827719 | 1.115 1.361 0.819
-45.44 0.508 90 | 137.1812 0.82739 1.095 1.336 0.819
-35.65 0.34 90 | 137.232 0.827246 | 1.012 1.236 0.819
-24.43 0.171 90 | 137.2888 0.827086 | 1.118 1.365 0.819
-0.25 0 90 | 137.3015 0.82705 0.971 1.185 0.819
23.93 0.165 90 | 137.3264 0.82698 1.04 1.269 0.819
35.15  0.331 90 | 137.2675 0.827146 | 1.005 1.226 0.819
44.94 0499 90 | 137.1815 0.827389 | 1.114 1.36 0.819
54.75  0.667 90 | 137.0718 0.8277 1.143 1.394 0.819

Table D.6: Results of scan table for the (420) plane of the wire-EDM cut surface of

Sample 2

¥ siny) @ | Peak Position d-spacing | FWHM Integ. breadth

°] [°] C] ) A [°] °] Ratio
-54.9  0.669 0 | 145.351 0.806903 | 1.72 2.099 0.819
-45.09 0.502 0 | 145.5636 0.806438 | 1.331 1.624 0.819
-35.3 0334 0 | 145.6332 0.806286 | 1.439 1.756 0.819
-24.08 0.166 0 | 145.7665 0.805996 | 1.376 1.679 0.819
0.1 0 0 | 145.9148 0.805676 | 1.13 1.379 0.819
24.28 0.169 0 | 145.8693 0.805774 | 1.344 1.64 0.819
35.5 0.337 0 | 145.7256 0.806085 | 1.691 2.063 0.819
45.29 0.505 0 | 145.5024 0.806571 | 1.328 1.621 0.819
55.1 0.673 0 | 144.9644 0.807757 | 2.865 3.496 0.819
-54.9  0.669 90 | 145.3914 0.806814 | 1.676 2.046 0.819
-45.09 0.502 90 | 145.627 0.806299 | 1.743 2.127 0.819
-35.3  0.334 90 | 145.7135 0.806111 | 1.52 1.854 0.819
-24.08 0.166 90 | 145.8056 0.805912 | 1.292 1.577 0.819
0.1 0 90 | 145.8446 0.805828 | 1.281 1.563 0.819
24.28 0.169 90 | 145.7483 0.806036 | 1.578 1.926 0.819
35.5 0.337 90 | 145.6805 0.806183 | 1.399 1.708 0.819
45.29 0.505 90 | 145.5658 0.806433 | 1.463 1.786 0.819
55.1 0.673 90 | 145.4329 0.806723 | 1.701 2.076 0.819
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Table D.7: Results of scan table for the (331) plane of the wire-EDM cut surface of
Sample 2 (repeated)

) sin®yy ® | Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-95.25 0.675 0 | 137.152 0.827472 | 1.172 1.43 0.819
-45.44 0.508 0 | 137.1094 0.827593 | 1.036 1.265 0.819
-35.656 0.34 0 | 137.192 0.827359 | 1.363 1.663 0.819
-24.43 0.171 0 | 137.3322 0.826963 | 1.406 1.412 0.995
-0.25 0 0 | 137.3408 0.826939 | 0.56 1.189 0.471
23.93 0.165 0 | 137.3098 0.827026 | 1.312 1.599 0.821
35.15 0331 0 | 137.4212 0.826713 | 1.504 1.722 0.873
4494 0499 0 | 137.2092 0.827311 | 1.134 1.384 0.819
54.75  0.667 0 | 136.9769 0.82797 1.187 1.449 0.819
-55.25 0.675 90 | 137.0712 0.827702 | 1.146 1.398 0.819
-45.44 0.508 90 | 137.1783 0.827398 | 1.131 1.38 0.819
-35.65 0.34 90 | 137.2238 0.827269 | 1.095 1.336 0.819
-24.43 0.171 90 | 137.2766 0.82712 1.013 1.237 0.819
-0.25 0 90 | 137.321 0.826995 | 0.885 1.08 0.819
23.93 0.165 90 | 137.3121 0.82702 0.964 1.176 0.819
35.15  0.331 90 | 137.2158 0.827292 | 1.119 1.365 0.819
44.94  0.499 90 | 137.2075 0.827315 | 1.141 1.392 0.819
54.75  0.667 90 | 137.1 0.82762 1.243 1.517 0.819

Table D.8: Results of scan table for the (420) plane of the wire-EDM cut surface of
Sample 2 (repeated

0] sin®y ® | Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-54.9  0.669 0 | 145.2776 0.807064 | 1.449 1.768 0.819
-45.09 0.502 0 | 145.4144 0.806764 | 1.754 2.141 0.819
-35.3  0.334 0 | 145.6765 0.806192 | 1.428 1.743 0.819
-24.08 0.166 0 | 145.7531 0.806026 | 1.297 1.583 0.819
0.1 0 0 | 1459174 0.80567 1.361 1.661 0.819
24.28 0.169 0 | 145.816 0.805889 | 1.194 1.457 0.819
35.5 0.337 0 | 145.7814 0.805964 | 1.432 1.748 0.819
45.29 0.505 0 | 145.4663 0.80665 1.077 1.315 0.819
55.1 0.673 0 | 145.2738 0.807073 | 1.91 2.331 0.819
-54.9  0.669 90 | 145.39 0.806817 | 1.665 2.032 0.819
-45.09 0.502 90 | 145.6348 0.806282 | 1.729 2.11 0.819
-35.3  0.334 90 | 145.6414 0.806268 | 1.26 1.537 0.819
-24.08 0.166 90 | 145.7625 0.806005 | 1.458 1.779 0.819
0.1 0 90 | 145.8526 0.80581 1.263 1.542 0.819
24.28 0.169 90 | 145.7631 0.806004 | 1.457 1.778 0.819
35.5 0.337 90 | 145.7005 0.80614 1.458 1.78 0.819
45.29  0.505 90 | 145.5456 0.806477 | 1.479 1.805 0.819
55.1 0.673 90 | 145.4487 0.806689 | 1.729 2.11 0.819
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Table D.9: Results of scan table for the (331) plane of the wire-EDM cut surface of
Sample 2 (repeated)

) sin®yy ® | Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-95.25 0.675 0 | 137.0445 0.827777 | 1.114 1.359 0.819
-45.44 0.508 0 | 137.1246 0.82755 1.005 1.226 0.819
-35.65 0.34

-24.43 0.171 0 | 137.2499 0.827195 | 1.291 1.576 0.819
-0.25 0 0 | 137.3106 0.827024 | 0.952 1.162 0.819
2393 0.165 0 | 137.3104 0.827025 | 0.917 1.119 0.819
35.15 0331 0 | 137.3272 0.826977 | 1.044 1.274 0.819
4494 0499 0 | 137.2337 0.827241 | 0.869 1.061 0.819
54.75  0.667 0 | 137.0889 0.827651 | 1.156 1.41 0.819
-55.25 0.675 90 | 137.0671 0.827713 | 1.207 1.473 0.819
-45.44 0.508 90 | 137.1804 0.827392 | 1.448 1.767 0.819
-35.65 0.34 90 | 137.242 0.827218 | 1.028 1.254 0.819
-24.43 0.171 90 | 137.2652 0.827152 | 0.841 1.026 0.819
-0.25 0 90

23.93 0.165 90 | 137.2882 0.827087 | 1.142 1.393 0.819
35.15  0.331 90

4494  0.499 90 | 137.1331 0.827526 | 1.35 1.648 0.819
54.75  0.667 90 | 137.0772 0.827685 | 1.305 1.592 0.819

Table D.10: Results of scan table for the (420) plane of the wire-EDM cut surface
of Sample 2 (repeated)

0] sin®y ® | Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-54.9  0.669 0 | 145.3313 0.806946 | 1.677 2.047 0.819
-45.09 0.502 0 | 145.5369 0.806496 | 1.589 1.939 0.819
-35.3 0334 0 | 145.6323 0.806288 | 1.535 1.873 0.819
-24.08 0.166 0 | 145.7736 0.805981 | 1.267 1.546 0.819
0.1 0 0 | 145.818 0.805885 | 1.436 1.752 0.819
24.28 0.169 0 | 145.887 0.805736 | 1.428 1.743 0.819
35.5 0.337 0 | 145.8044 0.805914 | 1.348 1.645 0.819
45.29 0.505 0 | 145.4982 0.80658 1.216 1.484 0.819
55.1 0.673 0 | 145.3717 0.806857 | 1.879 2.293 0.819
-54.9  0.669 90 | 145.5224 0.806527 | 2.209 2.695 0.819
-45.09 0.502 90 | 145.6047 0.806348 | 1.678 2.048 0.819
-35.3  0.334 90 | 145.6543 0.80624 1.632 1.992 0.819
-24.08 0.166 90 | 145.7806 0.805966 | 1.541 1.881 0.819
0.1 0 90 | 145.9034 0.805701 | 1.778 2.169 0.819
24.28 0.169 90 | 145.5658 0.806433 | 1.929 2.354 0.819
35.5 0.337 90 | 145.6455 0.806259 | 1.411 1.722 0.819
45.29  0.505 90 | 145.55 0.806467 | 1.758 2.145 0.819
55.1 0.673 90 | 145.3315 0.806946 | 1.636 1.997 0.819
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Table D.11: Results of scan table for the (331) plane of the wire-EDM cut surface
of Sample 3

{0 sin®1) Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-55.25  0.675 0 | 137.2135 0.827298 | 1.186 1.447 0.819
-45.44 0.508 0 | 137.3201 0.826997 | 1.175 1.434 0.819
-35.65 0.34 0 | 137.3936 0.82679 1.146 1.398 0.819
-24.43 0.171 0 | 137.4833 0.826538 | 1.3 1.508 0.862
-0.25 0 0 | 137.5506 0.82635 0.968 1.208 0.801
23.93 0.165 0 | 137.247 0.827204 | 1.17 1.397 0.838
35.15 0331 0 | 137.6345 0.826115 | 1.387 1.589 0.873
44.94 0499 0 | 137.3035 0.827044 | 1.384 1.812 0.764
54.75 0.667 0 | 137.1874 0.827372 | 1.128 1.376 0.819
-55.25  0.675 90 | 137.1657 0.827434 | 1.326 1.619 0.819
-45.44 0.508 90 | 137.3339 0.826958 | 1.173 1.432 0.819
-35.65 0.34 90 | 137.3968 0.826781 | 1.076 1.313 0.819
-24.43 0.171 90 | 137.514 0.826452 | 1.001 1.221 0.819
-0.25 0 90 | 137.5436 0.826369 | 0.92 1.123 0.819
23.93 0.165 90 | 137.4867 0.826529 | 0.918 1.12 0.819
35.15  0.331 90 | 137.4238 0.826705 | 0.916 1.118 0.819
44.94 0499 90 | 137.3702 0.826856 | 1.055 1.287 0.819
54.75  0.667 90 | 137.2641 0.827155 | 1.344 1.64 0.819

Table D.12: Results of scan table for the (420) plane of the wire-EDM cut surface

of Sample 3

¥ siny) @ | Peak Position d-spacing | FWHM Integ. breadth

°] [°] C] ) A [°] °] Ratio
-54.9  0.669 0 | 145.4551 0.806675 | 1.63 1.989 0.819
-45.09 0.502 0 | 145.5776 0.806407 | 1.449 1.768 0.819
-35.3 0334 0 | 145.8835 0.805744 | 1.678 2.047 0.819
-24.08 0.166 0 | 146.158 0.805154 | 1.213 1.48 0.819
0.1 0 0 | 146.1972 0.80507 1.008 1.231 0.819
24.28 0.169 0 | 145.9737 0.805549 | 1.058 1.291 0.819
35.5 0.337 0 | 145.8668 0.80578 1.509 1.842 0.819
45.29 0.505 0 | 145.8108 0.805901 | 1.301 1.587 0.819
55.1 0.673 0 | 145.4741 0.806633 | 1.531 1.868 0.819
-54.9  0.669 90 | 145.5476 0.806472 | 1.703 2.078 0.819
-45.09 0.502 90 | 145.7882 0.80595 1.672 2.04 0.819
-35.3  0.334 90 | 145.9353 0.805632 | 1.523 1.858 0.819
-24.08 0.166 90 | 146.0691 0.805344 | 1.598 1.95 0.819
0.1 0 90 | 146.1957 0.805074 | 1.184 1.445 0.819
24.28 0.169 90 | 146.1484 0.805175 | 1.337 1.632 0.819
35.5 0.337 90 | 145.9388 0.805624 | 1.913 2.334 0.819
45.29 0.505 90 | 145.8495 0.805817 | 1.343 1.638 0.819
55.1 0.673 90 | 145.6283 0.806297 | 1.902 2.321 0.819
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Table D.13: Results of scan table for the (331) plane of the wire-EDM cut surface

of Sample 4

{0 sin®1) Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-55.25 0.675 0 | 137.0492 0.827763 | 1.242 1.515 0.819
-45.44 0.508 0 | 137.1265 0.827543 | 1.087 1.327 0.819
-35.65 0.34 0 | 137.1297 0.827534 | 1.009 1.231 0.819
-24.43 0.171 0 | 137.2986 0.827056 | 1.264 1.286 0.983
-0.25 0 0 | 137.3417 0.826935 | 0.571 1.164 0.491
23.93 0.165 0 | 137.1976 0.827342 | 0.535 1.248 0.428
35.15  0.331 0 | 137.2524 0.827187 | 1.468 1.622 0.905
4494 0499 0 | 137.0453 0.827774 | 1.76 2.118 0.831
54.75 0.667 0 | 137.1264 0.827543 | 1.26 1.537 0.819
-55.25 0.675 90 | 136.9266 0.828112 | 1.127 1.375 0.819
-45.44 0.508 90 | 137.0987 0.827622 | 1.175 1.434 0.819
-35.65 0.34 90 | 137.1713 0.827416 | 1.128 1.376 0.819
-24.43 0.171 90 | 137.2465 0.827203 | 1.022 1.248 0.819
-0.25 0 90 | 137.2254 0.827263 | 0.916 1.118 0.819
23.93 0.165 90 | 137.2329 0.827242 | 1.191 1.454 0.819
35.15  0.331 90 | 137.1838 0.827381 | 1.052 1.284 0.819
44.94 0499 90 | 137.069 0.827706 | 1.131 1.38 0.819
54.75  0.667 90 | 137.0404 0.827787 | 1.247 1.522 0.819

Table D.14: Results of scan table for the (420) plane of the wire-EDM cut surface

of Sample 4

¥ siny) @ | Peak Position d-spacing | FWHM Integ. breadth

°] [°] C] ) A [°] °] Ratio
-54.9  0.669 0 | 145.3335 0.80694 1.599 1.952 0.819
-45.09 0.502 0 | 145.4989 0.806577 | 1.515 1.849 0.819
-35.3  0.334 0 | 145.6549 0.806237 | 1.481 1.807 0.819
-24.08 0.166 0 | 145.7562 0.806017 | 1.28 1.562 0.819
0.1 0 0 | 145.6428 0.806263 | 1.781 2.173 0.819
24.28 0.169 0 | 145.621 0.806311 | 1.266 1.545 0.819
35.5 0.337 0 | 145.5673 0.806428 | 1.4 1.709 0.819
45.29 0.505 0 | 145.5563 0.806452 | 1.318 1.608 0.819
55.1 0.673 0 | 145.5322 0.806505 | 1.402 1.711 0.819
-54.9  0.669 90 | 145.3446 0.806915 | 1.768 2.157 0.819
-45.09 0.502 90 | 145.4698 0.806641 | 1.702 2.077 0.819
-35.3  0.334 90 | 145.6306 0.80629 1.59 1.94 0.819
-24.08 0.166 90 | 145.6925 0.806155 | 1.547 1.888 0.819
0.1 0 90 | 145.6952 0.806149 | 1.585 1.934 0.819
24.28 0.169 90 | 145.7427 0.806046 | 1.361 1.661 0.819
35.5 0.337 90 | 145.5807 0.806399 | 1.407 1.717 0.819
45.29 0.505 90 | 145.5148 0.806542 | 1.569 1.914 0.819
55.1 0.673 90 | 145.2698 0.80708 1.686 2.057 0.819
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Table D.15: Results of scan table for the (331) plane of the wire-EDM cut surface
of Sample 4 with 9 ym removed

{0 sin®y ® | Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-55.25  0.675 0 | 137.0493 0.827764 | 1.242 1.516 0.819
-45.44 0.508 0 | 137.1266 0.827544 | 1.087 1.327 0.819
-35.65 0.34 0 | 137.1298 0.827535 | 1.009 1.232 0.819
-24.43 0.171 0 | 137.4634 0.826594 | 0.986 1.203 0.819
-0.25 0 0 | 137.6616 0.826039 | 1.117 1.363 0.819
23.93 0.165 0 | 137.5418 0.826374 | 1.118 1.364 0.819
35.15 0331 0 | 137.4178 0.826722 | 1.214 1.482 0.819
4494 0.499 0 | 137.3733 0.826847 | 1.492 1.82 0.819
54.75 0.667 0 | 137.1403 0.827506 | 1.296 1.581 0.819
-55.25  0.675 90 | 136.9267 0.828113 | 1.127 1.375 0.819
-45.44 0.508 90 | 137.0988 0.827623 | 1.175 1.434 0.819
-35.65 0.34 90 | 137.1713 0.827418 | 1.128 1.376 0.819
-24.43 0.171 90 | 137.2466 0.827205 | 1.023 1.248 0.819
-0.25 0 90 | 137.2254 0.827265 | 0.917 1.119 0.819
23.93 0.165 90 | 137.233 0.827243 | 1.192 1.454 0.819
35.15  0.331 90 | 137.1897 0.827366 | 1.099 1.341 0.819
44.94 0499 90 | 137.0736 0.827695 | 1.165 1.422 0.819
54.75  0.667 90 | 137.0405 0.827789 | 1.248 1.522 0.819

Table D.16: Results of scan table for the (420) plane of the wire-EDM cut surface
of Sample 2 with 9 pym removed

¥ siny) @ | Peak Position d-spacing | FWHM Integ. breadth

°] [°] C] ) A [°] °] Ratio
-54.9  0.669 0 | 145.3493 0.806906 | 1.709 2.086 0.819
-45.09 0.502 0 | 145.525 0.806522 | 1.439 1.756 0.819
-35.3  0.334 0 | 145.501 0.806574 | 1.428 1.743 0.819
-24.08 0.166 0 | 145.6914 0.806159 | 1.217 1.485 0.819
0.1 0 0 | 145.6909 0.80616 1.351 1.649 0.819
24.28 0.169 0 | 145.64 0.806271 | 1.402 1.711 0.819
35.5 0.337 0 | 145.6397 0.806272 | 1.467 1.791 0.819
45.29 0.505 0 | 145.4668 0.806649 | 1.669 2.037 0.819
55.1 0.673 0 | 145.3968 0.806802 | 1.048 1.279 0.819
-54.9  0.669 90 | 145.4521 0.806681 | 1.676 2.045 0.819
-45.09 0.502 90 | 145.5468 0.806474 | 1.482 1.809 0.819
-35.3  0.334 90 | 145.5865 0.806388 | 1.458 1.779 0.819
-24.08 0.166 90 | 145.6902 0.806162 | 1.547 1.888 0.819
0.1 0 90 | 145.7506 0.806031 | 1.417 1.73 0.819
24.28 0.169 90 | 145.6693 0.806207 | 1.491 1.82 0.819
35.5 0.337 90 | 145.5625 0.80644 1.615 1.971 0.819
45.29 0.505 90 | 145.5626 0.80644 1.501 1.831 0.819
55.1 0.673 90 | 145.4001 0.806795 | 1.503 1.834 0.819
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Table D.17: Results of scan table for the (331) plane of the wire-EDM cut surface
of Sample 2 with 26 ym removed

{0 sin®y ® | Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-55.25  0.675 0 | 137.3833 0.826819 | 1.74 2.124 0.819
-45.44 0.508 0 | 137.3625 0.826878 | 1.017 1.242 0.819
-35.65 0.34 0 | 137.232 0.827246 | 0.928 1.133 0.819
-24.43 0.171 0 | 137.3213 0.826994 | 1.132 1.381 0.819
-0.25 0 0 | 137.2285 0.827256 | 0.967 1.179 0.819
23.93 0.165 0 | 137.2404 0.827222 | 1.087 1.327 0.819
35.15 0331 0 | 137.3352 0.826955 | 1.055 1.288 0.819
44.94 0499 0 | 137.3853 0.826814 | 0.714 0.871 0.819
54.75 0.667 0 | 137.5037 0.826481 | 0.955 1.166 0.819
-55.25  0.675 90 | 137.5711 0.826292 | 1.187 1.449 0.819
-45.44 0.508 90 | 137.4065 0.826754 | 1.064 1.298 0.819
-35.65 0.34 90 | 137.3331 0.826961 | 1.029 1.255 0.819
-24.43 0.171 90 | 137.2764 0.827121 | 1.01 1.232 0.819
-0.25 0 90 | 137.1745 0.827409 | 1.035 1.263 0.819
23.93 0.165 90 | 137.3074 0.827033 | 0.875 1.068 0.819
35.15  0.331 90 | 137.3435 0.826931 | 0.947 1.155 0.819
44.94 0499 90 | 137.4054 0.826757 | 1.075 1.311 0.819
54.75  0.667 90 | 137.4821 0.826542 | 1.054 1.286 0.819

Table D.18: Results of scan table for the (420) plane of the wire-EDM cut surface
of Sample 2 with 26 ym removed

¥ siny) @ | Peak Position d-spacing | FWHM Integ. breadth

°] [°] C] ) A [°] °] Ratio
-54.9  0.669 0 | 145.7889 0.805948 | 1.494 1.823 0.819
-45.09 0.502 0 | 145.7816 0.805964 | 1.414 1.726 0.819
-35.3  0.334 0 | 145.5917 0.806376 | 1.413 1.724 0.819
-24.08 0.166 0 | 145.6615 0.806224 | 1.499 1.83 0.819
0.1 0 0 | 145.4118 0.806769 | 1.303 1.59 0.819
24.28 0.169 0 | 145.8811 0.805749 | 1.203 1.468 0.819
35.5 0.337 0 | 145.7527 0.806026 | 0.984 1.201 0.819
45.29 0.505 0 | 145.7306 0.806074 | 1.739 2.122 0.819
55.1 0.673 0 | 145.7626 0.806005 | 1.064 1.298 0.819
-54.9  0.669 90 | 145.9549 0.80559 1.601 1.954 0.819
-45.09 0.502 90 | 145.8588 0.805797 | 1.606 1.96 0.819
-35.3  0.334 90 | 145.6893 0.806164 | 1.458 1.779 0.819
-24.08 0.166 90 | 145.6605 0.806227 | 1.469 1.793 0.819
0.1 0 90 | 145.6128 0.80633 1.649 2.013 0.819
24.28 0.169 90 | 145.6143 0.806327 | 1.408 1.719 0.819
35.5 0.337 90 | 145.7931 0.805939 | 1.42 1.732 0.819
45.29  0.505 90 | 145.7009 0.806139 | 1.977 2.413 0.819
55.1 0.673 90 | 145.8986 0.805711 | 1.865 2.276 0.819
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Table D.19: Results of scan table for the (331) plane of the wire-EDM cut surface
of Sample 2 with 26 pm removed (repeated)

) sin®yy ® | Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-95.25 0.675 0 | 137.4237 0.826706 | 1.012 1.235 0.819
-45.44 0.508 0 | 137.3707 0.826855 | 0.927 1.131 0.819
-35.65 0.34 0 | 137.3117 0.827021 | 0.823 1.004 0.819
-24.43 0.171 0 | 137.3424 0.826934 | 1.145 1.397 0.819
-0.25 0 0 | 137.2353 0.827237 | 0.846 1.033 0.819
23.93 0.165 0 | 137.2538 0.827184 | 0.81 0.988 0.819
35.15 0331 0 | 137.3472 0.826921 | 0.881 1.075 0.819
4494 0499 0 | 137.3715 0.826852 | 1.131 1.381 0.819
54.75  0.667 0 | 137.3721 0.826851 | 1.103 1.346 0.819
-55.25 0.675 90 | 137.5459 0.826363 | 1.189 1.451 0.819
-45.44  0.508 90 | 137.425 0.826702 | 0.943 1.151 0.819
-35.65 0.34 90 | 137.3172 0.827006 | 1.003 1.224 0.819
-24.43 0.171 90 | 137.3007 0.827052 | 0.961 1.173 0.819
-0.25 0 90 | 137.2065 0.827318 | 1.043 1.273 0.819
23.93 0.165 90 | 137.2782 0.827116 | 0.975 1.19 0.819
35.15  0.331 90 | 137.3282 0.826974 | 0.841 1.027 0.819
44.94  0.499 90 | 137.4158 0.826728 | 1.046 1.276 0.819
54.75  0.667 90 | 137.4786 0.826551 | 1.094 1.335 0.819

Table D.20: Results of scan table for the (420) plane of the wire-EDM cut surface
of Sample 2 with 26 pm removed (repeated)

0] sin®y ® | Peak Position d-spacing | FWHM Integ. breadth

] 1 P A ] ] Ratio
-54.9  0.669 0 | 145.8159 0.80589 1.162 1.418 0.819
-45.09 0.502 0 | 145.8114 0.805899 | 1.491 1.819 0.819
-35.3  0.334 0 | 145.6858 0.806171 | 1.045 1.276 0.819
-24.08 0.166 0 | 145.6987 0.806143 | 1.404 1.714 0.819
0.1 0 0 | 145.3524 0.8069 1.305 1.593 0.819
24.28 0.169 0 | 145.7837 0.805959 | 1.264 1.543 0.819
35.5 0.337 0 | 145.727 0.806082 | 1.325 1.617 0.819
45.29 0.505 0 | 145.8399 0.805838 | 1.112 1.357 0.819
55.1 0.673 0 | 145.8179 0.805885 | 1.443 1.761 0.819
-54.9  0.669 90 | 145.9259 0.805652 | 1.52 1.855 0.819
-45.09 0.502 90 | 145.8701 0.805772 | 1.505 1.837 0.819
-35.3  0.334 90 | 145.7154 0.806107 | 1.337 1.632 0.819
-24.08 0.166 90 | 145.6414 0.806268 | 1.334 1.628 0.819
0.1 0 90 | 145.6457 0.806259 | 1.686 2.057 0.819
24.28 0.169 90 | 145.6044 0.806349 | 1.235 1.508 0.819
35.5 0.337 90 | 145.7426 0.806048 | 1.212 1.479 0.819
45.29  0.505 90 | 145.7294 0.806077 | 1.428 1.742 0.819
55.1 0.673 90 | 145.8783 0.805755 | 1.877 2.29 0.819
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APPENDIX F

VIBRATORY TUMBLING DATA

F.1 250 ym Wire Samples

The ten specimens cut with the 250 pm diameter wire and vibratory tumbled were
periodically measured along all three dimensions, as shown in Figure [F.1] Height and
width were measured twice for each sample, while thickness was measured only once.

The recast layer removal was evident in the height and width measurements.

Sample X .

— =~ >

Y

< W

Figure F.1: Measurements of specimens during vibratory tumbling
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