Investigation of the effect of process parameters on the formation of recast layer in wire-EDM of Inconel 718

A Thesis
Presented to
The Academic Faculty
by
\title{ Thomas R. Newton }

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

George W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology
May 2008

Investigation of the effect of process parameters on the formation of recast layer in wire-EDM of Inconel 718

Approved by:
Dr. Shreyes N. Melkote
(ME, Georgia Tech), Committee Chair
Dr. Steven Danyluk
(ME, Georgia Tech)
Dr. Steven Liang
(ME, Georgia Tech)

Date Approved: February 11, 2008

Dedicated to my grandfathers, Dr. J.Q. Williams and Russell Newton Sr., for imparting me with a desire to learn about science and engineering

ACKNOWLEDGEMENTS

I would like to thank the following people for helping me along the way:

- My parents, grandparents, sister Elizabeth, girlfriend Sunni, and the rest of my family for always supporting and encouraging me.
- All of my friends in the Machine Shop, and especially John Graham and Donald Long for patiently teaching me about machining and lending me their wisdom and experience.
- Steven Sheffield for introducing me to the PMRC, helping me with the equipment, and always have a good story to tell.
- All of the members of the PMRC, in particular my office mates, Matt Breland, Chris Golden, Mukund Kumar, Ramesh Singh and Sathyan Subbiah for helping me along, and always lightening the mood with their discussions.
- The many people of the High Temperature Materials Laboratory at the Oak Ridge National Laboratory, including Dr. Tom Watkins for hosting me and performing the x-ray diffraction experiments, Rosa Trejo and Laura Reister for their great assistance with nano-indenter, and Larry Walker for conducting the electron probe microanalysis.
- Dr. Melkote, for advising and guiding me, always having time to meet and remaining enthusiastic though it all.

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS iv
LIST OF TABLES ix
LIST OF FIGURES xiii
SUMMARY xviii
I INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 2
1.3 Research Goals 2
1.4 Thesis Outline 3
II LITERATURE REVIEW 4
2.1 Introduction to EDM 4
2.2 Development of EDM 8
2.3 Effects of Process Parameters 10
2.3.1 Current Pulse Duration 11
2.3.2 Voltage Off-Time 11
2.3.3 Peak Discharge Current 11
2.3.4 Energy per Spark 11
2.3.5 Dielectric Properties 11
2.3.6 Wire Properties 12
2.3.7 Table Feed Rate 13
2.3.8 Miscellaneous 14
2.4 Inconel 718 14
2.4.1 Background Information 14
2.4.2 Wire-EDM of Inconel 718 15
2.5 Post-Processing 15
2.5.1 Abrasive Flow Machining 16
2.5.2 Abrasive Micro-Blasting 16
2.5.3 Electrochemical Processes 16
2.5.4 Loose Abrasive Mass Finishing 17
2.5.5 Shot Peening 19
2.5.6 Other Processes 19
2.6 Summary 19
III RECAST LAYER THICKNESS EXPERIMENTS 22
3.1 Goal \& Approach 22
3.2 Brother HS-3100 22
3.3 Measurements 23
3.3.1 Data Acquisition 23
3.3.2 Data Analysis 24
3.3.3 Correlation with Machine Settings 27
3.4 Design of Experiments 29
3.4.1 Process Parameters 29
3.4.2 Experimental Procedure 32
3.5 Results 36
3.5.1 Results 36
3.5.2 Analysis 38
3.6 Summary 42
IV RECAST LAYER CHARACTERIZATION 46
4.1 Goal \& Approach 46
4.2 Scanning Electron Microscopy 46
4.3 Surface Roughness Measurements 50
4.4 Electron Probe Microanalysis 54
4.4.1 Introduction 54
4.4.2 Experimental Procedure 55
4.4.3 Results 56
$4.5 \quad$ X-Ray Diffraction 65
4.5.1 Overview 65
4.5.2 Experimental Procedure 66
4.5.3 Results 71
4.6 Nano-Indentation Hardness Testing 82
4.6.1 Overview 82
4.6.2 Experimental Procedure 83
4.6.3 Results 85
4.7 Summary 94
V RECAST LAYER REMOVAL 96
5.1 Goal \& Approach 96
5.2 Selection of Post-Processing Technique 96
5.3 Vibratory Tumbling 98
5.4 Experimental Procedure 98
5.4.1 Experimental Set-Up 98
5.4.2 $\quad 250 \mu \mathrm{~m}$ Wire Samples 98
5.4.3 $\quad 100 \mu \mathrm{~m}$ Wire Samples 103
5.5 Summary 107
VI CONCLUSIONS 109
6.1 Overview 109
6.2 Experimental Findings 109
6.2.1 Recast Layer Thickness 109
6.2.2 Characterizations 110
6.2.3 Post-Processing 111
6.3 Future Work 111
APPENDIX A - EXPERIMENTAL SET-UP 113
APPENDIX B - RECAST LAYER THICKNESS MEASUREMENTS134
APPENDIX C - SURFACE ROUGHNESS MEASUREMENTS 137
APPENDIX D - DATA FROM X-RAY DIFFRACTION TESTS 139
APPENDIX E - DATA FROM NANO-INDENTATION HARND-
NESS TESTS 152
APPENDIX F - VIBRATORY TUMBLING DATA 177
REFERENCES. 180

LIST OF TABLES

Table 2.1 Chemical composition of Inconel 718 [1] 14
Table 3.1 \quad Range of machine settings for the Brother HS-3100 24
Table 3.2 Sample report of analysis for current and voltage waveforms 26
Table 3.3 Machine setting to signal parameter correlations for the Brother HS-3100 30
Table 3.4 Experimental Design 31
Table 3.5 Grinding and polishing procedure 33
Table 3.6 Average recast layer thickness measurements and EDM signal Pa- rameters 37
Table 3.7 Analysis of Variance (ANOVA) for cases where spark energy is set to 6 to determine the effect of wire diameter on recast layer thickness 38
Table 3.8 Analysis of Variance (ANOVA) to determine effect of machine set- tings on recast layer thickness 39
Table 3.9 Pearson correlation between EDM signal parameters and average 40
Table 4.1 Average recast layer thickness measurements and selected EDM sig- 50
Table 4.2 Scan Table for (331) plane, repeated with 2θ varying from 134° to142° at 0.02° per step69
Table 4.3 Scan Table for (420) plane, repeated with 2θ varying from 142° to 151° at 0.02° per step 70
Table 4.4 \quad Residual stress [MPa] measurements of wire-EDM cut surfaces 73
Table 4.5 Standard deviation [MPa] of residual stress measurements from Sample 2 74
Table 4.6 Residual stress [MPa] measurements of Sample 4 as a function of 80
Table 5.1 Summary of post-processing techniques 97
Table B. 1 Recast layer thickness measurements 135
Table B. 2 Recast layer thickness measurements after vibratory tumbling ex- periments 136

Table C. 1	Surface roughness data for Sample 1 (wire diameter: $100 \mu \mathrm{~m}$, table
	feed rate: $2.223 \mathrm{~mm} / \mathrm{min}$, spark cycle: $16 \mu \mathrm{~s}$, spark energy: 4) . . 137

Table C. 2	Surface roughness data for Sample 2 (wire diameter: $100 \mu \mathrm{~m}$, table
	feed rate: $1.969 \mathrm{~mm} / \mathrm{min}$, spark cycle: $28 \mu \mathrm{~s}$, spark energy: 8) . . 137

Table C. 3	Surface roughness data for Sample 3 (wire diameter: $250 \mu \mathrm{~m}$, table
	feed rate: $2.223 \mathrm{~mm} / \mathrm{min}$, spark cycle: $28 \mu \mathrm{~s}$, spark energy: 6) . . 137

Table C. 4	Surface roughness data for Sample 4 (wire diameter: $250 \mu \mathrm{~m}$, table
	feed rate: $1.969 \mathrm{~mm} / \mathrm{min}$, spark cycle: $28 \mu \mathrm{~s}$, spark energy: 18) . 138

Table C. 5	Surface roughness data for vibratory tumbled sample prior to tum-	
	bling (wire diameter: $250 \mu \mathrm{~m}$, table feed rate: $1.969 \mathrm{~mm} / \mathrm{min}$, spark	
	cycle: $28 \mu \mathrm{~s}$, spark energy: 12) 138

Table C. 6 Surface roughness data for vibratory tumbled sample (wire diameter: $250 \mu \mathrm{~m}$, table feed rate: $1.969 \mathrm{~mm} / \mathrm{min}$, spark cycle: $28 \mu \mathrm{~s}$, spark energy: 12) . 138

Table D.	Results of scan table for the (331) plane of the virgin surface of	
	Sample 1 to find d_{0}	. 140

Table D. 2	Results of scan table for the (420) plane of the virgin surface of	
	Sample 1 to find d_{0}	\ldots

| Table D. 3 | Results of scan table for the (331) plane of the wire-EDM cut surface |
| :---: | :---: | :---: | :---: |
| | of Sample 1 . 143 |

| Table D. 4 | Results of scan table for the (420) plane of the wire-EDM cut surface | |
| :---: | :---: | :---: | :---: |
| | of Sample 1 | . 143 |

| Table D. 5 Results of scan table for the (331) plane of the wire-EDM cut surface |
| :---: | :---: | :---: |
| of Sample 2 . 144 |

Table D. 6 Results of scan table for the (420) plane of the wire-EDM cut surface

| Table D. 7 | Results of scan table for the (331) plane of the wire-EDM cut surface | |
| :---: | :---: | :---: | :---: |
| | of Sample 2 (repeated) | . 145 |

| Table D. 8 | Results of scan table for the (420) plane of the wire-EDM cut surface |
| :---: | :---: | :---: |
| | of Sample 2 (repeated . 145 |

| Table D. 9 | Results of scan table for the (331) plane of the wire-EDM cut surface | |
| :---: | :---: | :---: | :---: |
| | of Sample 2 (repeated) | . 146 |

| Table D. 10 Results of scan table for the (420) plane of the wire-EDM cut surface |
| :---: | :---: | :--- |
| of Sample 2 (repeated) . 146 |

| Table D. 11 Results of scan table for the (331) plane of the wire-EDM cut surface | |
| :--- | :--- | :--- |
| of Sample 3 | . 147 |

Table D. 12 Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 3 147
Table D. 13 Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 4 148
Table D. 14 Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 4 148
Table D. 15 Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 4 with $9 \mu \mathrm{~m}$ removed 149
Table D. 16 Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 2 with $9 \mu \mathrm{~m}$ removed 149
Table D. 17 Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 2 with $26 \mu \mathrm{~m}$ removed 150
Table D. 18 Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 2 with $26 \mu \mathrm{~m}$ removed 150
Table D. 19 Results of scan table for the (331) plane of the wire-EDM cut surface 151
Table D. 20 Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 2 with $26 \mu \mathrm{~m}$ removed (repeated) 151

| E. 1 | Nano-indentation hardness data for generating depth profile in Sam- |
| :--- | :--- | :--- |
| ple 1 . 153 | |

| E. 2 Nano-indentation hardness data for generating depth profile in Sam- | |
| :--- | :--- | :--- |
| ple 2 | . 158 |

E. 3 Nano-indentation hardness data for generating depth profile in Sam- 16
E. 4 Nano-indentation hardness data for generating depth profile in Sam- ple 4 169
E. 5 Nano-indentation hardness data for Sample 1 bulk 173
E. 6 Nano-indentation hardness data for Sample 2 bulk 174
E. 7 Nano-indentation hardness data for Sample 3 bulk 175
E. 8 Nano-indentation hardness data for Sample 4 bulk 176
Table F. 1 Measurements of vibratory tumbled specimens (in mm) over time 178

Table F. 2 Measurements of vibratory tumbled specimens (in mm) over time continued . 179

LIST OF FIGURES

Figure 2.1 Diagram showing the material removal mechanism in wire-EDM due to a single discharge [2] 5
Figure 2.2 Diagram showing orientation of the wire electrode in wire-EDM 6
Figure 2.3 Diagram showing the many factors which affect the spark location in wire-EDM 7
Figure 2.4 Diagram of nomenclature describing the current and voltage signals in EDM 8
Figure 2.5 Drawing of the first die-sinking EDM [3] 9
Figure 2.6 Patent drawing of the first wire-EDM [4] 10
Figure 2.7 Media shapes which are available for tumbling [5] 18
Figure 3.1 Brother HS-3100 Wire-EDM 23
Figure 3.2 Schematic of voltage and current measurements on Brother HS- 3100 Wire-EDM. 25
Figure 3.3 Sample current [A] and voltage [V] waveforms 27
Figure 3.4 \quad Sample power $[\mathrm{kW}]$ and energy [J] waveforms 28
Figure 3.5 Sample close-up of current [A] and voltage [V] for a discharge 29
Figure 3.6 Drawing demonstrating the orientation of a specimen as it is mounted in epoxy 32
Figure 3.7 Micrograph of polished, but un-etched specimen cut under the fol- lowing machine settings: wire diameter of $250 \mu \mathrm{~m}$, table feed rate of $2.223 \mathrm{~mm} / \mathrm{min}$, spark cycle setting of $28 \mu \mathrm{~s}$, spark energy setting of 18 34
Figure 3.8 Micrograph of polished and etched specimen cut under the follow- ing machine settings: wire diameter of $250 \mu \mathrm{~m}$, table feed rate of $2.223 \mathrm{~mm} / \mathrm{min}$, spark cycle setting of $28 \mu \mathrm{~s}$, spark energy setting of 18 35
Figure 3.9 Example of how average recast layer thickness measurements were made 36
Figure 3.10 Main effects of machine settings on average recast layer thickness 39
Figure 3.11 Average recast layer thickness [$\mu \mathrm{m}]$ plotted against average spark- ing frequency $[\mathrm{kHz}]$ 42
Figure 3.12 Average recast layer thickness [$\mu \mathrm{m}$] plotted against average energy per spark [mJ]] 43
Figure 3.13 Average recast layer thickness [$\mu \mathrm{m}$] plotted against average open- voltage time [$\mu \mathrm{s}$] 43
Figure 3.14 Average recast layer thickness [$\mu \mathrm{m}$] plotted against average peak discharge current $[\mathrm{A}]$ 44
Figure 3.15 Average recast layer thickness [$\mu \mathrm{m}]$ plotted against average current pulse duration $[\mu \mathrm{s}]$ 44
Figure 3.16 Sparking frequency [kHz] plotted against energy per spark [mJ] 45
Figure 4.1 SEM image of wire-EDM cut surface at 200X 47
Figure 4.2 SEM image of wire-EDM cut surface at 500X 48
Figure 4.3 SEM image of wire-EDM cut surface at 1000X 48
Figure 4.4 SEM image of wire-EDM cut surface at 3000X 49
Figure 4.5 Sample image from Zygo NewView 200 51
Figure 4.6 RMS surface roughness $[\mu \mathrm{m}]$, sorted by sample 52
Figure 4.7 RMS surface roughness $[\mu \mathrm{m}]$, sorted by energy per spark [mJ] 52
Figure 4.8 RMS surface roughness $[\mu \mathrm{m}]$, sorted by wire diameter $[\mu \mathrm{m}]$ and energy per spark [mJ]] 53
Figure 4.9 Example comparison of spectra for EDS and WDS [6] 54
Figure 4.10 Composition view of the taper section to be analyzed (1000X) 58
Figure 4.11 Relative intensities of aluminum (WDS) and chrome (EDS) within the scan area 58
Figure 4.12 Relative intensities of copper (WDS) and iron (EDS) within the scan area 59
Figure 4.13 Relative intensities of molybdenum (WDS) and niobium (WDS) 59
Figure 4.14 Relative intensities of nickel (EDS) and phosphorous (WDS) within 60
Figure 4.15 Relative intensities of silicon (WDS) and titanium (EDS) within the scan area 60
Figure 4.16 Relative intensity of zinc (WDS) within the scan area 61
Figure 4.17 Adjusted intensities of iron (EDS) and molybdenum (WDS) to 61
Figure 4.18 1000X SEI image of scan area 62
Figure 4.19 400X SEM image of scan area 63
Figure 4.20 100X SEM image of scan area 64
Figure 4.21 Diffraction of x-rays from crystal atomic planes [7] 65
Figure 4.22 Orientation of x-ray source, x-ray detector and the specimen to be measured by x-ray diffraction 67
Figure 4.23 Varying ψ exposes a different subset of grains to x-ray diffraction [7] 68
Figure $4.24 \theta-2 \theta$ scan for Inconel $718,138^{\circ}$ and 146° peaks were further examined 68
Figure $4.25 d[\AA]$ vs. $\sin ^{2} \psi$ at $\Phi=0^{\circ}$ for determination of the unstressed lattice spacing of the (331) plane 72
Figure $4.26 d[\AA]$ vs. $\sin ^{2} \psi$ at $\Phi=90^{\circ}$ for determination of the unstressed lattice spacing of the (331) plane 72
Figure 4.27 Orientation of stress measurements at $\phi=0^{\circ}$ and $\phi=90^{\circ}$ 74
Figure 4.28 Residual stress [MPa] versus energy per spark [mJ]in the directions 76
Figure 4.29 Diagram showing simplified analysis of heat flow from resolidified zone during wire-EDM with a small energy per spark 77
Figure 4.30 Diagram showing simplified analysis of heat flow from resolidified zone during wire-EDM with a large energy per spark 77
Figure 4.31 Residual stress [MPa] versus wire diameter $[\mu \mathrm{m}]$ in the directions of table feed and wire electrode axis 78
Figure 4.32 FWHM [${ }^{\circ}$] of peaks plotted by $2 \theta\left[^{\circ}\right]$ and material removal 80
Figure 4.33 Residual stress [MPa] as a function of depth $[\mu \mathrm{m}]$ into the wire- EDM cut surface, taken from Sample 4 81
Figure 4.34 Typical load-displacement curve generated in an indentation test [8] 83
Figure 4.35 Cross-section of mounted 12° taper sections for nano-indentation measurements 84
Figure 4.36 Hysitron TriboIndenter nano-indentor [9] and Berkovich indenter 9 85
Figure 4.37 Load function for nano-indentation hardness tests 86
Figure 4.38 Load-displacement curves demonstrating a good and a bad indent 87
Figure 4.39 Sample images from Sample 4 of specimen topography and gradient made using SPM, notice the difference between the good indents and the bad indent 87
Figure 4.40 Sample to sample bulk hardness [GPa] nano-indentation tests 88
Figure 4.41 Sample to sample bulk reduced modulus [GPa] nano-indentation tests 88
Figure 4.42 The reduced modulus [GPa] depth profile in all samples 89
Figure 4.43 The hardness depth [GPa] profile in all samples 90
Figure 4.44 The reduced modulus [GPa] in the recast layer versus the bulk material 92
Figure 4.45 The hardness [GPa] in the recast layer versus the bulk material 93
Figure 4.46 The hardness [GPa] in the recast layer versus residual stress [MPa] 94
Figure 5.1 Motion of parts and media in bowl-type vibratory tumbler [5] 99
Figure 5.2 Ultra-Vibe 18 bowl-type vibratory tumbler 100
Figure 5.3 Coarse 22° ended cylinder preformed abrasive vibratory tumbling 100
Figure 5.4 Photograph of coarse 22° ended cylinder preformed ceramic abra- sive vibratory tumbling media 101
Figure 5.5 Average change in specimen size [$\mu \mathrm{m}$] for parts cut with $250 \mu \mathrm{~m}$ diameter wire 102
Figure 5.6 1000X micrograph of etched specimen from vibratory tumbled sam- ple cut with $250 \mu \mathrm{~m}$ diameter wire (average recast layer thickness: $8.51 \mu \mathrm{~m}$) 103
Figure 5.7 1000X micrograph of etched specimen cut with $250 \mu \mathrm{~m}$ diameter wire before vibratory tumbling (average recast layer thickness: 4.46 $\mu \mathrm{m})$ 104
Figure 5.8 Profile of half-gear cut with $100 \mu \mathrm{~m}$ diameter wire 105
Figure 5.9 Micrograph of the flat edge of the dry vibratory tumbled half-gear (average recast layer thickness: $4.22 \mu \mathrm{~m}$) 106
Figure 5.10 Micrograph of the root of a gear tooth of the dry vibratory tumbled half-gear (average recast layer thickness: $4.39 \mu \mathrm{~m}$) 107
Figure A. 1 Photograph indicating connection of voltage probe 113
Figure A. 2 Model 110 Pearson Current Monitor 114
Figure A. 3 The hard power switch must be turned off before opening the elec- trical cabinet 115

Figure A. 4 Close-up of pulse generator, arrows denote leads going from pulse generator to brushes . 115

Figure A. 5 A new wire is inserted so the current going through the 33H13 lead
can be measured . 116
Figure A. 6 Any exposed metal must be wrapped with electrical tape 116

Figure A. 7 All wires must be passed through the current sensor in the same
direction . 117

Figure A. 8 The safety switch must be disabled to operate the wire-EDM with

Figure A. 9 Techtronix TDS420A 4-channel oscilloscope 118
Figure F. 1 Measurements of specimens during vibratory tumbling 177

SUMMARY

Inconel 718 is a high nickel content superalloy possessing high strength at elevated temperatures and resistance to oxidation and corrosion. The non-traditional manufacturing process of wire-electrical discharge machining (EDM) possesses many advantages over traditional machining during the manufacture of Inconel 718 parts. However, certain detrimental effects are also present. The top layer of the machined surface is melted and resolidified to form what is known as the recast layer. This layer demonstrates microstructural differences from the bulk workpiece, resulting in altered material properties.

An experimental investigation was conducted to determine the main machining parameters which contribute to recast layer formation in wire-EDM of Inconel 718. It was found that average recast layer thickness increased with energy per spark, peak discharge current, current pulse duration, and open-voltage time and decreased with sparking frequency and table feed rate. Over the range of parameters tested, the recast layer was observed to be between 5 and $10 \mu \mathrm{~m}$ in average thickness, although highly variable in nature.

Surface roughness of the cut parts showed an increase with energy per spark. Electron Probe Microanalysis (EPMA) revealed the recast layer to be alloyed with elements from the wire electrode. X-ray diffraction testing showed the residual tensile stresses evident near the cut surface to decrease with energy per spark. Additionally, nano-indentation hardness testing indicated that the recast layer is reduced in hardness and elastic modulus compared to the bulk material. Vibratory tumbling was found to be a moderately effective post-processing tool for recast layer removal when using pre-formed ceramic abrasive media or fine grained aluminum oxide.

CHAPTER I

INTRODUCTION

1.1 Background

Wire-electrical discharge machining (EDM) is a non-traditional machining process in which a pulsed voltage difference between a wire electrode and a conductive workpiece initiates sparks which erode workpiece material. Removing material in such a way is often advantageous when the workpiece material would be difficult to machine with traditional machine tools due to high strength, hardness, toughness, etc. This process has been used in commercial machine tools for nearly half a century. It is well known that the EDM process has a detrimental impact on the surface integrity of machined surfaces. Each spark melts a small portion of the workpiece. A portion of this molten material is ejected and flushed away. The remaining material resolidifies to form a surface layer known as the recast layer. This layer can contain an altered microstructure, tensile stresses, microcracks, impurities, and other undesirable features which can lead to premature part failure when put to service. Consequently, wire-EDM cut parts must often be post-processed to remove the negatively affected material. Furthermore, the surface integrity effects are dependent upon both the wire-EDM process parameters and the chemical composition of the workpiece.

Much work has been devoted to the study of surface integrity in wire-EDM of common steel alloys, particularly tool and die steels. However, little research has been reported on the effects of wire-EDM on high nickel content superalloys. Specifically, no significant literature has been found by the author relating to surface integrity of Inconel 718 in wire-EDM. Inconel 718 is comprised of 52% nickel, 20% chrome and 18% iron and possesses high strength at elevated temperatures, while resisting
oxidation and corrosion. It is currently used in gas turbines, cryogenic tanks, and as fasteners or springs for aerospace applications. Before safely usable parts of Inconel 718 can be manufactured by wire-EDM, the resulting recast layer must be characterized, and its formation understood.

1.2 Problem Statement

As stated above, critical Inconel 718 parts cut with wire-EDM must be post-processed to remove the affected surface layers, primarily the recast layer. The formation and characteristics of the recast layer must be studied. Furthermore, while recast layer formation can be altered by process parameters, it cannot be completely eliminated. Thus, there is still a need for some post-processing in certain applications. This thesis will attempt to address the following:

- What wire-EDM process parameters have an effect on the formation of recast layer in Inconel 718?
- What are the characteristics of this recast layer?
- How can post-processing techniques be used to remove this recast layer?

1.3 Research Goals

The research described in this thesis will attempt to solve the problems detailed in the previous section. To meet these ends, the following goals have been set:

1. To design and conduct a series of experiments which will reveal the impact of various wire-EDM process parameters on the thickness of the recast layer formed in Inconel 718.
2. To characterize this recast layer in terms of hardness and residual stresses though nano-indentation hardness testing and x-ray diffraction, respectively.
3. To investigate removal of the recast layer through various post-processing techniques, and experimentally study one low-cost method.

1.4 Thesis Outline

Chapter II will first discuss the development of electrical discharge machining, followed by a summary of reported knowledge pertaining to the effects of various process parameters. Additionally, currently practiced post processing techniques will be covered, along with a detailed description of Inconel 718. The experimental work conducted here, including the methods, measurements and results obtained will be given in Chapter III. Chapter IV will discuss the findings of the two main characterizations undertaken. Chapter V will cover post-processing for recast layer removal, while Chapter VI will summarize the key findings of this thesis.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction to $E D M$

Electrical Discharge Machining (EDM) is a non-traditional manufacturing process in which electric sparks are used to remove workpiece material. There are two main types of EDM: ram or die-sinking EDM, and traveling-wire, wire-cut, or simply wireEDM. In either kind, the underlying principle is the same. A power supply initiates a voltage potential between the electrode and the electrically conductive and grounded workpiece. This scenario is analogous to the two plates of a parallel plate capacitor. As the tool approaches the workpiece, the electric field strength grows in the gap until the dielectric medium separating the tool and the workpiece breaks down. At this point, electrical discharge is initiated and the voltage drops as the current rises. The dielectric ionizes and a plasma channel is created, compressing the surrounding dielectric. The plasma may reach a temperature of as high as $40,000 \mathrm{~K}$ and a pressure of 3 kbar. As both electrons and ions bombard the workpiece surface, the workpiece is heated such that a portion of the surface is melted. However, the plasma pressure prevents vaporization. At the conclusion of the discharge, the plasma channel collapses and a vapor bubble occurs causing the superheated molten material on the surface of the workpiece to explode into the dielectric. The ejected material is flushed away, while a portion of the molten material resolidifies onto the workpiece surface forming a crater [10]. This resolidified material is known as the remelted, or recast layer.

In die-sinking EDM, the electrode is a specific shape and machines the negative of this shape into the workpiece. Typically the tool is the anode and the workpiece
is the cathode with discharges occurring over tens to hundreds of microseconds. The dielectric medium is often a hydrocarbon such as kerosene. In wire-EDM, the tool is a wire which can cut an extruded geometry similar to a conventional band saw. Generally, the wire is the cathode, and the duration of each discharge is usually less than $10 \mu \mathrm{~s}$, and often less than $1 \mu \mathrm{~s}$. De-ionized water is the usual dielectric. Figure 2.1 displays a typical discharge in wire-EDM.

Figure 2.1: Diagram showing the material removal mechanism in wire-EDM due to a single discharge [2]

In wire-EDM, the wire travels perpendicular to the direction of cut from a supply spool, though the cutting zone, and is then collected for scrap, as displayed in Figure 2.2. The speed at which the wire feeds is generally much greater then the table
feed rate. Some machines will allow the upper and lower wire guides to be moved independently, creating a tapered cut. However, the wire guides are fixed in the machine used in this research. One of the advantages to wire-EDM is the narrow kerf created. The kerf width is equal to the diameter of the wire electrode, plus twice the gap in which the electrical discharges take place. Usually, there are nozzles directing dielectric into the cutting zone to flush out the chips.

Figure 2.2: Diagram showing orientation of the wire electrode in wire-EDM

It is important to note that the sparking process is extremely stochastic. Observe the situation seen in Figure 2.3. The discharge will occur at the point where the
electric field is the strongest. This will primarily be located between peaks of the wire and workpiece surface profile because the gap distance is the shortest. However, the wire will vibrate and bend due to the electrostatic forces and explosive forces from previous discharges [11]. The wire is also subject to forces from the jets of dieletric. It is held in tension, and transported through the machine. The sparking gap may also contain swarf generated from previous cuts. Consequently, the sparking locations are extremely difficult to predict. At the point where a discharge occurs material will be ejected leaving behind a crater. As the table continues to feed toward wire the next spark will now occur at a new location.

Figure 2.3: Diagram showing the many factors which affect the spark location in wire-EDM

Critical to analysis of electrical discharge machining is the signal from the EDM pulse generator, shown below in Figure 2.4. While there are multiple systems for
controlling the EDM process, a general, idealized signal should be common. To clarify the nomenclature, the words given in this diagram will be used throughout this work. The open-voltage is usually a fixed value, and is also referred to as the open-circuit voltage. The open-voltage period is also known as the ignition delay time, or the build-up period. What is referred to here as the current pulse duration is sometimes called the pulse on-time, or on-time. The sum of the open-voltage period and the voltage off-time is sometimes known as the pulse off-time, or off-time. Some researchers may also refer to the sum of the open voltage time and the current pulse duration as the pulse on-time. This confusion may derive in part from the different current pulse durations in wire-EDM and die-sinking EDM.

Figure 2.4: Diagram of nomenclature describing the current and voltage signals in EDM

2.2 Development of EDM

The first reported experiment in which electrical discharges were used to melt and erode a metal workpiece was performed by Joseph Priestley in 1766. Using a battery and a brass knob as an electrode, he found that the diameter of the crater created
depended both on the workpiece material, and the degree to which the battery was charged [12].

The Soviets Boris and Natalie Lazarenko are credited with development of the first machine tool to use electrical discharges as a method of material removal. Their work was first reported in the U.S. in 1947 [13]. A later publication describes a converted drill press which was essentially the first die-sinking EDM, displayed in Figure 2.5. Also discussed was a machine for grinding tools in a process similar to electrical discharge grinding [3].

Figure 2.5: Drawing of the first die-sinking EDM [3]

The first EDM with a traveling wire electrode, shown in Figure 2.6, was patented in 1961 [4], although wire-EDM in its modern form did not become commonplace until the advent of computer numerical control (CNC).

Figure 2.6: Patent drawing of the first wire-EDM [4]

2.3 Effects of Process Parameters

This section will describe the known effects of various wire-EDM parameters on the machined workpiece as it has been long established that electrical discharges impact the surface integrity of the workpiece [14, 15]. Although a great deal more research has focused on die-sinking EDM, this survey will cover mainly wire-EDM. It is felt that the dielectric media, discharge parameters and electrode materials are too different to directly compare findings between the two types of EDM. Accordingly, die-sinking EDM related findings will only be substituted when no relevant wire-EDM work can be found. Also, as mentioned, nomenclature tends to vary from one research to the
next, so every effort has been made to assure "apples to apples" comparisons.

2.3.1 Current Pulse Duration

It has been well established that increasing the current pulse duration increases the surface roughness of the machined surface [16, 17, 18, 19, 20, 21, 22, 23]. Recast layer depth has also been shown to increase with current pulse duration [16, 24, 21]. Surface crack density also tends to increase with increased current pulse durations [21].

2.3.2 Voltage Off-Time

Reducing the voltage off-time has been shown to minimize the formation of an oxide layer in Ti-6Al-4V [25].

2.3.3 Peak Discharge Current

Surface roughness is known to increase with the peak discharge current [19, 26, 27].

2.3.4 Energy per Spark

It has been found that gap width increases with the energy per spark [16], as well as surface roughness and recast layer [16, 21]. Surfaces machined with both short and long current pulse durations had almost identical surface roughnesses as long as the energies per spark were equal to one another. However, a comparison of the morphologies revealed great differences between the two cases. Over the ranges examined, short current pulse durations created craters by vaporization, while long current pulse durations generated craters through melting [28].

2.3.5 Dielectric Properties

Although wire-EDM can be conducted in a dry gas atmosphere [29], it is typically conducted in the presence of a liquid dielectric. The dielectric flushing pressure has been shown to have an insignificant or minor effect on the surface roughness [16, 20, 21].

The same results were concluded when the dielectric flow rate was instead measured [19]. Flushing pressure was found to have no effect on the recast layer thickness in D2 tool steel [16]. The microhardness distribution below the surface remains constant in tool steels with increased dielectric flushing pressure, while the surface hardness slightly increases. Further, the microstructure was shown to remain constant with increased pressure [21]. Maintaining proper flushing conditions is necessary to prevent wire rupture as the convective heat transfer coefficient is the most important parameter governing the maximum wire temperature [30].

Although the electrical conductivity of the dielectric does not have an impact on surface roughness, it can impact the discharging process. As the conductivity is increased, current leakage due to electrolysis appears during the open-voltage period. Electrolysis will lead to oxidation of the entire workpiece surface 22 and may also lead to a decrease in the hardness of a wire-EDM cut surface [31]. Some researchers have developed a non-electrolysis power supply to prevent this corrosion and alteration of properties [32].

2.3.6 Wire Properties

Originally, copper wire was used in wire-EDM because of its high electrical conductivity. However, plain copper wire is difficult to vaporize. Consequently, zinc, with its lower melting point, was added to the wire. During cutting, the zinc vaporizes and helps to flush debris from the gap. One of the most common types of wire used in non-tapered wire-EDM cutting is hard brass wire. Composed of 63% copper and 37% zinc, hard brass wire typically has a 2% elongation [33. When using smaller diameter wires, as in micro-wire EDM, tungsten wire is sometimes utilized [34, 35, 36]. It is well established that wire materials can become deposited on the machined surface [37, 27, 38, 39, 40]. This phenomenon has shown some dependence on machine polarity [38].

Wire speed does not seem to influence surface roughness [21], though increasing wire tension can serve to minimize surface roughness [22]. It has been proposed that the average wire temperature distribution along the wire axis is only $100^{\circ} \mathrm{C}$, thus the local elevated temperatures must be the important factor 41. Wire rupture, caused by high temperature and power density, can be limited by controlling the sparking frequency [42]. The melting temperature and work function of the wire and its coating affect the maximum cutting speed [43]. It has also been put forth that since the electric field increases with radius of curvature, wire with more sharp edges might increase the cutting efficiency [44].

Many researchers have studied micro-wire-EDM [45, 46, 34, 35, 47, 48]. Although experimentation has been done over a range of wire diameters, little work appears to have examined wire electrode size effects. It is known that the material removal rate decreases for thinner wires as a result of the lower allowable discharge current [49]. Additionally, the power supply, or pulse generator, must be more sensitive and provide a finer degree of control than is necessary in conventional wire-EDM [45, 46, 48]. Due to the small nature of the parts and electrode (wire), handling can become difficult [50]. The limited back tension allowed by the narrow diameter wire causes part tolerances and accuracy to be more greatly affected by both the cutting forces [36], and the flow of the dielectric [47].

2.3.7 Table Feed Rate

In micro-wire-EDM, it has been found that a high table feed rate will contribute to a diminished gap, and consequently an increased short ratio [45]. Some researchers have found that the table feed rate has no effect on the surface roughness [51]. Others contend that there is an effect on surface roughness [20]. In trim cutting, a low table feed rate can effectively remove surface peaks and can also have a significant effect on the removal thickness of previously imparted recast layer [16].

2.3.8 Miscellaneous

Surface roughness and crack density increase with the open voltage [21].

2.4 Inconel 718

2.4.1 Background Information

Inconel 718 is an age hardening nickel base superalloy. It retains its strength across both high and low temperatures and has good corrosion resistance. It is used in aircraft turbine engines, as high temperature fasteners, as well as in cryogenic tanks [52]. Inconel 718 is readily weldable and machinable and was originally manufactured by the International Nickel Company [53]. The exact chemical composition of this alloy is shown below in Table 2.1. This alloy is also known as IN-718, Inco-718, alloy 718 and United Numbering System (UNS) N07718 [52]. It has been suggested that in recent times Inconel 718 has comprised more than 60% of total superalloy consumption 54].

Table 2.1: Chemical composition of Inconel 718 [1]

Element	Range (\%)
Ni	51.5
Fe	20.24
Cr	18.16
Nb	5.02
Mo	2.91
Ti	1.05
Al	0.62
Co	0.15
Si	0.08
Mn	0.07
Cu	0.06
C	0.05
P	0.008
Ta	0.003
B	0.003

At room temperature, annealed Inconel 718 has a density of $8.19 \mathrm{~g} / \mathrm{cm}^{3}$, thermal
conductivity of $11.2 \mathrm{~W} / \mathrm{m}-\mathrm{K}$, electrical resistivity of $127 \mathrm{microhm}-\mathrm{cm}$, and an elastic modulus of 200 GPa [55]. It has a yield strength of 434 MPa , a tensile strength of 855 MPa and a hardness of 95 HRB [1].

Inconel 718 has an austenitic face-centered cubic (FCC) structure. It is strengthened primarilly by the γ / \prime precipitate. This phase consists of body-centered tetragonal (BCT) $\mathrm{Ni}_{3} \mathrm{Nb}$. Alloying with chrome promotes resistance to environmental degradation [52]. Inconel 718 is often used in the solution and aged condition. In practice, a wide variety of heat treatments are used to impart various desired combinations of yield strength, tensile strength, toughness, grain size, fatigue properties, and corrosion resistance [56].

2.4.2 Wire-EDM of Inconel 718

Few publications relating to the wire-EDM of Inconel 718 have been found by the author. It has been shown that increasing the current pulse duration as well as the open voltage period tends to increase the surface roughness [23]. In solution treated and aged Inconel 718, it was shown that the wire-EDM cut surface increased in hardness above the parent material on the Rockwell C scale [51]. In a thin membrane of solution treated and aged Inconel 718, it was shown that the Vickers microhardness of the wire-EDM cut surface was raised above the bulk, and decreased as the distance from the cut surface increased. However, great variation in the microhardness was observed, and attributed to the variety of phases present. The cut surface also demonstrated an increase in copper content after machining [37].

2.5 Post-Processing

It has been shown above that EDM can impart many undesirable characteristics on a machined surface. These may include large surface roughness, surface cracks, residual stresses, changes in hardness, surface contamination, surface oxidation as well as
other metallurgical changes. Consequently, it is often necessary to post-process wireEDM cut parts to alleviate these problems. A variety of post-processing methods are available and a survey of these is given below.

2.5.1 Abrasive Flow Machining

One popular abrasive finishing technique is known as abrasive flow machining (AFM). Here, abrasive media is extruded through a machine to deburr, polish and radius part surfaces and edges. Extrusion pressure, flow volume and speed can be controlled to allow stock removal controllable to $30 \mu \mathrm{~m}$. Tooling can direct media to desired areas, including internal passageways. High viscosity media can uniformly abrade walls of passages, while lower viscosity media can radius edges, and reach small internal regions. AFM is a reliable method to remove EDM recast layer, yielding up to a 90% improvement in surface finish [57]. This allows for the elimination of finishing or trim cuts in wire-EDM 58. To avoid the cost of commercial abrasive media, a mixture of vinyl-silicon polymer and abrasive particles can be substituted while still satisfactorily removing wire-EDM caused recast layer [59].

2.5.2 Abrasive Micro-Blasting

A similar process to shot peening is abrasive micro-blasting, although the media is abrasive silicon carbide (SiC). Experiments conducted with wire-EDM cut tungsten carbide-cobalt (WC-Co) composite revealed that the EDM induced recast layer and heat affected zone (HAZ) could be quickly eroded with 4 to $20 \mu \mathrm{~m} \mathrm{SiC}$ abrasives. Compressive stresses can also be imparted [60].

2.5.3 Electrochemical Processes

Much work has been devoted to the realm of electrochemical processes. In electrochemical processing, the workpiece is immersed in an electrolyte bath and a current is passed between a cathodic electrode and the anodic workpiece. The current, electrode
gap distance, electrolyte flow rate, electrolyte temperature, and type of electrolyte all impact the workpiece surface dissolution rate [61]. The current can be constant or pulsed, and the polarity can be reversed [62]. Electrochemical machining has been used to remove EDM imparted recast layer and improve surface finish [63, 64]. Alternatively, electrochemical processes can be combined with die-sinking EDM [61, 65] and wire-EDM [66] to form a single process.

Due to their high resistance to corrosion, nickel-base superalloys will form a thin oxide coating on their surface during ECM. Consequently high voltage or current is necessary to break this film. Pulse reverse current electrochemical machining (PRECM) has displayed improved machining of Inconel 718 over direct or pulse current electrochemical machining 62].

One issue with electrochemical processing is due to environmental concerns. Although the electrolytes can be physiologically safe, heavy metals can accumulate in the electrolyte. It is believed that toxic chromate, nitrate and ammonia may be adsorbed to metal hydroxides in the electro-chemical slurry, causing the necessity for detoxification of the hydroxide slurries to impact the economic efficiency of this process [67].

2.5.4 Loose Abrasive Mass Finishing

Loose abrasive mass finishing is also known as tumbling. It has been shown to improve part surface finish, as well as induce compressive residual stress [68, 5]. Additionally, scale, dirt and oil can be removed with minimal part handling [5].

Tumbling can be divided into three main types: rotary, vibratory and centrifugal. Rotary tumbling is the oldest form of form of finishing, and is characterized by the "climb and slide" motion. In this process, parts roll around in a mass of media inside a drum rotating about a single axis. The speed of rotation, and size and configuration of drum can be altered. In vibratory tumbling, an eccentric weight on a drive shaft
causes vibration of a tub or bowl. This vessel contains the media and parts, and is mounted on springs. The amplitude of vibration and frequency of vibration can be altered. Centrifugal equipment uses a spinning disk located at the bottom of the vessel to cause a rotation of the parts and media. Although the action is similar to rotary tumbling, the work is accomplished six to twenty times faster. The speed and orientation of the rotating disk can be altered, as well as the size of the process chamber 69.

The media can be composed of steel, ceramic, plastic, or wood. Abrasive media is generally aluminum oxide, either natural or synthetic, fused silicon carbide, or a preformed ceramic or resin bonded media containing aluminum oxide, silica or silicon carbide. The media is available in a variety of shapes, as shown in Figure 2.7. It is important to select the proper media to part ratio. Typical ratios range from 1:1 to 10:1. A higher ratio delivers a greater finish quality, but requires a greater amount of media. Another critical factor is the compound solution. The compound should serve to clean, lubricate and inhibit corrosion or oxidation [5].

Figure 2.7: Media shapes which are available for tumbling [5]

2.5.5 Shot Peening

Shot peening is a process in which media, usually steel or glass, are impacted upon the surface of a part many times. This cold working process does not remove material but does plastically deform a shallow surface layer and induce compressive residual stresses on the surface. Shot peening can increase the fatigue life of a part, as well as increase its hardness and prevent stress corrosion. It effects only the surface of a part, and is limited in how well it can reach internal radii [70]. The elevated temperature fatigue life of nickel base super alloys has been shown to increase with shot peening [71]. The surface roughness, hardness, and fatigue life of wire-EDM cut thin Inconel 718 membranes was also improved by shot peening [37].

2.5.6 Other Processes

Other more limited post-processing techniques have been investigated. These include magnetic abrasive finishing (MAF) in which EDM induced recast layer and microcracks are removed from a shaft using a slurry of SiC abrasive and steel grit in a magnetic field. A method for expanding this technique to other part geometries has been proposed, but not yet demonstrated [72]. A method of combined ball-burnishing and EDM operation has been demonstrated and shown to improve the surface roughness and eliminate surface cracks and pores [73]. Neither of these methods are suitable for general purpose use.

2.6 Summary

Electrical discharge machining is a process which has existed in principle for 250 years, but which was not developed in practice until the 1940s. It has since become one of the most established non-traditional machining processes. This research focuses on wire-EDM, in which the electrode is a traveling wire.

Numerous process variables exist, although drawing broad conclusions can at times
be difficult due to machine and material specificities. Regardless, it is clear that increasing the energy per spark, due to increasing the peak current or the current pulse duration, serves to increase both the surface roughness and recast layer thickness. Metallurgical changes, and resulting characteristics such as grain size and hardness are specific to material classes. Dielectric and wire variables seem to have secondary effects, although they must be set to an appropriate value to prevent wire rupture. Although a range of wire diameters are available, no report of the wire diameter size effect has been found. The effects of table feed rate seem somewhat in dispute, likely due to difficulties previously mentioned.

Inonel 718 is perhaps the most commonly used superalloy. It has high nickel and chrome content, and undoubtedly exhibits different metallurgical properties than the tool and die steels most commonly researched in EDM. Ramakrishnan and Karunamoorthy [23] examined surface roughness of wire-EDM of Inconel 718, but no other aspects of surface integrity, and did not report what heat treatment the workpieces had undergone. Jeelani and Collins [51] found the Rockwell C hardness of a wire-EDM cut surface of age hardened Inconel 718 to be higher than the original workpiece, but did not report the wire-EDM parameters. Lastly, Fordham et. al. [37] studied wire-EDM of a 0.33 mm thick membrane of aged and solution treated Inconel 718. They found the Vickers microhardness to decrease with distance from the edge, but could not measure the hardness of the actual recast layer. Again, wire-EDM parameters were not reported. There is clear need for further investigations into the recast layer and surface integrity in wire-EDM of Inconel 718.

It is established that the surface integrity of wire-EDM cut parts has a detrimental effect on their service life. Consequently, a variety of post-processing steps can be taken to rectify this fault. These may include abrasive flow machining, abrasive micro-blasting, electrochemical machining or polishing, loose abrasive mass finishing, and shot peening. Each has a different combination of performance, cost and time.

While post-processing techniques for wire-EDM cut parts have been reported, they are either expensive, inaccurate, or pose environmental hazards. There is a need for a simple and low cost post-processing solution for wire-EDM cut parts.

CHAPTER III

RECAST LAYER THICKNESS EXPERIMENTS

3.1 Goal E3 Approach

This chapter details the steps taken to find the impact of process parameters in wireEDM of Inconel 718 on the resulting recast layer. Before the experiments could be undertaken, it was necessary to fully understand the process variables. The stochastic nature of wire-EDM required that the pulse generator signal be recorded and analyzed. Once this was achieved, preliminary experiments were conducted to find the available parameters and the range over which they could be varied. An experiment was designed and conducted to test the effect of each variable. The measured output, recast layer thickness, was analyzed. Through these experiments, the major contributing factors could be identified.

3.2 Brother HS-3100

All of the wire-EDM cuts reported here were made on a Brother HS-3100 Wire-EDM machine, as shown in Figure 3.1. This machine is capable of CNC motion in two-axes and with the appropriate wire guides can accept wire from a diameter of $100 \mu \mathrm{~m}$ to $300 \mu \mathrm{~m}$. The machine has a reservoir of water, which acts both as a dielectric and as a flushing medium for the swarf. The machine controls the conductivity of the water by de-ionizing it with a resin tank. A chiller maintains the water at a constant temperature. This particular model is an operator-oriented machine tool. While it has a range of parameters which can be varied, given in Table 3.1, it was often not clear what each parameter controlled. Hence, it was necessary to develop a method to measure the pulse generator signal directly, as explained in the next section. Also, the
machine contained several "auto-controls" which attempted to maximize the cutting rate while preventing wire ruptures. These features were disabled for the extent of this research.

Figure 3.1: Brother HS-3100 Wire-EDM

3.3 Measurements

3.3.1 Data Acquisition

A schematic of the system for capturing the voltage and current waveforms of the electrical discharges is shown below in Figure 3.2. The current carrying wires connecting the pulse generator to the brushes were passed through a Pearson Electronics model 110 current monitor. This sensor operates on the principle of induction and was chosen because of its peak measurable current of 5000 A , maximum RMS current of 65 A and its usable rise time of 13 ns . It also had a safety advantage in that it

Table 3.1: Range of machine settings for the Brother HS-3100

Machine Parameter	Setting	Range
Table feed rate	-	0.061 to $304.8 \mathrm{~mm} / \mathrm{min}$
Spark cycle	-	6 to $999 \mu \mathrm{~s}$
Spark Energy	2 to 18	0.073 ± 0.03 to $2.00 \pm 0.16 \mu \mathrm{~s}, 119 \pm 12$ to $601 \pm 60 \mathrm{~A}$
Wire Speed	1 to 25	48 to $261 \mathrm{~mm} / \mathrm{sec}$
Wire Tension	0 to 25	200 to 2500 gf
Target Gap Voltage	-	30 to 70 V
Water Conductivity	0 to 6	8 to $65 \mu \mathrm{~S} / \mathrm{cm}$
Wire Diameter	-	100 to $300 \mu \mathrm{~m}$
Stabilizer	1 to 3	-
Dielectric Flow Rate	-	0 to $8 \ell / \mathrm{min}$

remained electrically isolated from the machine circuitry. The voltage probe was a Stack Electronics CP-209 and was attached to the brush. The bandwidth necessary to accurately monitor the signal was too great for any available PC-based data acquisition system. Therefore, a Tektronix model TDS420A oscilloscope was employed to record the signal. From there it was transfered to a PC for analysis. A detailed description of the experimental setup is given in Appendix A.

3.3.2 Data Analysis

Once the current and voltage data were obtained, it was necessary to analyze them to determine the various aspects of a signal. A simple program was written in Matlab to complete this task. The code for this program can be found in Appendix A. A sample set of analyzed waveforms is given below in Figures 3.3 and 3.4.

A close-up of an electrical discharge, shown in Figure 3.5, reveals that at the end of the discharge the current reverses direction and the voltage becomes negative. This can be attributed to the inevitable inductance present in the discharge circuit [15]. It is also seen that the voltage signal indicates some presence of ringing, which can again be attributed to the inherent inductance and capacitance of the circuit [74].

From this data, the following metrics could be calculated: average peak discharge

Figure 3.2: Schematic of voltage and current measurements on Brother HS-3100 Wire-EDM
current, average current pulse duration, average sparking frequency, average openvoltage time, average voltage off-time, average energy per spark, and average power. The report generated for the sample conditions shown in Figures 3.3 and 3.4 is shown in Table 3.2. The definitions of these measures are given in Figure 2.4. Bear in mind that the term spark energy refers to a machine setting, while energy per spark refers to the actual quantity of energy contained within each spark.

Due to a limitation in the oscilloscope, a maximum of 3 ms worth of data could recorded. Thus, for any given set of parameters, numerous data sets were collected and averaged to obtain a single set of values. From this type of analysis, it was confirmed that the wire-EDM process is stochastic in nature. From visual inspection of Figures 3.3 and 3.4 , it can be seen that while each spark had a similar duration and peak
Table 3.2: Sample report of analysis for current and voltage waveforms Energy
per Spark [mJ]

 Average discharge current pulse duration is 1.09 microseconds Average sparking frequency is 15.33 kHz Average open-voltage time is 52.53 microseconds Peak
Current Voltage [V]

Figure 3.3: Sample current $[\mathrm{A}]$ and voltage $[\mathrm{V}]$ waveforms
current, imparting a similar quantity of energy, the period of time between sparks, largely dictated by the open-voltage time, varied greatly. This further demonstrates the need to monitor the actual pulse signal in place of simply relying on the machine settings.

3.3.3 Correlation with Machine Settings

Using the type of analysis shown in the preceding section, the EDM signals due to a variety of combinations of machine settings were studied to observe the effects of each setting. For these tests, four machine settings expected to have the greatest impact on the signal parameters were chosen: spark energy, spark cycle, wire diameter and table feed rate. Although choosing appropriate machine settings can be difficult [75], once a working set of parameters was identified, the maximum ranges over which

Figure 3.4: Sample power $[\mathrm{kW}]$ and energy $[J]$ waveforms
they could be varied were determined. The qualitative effects of the varied factors are given in Table 3.3.

It is apparent that the effects of the machine settings on the signal parameters are confounded with one another. What can be concluded from this experiment is that the spark energy machine setting tends to increase numerous factors which lead to an increased energy per spark. The spark cycle setting is well correlated with the voltage off-time. While not directly related to the discharge signal, increases in table feed rate lead to increases in the sparking frequency. Lastly, it is found that a larger diameter wire results in greater sparking frequency, peak discharge current, and power.

Figure 3.5: Sample close-up of current $[\mathrm{A}]$ and voltage $[\mathrm{V}]$ for a discharge

3.4 Design of Experiments

3.4.1 Process Parameters

From the literature survey conducted in Chapter II, it is clear that several factors can contribute to recast layer formation. However, many of the factors reported in the literature are machine specific, or cannot be directly controlled on the Brother HS3100. Therefore, the selected machine settings were chosen to alter the parameters reported in literature which in turn are believed to have the largest impact on recast layer formation. Wire-EDM differs from die-sinking EDM in that if the settings are not chosen properly, the wire electrode will fail. This can occur either from a table feed rate which is too high and allows the wire to come in contact with the workpiece,

Table 3.3: Machine setting to signal parameter correlations for the Brother HS-3100

Machine Setting	Signal Parameter
Spark Energy \uparrow	Peak Discharge Current \uparrow
	Current Pulse Duration \uparrow
	Sparking Frequency \downarrow
	Open-Voltage Time \uparrow
	Voltage Off-Time \downarrow
	Energy per Spark \uparrow
	Power \uparrow
Spark Cycle \uparrow	Voltage Off-Time \uparrow
Table Feed Rate \uparrow	Sparking Frequency \uparrow Open Voltage Time \downarrow
Wire Diameter \uparrow	Sparking Frequency \uparrow Power \uparrow

or from sparking parameters under which the wire electrode is eroded to the point that it fails under the normal tension at which it is held.

The material examined in these experiments was a sheet of annealed 3.962 mm thick Inconel 718. The chemical composition of this alloy can be found in Table 2.1. Tests were conducted to find the widest range of feasible machine settings when cutting this particular alloy. Based on these results, a factorial design of experiments was chosen, and can be seen below in Table 3.4. Note that the wire diameter and spark energy settings are not balanced. This was done to maximize the effect of spark energy. The $100 \mu \mathrm{~m}$ diameter wire was unable to sustain a spark energy setting greater than 8 , while the $250 \mu \mathrm{~m}$ wire was able to cut up to a setting of 18 . This element of the design must be considered in the later analysis. Both size wire diameters were made of hard brass with an electrical resistivity of $9 \mu \Omega-\mathrm{cm}$. Additionally, the wire transport speed was altered from $261 \mathrm{~mm} / \mathrm{sec}$ with the smaller diameter wire to $48 \mathrm{~mm} / \mathrm{sec}$ with the larger diameter wire. This was done to minimize excessive consumption of the larger diameter wire. At the speeds indicated, the mass flow rate of the two wire diameters was held to within 14%, the best achievable on the Brother HS-3100. All other parameters were held constant across all tests. Wire tension was
kept at 300 gf , water conductivity was maintained at $37 \mu \mathrm{~S} / \mathrm{cm}$, and the dielectric flow rate in the upper and lower nozzles was held at $2 \ell / \mathrm{min}$. The machine-specific stabilizer function, which attempts to avoid wire breakage by limiting the number of sparks that can occur in a given time, was set to a value of 1 . This serves to limit the impact of the Stabilizer as much as possible. From observation of the pulse signal, it was obvious when the Stabilizer was engaged and consequently these machine settings were later avoided.

Table 3.4: Experimental Design

Wire Diameter $[\mu \mathrm{m}]$	Table Feed Rate $[\mathrm{mm} / \mathrm{min}]$	Spark Cycle $[\mu \mathrm{s}]$	Spark Energy $[$ setting $]$
100	1.969	16	4
100	1.969	16	6
100	1.969	16	8
100	1.969	28	4
100	1.969	28	6
100	1.969	28	8
100	2.223	16	4
100	2.223	16	6
100	2.223	16	8
100	2.223	28	4
100	2.223	28	6
100	2.223	28	8
250	1.969	16	6
250	1.969	16	12
250	1.969	16	18
250	1.969	28	6
250	1.969	28	12
250	1.969	28	18
250	2.223	16	6
250	2.223	16	12
250	2.223	16	18
250	2.223	28	6
250	2.223	28	12
250	2.223	28	18

3.4.2 Experimental Procedure

At each of the conditions listed in Table 3.4 , a 6.3 mm by 12.7 mm specimen was cut out of the Inconel 718 sheet. The nomimal chemical composition of this alloy is detailed in Table 2.1. Observation of the recast layer necessitated that each specimen be metallographically prepared. The first step was to thoroughly clean the specimen in acetone, then in sodium hydroxide. Using the Buehler Edgemet kit, each specimen underwent an electroless nickel plating process to protect specimen edges. This nickel layer was nominally $25 \mu \mathrm{~m}$ in thickness. Specimens were next mounted in EpoMet G, a thermosetting epoxy resin to aid in further preparation. A drawing detailing the orientation of the specimens is shown in Figure 3.6.

Figure 3.6: Drawing demonstrating the orientation of a specimen as it is mounted in epoxy

Once mounted, the specimens were ground and polished on a Buehler Ecomet 6

Variable Speed Grinder-Polisher with an Automet 2 Power Head according to the procedure outlined in Table 3.5. This procedure is based upon advice given by an expert at Buehler [76]. Carbimet is a silicon carbide sandpaper and MasterPrep is a $0.05 \mu \mathrm{~m}$ agglomerate-free seeded-gel alumina suspension.

Table 3.5: Grinding and polishing procedure

Step	Abrasive	Time $[\mathrm{min}]$	Speed $[\mathrm{RPM}]$	Load $[\mathrm{N}]$	Notes
1	180 grit 8" Carbimet paper	$4: 00$	250 comp.	36	Repeat until plane
2	240 grit 8" Carbimet paper	$5: 00$	250 comp.	31	
3	320 grit $8 "$ Carbimet paper	$5: 00$	250 comp.	27	
4	400 grit $8 "$ Carbimet paper	$5: 00$	250 comp.	22	
5	600 grit $8 "$ Carbimet paper	$5: 00$	250 comp.	22	
6	3 m Diamond Suspension	$3: 00$	150 comp.	18	Longer time if
	with 8" Texmet 1500 Pad 7 MasterPrep Solution with $3: 00$ 150 contra. 18	Longer time if			
	Microcloth				necessary

At this point, the specimens could be observed under an optical microscope, as seen in Figure 3.7. While some recast material is visible, it is necessary to etch the specimen to fully observe the recast layer. In practice, Inconel 718 is frequently electrolytically etched to reveal its microstructure. For simplicity, this option was avoided in favor of a simpler method. Several resources were used to find possible etching procedures [76, 77, 78, 79]. Approximately twenty different combinations of etchants, concentrations and times were attempted to determine the best procedure. Etching the specimens in a mixture composed of $25 \mathrm{ml} \mathrm{HCl}, 5 \mathrm{ml} \mathrm{HNO} 3$ and 5 ml glycerol for 3 minutes was found to provide the best results. The specimen from Figure 3.7 has been etched and is shown again in Figure 3.8, although the micrograph is of a different region.

For the purpose of these experiments, the recast layer has been assumed to be the region between the nickel plating and the dark horizontal lines which appear with etching. These dark lines are not thought to be micro-cracks, primarily because they are not revealed until after etching. Cracks would form in order to relieve tensile
residual stresses imparted during the machining process. From the analysis of these stresses in Chapter IV, any cracks would be expected to appear at the outer edge of the recast material and run normal to the surface. The darkened regions of the micrograph were most likely preferentially etched due to their chemical composition, which has been altered during the machining process. Although only the upper portion of this region appears darkened, the lower portion has been included in the recast layer thickness measurements as it is bounded by the dark lines which have also been chemically altered from the original workpiece. Notice how the thickness of the recast layer varies across the specimen.

Figure 3.7: Micrograph of polished, but un-etched specimen cut under the following machine settings: wire diameter of $250 \mu \mathrm{~m}$, table feed rate of $2.223 \mathrm{~mm} / \mathrm{min}$, spark cycle setting of $28 \mu \mathrm{~s}$, spark energy setting of 18

The selected output for these experiments is the recast layer thickness. Due to

Figure 3.8: Micrograph of polished and etched specimen cut under the following machine settings: wire diameter of $250 \mu \mathrm{~m}$, table feed rate of $2.223 \mathrm{~mm} / \mathrm{min}$, spark cycle setting of $28 \mu \mathrm{~s}$, spark energy setting of 18
the variable nature of the recast layers observed, an average must be taken. The best results were obtained when an average recast layer thickness was calculated by measuring the area of the recast material and dividing by the length of the measurement, as shown in Figure 3.9. The recast area was always measured in three different location on the specimen. However, in cases where the variance between measurements was deemed sufficiently large, measurements at additional locations were taken. Area measurements were made by importing the micrographs into AutoCAD 2007 and tracing a polyline around the perimeter of the recast region.

Figure 3.9: Example of how average recast layer thickness measurements were made

3.5 Results

3.5.1 Results

The average recast layer thickness measurements for each test condition, as well as the analyzed EDM signal parameters can be seen in Table 3.6. The measurements comprising each average recast layer thickness measurement are found in Appendix B. Notice the large variance in both the EDM signal parameters and in the measured average recast layer thicknesses. While average recast layer thickness measurements were taken from several locations of each specimen, no replicates of the actual cutting experiments were conducted.
Table 3．6：Average recast layer thickness measurements and EDM signal Parameters

	\forall 0 ∞ サ 0 ∞ 0 0 0 ∞ ∞ ∞ \cdots -1 \sim \sim \sim	$\left\lvert\, \begin{array}{llllll} \forall & 0 & \infty & H & 0 & \infty \\ & & & & & \\ 0 & 0 & 0 & \infty & \infty & \infty \\ \cdots & -1 & \cdots & N & N \end{array}\right.$		

Table 3.7: Analysis of Variance (ANOVA) for cases where spark energy is set to 6 to determine the effect of wire diameter on recast layer thickness

Degrees Sequental Adjusted Adjusted
of Sum of Sum of Mean of

Source	Freedom	Squares	Squares	Squares	F-statistic	p-value
Wire Dia.	1	1.488	1.488	1.488	1.39	0.303
Feed Rate	1	0.202	0.202	0.202	0.19	0.686
Spark Cycle	1	0.108	0.108	0.108	0.1	0.766
Error	4	4.266	4.266	1.067		
Total	7	6.064				

3.5.2 Analysis

Due to the unbalanced design, analysis of the experiments is complicated by the correlation between wire diameter and spark energy settings. Consequently, the first analysis will be to determine the influence of wire diameter on average recast layer thickness in Inconel 718. Performing an Analysis of Variance (ANOVA) on only the cases where spark energy was set to a level of 6 will allow for such a determination to be made. The results of the ANOVA are seen in Table 3.7. The p-value for the effect of wire diameter on recast layer thickness is 0.303 , indicating an insignificant effect. For the following analyses, it will be assumed that, over the range of values measured, the effect of wire diameter is negligible.

Performing an ANOVA on the complete dataset, found in Table 3.8, confirms the assumption that wire diameter effect on recast layer thickness is negligible. With an $\alpha=0.05$ significance level, the spark energy setting is a significant parameter, and with a $\alpha=0.10$ level, table feed rate is also significant. The main effects are shown in Figure 3.10.

By applying the machine setting to signal parameter trends given in Table 3.3, the effect of the underlying EDM signal parameters can be found. As table feed rate increases, average recast layer thickness decreases. This suggests that recast layer thickness increases with decreasing sparking frequency and increasing open-voltage time. A higher spark energy setting leads to thicker recast layer. This indicates that

Table 3.8: Analysis of Variance (ANOVA) to determine effect of machine settings on recast layer thickness

	Degrees of	Sequental Sum of Squares	Adjusted Sum of Squares	Adjusted Mean of Squares	F-statistic	p-value
Source	Freedom	Squar				
Wire Dia.	1	4.034	1.488	1.488	2.88	0.109
Feed Rate	1	2.042	2.042	2.042	3.96	0.064
Spark Cycle	1	0.028	0.028	0.028	0.05	0.819
Spark Energy	4	8.075	8.075	2.019	3.91	0.021
Error	16	8.253	8.253	0.516		
Total	23	22.432				

Figure 3.10: Main effects of machine settings on average recast layer thickness [$\mu \mathrm{m}$]

Table 3.9: Pearson correlation between EDM signal parameters and average recast layer thickness

	Peak Current	Pulse Duration	Freq.	Open- Voltage Time	Voltage Off-Time	Energy per Spark	Power
Correlation Coefficient	0.508	0.555	-0.560	0.516	-0.303	0.475	0.190
p-value	0.011	0.005	0.004	0.010	0.150	0.019	0.374

recast layer thickness increases with an increasing peak discharge current, current pulse duration, open-voltage time, energy per spark and power and with decreasing sparking frequency and voltage off-time.

An ANOVA cannot be performed directly on the actual EDM signal parameters, but similar results are obtained by utilizing the Pearson product moment correlation, which measures the degree of linear relationship between two variables. Table 3.9 shows the correlation coefficients and p-values for each correlation. The correlation coefficient ranges from -1 to +1 . A positive correlation coefficient indicates that the variables increase together, while a negative coefficient indicates that one increases as the other decreases. A correlation coefficient of 0 indicates no relationship between the variables. A p-value less than $\alpha=0.05$ indicates significance. This analysis suggests that average recast layer thickness increases with increasing average peak pulse current, current pulse duration, open-voltage time and energy per spark and with decreasing frequency. This largely agrees with with what was found from the EDM signal parameters correlated with the machine settings found to be significant by the ANOVA. The correlated ANOVA analysis indicated that power and voltageoff time were significant factors, while the Pearson correlation did not. This suggests that although power and voltage-off time are tied to changes in the spark energy setting, it is the other factors, peak discharge current, current pulse duration, frequency, open-voltage time and energy per spark which have more dominant effects over this range.

The literature survey conducted in Chapter II found that it has been reported by several researchers that, for other alloys, recast layer thickness tends to increase with increased current pulse duration and increased energy per spark. The findings from the experiments conducted here match those results, and augment them with the fact that recast layer is also affected by peak pulse current, open-voltage time, and decreasing frequency.

Plots of average recast layer thickness versus the aforementioned parameters are given in Figures 3.11-3.15. In each plot, the wide dispersion in recast layer thickness versus the varied parameter is clear. Nonetheless, over a wide enough range, the statistically significant trends become evident. Note that the figures distinguish the data points collected with each of the two wire diameters from each other. The linear trend line is based on the complete data set, as the wire diameter was shown to have an insignificant effect on recast layer thickness.

The increase in recast layer thickness with decreasing frequency can be explained by the correlation between frequency and energy per spark. As the energy per spark increases, the frequency correspondingly decreases, see Figure 3.16. It is likely the increase in energy per spark that drives the increased recast layer thickness rather than the decrease in frequency. With greater energy release in each spark, the quantity of workpiece material which is melted is greater, resulting in a larger quantity of molten material which resolidifies to form the recast layer. Since the voltage on the Brother HS-3100 is fixed, the same argument could be made for increases in the current leading to greater recast layer thicknesses. As sparking frequency decreases, with constant table feed rate and voltage-off time, open-voltage time will correspondingly increase. Thus, the open-voltage time is correlated with increased recast layer thickness because sparking frequency decreases with increasing energy per spark. Recast layer thickness decreases with increasing table feed rate because as the table feed rate increases, the sparking frequency increases, and energy per spark decreases. The peak discharge

Figure 3.11: Average recast layer thickness [$\mu \mathrm{m}$] plotted against average sparking frequency $[\mathrm{kHz}]$
current and current pulse duration, and equivalently the energy per spark, are the fundamental parameters which increase recast layer thickness in wire-EDM. This is in agreement with what has been found for other workpiece materials [16, 24, 21].

3.6 Summary

In order to find the influence of various wire-EDM parameters on the recast layer thickness, a set of experiments were undertaken. These experiments were conducted on a Brother HS-3100 Wire-EDM. Due to machine limitations, the exact signal parameters could not be varied directly. Instead, it was necessary to alter machine settings and correlate them with more general parameters. A 36-run experimental design was conducted. Each specimen was nickel plated, mounted, polished and etched to reveal the recast layer. Numerous measurements were taken from each specimen to calculate an average recast layer thickness for each condition. It was found that the diameter of the wire electrode did not demonstrate an effect on recast layer thickness. However, recast layer thickness decreased with increasing table feed rate. Additionally, recast

Figure 3.12: Average recast layer thickness [$\mu \mathrm{m}$] plotted against average energy per spark [mJ]

Figure 3.13: Average recast layer thickness $[\mu \mathrm{m}]$ plotted against average openvoltage time $[\mu \mathrm{s}]$

Figure 3.14: Average recast layer thickness [$\mu \mathrm{m}$] plotted against average peak discharge current [A]

Figure 3.15: Average recast layer thickness $[\mu \mathrm{m}]$ plotted against average current pulse duration $[\mu \mathrm{s}]$

Figure 3.16: Sparking frequency $[\mathrm{kHz}]$ plotted against energy per spark [mJ]
layer thickness increased with an increasing energy per spark, peak discharge current, current pulse duration, and open-voltage time and decreasing sparking frequency. Further, it was determined that the underlying cause for increases in average recast layer thickness were increases in peak discharge current, current pulse duration and energy per spark.

CHAPTER IV

RECAST LAYER CHARACTERIZATION

4.1 Goal E3 Approach

In this chapter, the recast layer formed due to wire-EDM of Inconel 718 will be characterized through several methods. Wherever possible, the effects of the wire-EDM process parameters on the following characterizations will be examined: scanning electron microscopy to observe surface morphology, white light interferometry to measure surface roughness, electron probe microanalysis to find chemical composition, x-ray diffraction to detect and measure residual stresses and nano-indentation hardness testing to determine hardness and elastic modulus. From what is learned, a better understanding of the properties of the recast layer can be gained. This will serve as a guide in understanding the effects of wire-EDM on a surface, as well as in the post-processing steps discussed in the following chapter.

4.2 Scanning Electron Microscopy

Several scanning electron microscope (SEM) images were taken of a specimen to characterize surface morphology. Figures 4.1-4.4 are taken from a Hitachi S3400N SEM with an accelerating voltage of 15.0 kV and a working distance of 17.9 mm . The specimen was machined with the following machine settings: wire diameter of $100 \mu \mathrm{~m}$, table feed rate of $1.969 \mathrm{~mm} / \mathrm{min}$, spark energy setting of 8 and a spark cycle setting of $28 \mu \mathrm{~s}$. Notice the overlapping craters of the spark eroded surface. In these figures, the wire electrode was oriented vertically, and the table fed from left to right. These micrographs demonstrate a surface similar to what has been previously reported for wire-EDM [16, 17, 26, 39, 27, 38]. However, since only one sample was able to be
analyzed with SEM, no observation on the influence of the experimental variables on
crater size or morphology can be made.

Figure 4.1: SEM image of wire-EDM cut surface at 200X

Figure 4.2: SEM image of wire-EDM cut surface at 500X

Figure 4.3: SEM image of wire-EDM cut surface at 1000X

Figure 4.4: SEM image of wire-EDM cut surface at 3000X

4.3 Surface Roughness Measurements

As discussed in Chapter II, surface roughness has been correlated to certain machine settings, most notably the peak pulse current. To analyze surface roughness, four samples, machined with two wire diameters, and two energies per spark were selected. These particular specimens were chosen to isolate the effects of wire diameter and energy per spark. Although the high and low levels of energy per spark are not equal across wire diameters, the effect can still be viewed within a wire diameter. Table 4.1 shows the machine settings, selected discharge signal parameters and resulting recast layer thicknesses for the selected samples. The complete data for these machine settings can be found in Table 3.6.

Table 4.1: Average recast layer thickness measurements and selected EDM signal parameters for surface roughness measurement samples

Sample	Table				Current				Recast
	Wire Dia. [μm]	Feed Rate [mm/min]	Spark Cycle [$\mu \mathrm{s}$]	Spark Energy	Peak Current $[\mathrm{A}]$	Pulse Dur. [$\mu \mathrm{s}$]	Freq. [kHz]	Energy /Spark [mJ]	Layer Thickness $[\mu \mathrm{m}]$
1	100	2.223	16	4	88.0	0.90	16.0	2.39	5.88
2	100	1.969	28	8	134.0	1.20	8.9	7.73	7.63
3	250	2.223	28	6	121.7	1.03	20.7	3.42	5.94
4	250	1.969	28	18	313.3	1.90	2.6	23.03	7.84

All of the surface roughness measurements were made on a Zygo NewView 200 white-light interferometer. Figure 4.5 shows a sample measurement. The instrument software, MetroPro 7.2.2, calculates the RMS surface roughness over the area of measurement. The readings were not filtered in any way other than to remove the least-squares plane. An average was taken of three measurements, each from a different location on a specimen. The complete surface roughness data can be found in Appendix C. The average RMS surface roughness values are plotted by sample in Figure 4.6. The error bars denote a single standard deviation in the data above and below each mean value. Plotting surface roughness against energy per spark, Figure 4.7, it can clearly be seen that surface roughness increases with energy per spark.

Figure 4.5: Sample image from Zygo NewView 200

This matches what others have reported [16, 21]. Turning now to surface roughness as a function of wire diameter, shown in Figure 4.8, it can be seen that a similar trend exists between energy per spark and RMS surface roughness within either wire diameter. The data indicates that surface roughness is slightly larger with a larger diameter wire electrode. If significant, this effect is not due to differences in sparking frequency, as the average frequencies for the two wires are approximately equal. However, with the larger wire diameter the relative wire transport speed was lower and the gap width was larger, raising the possibility that one of these factors could contribute to this phenomenon.

Figure 4.6: RMS surface roughness $[\mu \mathrm{m}]$, sorted by sample

Figure 4.7: RMS surface roughness $[\mu \mathrm{m}]$, sorted by energy per spark $[\mathrm{mJ}]$

Figure 4.8: RMS surface roughness $[\mu \mathrm{m}]$, sorted by wire diameter $[\mu \mathrm{m}]$ and energy per spark [mJ]

4.4 Electron Probe Microanalysis

4.4.1 Introduction

An Electron Probe Microanalyzer (EPMA) is an instrument similar to an SEM, but with an added x-ray detector which combines structural and compositional analysis of a small, local region in a single operation. When the specimen to be analyzed is bombarded with electrons, characteristic x-rays are emitted. These x-rays can be measured using two methods, energy dispersive spectrometry (EDS) or wavelength dispersive spectrometry (WDS). Most modern SEMs are capable of EDS. By making use of the photoelectric effect, an energy-dispersive x-ray spectrometer is able to count the electric pulses generated each time an x-ray strikes the detector. Each x-ray count is associated with energy units, and a histogram can be generated across the entire spectrum of energies to determine the elemental composition. WDS separates x-rays of different energies by using the wave nature of photons. X-rays are diffracted off of a crystal with a known interplanar spacing and by using Bragg's law, the wavelength of the x-ray can be determined [6].

Figure 4.9: Example comparison of spectra for EDS and WDS [6]

Figure 4.9 shows a comparison between the EDS and WDS spectra of a multicomponent glass. Notice the vastly superior resolution of WDS over EDS. However, this
resolution comes at a price. EDS can generate an observation of the entire spectrum nearly simultaneously, while WDS requires several time consuming crystal changes in order to observe the entire spectrum. EPMA has difficulty observing elements with atomic numbers less than fifteen due to the low energy of the x-rays. This means that notable elements such as oxygen and carbon are not typically viewable. A benefit of EPMA is elemental mapping. Elemental composition can be generated in tandem with SEM imaging, allowing the composition of a specimen to be matched with its morphology [6].

4.4.2 Experimental Procedure

The specimen to be analyzed was cut under the same conditions as the sample from the SEM analysis and Sample 2 from the surface roughness analysis: wire diameter of $100 \mu \mathrm{~m}$, table feed rate of $1.969 \mathrm{~mm} / \mathrm{min}$, spark energy setting of 8 and a spark cycle setting of $28 \mu \mathrm{~s}$. However, in this case, a 12° taper section was taken to make the recast layer appear thicker. This sample was mounted and prepared in the manner described in Table 3.5. To improve the microprobe image, the sample was coated with a 5 nm thick layer of carbon in a process similar to chemical vapor deposition (CVD). The instrument used in these measurements was a Jeol JXA-8200 SuperProbe Electron Probe Microanalyzer (EPMA). It is an SEM and is capable of wavelength and electron dispersive spectrometry (WDS/EDS). To form an elemental map of the surface, two scans were required. The first scan looked at aluminum, copper, silicon and niobium with WDS and titanium, iron, chrome and nickel with EDS. The second scan was for phosphorus, zinc and molybdenum with WDS. Titanium, iron, chrome and zinc exhibit characteristic energies which are sufficiently distinguishable to appear well resolved with EDS meaning little would be gained from an additional scan of WDS.

4.4.3 Results

A composition view of the analyzed area is shown in Figure 4.10. This composition view was generated through electron backscattering. White indicates higher atomic number elements, while black indicates lower atomic number elements. The relative intensity elemental maps of each element within the scan area are shown in the Figures 4.11-4.16. In these images, white indicates a high intensity and black indicates a low intensity. The reader is cautioned that the color scales from element to element are different. It is not possible to compare elemental intensity from one element to the next.

From observing the relative intensity of nickel in the area, Figure $4.14(\mathrm{a})$, it is evident that the nickel plated layer contains a higher nickel content than the workpiece, as would be expected. Figure $4.14(\mathrm{~b})$ shows that a much higher content of phosphorus is found in the nickel plating than the workpiece. This is also expected, as electroless nickel contains between 1-12\% phosphorous [80], and Inconel 718 contains only 0.008% phosphorus. Figures 4.12 (a) and 4.16 clearly indicate the presence of copper and zinc in the recast layer. Since Inconel 718 contains only 0.06% copper and no zinc, it is fair to say that these elements migrated into the workpiece from the wire electrode during cutting, as has been previously reported [27, 38, 39, 40]. It does not appear as though either element has diffused into the workpiece beyond the recast layer. It also appears that the some evidence of chrome depletion in the recast layer is present as the chrome intensity drops by 15% in the recast material. Additionally, nickel and iron drop by 8% and 7% respectivly when comparing the bulk workpiece to the recast layer.

One unexpected finding from this analysis is the presence of an inhomogeneity in the workpiece material. Chrome, iron, molybdenum and niobium all display a clear vertical banding of relative intensities in the workpiece material. These bands do not appear to align with the grain boundaries, which are relatively equiaxed. Although
faint in the original pictures, the raw data indicates that relative intensities vary as much as 3% between bands. These differences can be brought out by adjusting the colorscale of the image, as shown in Figure 4.17 for iron and moldbdenum. The source of this phenomenon is unknown, and it is unclear what role this may play in recast layer formation. At the least, it would likely contribute to the large variance observed in recast layer thickness.

A secondary electron image (SEI) of the analyzed area is displayed in Figure 4.18. An SEI conveys topographical data about the specimen. It is seen that the nickel plating is slightly recessed below the workpiece. This area was likely preferentially polished during the specimen preparation. Two SEM images of the analyzed area are shown in Figures 4.19 and 4.20 . These images were taken at progressively lower magnifications. It can be seen that the varying nature of the recast layer continues across the sample. The grains are also apparent here.

Figure 4.10: Composition view of the taper section to be analyzed (1000X)

Figure 4.11: Relative intensities of aluminum (WDS) and chrome (EDS) within the scan area

Figure 4.12: Relative intensities of copper (WDS) and iron (EDS) within the scan area

Figure 4.13: Relative intensities of molybdenum (WDS) and niobium (WDS) within the scan area

Figure 4.14: Relative intensities of nickel (EDS) and phosphorous (WDS) within the scan area

Figure 4.15: Relative intensities of silicon (WDS) and titanium (EDS) within the scan area

Figure 4.16: Relative intensity of zinc (WDS) within the scan area

Figure 4.17: Adjusted intensities of iron (EDS) and molybdenum (WDS) to highlight vertical banding inhomogenuity

Figure 4.18: 1000X SEI image of scan area

Figure 4.19: 400X SEM image of scan area

Figure 4.20: 100X SEM image of scan area

4.5 X-Ray Diffraction

4.5.1 Overview

In this section, residual stress imparted by the wire-EDM process will be measured using the method of x-ray diffraction. Residual stresses can originate in nearly every type of material processing, including machining, rolling, welding, heat treatments, and phase transformations, etc. Residual stresses will affect the strength of a part under an applied cyclic load, and can significantly affect fatigue life [7]. The rapid heating and cooling rates, as well as the possible resulting phase changes, present in wire-EDM will undoubtedly lead to the presence of residual stresses.

Figure 4.21: Diffraction of x-rays from crystal atomic planes [7]

X-ray diffraction is a non-destructive testing technique for measuring residual stresses. The fundamental principle on which x-ray diffraction operates is based on the fact that the atoms in a specimen are arranged in crystallographic planes. Observe Figure 4.21. Consider two parallel x-rays, ABC and DEF, impinging several
crystallographic planes of atoms. Prior to striking the surface, the waves are in-phase with one another. The reflected waves have now traveled different distances and may now be out of phase. Thus, either constructive or destructive interference between the reflected rays may result. If the distance GEH is an integral multiple (n) of the wavelength, λ, then the wave will be in constructive interference. This relationship can be described mathematically through Bragg's Law, Equation 4.1,

$$
\begin{equation*}
n \lambda=2 d \sin \theta \tag{4.1}
\end{equation*}
$$

where d is the interplanar, or lattice spacing and θ is the angle of incidence. Thus, for an x-ray beam of known Bragg angle and wavelength, the interplanar spacing can be calculated. If the interplanar spacing of an unstressed material is known, x-ray diffraction can be used to measure the interplanar spacing of the same material once it has been stressed. Any difference in the two distances will dictate the strain present in the material, which in turn can be used to find the residual stress.

A diagram of the actual orientation of the x-ray source, x-ray detector and the specimen is shown in Figure 4.22. The θ angle determines from which crystallographic plane the measurements are made. Varying Φ allows measurements to be made along different directions in the sample. In a polycrystalline material, ψ and χ can be altered to expose different grains while still measuring from the same set of planes, as shown in Figure 4.23. ψ is measured from the normal of the specimen face to the bisector of the angle between the incident x-ray and the reflected x-ray.

4.5.2 Experimental Procedure

X-ray diffraction residual stress measurements were made on four $3.962 \mathrm{~mm} \times 30$ $\mathrm{mm} \times 30 \mathrm{~mm}$ specimens of Inconel 718 cut under the conditions given in Table 4.1. All experiments were conducted on a MAC Science X-Ray Diffractometer with an 18 kW rotating anode generator, Scintag PTS goniometer and parallel beam optics

Figure 4.22: Orientation of x-ray source, x-ray detector and the specimen to be measured by x-ray diffraction
to eliminate sample surface displacement errors. The " ψ-goniometer geometry" was employed, and in all experiments χ was fixed at 0°. The specimen was not oscillated and copper radiation of wavelength $1.54059 \AA$ was used. The current was 200 mA and the voltage was 40 kV in all experiments.

The first step was to conduct a $\theta-2 \theta$ scan for phase identification. The non-wire-EDM cut face of the Sample 1 was observed at 2θ varying between 10° and 154.9° at 0.02° per step, and 1° per minute. The results, shown in Figure 4.24 , revealed several peaks. Two peaks at the highest 2θ values were selected for further analysis to maximize strain measurement sensitivity. These peaks were identified and corresponded to the (331) and (420) planes (in Miller indices) which correspond to 2θ angles of 137.7° and 146.2°, respectively.

The next step was to determine the unstressed lattice spacing of the two planes. This was accomplished by scanning the surface of the un-machined face of Sample 1,

Figure 4.23: Varying ψ exposes a different subset of grains to x-ray diffraction [7]

Figure 4.24: $\theta-2 \theta$ scan for Inconel $718,138^{\circ}$ and 146° peaks were further examined

Table 4.2: Scan Table for (331) plane, repeated with 2θ varying from 134° to 142° at 0.02° per step

$\phi\left[{ }^{\circ}\right]$	Nominal $2 \theta\left[{ }^{\circ}\right]$	$\theta\left[{ }^{\circ}\right]$	$\psi\left[{ }^{\circ}\right]$	$\Omega\left[{ }^{\circ}\right]$
0.0	137.5	68.8	-55.0	13.8
0.0	137.5	68.8	-45.2	23.6
0.0	137.5	68.8	-35.4	33.4
0.0	137.5	68.8	-24.2	44.6
0.0	137.5	68.8	0.0	68.8
0.0	137.5	68.8	24.2	93.0
0.0	137.5	68.8	35.4	104.2
0.0	137.5	68.8	45.2	114.0
0.0	137.5	68.8	55.0	123.8
90.0	137.5	68.8	-55.0	13.8
90.0	137.5	68.8	-45.2	23.6
90.0	137.5	68.8	-35.4	33.4
90.0	137.5	68.8	-24.2	44.6
90.0	137.5	68.8	0.0	68.8
90.0	137.5	68.8	24.2	93.0
90.0	137.5	68.8	35.4	104.2
90.0	137.5	68.8	45.2	114.0
90.0	137.5	68.8	55.0	123.8

assumed to be representative of the virgin, non-wire-EDM cut surface. These, and all subsequent scans were conducted according to the scan tables given in Tables 4.2 and 4.3. For the (331) plane, scans were conducted at 2θ values ranging from 134° to 142° in 0.02° per step increments. In the (420) plane, scans were conducted at 2θ values ranging from 144° to 150° in 0.02° per step increments. The scan rate was always 14 seconds per step or slower. A measurement of both planes required around 20 hours. Since the machine was running overnight, the scan rate was adjusted to maximize time usage. The data from each scan can be found in Appendix D.

Once the unstressed lattice spacing was found, the residual stresses on the wireEDM cut surface could be determined. Scans of the (331) and (420) planes were made on the wire-EDM cut surface of each of the four samples according to the aforementioned scan tables. The depth of penetration of the x-rays was between 4 and $11 \mu \mathrm{~m}$, meaning the x-ray diffraction measurements were averaged over this

Table 4.3: Scan Table for (420) plane, repeated with 2θ varying from 142° to 151° at 0.02° per step

$\phi\left[{ }^{\circ}\right]$	Nominal $2 \theta\left[{ }^{\circ}\right]$	$\theta\left[{ }^{\circ}\right]$	$\psi\left[{ }^{\circ}\right]$	$\Omega\left[^{\circ}\right]$
0.0	146.4	73.2	-55.0	18.2
0.0	146.4	73.2	-45.2	28.0
0.0	146.4	73.2	-35.4	37.8
0.0	146.4	73.2	-24.2	49.0
0.0	146.4	73.2	0.0	73.2
0.0	146.4	73.2	24.2	97.4
0.0	146.4	73.2	35.4	108.6
0.0	146.4	73.2	45.2	118.4
0.0	146.4	73.2	55.0	128.2
90.0	146.4	73.2	-55.0	18.2
90.0	146.4	73.2	-45.2	28.0
90.0	146.4	73.2	-35.4	37.8
90.0	146.4	73.2	-24.2	49.0
90.0	146.4	73.2	0.0	73.2
90.0	146.4	73.2	24.2	97.4
90.0	146.4	73.2	35.4	108.6
90.0	146.4	73.2	45.2	118.4
90.0	146.4	73.2	55.0	128.2

region. Three replicates of the measurements were made on Sample 2 in order to estimate the standard deviation in the measurements based on plane and Φ. It was assumed that each sample demonstrated the same variance.

Lastly, Sample 4 was selected for further study to quantify the residual stress as a function of depth into the wire-EDM cut surface since it contained the thickest recast layer and would represent the worst case. To accomplish this, material removal was necessary. The sample was lightly ground with wet P4000 grit silicon carbide sand paper on one of the wire-EDM cut surfaces. Residual stress measurements were made after $9 \mu \mathrm{~m}$ were removed, and again after a total of $26 \mu \mathrm{~m}$ were removed. Although mechanical removal of material will necessarily alter the stress state, the significance of this effect can be estimated with subsequent analysis.

4.5.3 Results

The method of determining the unstressed lattice spacing, d_{0}, is given by Hauk et al. [81. Assuming a biaxial stress state, d_{0} can be determined by Equation 4.2,

$$
\begin{equation*}
\sin ^{2} \psi^{*}=\frac{\nu / E}{(1+\nu) / E}\left(1+\frac{m_{1}}{m_{2}}\right) \tag{4.2}
\end{equation*}
$$

where where m_{1} and m_{2} are the slopes of the d vs. $\sin ^{2} \psi$ plot at $\Phi=0^{\circ}$ and $\Phi=90^{\circ}$, respectively. These plots are shown for the (331) plane in Figures 4.25 and 4.26. The $\sin ^{2} \psi^{*}$ term can be used to determine the ψ value for which the strain is zero. In turn, d_{0} can be found from the d vs. $\sin ^{2} \psi$ at $\Phi=0^{\circ}$ line. Unstressed lattice spacings of $0.8255 \AA$ and $0.8048 \AA$ for the (331) and (420) planes, respectively, were determined.

Next, the Xpert Stress software version 1.1a from PANalytical was used to calculate residual stresses from the x-ray diffraction data. The uni-axial $\sin ^{2} \psi$ method was used. The stress tensor was given by Equation 4.3 [7],

$$
\begin{equation*}
\frac{d_{\Phi \Psi}-d_{0}}{d_{0}}=\frac{1+\nu}{E} \sigma_{11} \sin ^{2} \psi-\frac{\nu}{E} \sigma_{11} \tag{4.3}
\end{equation*}
$$

and was evaluated separately for both $\Phi=0^{\circ}$ and $\Phi=90^{\circ}$ from the slopes of the $\sin ^{2} \psi$ plots. Consequently, the relationship shown in Equation 4.4,

$$
\begin{equation*}
\sigma_{11}=\frac{m_{\Phi} E}{d_{0}(1+\nu)} \tag{4.4}
\end{equation*}
$$

where m_{Φ} is the slope of the d vs. $\sin ^{2} \psi$ plot can be derived. For these calculations a modulus of elasticity of 205 GPa and a Poisson's ratio of 0.3 were assumed.

The residual stresses for each specimen, plane and ϕ angle are given in Table 4.4. At $\phi=0^{\circ}$, the stress was in the direction of table feed, and at $\phi=90^{\circ}$ the stress was parallel to the axis of the wire electrode, as explained in Figure 4.27. The results of each scan table can be seen in Appendix D. Notice that every stress measurement is

Figure 4.25: $d[\AA]$ vs. $\sin ^{2} \psi$ at $\Phi=0^{\circ}$ for determination of the unstressed lattice spacing of the (331) plane

Figure 4.26: $d[\AA]$ vs. $\sin ^{2} \psi$ at $\Phi=90^{\circ}$ for determination of the unstressed lattice spacing of the (331) plane

Table 4.4: Residual stress [MPa] measurements of wire-EDM cut surfaces

Sample	Plane	$\phi\left[^{\circ}\right]$	Stress [MPa]
Sample 1	(331)	0	453
	(331)	90	302
	(420)	0	478
	(420)	90	407
Sample 2	(331)	0	272
	(331)	90	209
	(420)	0	483
	(420)	90	277
Sample 2	(331)	0	249
(repeated)	(331)	90	192
	(420)	0	428
	(420)	90	269
Sample 2	(331)	0	202
(repeated)	(331)	90	220
	(420)	0	345
	(420)	90	250
Sample 3	(331)	0	236
	(331)	90	268
	(420)	0	475
	(420)	90	392
Sample 4	(331)	0	195
	(331)	90	227
	(420)	0	168
	(420)	90	281

positive, indicating that the surface of the wire-EDM cut face is in tension. This is in accordance with what others have reported [82, 83].

To estimate the error in the residual stress measurements, the standard deviation of the 3 replicates conducted for Sample 2 was found. These are listed in Table 4.5. Note that the variance of the stress in the $\phi=0^{\circ}$ direction is much greater than in the $\phi=90^{\circ}$ direction. This is due to the orientation and shape of the samples. At $\phi=0^{\circ}$, the direction of table feed, x-rays are able to reflect off of large portions of the width of the sample, but with fewer x-rays given the $0.5 \times 10 \mathrm{~mm}(\mathrm{w} \times \mathrm{h})$ beam. However, at $\phi=90^{\circ}$, the direction of the wire electrode axis, a smaller amount of material was examined with more x-rays.

Figure 4.27: Orientation of stress measurements at $\phi=0^{\circ}$ and $\phi=90^{\circ}$

Table 4.5: Standard deviation [MPa] of residual stress measurements from Sample 2

Std. Dev. Of Stress [Mpa]		
Plane	$\phi=0^{\circ}$	$\phi=90^{\circ}$
(331)	± 36	± 14
(420)	± 69	± 14
Average	± 53	± 14

For the following analysis, the stresses from the (331) and (420) planes were averaged to represent the values for the entire specimen. The residual stresses in the directions of table feed $\left(\phi=0^{\circ}\right)$ and wire electrode axis $\left(\phi=90^{\circ}\right)$ are plotted versus energy per spark in Figure 4.28. Assuming the influence of wire diameter is negligible overall, it appears that as energy per spark increases, the magnitude of the residual stresses decrease. This can be explained by considering that these residual stresses are largely generated due to thermal gradients during cooling of the recast layer. As the recast layer resolidifies and its temperature drops downs to that of the bulk workpiece, its contraction is opposed by the bulk workpiece. This results in the wireEDM cut surface exhibiting tensile residual stresses and the bulk workpiece exhibiting compressive residual stresses. Since the temperatures present during machining would be relatively similar, regardless of energy per spark, the same thermal gradients would be present. Consequently, the same forces due to the thermal contraction of the recast layer would also be present. When a larger energy per spark is used, the recast layer is thicker, and this force would be distributed over a larger region, thus lowering the magnitude of the tensile residual stress.

It is also seen from Figure 4.28 that the stresses oriented in the direction of table feed are generally higher than in the direction of the wire-electrode axis. One possible explanation for this phenomenon can be understood by considering the following simplified analysis. Consider the situation shown in Figure 4.29. The dotted lines indicate the element of melted and resolidifying workpiece material at any instantaneous moment during machining. This idealized element takes the form of an extruded semi-circle. The heat contained within this element will dissipate in all directions. It will conduct to the workpiece, and it will convect to the dielectric. It is possible that the relative magnitudes of the heat flow rates through these two modes differ significantly. Consider that this element is much taller than it is wide. Further, as energy per spark increases, the proportions of the heated element will change, as

Figure 4.28: Residual stress [MPa] versus energy per spark [mJ]in the directions of table feed and wire electrode axis
seen in Figure 4.30. Additionally, the shape of the workpiece could also have an effect as it is much wider than it is tall. The combination of these factors may contribute to the differences in residual stress observed in Figure 4.28.

The residual stresses versus wire diameter are displayed in Figure 4.31. At the smaller wire diameter (and lower energy per spark) the stresses are greater in the table feed direction than in the wire-electrode axis direction. However, at the larger wire diameter (and higher energy per spark) the stresses in the two directions are not significantly different from one another. This effect is likely caused by the differences in energy per spark, as discussed previously, rather than effects from the diameter of the wire electrode.

Figure 4.29: Diagram showing simplified analysis of heat flow from resolidified zone during wire-EDM with a small energy per spark

Figure 4.30: Diagram showing simplified analysis of heat flow from resolidified zone during wire-EDM with a large energy per spark

Figure 4.31: Residual stress $[\mathrm{MPa}]$ versus wire diameter $[\mu \mathrm{m}]$ in the directions of table feed and wire electrode axis

From the measurements made after material was removed from the surface of Sample 4, the changes in residual stress as a function of depth into the workpiece were analyzed. By applying the same techniques described earlier, the residual stress at the three stages of material removal are given in Table 4.6. With $26 \mu \mathrm{~m}$ of material removed from the wire-EDM cut surface, the residual stresses have switched from tensile to compressive. However, the material removal process itself may induce compressive stresses, thus clouding the data. To check this effect the peak widths from the various planes appearing in the $\theta-2 \theta$ scans were compared. Peak broadening indicates that significant polishing damage has been introduced, typically resulting in compressive stresses [84]. For each of the stages of material removal, the full width at half maximums (FWHM) were compared. These data are given in Appendix D, and plotted in Figure 4.32. Comparison of the FWHM for each 2θ peak shows a majority are within 15% of the value prior to material removal. This was not the case for the (331) plane (2θ value of 137°, peak 6), however, the residual stress was close to that of the (420) plane. Consequently, it was assumed that the hand polishing material removal process did not introduce significant compressive residual stresses.

The residual stress as a function of depth into the wire-EDM cut surface is shown in Figure 4.33. Again, the stresses of (331) and (420) planes have been averaged. The stress shows a clear trend of tensile residual stress transitioning to compressive residual stress in the vicinity of between 15 and $20 \mu \mathrm{~m}$ into the workpiece. In the original surface scan, the residual stress in direction of the wire-electrode axis appeared greater than in the table feed direction. However, after material has been removed, no significant difference in residual stress in the two directions can be observed.

Table 4.6: Residual stress [MPa] measurements of Sample 4 as a function of depth $[\mu \mathrm{m}]$ into the wire-EDM machined surface

Material Removed $[\mu \mathrm{m}]$	Plane	$\phi\left[^{\circ}\right]$	Stress [MPa]
0	331	0	195
	331	90	227
	420	0	168
	420	90	281
9	331	0	155
	331	90	152
	420	0	216
	420	90	198
26	331	0	-173
	331	90	-258
	420	0	-197
	420	90	-205
26	331	0	-138
(repeated)	331	90	-240
	420	0	-209
	420	90	-190

Figure 4.32: FWHM $\left[^{\circ}\right]$ of peaks plotted by $2 \theta\left[{ }^{\circ}\right]$ and material removal

Figure 4.33: Residual stress [MPa] as a function of depth [$\mu \mathrm{m}]$ into the wire-EDM cut surface, taken from Sample 4

4.6 Nano-Indentation Hardness Testing

4.6.1 Overview

The final material characterization undertaken was nano-indentation hardness testing. In hardness testing, an indenter of known geometry is applied with a known load to a test specimen for a known amount of time. From the amount of displacement, both the hardness and elastic modulus can be calculated. The hardness scale is dictated by the shape of the indenter and the applied load, so comparisons from one hardness scale to another are not exact. Nano-indentation hardness testing is often used to measure the properties of films as thin as a few nanometers 855. The recast layer observed in wire-EDM of Inconel 718 is on average five to ten microns in thickness, and thus nano-indentation testing is necessary to quantify the changes in its hardness.

A typical load-displacement curve for an indentation test is shown in Figure 4.34. The unloading curve differs from the loading curve due to plastic deformation of the specimen. The slope of the unloading curve, S, is the stiffness. Two calculations frequently made from a load-displacement curve are the reduced modulus and the hardness. The reduced modulus is described by Equation 4.5,

$$
\begin{equation*}
E_{r}=\frac{1}{2} S \sqrt{\frac{\pi}{A}} \tag{4.5}
\end{equation*}
$$

where A is the calibrated area function of the tip relating the projected contact area to the contact depth. The reduced modulus includes contributions from both the specimen and the indenter. These contributions are related by Equation 4.6,

$$
\begin{equation*}
\frac{1}{E_{r}}=\left(\frac{1-\nu^{2}}{E}\right)_{\text {specimen }}+\left(\frac{1-\nu^{2}}{E}\right)_{\text {indenter }} \tag{4.6}
\end{equation*}
$$

where E and ν are the elastic modulus and Poisson's ratio of the specimen and the indenter respectively. The hardness is defined by Equation 4.7,

Figure 4.34: Typical load-displacement curve generated in an indentation test [8]

$$
\begin{equation*}
H=\frac{P_{\max }}{A} \tag{4.7}
\end{equation*}
$$

where $P_{\max }$ is the maximum indentation force and A is the area function for the projected contact area at $P_{\text {max }}$ 86].

4.6.2 Experimental Procedure

Four specimens of Inconel 718 to be examined were cut at the same conditions as were studied in the surface roughness measurements and under x-ray diffraction.

Figure 4.35: Cross-section of mounted 12° taper sections for nano-indentation measurements

Their cutting conditions are shown in Table 4.1. A 12° taper section was cut, just as in the EPMA. A cross-section of the mounted sample is shown in Figure 4.35. The recast layer will appear cosecant 12°, or 4.81 times thicker. The samples were nickel plated, mounted in epoxy and prepared in the manner described in Table 3.5. Care was taken, as a flat, smooth, scratch free surface is essential in obtaining good results in nano-indentation.

All of the experiments described here were conducted on a Hysitron TriboIndenter, displayed in Figure $436(\mathrm{a})$ with a 10 mN load cell. The indents were made with a Berkovich tip, shown in Figure 436(b), with an included angle of 142.3° and a radius of curvature of between 100 and 200 nm . Every test was conducted with the load function given in Figure 4.37. The load was linearly applied for 10 seconds up to $2,500 \mu \mathrm{~N}$, held for 5 seconds, and linearly unloaded over 10 seconds.

If the indent landed on a scratch, inclusion, grain boundary or other uneven surface, the load displacement curve did not appear normal. Examples of a good indent and a bad indent are shown in Figure 4.38. Bad indents were identified from an unusual load displacement curve, or from an image of the indented surface. The

(a) TriboIndenter

(b) Berkovich tip

Figure 4.36: Hysitron TriboIndenter nano-indentor [9] and Berkovich indenter [9]

TriboIndenter is capable of an imaging technique known as scanning probe microscopy (SPM) in which the intender tip is scanned across the specimen surface in a raster pattern. The height of the tip is controlled by a force feedback loop. SPM is able to generate images of both the topography and gradient of an indented region on a specimen surface, as shown in Figure 4.39. The bad indent, located near the center of the image, is clearly evident.

4.6.3 Results

Although each sample was cut from the same original piece of material, the bulk properties of each sample were measured. Fifteen indents were made into the bulk,

Figure 4.37: Load function for nano-indentation hardness tests
and the results are shown in Figures 4.40 and 4.41. As expected, there are no significant differences between samples. The average bulk reduced modulus is 195 GPA, which is near the quoted material value of 200 GPa for Inconel 718. The average bulk hardness was 6.62 GPa , although this value cannot be directly compared with the quoted bulk macro-hardness value of $95 \mathrm{HR}_{\mathrm{B}}$. The data for each indent is available in Appendix E.

To examine the impact of the wire-EDM process on the samples, elastic modulus and hardness profile as a function of depth into the surface were generated, and can be seen in Figures 4.42 and 4.43, respectively. Note that the depth, or distance from edge values on the x -axis of each plot are in terms of the tapered section. The edge is defined as the interface between the recast material and the nickel plated layer. Data from indents nearer than $5 \mu \mathrm{~m}$ to the edge would include contributions from the nickel

Figure 4.38: Load-displacement curves demonstrating a good and a bad indent

Figure 4.39: Sample images from Sample 4 of specimen topography and gradient made using SPM, notice the difference between the good indents and the bad indent

Figure 4.40: Sample to sample bulk hardness [GPa] nano-indentation tests

Figure 4.41: Sample to sample bulk reduced modulus [GPa] nano-indentation tests and the mounting epoxy and consequently were not included in the analysis. Some degree of dispersion in the data is evident since nano-indentation hardness testing is very sensitive to any surface flaws, and further, the true nano-properties can vary from grain to grain. Consequently, a large number of indents were necessary. Between 140 and 200 indents were made on each sample, not counting any bad data points which were removed.

From Figure 4.42 it can be seen that every indent indicates a lower reduced modulus than that of the bulk. The average bulk reduced modulus, and average recast layer thicknesses are shown on the plot. It appears that Samples 3 and 4 demonstrate

Figure 4.42: The reduced modulus [GPa] depth profile in all samples

Figure 4.43: The hardness depth [GPa] profile in all samples
a distinctly higher reduced modulus than Samples 1 and 2. The linear trend line for each sample is plotted, and each exhibits an increasing trend as the distance from the edge of the sample increases. This indicates that the recast and sub-layers are reduced in elastic modulus by wire-EDM. The hardness, shown in Figure 4.43 displays a similar trend. Again, the bulk hardness and average recast layer thicknesses are indicated. The hardness of each sample possesses an increasing linear trend with distance from the edge; however, the large difference between Samples 1 and 2 and Samples 3 and 4 is not as apparent in this case. This analysis suggests that the wire-EDM process tends to soften the machined surface below the hardness of the bulk material.

To more thoroughly examine the properties of the recast layer itself, the data was analyzed by only considering the indents made within the average recast layer thickness of each material. A box plot of the reduced modulus within the recast layer of each sample and the bulk workpiece is shown in Figure 4.44. This type of graph conveys a description of the distribution of the data by displaying the range as a line, and a box from the first to the third quartile. The horizontal line through the box represents the second quartile, or median and a star represents an outlier. This figure clearly conveys that the recast layer in Samples 1 and 2 has a lower reduced modulus than Sample 3 and 4, and that all four recast layers have a lower modulus than the bulk. Samples 1 and 2 were cut on the wire-EDM with a 100μ m diameter wire, while Samples 3 and 4 were produced with a $250 \mu \mathrm{~m}$ diameter wire. The wire diameter factor has not been identified as having a significant effect on recast layer thickness or residual stress, although it does have a slight effect on surface roughness. It is unknown why it has such a pronounced effect on the reduced modulus.

A box plot of the hardness in the recast layer of each sample and the bulk workpiece is displayed in Figure 4.45. While the recast layer hardness values are more clustered together, all four are less than in the bulk workpiece material. It has been

Figure 4.44: The reduced modulus [GPa] in the recast layer versus the bulk material reported that a dielectric exhibiting high conductivity can lead to electrolysis which may soften the wire-EDM cut surface [31. However, to preclude this possibility, the conductivity of the dielectric was maintained at a reasonable level throughout the experimentation performed in this thesis. The drop in hardness could be due in part the metallurgical changes in the recast layer uncovered in EPMA. The depletion of chrome, nickel and molybdenum and the addition of copper and zinc would conceivably lower the hardness of the recast layer. Additionally, it is well established that tensile residual stresses can lower the measured hardness of a material [87]. To examine this possibility, hardness in the recast layer has been plotted against surface residual stress in the table feed direction in Figure 4.46. Note that as the tensile residual stress increases in magnitude, the hardness value decreases. This effect has

Figure 4.45: The hardness [GPa] in the recast layer versus the bulk material
also been documented when using a Berkovich tip in nano-indentation hardness testing. By decreasing the slope of the initial loading curve, tensile residual stresses tend to increase the total indentation depth. Consider a small element of material directly below the indenter tip. The presence of tensile residual stresses will increase the maximum shear stress in this element. A greater shear stress will therefore lead to a greater amount of plastic deformation and a larger indentation depth. For a constant load, a deeper indent results in a lower hardness measurement 88].

It can be concluded that, for the range of process parameters examined here, the recast layer formed during wire-EDM of annealed Inconel 718 is lower in both elastic modulus and hardness than the bulk material. However, these findings are in contrast to what has been reported for wire-EDM of solution treated and aged Inconel 718 [51, 37]. A direct comparison from the current findings to these two reported cases

Figure 4.46: The hardness [GPa] in the recast layer versus residual stress [MPa] in the table feed direction
may be a dubious one since machining parameters were not reported in the earlier studies and different microstructures are undoubtably present after heat treatment. More experimentation must be conducted for this discrepancy to be further explained.

4.7 Summary

In this chapter the recast layer formed during wire-EDM of Inconel 718 was studied using several different methods. SEM photographs revealed that the wire-EDM cut surface was covered in pits and craters. A white-light interferometer was utilized to study the surface roughness. It was found that the RMS surface roughness increases mainly with increases in energy per spark, and to a much lesser extent with a larger wire diameter. Electron probe microanalysis revealed that copper and zinc from the wire electrode had migrated and alloyed with the recast layer. Additionally, some degree of chrome depletion was present. X-ray diffraction measurements showed the in-plane surface residual stresses to be tensile, and to decrease with increasing energy per spark. The difference in stress magnitude in the table feed direction and the wireelectrode axis direction was discussed. The tensile stresses were found to transition to
compressive residual stresses at a depth between 15 and $20 \mu \mathrm{~m}$ into the cut surface. Lastly, nano-indentation hardness testing showed that the recast layer exhibited a lower modulus of elasticity as well as a lower hardness when compared with the bulk material.

CHAPTER V

RECAST LAYER REMOVAL

5.1 Goal E Approach

This chapter seeks to further investigate post-processing techniques for removal of wire-EDM induced recast layer in Inconel 718. The goal is not to completely develop a new method, but to apply existing methods to the particular situation examined in this thesis. Further, since it is assumed that recast layer removal is possible by utilizing numerous well known methods, a simple, low cost solution will be sought. In doing so, brief experimentation will be carried out, and from evaluation of the results recommendations will be made.

5.2 Selection of Post-Processing Technique

Numerous post-processing techniques were examined in Chapter II. In order to select one for further exploration, some aspects of each will be considered. Abrasive flow machining (AFM) is a capable and flexible process which is often used for recast layer removal. However, it requires large capital investment and a moderate amount of part handling. Abrasive micro-blasting is quick process; but, the effect on part dimensional accuracy is questionable. Internal features that cannot reached by the stream of abrasives may only experience a limited benefit from this method. Part handling would also be an issue. Electrochemical processes offer a possible solution. However, the various chemicals required for this process may present a problem for a shop not equipped for chemical handling, storage and disposal. Combined electrochemical EDM processes are still limited to the academic realm. Although environmental concerns are present with any of the methods discussed, they are particularly salient
to electrochemical processing. Loose abrasive media finishing is a well established, traditional finishing technique. Several types are practiced. While material removal rates are lower than what can be achieved with other processes, parts can be mass finished. Capital investment can range from small to large, depending on the scale. The range of internal feature surfaces which can be finished is dependent on the abrasive size and shape. Shot peening can improve the surface integrity of EDM cut surface. However, it is only a cold working process, and thus recast material is not removed.

Table 5.1: Summary of post-processing techniques

	Proven for Recast Layer Removal		
Process	Yositive Aspects	Negative Aspects	
Abrasive flow machining	Yes	Established, Controllable, Internal finishing Quick,	Expensive, Part handling
Abrasive micro-blasting	Yes	Inexpensive,	Uncontrolled, Part handling, Geometry
Electrochemical processes	Yes	Proven	limitations Chemicals,
Loose abrasive media	No	Well established,	Environmental Slow
Shot Peening	No	Mass finishing Established	No material removal

Table 5.1 summarizes the aspects of each type of post-processing. Each method required some amount of consumables. It was decided that loose abrasive media finish would be selected for further exploration for the following reasons: it is a common well-known process; it is a material removal process although it has not been reported in literature as a recast layer removal tool; small machines are inexpensive; it is a mass finishing process. Of the three loose media finishing processes, vibratory finishing was selected because it finishes faster than than barrel tumbling, and the equipment costs an order of magnitude less than centrifugal finishing equipment [5].

5.3 Vibratory Tumbling

After hand deburring, vibratory tumbling is the most popular mass finishing technique. There are two types of vibratory tumbling: tub and bowl. In tub-type vibratory finishing, the parts and media are placed in a open tub mounted on springs. In bowl-type, the parts and media are placed in a toroidal bowl, also mounted on springs. In either type, an eccentric weight on a motor shaft causes the vibrations [5]. In practice the selection of which type of vibratory tumbler to use should be based on part geometry. Smaller parts are more efficiently processed in a bowl-type tumbler while large, bulky or long parts dictate a tub-type vibratory tumbler [89]. Most smaller, less expensive vibratory tumblers are of the bowl-type. Consequently, the bowl-type was selected for these experiments. The motion of parts and media inside a bowl-type vibratory tumbler is shown in Figure 5.1. It can be seen that the parts and media are continually moving about the bowl, ensuring an even finish.

5.4 Experimental Procedure

5.4.1 Experimental Set-Up

To test the use of vibratory tumbling as a finishing process for removal of wire-EDM recast layer, a small bowl-type vibratory tumbler was purchased. The particular model selected was the Ultra-Vibe 18 "Thumbler's Tumbler" from True-Square Metal Products. It has a polyelthelene bowl with a 5.7 liter capacity. Two small experiments were designed to evaluate recast layer removal for parts cut with either the $100 \mu \mathrm{~m}$ or the $250 \mu \mathrm{~m}$ diameter wire.

5.4.2 $250 \mu \mathrm{~m}$ Wire Samples

The first test with the vibratory tumbler was to observe the finishing of a part cut with the $250 \mu \mathrm{~m}$ diameter wire. Ten 25.4 mm by 25.4 mm samples were cut from the same 3.962 mm thick sheet of Inconel 718 used in Chapter III. Each was cut

Figure 5.1: Motion of parts and media in bowl-type vibratory tumbler 5]
with the machine setting found to impart the greatest average recast layer thickness (table feed rate: $1.969 \mathrm{~mm} / \mathrm{min}$, spark cycle: $28 \mu \mathrm{~s}$, spark energy: 12). These settings were found to result in a average recast layer $8.51 \mu \mathrm{~m}$ in thickness. More detailed information regarding these settings can be found in Table 3.6.

The abrasive media chosen for these tests were preformed ceramic media containing aluminum oxide. Coarse 22° ended cylinders, Figure 5.3 and 5.4, were chosen because they are both relatively small and are commonly used in industry. In addition, 90 ml of liquid cleaner and rust inhibitor were diluted in 3.8 liters of tap water for use with the media.

The specimens were placed in the vibratory tumbler, along with approximately 1.6 liters (4.5 kgs) of abrasive media and 260 ml of diluted cleaner. The length and width

Figure 5.2: Ultra-Vibe 18 bowl-type vibratory tumbler

Figure 5.3: Coarse 22° ended cylinder preformed abrasive vibratory tumbling media

Figure 5.4: Photograph of coarse 22° ended cylinder preformed ceramic abrasive vibratory tumbling media
of the specimens were initially checked with a micrometer, and periodically afterward. The average material removal is shown in Figure 5.5 and the raw data collected is given in Appendix F. It can be seen that the cutting rate drops immediately off in a dramatic fashion. In total, $26 \mu \mathrm{~m}$ were removed from the width. Thus, $13 \mu \mathrm{~m}$ were removed from each side, which is greater than the recast layer thickness of 8.51 $\mu \mathrm{m}$. However, these values are average values and to see the actual extent to which the recast layer was removed the specimen must be observed through metallography. Note that at the conclusion of the experiment, all of the abrasive media were replaced to check that the media had not worn. Several of the samples were tumbled for an additional hour with the new media, but no measurable material was removed. This indicates that the severe decrease in rate of dimensional change in the specimens was
not due to the media having dulled or glazed. Since the wire-EDM surface is rough and cratered, it is suspected that the part dimensions changed rapidly as the surface peaks were removed, leaving a flatter surface behind. The overal material removal rate may not have decreased as rapidly as Figure 5.5 would indicate.

Figure 5.5: Average change in specimen size [$\mu \mathrm{m}$] for parts cut with 250μ m diameter wire

A specimen was cut from one of the tumbled samples, and was prepared metallographically as described in Chapter III. An example micrograph of this specimen is shown in Figure 5.6. Recast material is still evident between the sample and the nickel plated layer. Notice how smooth and even the surface is compared to an untumbled sample cut generated under the same wire-EDM parameters, as shown in Figure 5.7. Surface roughness measurements of the manner described in Section 4.3 were conducted on the wire-EDM cut and vibratory tumbled surface of the original sample. These were found to exhibit an RMS surface roughness of $1.34 \mu \mathrm{~m}$. This represents an improvement from the untumbled samples, which yielded an RMS surface roughness of $3.42 \mu \mathrm{~m}$. The data from these measurements are given in Appendix C. The average recast layer thickness of the tumbled sample is $4.46 \mu \mathrm{~m}$ with a standard deviation of $0.68 \mu \mathrm{~m}$. Thus the for the given cutting conditions, nearly half of the
recast layer material was removed and the surface roughness was clearly improved. Although this experiment was only partially successful, refinement of the vibratory tumbling parameters may enable the complete removal of the wire-EDM imparted recast material. All of the recast layer thickness measurements in this chapter can be found in Appendix B.

Figure 5.6: 1000X micrograph of etched specimen from vibratory tumbled sample cut with $250 \mu \mathrm{~m}$ diameter wire (average recast layer thickness: $8.51 \mu \mathrm{~m}$)

5.4.3 $100 \mu \mathrm{~m}$ Wire Samples

Next, the feasibility of post-processing parts with small features was examined. The $100 \mu \mathrm{~m}$ diameter wire was used to cut the half-gears shown in Figure 5.8 on the wireEDM. The cuts were again made at the conditions yielding the largest average recast layer thickness (table feed rate: $1.969 \mathrm{~mm} / \mathrm{min}$, spark cycle: $16 \mu \mathrm{~s}$, spark energy: 4).

Figure 5.7: 1000X micrograph of etched specimen cut with $250 \mu \mathrm{~m}$ diameter wire before vibratory tumbling (average recast layer thickness: $4.46 \mu \mathrm{~m}$)

The chosen part geometry will allow the effectiveness of this finishing technique on both flat surfaces and small features to be studied. The roots of the gear teeth have a radius of $75 \mu \mathrm{~m}$, and thus the media used in the previous experiment will not be adequate. To reach the entirety of the feature, a smaller abrasive was necessary. 1200 grit 99.5% pure white aluminum oxide $\left(\mathrm{AL}_{2} \mathrm{O}_{3}\right)$ was chosen. It is the smallest grain sized aluminum oxide generally available, with an average diameter of $3 \mu \mathrm{~m}$. This abrasive is typically used for making lapping compounds.

A test was first conducted with 2.2ℓ of abrasives and 1ℓ of diluted liquid cleaner. It was hoped by the author that a slurry would form, however, the abrasive grains separated from the liquid to form a thick, sticky sludge. The parts and media were held together by surface tension and did not move about in the bowl at all. Consequently,

Figure 5.8: Profile of half-gear cut with $100 \mu \mathrm{~m}$ diameter wire
the experiment was aborted after four hours and repeated without any liquid cleaner. Tumbling without the liquid cleaner was acceptable since Inconel 718 is resistant to rust and oxidation. For other alloys this may not be the case and consequently some form of rust inhibition would be necessary.

Throughout the experiments, the thickness of the half-gears was periodically checked with a micrometer. The specimen tumbled in the media and liquid cleaner mixture did not display any material removal. After nearly 6 days of tumbling, only 3 microns of material had been removed from the half-gear which was "dry" tumbled. Nonetheless, the samples were metallographically prepared to quantify recast layer removal. The half-gear which was finished in the aluminum oxide and liquid cleaner demonstrated an average recast layer thickness of $7.4 \mu \mathrm{~m}$ and a standard deviation of $2.94 \mu \mathrm{~m}$. This represents an insignificant difference from the unfinished recast layer thickness of $8.07 \mu \mathrm{~m}$.

A sample micrograph of the flat side of the dry finished half-gear is shown in Figure 5.9, while the root of a gear tooth is shown in Figure 5.10. Notice that the

Figure 5.9: Micrograph of the flat edge of the dry vibratory tumbled half-gear (average recast layer thickness: $4.22 \mu \mathrm{~m}$)
surface of the recast material is not as smooth as the parts finished with the much larger preformed ceramic abrasives. However, it can still be seen that some material was removed. In fact, the average recast layer of the flat side was measured to be 4.22 $\mu \mathrm{m}$ with a standard deviation of $0.81 \mu \mathrm{~m}$. This does represent a significant removal of recast layer. The average recast layer thickness at the roots of the gear teeth was measured to be $4.39 \mu \mathrm{~m}$ with a standard deviation of $0.83 \mu \mathrm{~m}$. Again, this is a significant decrease in the amount of recast material. These tests were not completely successful, but it was demonstrated that vibratory tumbling can be used to finish wire-EDM parts by removing recast layer material. The vibratory tumbler utilized in these experiments did not allow for adjustments to the frequency of vibrations, but higher frequency vibrations would be required to impart enough kinetic energy to the

Figure 5.10: Micrograph of the root of a gear tooth of the dry vibratory tumbled half-gear (average recast layer thickness: $4.39 \mu \mathrm{~m}$)
aluminum oxide grains to make material removal more feasible.

5.5 Summary

It this chapter, a simple and low cost technique for post-processing small wire-EDM cut Inconel 718 parts was demonstrated. A survey of existing post-processing techniques was taken. After examining the merits of each method, loose abrasive finishing was selected for examination. Within this category, vibratory tumbling was deemed the most likely method to deliver the stated goals. A small machine was purchased, and sample parts of Inconel 718 for finishing were wire-EDM cut with two different wire-electrode diameters.

The parts cut with the larger diameter wire electrode were tumbled with preformed
ceramic abrasives. Although the recast layer was not entirely removed, it was reduced in thickness by nearly 50%, and the surface roughness was markedly improved. A half-gear was cut with the smaller diamter wire to examine vibratory tumbling for parts with small features. Loose 1200 grit aluminum oxide was the selected abrasive media. Again, it was found that some recast layer material was removed, however, surface roughness did not appear to have been improved.

These experiments represent a preliminary look into a post-processing technique for finishing of wire-EDM cut parts on improve surface integrity. The results showed promise, but more testing is necessary to make this finishing method feasible. With trial-and-error refinement of the process parameters, complete removal of the recast material using this simple, low cost method seems possible.

CHAPTER VI

CONCLUSIONS

6.1 Overview

In this thesis, recast layer formation during wire-EDM of the nickel base superalloy Inconel 718 was examined. It is well known that wire-EDM cut parts can demonstrate poor surface integrity, due in large part to the presence of the recast layer. This project detailed experiments conducted to study the effects of various process parameters on recast layer formation, different surface and mechanical characterizations of the recast layer and preliminary investigation of post-processing techniques for recast layer removal.

6.2 Experimental Findings

6.2.1 Recast Layer Thickness

A set of experiments was undertaken to find the effects of various wire-EDM process parameters on recast layer formation. A system for measuring the discharge current and voltage signals was implemented in an attempt to avoid machine specific findings. Four machine settings were examined: wire diameter, table feed rate, spark cycle and spark energy. Test specimens were first nickel plated, then mounted, polished and etched to reveal the recast layer. Average recast layer thickness measurements were made using images from an optical microscope. The following results were obtained:

- Average recast layer thickness was generally between 5 and $10 \mu \mathrm{~m}$
- Average recast layer thickness tended to increase with increasing spark energy setting
- Increases of the spark energy setting increased energy per spark, peak discharge current, current pulse duration and open-voltage time
- Average recast layer thickness tended to decrease with increasing table feed rate
- Increases of the table feed rate increased sparking frequency
- The energy per spark appeared to be the driving factor in determining average recast layer thickness
- The wire diameter and spark cycle (voltage-off time) settings did not display a significant effect on average recast layer thickness

6.2.2 Characterizations

In order to fully understand the properties and effects of the recast layer, numerous characterizations were undertaken. These included SEM photographs, surface roughness measurements, EPMA, x-ray diffraction and nano-indentation hardness testing. The wire-EDM induced recast layer of annealed Inconel 718 demonstrated the following characteristics:

- An undulating, pitted and cratered surface morphology
- A surface roughness which increases mainly with energy per spark, and slightly with wire diameter
- The presence of copper and zinc which has migrated from the wire electrode
- Chrome depletion near the recast layer
- Tensile in-plane surface residual stresses which decrease with increasing energy per spark
- A transition from tensile to compressive residual stresses at a depth of between 15 and $20 \mu \mathrm{~m}$ from the wire-EDM cut surface
- A decreased hardness and elastic modulus compared with the bulk material, in contrast to what has been reported in literature for solution treated and aged Inconel 718

6.2.3 Post-Processing

The post-processing technique of vibratory tumbling was examined due to the combination of its performance, ease of use and cost. Brief experiments were conducted on different Inconel 718 specimens cut with two wire diameters. Although the experiments were not completely successful, the following results were found:

- Preformed ceramic abrasive media were able to remove some recast material from flat surfaces
- Fine grain aluminum oxide media were able to remove some recast material from small internal features
- With refinement of the process-parameters, vibratory tumbling has the potential to offer a simple and low cost finishing method for improving the surface integrity of wire-EDM cut parts

6.3 Future Work

The author recommends the following areas of future work relating to recast layer formation in wire-EDM of Inconel 718:

- More exhaustive experimentation should be conducted to yield greater in-processes recast layer minimization
- Experimentation should be conducted for Inconel 718 under various heat treatments, since, as the hardness characterizations demonstrated, heat treatment can have a significant effect on the characteristics of the wire-EDM induced recast layer
- More in depth characterizations of the residual stress and hardness should be made as a function of depth into the workpiece
- Vibratory tumbling process parameters should be optimized
- Experiments should be conducted with additional post-processing techniques

APPENDIX A

EXPERIMENTAL SET-UP

A. 1 Method of Data Acquisition

This section describes the method used in this thesis for measuring the discharge current and voltage on a Brother HS-3100 wire-EDM.

A.1.1 Voltage Measurement

The method of voltage measurement is fairly straightforward. A Stack Electronics CP-209 voltage probe was connected to a socket head cap screw on the upper head, as shown in Figure A.1. This location is at the same voltage potential as the wire electrode. The ground lead was attached to a different socket head cap screw which was directly connected to the work table, also shown in Figure A.1.

Figure A.1: Photograph indicating connection of voltage probe

A.1.2 Current Measurement

The technique utilized to measure the discharge current was considerably more involved. The current sensor chosen was a model 110 current monitor from Pearson Electronics, shown in Figure A.2. It has a usable rise time of 13 ns and is rated for a maximum peak current of 5000 Amps. This sensor measures the net current passed through it and outputs a proportional voltage signal.

Figure A.2: Model 110 Pearson Current Monitor

The method given here requires access to the electrical cabinet in the back of the wire-EDM, seen in Figure A.3(a). Before opening the electrical cabinet, the hard power switch should be turned off as shown in Figure A.3(b). Figure A.4 displays the pulse generator of the wire-EDM. The arrows in the picture point out the twelve leads which go from the pulse generator to the brushes which charge the wire electrode. These wires have white labels reading 33HXX, where XX corresponds to the terminal location where it should be connected. The twelve wires with yellow labels reading 32 HXX go to ground.

In order to pass the twelve white 33HXX leads through the current sensor, it was necessary to disconnect each of the white wires from the terminal, insert an additional length of wire from the end of the original white wire, pass it through the current

Figure A.3: The hard power switch must be turned off before opening the electrical cabinet

Figure A.4: Close-up of pulse generator, arrows denote leads going from pulse generator to brushes
sensor and connect it back to the terminal. This is shown for the case of the 33 H 13 wire in Figure A.5. Once the connection had been made, the exposed metal was wrapped in electrical tape, as seen in Figure A.6. This process was repeated for each
of the eleven remaining leads, making sure that the current passes through the current sensor in the same direction for each lead, as shown in Figure A.7.

Figure A.5: A new wire is inserted so the current going through the 33 H 13 lead can be measured

Figure A.6: Any exposed metal must be wrapped with electrical tape

Operation of the wire-EDM requires that the electrical cabinet doors remain open. Consequently, the safety switch shown in Figure A. 8 must be disabled. It is imperative that the appropriate caution be taken due to the risk of electrical shock.

Figure A.7: All wires must be passed through the current sensor in the same direction

Figure A.8: The safety switch must be disabled to operate the wire-EDM with the electrical cabinet open, so extreme caution must be taken

A.1.3 Oscilloscope

Due to the high bandwidth necessary to observe the current and voltage signals, the only system available to acquire the data was an oscilloscope. A Techtronix TDS420A 4-channel oscilloscope with a 200 MHz bandwidth was employed, and can be seen in Figure A.9. This particular model was able to store 30,000 data points at a time. By saving the data on a 3.5 inch floppy disk, these files could be transferred to a PC for analysis.

Figure A.9: Techtronix TDS420A 4-channel oscilloscope

A. 2 Data Analysis

A Matlab script was written to analyze each dataset and output the average signal parameters, as well as generate plots of the current, voltage, energy and power. The code of the script is shown below.

```
%Thomas R. Newton
%06/18/2007
%This program will take time, discharge current and discharge voltage
%data from the Brother HS-3100 Wire-EDM and analyze it.
Clc
clear all
tic
%Assume "Data" is a 3 column .csv file containing time, current and
% voltage.
%Set directory
FR=875; %0.0775 ipm = 775
SC=16; %16.0 us = 16
SE = '8';
    directory = strcat( 'R:\Melkote\TNewton\Micro_Wire_EDM_Research...
    \Waveforms\Experiments\04 wire\New_DOE\3\FR_0', num2str( FR ),...
    '_SC_', num2str( SC), '_SE_', num2str( SE ), '\' );
csvfile = strcat( 'FR-0', num2str( FR ), '-SC-', num2str( SC),\ldots
    '-SE-', num2str( SE ) );
load_data = strcat( directory, csvfile,'.csv' );
```

```
data = importdata( load_data );
    %set increment for plots and total number of data points to look at
    increment = 2000;
    total = 30000;
    %find speed
    file_char = double( csvfile );
    feed_rate = char( file_char( 5 ) );
    if feed_rate == '7'
    feed_rate = 0.0775; %in/min
elseif feed_rate == '8'
        feed_rate = 0.0875; %in/min
    else
        fprintf( 'Unknown Feed Rate!\n' )
    end
    %Separate columns
    time = data( :, 1);
    if abs(mean( data( :, 3 ) )) > abs(mean( data( :, 2 ) ) )
    voltage = -data( :, 3 );
    current = data( :, 2 );
else
    voltage = -data( :, 2 );
    current = data( :, 3);
end
    %Scale columns
    time = (time - time(1))*1e6; %in microseconds
    voltage = voltage*10;
```

```
current = current*10;
%eliminate noise from current
cutoff = 6;
%current = current.*(abs(current)>(cutoff));
%Analyze Current
no_pulses = 0;
pulses = 0;
end_of_pulse = 0;
for index = 1:length( current )
    if end_of_pulse == 0
            if current( index ) > cutoff
            peak_current = 0;
            for index2 = index:index + 20
        if index2 == total
                break
        end
        if current( index2 ) > peak_current
            peak_current = current( index2 );
            peak_current_index = index2;
        elseif peak_current_index < 8
            break
        end
        if current( index2 ) < cutoff && current(...
                index2 + 1 ) < cutoff
            start_of_pulse_index = index;
            end_of_pulse_index = index2-1;
                duration_of_pulse = time( index2-1 )- time(...
                    index );
            if duration_of_pulse \leq 0.4
```

end
frequency_of_pulses = no_pulses./time(length(time)) *le3; %kilohertz
%Analyze Voltage
voltage_pulses = 0;
for pulse_check = 1:no_pulses
for find_on_time = pulses(pulse_check, 3):-1:10
if pulse_check > 1 \&\& find_on_time \leq pulses(...
pulse_check-1, 3)

```
\begin{tabular}{|c|c|}
\hline 123 & break \\
\hline 124 & end \\
\hline 125 & if ( voltage( find_on_time ) \(<40\) \&\& voltage( find_on_time. \\
\hline 126 & \(-1)<40\) \&\& voltage( find_on_time - 2 ) \(<40\) \&\& voltage(. \\
\hline 127 & find_on_time - 3 ) \(<40\) \&\& voltage( find_on_time - 4 ). \\
\hline 128 & \(<40\) \&\& voltage ( find_on_time - 10 ) < 40) \\
\hline 129 & find_on_time == 10 \\
\hline 130 & if find_on_time \(\leq 10\) \\
\hline 131 & on_time_start_index \(=5\); \\
\hline 132 & else \\
\hline 133 & on_time_start_index \(=\) find_on_time +1 ; \\
\hline 134 & end \\
\hline 135 & on_time \(=\) time ( pulses ( pulse_check, 3 ) ) - time(. \\
\hline 136 & on_time_start_index ) ; \\
\hline 137 & if on_time<0 \\
\hline 138 & on_time_start_index \(=\) find_on_time; \\
\hline 139 & on_time \(=0\); \\
\hline 140 & end \\
\hline 141 & if pulse_check == 1 \\
\hline 142 & Off_time_start_index = 1; \\
\hline 143 & else \\
\hline 144 & off_time_start_index = pulses ( pulse_check-1, 5 ) ; \\
\hline 145 & end \\
\hline 146 & off_time \(=\) time( on_time_start_index ) - time(.. \\
\hline 147 & Off_time_start_index ) ; \\
\hline 148 & avg_on_time_voltage \(=\) mean( voltage(... \\
\hline 149 & on_time_start_index:pulses ( pulse_check, 3 ) ) ; \\
\hline 150 & avg_off_time_voltage \(=\) mean \((\) voltage \((\). \\
\hline 151 & off_time_start_index:on_time_start_index ) ) ; \\
\hline 152 & avg_discharge_voltage \(=\) mean \((\) voltage ( pulses \((.\). \\
\hline 153 & pulse_check, 3 ):pulses ( pulse_check, 5 ) ) ; \\
\hline 154 & voltage_pulses ( pulse_check, 1 ) =... \\
\hline
\end{tabular}
```

155
156
157
158
159
160
1 6 1
162
end
%find absolute power
power = abs(current.*voltage);
%find energy
inst_energy = power*(time(end)/ length(time))/1e6;
tot_energy = inst_energy(1);
for energy_index = 2:length(inst_energy)
tot_energy(energy_index) = tot_energy(energy_index -1) +...
inst_energy(energy_index);
end
%find energy per spark
185 spark_energy = 0;
186 for sparks = 1:no_pulses

```
```

 spark_energy(sparks) = max(tot_energy(pulses(sparks, 3)...
 -3:pulses(sparks, 5) +3)) - min(tot_energy(pulses(...
 sparks, 3)-3:pulses(sparks, 5)+3));
 end
 avg_spark_energy = tot_energy(end)/no_pulses;
 %plot signal
 scrnsz = get(0,'ScreenSize');
 figure('Name', [sprintf('Current, Voltage, Power & Energy...
 Profiles for'), csvfile], 'NumberTitle','off', 'Position',...
 [0.05*scrnsz(3), 0.05*scrnsz(4), 0.9*scrnsz(3), 0.85*scrnsz(4)])
 subplot(4,1,1)
 plot(time, current)
 xlabel('Time (microseconds)')
 ylabel('Current (amps)')
 subplot(4,1,2)
 plot(time, voltage)
 207 xlabel('Time (microseconds)')
208 ylabel('Voltage (volts)')
209
210 subplot(4,1,3)
2 1 1 ~ p l o t (~ t i m e , ~ p o w e r / 1 0 0 0 ~)
212 xlabel('Time (microseconds)')
213 ylabel('Power (kilowatts)')
214
215 subplot(4,1,4)
216 plot(time, tot_energy)
217 xlabel('Time (microseconds)')
218 ylabel('Energy (joules)')

```
```

20 filename = sprintf('Current,_Voltage,_Power,_\&_Energy');
saveas(gcf, strcat(directory, filename), 'fig');
pause(2)
saveas(gcf, strcat(directory, filename), 'emf');
pause(2)
close
%plot current and voltage in 100 us increments
total_adj = total-increment+1;
plot_num = 0;
plot_total = floor(total/increment);
for dx=1:increment:total_adj
plot_num = plot_num + 1;
scrnsz = get(0,'ScreenSize');
figure('Name', ['Current \& Voltage Profiles ' csvfile sprintf(...
', Part %1.0f/%1.0f', plot_num, plot_total)], 'NumberTitle',...
'off', 'Position', [0.05*scrnsz(3), 0.05*scrnsz(4),···
0.9*scrnsz(3),0.85*scrnsz(4)])
subplot(2,1,1)
plot(time(dx:dx+increment-1), current(dx:dx+increment-1))
axis([dx/10, (dx+increment)/10, -50, 250])
xlabel('Time (microseconds)')
ylabel('Current (amps)')
title(['Current Profile for ' csvfile sprintf(', Part...
%1.0f/%1.0f', plot_num, plot_total)])
%pulse number
for check_pulse = 1: no_pulses

```
```

 if pulses(check_pulse, 1).*(pulses(check_pulse, 1)>dx...
 & pulses(check_pulse, 1)<dx+increment-1)
 text(pulses(check_pulse,2), pulses(check_pulse,6)...
 +10, sprintf('%1.f', check_pulse))
 end
 end
 subplot(2,1,2)
 plot(time(dx:dx+increment-1), voltage(dx:dx+increment-1))
 axis([dx/10, (dx+increment)/10, -150, 150])
 xlabel('Time (microseconds)')
 ylabel('Voltage (volts)')
 title(['Voltage Profile for ' csvfile sprintf(', Part...
 %1.0f/%1.0f', plot_num, plot_total)])
 %show on time
 for check_pulse = 1: no_pulses
 avg_on_time_index = round(0.5.*(pulses(check_pulse, 3)...
 + voltage_pulses(check_pulse, 1)));
 if (pulses(check_pulse, 3) > dx & pulses(check_pulse, 3...
) <dx+increment-1) | (voltage_pulses(check_pulse, 1) > dx...
 & voltage_pulses(check_pulse, 1)<dx+increment-1)
 if voltage_pulses(pulse_check, 1) > dx
 patch([pulses(check_pulse, 3), pulses(...
 check_pulse, 3), voltage_pulses(check_pulse, 1)...
 , voltage_pulses(check_pulse, 1)]/10, [0,...
 voltage_pulses(check_pulse,5), voltage_pulses(...
 check_pulse,5),0], 'y', 'FaceAlpha', 0.15,...
 'EdgeAlpha', 0.15)
 else
 patch([pulses(check_pulse, 3), pulses(...
 check_pulse, 3), 0, 0]/10, [0, voltage_pulses(...
    ```
```

 check_pulse,5), voltage_pulses(check_pulse,5)...
 ,0], 'y', 'FaceAlpha', 0.15, 'EdgeAlpha', 0.15)
 end
 if voltage_pulses(check_pulse, 3) > 8
 if time(avg_on_time_index) - 0.25.*voltage_pulses...
 (check_pulse, 3) < time(dx)
 text(time(dx)+ 2, voltage_pulses(...
 check_pulse,5)/2, sprintf('%1.f us', ...
 voltage_pulses(check_pulse, 3)))
 elseif time(avg_on_time_index) - 0.25.*...
 voltage_pulses(check_pulse, 3) > time(dx +...
 increment-1)
 text(time(dx + increment)- 8, voltage_pulses...
 (check_pulse,5)/2, sprintf('%1.f us', ...
 voltage_pulses(check_pulse, 3)))
 else
 text(time(avg_on_time_index)-0.25.*...
 voltage_pulses(check_pulse, 3), ...
 voltage_pulses(check_pulse,5)/2, sprintf(...
 '%1.f us', voltage_pulses(check_pulse, 3)))
 end
 else
 text(time(avg_on_time_index), 100, sprintf...
 ('%1.f us', voltage_pulses(check_pulse, 3)))
 end
 end
 %show discharge time
 if (pulses(check_pulse, 1) > dx & pulses(check_pulse,...
 1)<dx+increment-1)
    ```
```

 patch([pulses(check_pulse, 3), pulses(check_pulse,...
 3), pulses(check_pulse, 5), pulses(check_pulse,...
 5)]/10, [0, voltage_pulses(check_pulse,7), ...
 voltage_pulses(check_pulse,7),0], 'r', 'FaceAlpha',...
 0.5, 'EdgeAlpha', 0.5)
 end
 end
 filename = sprintf('Current_and_Voltage_%02.0f_of_%02.0f',...
 plot_num, plot_total);
 saveas(gcf, strcat(directory, filename), 'fig');
 pause(2)
 saveas(gcf, strcat(directory, filename), 'jpg');
 pause(2)
 close
 %plot power and energy
 scrnsz = get(0,'ScreenSize');
 figure('Name', ['Power & Energy Profiles ' csvfile sprintf(...
 ', Part %1.0f/%1.0f', plot_num, plot_total)], 'NumberTitle',...
 'off', 'Position', [0.05*scrnsz(3), 0.05*scrnsz(4),...
 0.9*scrnsz(3), 0.85*scrnsz(4)])
 subplot(2,1,1)
 plot(time(dx:dx+increment-1), power(dx:dx+increment-1)/1000)
 axis([dx/10, (dx+increment)/10, 0, max(power)/1000+3])
 xlabel('Time (microseconds)')
 ylabel('Power (kilowatts)')
 title(['Power Profile for ' csvfile sprintf(', Part...
 %1.0f/%1.0f', plot_num, plot_total)])
 %pulse number
    ```
```

for check_pulse = 1: no_pulses
if pulses(check_pulse, 1).*(pulses(check_pulse, 1)>dx...
\& pulses(check_pulse, 1)<dx+increment-1)
if pulses(check_pulse,1) > 20 \&\& pulses(...
check_pulse,1) < (length(time)- 20)
text(pulses(check_pulse,2), max(power(pulses(...
check_pulse,1)-20:pulses(check_pulse,1)+20))...
/1000+2, sprintf('%1.f', check_pulse))
elseif pulses(check_pulse,1) \leq 20
text(pulses(check_pulse,2), max(power(1:pulses(...
check_pulse,1)+20))/1000+2, sprintf('%1.f',...
check_pulse))
elseif pulses(check_pulse,1) \geq (length(time)- 20)
text(pulses(check_pulse,2), max(power(pulses(...
check_pulse,1)-20:length(time)))/1000+2,...
sprintf('%1.f', check_pulse))
else
end
end
end
subplot (2,1,2)
plot(time(dx:dx+increment-1), tot_energy(dx:dx+increment-1))
xlim([dx/10, (dx+increment)/10])
xlabel('Time (microseconds)')
ylabel('Energy (Joules)')
title(['Energy Profile for ' csvfile sprintf(', Part ...
%1.0f/%1.0f', plot_num, plot_total)])
%spark energy
for check_spark = 1: no_pulses

```
```

~
if pulses(check_spark, 1).*(pulses(check_spark, 1)...
>dx \& pulses(check_spark, 1)<dx+increment-1)
text(pulses(check_spark,2) + 1, tot_energy(pulses(...
check_spark,1))-.002, sprintf('%2.1f mJ',...
1000*spark_energy(check_spark)))
end
end
filename = sprintf('Power_and_Energy_%02.0f_of_%02.0f',...
plot_num, plot_total);
saveas(gcf, strcat(directory, filename), 'fig');
pause(2)
saveas(gcf, strcat(directory, filename), 'emf');
pause(2)
close
energy_per_inch = avg_spark_energy*frequency_of_pulses*60...
/feed_rate; %kJ/in.
%
%
end
4 0 1
4 0 2
4 0 3
4 0 4 ~ t r y ~
4 0 5 ~ d e l e t e (~ s t r c a t (~ d i r e c t o r y , ~ ' S u m m a r y . t x t ' ~) ~) ;
406 catch
end
4 0 8
4 0 9
410 diary(strcat(directory, 'Summary.txt'))

```
```

fprintf(['\nREPORT FOR' ' ' strcat(csvfile, '\n')])
fprintf('\nAverage peak discharge current is %3.0f Amps\n',...
mean(pulses(:, 6)))
fprintf('Average discharge current pulse width is %1.2f...
microseconds\n', mean(pulses(:, 4)))
fprintf('Average discharge current pulse frequency is %2.2f...
kHz\n', frequency_of_pulses)
fprintf('Average voltage on-time is %2.2f microseconds\n',...
mean(voltage_pulses(:, 3)))
fprintf('Average voltage off-time is %2.2f microseconds\n',...
mean(voltage_pulses(:, 4)))
fprintf('On-time average voltage is %2.2f volts\n',...
mean(voltage_pulses(:, 5)))
fprintf('Off-time average voltage is %2.2f volts\n',...
mean(voltage_pulses(:, 6)))
fprintf('Discharge average voltage is %2.2f volts\n',...
mean(voltage_pulses(:, 7)))
fprintf('Average spark energy is %2.2f millijoules\n',...
avg_spark_energy*1000)
fprintf('Average energy per inch is %2.2f kJ/inch\n',...
energy_per_inch)
fprintf('\nPulse No.\tTime\t\tDuration\tPeak Current\tOn-Time...
\t\tOff-Time\ton-Time Voltage\tOff-Time Voltage\tDischarge Voltage...
\tSpark Energy\n')
for print_index = 1:no_pulses
fprintf('%3.0f\t\t\t%3.2f\t\t%2.2f\t\t%3.2f\t\t\t%2.2f\t\t...
%2.2f\t\t%2.2f\t\t\t%2.2f\t\t\t\t%2.2f\t\t\t\t%2.2f\n',...
print_index, pulses(print_index, 2),...
pulses(print_index, 4), pulses(print_index, 6),...
voltage_pulses(print_index, 3), voltage_pulses...
(print_index, 4), voltage_pulses(print_index, 5)...

```
```

 , voltage_pulses(print_index, 6), voltage_pulses...
 (print_index, 7), spark_energy(print_index)*1000)
 end
 446
4 4 7 ~ d i a r y ~ o f f ~
448
toc

```

\section*{APPENDIX B}

\section*{RECAST LAYER THICKNESS MEASUREMENTS}

Table B.1: Recast layer thickness measurements
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Wire \\
[ \(\mu \mathrm{m}\) ]
\end{tabular} & Feed Rate [ \(\mathrm{mm} / \mathrm{min}\) ] & \[
\begin{aligned}
& \mathrm{SC} \\
& {[\mu \mathrm{~S}]}
\end{aligned}
\] & SE & Recast Layer Thicknesses [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& \text { Avg. } \\
& {[\mu \mathrm{m}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{SD} \\
& {[\mu \mathrm{~m}]}
\end{aligned}
\] & CoV \\
\hline 100 & 1.969 & 16 & 4 & \[
\begin{aligned}
& 10.82,6.73,9.48,6.62, \\
& 7.95,6.79,7.94
\end{aligned}
\] & 8.07 & 1.74 & 0.216 \\
\hline 100 & 1.969 & 16 & 6 & 5.16, 4.74, 5.40 & 5.10 & 0.34 & 0.066 \\
\hline 100 & 1.969 & 16 & 8 & 6.84, 6.34, 6.53 & 6.57 & 0.25 & 0.039 \\
\hline 100 & 1.969 & 28 & 4 & 7.58, 7.73, 6.19 & 7.17 & 0.85 & 0.119 \\
\hline 100 & 1.969 & 28 & 6 & 5.07, 6.20, 5.11 & 5.46 & 0.65 & 0.118 \\
\hline 100 & 1.969 & 28 & 8 & 8.02, 6.84, 8.05 & 7.63 & 0.69 & 0.090 \\
\hline 100 & 2.223 & 16 & 4 & 5.35, 6.27, 6.03 & 5.88 & 0.48 & 0.081 \\
\hline 100 & 2.223 & 16 & 6 & \(6.20,6.85,6.15\) & 6.40 & 0.39 & 0.061 \\
\hline 100 & 2.223 & 16 & 8 & 7.15, 6.20, 7.22 & 6.86 & 0.57 & 0.083 \\
\hline 100 & 2.223 & 28 & 4 & 6.01, 5.96, 6.76 & 6.24 & 0.45 & 0.072 \\
\hline 100 & 2.223 & 28 & 6 & 5.81, 6.65, 6.00 & 6.15 & 0.44 & 0.072 \\
\hline 100 & 2.223 & 28 & 8 & 7.04, 6.65, 8.86, 7.45 & 7.50 & 0.96 & 0.129 \\
\hline 250 & 1.969 & 16 & 6 & 7.16, 8.42, 8.70 & 8.09 & 0.82 & 0.101 \\
\hline 250 & 1.969 & 16 & 12 & \[
\begin{aligned}
& 10.19,7.45,7.61,5.67 \text {, } \\
& 6.98,12.45
\end{aligned}
\] & 8.39 & 2.47 & 0.295 \\
\hline 250 & 1.969 & 16 & 18 & 7.77, 8.82, 6.43, 8.17 & 7.80 & 1.01 & 0.129 \\
\hline 250 & 1.969 & 28 & 6 & \(7.88,6.73,5.85\) & 6.82 & 1.02 & 0.149 \\
\hline 250 & 1.969 & 28 & 12 & 8.48, 8.75, 8.32 & 8.51 & 0.22 & 0.026 \\
\hline 250 & 1.969 & 28 & 18 & \[
\begin{aligned}
& 6.39,7.64,11.07,7.22, \\
& 7.41,7.34
\end{aligned}
\] & 7.84 & 1.63 & 0.209 \\
\hline 250 & 2.223 & 16 & 6 & \(5.78,5.23,6.12\) & 5.71 & 0.45 & 0.079 \\
\hline 250 & 2.223 & 16 & 12 & 7.15, 9.20, 7.64 & 8.00 & 1.07 & 0.134 \\
\hline 250 & 2.223 & 16 & 18 & 7.18, 5.55, 7.27 & 6.67 & 0.97 & 0.145 \\
\hline 250 & 2.223 & 28 & 6 & \[
\begin{aligned}
& 7.11,4.84,5.57,5.59 \\
& 6.38,6.15
\end{aligned}
\] & 5.94 & 0.79 & 0.132 \\
\hline 250 & 2.223 & 28 & 12 & \[
\begin{aligned}
& 8.23,5.16,7.79,7.41, \\
& 7.57,7.12
\end{aligned}
\] & 7.21 & 1.07 & 0.149 \\
\hline 250 & 2.223 & 28 & 18 & \[
\begin{aligned}
& 7.45,10.04,6.34,8.59 \\
& 8.14,6.79
\end{aligned}
\] & 7.89 & 1.34 & 0.170 \\
\hline
\end{tabular}
Table B.2: Recast layer thickness measurements after vibratory tumbling experiments
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Region & Wire Diameter [ \(\mu \mathrm{m}\) ] & \begin{tabular}{l}
Feed \\
Rate \\
[mm/min]
\end{tabular} & Spark Cycle [ \(\mu \mathrm{s}\) ] & \begin{tabular}{l}
Spark \\
Energy
\end{tabular} & Recast Layer Thicknesses [ \(\mu \mathrm{m}\) ] & \begin{tabular}{l}
Avg. \\
[ \(\mu \mathrm{m}\) ]
\end{tabular} & \[
\begin{aligned}
& \mathrm{SD} \\
& {[\mu \mathrm{~m}]}
\end{aligned}
\] & CoV \\
\hline Flat Surface & 250 & 1.969 & 28 & 12 & 5.17, 4.37, 3.82 & 4.46 & 0.68 & 0.153 \\
\hline Flat Surface (tumbled with liquid cleaner) & 100 & 1.969 & 16 & 4 & 10.77, 6.07, 5.36 & 7.40 & 2.94 & 0.394 \\
\hline Flat Surface (tumbled dry) & 100 & 1.969 & 16 & 4 & 3.47, 5.08, 4.12 & 4.22 & 0.81 & 0.192 \\
\hline Gear Tooth Root (tumbled dry) & 100 & 1.969 & 16 & 4 & 5.16, 4.50, 3.51 & 4.39 & 0.83 & 0.189 \\
\hline
\end{tabular}

\section*{APPENDIX C}

\section*{SURFACE ROUGHNESS MEASUREMENTS}

Table C.1: Surface roughness data for Sample 1 (wire diameter: \(100 \mu \mathrm{~m}\), table feed rate: \(2.223 \mathrm{~mm} / \mathrm{min}\), spark cycle: \(16 \mu \mathrm{~s}\), spark energy: 4)
\begin{tabular}{|lll|} 
Replicate & RMS \([\mu \mathrm{m}]\) & \(\operatorname{Ra}[\mu \mathrm{m}]\) \\
\hline 1 & 2.625 & 2.024 \\
2 & 2.713 & 2.12 \\
3 & 2.57 & 2.012 \\
\hline Average & 2.636 & 2.052 \\
Std. Dev. & 0.072 & 0.059 \\
\hline
\end{tabular}

Table C.2: Surface roughness data for Sample 2 (wire diameter: \(100 \mu \mathrm{~m}\), table feed rate: \(1.969 \mathrm{~mm} / \mathrm{min}\), spark cycle: \(28 \mu \mathrm{~s}\), spark energy: 8)
\begin{tabular}{|lll|}
\hline Replicate & RMS \([\mu \mathrm{m}]\) & \(\operatorname{Ra}[\mu \mathrm{m}]\) \\
\hline 1 & 2.899 & 2.258 \\
2 & 3.011 & 2.323 \\
3 & 2.926 & 2.27 \\
\hline Average & 2.945 & 2.284 \\
Std. Dev. & 0.058 & 0.035 \\
\hline
\end{tabular}

Table C.3: Surface roughness data for Sample 3 (wire diameter: \(250 \mu \mathrm{~m}\), table feed rate: \(2.223 \mathrm{~mm} / \mathrm{min}\), spark cycle: \(28 \mu \mathrm{~s}\), spark energy: 6)
\begin{tabular}{|lll|}
\hline Replicate & RMS \([\mu \mathrm{m}]\) & \(\mathrm{Ra}[\mu \mathrm{m}]\) \\
\hline 1 & 2.824 & 2.18 \\
2 & 2.854 & 2.218 \\
3 & 2.889 & 2.207 \\
\hline Average & 2.856 & 2.202 \\
Std. Dev. & 0.033 & 0.020 \\
\hline
\end{tabular}

Table C.4: Surface roughness data for Sample 4 (wire diameter: \(250 \mu \mathrm{~m}\), table feed rate: \(1.969 \mathrm{~mm} / \mathrm{min}\), spark cycle: \(28 \mu \mathrm{~s}\), spark energy: 18)
\begin{tabular}{|lll|}
\hline Replicate & RMS \([\mu \mathrm{m}]\) & Ra \([\mu \mathrm{m}]\) \\
\hline 1 & 3.761 & 2.937 \\
2 & 4.506 & 3.561 \\
3 & 4.103 & 3.15 \\
\hline Average & 4.123 & 3.216 \\
Std. Dev. & 0.373 & 0.317 \\
\hline
\end{tabular}

Table C.5: Surface roughness data for vibratory tumbled sample prior to tumbling (wire diameter: \(250 \mu \mathrm{~m}\), table feed rate: \(1.969 \mathrm{~mm} / \mathrm{min}\), spark cycle: \(28 \mu \mathrm{~s}\), spark energy: 12)
\begin{tabular}{|lll|}
\hline Replicate & RMS \([\mu \mathrm{m}]\) & \(\operatorname{Ra}[\mu \mathrm{m}]\) \\
\hline 1 & 3.427 & 2.731 \\
2 & 3.518 & 2.762 \\
3 & 3.328 & 2.601 \\
\hline Average & 3.424 & 2.698 \\
Std. Dev. & 0.095 & 0.085 \\
\hline
\end{tabular}

Table C.6: Surface roughness data for vibratory tumbled sample (wire diameter: \(250 \mu \mathrm{~m}\), table feed rate: \(1.969 \mathrm{~mm} / \mathrm{min}\), spark cycle: \(28 \mu \mathrm{~s}\), spark energy: 12)
\begin{tabular}{|lll|}
\hline Replicate & RMS \([\mu \mathrm{m}]\) & Ra \([\mu \mathrm{m}]\) \\
\hline 1 & 1.323 & 0.997 \\
2 & 1.374 & 1.091 \\
3 & 1.316 & 1.009 \\
\hline Average & 1.338 & 1.032 \\
Std. Dev. & 0.032 & 0.051 \\
\hline
\end{tabular}

\section*{APPENDIX D}

\section*{DATA FROM X-RAY DIFFRACTION TESTS}

\section*{D. 1 Results of Scan Tables for Determination of \(d_{0}\)}

Table D.1: Results of scan table for the (331) plane of the virgin surface of Sample 1 to find \(d_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & Peak Position & d-spacing & FWHM & Integ. & \\
\hline [ \({ }^{\circ}\) & - & [ \({ }^{\circ}\) ] & [ \({ }^{\circ}\) & A & [ \({ }^{\circ}\) & [ \({ }^{\circ}\) & Ratio \\
\hline -55.25 & 0.675 & 0 & 138.1919 & 0.82457 & 2.071 & 2.528 & 0.819 \\
\hline -55.25 & 0.675 & 0 & 138.1842 & 0.824592 & 2.327 & 2.84 & 0.819 \\
\hline -45.44 & 0.508 & 0 & 137.9783 & 0.825159 & 1.929 & 2.354 & 0.819 \\
\hline -45.44 & 0.508 & 0 & 138.0168 & 0.825053 & 2.173 & 2.651 & 0.819 \\
\hline -35.65 & 0.34 & 0 & 137.8222 & 0.825592 & 1.888 & 2.304 & 0.819 \\
\hline -35.65 & 0.34 & 0 & 137.8539 & 0.825504 & 2.121 & 2.588 & 0.819 \\
\hline -24.43 & 0.171 & 0 & 137.7386 & 0.825825 & 1.682 & 2.053 & 0.819 \\
\hline -24.43 & 0.171 & 0 & 137.7148 & 0.825891 & 1.908 & 2.329 & 0.819 \\
\hline -0.25 & 0 & 0 & 137.5235 & 0.826426 & 2.37 & 2.893 & 0.819 \\
\hline -0.25 & 0 & 0 & 137.5671 & 0.826303 & 1.888 & 2.304 & 0.819 \\
\hline 23.93 & 0.165 & 0 & 137.7518 & 0.825788 & 1.899 & 2.318 & 0.819 \\
\hline 23.93 & 0.165 & 0 & 137.7284 & 0.825853 & 2.058 & 2.512 & 0.819 \\
\hline 35.15 & 0.331 & 0 & 137.8735 & 0.825449 & 2.049 & 2.5 & 0.819 \\
\hline 35.15 & 0.331 & 0 & 137.8384 & 0.825547 & 2.102 & 2.565 & 0.819 \\
\hline 44.94 & 0.499 & 0 & 137.9264 & 0.825303 & 2.25 & 2.745 & 0.819 \\
\hline 44.94 & 0.499 & 0 & 137.9733 & 0.825173 & 2.536 & 3.094 & 0.819 \\
\hline 54.75 & 0.667 & 0 & 138.07 & 0.824906 & 3.068 & 3.744 & 0.819 \\
\hline -55.25 & 0.675 & 90 & 137.8607 & 0.825485 & 1.996 & 2.436 & 0.819 \\
\hline -55.25 & 0.675 & 90 & 137.8233 & 0.825589 & 2.133 & 2.602 & 0.819 \\
\hline -45.44 & 0.508 & 90 & 137.81 & 0.825626 & 2.357 & 2.876 & 0.819 \\
\hline -45.44 & 0.508 & 90 & 137.6788 & 0.825991 & 2.044 & 2.494 & 0.819 \\
\hline -35.65 & 0.34 & 90 & 137.7066 & 0.825914 & 1.941 & 2.369 & 0.819 \\
\hline -35.65 & 0.34 & 90 & 137.5983 & 0.826216 & 2.077 & 2.534 & 0.819 \\
\hline -24.43 & 0.171 & 90 & 137.6461 & 0.826083 & 2.401 & 2.93 & 0.819 \\
\hline -24.43 & 0.171 & 90 & 137.6784 & 0.825992 & 1.93 & 2.355 & 0.819 \\
\hline -0.25 & 0 & 90 & 137.6034 & 0.826202 & 2.01 & 2.453 & 0.819 \\
\hline -0.25 & 0 & 90 & 137.5569 & 0.826332 & 2.273 & 2.774 & 0.819 \\
\hline 23.93 & 0.165 & 90 & 137.6342 & 0.826116 & 2.173 & 2.652 & 0.819 \\
\hline 23.93 & 0.165 & 90 & 137.6375 & 0.826106 & 1.684 & 2.056 & 0.819 \\
\hline 35.15 & 0.331 & 90 & 137.6376 & 0.826106 & 2.389 & 2.915 & 0.819 \\
\hline 35.15 & 0.331 & 90 & 137.7466 & 0.825802 & 2.178 & 2.658 & 0.819 \\
\hline 44.94 & 0.499 & 90 & 137.7877 & 0.825688 & 2.288 & 2.792 & 0.819 \\
\hline 44.94 & 0.499 & 90 & 137.7718 & 0.825732 & 2.529 & 3.086 & 0.819 \\
\hline 54.75 & 0.667 & 90 & 137.8101 & 0.825626 & 2.645 & 3.227 & 0.819 \\
\hline 54.75 & 0.667 & 90 & 137.7528 & 0.825785 & 2.367 & 2.889 & 0.819 \\
\hline
\end{tabular}

Table D.2: Results of scan table for the (420) plane of the virgin surface of Sample 1 to find \(d_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & Peak Position & d-spacing & FWHM & Integ. & \\
\hline [ \({ }^{\text {] }}\) & & [ \({ }^{\circ}\) ] & [ \({ }^{\circ}\) ] & A & [ \({ }^{\circ}\) ] & \({ }^{\circ}\) ] & Ratio \\
\hline -55.05 & 0.672 & 0 & 146.6949 & 0.804017 & 2.348 & 2.866 & 0.819 \\
\hline -55.05 & 0.672 & 0 & 146.8917 & 0.803605 & 2.658 & 3.244 & 0.819 \\
\hline -45.24 & 0.504 & 0 & 146.5167 & 0.804392 & 2.981 & 3.637 & 0.819 \\
\hline -35.45 & 0.336 & 0 & 146.3998 & 0.804639 & 2.362 & 2.883 & 0.819 \\
\hline -35.45 & 0.336 & 0 & 146.3885 & 0.804663 & 2.713 & 3.31 & 0.819 \\
\hline -24.23 & 0.168 & 0 & 146.0507 & 0.805384 & 2.959 & 3.61 & 0.819 \\
\hline -24.23 & 0.168 & 0 & 146.1662 & 0.805137 & 3.134 & 3.825 & 0.819 \\
\hline -0.05 & 0 & 0 & 145.8822 & 0.805746 & 2.854 & 3.482 & 0.819 \\
\hline -0.05 & 0 & 0 & 146.0344 & 0.805419 & 2.623 & 3.2 & 0.819 \\
\hline 24.13 & 0.167 & 0 & 146.1036 & 0.80527 & 2.46 & 3.002 & 0.819 \\
\hline 35.35 & 0.335 & 0 & 146.4092 & 0.804619 & 2.446 & 2.984 & 0.819 \\
\hline 35.35 & 0.335 & 0 & 146.3961 & 0.804647 & 2.953 & 3.604 & 0.819 \\
\hline 45.14 & 0.502 & 0 & 146.6423 & 0.804127 & 3.11 & 3.795 & 0.819 \\
\hline 45.14 & 0.502 & 0 & 146.3641 & 0.804715 & 3.243 & 3.957 & 0.819 \\
\hline 54.95 & 0.67 & 0 & 146.6352 & 0.804142 & 3.19 & 3.893 & 0.819 \\
\hline 54.95 & 0.67 & 0 & 146.5897 & 0.804238 & 3.869 & 4.722 & 0.819 \\
\hline -55.05 & 0.672 & 90 & 146.3026 & 0.804846 & 2.527 & 3.084 & 0.819 \\
\hline -55.05 & 0.672 & 90 & 146.1808 & 0.805105 & 3.148 & 3.842 & 0.819 \\
\hline -45.24 & 0.504 & 90 & 146.1809 & 0.805105 & 3.144 & 3.837 & 0.819 \\
\hline -45.24 & 0.504 & 90 & 146.2354 & 0.804989 & 2.915 & 3.557 & 0.819 \\
\hline -35.45 & 0.336 & 90 & 146.0011 & 0.80549 & 3.281 & 4.004 & 0.819 \\
\hline -35.45 & 0.336 & 90 & 145.9955 & 0.805502 & 3.182 & 3.883 & 0.819 \\
\hline -24.23 & 0.168 & 90 & 146.0191 & 0.805452 & 2.798 & 3.415 & 0.819 \\
\hline -24.23 & 0.168 & 90 & 145.9194 & 0.805666 & 2.692 & 3.285 & 0.819 \\
\hline -0.05 & 0 & 90 & 145.9143 & 0.805677 & 2.494 & 3.043 & 0.819 \\
\hline -0.05 & 0 & 90 & 145.8457 & 0.805825 & 2.33 & 2.844 & 0.819 \\
\hline 24.13 & 0.167 & 90 & 145.9763 & 0.805544 & 2.753 & 3.36 & 0.819 \\
\hline 35.35 & 0.335 & 90 & 145.9587 & 0.805581 & 2.944 & 3.593 & 0.819 \\
\hline 35.35 & 0.335 & 90 & 145.9149 & 0.805676 & 3.435 & 4.192 & 0.819 \\
\hline 45.14 & 0.502 & 90 & 146.0823 & 0.805316 & 3.614 & 4.41 & 0.819 \\
\hline 45.14 & 0.502 & 90 & 146.1302 & 0.805213 & 2.368 & 2.89 & 0.819 \\
\hline 54.95 & 0.67 & 90 & 146.119 & 0.805237 & 4.027 & 4.915 & 0.819 \\
\hline 54.95 & 0.67 & 90 & 146.1058 & 0.805266 & 2.371 & 2.894 & 0.819 \\
\hline
\end{tabular}

\section*{D. 2 Results of Scan Tables for Residual Stress Measurements}

Table D.3: Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & & Peak Position & d-spacing & FWHM & Integ. & \\
\hline [ \({ }^{\circ}\) ] & \(\left[^{\circ}\right]\) & \(\left[{ }^{\circ}\right]\) & \(\left.{ }^{\circ}{ }^{\circ}\right]\) & & \({ }^{\circ} \mathrm{]}\) & [ \({ }^{\circ}\) ] & Ratio \\
\hline -55.25 & 0.675 & 0 & 137.0255 & 0.827831 & 1.048 & 1.278 & 0.819 \\
\hline -45.44 & 0.508 & 0 & 137.1974 & 0.827344 & 1.14 & 1.392 & 0.819 \\
\hline -35.65 & 0.34 & 0 & 137.3922 & 0.826794 & 0.992 & 1.211 & 0.819 \\
\hline -24.43 & 0.171 & 0 & 137.552 & 0.826346 & 1.214 & 1.465 & 0.829 \\
\hline -0.25 & 0 & 0 & 137.5495 & 0.826353 & 1.264 & 1.474 & 0.858 \\
\hline 23.93 & 0.165 & 0 & 137.455 & 0.826618 & 1.373 & 1.723 & 0.797 \\
\hline 35.15 & 0.331 & 0 & 137.416 & 0.826727 & 1.266 & 1.387 & 0.913 \\
\hline 44.94 & 0.499 & 0 & 137.2691 & 0.827141 & 0.986 & 1.204 & 0.819 \\
\hline 54.75 & 0.667 & 0 & 137.0178 & 0.827854 & 1.143 & 1.395 & 0.819 \\
\hline -55.25 & 0.675 & 90 & 137.157 & 0.827458 & 1.146 & 1.398 & 0.819 \\
\hline -45.44 & 0.508 & 90 & 137.2747 & 0.827126 & 1.17 & 1.428 & 0.819 \\
\hline -35.65 & 0.34 & 90 & 137.3943 & 0.826788 & 0.979 & 1.194 & 0.819 \\
\hline -24.43 & 0.171 & 90 & 137.4815 & 0.826543 & 0.974 & 1.189 & 0.819 \\
\hline -0.25 & 0 & 90 & 137.4722 & 0.826569 & 0.811 & 0.99 & 0.819 \\
\hline 23.93 & 0.165 & 90 & 137.4696 & 0.826577 & 0.772 & 0.942 & 0.819 \\
\hline 35.15 & 0.331 & 90 & 137.394 & 0.826789 & 0.896 & 1.093 & 0.819 \\
\hline 44.94 & 0.499 & 90 & 137.2667 & 0.827148 & 1.171 & 1.428 & 0.819 \\
\hline 54.75 & 0.667 & 90 & 137.1254 & 0.827548 & 1.343 & 1.639 & 0.819 \\
\hline
\end{tabular}

Table D.4: Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 1
\begin{tabular}{|lll|ll|lll|}
\hline\(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) \\
{\(\left[\left[^{\circ}\right]\right.\)} & {\(\left[{ }^{\circ}\right]\)} & {\(\left[^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
Peak Position \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
d-spacing \\
\(\AA\)
\end{tabular} \begin{tabular}{l} 
FWHM \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
Integ. breadth \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular}

Table D.5: Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & Peak Position & d-spacing & FWHM & Integ. & \\
\hline [ \({ }^{\circ}\) & & \(\left[^{\circ}\right.\) ] & & A & \(\left[{ }^{\circ}\right]\) & [ \({ }^{\circ}\) ] & Ratio \\
\hline -55.25 & 0.675 & 0 & 136.9968 & 0.827913 & 1.054 & 1.286 & 0.819 \\
\hline -45.44 & 0.508 & 0 & 137.1537 & 0.827468 & 1.147 & 1.4 & 0.819 \\
\hline -35.65 & 0.34 & 0 & 137.3197 & 0.826998 & 0.85 & 1.037 & 0.819 \\
\hline -24.43 & 0.171 & 0 & 137.3632 & 0.826876 & 1.343 & 1.423 & 0.943 \\
\hline -0.25 & 0 & 0 & 137.3599 & 0.826885 & 0.642 & 1.315 & 0.488 \\
\hline 23.93 & 0.165 & 0 & 137.3985 & 0.826777 & 1.302 & 1.652 & 0.788 \\
\hline 35.15 & 0.331 & 0 & 137.3899 & 0.826801 & 1.313 & 1.545 & 0.85 \\
\hline 44.94 & 0.499 & 0 & 137.2626 & 0.82716 & 1.053 & 1.285 & 0.819 \\
\hline 54.75 & 0.667 & 0 & 137.1461 & 0.827489 & 1.213 & 1.48 & 0.819 \\
\hline -55.25 & 0.675 & 90 & 137.0652 & 0.827719 & 1.115 & 1.361 & 0.819 \\
\hline -45.44 & 0.508 & 90 & 137.1812 & 0.82739 & 1.095 & 1.336 & 0.819 \\
\hline -35.65 & 0.34 & 90 & 137.232 & 0.827246 & 1.012 & 1.236 & 0.819 \\
\hline -24.43 & 0.171 & 90 & 137.2888 & 0.827086 & 1.118 & 1.365 & 0.819 \\
\hline -0.25 & 0 & 90 & 137.3015 & 0.82705 & 0.971 & 1.185 & 0.819 \\
\hline 23.93 & 0.165 & 90 & 137.3264 & 0.82698 & 1.04 & 1.269 & 0.819 \\
\hline 35.15 & 0.331 & 90 & 137.2675 & 0.827146 & 1.005 & 1.226 & 0.819 \\
\hline 44.94 & 0.499 & 90 & 137.1815 & 0.827389 & 1.114 & 1.36 & 0.819 \\
\hline 54.75 & 0.667 & 90 & 137.0718 & 0.8277 & 1.143 & 1.394 & 0.819 \\
\hline
\end{tabular}

Table D.6: Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 2
\begin{tabular}{|lll|ll|lll|}
\hline\(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) \\
{\(\left[\left[^{\circ}\right]\right.\)} & {\(\left[{ }^{\circ}\right]\)} & {\(\left[^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
Peak Position \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
d-spacing \\
\(\AA\)
\end{tabular} \begin{tabular}{l} 
FWHM \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
Integ. breadth \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular}

Table D.7: Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 2 (repeated)
\begin{tabular}{|lll|ll|lll|}
\hline\(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & Peak Position & d-spacing \\
{\(\left[\left[^{\circ}\right]\right.\)} & {\(\left[^{\circ}\right]\)} & {\(\left[^{\circ}\right]\)} & \begin{tabular}{l} 
FWHM \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} & \(\AA\) & \begin{tabular}{l} 
Integ. breadth \\
{\(\left[^{\circ}\right]\)}
\end{tabular} & {\(\left[^{\circ}\right]\)} & Ratio \\
\hline-55.25 & 0.675 & 0 & 137.152 & 0.827472 & 1.172 & 1.43 & 0.819 \\
-45.44 & 0.508 & 0 & 137.1094 & 0.827593 & 1.036 & 1.265 & 0.819 \\
-35.65 & 0.34 & 0 & 137.192 & 0.827359 & 1.363 & 1.663 & 0.819 \\
-24.43 & 0.171 & 0 & 137.3322 & 0.826963 & 1.406 & 1.412 & 0.995 \\
-0.25 & 0 & 0 & 137.3408 & 0.826939 & 0.56 & 1.189 & 0.471 \\
23.93 & 0.165 & 0 & 137.3098 & 0.827026 & 1.312 & 1.599 & 0.821 \\
35.15 & 0.331 & 0 & 137.4212 & 0.826713 & 1.504 & 1.722 & 0.873 \\
44.94 & 0.499 & 0 & 137.2092 & 0.827311 & 1.134 & 1.384 & 0.819 \\
54.75 & 0.667 & 0 & 136.9769 & 0.82797 & 1.187 & 1.449 & 0.819 \\
\hline-55.25 & 0.675 & 90 & 137.0712 & 0.827702 & 1.146 & 1.398 & 0.819 \\
-45.44 & 0.508 & 90 & 137.1783 & 0.827398 & 1.131 & 1.38 & 0.819 \\
-35.65 & 0.34 & 90 & 137.2238 & 0.827269 & 1.095 & 1.336 & 0.819 \\
-24.43 & 0.171 & 90 & 137.2766 & 0.82712 & 1.013 & 1.237 & 0.819 \\
-0.25 & 0 & 90 & 137.321 & 0.826995 & 0.885 & 1.08 & 0.819 \\
23.93 & 0.165 & 90 & 137.3121 & 0.82702 & 0.964 & 1.176 & 0.819 \\
35.15 & 0.331 & 90 & 137.2158 & 0.827292 & 1.119 & 1.365 & 0.819 \\
44.94 & 0.499 & 90 & 137.2075 & 0.827315 & 1.141 & 1.392 & 0.819 \\
54.75 & 0.667 & 90 & 137.1 & 0.82762 & 1.243 & 1.517 & 0.819 \\
\hline
\end{tabular}

Table D.8: Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 2 (repeated


Table D.9: Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 2 (repeated)
\begin{tabular}{|lll|ll|lll|}
\hline\(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & Peak Position & d-spacing \\
{\(\left[\left[^{\circ}\right]\right.\)} & {\(\left[^{\circ}\right]\)} & {\(\left[^{\circ}\right]\)} & \begin{tabular}{l} 
FWHM \\
{\(\left[^{\circ}\right]\)}
\end{tabular} & \(\AA\) & \begin{tabular}{l} 
Integ. breadth \\
{\(\left[^{\circ}\right]\)}
\end{tabular} & {\(\left[^{\circ}\right]\)} & Ratio \\
\hline-55.25 & 0.675 & 0 & 137.0445 & 0.827777 & 1.114 & 1.359 & 0.819 \\
-45.44 & 0.508 & 0 & 137.1246 & 0.82755 & 1.005 & 1.226 & 0.819 \\
-35.65 & 0.34 & & & & & & \\
-24.43 & 0.171 & 0 & 137.2499 & 0.827195 & 1.291 & 1.576 & 0.819 \\
-0.25 & 0 & 0 & 137.3106 & 0.827024 & 0.952 & 1.162 & 0.819 \\
23.93 & 0.165 & 0 & 137.3104 & 0.827025 & 0.917 & 1.119 & 0.819 \\
35.15 & 0.331 & 0 & 137.3272 & 0.826977 & 1.044 & 1.274 & 0.819 \\
44.94 & 0.499 & 0 & 137.2337 & 0.827241 & 0.869 & 1.061 & 0.819 \\
54.75 & 0.667 & 0 & 137.0889 & 0.827651 & 1.156 & 1.41 & 0.819 \\
\hline-55.25 & 0.675 & 90 & 137.0671 & 0.827713 & 1.207 & 1.473 & 0.819 \\
-45.44 & 0.508 & 90 & 137.1804 & 0.827392 & 1.448 & 1.767 & 0.819 \\
-35.65 & 0.34 & 90 & 137.242 & 0.827218 & 1.028 & 1.254 & 0.819 \\
-24.43 & 0.171 & 90 & 137.2652 & 0.827152 & 0.841 & 1.026 & 0.819 \\
-0.25 & 0 & 90 & & & & & \\
23.93 & 0.165 & 90 & 137.2882 & 0.827087 & 1.142 & 1.393 & 0.819 \\
35.15 & 0.331 & 90 & & & & & \\
44.94 & 0.499 & 90 & 137.1331 & 0.827526 & 1.35 & 1.648 & 0.819 \\
54.75 & 0.667 & 90 & 137.0772 & 0.827685 & 1.305 & 1.592 & 0.819 \\
\hline
\end{tabular}

Table D.10: Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 2 (repeated)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & Peak Position & d-spacing & FWHM & Integ. & \\
\hline [ \({ }^{\circ}\) ] & & \(\left[^{\circ}\right]\) & [ \({ }^{\circ}\) ] & A & [ \({ }^{\circ}\) ] & [ \({ }^{\circ}\) ] & Ratio \\
\hline -54.9 & 0.669 & 0 & 145.3313 & 0.806946 & 1.677 & 2.047 & 0.819 \\
\hline -45.09 & 0.502 & 0 & 145.5369 & 0.806496 & 1.589 & 1.939 & 0.819 \\
\hline -35.3 & 0.334 & 0 & 145.6323 & 0.806288 & 1.535 & 1.873 & 0.819 \\
\hline -24.08 & 0.166 & 0 & 145.7736 & 0.805981 & 1.267 & 1.546 & 0.819 \\
\hline 0.1 & 0 & 0 & 145.818 & 0.805885 & 1.436 & 1.752 & 0.819 \\
\hline 24.28 & 0.169 & 0 & 145.887 & 0.805736 & 1.428 & 1.743 & 0.819 \\
\hline 35.5 & 0.337 & 0 & 145.8044 & 0.805914 & 1.348 & 1.645 & 0.819 \\
\hline 45.29 & 0.505 & 0 & 145.4982 & 0.80658 & 1.216 & 1.484 & 0.819 \\
\hline 55.1 & 0.673 & 0 & 145.3717 & 0.806857 & 1.879 & 2.293 & 0.819 \\
\hline -54.9 & 0.669 & 90 & 145.5224 & 0.806527 & 2.209 & 2.695 & 0.819 \\
\hline -45.09 & 0.502 & 90 & 145.6047 & 0.806348 & 1.678 & 2.048 & 0.819 \\
\hline -35.3 & 0.334 & 90 & 145.6543 & 0.80624 & 1.632 & 1.992 & 0.819 \\
\hline -24.08 & 0.166 & 90 & 145.7806 & 0.805966 & 1.541 & 1.881 & 0.819 \\
\hline 0.1 & 0 & 90 & 145.9034 & 0.805701 & 1.778 & 2.169 & 0.819 \\
\hline 24.28 & 0.169 & 90 & 145.5658 & 0.806433 & 1.929 & 2.354 & 0.819 \\
\hline 35.5 & 0.337 & 90 & 145.6455 & 0.806259 & 1.411 & 1.722 & 0.819 \\
\hline 45.29 & 0.505 & 90 & 145.55 & 0.806467 & 1.758 & 2.145 & 0.819 \\
\hline 55.1 & 0.673 & 90 & 145.3315 & 0.806946 & 1.636 & 1.997 & 0.819 \\
\hline
\end{tabular}

Table D.11: Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & Peak Position & d-spacing & FWHM & \multicolumn{2}{|l|}{Integ. breadth} \\
\hline [ \({ }^{\text {] }}\) & [ \({ }^{\circ}\) ] & \(\left[^{\circ}\right]\) & [ \({ }^{\circ}\) ] & A & [ \({ }^{\circ}\) ] & [ \({ }^{\circ}\) ] & Ratio \\
\hline -55.25 & 0.675 & 0 & 137.2135 & 0.827298 & 1.186 & 1.447 & 0.819 \\
\hline -45.44 & 0.508 & 0 & 137.3201 & 0.826997 & 1.175 & 1.434 & 0.819 \\
\hline -35.65 & 0.34 & 0 & 137.3936 & 0.82679 & 1.146 & 1.398 & 0.819 \\
\hline -24.43 & 0.171 & 0 & 137.4833 & 0.826538 & 1.3 & 1.508 & 0.862 \\
\hline -0.25 & 0 & 0 & 137.5506 & 0.82635 & 0.968 & 1.208 & 0.801 \\
\hline 23.93 & 0.165 & 0 & 137.247 & 0.827204 & 1.17 & 1.397 & 0.838 \\
\hline 35.15 & 0.331 & 0 & 137.6345 & 0.826115 & 1.387 & 1.589 & 0.873 \\
\hline 44.94 & 0.499 & 0 & 137.3035 & 0.827044 & 1.384 & 1.812 & 0.764 \\
\hline 54.75 & 0.667 & 0 & 137.1874 & 0.827372 & 1.128 & 1.376 & 0.819 \\
\hline -55.25 & 0.675 & 90 & 137.1657 & 0.827434 & 1.326 & 1.619 & 0.819 \\
\hline -45.44 & 0.508 & 90 & 137.3339 & 0.826958 & 1.173 & 1.432 & 0.819 \\
\hline -35.65 & 0.34 & 90 & 137.3968 & 0.826781 & 1.076 & 1.313 & 0.819 \\
\hline -24.43 & 0.171 & 90 & 137.514 & 0.826452 & 1.001 & 1.221 & 0.819 \\
\hline -0.25 & 0 & 90 & 137.5436 & 0.826369 & 0.92 & 1.123 & 0.819 \\
\hline 23.93 & 0.165 & 90 & 137.4867 & 0.826529 & 0.918 & 1.12 & 0.819 \\
\hline 35.15 & 0.331 & 90 & 137.4238 & 0.826705 & 0.916 & 1.118 & 0.819 \\
\hline 44.94 & 0.499 & 90 & 137.3702 & 0.826856 & 1.055 & 1.287 & 0.819 \\
\hline 54.75 & 0.667 & 90 & 137.2641 & 0.827155 & 1.344 & 1.64 & 0.819 \\
\hline
\end{tabular}

Table D.12: Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 3
\begin{tabular}{|lll|ll|lll|}
\hline\(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) \\
{\(\left[\left[^{\circ}\right]\right.\)} & {\(\left[{ }^{\circ}\right]\)} & {\(\left[^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
Peak Position \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
d-spacing \\
\(\AA\)
\end{tabular} \begin{tabular}{l} 
FWHM \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
Integ. breadth \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular}

Table D.13: Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & & Peak Position & d-spacing & FWHM & Integ & \\
\hline [ \({ }^{\text {] }}\) & [ \({ }^{\circ}\) ] & \(\left[^{\circ}\right]\) & [ \({ }^{\circ}\) ] & A & [ \({ }^{\circ}\) ] & [ \({ }^{\circ}\) ] & Ratio \\
\hline -55.25 & 0.675 & 0 & 137.0492 & 0.827763 & 1.242 & 1.515 & 0.819 \\
\hline -45.44 & 0.508 & 0 & 137.1265 & 0.827543 & 1.087 & 1.327 & 0.819 \\
\hline -35.65 & 0.34 & 0 & 137.1297 & 0.827534 & 1.009 & 1.231 & 0.819 \\
\hline -24.43 & 0.171 & 0 & 137.2986 & 0.827056 & 1.264 & 1.286 & 0.983 \\
\hline -0.25 & 0 & 0 & 137.3417 & 0.826935 & 0.571 & 1.164 & 0.491 \\
\hline 23.93 & 0.165 & 0 & 137.1976 & 0.827342 & 0.535 & 1.248 & 0.428 \\
\hline 35.15 & 0.331 & 0 & 137.2524 & 0.827187 & 1.468 & 1.622 & 0.905 \\
\hline 44.94 & 0.499 & 0 & 137.0453 & 0.827774 & 1.76 & 2.118 & 0.831 \\
\hline 54.75 & 0.667 & 0 & 137.1264 & 0.827543 & 1.26 & 1.537 & 0.819 \\
\hline -55.25 & 0.675 & 90 & 136.9266 & 0.828112 & 1.127 & 1.375 & 0.819 \\
\hline -45.44 & 0.508 & 90 & 137.0987 & 0.827622 & 1.175 & 1.434 & 0.819 \\
\hline -35.65 & 0.34 & 90 & 137.1713 & 0.827416 & 1.128 & 1.376 & 0.819 \\
\hline -24.43 & 0.171 & 90 & 137.2465 & 0.827203 & 1.022 & 1.248 & 0.819 \\
\hline -0.25 & 0 & 90 & 137.2254 & 0.827263 & 0.916 & 1.118 & 0.819 \\
\hline 23.93 & 0.165 & 90 & 137.2329 & 0.827242 & 1.191 & 1.454 & 0.819 \\
\hline 35.15 & 0.331 & 90 & 137.1838 & 0.827381 & 1.052 & 1.284 & 0.819 \\
\hline 44.94 & 0.499 & 90 & 137.069 & 0.827706 & 1.131 & 1.38 & 0.819 \\
\hline 54.75 & 0.667 & 90 & 137.0404 & 0.827787 & 1.247 & 1.522 & 0.819 \\
\hline
\end{tabular}

Table D.14: Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 4
\begin{tabular}{|lll|ll|lll|}
\hline\(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) \\
{\(\left[\left[^{\circ}\right]\right.\)} & {\(\left[{ }^{\circ}\right]\)} & {\(\left[^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
Peak Position \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
d-spacing \\
\(\AA\)
\end{tabular} \begin{tabular}{l} 
FWHM \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
Integ. breadth \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular}

Table D.15: Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 4 with \(9 \mu \mathrm{~m}\) removed
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & Peak Position & d-spacing & FWHM & \multicolumn{2}{|l|}{Integ. breadth} \\
\hline [ \({ }^{\circ}\) ] & \(\left[^{\circ}\right]\) & \(\left[^{\circ}\right]\) & [ \({ }^{\circ}\) ] & A & [ \({ }^{\circ}\) ] & [ \({ }^{\circ}\) ] & Ratio \\
\hline -55.25 & 0.675 & 0 & 137.0493 & 0.827764 & 1.242 & 1.516 & 0.819 \\
\hline -45.44 & 0.508 & 0 & 137.1266 & 0.827544 & 1.087 & 1.327 & 0.819 \\
\hline -35.65 & 0.34 & 0 & 137.1298 & 0.827535 & 1.009 & 1.232 & 0.819 \\
\hline -24.43 & 0.171 & 0 & 137.4634 & 0.826594 & 0.986 & 1.203 & 0.819 \\
\hline -0.25 & 0 & 0 & 137.6616 & 0.826039 & 1.117 & 1.363 & 0.819 \\
\hline 23.93 & 0.165 & 0 & 137.5418 & 0.826374 & 1.118 & 1.364 & 0.819 \\
\hline 35.15 & 0.331 & 0 & 137.4178 & 0.826722 & 1.214 & 1.482 & 0.819 \\
\hline 44.94 & 0.499 & 0 & 137.3733 & 0.826847 & 1.492 & 1.82 & 0.819 \\
\hline 54.75 & 0.667 & 0 & 137.1403 & 0.827506 & 1.296 & 1.581 & 0.819 \\
\hline -55.25 & 0.675 & 90 & 136.9267 & 0.828113 & 1.127 & 1.375 & 0.819 \\
\hline -45.44 & 0.508 & 90 & 137.0988 & 0.827623 & 1.175 & 1.434 & 0.819 \\
\hline -35.65 & 0.34 & 90 & 137.1713 & 0.827418 & 1.128 & 1.376 & 0.819 \\
\hline -24.43 & 0.171 & 90 & 137.2466 & 0.827205 & 1.023 & 1.248 & 0.819 \\
\hline -0.25 & 0 & 90 & 137.2254 & 0.827265 & 0.917 & 1.119 & 0.819 \\
\hline 23.93 & 0.165 & 90 & 137.233 & 0.827243 & 1.192 & 1.454 & 0.819 \\
\hline 35.15 & 0.331 & 90 & 137.1897 & 0.827366 & 1.099 & 1.341 & 0.819 \\
\hline 44.94 & 0.499 & 90 & 137.0736 & 0.827695 & 1.165 & 1.422 & 0.819 \\
\hline 54.75 & 0.667 & 90 & 137.0405 & 0.827789 & 1.248 & 1.522 & 0.819 \\
\hline
\end{tabular}

Table D.16: Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 2 with \(9 \mu \mathrm{~m}\) removed
\begin{tabular}{|lll|ll|lll|}
\hline\(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) \\
{\(\left[\left[^{\circ}\right]\right.\)} & {\(\left[{ }^{\circ}\right]\)} & {\(\left[^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
Peak Position \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
d-spacing \\
\(\AA\)
\end{tabular} \begin{tabular}{l} 
FWHM \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular} \begin{tabular}{l} 
Integ. breadth \\
{\(\left[{ }^{\circ}\right]\)}
\end{tabular}

Table D.17: Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 2 with \(26 \mu \mathrm{~m}\) removed
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & Peak Position & d-spacing & FWHM & \multicolumn{2}{|l|}{Integ. breadth} \\
\hline [ \({ }^{\circ}\) & \(\left[^{\circ}\right]\) & \(\left[{ }^{\circ}\right]\) & [ \({ }^{\circ}\) ] & A & [ \({ }^{\circ}\) ] & [ \({ }^{\circ}\) ] & Ratio \\
\hline -55.25 & 0.675 & 0 & 137.3833 & 0.826819 & 1.74 & 2.124 & 0.819 \\
\hline -45.44 & 0.508 & 0 & 137.3625 & 0.826878 & 1.017 & 1.242 & 0.819 \\
\hline -35.65 & 0.34 & 0 & 137.232 & 0.827246 & 0.928 & 1.133 & 0.819 \\
\hline -24.43 & 0.171 & 0 & 137.3213 & 0.826994 & 1.132 & 1.381 & 0.819 \\
\hline -0.25 & 0 & 0 & 137.2285 & 0.827256 & 0.967 & 1.179 & 0.819 \\
\hline 23.93 & 0.165 & 0 & 137.2404 & 0.827222 & 1.087 & 1.327 & 0.819 \\
\hline 35.15 & 0.331 & 0 & 137.3352 & 0.826955 & 1.055 & 1.288 & 0.819 \\
\hline 44.94 & 0.499 & 0 & 137.3853 & 0.826814 & 0.714 & 0.871 & 0.819 \\
\hline 54.75 & 0.667 & 0 & 137.5037 & 0.826481 & 0.955 & 1.166 & 0.819 \\
\hline -55.25 & 0.675 & 90 & 137.5711 & 0.826292 & 1.187 & 1.449 & 0.819 \\
\hline -45.44 & 0.508 & 90 & 137.4065 & 0.826754 & 1.064 & 1.298 & 0.819 \\
\hline -35.65 & 0.34 & 90 & 137.3331 & 0.826961 & 1.029 & 1.255 & 0.819 \\
\hline -24.43 & 0.171 & 90 & 137.2764 & 0.827121 & 1.01 & 1.232 & 0.819 \\
\hline -0.25 & 0 & 90 & 137.1745 & 0.827409 & 1.035 & 1.263 & 0.819 \\
\hline 23.93 & 0.165 & 90 & 137.3074 & 0.827033 & 0.875 & 1.068 & 0.819 \\
\hline 35.15 & 0.331 & 90 & 137.3435 & 0.826931 & 0.947 & 1.155 & 0.819 \\
\hline 44.94 & 0.499 & 90 & 137.4054 & 0.826757 & 1.075 & 1.311 & 0.819 \\
\hline 54.75 & 0.667 & 90 & 137.4821 & 0.826542 & 1.054 & 1.286 & 0.819 \\
\hline
\end{tabular}

Table D.18: Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 2 with \(26 \mu \mathrm{~m}\) removed


Table D.19: Results of scan table for the (331) plane of the wire-EDM cut surface of Sample 2 with \(26 \mu \mathrm{~m}\) removed (repeated)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & Peak Position & d-spacing & FWHM & \multicolumn{2}{|l|}{Integ. breadth} \\
\hline [ \({ }^{\text {] }}\) & & \(\left[^{\circ}\right.\) ] & [ \({ }^{\circ}\) ] & A & \(\left[{ }^{\circ}\right]\) & [ \({ }^{\circ}\) ] & Ratio \\
\hline -55.25 & 0.675 & 0 & 137.4237 & 0.826706 & 1.012 & 1.235 & 0.819 \\
\hline -45.44 & 0.508 & 0 & 137.3707 & 0.826855 & 0.927 & 1.131 & 0.819 \\
\hline -35.65 & 0.34 & 0 & 137.3117 & 0.827021 & 0.823 & 1.004 & 0.819 \\
\hline -24.43 & 0.171 & 0 & 137.3424 & 0.826934 & 1.145 & 1.397 & 0.819 \\
\hline -0.25 & 0 & 0 & 137.2353 & 0.827237 & 0.846 & 1.033 & 0.819 \\
\hline 23.93 & 0.165 & 0 & 137.2538 & 0.827184 & 0.81 & 0.988 & 0.819 \\
\hline 35.15 & 0.331 & 0 & 137.3472 & 0.826921 & 0.881 & 1.075 & 0.819 \\
\hline 44.94 & 0.499 & 0 & 137.3715 & 0.826852 & 1.131 & 1.381 & 0.819 \\
\hline 54.75 & 0.667 & 0 & 137.3721 & 0.826851 & 1.103 & 1.346 & 0.819 \\
\hline -55.25 & 0.675 & 90 & 137.5459 & 0.826363 & 1.189 & 1.451 & 0.819 \\
\hline -45.44 & 0.508 & 90 & 137.425 & 0.826702 & 0.943 & 1.151 & 0.819 \\
\hline -35.65 & 0.34 & 90 & 137.3172 & 0.827006 & 1.003 & 1.224 & 0.819 \\
\hline -24.43 & 0.171 & 90 & 137.3007 & 0.827052 & 0.961 & 1.173 & 0.819 \\
\hline -0.25 & 0 & 90 & 137.2065 & 0.827318 & 1.043 & 1.273 & 0.819 \\
\hline 23.93 & 0.165 & 90 & 137.2782 & 0.827116 & 0.975 & 1.19 & 0.819 \\
\hline 35.15 & 0.331 & 90 & 137.3282 & 0.826974 & 0.841 & 1.027 & 0.819 \\
\hline 44.94 & 0.499 & 90 & 137.4158 & 0.826728 & 1.046 & 1.276 & 0.819 \\
\hline 54.75 & 0.667 & 90 & 137.4786 & 0.826551 & 1.094 & 1.335 & 0.819 \\
\hline
\end{tabular}

Table D.20: Results of scan table for the (420) plane of the wire-EDM cut surface of Sample 2 with \(26 \mu \mathrm{~m}\) removed (repeated)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\psi\) & \(\sin ^{2} \psi\) & \(\Phi\) & \multicolumn{2}{|l|}{Peak Position d-spacing} & \multicolumn{3}{|l|}{FWHM Integ. breadth} \\
\hline [ \({ }^{\text {] }}\) & \(\left[^{\circ}\right]\) & [ \({ }^{\circ}\) ] & [ \({ }^{\circ}\) & A & [ \({ }^{\circ}\) ] & [ \({ }^{\circ}\) ] & Ratio \\
\hline -54.9 & 0.669 & 0 & 145.8159 & 0.80589 & 1.162 & 1.418 & 0.819 \\
\hline -45.09 & 0.502 & 0 & 145.8114 & 0.805899 & 1.491 & 1.819 & 0.819 \\
\hline -35.3 & 0.334 & 0 & 145.6858 & 0.806171 & 1.045 & 1.276 & 0.819 \\
\hline -24.08 & 0.166 & 0 & 145.6987 & 0.806143 & 1.404 & 1.714 & 0.819 \\
\hline 0.1 & 0 & 0 & 145.3524 & 0.8069 & 1.305 & 1.593 & 0.819 \\
\hline 24.28 & 0.169 & 0 & 145.7837 & 0.805959 & 1.264 & 1.543 & 0.819 \\
\hline 35.5 & 0.337 & 0 & 145.727 & 0.806082 & 1.325 & 1.617 & 0.819 \\
\hline 45.29 & 0.505 & 0 & 145.8399 & 0.805838 & 1.112 & 1.357 & 0.819 \\
\hline 55.1 & 0.673 & 0 & 145.8179 & 0.805885 & 1.443 & 1.761 & 0.819 \\
\hline -54.9 & 0.669 & 90 & 145.9259 & 0.805652 & 1.52 & 1.855 & 0.819 \\
\hline -45.09 & 0.502 & 90 & 145.8701 & 0.805772 & 1.505 & 1.837 & 0.819 \\
\hline -35.3 & 0.334 & 90 & 145.7154 & 0.806107 & 1.337 & 1.632 & 0.819 \\
\hline -24.08 & 0.166 & 90 & 145.6414 & 0.806268 & 1.334 & 1.628 & 0.819 \\
\hline 0.1 & 0 & 90 & 145.6457 & 0.806259 & 1.686 & 2.057 & 0.819 \\
\hline 24.28 & 0.169 & 90 & 145.6044 & 0.806349 & 1.235 & 1.508 & 0.819 \\
\hline 35.5 & 0.337 & 90 & 145.7426 & 0.806048 & 1.212 & 1.479 & 0.819 \\
\hline 45.29 & 0.505 & 90 & 145.7294 & 0.806077 & 1.428 & 1.742 & 0.819 \\
\hline 55.1 & 0.673 & 90 & 145.8783 & 0.805755 & 1.877 & 2.29 & 0.819 \\
\hline
\end{tabular}

\section*{APPENDIX E}

\section*{DATA FROM NANO-INDENTATION HARNDNESS TESTS}
Table E.1: Nano-indentation hardness data for generating depth profile in Sample 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [ \(\mathrm{nm} / \mathrm{s}\) ] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 148.7 & 2484.9 & 67.11 & 608,304 & 177.1 & 176.5 & 11.135 & 125.5 & 1.376 & -49.9760 & 93.5133 & 0.134 & 5 & 76.234 & 4.085 \\
\hline 137.6 & 2485.9 & 70.04 & 531,976 & 165.2 & 164.2 & 14.182 & 116.7 & 1.338 & -49.9791 & 93.5084 & 0.149 & 5 & 85.077 & 4.673 \\
\hline 134.9 & 2486.5 & 64.70 & 514,169 & 164.8 & 163.7 & 21.430 & 116.3 & 1.232 & -49.9754 & 93.5053 & 0.144 & 5 & 79.944 & 4.836 \\
\hline 133.9 & 2486.5 & 63.11 & 507,752 & 164.2 & 163.4 & 18.432 & 113.9 & 1.257 & -49.9742 & 93.5008 & 0.138 & 5 & 78.474 & 4.897 \\
\hline 140.7 & 2485.4 & 61.75 & 552,874 & 171.6 & 170.9 & 19.640 & 121.1 & 1.238 & -49.9693 & 93.4969 & 0.112 & 5 & 73.582 & 4.495 \\
\hline 140.9 & 2484.6 & 60.46 & 554,206 & 172.2 & 171.7 & 21.137 & 121.7 & 1.218 & -49.9689 & 93.4933 & 0.083 & 5 & 71.957 & 4.483 \\
\hline 141.0 & 2483.6 & 59.29 & 554,580 & 172.9 & 172.4 & 22.648 & 122.1 & 1.199 & -49.9691 & 93.4873 & 0.051 & 5 & 70.535 & 4.478 \\
\hline 143.9 & 2483.9 & 60.44 & 574,756 & 175.2 & 174.7 & 17.996 & 123.3 & 1.251 & -49.9715 & 93.4824 & 0.043 & 5 & 70.630 & 4.322 \\
\hline 143.1 & 2484.1 & 55.09 & 569,200 & 177.7 & 176.9 & 18.290 & 121.7 & 1.224 & -49.9654 & 93.4735 & 0.035 & 5 & 64.699 & 4.364 \\
\hline 139.7 & 2484.3 & 58.01 & 546,359 & 172.5 & 171.9 & 18.470 & 119.0 & 1.235 & -49.9716 & 93.4694 & 0.034 & 5 & 69.534 & 4.547 \\
\hline 103.6 & 2489.6 & 63.49 & 481,110 & 133.6 & 133.0 & 27.161 & 86.8 & 1.179 & -50.0572 & 93.3881 & -0.016 & 5 & 81.102 & 5.175 \\
\hline 106.3 & 2488.8 & 63.77 & 499,759 & 136.2 & 135.6 & 28.645 & 90.0 & 1.169 & -50.0609 & 93.3670 & 0.007 & 5 & 79.924 & 4.980 \\
\hline 104.3 & 2490.7 & 89.94 & 486,324 & 126.0 & 125.1 & 35.920 & 91.7 & 1.208 & -50.1027 & 90.3356 & 0.113 & 5 & 114.266 & 5.121 \\
\hline 109.5 & 2489.0 & 64.94 & 521,838 & 139.0 & 138.2 & 26.164 & 92.6 & 1.192 & -50.0594 & 93.3701 & 0.002 & 6 & 79.654 & 4.770 \\
\hline 104.0 & 2488.5 & 63.62 & 484,018 & 134.1 & 133.3 & 23.772 & 86.1 & 1.207 & -50.0636 & 93.3642 & -0.016 & 6 & 81.020 & 5.141 \\
\hline 105.6 & 2489.7 & 91.12 & 494,633 & 127.1 & 126.1 & 23.957 & 90.5 & 1.301 & -50.1023 & 90.3270 & 0.047 & 6 & 114.797 & 5.033 \\
\hline 104.7 & 2489.5 & 90.11 & 488,947 & 126.5 & 125.5 & 31.702 & 91.3 & 1.236 & -50.1025 & 90.3222 & 0.043 & 6 & 114.172 & 5.091 \\
\hline 103.0 & 2490.4 & 89.50 & 477,068 & 124.9 & 123.8 & 38.709 & 90.7 & 1.190 & -50.1014 & 90.3169 & 0.023 & 7 & 114.813 & 5.220 \\
\hline 113.0 & 2488.1 & 68.77 & 546,595 & 141.3 & 140.1 & 26.406 & 96.6 & 1.204 & -50.0992 & 90.5250 & 0.042 & 7 & 82.409 & 4.552 \\
\hline 110.3 & 2489.0 & 67.23 & 527,272 & 139.3 & 138.0 & 23.121 & 92.6 & 1.226 & -50.0994 & 90.5211 & 0.033 & 7 & 82.029 & 4.721 \\
\hline 108.2 & 2489.3 & 66.19 & 512,663 & 137.2 & 136.4 & 24.489 & 90.9 & 1.210 & -50.0591 & 93.3800 & 0.020 & 8 & 81.899 & 4.856 \\
\hline 107.2 & 2489.0 & 67.10 & 505,952 & 136.1 & 135.0 & 21.665 & 89.1 & 1.239 & -50.0598 & 93.3846 & 0.016 & 9 & 83.586 & 4.919 \\
\hline 106.8 & 2487.7 & 68.52 & 503,218 & 135.0 & 134.1 & 26.937 & 90.5 & 1.199 & -50.0622 & 93.3879 & -0.051 & 9 & 85.583 & 4.944 \\
\hline 104.0 & 2488.6 & 66.72 & 483,678 & 132.7 & 131.9 & 25.209 & 86.9 & 1.206 & -50.0643 & 93.3681 & -0.009 & 9 & 84.999 & 5.145 \\
\hline 103.4 & 2489.2 & 65.84 & 480,119 & 132.8 & 131.8 & 19.994 & 84.5 & 1.251 & -50.0668 & 93.3645 & 0.001 & 9 & 84.189 & 5.184 \\
\hline 105.0 & 2489.7 & 87.24 & 490,618 & 127.3 & 126.4 & 42.739 & 93.2 & 1.161 & -50.1007 & 90.3133 & 0.017 & 9 & 110.347 & 5.075 \\
\hline 105.0 & 2489.4 & 85.15 & 490,896 & 127.6 & 126.9 & 29.537 & 90.8 & 1.236 & -50.0934 & 90.9430 & -0.050 & 9 & 107.678 & 5.071 \\
\hline 97.1 & 2490.8 & 94.26 & 438,745 & 118.1 & 116.9 & 34.242 & 84.4 & 1.231 & -50.0930 & 90.9253 & -0.002 & 9 & 126.081 & 5.677 \\
\hline 128.9 & 2486.8 & 78.36 & 475,758 & 152.9 & 152.7 & 41.106 & 116.4 & 1.143 & -49.9756 & 92.1479 & -0.007 & 10 & 100.657 & 5.227 \\
\hline 126.8 & 2487.0 & 83.48 & 462,511 & 149.9 & 149.1 & 28.133 & 112.1 & 1.241 & -49.9756 & 92.1379 & -0.014 & 10 & 108.750 & 5.377 \\
\hline 133.1 & 2485.7 & 81.89 & 502,678 & 156.7 & 155.9 & 29.508 & 118.7 & 1.226 & -49.9756 & 92.1279 & -0.029 & 10 & 102.338 & 4.945 \\
\hline 132.8 & 2486.2 & 81.17 & 500,786 & 157.2 & 155.8 & 21.683 & 116.3 & 1.290 & -49.9756 & 92.1179 & -0.021 & 10 & 101.630 & 4.965 \\
\hline 137.5 & 2486.2 & 78.23 & 531,571 & 162.3 & 161.4 & 24.788 & 121.6 & 1.251 & -49.9756 & 92.1079 & -0.017 & 10 & 95.065 & 4.677 \\
\hline
\end{tabular}
Table E.1: Nano-indentation hardness data for generating depth profile in Sample 1 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(h_{c}\) [nm] & \begin{tabular}{l}
\(P_{\max }\) \\
\([\mu \mathrm{N}]\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \begin{tabular}{l}
\(h_{\max }\) \\
[nm]
\end{tabular} & \(h_{e f f}\)
\([\mathrm{~nm}]\) & A & \(h_{f}\) [nm] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [nm/s] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \begin{tabular}{l}
\(E_{r}\) \\
[GPa]
\end{tabular} & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 105.2 & 2488.4 & 64.95 & 492,063 & 134.7 & 133.9 & 24.263 & 87.7 & 1.208 & -50.0589 & 93.3768 & -0.001 & 10 & 82.033 & 5.057 \\
\hline 104.9 & 2488.4 & 64.70 & 489,803 & 134.4 & 133.7 & 30.037 & 89.0 & 1.162 & -50.0592 & 93.3730 & 0.004 & 10 & 81.905 & 5.080 \\
\hline 105.6 & 2489.5 & 85.56 & 494,763 & 128.2 & 127.4 & 32.235 & 92.0 & 1.218 & -50.0934 & 90.9400 & -0.022 & 10 & 107.769 & 5.032 \\
\hline 111.3 & 2488.9 & 87.68 & 534,228 & 133.5 & 132.5 & 27.249 & 96.7 & 1.262 & -50.0934 & 90.9368 & -0.010 & 10 & 106.289 & 4.659 \\
\hline 112.8 & 2488.8 & 87.68 & 545,319 & 134.8 & 134.1 & 32.591 & 99.4 & 1.222 & -50.0936 & 90.9327 & -0.016 & 10 & 105.202 & 4.564 \\
\hline 107.4 & 2490.0 & 88.97 & 507,292 & 129.0 & 128.4 & 27.457 & 93.0 & 1.264 & -50.0935 & 90.9290 & -0.014 & 10 & 110.670 & 4.908 \\
\hline 103.5 & 2489.6 & 67.38 & 480,666 & 132.1 & 131.2 & 26.037 & 86.8 & 1.202 & -50.0632 & 93.3718 & -0.013 & 11 & 86.103 & 5.180 \\
\hline 103.3 & 2490.1 & 91.16 & 479,360 & 124.5 & 123.8 & 33.636 & 90.3 & 1.226 & -50.1087 & 90.3299 & -0.002 & 11 & 116.661 & 5.195 \\
\hline 99.9 & 2490.0 & 83.37 & 456,768 & 123.5 & 122.3 & 24.912 & 84.5 & 1.267 & -50.0933 & 90.9214 & 0.000 & 11 & 109.293 & 5.451 \\
\hline 104.4 & 2489.6 & 67.58 & 486,748 & 133.1 & 132.0 & 27.306 & 88.1 & 1.193 & -50.0632 & 93.3842 & -0.017 & 12 & 85.820 & 5.115 \\
\hline 104.4 & 2489.0 & 69.07 & 486,400 & 132.3 & 131.4 & 22.554 & 86.8 & 1.238 & -50.0627 & 93.3801 & -0.012 & 12 & 87.748 & 5.117 \\
\hline 103.3 & 2488.5 & 69.78 & 479,101 & 130.8 & 130.0 & 27.849 & 87.3 & 1.197 & -50.0657 & 93.3880 & -0.047 & 12 & 89.322 & 5.194 \\
\hline 104.6 & 2490.0 & 96.17 & 488,110 & 125.3 & 124.0 & 24.415 & 90.1 & 1.312 & -50.1087 & 90.3259 & -0.003 & 12 & 121.954 & 5.101 \\
\hline 100.7 & 2490.8 & 91.56 & 462,058 & 122.2 & 121.1 & 36.781 & 88.3 & 1.207 & -50.1086 & 90.3223 & -0.005 & 12 & 119.346 & 5.391 \\
\hline 102.2 & 2489.5 & 90.48 & 471,641 & 123.6 & 122.8 & 37.367 & 89.8 & 1.201 & -50.1078 & 90.3187 & -0.013 & 12 & 116.727 & 5.278 \\
\hline 105.2 & 2488.6 & 62.05 & 492,142 & 135.9 & 135.3 & 20.882 & 86.1 & 1.227 & -50.0937 & 90.5379 & 0.056 & 12 & 78.361 & 5.057 \\
\hline 106.8 & 2489.3 & 63.87 & 503,025 & 136.7 & 136.0 & 21.066 & 88.0 & 1.233 & -50.0962 & 90.5341 & 0.063 & 12 & 79.794 & 4.949 \\
\hline 113.7 & 2488.5 & 72.99 & 551,747 & 140.3 & 139.3 & 27.328 & 97.9 & 1.212 & -50.1042 & 90.5223 & 0.010 & 12 & 87.064 & 4.510 \\
\hline 100.2 & 2489.6 & 90.72 & 458,391 & 122.2 & 120.7 & 33.515 & 87.1 & 1.225 & -50.1083 & 90.3352 & -0.003 & 13 & 118.720 & 5.431 \\
\hline 110.3 & 2489.1 & 69.56 & 527,721 & 138.1 & 137.2 & 22.806 & 92.9 & 1.238 & -50.0986 & 90.5297 & 0.047 & 13 & 84.836 & 4.717 \\
\hline 102.3 & 2488.7 & 67.98 & 472,867 & 131.1 & 129.8 & 25.209 & 85.5 & 1.211 & -50.0630 & 93.3764 & -0.024 & 14 & 87.591 & 5.263 \\
\hline 133.8 & 2485.5 & 74.26 & 506,999 & 159.5 & 158.9 & 24.891 & 117.5 & 1.237 & -49.9897 & 93.5086 & -0.007 & 15 & 92.404 & 4.902 \\
\hline 133.6 & 2484.8 & 70.46 & 506,005 & 161.4 & 160.1 & 23.589 & 116.5 & 1.234 & -49.9871 & 93.5035 & -0.013 & 15 & 87.760 & 4.911 \\
\hline 135.1 & 2485.6 & 70.12 & 515,638 & 162.1 & 161.7 & 23.629 & 118.0 & 1.233 & -49.9838 & 93.4994 & -0.007 & 15 & 86.521 & 4.820 \\
\hline 136.6 & 2484.8 & 67.16 & 525,188 & 164.8 & 164.3 & 26.539 & 120.0 & 1.197 & -49.9809 & 93.4949 & -0.013 & 15 & 82.105 & 4.731 \\
\hline 139.3 & 2484.5 & 65.69 & 543,058 & 168.2 & 167.6 & 23.350 & 121.5 & 1.218 & -49.9771 & 93.4918 & -0.010 & 15 & 78.984 & 4.575 \\
\hline 137.9 & 2484.1 & 65.89 & 534,181 & 166.9 & 166.2 & 19.611 & 118.9 & 1.255 & -49.9785 & 93.4869 & -0.008 & 15 & 79.876 & 4.650 \\
\hline 137.1 & 2485.3 & 67.65 & 528,865 & 165.4 & 164.7 & 25.157 & 120.2 & 1.210 & -49.9830 & 93.4831 & -0.026 & 15 & 82.418 & 4.699 \\
\hline 133.3 & 2484.5 & 67.75 & 503,856 & 161.7 & 160.8 & 24.156 & 116.1 & 1.219 & -49.9842 & 93.4771 & -0.033 & 15 & 84.567 & 4.931 \\
\hline 139.4 & 2483.4 & 64.41 & 544,297 & 169.1 & 168.4 & 26.623 & 122.6 & 1.186 & -49.9824 & 93.4726 & -0.001 & 15 & 77.353 & 4.563 \\
\hline 133.8 & 2485.4 & 65.85 & 507,437 & 162.6 & 162.2 & 20.784 & 115.2 & 1.243 & -49.9834 & 93.4684 & -0.020 & 15 & 81.901 & 4.898 \\
\hline 135.2 & 2485.3 & 61.77 & 516,450 & 166.5 & 165.4 & 20.337 & 115.9 & 1.231 & -49.9793 & 93.4665 & -0.009 & 15 & 76.156 & 4.812 \\
\hline 128.7 & 2487.2 & 85.77 & 474,704 & 151.5 & 150.5 & 30.053 & 114.7 & 1.234 & -49.9806 & 92.1479 & 0.003 & 15 & 110.292 & 5.239 \\
\hline
\end{tabular}
Table E.1: Nano-indentation hardness data for generating depth profile in Sample 1 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(h_{c}\) [nm] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \(h_{\max }\)
\([\mathrm{nm}]\) & \begin{tabular}{l}
\(h_{e f f}\) \\
[nm]
\end{tabular} & A & \(h_{f}\) [nm] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [nm/s] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \begin{tabular}{l}
\(E_{r}\) \\
[GPa]
\end{tabular} & \begin{tabular}{l}
H \\
[GPa]
\end{tabular} \\
\hline 128.4 & 2486.9 & 85.15 & 472,826 & 151.8 & 150.3 & 23.870 & 112.9 & 1.282 & -49.9806 & 92.1379 & -0.015 & 15 & 109.713 & 5.260 \\
\hline 130.4 & 2486.6 & 78.77 & 485,304 & 155.5 & 154.1 & 36.252 & 117.1 & 1.171 & -49.9806 & 92.1279 & -0.015 & 15 & 100.187 & 5.124 \\
\hline 130.8 & 2486.6 & 86.59 & 488,171 & 153.6 & 152.4 & 17.115 & 113.4 & 1.359 & -49.9806 & 92.1179 & -0.020 & 15 & 109.801 & 5.094 \\
\hline 135.5 & 2485.8 & 81.10 & 518,196 & 159.3 & 158.5 & 21.510 & 118.9 & 1.291 & -49.9806 & 92.1079 & -0.019 & 15 & 99.813 & 4.797 \\
\hline 99.0 & 2490.4 & 92.88 & 451,054 & 120.0 & 119.1 & 28.525 & 85.1 & 1.268 & -50.1074 & 90.3138 & -0.014 & 15 & 122.530 & 5.521 \\
\hline 96.6 & 2490.2 & 97.47 & 435,114 & 116.9 & 115.7 & 28.446 & 83.0 & 1.282 & -50.1125 & 90.3302 & -0.014 & 15 & 130.924 & 5.723 \\
\hline 97.9 & 2490.3 & 98.28 & 443,445 & 117.9 & 116.9 & 25.891 & 83.8 & 1.305 & -50.1125 & 90.3254 & -0.001 & 15 & 130.766 & 5.616 \\
\hline 106.4 & 2489.4 & 74.16 & 500,089 & 132.4 & 131.5 & 27.972 & 90.9 & 1.211 & -50.1074 & 90.5206 & 0.000 & 15 & 92.913 & 4.978 \\
\hline 100.6 & 2489.6 & 70.70 & 461,180 & 128.1 & 127.0 & 22.334 & 83.1 & 1.246 & -50.0671 & 93.3838 & -0.029 & 16 & 92.240 & 5.398 \\
\hline 102.1 & 2488.8 & 70.94 & 471,341 & 129.7 & 128.4 & 28.695 & 86.5 & 1.195 & -50.0693 & 93.3875 & -0.038 & 16 & 91.553 & 5.280 \\
\hline 97.3 & 2490.7 & 98.71 & 439,749 & 116.9 & 116.2 & 24.167 & 82.9 & 1.322 & -50.1125 & 90.3217 & -0.025 & 16 & 131.880 & 5.664 \\
\hline 107.6 & 2488.5 & 70.65 & 508,789 & 134.9 & 134.0 & 30.729 & 92.5 & 1.179 & -50.1033 & 90.5283 & 0.002 & 16 & 87.756 & 4.891 \\
\hline 102.9 & 2489.9 & 69.75 & 476,370 & 130.4 & 129.6 & 27.400 & 86.8 & 1.200 & -50.0674 & 93.3795 & -0.011 & 17 & 89.533 & 5.227 \\
\hline 99.4 & 2490.6 & 98.49 & 453,761 & 119.5 & 118.4 & 28.656 & 86.0 & 1.283 & -50.1109 & 90.3158 & -0.009 & 17 & 129.547 & 5.489 \\
\hline 105.2 & 2489.0 & 64.37 & 492,377 & 134.9 & 134.2 & 28.672 & 89.0 & 1.171 & -50.0973 & 90.5413 & -0.030 & 17 & 81.277 & 5.055 \\
\hline 109.6 & 2488.9 & 72.07 & 522,776 & 136.8 & 135.5 & 21.990 & 92.2 & 1.255 & -50.1017 & 90.5344 & 0.003 & 17 & 88.313 & 4.761 \\
\hline 106.3 & 2489.3 & 91.76 & 499,865 & 127.8 & 126.7 & 32.441 & 93.2 & 1.236 & -50.1014 & 90.9431 & -0.040 & 17 & 114.989 & 4.980 \\
\hline 102.4 & 2490.5 & 89.96 & 473,336 & 124.0 & 123.2 & 32.962 & 89.2 & 1.227 & -50.1017 & 90.9393 & -0.010 & 17 & 115.845 & 5.262 \\
\hline 101.1 & 2489.6 & 70.56 & 464,563 & 128.8 & 127.6 & 23.569 & 84.0 & 1.235 & -50.0677 & 93.3761 & -0.016 & 18 & 91.718 & 5.359 \\
\hline 102.2 & 2489.3 & 68.75 & 472,056 & 130.5 & 129.4 & 28.240 & 86.3 & 1.190 & -50.0678 & 93.3719 & -0.012 & 18 & 88.663 & 5.273 \\
\hline 108.2 & 2489.0 & 70.92 & 512,919 & 135.8 & 134.5 & 28.257 & 92.5 & 1.198 & -50.0998 & 90.5386 & 0.014 & 18 & 87.735 & 4.853 \\
\hline 102.3 & 2490.6 & 92.51 & 472,410 & 123.4 & 122.5 & 24.721 & 87.5 & 1.298 & -50.1019 & 90.9358 & -0.016 & 18 & 119.251 & 5.272 \\
\hline 100.7 & 2490.3 & 93.19 & 461,747 & 121.6 & 120.7 & 25.980 & 86.3 & 1.289 & -50.1019 & 90.9322 & -0.009 & 18 & 121.503 & 5.393 \\
\hline 101.5 & 2490.3 & 93.74 & 467,202 & 122.5 & 121.4 & 25.970 & 87.1 & 1.291 & -50.1018 & 90.9285 & -0.010 & 18 & 121.510 & 5.330 \\
\hline 99.7 & 2490.9 & 90.69 & 455,496 & 121.4 & 120.3 & 28.386 & 85.6 & 1.262 & -50.1018 & 90.9251 & -0.007 & 18 & 119.052 & 5.469 \\
\hline 103.5 & 2489.5 & 91.80 & 480,616 & 124.5 & 123.8 & 30.001 & 89.9 & 1.253 & -50.1018 & 90.9214 & -0.014 & 18 & 117.319 & 5.180 \\
\hline 98.7 & 2489.7 & 69.82 & 448,886 & 126.4 & 125.4 & 26.146 & 82.3 & 1.210 & -50.0698 & 93.3820 & -0.016 & 19 & 92.327 & 5.546 \\
\hline 96.9 & 2490.8 & 95.43 & 437,517 & 117.6 & 116.5 & 31.733 & 83.8 & 1.251 & -50.1125 & 90.3347 & -0.001 & 19 & 127.826 & 5.693 \\
\hline 130.2 & 2487.0 & 89.38 & 483,779 & 152.5 & 151.0 & 24.175 & 115.0 & 1.293 & -49.9856 & 92.1479 & 0.012 & 20 & 113.854 & 5.141 \\
\hline 127.1 & 2487.5 & 85.32 & 464,654 & 149.7 & 149.0 & 33.862 & 113.8 & 1.207 & -49.9856 & 92.1379 & -0.014 & 20 & 110.894 & 5.353 \\
\hline 131.0 & 2486.1 & 84.93 & 488,930 & 154.2 & 152.9 & 24.249 & 115.5 & 1.278 & -49.9856 & 92.1279 & -0.021 & 20 & 107.609 & 5.085 \\
\hline 132.3 & 2486.4 & 87.36 & 497,351 & 154.6 & 153.6 & 19.373 & 115.6 & 1.335 & -49.9856 & 92.1179 & -0.018 & 20 & 109.757 & 4.999 \\
\hline 135.3 & 2485.6 & 86.53 & 516,626 & 157.9 & 156.8 & 18.035 & 118.1 & 1.347 & -49.9856 & 92.1079 & 0.001 & 20 & 106.662 & 4.811 \\
\hline
\end{tabular}
Table E.1: Nano-indentation hardness data for generating depth profile in Sample 1 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{e f f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [ \(\mathrm{nm} / \mathrm{s}\) ] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 112.6 & 2488.6 & 78.45 & 543,938 & 137.8 & 136.4 & 23.325 & 96.3 & 1.265 & -50.1072 & 90.5338 & -0.011 & 20 & 94.242 & 4.575 \\
\hline 108.4 & 2489.1 & 74.29 & 514,319 & 134.7 & 133.6 & 32.826 & 94.1 & 1.178 & -50.1075 & 90.5277 & -0.002 & 20 & 91.777 & 4.840 \\
\hline 131.6 & 2487.0 & 78.88 & 492,781 & 156.1 & 155.2 & 24.318 & 115.6 & 1.258 & -49.9928 & 93.5122 & 0.067 & 25 & 99.564 & 5.047 \\
\hline 127.2 & 2487.1 & 78.17 & 465,172 & 151.9 & 151.0 & 34.814 & 113.6 & 1.178 & -49.9958 & 93.5090 & 0.042 & 25 & 101.547 & 5.347 \\
\hline 129.4 & 2487.3 & 77.44 & 479,118 & 155.1 & 153.5 & 26.635 & 113.9 & 1.233 & -49.9940 & 93.5028 & 0.027 & 25 & 99.121 & 5.191 \\
\hline 132.3 & 2485.9 & 75.56 & 497,784 & 157.5 & 157.0 & 29.581 & 117.4 & 1.204 & -49.9921 & 93.4975 & 0.015 & 25 & 94.884 & 4.994 \\
\hline 129.3 & 2487.1 & 73.09 & 478,689 & 155.5 & 154.9 & 34.535 & 115.3 & 1.163 & -49.9899 & 93.4931 & 0.018 & 25 & 93.592 & 5.196 \\
\hline 130.4 & 2486.0 & 73.25 & 485,451 & 156.6 & 155.9 & 27.480 & 114.7 & 1.212 & -49.9879 & 93.4880 & 0.024 & 25 & 93.144 & 5.121 \\
\hline 130.2 & 2487.0 & 72.45 & 484,327 & 156.8 & 156.0 & 29.137 & 114.9 & 1.197 & -49.9891 & 93.4829 & 0.010 & 25 & 92.236 & 5.135 \\
\hline 130.5 & 2486.0 & 73.23 & 486,200 & 157.5 & 156.0 & 27.528 & 114.9 & 1.212 & -49.9891 & 93.4775 & 0.011 & 25 & 93.050 & 5.113 \\
\hline 131.3 & 2485.9 & 71.89 & 491,242 & 158.0 & 157.3 & 30.508 & 116.3 & 1.185 & -49.9911 & 93.4714 & 0.012 & 25 & 90.881 & 5.060 \\
\hline 131.6 & 2485.6 & 69.17 & 492,888 & 159.7 & 158.5 & 29.271 & 116.0 & 1.184 & -49.9883 & 93.4678 & 0.006 & 25 & 87.296 & 5.043 \\
\hline 133.8 & 2485.2 & 68.87 & 506,914 & 161.5 & 160.8 & 23.825 & 116.6 & 1.226 & -49.9852 & 93.4649 & -0.009 & 25 & 85.704 & 4.903 \\
\hline 128.8 & 2487.3 & 90.00 & 475,379 & 150.3 & 149.5 & 27.363 & 114.5 & 1.268 & -49.9906 & 92.1479 & 0.019 & 25 & 115.654 & 5.232 \\
\hline 127.7 & 2486.4 & 88.83 & 468,551 & 149.5 & 148.7 & 29.153 & 113.7 & 1.251 & -49.9906 & 92.1379 & -0.021 & 25 & 114.984 & 5.307 \\
\hline 130.1 & 2486.1 & 88.61 & 483,196 & 152.4 & 151.1 & 21.033 & 114.0 & 1.321 & -49.9906 & 92.1279 & -0.016 & 25 & 112.944 & 5.145 \\
\hline 133.6 & 2485.8 & 87.89 & 505,604 & 155.8 & 154.8 & 17.755 & 116.4 & 1.355 & -49.9906 & 92.1179 & -0.023 & 25 & 109.518 & 4.917 \\
\hline 136.2 & 2486.1 & 84.03 & 522,620 & 160.2 & 158.4 & 29.699 & 121.9 & 1.231 & -49.9906 & 92.1079 & -0.002 & 25 & 102.989 & 4.757 \\
\hline 99.9 & 2489.7 & 72.44 & 456,685 & 126.7 & 125.7 & 34.585 & 85.8 & 1.160 & -50.1042 & 90.5429 & -0.027 & 25 & 94.979 & 5.452 \\
\hline 105.1 & 2489.2 & 71.10 & 491,694 & 132.4 & 131.4 & 34.914 & 91.0 & 1.154 & -50.1064 & 90.5392 & -0.016 & 26 & 89.832 & 5.063 \\
\hline 131.4 & 2487.1 & 90.69 & 491,490 & 152.9 & 151.9 & 25.408 & 116.7 & 1.286 & -49.9956 & 92.1479 & 0.014 & 30 & 114.610 & 5.060 \\
\hline 130.5 & 2486.7 & 89.08 & 486,007 & 152.6 & 151.4 & 24.052 & 115.3 & 1.293 & -49.9956 & 92.1379 & -0.019 & 30 & 113.215 & 5.117 \\
\hline 132.2 & 2486.5 & 87.01 & 496,744 & 154.5 & 153.6 & 27.928 & 117.8 & 1.254 & -49.9956 & 92.1279 & -0.025 & 30 & 109.374 & 5.006 \\
\hline 133.3 & 2486.3 & 83.57 & 503,811 & 156.3 & 155.6 & 31.626 & 119.4 & 1.216 & -49.9956 & 92.1179 & -0.032 & 30 & 104.314 & 4.935 \\
\hline 134.7 & 2486.2 & 85.75 & 512,664 & 157.3 & 156.4 & 23.555 & 119.1 & 1.287 & -49.9956 & 92.1079 & -0.036 & 30 & 106.113 & 4.850 \\
\hline 131.9 & 2486.4 & 88.72 & 495,169 & 153.7 & 153.0 & 28.861 & 117.9 & 1.252 & -50.0006 & 92.1479 & 0.053 & 35 & 111.704 & 5.021 \\
\hline 130.2 & 2485.9 & 80.10 & 483,836 & 153.3 & 153.4 & 48.686 & 119.0 & 1.111 & -50.0006 & 92.1379 & -0.016 & 35 & 102.027 & 5.138 \\
\hline 130.5 & 2485.4 & 86.84 & 486,143 & 152.6 & 152.0 & 30.437 & 116.6 & 1.235 & -50.0006 & 92.1279 & -0.032 & 35 & 110.351 & 5.113 \\
\hline 129.8 & 2486.3 & 81.24 & 481,608 & 153.3 & 152.8 & 45.398 & 118.2 & 1.130 & -50.0056 & 92.1479 & 0.029 & 35 & 103.717 & 5.162 \\
\hline 129.8 & 2486.3 & 81.24 & 481,608 & 153.3 & 152.8 & 45.398 & 118.2 & 1.130 & -50.0056 & 92.1479 & 0.029 & 40 & 103.717 & 5.162 \\
\hline 133.3 & 2485.8 & 91.13 & 503,905 & 154.8 & 153.8 & 26.201 & 118.8 & 1.281 & -50.0056 & 92.1379 & -0.020 & 40 & 113.736 & 4.933 \\
\hline 135.8 & 2486.1 & 88.15 & 520,216 & 158.0 & 157.0 & 28.626 & 121.6 & 1.252 & -50.0056 & 92.1179 & 0.012 & 40 & 108.290 & 4.779 \\
\hline 137.0 & 2485.5 & 85.89 & 528,261 & 159.7 & 158.7 & 29.237 & 122.8 & 1.241 & -50.0056 & 92.1079 & -0.016 & 40 & 104.701 & 4.705 \\
\hline
\end{tabular}
Table E.1: Nano-indentation hardness data for generating depth profile in Sample 1 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \begin{tabular}{l}
Drift \\
Correction [nm/s]
\end{tabular} & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 130.1 & 2487.1 & 86.23 & 483,287 & 152.4 & 151.7 & 30.736 & 116.2 & 1.231 & -50.0166 & 93.5141 & 0.018 & 45 & 109.903 & 5.146 \\
\hline 129.8 & 2485.5 & 83.60 & 481,664 & 152.9 & 152.1 & 26.157 & 114.7 & 1.258 & -50.0187 & 93.5108 & -0.021 & 45 & 106.726 & 5.160 \\
\hline 130.7 & 2487.3 & 84.70 & 487,257 & 154.0 & 152.7 & 27.409 & 116.0 & 1.251 & -50.0195 & 93.5043 & 0.007 & 45 & 107.510 & 5.105 \\
\hline 130.7 & 2486.7 & 84.02 & 487,148 & 153.8 & 152.9 & 25.111 & 115.4 & 1.268 & -50.0162 & 93.4982 & -0.003 & 45 & 106.662 & 5.105 \\
\hline 130.0 & 2486.6 & 81.42 & 482,932 & 153.7 & 152.9 & 29.865 & 115.6 & 1.222 & -50.0140 & 93.4937 & -0.017 & 45 & 103.810 & 5.149 \\
\hline 131.0 & 2486.5 & 81.89 & 488,960 & 154.7 & 153.7 & 30.194 & 116.7 & 1.221 & -50.0119 & 93.4892 & 0.001 & 45 & 103.756 & 5.085 \\
\hline 133.7 & 2486.5 & 83.61 & 506,423 & 156.9 & 156.0 & 27.995 & 119.0 & 1.243 & -50.0140 & 93.4831 & 0.040 & 45 & 104.101 & 4.910 \\
\hline 132.1 & 2486.4 & 81.82 & 496,233 & 156.4 & 154.9 & 23.680 & 116.2 & 1.273 & -50.0128 & 93.4786 & -0.015 & 45 & 102.910 & 5.011 \\
\hline 132.4 & 2486.5 & 82.24 & 498,432 & 156.8 & 155.1 & 26.825 & 117.4 & 1.248 & -50.0105 & 93.4745 & 0.029 & 45 & 103.213 & 4.989 \\
\hline 133.4 & 2486.3 & 80.43 & 504,331 & 157.8 & 156.6 & 24.356 & 117.5 & 1.262 & -50.0083 & 93.4692 & 0.024 & 45 & 100.347 & 4.930 \\
\hline 131.3 & 2486.5 & 74.66 & 491,203 & 157.4 & 156.3 & 35.860 & 117.7 & 1.160 & -50.0026 & 93.4651 & 0.017 & 45 & 94.377 & 5.062 \\
\hline
\end{tabular}
Table E.2: Nano-indentation hardness data for generating depth profile in Sample 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [ \(\mathrm{nm} / \mathrm{s}\) ] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 132.0 & 2495.9 & 53.52 & 495,841 & 167.2 & 167.0 & 8.636 & 103.39 & 1.364 & -65.0327 & 45.4954 & 1.722803 & 5 & 67.340 & 5.034 \\
\hline 139.9 & 2494.1 & 54.77 & 547,683 & 174.6 & 174.1 & 8.135 & 111.15 & 1.382 & -65.0331 & 45.4901 & 1.631729 & 5 & 65.568 & 4.554 \\
\hline 129.1 & 2494.4 & 52.42 & 477,278 & 165.3 & 164.8 & 7.651 & 99.03 & 1.382 & -65.0339 & 45.4807 & 1.407188 & 5 & 67.226 & 5.226 \\
\hline 143.0 & 2491.3 & 53.79 & 568,803 & 178.4 & 177.8 & 6.888 & 112.49 & 1.410 & -65.0376 & 45.4729 & 1.192981 & 5 & 63.188 & 4.380 \\
\hline 138.7 & 2490.1 & 53.00 & 539,190 & 174.6 & 173.9 & 5.428 & 105.72 & 1.451 & -65.0388 & 45.4650 & 0.968337 & 5 & 63.949 & 4.618 \\
\hline 136.0 & 2489.3 & 51.50 & 521,609 & 172.8 & 172.3 & 4.671 & 101.12 & 1.472 & -65.0379 & 45.4589 & 0.706576 & 5 & 63.184 & 4.772 \\
\hline 126.8 & 2487.1 & 67.35 & 462,759 & 155.0 & 154.5 & 11.098 & 103.62 & 1.377 & -65.0720 & 44.9892 & 0.202590 & 5 & 87.721 & 5.375 \\
\hline 123.4 & 2487.5 & 69.50 & 441,838 & 151.0 & 150.2 & 22.601 & 105.85 & 1.240 & -65.0712 & 44.9823 & 0.150007 & 5 & 92.633 & 5.630 \\
\hline 123.2 & 2488.1 & 67.78 & 440,961 & 151.2 & 150.8 & 16.413 & 103.07 & 1.299 & -65.0755 & 44.9778 & 0.152353 & 5 & 90.431 & 5.643 \\
\hline 121.7 & 2487.4 & 71.19 & 431,799 & 148.6 & 147.9 & 20.880 & 103.80 & 1.262 & -65.0714 & 44.9686 & 0.078091 & 5 & 95.984 & 5.761 \\
\hline 124.5 & 2487.6 & 66.76 & 448,481 & 153.0 & 152.4 & 13.635 & 102.74 & 1.333 & -65.0759 & 44.9574 & 0.092597 & 5 & 88.321 & 5.547 \\
\hline 130.7 & 2486.3 & 65.39 & 487,281 & 159.9 & 159.2 & 17.866 & 110.84 & 1.272 & -65.0790 & 44.9507 & 0.096137 & 5 & 82.994 & 5.102 \\
\hline 123.2 & 2487.2 & 66.74 & 440,872 & 151.4 & 151.2 & 15.893 & 102.65 & 1.302 & -65.0753 & 44.9439 & 0.010429 & 5 & 89.061 & 5.642 \\
\hline 132.3 & 2486.9 & 56.77 & 497,456 & 165.5 & 165.2 & 6.063 & 101.66 & 1.449 & -65.1043 & 44.8903 & 0.124444 & 5 & 71.313 & 4.999 \\
\hline 125.5 & 2486.8 & 52.01 & 454,780 & 161.9 & 161.4 & 13.855 & 100.87 & 1.265 & -65.1071 & 44.8863 & 0.119285 & 5 & 68.328 & 5.468 \\
\hline 130.3 & 2485.4 & 49.64 & 484,433 & 168.3 & 167.8 & 14.610 & 105.55 & 1.243 & -65.1062 & 44.8826 & 0.106592 & 5 & 63.188 & 5.131 \\
\hline 130.2 & 2486.2 & 53.71 & 483,986 & 165.5 & 164.9 & 10.879 & 103.77 & 1.321 & -65.1087 & 44.8789 & 0.084172 & 5 & 68.406 & 5.137 \\
\hline 130.0 & 2485.5 & 54.68 & 482,657 & 164.8 & 164.1 & 9.934 & 103.02 & 1.343 & -65.1063 & 44.8769 & 0.070821 & 5 & 69.739 & 5.150 \\
\hline 120.8 & 2486.6 & 66.21 & 426,268 & 150.0 & 148.9 & 23.732 & 103.24 & 1.217 & -65.1433 & 44.4250 & -0.053434 & 10 & 89.845 & 5.833 \\
\hline 124.6 & 2486.6 & 67.67 & 449,212 & 152.7 & 152.1 & 21.515 & 106.47 & 1.243 & -65.1424 & 44.4228 & 0.004368 & 10 & 89.452 & 5.535 \\
\hline 121.3 & 2487.0 & 68.21 & 429,425 & 150.0 & 148.7 & 16.849 & 101.42 & 1.296 & -65.1421 & 44.4197 & -0.005430 & 10 & 92.227 & 5.791 \\
\hline 125.0 & 2487.0 & 65.76 & 451,449 & 154.2 & 153.3 & 22.684 & 107.00 & 1.225 & -65.1429 & 44.4167 & 0.000858 & 10 & 86.710 & 5.509 \\
\hline 124.6 & 2486.4 & 63.93 & 449,345 & 154.4 & 153.8 & 16.277 & 103.78 & 1.286 & -65.1444 & 44.4142 & 0.004494 & 10 & 84.495 & 5.533 \\
\hline 123.5 & 2486.5 & 63.14 & 442,788 & 154.0 & 153.1 & 20.587 & 104.46 & 1.234 & -65.1459 & 44.4111 & 0.006815 & 10 & 84.072 & 5.616 \\
\hline 130.5 & 2485.6 & 62.43 & 485,836 & 160.9 & 160.3 & 17.057 & 109.78 & 1.270 & -65.1450 & 44.4085 & -0.003445 & 10 & 79.362 & 5.116 \\
\hline 129.0 & 2486.7 & 68.37 & 476,648 & 157.3 & 156.3 & 10.625 & 105.73 & 1.391 & -65.1436 & 44.4053 & -0.013257 & 10 & 87.743 & 5.217 \\
\hline 123.5 & 2487.1 & 67.75 & 442,579 & 151.8 & 151.0 & 15.909 & 103.10 & 1.306 & -65.1427 & 44.4017 & -0.034175 & 10 & 90.229 & 5.620 \\
\hline 141.9 & 2483.8 & 57.91 & 561,277 & 174.6 & 174.1 & 15.553 & 119.68 & 1.269 & -65.0990 & 44.8970 & -0.022826 & 12 & 68.489 & 4.425 \\
\hline 134.0 & 2485.2 & 59.99 & 508,536 & 165.7 & 165.1 & 12.610 & 110.39 & 1.320 & -65.0991 & 44.8942 & 0.021425 & 12 & 74.536 & 4.887 \\
\hline 141.4 & 2484.5 & 56.05 & 557,897 & 175.6 & 174.7 & 9.715 & 114.67 & 1.354 & -65.0993 & 44.8891 & 0.009741 & 12 & 66.482 & 4.453 \\
\hline 139.2 & 2484.1 & 56.35 & 542,932 & 172.9 & 172.3 & 11.458 & 113.97 & 1.323 & -65.0994 & 44.8843 & 0.016999 & 12 & 67.755 & 4.575 \\
\hline 127.9 & 2486.2 & 58.84 & 469,767 & 160.3 & 159.6 & 18.950 & 107.49 & 1.233 & -65.0997 & 44.8801 & 0.001980 & 12 & 76.059 & 5.292 \\
\hline 126.6 & 2485.8 & 59.22 & 461,319 & 158.6 & 158.0 & 18.461 & 105.98 & 1.240 & -65.0996 & 44.8762 & 0.016086 & 12 & 77.254 & 5.389 \\
\hline
\end{tabular}
Table E.2: Nano-indentation hardness data for generating depth profile in Sample 2 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [nm/s] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 138.4 & 2487.7 & 56.30 & 537,592 & 172.0 & 171.6 & 6.139 & 107.74 & 1.445 & -65.0243 & 45.4950 & 0.561743 & 15 & 68.034 & 4.627 \\
\hline 134.5 & 2499.1 & 54.83 & 511,497 & 169.3 & 168.7 & 6.931 & 104.23 & 1.413 & -65.0251 & 45.4883 & 0.473688 & 15 & 67.928 & 4.886 \\
\hline 120.8 & 2487.3 & 72.06 & 426,560 & 147.8 & 146.7 & 19.332 & 102.47 & 1.282 & -65.1359 & 44.4255 & -0.035657 & 17 & 97.749 & 5.831 \\
\hline 122.3 & 2487.2 & 68.28 & 435,076 & 150.3 & 149.6 & 28.033 & 106.22 & 1.190 & -65.1346 & 44.4230 & -0.031962 & 17 & 91.722 & 5.717 \\
\hline 126.7 & 2486.8 & 68.95 & 462,079 & 154.5 & 153.7 & 25.940 & 110.14 & 1.209 & -65.1340 & 44.4201 & -0.029089 & 17 & 89.875 & 5.382 \\
\hline 119.1 & 2486.3 & 65.70 & 416,232 & 148.4 & 147.5 & 24.071 & 101.59 & 1.212 & -65.1351 & 44.4161 & -0.021013 & 17 & 90.223 & 5.973 \\
\hline 119.0 & 2487.7 & 64.54 & 415,899 & 149.0 & 147.9 & 25.069 & 101.70 & 1.199 & -65.1368 & 44.4138 & -0.003383 & 17 & 88.662 & 5.982 \\
\hline 119.2 & 2487.3 & 62.65 & 417,138 & 149.5 & 149.0 & 21.529 & 100.45 & 1.223 & -65.1384 & 44.4106 & -0.012338 & 17 & 85.942 & 5.963 \\
\hline 120.8 & 2486.0 & 60.66 & 426,171 & 151.8 & 151.5 & 28.571 & 104.07 & 1.157 & -65.1373 & 44.4079 & -0.036017 & 17 & 82.333 & 5.833 \\
\hline 125.1 & 2485.9 & 65.73 & 452,274 & 154.2 & 153.5 & 20.985 & 106.53 & 1.241 & -65.1370 & 44.4049 & -0.002668 & 17 & 86.590 & 5.496 \\
\hline 127.7 & 2486.4 & 64.49 & 468,401 & 157.2 & 156.6 & 21.803 & 109.28 & 1.228 & -65.1353 & 44.4015 & -0.008993 & 17 & 83.481 & 5.308 \\
\hline 129.8 & 2485.7 & 61.41 & 481,303 & 160.6 & 160.1 & 17.271 & 108.99 & 1.263 & -65.0927 & 44.8969 & -0.046987 & 19 & 78.429 & 5.164 \\
\hline 124.5 & 2485.8 & 59.99 & 448,477 & 156.1 & 155.5 & 19.108 & 104.30 & 1.237 & -65.0927 & 44.8932 & -0.021871 & 19 & 79.365 & 5.543 \\
\hline 129.0 & 2486.1 & 62.30 & 476,408 & 159.6 & 158.9 & 17.641 & 108.53 & 1.262 & -65.0929 & 44.8885 & -0.011032 & 19 & 79.973 & 5.218 \\
\hline 127.3 & 2486.3 & 63.06 & 465,907 & 157.7 & 156.9 & 20.154 & 108.05 & 1.238 & -65.0930 & 44.8838 & -0.000124 & 19 & 81.856 & 5.336 \\
\hline 130.1 & 2485.4 & 60.90 & 483,766 & 161.5 & 160.8 & 15.460 & 108.38 & 1.283 & -65.0927 & 44.8799 & -0.013996 & 19 & 77.579 & 5.138 \\
\hline 123.8 & 2485.7 & 58.98 & 444,531 & 156.4 & 155.4 & 19.209 & 103.53 & 1.231 & -65.0937 & 44.8762 & 0.016205 & 19 & 78.383 & 5.592 \\
\hline 121.8 & 2487.6 & 66.55 & 432,097 & 150.5 & 149.8 & 15.714 & 101.07 & 1.303 & -65.0865 & 44.9001 & 0.106524 & 26 & 89.703 & 5.757 \\
\hline 116.6 & 2488.2 & 66.65 & 401,599 & 145.4 & 144.6 & 16.717 & 96.37 & 1.291 & -65.0858 & 44.8946 & 0.084030 & 26 & 93.177 & 6.196 \\
\hline 119.2 & 2487.4 & 65.83 & 416,796 & 148.4 & 147.5 & 16.071 & 98.55 & 1.296 & -65.0886 & 44.8906 & 0.070784 & 26 & 90.339 & 5.968 \\
\hline 118.9 & 2487.5 & 65.27 & 414,924 & 148.5 & 147.4 & 19.942 & 99.83 & 1.249 & -65.0877 & 44.8870 & 0.058682 & 26 & 89.770 & 5.995 \\
\hline 122.2 & 2487.5 & 63.70 & 434,545 & 152.3 & 151.5 & 18.778 & 102.43 & 1.255 & -65.0902 & 44.8832 & 0.057375 & 26 & 85.618 & 5.724 \\
\hline 117.6 & 2487.9 & 63.42 & 407,331 & 147.7 & 147.0 & 16.521 & 96.75 & 1.280 & -65.0878 & 44.8813 & 0.024247 & 26 & 88.042 & 6.108 \\
\hline 116.5 & 2487.5 & 66.71 & 401,433 & 145.1 & 144.5 & 31.523 & 101.26 & 1.160 & -65.1298 & 44.4236 & -0.010579 & 27 & 93.293 & 6.196 \\
\hline 118.0 & 2488.4 & 71.23 & 410,146 & 145.4 & 144.2 & 21.284 & 100.27 & 1.259 & -65.1278 & 44.4199 & 0.052723 & 27 & 98.545 & 6.067 \\
\hline 118.9 & 2488.1 & 72.45 & 415,398 & 145.4 & 144.7 & 18.729 & 100.40 & 1.290 & -65.1286 & 44.4157 & 0.087608 & 27 & 99.597 & 5.990 \\
\hline 117.0 & 2489.4 & 72.39 & 403,868 & 143.6 & 142.7 & 18.188 & 98.20 & 1.296 & -65.1306 & 44.4118 & 0.088214 & 27 & 100.930 & 6.164 \\
\hline 118.1 & 2487.4 & 72.06 & 410,518 & 145.2 & 144.0 & 28.322 & 102.52 & 1.201 & -65.1302 & 44.4065 & 0.096602 & 27 & 99.644 & 6.059 \\
\hline 120.9 & 2488.0 & 71.75 & 427,155 & 147.9 & 146.9 & 23.447 & 103.93 & 1.240 & -65.1277 & 44.4032 & 0.038379 & 27 & 97.262 & 5.825 \\
\hline 116.6 & 2488.8 & 73.44 & 401,546 & 143.3 & 142.0 & 18.881 & 98.20 & 1.292 & -65.1232 & 44.4235 & 0.013388 & 32 & 102.688 & 6.198 \\
\hline 117.9 & 2488.2 & 71.79 & 409,400 & 145.0 & 143.9 & 25.839 & 101.63 & 1.220 & -65.1221 & 44.4189 & 0.031787 & 32 & 99.407 & 6.078 \\
\hline 116.9 & 2487.9 & 73.61 & 403,370 & 143.4 & 142.2 & 20.821 & 99.24 & 1.272 & -65.1238 & 44.4149 & 0.032196 & 32 & 102.693 & 6.168 \\
\hline 118.8 & 2488.0 & 71.60 & 414,682 & 145.5 & 144.9 & 23.662 & 101.87 & 1.238 & -65.1257 & 44.4113 & 0.031224 & 32 & 98.506 & 6.000 \\
\hline
\end{tabular}
Table E.2: Nano-indentation hardness data for generating depth profile in Sample 2 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [nm/s] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 121.3 & 2487.7 & 71.65 & 429,389 & 147.9 & 147.3 & 22.807 & 104.10 & 1.246 & -65.1241 & 44.4065 & 0.004874 & 32 & 96.878 & 5.794 \\
\hline 121.3 & 2487.5 & 72.21 & 429,450 & 147.7 & 147.1 & 22.178 & 103.97 & 1.254 & -65.1221 & 44.4030 & -0.020011 & 32 & 97.634 & 5.792 \\
\hline 123.1 & 2486.5 & 62.58 & 440,160 & 153.7 & 152.9 & 19.758 & 103.61 & 1.240 & -65.0805 & 44.9014 & -0.016341 & 33 & 83.571 & 5.649 \\
\hline 122.2 & 2486.8 & 64.36 & 434,704 & 151.8 & 151.2 & 17.505 & 102.00 & 1.272 & -65.0806 & 44.8985 & 0.002909 & 33 & 86.486 & 5.721 \\
\hline 118.3 & 2487.6 & 65.66 & 411,921 & 147.6 & 146.8 & 16.480 & 97.89 & 1.290 & -65.0808 & 44.8934 & -0.001638 & 33 & 90.643 & 6.039 \\
\hline 110.5 & 2488.6 & 66.06 & 367,326 & 139.7 & 138.8 & 19.271 & 91.30 & 1.259 & -65.0809 & 44.8886 & 0.002827 & 33 & 96.566 & 6.775 \\
\hline 118.2 & 2487.3 & 68.28 & 411,312 & 146.4 & 145.6 & 20.742 & 99.92 & 1.253 & -65.0812 & 44.8844 & 0.007603 & 33 & 94.328 & 6.047 \\
\hline 117.8 & 2487.0 & 66.62 & 408,951 & 146.5 & 145.8 & 22.703 & 100.00 & 1.228 & -65.0811 & 44.8805 & -0.028992 & 33 & 92.302 & 6.081 \\
\hline 114.2 & 2487.5 & 73.85 & 388,168 & 140.1 & 139.5 & 23.780 & 97.55 & 1.245 & -65.1150 & 44.4190 & 0.005282 & 39 & 105.016 & 6.408 \\
\hline 117.0 & 2487.6 & 70.71 & 403,932 & 144.1 & 143.4 & 27.471 & 101.03 & 1.203 & -65.1166 & 44.4145 & -0.010499 & 39 & 98.572 & 6.158 \\
\hline 119.0 & 2487.9 & 71.44 & 415,676 & 145.9 & 145.1 & 23.460 & 101.96 & 1.239 & -65.1184 & 44.4114 & -0.000351 & 39 & 98.171 & 5.985 \\
\hline 116.8 & 2487.9 & 73.13 & 402,711 & 142.8 & 142.3 & 23.328 & 99.88 & 1.246 & -65.1170 & 44.4064 & -0.015421 & 39 & 102.107 & 6.178 \\
\hline 120.4 & 2487.1 & 74.78 & 423,939 & 146.3 & 145.3 & 25.278 & 104.25 & 1.235 & -65.1151 & 44.4029 & -0.007466 & 39 & 101.763 & 5.867 \\
\hline 118.5 & 2487.0 & 67.89 & 412,700 & 147.0 & 145.9 & 16.205 & 98.24 & 1.302 & -65.0741 & 44.9013 & -0.035753 & 40 & 93.637 & 6.026 \\
\hline 119.9 & 2486.8 & 66.24 & 420,902 & 148.7 & 148.0 & 18.926 & 100.58 & 1.264 & -65.0741 & 44.8976 & -0.024572 & 40 & 90.457 & 5.908 \\
\hline 120.1 & 2487.4 & 68.80 & 422,056 & 147.9 & 147.2 & 14.152 & 98.96 & 1.334 & -65.0743 & 44.8928 & -0.019393 & 40 & 93.823 & 5.894 \\
\hline 119.6 & 2486.8 & 66.51 & 419,080 & 148.5 & 147.6 & 19.319 & 100.47 & 1.261 & -65.0744 & 44.8881 & -0.024766 & 40 & 91.033 & 5.934 \\
\hline 122.1 & 2486.1 & 66.80 & 434,047 & 150.7 & 150.0 & 21.246 & 103.76 & 1.242 & -65.0741 & 44.8842 & -0.025881 & 40 & 89.828 & 5.728 \\
\hline 119.3 & 2486.9 & 67.09 & 417,770 & 147.6 & 147.1 & 26.691 & 102.81 & 1.196 & -65.0752 & 44.8805 & -0.017120 & 40 & 91.966 & 5.953 \\
\hline 111.8 & 2488.8 & 66.77 & 374,798 & 140.3 & 139.8 & 15.756 & 91.21 & 1.304 & -65.0675 & 44.9001 & 0.054574 & 47 & 96.637 & 6.640 \\
\hline 112.6 & 2488.0 & 65.84 & 378,969 & 141.2 & 140.9 & 25.819 & 95.65 & 1.198 & -65.0668 & 44.8946 & 0.045508 & 47 & 94.764 & 6.565 \\
\hline 115.9 & 2488.1 & 66.25 & 397,770 & 144.6 & 144.1 & 19.174 & 96.70 & 1.261 & -65.0696 & 44.8906 & 0.053815 & 47 & 93.063 & 6.255 \\
\hline 118.1 & 2487.5 & 66.46 & 410,547 & 146.9 & 146.2 & 18.352 & 98.60 & 1.271 & -65.0687 & 44.8870 & 0.045082 & 47 & 91.897 & 6.059 \\
\hline 118.2 & 2486.7 & 62.96 & 411,150 & 148.3 & 147.8 & 21.739 & 99.55 & 1.222 & -65.0712 & 44.8832 & 0.034973 & 47 & 86.997 & 6.048 \\
\hline 120.7 & 2487.0 & 64.23 & 425,787 & 150.3 & 149.7 & 17.972 & 100.70 & 1.266 & -65.0688 & 44.8813 & 0.017226 & 47 & 87.207 & 5.841 \\
\hline 116.7 & 2488.3 & 74.79 & 402,451 & 142.7 & 141.7 & 15.206 & 97.02 & 1.342 & -65.1112 & 44.4246 & 0.017637 & 47 & 104.458 & 6.183 \\
\hline 117.2 & 2488.2 & 73.60 & 405,337 & 143.5 & 142.6 & 23.361 & 100.39 & 1.248 & -65.1085 & 44.4220 & 0.012275 & 47 & 102.432 & 6.139 \\
\hline 111.8 & 2489.0 & 74.46 & 374,497 & 138.0 & 136.9 & 25.180 & 95.58 & 1.235 & -65.1072 & 44.4168 & 0.036636 & 47 & 107.809 & 6.646 \\
\hline 116.5 & 2488.6 & 74.64 & 400,969 & 142.3 & 141.5 & 22.281 & 99.41 & 1.261 & -65.1090 & 44.4126 & 0.046381 & 47 & 104.429 & 6.206 \\
\hline 116.6 & 2488.5 & 77.16 & 401,603 & 141.5 & 140.8 & 15.844 & 97.47 & 1.342 & -65.1111 & 44.4078 & 0.041153 & 47 & 107.884 & 6.196 \\
\hline 119.1 & 2488.8 & 79.05 & 416,520 & 143.5 & 142.7 & 20.238 & 101.90 & 1.297 & -65.1093 & 44.4032 & 0.013492 & 47 & 108.525 & 5.975 \\
\hline 117.3 & 2486.5 & 72.50 & 406,124 & 144.0 & 143.1 & 24.092 & 100.64 & 1.237 & -65.1045 & 44.4260 & -0.068978 & 52 & 100.799 & 6.122 \\
\hline 115.3 & 2488.4 & 77.33 & 394,478 & 141.1 & 139.5 & 23.256 & 98.86 & 1.262 & -65.1019 & 44.4158 & 0.003707 & 52 & 109.092 & 6.308 \\
\hline
\end{tabular}
Table E.2: Nano-indentation hardness data for generating depth profile in Sample 2 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [nm/s] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 115.5 & 2489.2 & 75.38 & 395,736 & 141.1 & 140.3 & 25.013 & 99.39 & 1.239 & -65.1034 & 44.4117 & 0.011771 & 52 & 106.167 & 6.290 \\
\hline 114.0 & 2488.6 & 74.14 & 387,129 & 139.9 & 139.2 & 21.583 & 96.71 & 1.266 & -65.1047 & 44.4077 & 0.014512 & 52 & 105.574 & 6.428 \\
\hline 117.5 & 2487.8 & 75.95 & 406,943 & 142.9 & 142.1 & 25.190 & 101.44 & 1.240 & -65.1023 & 44.4031 & 0.004372 & 52 & 105.492 & 6.113 \\
\hline 115.6 & 2486.9 & 69.80 & 396,314 & 143.1 & 142.4 & 20.561 & 97.46 & 1.260 & -65.0615 & 44.9014 & -0.014616 & 54 & 98.236 & 6.275 \\
\hline 120.1 & 2487.4 & 69.98 & 422,460 & 147.6 & 146.8 & 23.821 & 103.06 & 1.230 & -65.0616 & 44.8985 & 0.009407 & 54 & 95.387 & 5.888 \\
\hline 116.1 & 2487.6 & 68.21 & 398,938 & 144.1 & 143.5 & 20.210 & 97.58 & 1.258 & -65.0618 & 44.8934 & 0.003768 & 54 & 95.676 & 6.236 \\
\hline 119.0 & 2487.4 & 67.94 & 415,873 & 147.1 & 146.5 & 18.162 & 99.65 & 1.279 & -65.0619 & 44.8886 & 0.011603 & 54 & 93.349 & 5.981 \\
\hline 119.2 & 2486.5 & 68.31 & 416,684 & 147.2 & 146.5 & 17.445 & 99.54 & 1.289 & -65.0622 & 44.8844 & 0.005474 & 54 & 93.762 & 5.967 \\
\hline 117.7 & 2488.3 & 79.01 & 407,885 & 142.0 & 141.3 & 24.217 & 101.63 & 1.259 & -65.0934 & 44.4253 & -0.067175 & 59 & 109.609 & 6.101 \\
\hline 113.6 & 2488.7 & 77.69 & 384,771 & 137.9 & 137.6 & 19.708 & 96.06 & 1.298 & -65.0929 & 44.4163 & -0.001781 & 59 & 110.972 & 6.468 \\
\hline 110.0 & 2489.2 & 78.42 & 364,430 & 134.5 & 133.8 & 20.956 & 92.91 & 1.288 & -65.0964 & 44.4122 & 0.001290 & 59 & 115.101 & 6.830 \\
\hline 117.2 & 2487.7 & 77.32 & 405,479 & 142.0 & 141.4 & 23.385 & 100.81 & 1.260 & -65.0972 & 44.4075 & 0.001100 & 59 & 107.589 & 6.135 \\
\hline 115.7 & 2487.6 & 70.85 & 396,724 & 142.5 & 142.1 & 42.797 & 103.10 & 1.109 & -65.0950 & 44.4032 & -0.026880 & 59 & 99.660 & 6.270 \\
\hline 122.3 & 2486.5 & 72.46 & 435,367 & 148.8 & 148.0 & 19.451 & 104.05 & 1.282 & -65.0551 & 44.9013 & -0.005954 & 61 & 97.299 & 5.711 \\
\hline 118.5 & 2487.3 & 69.19 & 413,127 & 146.2 & 145.5 & 21.275 & 100.54 & 1.251 & -65.0551 & 44.8976 & -0.005035 & 61 & 95.375 & 6.021 \\
\hline 117.1 & 2488.0 & 69.21 & 404,759 & 144.5 & 144.1 & 20.287 & 98.74 & 1.261 & -65.0553 & 44.8928 & -0.001148 & 61 & 96.379 & 6.147 \\
\hline 118.1 & 2487.2 & 67.48 & 410,682 & 146.5 & 145.8 & 20.808 & 99.73 & 1.249 & -65.0554 & 44.8881 & -0.016143 & 61 & 93.291 & 6.056 \\
\hline 120.6 & 2487.1 & 69.65 & 424,952 & 148.3 & 147.3 & 17.524 & 101.17 & 1.293 & -65.0551 & 44.8842 & -0.004689 & 61 & 94.670 & 5.853 \\
\hline 122.4 & 2486.8 & 68.19 & 435,971 & 150.4 & 149.8 & 18.328 & 103.14 & 1.278 & -65.0562 & 44.8805 & 0.002734 & 61 & 91.495 & 5.704 \\
\hline 113.3 & 2488.6 & 81.03 & 382,899 & 137.1 & 136.3 & 9.798 & 91.58 & 1.457 & -65.0916 & 44.4247 & 0.031156 & 67 & 116.026 & 6.499 \\
\hline 112.2 & 2489.4 & 80.02 & 377,045 & 136.4 & 135.6 & 21.554 & 95.54 & 1.287 & -65.0910 & 44.4183 & 0.060347 & 67 & 115.469 & 6.602 \\
\hline 115.6 & 2487.6 & 76.15 & 395,849 & 140.7 & 140.1 & 25.032 & 99.50 & 1.242 & -65.0904 & 44.4127 & 0.033639 & 67 & 107.239 & 6.284 \\
\hline 117.1 & 2488.0 & 77.52 & 404,701 & 141.8 & 141.2 & 23.119 & 100.62 & 1.264 & -65.0901 & 44.4096 & 0.040585 & 67 & 107.970 & 6.148 \\
\hline 113.8 & 2489.1 & 81.57 & 386,046 & 137.6 & 136.7 & 22.038 & 97.44 & 1.288 & -65.0897 & 44.4056 & 0.035842 & 67 & 116.322 & 6.448 \\
\hline 115.0 & 2488.8 & 79.96 & 392,821 & 139.1 & 138.4 & 26.237 & 99.63 & 1.245 & -65.0897 & 44.4020 & 0.008491 & 67 & 113.030 & 6.336 \\
\hline 114.6 & 2487.6 & 78.53 & 390,345 & 139.0 & 138.4 & 24.547 & 98.63 & 1.254 & -65.0861 & 44.4217 & 0.021146 & 72 & 111.370 & 6.373 \\
\hline 114.7 & 2488.1 & 78.63 & 391,044 & 139.2 & 138.5 & 22.373 & 98.13 & 1.274 & -65.0860 & 44.4188 & 0.004023 & 72 & 111.406 & 6.363 \\
\hline 116.0 & 2488.6 & 79.76 & 398,063 & 140.0 & 139.4 & 23.649 & 99.84 & 1.266 & -65.0856 & 44.4141 & 0.009040 & 72 & 112.006 & 6.252 \\
\hline 112.8 & 2488.3 & 79.16 & 380,147 & 137.0 & 136.4 & 21.158 & 95.88 & 1.288 & -65.0856 & 44.4097 & -0.007350 & 72 & 113.748 & 6.546 \\
\hline 113.2 & 2488.1 & 76.26 & 382,558 & 138.4 & 137.7 & 28.487 & 98.06 & 1.215 & -65.0854 & 44.4056 & 0.002704 & 72 & 109.241 & 6.504 \\
\hline 114.5 & 2488.8 & 80.46 & 389,780 & 138.4 & 137.7 & 28.232 & 99.63 & 1.231 & -65.0854 & 44.4020 & 0.004448 & 72 & 114.187 & 6.385 \\
\hline 114.5 & 2487.9 & 78.95 & 389,654 & 138.6 & 138.1 & 26.032 & 98.94 & 1.243 & -65.0799 & 44.4233 & -0.031061 & 77 & 112.059 & 6.385 \\
\hline 115.2 & 2487.9 & 81.21 & 393,893 & 139.2 & 138.2 & 20.140 & 98.20 & 1.306 & -65.0799 & 44.4190 & -0.000286 & 77 & 114.647 & 6.316 \\
\hline
\end{tabular}
Table E.2: Nano-indentation hardness data for generating depth profile in Sample 2 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& P_{\text {max }} \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]} \\
& \hline
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [ \(\mathrm{nm} / \mathrm{s}\) ] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 113.2 & 2488.2 & 79.02 & 382,233 & 137.4 & 136.8 & 24.235 & 97.15 & 1.259 & -65.0798 & 44.4125 & -0.012784 & 77 & 113.249 & 6.510 \\
\hline 114.3 & 2488.8 & 77.82 & 388,810 & 138.9 & 138.3 & 29.087 & 99.44 & 1.216 & -65.0797 & 44.4095 & 0.003106 & 77 & 110.581 & 6.401 \\
\hline 112.7 & 2489.3 & 82.09 & 379,845 & 136.0 & 135.5 & 23.638 & 96.84 & 1.274 & -65.0796 & 44.4055 & -0.014877 & 77 & 118.013 & 6.553 \\
\hline 117.0 & 2488.5 & 83.52 & 403,920 & 140.2 & 139.3 & 19.125 & 99.85 & 1.325 & -65.0790 & 44.4021 & -0.000962 & 77 & 116.427 & 6.161 \\
\hline 115.1 & 2488.4 & 76.68 & 393,289 & 139.7 & 139.5 & 29.822 & 100.31 & 1.206 & -65.0751 & 44.4248 & -0.024195 & 82 & 108.329 & 6.327 \\
\hline 112.9 & 2488.1 & 79.41 & 380,538 & 137.1 & 136.4 & 22.360 & 96.35 & 1.277 & -65.0747 & 44.4201 & -0.015945 & 82 & 114.058 & 6.538 \\
\hline 114.8 & 2488.0 & 79.87 & 391,259 & 138.6 & 138.1 & 21.290 & 97.96 & 1.289 & -65.0746 & 44.4162 & -0.006287 & 82 & 113.132 & 6.359 \\
\hline 117.4 & 2487.4 & 79.61 & 406,401 & 141.5 & 140.8 & 23.205 & 101.15 & 1.270 & -65.0746 & 44.4130 & -0.003654 & 82 & 110.639 & 6.120 \\
\hline 115.7 & 2488.4 & 77.27 & 396,889 & 140.6 & 139.9 & 27.382 & 100.40 & 1.227 & -65.0745 & 44.4097 & -0.024216 & 82 & 108.677 & 6.270 \\
\hline 113.6 & 2488.2 & 80.54 & 384,402 & 137.1 & 136.7 & 29.462 & 98.98 & 1.222 & -65.0741 & 44.4050 & -0.010048 & 82 & 115.097 & 6.473 \\
\hline
\end{tabular}
Table E.3: Nano-indentation hardness data for generating depth profile in Sample 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [ \(\mathrm{nm} / \mathrm{s}\) ] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 94.0 & 2491.4 & 120.41 & 418,744 & 110.8 & 109.5 & 22.312 & 80.5 & 1.401 & -64.4341 & -5.8949 & 0.020 & 5 & 164.856 & 5.950 \\
\hline 93.5 & 2491.0 & 119.93 & 415,999 & 110.3 & 109.1 & 32.152 & 81.8 & 1.315 & -64.4347 & -5.8988 & 0.010 & 5 & 164.752 & 5.988 \\
\hline 97.2 & 2491.1 & 120.91 & 438,993 & 113.3 & 112.6 & 29.496 & 85.1 & 1.338 & -64.4352 & -5.9017 & 0.005 & 5 & 161.690 & 5.675 \\
\hline 102.0 & 2490.8 & 118.57 & 470,764 & 119.1 & 117.8 & 23.096 & 88.6 & 1.388 & -64.4366 & -5.9412 & 0.058 & 5 & 153.115 & 5.291 \\
\hline 97.8 & 2491.8 & 109.06 & 443,434 & 115.8 & 115.0 & 27.048 & 84.7 & 1.326 & -64.4367 & -5.2873 & 0.133 & 5 & 145.112 & 5.619 \\
\hline 96.3 & 2491.1 & 123.02 & 433,646 & 112.6 & 111.5 & 30.189 & 84.4 & 1.338 & -64.4306 & -5.3017 & -0.071 & 5 & 165.511 & 5.745 \\
\hline 101.4 & 2490.9 & 126.42 & 466,360 & 117.5 & 116.1 & 27.067 & 89.1 & 1.372 & -64.4323 & -5.2574 & 0.037 & 5 & 164.021 & 5.341 \\
\hline 99.0 & 2491.0 & 121.84 & 451,088 & 115.5 & 114.4 & 32.847 & 87.5 & 1.315 & -64.4317 & -5.2755 & 0.010 & 5 & 160.733 & 5.522 \\
\hline 95.7 & 2492.0 & 123.78 & 429,999 & 111.8 & 110.8 & 19.983 & 82.0 & 1.435 & -64.4300 & -5.8784 & 0.061 & 6 & 167.248 & 5.795 \\
\hline 94.9 & 2491.3 & 131.37 & 424,851 & 110.0 & 109.2 & 30.513 & 83.4 & 1.356 & -64.4308 & -5.8812 & 0.080 & 6 & 178.570 & 5.864 \\
\hline 95.7 & 2492.1 & 116.60 & 429,667 & 112.7 & 111.7 & 31.324 & 83.7 & 1.313 & -64.4315 & -5.8846 & 0.046 & 6 & 157.603 & 5.800 \\
\hline 97.9 & 2491.1 & 114.98 & 443,503 & 114.9 & 114.1 & 39.144 & 86.9 & 1.257 & -64.4333 & -5.8875 & 0.042 & 6 & 152.966 & 5.617 \\
\hline 97.3 & 2491.6 & 118.89 & 440,043 & 113.6 & 113.0 & 27.999 & 84.9 & 1.344 & -64.4327 & -5.8909 & 0.020 & 6 & 158.787 & 5.662 \\
\hline 95.3 & 2491.0 & 115.49 & 427,059 & 112.6 & 111.5 & 36.497 & 84.0 & 1.274 & -64.4358 & -5.9329 & 0.105 & 6 & 156.577 & 5.833 \\
\hline 99.0 & 2490.8 & 119.15 & 450,942 & 115.7 & 114.7 & 22.337 & 85.5 & 1.397 & -64.4366 & -5.9376 & 0.085 & 6 & 157.203 & 5.524 \\
\hline 92.3 & 2490.5 & 113.21 & 408,177 & 110.0 & 108.8 & 31.934 & 80.2 & 1.299 & -64.4304 & -5.9209 & -0.033 & 6 & 156.999 & 6.101 \\
\hline 96.6 & 2491.2 & 127.56 & 435,619 & 112.2 & 111.3 & 26.717 & 84.4 & 1.378 & -64.4294 & -5.2989 & -0.084 & 6 & 171.236 & 5.719 \\
\hline 102.6 & 2490.9 & 123.44 & 474,764 & 118.8 & 117.8 & 30.245 & 90.8 & 1.338 & -64.4327 & -5.2540 & 0.037 & 6 & 158.722 & 5.247 \\
\hline 101.6 & 2490.4 & 124.73 & 467,629 & 117.3 & 116.5 & 29.784 & 89.7 & 1.345 & -64.4318 & -5.2620 & 0.033 & 6 & 161.604 & 5.326 \\
\hline 99.1 & 2491.1 & 123.34 & 451,653 & 115.3 & 114.3 & 41.604 & 88.8 & 1.263 & -64.4315 & -5.2667 & 0.018 & 6 & 162.604 & 5.515 \\
\hline 99.6 & 2491.6 & 121.09 & 454,792 & 116.7 & 115.0 & 30.276 & 87.6 & 1.332 & -64.4315 & -5.2722 & 0.021 & 6 & 159.084 & 5.478 \\
\hline 97.8 & 2490.9 & 117.58 & 443,353 & 114.6 & 113.7 & 29.613 & 85.6 & 1.328 & -64.4310 & -5.5882 & -0.006 & 7 & 156.457 & 5.618 \\
\hline 94.3 & 2490.8 & 116.11 & 420,996 & 111.8 & 110.4 & 32.179 & 82.4 & 1.305 & -64.4304 & -5.5912 & -0.010 & 7 & 158.543 & 5.916 \\
\hline 95.7 & 2490.8 & 120.96 & 429,859 & 112.4 & 111.2 & 20.835 & 82.0 & 1.418 & -64.4303 & -5.5941 & 0.015 & 7 & 163.465 & 5.794 \\
\hline 96.4 & 2491.2 & 127.07 & 434,219 & 112.3 & 111.1 & 16.580 & 82.0 & 1.486 & -64.4305 & -5.5975 & 0.020 & 7 & 170.850 & 5.737 \\
\hline 97.3 & 2491.7 & 116.45 & 439,924 & 114.1 & 113.4 & 33.156 & 85.6 & 1.299 & -64.4307 & -5.6013 & 0.009 & 7 & 155.552 & 5.664 \\
\hline 100.5 & 2490.9 & 114.76 & 460,836 & 117.0 & 116.8 & 36.508 & 89.2 & 1.273 & -64.4316 & -5.6089 & 0.016 & 7 & 149.783 & 5.405 \\
\hline 97.4 & 2491.1 & 118.54 & 440,355 & 114.4 & 113.1 & 32.016 & 85.5 & 1.313 & -64.4309 & -5.9243 & 0.010 & 7 & 158.269 & 5.657 \\
\hline 93.8 & 2490.9 & 121.72 & 417,438 & 110.3 & 109.1 & 26.251 & 81.1 & 1.367 & -64.4314 & -5.9271 & -0.005 & 7 & 166.914 & 5.967 \\
\hline 94.1 & 2492.2 & 123.10 & 419,806 & 110.4 & 109.3 & 20.449 & 80.4 & 1.428 & -64.4326 & -5.2934 & -0.073 & 7 & 168.338 & 5.936 \\
\hline 97.1 & 2490.5 & 114.13 & 438,652 & 114.2 & 113.5 & 32.350 & 85.1 & 1.299 & -64.4307 & -5.6053 & -0.004 & 8 & 152.675 & 5.678 \\
\hline 99.3 & 2490.0 & 116.31 & 452,913 & 116.3 & 115.4 & 32.304 & 87.4 & 1.305 & -64.4339 & -5.2904 & -0.048 & 8 & 153.122 & 5.498 \\
\hline 93.7 & 2491.3 & 120.04 & 417,247 & 110.9 & 109.3 & 29.555 & 81.6 & 1.335 & -64.4318 & -5.9307 & -0.011 & 9 & 164.648 & 5.971 \\
\hline
\end{tabular}
Table E.3: Nano-indentation hardness data for generating depth profile in Sample 3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \begin{tabular}{l}
\(P_{\text {max }}\) \\
\([\mu \mathrm{N}]\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \(h_{\text {max }}\)
\([\mathrm{nm}]\) & \[
\begin{aligned}
& h_{e f f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & A & \(h_{f}\) [nm] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction
\[
[\mathrm{nm} / \mathrm{s}]
\] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \begin{tabular}{l}
\(E_{r}\) \\
[GPa]
\end{tabular} & \begin{tabular}{l}
H \\
[GPa]
\end{tabular} \\
\hline 97.6 & 2490.9 & 121.76 & 441,701 & 114.3 & 112.9 & 26.822 & 85.1 & 1.362 & -64.4328 & -5.9418 & -0.025 & 9 & 162.319 & 5.639 \\
\hline 95.5 & 2490.9 & 124.50 & 428,333 & 111.6 & 110.5 & 22.852 & 82.4 & 1.406 & -64.4266 & -5.9220 & -0.047 & 9 & 168.547 & 5.815 \\
\hline 98.9 & 2491.1 & 128.44 & 450,389 & 114.7 & 113.5 & 16.397 & 84.5 & 1.493 & -64.4283 & -5.2763 & -0.006 & 9 & 169.566 & 5.531 \\
\hline 95.3 & 2491.9 & 125.81 & 427,283 & 111.6 & 110.2 & 36.186 & 84.4 & 1.302 & -64.4298 & -5.8962 & -0.005 & 10 & 170.521 & 5.832 \\
\hline 100.1 & 2490.9 & 129.13 & 457,737 & 115.5 & 114.5 & 35.576 & 89.2 & 1.314 & -64.4306 & -5.9001 & 0.001 & 10 & 169.101 & 5.442 \\
\hline 97.6 & 2491.0 & 122.47 & 441,702 & 113.9 & 112.8 & 28.634 & 85.4 & 1.349 & -64.4321 & -5.9337 & -0.003 & 10 & 163.271 & 5.640 \\
\hline 99.7 & 2491.2 & 124.72 & 455,742 & 116.3 & 114.7 & 26.850 & 87.4 & 1.369 & -64.4331 & -5.2785 & -0.037 & 10 & 163.685 & 5.466 \\
\hline 103.8 & 2490.2 & 127.43 & 482,884 & 119.2 & 118.5 & 26.237 & 91.5 & 1.381 & -64.4343 & -5.2831 & -0.019 & 10 & 162.476 & 5.157 \\
\hline 96.5 & 2491.4 & 127.78 & 434,954 & 111.8 & 111.2 & 29.397 & 84.7 & 1.356 & -64.4261 & -5.2995 & -0.052 & 10 & 171.656 & 5.728 \\
\hline 99.9 & 2490.3 & 122.52 & 457,012 & 116.1 & 115.2 & 34.511 & 88.7 & 1.305 & -64.4265 & -5.2609 & 0.002 & 10 & 160.570 & 5.449 \\
\hline 99.7 & 2490.2 & 125.75 & 455,549 & 115.5 & 114.6 & 28.738 & 87.7 & 1.356 & -64.4260 & -5.2650 & -0.014 & 10 & 165.078 & 5.466 \\
\hline 96.8 & 2491.1 & 120.37 & 436,662 & 113.0 & 112.3 & 38.025 & 85.9 & 1.277 & -64.4277 & -5.8910 & -0.019 & 11 & 161.389 & 5.705 \\
\hline 97.0 & 2490.4 & 123.85 & 438,006 & 112.9 & 112.1 & 22.732 & 83.8 & 1.405 & -64.4323 & -5.9366 & -0.015 & 11 & 165.797 & 5.686 \\
\hline 98.1 & 2490.8 & 122.33 & 445,250 & 115.0 & 113.4 & 17.184 & 83.6 & 1.465 & -64.4322 & -5.9395 & -0.015 & 11 & 162.431 & 5.594 \\
\hline 91.8 & 2491.7 & 115.20 & 405,310 & 109.5 & 108.0 & 29.780 & 79.5 & 1.321 & -64.4271 & -5.9249 & -0.011 & 11 & 160.317 & 6.148 \\
\hline 93.9 & 2490.6 & 119.56 & 418,075 & 110.9 & 109.5 & 23.504 & 80.6 & 1.386 & -64.4273 & -5.9271 & -0.034 & 11 & 163.831 & 5.957 \\
\hline 94.3 & 2491.2 & 116.86 & 421,139 & 111.8 & 110.3 & 34.290 & 82.8 & 1.292 & -64.4274 & -5.9300 & -0.023 & 11 & 159.553 & 5.915 \\
\hline 101.7 & 2490.7 & 125.96 & 468,809 & 117.8 & 116.6 & 30.878 & 90.1 & 1.340 & -64.4259 & -5.2578 & -0.006 & 11 & 162.989 & 5.313 \\
\hline 97.6 & 2490.6 & 126.54 & 442,072 & 113.5 & 112.4 & 22.933 & 84.6 & 1.410 & -64.4258 & -5.2713 & -0.008 & 11 & 168.624 & 5.634 \\
\hline 94.6 & 2491.2 & 120.82 & 422,532 & 110.9 & 110.0 & 25.998 & 81.9 & 1.367 & -64.4248 & -5.8848 & -0.019 & 12 & 164.686 & 5.896 \\
\hline 97.6 & 2491.0 & 122.99 & 441,955 & 113.8 & 112.8 & 28.809 & 85.5 & 1.348 & -64.4261 & -5.8879 & -0.022 & 12 & 163.919 & 5.636 \\
\hline 99.0 & 2490.8 & 125.75 & 451,187 & 114.7 & 113.9 & 30.524 & 87.3 & 1.342 & -64.4279 & -5.9019 & -0.007 & 12 & 165.863 & 5.521 \\
\hline 92.1 & 2491.4 & 119.33 & 407,477 & 108.7 & 107.8 & 31.237 & 80.2 & 1.320 & -64.4259 & -5.5884 & -0.043 & 12 & 165.624 & 6.114 \\
\hline 93.5 & 2491.4 & 120.96 & 415,997 & 110.4 & 109.0 & 20.707 & 79.7 & 1.419 & -64.4253 & -5.5913 & -0.021 & 12 & 166.161 & 5.989 \\
\hline 95.1 & 2491.0 & 114.46 & 425,595 & 112.0 & 111.4 & 42.580 & 84.5 & 1.236 & -64.4252 & -5.5941 & -0.012 & 12 & 155.445 & 5.853 \\
\hline 96.4 & 2491.0 & 120.74 & 433,915 & 112.5 & 111.8 & 22.723 & 83.0 & 1.397 & -64.4252 & -5.5979 & -0.004 & 12 & 162.404 & 5.741 \\
\hline 97.9 & 2491.1 & 125.21 & 443,786 & 113.6 & 112.8 & 15.913 & 83.2 & 1.491 & -64.4254 & -5.6016 & -0.010 & 12 & 166.526 & 5.613 \\
\hline 97.1 & 2490.0 & 123.02 & 438,309 & 113.6 & 112.2 & 32.219 & 85.5 & 1.323 & -64.4327 & -5.2865 & -0.065 & 12 & 164.639 & 5.681 \\
\hline 101.2 & 2490.9 & 126.10 & 465,120 & 116.9 & 116.0 & 27.435 & 89.0 & 1.368 & -64.4264 & -5.2547 & -0.011 & 12 & 163.818 & 5.355 \\
\hline 95.3 & 2491.1 & 115.96 & 427,099 & 112.1 & 111.4 & 45.081 & 85.1 & 1.226 & -64.4242 & -5.8814 & -0.021 & 13 & 157.216 & 5.832 \\
\hline 96.3 & 2491.7 & 110.02 & 433,366 & 114.0 & 113.3 & 64.640 & 87.7 & 1.127 & -64.4260 & -5.8946 & -0.019 & 13 & 148.074 & 5.750 \\
\hline 99.2 & 2491.4 & 126.65 & 452,012 & 115.0 & 113.9 & 17.639 & 85.0 & 1.471 & -64.4252 & -5.6055 & -0.003 & 13 & 166.905 & 5.512 \\
\hline 97.5 & 2490.4 & 118.57 & 441,133 & 114.1 & 113.2 & 23.869 & 84.3 & 1.380 & -64.4264 & -5.6101 & -0.004 & 13 & 158.166 & 5.645 \\
\hline
\end{tabular}
Table E.3: Nano-indentation hardness data for generating depth profile in Sample 3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \(h_{\max }\)
\([\mathrm{nm}]\) & \[
\begin{aligned}
& h_{e f f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \begin{tabular}{l}
Drift \\
Correction
\[
[\mathrm{nm} / \mathrm{s}]
\]
\end{tabular} & Distance from Edge [ \(\mu \mathrm{m}\) ] & \(E_{r}\) [GPa] & \begin{tabular}{l}
H \\
[GPa]
\end{tabular} \\
\hline 97.4 & 2490.2 & 119.18 & 440,728 & 114.7 & 113.1 & 26.807 & 84.8 & 1.355 & -64.4222 & -5.9224 & -0.052 & 13 & 159.053 & 5.650 \\
\hline 93.5 & 2491.9 & 116.42 & 415,649 & 110.5 & 109.5 & 27.780 & 80.8 & 1.340 & -64.4233 & -5.8786 & -0.066 & 14 & 159.991 & 5.995 \\
\hline 98.1 & 2490.3 & 120.80 & 445,148 & 114.7 & 113.6 & 33.399 & 86.6 & 1.309 & -64.4275 & -5.9337 & -0.020 & 14 & 160.411 & 5.594 \\
\hline 97.3 & 2489.7 & 124.76 & 439,905 & 113.1 & 112.3 & 24.704 & 84.6 & 1.389 & -64.4283 & -5.9368 & -0.011 & 14 & 166.659 & 5.660 \\
\hline 98.4 & 2490.8 & 121.24 & 446,856 & 114.9 & 113.8 & 28.177 & 86.1 & 1.349 & -64.4288 & -5.9424 & -0.020 & 14 & 160.690 & 5.574 \\
\hline 96.2 & 2491.3 & 124.11 & 432,671 & 111.9 & 111.2 & 33.951 & 84.9 & 1.313 & -64.4276 & -5.2900 & -0.074 & 14 & 167.172 & 5.758 \\
\hline 99.1 & 2489.3 & 123.37 & 451,222 & 115.2 & 114.2 & 26.126 & 86.5 & 1.372 & -64.4266 & -5.2934 & -0.079 & 14 & 162.726 & 5.517 \\
\hline 99.6 & 2490.4 & 125.01 & 454,732 & 115.3 & 114.5 & 27.011 & 87.3 & 1.369 & -64.4244 & -5.2787 & -0.089 & 14 & 164.246 & 5.477 \\
\hline 94.5 & 2490.8 & 128.80 & 422,040 & 110.2 & 109.0 & 23.683 & 81.7 & 1.409 & -64.4285 & -5.9390 & -0.017 & 15 & 175.667 & 5.902 \\
\hline 97.8 & 2491.0 & 120.05 & 443,413 & 114.1 & 113.4 & 37.179 & 86.8 & 1.282 & -64.4289 & -5.2803 & -0.092 & 15 & 159.734 & 5.618 \\
\hline 98.4 & 2491.0 & 126.12 & 446,851 & 114.0 & 113.2 & 28.015 & 86.3 & 1.363 & -64.4295 & -5.2830 & -0.080 & 15 & 167.164 & 5.575 \\
\hline 99.1 & 2490.9 & 124.81 & 451,381 & 114.7 & 114.0 & 28.785 & 87.0 & 1.353 & -64.4288 & -5.2857 & -0.065 & 15 & 164.596 & 5.518 \\
\hline 100.2 & 2490.0 & 133.11 & 458,923 & 115.0 & 114.3 & 18.933 & 86.7 & 1.472 & -64.4219 & -5.2979 & -0.062 & 15 & 174.091 & 5.426 \\
\hline 100.2 & 2491.6 & 129.92 & 458,639 & 115.3 & 114.6 & 24.663 & 87.7 & 1.402 & -64.4208 & -5.3022 & -0.073 & 15 & 169.970 & 5.432 \\
\hline 95.3 & 2491.9 & 122.76 & 426,854 & 111.5 & 110.5 & 25.519 & 82.5 & 1.376 & -64.4204 & -5.2652 & -0.019 & 15 & 166.476 & 5.838 \\
\hline 100.5 & 2491.0 & 130.08 & 460,866 & 116.3 & 114.9 & 19.195 & 86.9 & 1.461 & -64.4218 & -5.2766 & -0.006 & 15 & 169.770 & 5.405 \\
\hline 96.8 & 2489.9 & 123.25 & 436,475 & 113.0 & 111.9 & 34.200 & 85.5 & 1.309 & -64.4230 & -5.8921 & -0.019 & 16 & 165.288 & 5.704 \\
\hline 94.9 & 2491.2 & 117.90 & 424,945 & 112.1 & 110.8 & 32.556 & 83.2 & 1.307 & -64.4229 & -5.9290 & -0.019 & 16 & 160.247 & 5.862 \\
\hline 101.7 & 2490.2 & 121.92 & 468,584 & 117.9 & 117.0 & 23.587 & 88.6 & 1.392 & -64.4206 & -5.2690 & -0.012 & 16 & 157.804 & 5.314 \\
\hline 98.0 & 2491.1 & 125.59 & 444,636 & 113.9 & 112.9 & 24.465 & 85.3 & 1.393 & -64.4206 & -5.2722 & -0.018 & 16 & 166.867 & 5.603 \\
\hline 97.2 & 2490.8 & 121.36 & 439,077 & 113.7 & 112.6 & 37.295 & 86.2 & 1.284 & -64.4200 & -5.8846 & -0.030 & 17 & 162.273 & 5.673 \\
\hline 99.2 & 2490.8 & 120.30 & 452,348 & 115.3 & 114.8 & 37.916 & 88.3 & 1.278 & -64.4211 & -5.8887 & -0.026 & 17 & 158.473 & 5.506 \\
\hline 99.3 & 2490.4 & 122.84 & 452,879 & 115.6 & 114.5 & 29.414 & 87.3 & 1.343 & -64.4206 & -5.2547 & -0.028 & 17 & 161.732 & 5.499 \\
\hline 98.8 & 2492.0 & 125.30 & 449,542 & 115.0 & 113.7 & 25.120 & 86.1 & 1.386 & -64.4200 & -5.2576 & -0.036 & 17 & 165.574 & 5.543 \\
\hline 96.4 & 2491.2 & 125.28 & 434,097 & 112.7 & 111.3 & 25.143 & 83.7 & 1.386 & -64.4201 & -5.2598 & -0.023 & 17 & 168.473 & 5.739 \\
\hline 94.2 & 2491.1 & 121.99 & 420,527 & 110.3 & 109.6 & 24.546 & 81.3 & 1.383 & -64.4187 & -5.8793 & -0.036 & 18 & 166.671 & 5.924 \\
\hline 95.7 & 2491.0 & 123.47 & 429,709 & 111.6 & 110.8 & 26.639 & 83.2 & 1.368 & -64.4196 & -5.5885 & -0.042 & 18 & 166.875 & 5.797 \\
\hline 96.7 & 2490.5 & 127.52 & 435,934 & 112.1 & 111.3 & 23.103 & 83.8 & 1.411 & -64.4194 & -5.5921 & -0.018 & 18 & 171.123 & 5.713 \\
\hline 96.0 & 2491.1 & 125.46 & 431,459 & 111.8 & 110.9 & 22.748 & 82.9 & 1.409 & -64.4195 & -5.5957 & -0.016 & 18 & 169.225 & 5.774 \\
\hline 96.0 & 2491.3 & 127.86 & 431,389 & 111.8 & 110.6 & 25.449 & 83.5 & 1.390 & -64.4195 & -5.6008 & -0.003 & 18 & 172.475 & 5.775 \\
\hline 98.1 & 2490.9 & 119.86 & 445,326 & 114.9 & 113.7 & 32.352 & 86.4 & 1.314 & -64.4231 & -5.9327 & -0.017 & 18 & 159.139 & 5.593 \\
\hline 96.4 & 2490.9 & 130.27 & 434,083 & 111.7 & 110.7 & 22.577 & 83.5 & 1.424 & -64.4237 & -5.2881 & -0.051 & 18 & 175.188 & 5.738 \\
\hline 98.7 & 2490.5 & 127.80 & 448,992 & 114.3 & 113.3 & 25.215 & 86.2 & 1.392 & -64.4224 & -5.2926 & -0.073 & 18 & 168.987 & 5.547 \\
\hline
\end{tabular}
Table E.3: Nano-indentation hardness data for generating depth profile in Sample 3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(h_{c}\) [nm] & \begin{tabular}{l}
\(P_{\max }\) \\
\([\mu \mathrm{N}]\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \begin{tabular}{l}
\(h_{\max }\) \\
[nm]
\end{tabular} & \[
\begin{aligned}
& h_{e f f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & A & \(h_{f}\) [nm] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \begin{tabular}{l}
Drift \\
Correction
\[
[\mathrm{nm} / \mathrm{s}]
\]
\end{tabular} & Distance from Edge
\[
[\mu \mathrm{m}]
\] & \begin{tabular}{l}
\(E_{r}\) \\
[GPa]
\end{tabular} & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 96.4 & 2490.5 & 127.70 & 434,145 & 111.9 & 111.0 & 22.894 & 83.5 & 1.414 & -64.4192 & -5.6050 & -0.010 & 19 & 171.714 & 5.737 \\
\hline 98.5 & 2490.8 & 122.38 & 447,922 & 114.5 & 113.8 & 27.353 & 86.2 & 1.359 & -64.4193 & -5.6088 & -0.014 & 19 & 162.012 & 5.561 \\
\hline 100.1 & 2490.9 & 125.10 & 458,106 & 115.7 & 115.0 & 22.290 & 86.9 & 1.413 & -64.4196 & -5.6116 & 0.000 & 19 & 163.762 & 5.437 \\
\hline 99.6 & 2490.2 & 130.32 & 454,919 & 115.2 & 114.0 & 17.822 & 85.7 & 1.478 & -64.4232 & -5.9366 & -0.011 & 19 & 171.185 & 5.474 \\
\hline 97.6 & 2491.7 & 127.52 & 441,775 & 113.5 & 112.2 & 19.597 & 83.9 & 1.449 & -64.4227 & -5.9402 & -0.005 & 20 & 169.988 & 5.640 \\
\hline 97.4 & 2490.4 & 125.53 & 440,827 & 113.6 & 112.3 & 27.120 & 85.2 & 1.369 & -64.4215 & -5.9435 & -0.001 & 20 & 167.519 & 5.649 \\
\hline 98.1 & 2491.0 & 123.68 & 444,782 & 114.1 & 113.2 & 33.355 & 86.7 & 1.316 & -64.4242 & -5.2823 & -0.074 & 20 & 164.314 & 5.601 \\
\hline 100.4 & 2491.0 & 125.07 & 460,038 & 116.1 & 115.3 & 34.388 & 89.2 & 1.312 & -64.4238 & -5.2854 & -0.054 & 20 & 163.371 & 5.415 \\
\hline 95.3 & 2492.0 & 121.04 & 426,933 & 111.5 & 110.7 & 26.131 & 82.6 & 1.366 & -64.4207 & -5.2651 & 0.093 & 22 & 164.124 & 5.837 \\
\hline 96.0 & 2491.8 & 117.02 & 431,656 & 113.2 & 112.0 & 34.039 & 84.4 & 1.294 & -64.4208 & -5.2685 & 0.081 & 22 & 157.808 & 5.773 \\
\hline 96.8 & 2491.5 & 119.91 & 436,456 & 113.4 & 112.3 & 28.487 & 84.4 & 1.343 & -64.4206 & -5.2723 & 0.059 & 22 & 160.806 & 5.708 \\
\hline 97.5 & 2492.4 & 121.50 & 441,212 & 114.2 & 112.9 & 34.640 & 86.2 & 1.302 & -64.4199 & -5.2575 & 0.117 & 23 & 162.069 & 5.649 \\
\hline 99.2 & 2491.7 & 129.01 & 452,451 & 115.0 & 113.7 & 23.366 & 86.4 & 1.412 & -64.4198 & -5.2619 & 0.106 & 23 & 169.928 & 5.507 \\
\hline 96.3 & 2491.6 & 119.60 & 433,556 & 113.0 & 111.9 & 38.602 & 85.4 & 1.272 & -64.4194 & -5.2541 & 0.137 & 24 & 160.932 & 5.747 \\
\hline 97.3 & 2491.4 & 123.92 & 439,655 & 113.6 & 112.3 & 28.826 & 85.2 & 1.351 & -64.4146 & -5.2539 & 0.022 & 27 & 165.578 & 5.667 \\
\hline 100.5 & 2490.8 & 129.28 & 460,587 & 115.7 & 114.9 & 22.692 & 87.6 & 1.420 & -64.4151 & -5.2576 & 0.054 & 27 & 168.782 & 5.408 \\
\hline 99.4 & 2491.2 & 132.36 & 453,693 & 114.7 & 113.5 & 23.814 & 86.9 & 1.416 & -64.4150 & -5.2620 & 0.031 & 27 & 174.106 & 5.491 \\
\hline 96.9 & 2491.9 & 123.39 & 437,143 & 112.9 & 112.0 & 24.177 & 83.9 & 1.390 & -64.4156 & -5.2664 & 0.026 & 27 & 165.347 & 5.701 \\
\hline 97.1 & 2492.3 & 117.02 & 438,328 & 113.9 & 113.0 & 43.811 & 86.7 & 1.236 & -64.4158 & -5.2707 & 0.008 & 27 & 156.597 & 5.686 \\
\hline 96.2 & 2491.5 & 118.96 & 433,111 & 113.5 & 111.9 & 35.827 & 85.0 & 1.288 & -64.4157 & -5.2733 & 0.016 & 27 & 160.151 & 5.753 \\
\hline 98.7 & 2490.9 & 128.16 & 448,736 & 114.1 & 113.2 & 21.759 & 85.5 & 1.427 & -64.4120 & -5.2757 & -0.013 & 30 & 169.503 & 5.551 \\
\hline 98.2 & 2491.0 & 125.12 & 445,533 & 114.0 & 113.1 & 28.994 & 86.2 & 1.352 & -64.4109 & -5.2641 & -0.008 & 31 & 166.079 & 5.591 \\
\hline 98.1 & 2491.0 & 119.87 & 444,887 & 115.2 & 113.7 & 35.019 & 86.7 & 1.295 & -64.4113 & -5.2683 & 0.003 & 31 & 159.225 & 5.599 \\
\hline 99.8 & 2491.0 & 124.19 & 456,261 & 116.1 & 114.9 & 24.732 & 87.1 & 1.387 & -64.4116 & -5.2709 & -0.005 & 31 & 162.903 & 5.460 \\
\hline 96.8 & 2490.7 & 125.80 & 436,908 & 112.7 & 111.7 & 32.810 & 85.4 & 1.325 & -64.4104 & -5.2598 & 0.006 & 32 & 168.621 & 5.701 \\
\hline 95.2 & 2490.8 & 127.35 & 426,376 & 111.0 & 109.8 & 25.212 & 82.6 & 1.391 & -64.4088 & -5.2542 & -0.022 & 33 & 172.798 & 5.842 \\
\hline 94.6 & 2491.4 & 120.15 & 422,962 & 111.1 & 110.2 & 25.395 & 81.8 & 1.370 & -64.4075 & -5.2729 & -0.015 & 35 & 163.686 & 5.890 \\
\hline 101.2 & 2490.8 & 126.69 & 465,080 & 117.1 & 115.9 & 18.372 & 87.2 & 1.462 & -64.4076 & -5.2766 & -0.010 & 35 & 164.595 & 5.356 \\
\hline 99.5 & 2491.0 & 125.89 & 454,031 & 115.7 & 114.3 & 27.248 & 87.2 & 1.369 & -64.4056 & -5.2635 & -0.002 & 36 & 165.537 & 5.486 \\
\hline 96.9 & 2490.8 & 128.87 & 437,064 & 112.2 & 111.4 & 24.576 & 84.3 & 1.400 & -64.4064 & -5.2673 & -0.008 & 36 & 172.706 & 5.699 \\
\hline 98.8 & 2491.0 & 130.11 & 449,679 & 114.4 & 113.2 & 20.630 & 85.5 & 1.444 & -64.4052 & -5.2591 & -0.008 & 37 & 171.911 & 5.540 \\
\hline 98.1 & 2491.4 & 124.17 & 445,192 & 114.6 & 113.2 & 29.511 & 86.2 & 1.346 & -64.4038 & -5.2545 & -0.035 & 38 & 164.877 & 5.596 \\
\hline 94.8 & 2491.4 & 127.49 & 423,959 & 110.7 & 109.4 & 24.796 & 82.2 & 1.395 & -64.4035 & -5.2712 & -0.011 & 38 & 173.486 & 5.877 \\
\hline
\end{tabular}
Table E.3: Nano-indentation hardness data for generating depth profile in Sample 3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(h_{c}\) [nm] & \begin{tabular}{l}
\(P_{\max }\) \\
\([\mu \mathrm{N}]\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \(h_{\max }\) [nm] & \[
\begin{aligned}
& h_{e f f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & A & \(h_{f}\) [nm] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [nm/s] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \begin{tabular}{l}
\(E_{r}\) \\
[GPa]
\end{tabular} & \begin{tabular}{l}
H \\
[GPa]
\end{tabular} \\
\hline 97.7 & 2490.1 & 119.60 & 442,335 & 114.3 & 113.3 & 28.942 & 85.4 & 1.339 & -64.4041 & -5.2759 & -0.016 & 38 & 159.328 & 5.629 \\
\hline 98.6 & 2491.3 & 125.72 & 448,117 & 114.8 & 113.4 & 30.354 & 86.8 & 1.343 & -64.4026 & -5.2672 & 0.000 & 39 & 166.391 & 5.559 \\
\hline 97.2 & 2490.5 & 127.42 & 439,106 & 112.9 & 111.8 & 25.541 & 84.7 & 1.388 & -64.4016 & -5.2614 & -0.016 & 40 & 170.370 & 5.672 \\
\hline 99.7 & 2491.5 & 125.92 & 455,510 & 115.8 & 114.6 & 26.957 & 87.4 & 1.371 & -64.4003 & -5.2566 & -0.016 & 41 & 165.302 & 5.470 \\
\hline 97.3 & 2490.5 & 124.47 & 439,918 & 113.2 & 112.3 & 28.075 & 85.1 & 1.358 & -64.4022 & -5.2676 & 0.052 & 45 & 166.273 & 5.661 \\
\hline 93.9 & 2491.8 & 129.35 & 418,140 & 110.0 & 108.3 & 16.110 & 79.4 & 1.499 & -64.4023 & -5.2710 & 0.050 & 45 & 177.229 & 5.959 \\
\hline 90.6 & 2492.2 & 121.86 & 397,711 & 107.0 & 105.9 & 28.854 & 78.4 & 1.345 & -64.4021 & -5.2748 & 0.032 & 45 & 171.207 & 6.266 \\
\hline 95.4 & 2492.0 & 120.40 & 427,713 & 111.4 & 110.9 & 28.648 & 83.1 & 1.343 & -64.4009 & -5.2566 & 0.088 & 46 & 163.117 & 5.826 \\
\hline 97.0 & 2491.8 & 125.00 & 438,246 & 113.5 & 112.0 & 23.844 & 84.1 & 1.397 & -64.4014 & -5.2600 & 0.066 & 46 & 167.299 & 5.686 \\
\hline 93.4 & 2491.4 & 121.96 & 415,427 & 109.5 & 108.8 & 26.670 & 80.9 & 1.364 & -64.4013 & -5.2644 & 0.062 & 46 & 167.654 & 5.997 \\
\hline 92.6 & 2492.1 & 119.73 & 410,079 & 109.2 & 108.2 & 31.632 & 80.7 & 1.318 & -64.3966 & -5.2601 & 0.016 & 50 & 165.656 & 6.077 \\
\hline 95.0 & 2490.8 & 125.44 & 425,540 & 110.9 & 109.9 & 23.249 & 82.0 & 1.404 & -64.3965 & -5.2645 & 0.007 & 50 & 170.370 & 5.853 \\
\hline 96.3 & 2491.4 & 125.71 & 433,714 & 112.2 & 111.2 & 26.663 & 84.0 & 1.373 & -64.3971 & -5.2689 & 0.011 & 50 & 169.122 & 5.744 \\
\hline 93.5 & 2491.9 & 127.11 & 415,889 & 109.3 & 108.2 & 25.509 & 81.0 & 1.387 & -64.3973 & -5.2732 & 0.011 & 50 & 174.636 & 5.992 \\
\hline 93.0 & 2491.2 & 132.66 & 412,940 & 108.3 & 107.1 & 17.272 & 79.1 & 1.492 & -64.3972 & -5.2758 & 0.015 & 50 & 182.914 & 6.033 \\
\hline 94.4 & 2491.6 & 118.29 & 421,297 & 111.1 & 110.2 & 35.196 & 83.0 & 1.290 & -64.3961 & -5.2564 & 0.020 & 51 & 161.471 & 5.914 \\
\hline 96.0 & 2490.8 & 124.92 & 431,818 & 112.6 & 111.0 & 24.521 & 83.3 & 1.391 & -64.3928 & -5.2708 & 0.000 & 53 & 168.426 & 5.768 \\
\hline 92.5 & 2491.6 & 122.71 & 409,476 & 108.6 & 107.7 & 25.472 & 79.8 & 1.376 & -64.3931 & -5.2734 & 0.001 & 53 & 169.899 & 6.085 \\
\hline 92.4 & 2491.9 & 129.17 & 408,861 & 107.9 & 106.8 & 21.935 & 79.3 & 1.427 & -64.3935 & -5.2782 & 0.001 & 53 & 178.978 & 6.095 \\
\hline 97.3 & 2491.9 & 133.07 & 440,092 & 112.4 & 111.4 & 25.257 & 85.1 & 1.404 & -64.3924 & -5.2666 & -0.002 & 54 & 177.718 & 5.662 \\
\hline 97.2 & 2491.9 & 124.12 & 439,506 & 113.2 & 112.3 & 32.443 & 85.7 & 1.324 & -64.3919 & -5.2623 & -0.003 & 55 & 165.884 & 5.670 \\
\hline 94.5 & 2491.4 & 121.88 & 421,969 & 110.5 & 109.8 & 28.364 & 82.2 & 1.349 & -64.3903 & -5.2567 & -0.022 & 56 & 166.243 & 5.904 \\
\hline 95.1 & 2490.8 & 122.59 & 425,837 & 111.1 & 110.3 & 29.697 & 83.1 & 1.340 & -64.3890 & -5.2754 & -0.016 & 58 & 166.447 & 5.849 \\
\hline 94.1 & 2491.4 & 115.56 & 419,846 & 111.0 & 110.3 & 46.598 & 84.1 & 1.218 & -64.3891 & -5.2791 & 0.002 & 58 & 158.015 & 5.934 \\
\hline 100.7 & 2491.5 & 136.74 & 462,212 & 115.1 & 114.4 & 15.635 & 86.6 & 1.525 & -64.3871 & -5.2660 & -0.006 & 59 & 178.196 & 5.390 \\
\hline 98.1 & 2491.1 & 134.96 & 445,310 & 112.9 & 112.0 & 17.944 & 84.5 & 1.489 & -64.3879 & -5.2698 & 0.002 & 59 & 179.192 & 5.594 \\
\hline 95.7 & 2491.3 & 125.46 & 429,758 & 111.7 & 110.6 & 19.960 & 82.0 & 1.440 & -64.3867 & -5.2616 & -0.009 & 60 & 169.555 & 5.797 \\
\hline 95.2 & 2491.4 & 117.58 & 426,609 & 111.9 & 111.1 & 43.809 & 84.9 & 1.237 & -64.3853 & -5.2570 & -0.010 & 61 & 159.504 & 5.840 \\
\hline 96.1 & 2491.3 & 121.16 & 432,226 & 112.4 & 111.5 & 27.270 & 83.6 & 1.356 & -64.3856 & -5.2784 & -0.013 & 61 & 163.286 & 5.764 \\
\hline 95.9 & 2491.3 & 126.42 & 431,155 & 111.7 & 110.7 & 26.987 & 83.7 & 1.372 & -64.3841 & -5.2697 & -0.015 & 62 & 170.587 & 5.778 \\
\hline 92.8 & 2492.3 & 127.46 & 411,550 & 108.1 & 107.5 & 30.354 & 81.1 & 1.347 & -64.3850 & -5.2737 & 0.004 & 62 & 176.033 & 6.056 \\
\hline 96.3 & 2490.7 & 123.55 & 433,237 & 112.3 & 111.4 & 25.009 & 83.5 & 1.383 & -64.3831 & -5.2639 & -0.018 & 63 & 166.307 & 5.749 \\
\hline 96.2 & 2491.7 & 125.36 & 433,011 & 112.0 & 111.1 & 25.035 & 83.6 & 1.387 & -64.3818 & -5.2591 & -0.017 & 64 & 168.784 & 5.754 \\
\hline
\end{tabular}
Table E.3: Nano-indentation hardness data for generating depth profile in Sample 3 (continued)

Table E.4: Nano-indentation hardness data for generating depth profile in Sample 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [ \(\mathrm{nm} / \mathrm{s}\) ] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 91.6 & 2491.6 & 113.25 & 403,931 & 109.1 & 108.1 & 26.763 & 78.6 & 1.340 & -111.0918 & 50.7549 & 0.069 & 5 & 157.877 & 6.168 \\
\hline 98.0 & 2490.8 & 125.69 & 444,689 & 113.5 & 112.9 & 35.792 & 87.1 & 1.304 & -111.1537 & 48.6369 & 0.040 & 5 & 166.999 & 5.601 \\
\hline 96.0 & 2491.4 & 113.63 & 431,404 & 113.3 & 112.4 & 33.228 & 84.1 & 1.291 & -111.0910 & 50.7607 & 0.084 & 6 & 153.283 & 5.775 \\
\hline 99.0 & 2491.3 & 135.68 & 451,049 & 113.7 & 112.8 & 17.882 & 85.4 & 1.491 & -111.1552 & 48.6406 & 0.052 & 6 & 178.989 & 5.523 \\
\hline 95.2 & 2490.3 & 128.31 & 426,513 & 110.8 & 109.8 & 26.175 & 82.9 & 1.384 & -111.1394 & 48.8642 & -0.079 & 6 & 174.067 & 5.839 \\
\hline 94.3 & 2491.3 & 123.34 & 420,685 & 110.1 & 109.4 & 25.718 & 81.6 & 1.376 & -111.1421 & 48.8609 & 0.008 & 6 & 168.486 & 5.922 \\
\hline 95.5 & 2490.2 & 125.38 & 428,614 & 111.3 & 110.4 & 24.795 & 82.8 & 1.389 & -111.1437 & 48.8575 & 0.010 & 6 & 169.673 & 5.810 \\
\hline 97.5 & 2490.1 & 131.53 & 441,419 & 112.6 & 111.7 & 20.540 & 84.3 & 1.449 & -111.1461 & 48.8546 & 0.014 & 6 & 175.398 & 5.641 \\
\hline 99.1 & 2491.1 & 125.93 & 451,573 & 114.7 & 113.9 & 22.574 & 86.0 & 1.412 & -111.1479 & 48.8516 & 0.004 & 6 & 166.036 & 5.516 \\
\hline 95.9 & 2491.8 & 129.28 & 430,948 & 111.3 & 110.4 & 25.945 & 83.6 & 1.389 & -111.1490 & 48.8481 & 0.005 & 6 & 174.488 & 5.782 \\
\hline 96.3 & 2491.7 & 118.16 & 433,552 & 113.1 & 112.1 & 26.581 & 83.6 & 1.355 & -111.0884 & 50.7676 & 0.068 & 7 & 159.001 & 5.747 \\
\hline 95.5 & 2491.4 & 114.38 & 428,376 & 112.7 & 111.8 & 26.703 & 82.6 & 1.343 & -111.0903 & 50.7637 & 0.096 & 7 & 154.838 & 5.816 \\
\hline 90.7 & 2491.9 & 125.85 & 398,614 & 106.5 & 105.6 & 25.389 & 78.1 & 1.385 & -111.1578 & 48.6546 & 0.107 & 7 & 176.615 & 6.251 \\
\hline 92.9 & 2492.9 & 128.98 & 411,925 & 108.4 & 107.4 & 20.984 & 79.6 & 1.437 & -111.1577 & 48.6513 & 0.101 & 7 & 178.049 & 6.052 \\
\hline 90.3 & 2492.3 & 119.53 & 396,003 & 106.6 & 105.9 & 17.042 & 75.5 & 1.460 & -111.1574 & 48.6484 & 0.075 & 7 & 168.289 & 6.294 \\
\hline 96.4 & 2491.8 & 131.78 & 434,231 & 111.6 & 110.6 & 23.194 & 83.7 & 1.421 & -111.1563 & 48.6440 & 0.063 & 7 & 177.184 & 5.738 \\
\hline 98.5 & 2491.6 & 123.12 & 447,838 & 114.3 & 113.7 & 50.947 & 89.1 & 1.215 & -111.1506 & 48.8445 & 0.004 & 8 & 163.009 & 5.564 \\
\hline 99.4 & 2491.0 & 131.15 & 453,540 & 115.2 & 113.7 & 17.569 & 85.5 & 1.484 & -111.1533 & 48.8413 & 0.025 & 8 & 172.541 & 5.492 \\
\hline 92.5 & 2491.3 & 113.94 & 409,696 & 109.7 & 108.9 & 29.144 & 80.0 & 1.322 & -111.0881 & 50.7573 & 0.037 & 9 & 157.716 & 6.081 \\
\hline 125.5 & 2487.4 & 122.69 & 455,065 & 141.8 & 140.7 & 19.826 & 111.7 & 1.434 & -111.1156 & 49.5082 & 0.043 & 9 & 161.146 & 5.466 \\
\hline 122.8 & 2488.0 & 103.24 & 438,662 & 142.7 & 140.9 & 31.029 & 110.1 & 1.279 & -111.1158 & 49.5041 & 0.056 & 9 & 138.101 & 5.672 \\
\hline 121.7 & 2487.8 & 121.52 & 431,687 & 138.3 & 137.0 & 39.083 & 111.0 & 1.274 & -111.1197 & 49.4951 & 0.050 & 9 & 163.875 & 5.763 \\
\hline 120.3 & 2487.9 & 122.51 & 423,502 & 136.2 & 135.5 & 27.016 & 107.9 & 1.362 & -111.1201 & 49.4903 & 0.034 & 9 & 166.790 & 5.875 \\
\hline 120.2 & 2488.4 & 124.31 & 422,986 & 136.0 & 135.2 & 33.612 & 108.9 & 1.316 & -111.1166 & 49.4869 & 0.007 & 9 & 169.340 & 5.883 \\
\hline 99.5 & 2490.0 & 137.85 & 453,979 & 113.8 & 113.0 & 25.595 & 87.5 & 1.413 & -111.1372 & 48.8620 & -0.060 & 10 & 181.268 & 5.485 \\
\hline 92.6 & 2491.4 & 122.48 & 410,501 & 108.8 & 107.9 & 32.328 & 81.0 & 1.320 & -111.1430 & 48.8504 & -0.008 & 10 & 169.369 & 6.069 \\
\hline 95.6 & 2491.3 & 114.31 & 429,008 & 112.8 & 111.9 & 38.126 & 84.4 & 1.261 & -111.0849 & 50.7675 & 0.004 & 11 & 154.625 & 5.807 \\
\hline 93.1 & 2491.7 & 112.14 & 413,643 & 110.6 & 109.8 & 29.233 & 80.5 & 1.317 & -111.0863 & 50.7632 & 0.032 & 11 & 154.482 & 6.024 \\
\hline 96.1 & 2490.7 & 130.95 & 432,237 & 111.1 & 110.4 & 18.075 & 82.3 & 1.477 & -111.1390 & 48.8581 & -0.028 & 11 & 176.473 & 5.762 \\
\hline 95.3 & 2491.2 & 127.68 & 427,177 & 110.8 & 109.9 & 28.175 & 83.3 & 1.365 & -111.1414 & 48.8536 & -0.013 & 11 & 173.083 & 5.832 \\
\hline 95.0 & 2491.3 & 128.47 & 425,446 & 110.5 & 109.6 & 30.080 & 83.4 & 1.352 & -111.1448 & 48.8472 & -0.013 & 11 & 174.502 & 5.856 \\
\hline 92.7 & 2491.6 & 127.20 & 410,758 & 108.5 & 107.4 & 32.780 & 81.3 & 1.329 & -111.1523 & 48.6493 & 0.003 & 12 & 175.848 & 6.066 \\
\hline 95.2 & 2490.8 & 128.08 & 426,625 & 110.6 & 109.8 & 29.208 & 83.4 & 1.358 & -111.1502 & 48.6413 & 0.000 & 12 & 173.737 & 5.838 \\
\hline
\end{tabular}
Table E.4: Nano-indentation hardness data for generating depth profile in Sample 4 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(h_{c}\) [nm] & \begin{tabular}{l}
\(P_{\text {max }}\) \\
\([\mu \mathrm{N}]\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \(h_{\max }\) [ nm ] & \[
\begin{aligned}
& h_{e f f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & A & \(h_{f}\) [nm] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [nm/s] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \begin{tabular}{l}
\(E_{r}\) \\
[GPa]
\end{tabular} & \begin{tabular}{l}
H \\
[GPa]
\end{tabular} \\
\hline 99.4 & 2490.9 & 127.85 & 453,607 & 115.0 & 114.0 & 36.355 & 88.6 & 1.306 & -111.1484 & 48.6375 & -0.001 & 12 & 168.193 & 5.491 \\
\hline 95.6 & 2491.0 & 124.59 & 428,953 & 111.3 & 110.6 & 37.342 & 84.7 & 1.292 & -111.1464 & 48.8435 & -0.026 & 12 & 168.538 & 5.807 \\
\hline 94.1 & 2491.3 & 123.11 & 419,343 & 110.3 & 109.2 & 34.917 & 82.8 & 1.304 & -111.1515 & 48.6456 & -0.005 & 13 & 168.440 & 5.941 \\
\hline 93.8 & 2491.5 & 117.32 & 417,487 & 110.5 & 109.7 & 37.590 & 82.7 & 1.272 & -111.1488 & 48.8407 & 0.010 & 13 & 160.868 & 5.968 \\
\hline 96.0 & 2491.0 & 118.91 & 431,510 & 112.4 & 111.7 & 44.137 & 85.7 & 1.239 & -111.1512 & 48.6532 & -0.021 & 14 & 160.380 & 5.773 \\
\hline 124.8 & 2487.9 & 122.38 & 450,471 & 140.9 & 140.0 & 33.445 & 113.4 & 1.312 & -111.1109 & 49.5034 & -0.051 & 14 & 161.550 & 5.523 \\
\hline 123.3 & 2487.7 & 107.99 & 441,300 & 141.3 & 140.6 & 25.788 & 109.8 & 1.334 & -111.1119 & 49.4983 & -0.001 & 14 & 144.026 & 5.637 \\
\hline 125.6 & 2487.7 & 124.61 & 455,457 & 141.4 & 140.6 & 33.599 & 114.3 & 1.317 & -111.1136 & 49.4947 & 0.012 & 14 & 163.591 & 5.462 \\
\hline 125.1 & 2487.9 & 133.38 & 452,310 & 140.3 & 139.1 & 20.902 & 112.0 & 1.450 & -111.1140 & 49.4906 & 0.009 & 14 & 175.709 & 5.500 \\
\hline 125.0 & 2488.1 & 126.97 & 451,449 & 140.6 & 139.7 & 31.942 & 113.5 & 1.334 & -111.1098 & 49.4870 & -0.012 & 14 & 167.433 & 5.511 \\
\hline 95.3 & 2490.4 & 143.66 & 427,428 & 109.5 & 108.3 & 3.888 & 76.1 & 1.860 & -111.1337 & 48.8597 & -0.071 & 15 & 194.685 & 5.826 \\
\hline 97.4 & 2491.5 & 125.40 & 440,251 & 113.4 & 112.3 & 23.508 & 84.4 & 1.402 & -111.1355 & 48.8563 & -0.026 & 15 & 167.453 & 5.659 \\
\hline 95.9 & 2491.1 & 128.35 & 430,854 & 111.4 & 110.4 & 45.223 & 86.1 & 1.255 & -111.1375 & 48.8522 & -0.020 & 15 & 173.249 & 5.782 \\
\hline 93.8 & 2490.9 & 131.23 & 417,575 & 108.7 & 108.0 & 30.562 & 82.3 & 1.355 & -111.1391 & 48.8482 & -0.006 & 15 & 179.924 & 5.965 \\
\hline 98.8 & 2490.8 & 126.05 & 449,605 & 114.5 & 113.6 & 43.039 & 88.7 & 1.262 & -111.1446 & 48.6384 & -0.012 & 16 & 166.563 & 5.540 \\
\hline 99.4 & 2491.0 & 135.06 & 453,687 & 114.1 & 113.3 & 26.482 & 87.5 & 1.398 & -111.1478 & 48.6459 & -0.003 & 17 & 177.652 & 5.490 \\
\hline 95.9 & 2491.3 & 136.68 & 431,001 & 110.6 & 109.6 & 32.213 & 84.9 & 1.356 & -111.1453 & 48.6425 & -0.007 & 17 & 184.466 & 5.780 \\
\hline 98.1 & 2491.1 & 135.55 & 444,954 & 112.9 & 111.9 & 24.908 & 85.9 & 1.414 & -111.1406 & 48.8451 & -0.001 & 17 & 180.044 & 5.598 \\
\hline 96.8 & 2491.3 & 129.13 & 436,416 & 111.9 & 111.2 & 24.874 & 84.3 & 1.398 & -111.1426 & 48.8416 & -0.002 & 18 & 173.183 & 5.709 \\
\hline 101.4 & 2490.4 & 140.13 & 466,386 & 115.7 & 114.7 & 8.977 & 85.2 & 1.662 & -111.1460 & 48.6527 & -0.047 & 19 & 181.806 & 5.340 \\
\hline 93.4 & 2490.5 & 127.86 & 415,550 & 109.0 & 108.1 & 40.922 & 83.2 & 1.278 & -111.1342 & 48.8485 & -0.068 & 20 & 175.731 & 5.993 \\
\hline 93.7 & 2491.5 & 127.40 & 417,301 & 109.5 & 108.4 & 40.761 & 83.4 & 1.278 & -111.1375 & 48.8440 & 0.003 & 20 & 174.741 & 5.970 \\
\hline 118.5 & 2488.8 & 132.06 & 412,894 & 133.7 & 132.6 & 14.357 & 103.8 & 1.533 & -111.1013 & 49.5081 & 0.039 & 24 & 182.090 & 6.028 \\
\hline 121.5 & 2488.3 & 125.72 & 430,839 & 137.1 & 136.4 & 29.953 & 109.7 & 1.346 & -111.1009 & 49.5043 & 0.048 & 24 & 169.695 & 5.776 \\
\hline 122.9 & 2487.8 & 124.63 & 439,265 & 138.6 & 137.9 & 36.754 & 112.1 & 1.296 & -111.1024 & 49.4987 & 0.049 & 24 & 166.606 & 5.664 \\
\hline 121.9 & 2488.4 & 125.30 & 432,729 & 137.8 & 136.8 & 33.754 & 110.6 & 1.317 & -111.1062 & 49.4957 & 0.047 & 24 & 168.758 & 5.750 \\
\hline 123.1 & 2488.2 & 134.91 & 440,264 & 138.2 & 136.9 & 19.882 & 109.9 & 1.465 & -111.1058 & 49.4909 & 0.028 & 24 & 180.148 & 5.652 \\
\hline 122.9 & 2488.6 & 126.65 & 439,119 & 138.6 & 137.7 & 31.385 & 111.4 & 1.338 & -111.1011 & 49.4870 & 0.011 & 24 & 169.331 & 5.667 \\
\hline 118.2 & 2488.9 & 124.69 & 411,044 & 133.8 & 133.2 & 40.534 & 107.8 & 1.273 & -111.0951 & 49.5082 & -0.028 & 29 & 172.311 & 6.055 \\
\hline 118.4 & 2488.0 & 124.32 & 412,542 & 134.7 & 133.5 & 40.516 & 108.0 & 1.272 & -111.0953 & 49.5041 & 0.000 & 29 & 171.488 & 6.031 \\
\hline 119.5 & 2488.0 & 126.61 & 418,895 & 135.2 & 134.3 & 36.583 & 108.7 & 1.302 & -111.0961 & 49.4986 & 0.022 & 29 & 173.327 & 5.939 \\
\hline 120.6 & 2488.4 & 124.05 & 424,985 & 136.6 & 135.6 & 35.048 & 109.4 & 1.305 & -111.0992 & 49.4951 & 0.016 & 29 & 168.596 & 5.855 \\
\hline 118.9 & 2489.0 & 110.39 & 415,074 & 136.4 & 135.8 & 51.831 & 109.2 & 1.180 & -111.0996 & 49.4903 & 0.008 & 29 & 151.814 & 5.996 \\
\hline
\end{tabular}
Table E.4: Nano-indentation hardness data for generating depth profile in Sample 4 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \begin{tabular}{l}
\(P_{\text {max }}\) \\
\([\mu \mathrm{N}]\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \begin{tabular}{l}
\(h_{\max }\) \\
[ nm ]
\end{tabular} & \[
\begin{aligned}
& h_{e f f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & A & \(h_{f}\) [nm] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction
\[
[\mathrm{nm} / \mathrm{s}]
\] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \begin{tabular}{l}
H \\
[GPa]
\end{tabular} \\
\hline 118.0 & 2488.3 & 124.90 & 409,966 & 133.9 & 133.0 & 44.492 & 108.0 & 1.251 & -111.0961 & 49.4869 & -0.005 & 29 & 172.828 & 6.070 \\
\hline 118.6 & 2487.1 & 130.51 & 413,555 & 133.6 & 132.9 & 31.048 & 107.2 & 1.350 & -111.0904 & 49.5034 & -0.050 & 34 & 179.806 & 6.014 \\
\hline 120.5 & 2488.3 & 135.53 & 424,565 & 135.4 & 134.3 & 19.953 & 107.4 & 1.466 & -111.0914 & 49.4983 & 0.000 & 34 & 184.291 & 5.861 \\
\hline 120.3 & 2488.4 & 131.98 & 423,445 & 135.5 & 134.4 & 30.947 & 108.9 & 1.354 & -111.0931 & 49.4947 & 0.006 & 34 & 179.696 & 5.877 \\
\hline 118.9 & 2488.6 & 129.05 & 415,413 & 134.6 & 133.4 & 30.554 & 107.4 & 1.350 & -111.0935 & 49.4906 & 0.009 & 34 & 177.406 & 5.991 \\
\hline 119.7 & 2489.4 & 124.82 & 419,880 & 135.7 & 134.7 & 52.797 & 110.5 & 1.210 & -111.0893 & 49.4870 & -0.004 & 34 & 170.676 & 5.929 \\
\hline 117.3 & 2488.9 & 126.67 & 405,711 & 132.9 & 132.0 & 19.949 & 103.7 & 1.443 & -111.0817 & 49.5094 & 0.037 & 44 & 176.194 & 6.135 \\
\hline 119.5 & 2488.6 & 124.66 & 418,734 & 135.6 & 134.5 & 26.899 & 107.2 & 1.369 & -111.0818 & 49.5052 & 0.050 & 44 & 170.690 & 5.943 \\
\hline 119.4 & 2488.2 & 120.13 & 417,828 & 135.6 & 134.9 & 37.466 & 108.4 & 1.280 & -111.0818 & 49.5008 & 0.029 & 44 & 164.661 & 5.955 \\
\hline 118.2 & 2488.0 & 113.57 & 411,141 & 135.2 & 134.6 & 53.455 & 108.8 & 1.181 & -111.0823 & 49.4962 & 0.035 & 44 & 156.934 & 6.052 \\
\hline 119.7 & 2487.9 & 121.04 & 420,146 & 136.1 & 135.2 & 31.166 & 107.9 & 1.325 & -111.0849 & 49.4902 & 0.035 & 44 & 165.452 & 5.922 \\
\hline 116.8 & 2488.5 & 126.02 & 403,224 & 132.8 & 131.7 & 36.088 & 105.9 & 1.303 & -111.0831 & 49.4846 & 0.050 & 44 & 175.831 & 6.171 \\
\hline 120.8 & 2487.6 & 127.88 & 426,141 & 136.4 & 135.3 & 25.823 & 108.4 & 1.386 & -111.0753 & 49.5094 & -0.026 & 50 & 173.562 & 5.837 \\
\hline 119.1 & 2487.9 & 125.38 & 416,496 & 134.6 & 134.0 & 29.073 & 107.2 & 1.352 & -111.0754 & 49.5048 & 0.004 & 50 & 172.129 & 5.973 \\
\hline 117.7 & 2488.0 & 124.51 & 407,983 & 133.8 & 132.7 & 33.086 & 106.3 & 1.320 & -111.0728 & 49.5000 & 0.007 & 50 & 172.706 & 6.098 \\
\hline 121.0 & 2487.8 & 123.27 & 427,325 & 137.1 & 136.1 & 48.601 & 111.3 & 1.226 & -111.0744 & 49.4953 & 0.020 & 50 & 167.075 & 5.822 \\
\hline 120.6 & 2488.4 & 130.09 & 425,303 & 135.7 & 135.0 & 25.000 & 108.2 & 1.400 & -111.0786 & 49.4890 & 0.020 & 50 & 176.744 & 5.851 \\
\hline 118.9 & 2488.0 & 124.06 & 415,434 & 134.8 & 134.0 & 46.149 & 109.1 & 1.241 & -111.0770 & 49.4847 & 0.022 & 50 & 170.529 & 5.989 \\
\hline 117.8 & 2487.5 & 119.80 & 408,554 & 133.9 & 133.3 & 39.840 & 107.1 & 1.265 & -111.0658 & 49.5089 & -0.055 & 57 & 166.059 & 6.089 \\
\hline 119.4 & 2487.6 & 117.63 & 417,985 & 135.9 & 135.2 & 40.373 & 108.7 & 1.256 & -111.0659 & 49.5041 & -0.009 & 57 & 161.204 & 5.952 \\
\hline 121.6 & 2487.7 & 128.36 & 431,392 & 136.9 & 136.2 & 29.986 & 110.0 & 1.353 & -111.0655 & 49.4990 & 0.000 & 57 & 173.156 & 5.767 \\
\hline 120.7 & 2488.3 & 128.69 & 425,611 & 136.0 & 135.2 & 32.133 & 109.3 & 1.337 & -111.0682 & 49.4946 & 0.004 & 57 & 174.776 & 5.846 \\
\hline 122.0 & 2488.1 & 114.62 & 433,403 & 139.7 & 138.3 & 71.764 & 114.1 & 1.113 & -111.0704 & 49.4904 & 0.015 & 57 & 154.255 & 5.741 \\
\hline 120.1 & 2487.8 & 131.13 & 422,533 & 135.3 & 134.4 & 29.002 & 108.4 & 1.367 & -111.0678 & 49.4856 & -0.006 & 57 & 178.730 & 5.888 \\
\hline 115.2 & 2488.5 & 125.18 & 393,764 & 131.3 & 130.1 & 27.860 & 103.0 & 1.362 & -111.0615 & 49.5091 & 0.051 & 64 & 176.742 & 6.320 \\
\hline 117.6 & 2489.0 & 129.31 & 407,800 & 133.3 & 132.1 & 27.706 & 105.6 & 1.374 & -111.0605 & 49.5040 & 0.093 & 64 & 179.414 & 6.103 \\
\hline 119.5 & 2489.1 & 125.86 & 418,787 & 135.5 & 134.3 & 33.456 & 108.2 & 1.321 & -111.0635 & 49.4986 & 0.104 & 64 & 172.317 & 5.944 \\
\hline 119.6 & 2488.9 & 125.62 & 419,538 & 135.1 & 134.5 & 28.903 & 107.7 & 1.354 & -111.0640 & 49.4933 & 0.100 & 64 & 171.831 & 5.933 \\
\hline 119.0 & 2489.1 & 125.42 & 415,661 & 134.8 & 133.9 & 34.757 & 107.9 & 1.311 & -111.0639 & 49.4879 & 0.098 & 64 & 172.365 & 5.988 \\
\hline 120.9 & 2488.2 & 129.77 & 427,014 & 136.2 & 135.3 & 30.638 & 109.4 & 1.351 & -111.0615 & 49.4854 & 0.067 & 64 & 175.948 & 5.827 \\
\hline 116.5 & 2488.3 & 124.56 & 401,379 & 132.7 & 131.5 & 31.411 & 104.9 & 1.332 & -111.0539 & 49.5088 & 0.004 & 70 & 174.199 & 6.199 \\
\hline 120.0 & 2488.0 & 128.51 & 421,851 & 136.0 & 134.6 & 23.875 & 107.3 & 1.406 & -111.0543 & 49.5040 & 0.032 & 70 & 175.307 & 5.898 \\
\hline 119.3 & 2488.2 & 131.42 & 417,733 & 135.2 & 133.5 & 16.128 & 105.1 & 1.504 & -111.0561 & 49.4986 & 0.046 & 70 & 180.153 & 5.956 \\
\hline
\end{tabular}
Table E.4: Nano-indentation hardness data for generating depth profile in Sample 4 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(h_{c}\) [nm] & \begin{tabular}{l}
\(P_{\max }\) \\
\([\mu \mathrm{N}]\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \(h_{\max }\) [nm] & \[
\begin{aligned}
& h_{e f f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & A & \(h_{f}\) [ nm ] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [nm/s] & Distance from Edge [ \(\mu \mathrm{m}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \begin{tabular}{l}
H \\
[GPa]
\end{tabular} \\
\hline 122.2 & 2487.9 & 129.41 & 434,957 & 137.6 & 136.7 & 29.332 & 110.5 & 1.360 & -111.0581 & 49.4933 & 0.051 & 70 & 173.849 & 5.720 \\
\hline 119.9 & 2488.7 & 127.29 & 420,958 & 135.2 & 134.5 & 29.225 & 108.0 & 1.356 & -111.0573 & 49.4885 & 0.039 & 70 & 173.818 & 5.912 \\
\hline 121.7 & 2487.6 & 128.82 & 431,928 & 137.2 & 136.2 & 20.643 & 108.4 & 1.441 & -111.0547 & 49.4848 & 0.018 & 70 & 173.668 & 5.759 \\
\hline 119.2 & 2488.2 & 124.63 & 416,800 & 135.5 & 134.1 & 49.795 & 109.7 & 1.224 & -111.0479 & 49.5091 & -0.003 & 76 & 171.037 & 5.970 \\
\hline 119.7 & 2489.0 & 122.42 & 420,091 & 135.7 & 135.0 & 39.662 & 109.1 & 1.272 & -111.0479 & 49.5028 & 0.012 & 76 & 167.346 & 5.925 \\
\hline 112.9 & 2489.8 & 124.81 & 380,679 & 128.7 & 127.9 & 37.418 & 102.1 & 1.292 & -111.0505 & 49.4972 & 0.018 & 76 & 179.225 & 6.540 \\
\hline 120.3 & 2488.3 & 122.19 & 423,720 & 136.9 & 135.6 & 43.129 & 110.1 & 1.252 & -111.0532 & 49.4919 & 0.014 & 76 & 166.312 & 5.873 \\
\hline 116.0 & 2488.8 & 118.99 & 398,135 & 132.2 & 131.7 & 51.500 & 106.5 & 1.202 & -111.0491 & 49.4882 & 0.003 & 76 & 167.077 & 6.251 \\
\hline 116.8 & 2489.1 & 129.51 & 402,988 & 132.2 & 131.2 & 31.588 & 105.4 & 1.343 & -111.0461 & 49.4851 & -0.002 & 76 & 180.759 & 6.177 \\
\hline 115.1 & 2492.3 & 130.69 & 393,453 & 130.3 & 129.4 & 20.787 & 101.9 & 1.444 & -111.0405 & 49.5065 & 0.450 & 84 & 184.599 & 6.335 \\
\hline 119.6 & 2491.9 & 125.23 & 419,153 & 135.5 & 134.5 & 30.817 & 107.9 & 1.338 & -111.0435 & 49.5011 & 0.391 & 84 & 171.378 & 5.945 \\
\hline 114.4 & 2490.9 & 128.96 & 389,015 & 129.6 & 128.9 & 33.555 & 103.2 & 1.328 & -111.0440 & 49.4958 & 0.310 & 84 & 183.199 & 6.403 \\
\hline 116.8 & 2488.4 & 122.95 & 403,133 & 132.6 & 132.0 & 39.539 & 106.2 & 1.274 & -111.0439 & 49.4904 & -0.026 & 84 & 171.574 & 6.173 \\
\hline 117.1 & 2488.7 & 118.74 & 404,415 & 133.5 & 132.8 & 55.479 & 108.0 & 1.184 & -111.0415 & 49.4879 & -0.020 & 84 & 165.429 & 6.154 \\
\hline 117.5 & 2488.0 & 121.64 & 407,130 & 134.0 & 132.9 & 48.414 & 107.8 & 1.223 & -111.0339 & 49.5113 & -0.069 & 90 & 168.903 & 6.111 \\
\hline 116.4 & 2488.2 & 111.61 & 400,370 & 134.0 & 133.1 & 60.329 & 107.5 & 1.147 & -111.0343 & 49.5065 & -0.033 & 90 & 156.285 & 6.215 \\
\hline 117.6 & 2489.4 & 130.41 & 407,418 & 132.9 & 131.9 & 36.423 & 106.8 & 1.312 & -111.0361 & 49.5011 & -0.022 & 90 & 181.016 & 6.110 \\
\hline 119.7 & 2488.6 & 122.66 & 420,027 & 135.7 & 134.9 & 29.077 & 107.6 & 1.346 & -111.0381 & 49.4958 & -0.013 & 90 & 167.688 & 5.925 \\
\hline 116.2 & 2488.4 & 122.09 & 399,342 & 132.5 & 131.5 & 45.546 & 106.2 & 1.239 & -111.0373 & 49.4910 & -0.019 & 90 & 171.173 & 6.231 \\
\hline 117.8 & 2488.9 & 122.39 & 408,694 & 133.9 & 133.0 & 51.207 & 108.4 & 1.212 & -111.0347 & 49.4873 & -0.021 & 90 & 169.625 & 6.090 \\
\hline 116.9 & 2488.0 & 120.55 & 403,355 & 133.0 & 132.3 & 38.385 & 106.0 & 1.276 & -111.0279 & 49.5116 & -0.080 & 96 & 168.172 & 6.168 \\
\hline 119.6 & 2489.2 & 130.41 & 419,040 & 135.1 & 133.9 & 26.210 & 107.4 & 1.389 & -111.0279 & 49.5053 & -0.018 & 96 & 178.494 & 5.940 \\
\hline 119.2 & 2488.2 & 116.18 & 416,672 & 135.5 & 135.2 & 39.367 & 108.3 & 1.259 & -111.0305 & 49.4997 & -0.017 & 96 & 159.469 & 5.972 \\
\hline 116.3 & 2489.1 & 115.38 & 400,338 & 133.1 & 132.5 & 52.330 & 106.9 & 1.190 & -111.0332 & 49.4944 & -0.004 & 96 & 161.561 & 6.218 \\
\hline 117.5 & 2489.3 & 126.05 & 407,084 & 133.9 & 132.3 & 28.874 & 105.6 & 1.356 & -111.0291 & 49.4907 & -0.018 & 96 & 175.045 & 6.115 \\
\hline 117.7 & 2489.0 & 122.50 & 408,358 & 134.0 & 133.0 & 38.979 & 107.0 & 1.277 & -111.0261 & 49.4876 & -0.025 & 96 & 169.841 & 6.095 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \begin{tabular}{l} 
Drift \\
Correction \\
{\([\mathrm{nm} / \mathrm{s}]\)} \\
\hline 0.011
\end{tabular} & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 111.8 & 2488.7 & 143.57 & 374,833 & 127.0 & 124.8 & 12.463 & 97.2 & 1.595 & -55.8945 & 92.1980 & -0.011 & 207.763 & 6.639 \\
\hline 112.2 & 2488.9 & 137.67 & 376,853 & 126.5 & 125.8 & 22.842 & 99.7 & 1.439 & -55.8895 & 92.1980 & -0.020 & 198.702 & 6.605 \\
\hline 110.6 & 2489.8 & 135.75 & 367,746 & 125.3 & 124.3 & 21.899 & 97.8 & 1.444 & -55.8845 & 92.1980 & -0.042 & 198.330 & 6.771 \\
\hline 110.3 & 2488.7 & 111.99 & 366,410 & 127.2 & 127.0 & 89.791 & 103.6 & 1.054 & -55.8795 & 92.1980 & -0.055 & 163.915 & 6.792 \\
\hline 115.0 & 2488.0 & 133.62 & 392,488 & 129.9 & 128.9 & 26.620 & 103.0 & 1.394 & -55.8745 & 92.1980 & -0.081 & 188.964 & 6.339 \\
\hline 111.8 & 2489.4 & 134.24 & 374,546 & 126.7 & 125.7 & 30.914 & 100.5 & 1.360 & -55.8945 & 92.2030 & -0.057 & 194.348 & 6.646 \\
\hline 111.6 & 2488.9 & 132.49 & 373,354 & 126.7 & 125.7 & 31.107 & 100.2 & 1.354 & -55.8895 & 92.2030 & -0.054 & 192.116 & 6.666 \\
\hline 112.9 & 2489.0 & 134.20 & 380,882 & 128.0 & 126.8 & 30.058 & 101.5 & 1.366 & -55.8845 & 92.2030 & -0.039 & 192.654 & 6.535 \\
\hline 113.1 & 2488.7 & 121.79 & 381,926 & 129.0 & 128.4 & 41.354 & 102.7 & 1.261 & -55.8795 & 92.2030 & -0.046 & 174.600 & 6.516 \\
\hline 115.2 & 2488.8 & 143.99 & 393,658 & 129.3 & 128.1 & 27.701 & 103.8 & 1.409 & -55.8740 & 92.2030 & -0.043 & 203.338 & 6.322 \\
\hline 111.5 & 2489.6 & 135.73 & 372,769 & 126.3 & 125.2 & 22.365 & 98.8 & 1.440 & -55.8945 & 92.2075 & -0.041 & 196.970 & 6.679 \\
\hline 113.1 & 2489.3 & 133.92 & 381,577 & 127.7 & 127.0 & 29.382 & 101.5 & 1.371 & -55.8895 & 92.2075 & -0.049 & 192.077 & 6.524 \\
\hline 116.4 & 2488.5 & 148.25 & 400,454 & 130.2 & 129.0 & 12.141 & 101.9 & 1.614 & -55.8845 & 92.2080 & -0.043 & 207.568 & 6.214 \\
\hline 115.1 & 2488.5 & 141.09 & 393,432 & 129.5 & 128.4 & 16.187 & 101.4 & 1.528 & -55.8795 & 92.2080 & -0.056 & 199.300 & 6.325 \\
\hline 115.9 & 2488.3 & 129.80 & 397,883 & 131.5 & 130.3 & 27.823 & 104.0 & 1.374 & -55.8745 & 92.2080 & -0.068 & 182.319 & 6.254 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]}
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [ \(\mathrm{nm} / \mathrm{s}\) ] & \[
\begin{aligned}
& E_{r} \\
& \text { [GPa] }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 109.4 & 2488.9 & 138.86 & 361,165 & 123.6 & 122.8 & 20.445 & 96.5 & 1.468 & -58.9900 & 43.6135 & -0.094 & 204.715 & 6.891 \\
\hline 107.4 & 2489.1 & 132.69 & 350,438 & 122.5 & 121.5 & 23.127 & 94.8 & 1.424 & -58.9850 & 43.6135 & -0.092 & 198.588 & 7.103 \\
\hline 109.9 & 2488.3 & 136.29 & 363,950 & 124.4 & 123.6 & 27.635 & 98.2 & 1.391 & -58.9800 & 43.6135 & -0.080 & 200.161 & 6.837 \\
\hline 109.5 & 2489.1 & 142.83 & 361,717 & 123.7 & 122.5 & 13.722 & 95.2 & 1.571 & -58.9745 & 43.6135 & -0.082 & 210.415 & 6.881 \\
\hline 112.2 & 2488.3 & 143.29 & 376,675 & 126.1 & 125.2 & 15.369 & 98.4 & 1.546 & -58.9945 & 43.6180 & -0.067 & 206.851 & 6.606 \\
\hline 112.4 & 2488.9 & 134.55 & 378,060 & 127.1 & 126.3 & 20.208 & 99.3 & 1.460 & -58.9900 & 43.6180 & -0.057 & 193.884 & 6.583 \\
\hline 110.8 & 2489.0 & 140.70 & 368,864 & 125.1 & 124.0 & 13.360 & 96.2 & 1.572 & -58.9855 & 43.6180 & -0.053 & 205.263 & 6.748 \\
\hline 111.2 & 2489.3 & 143.55 & 371,413 & 125.2 & 124.2 & 20.861 & 98.7 & 1.475 & -58.9800 & 43.6180 & -0.027 & 208.696 & 6.702 \\
\hline 111.2 & 2489.2 & 140.60 & 370,992 & 125.6 & 124.4 & 20.505 & 98.4 & 1.472 & -58.9750 & 43.6180 & -0.018 & 204.514 & 6.710 \\
\hline 109.7 & 2489.2 & 133.43 & 363,036 & 124.3 & 123.7 & 23.728 & 97.2 & 1.420 & -58.9950 & 43.6235 & -0.034 & 196.203 & 6.857 \\
\hline 108.8 & 2489.4 & 137.45 & 357,908 & 123.0 & 122.4 & 25.415 & 96.8 & 1.414 & -58.9900 & 43.6235 & -0.032 & 203.566 & 6.955 \\
\hline 112.4 & 2488.4 & 139.40 & 377,923 & 127.0 & 125.8 & 26.549 & 100.7 & 1.408 & -58.9850 & 43.6235 & -0.034 & 200.913 & 6.584 \\
\hline 110.3 & 2489.2 & 138.68 & 366,520 & 124.9 & 123.8 & 23.606 & 98.1 & 1.434 & -58.9795 & 43.6235 & -0.034 & 202.952 & 6.792 \\
\hline 111.9 & 2489.1 & 141.72 & 375,187 & 126.1 & 125.1 & 18.820 & 98.8 & 1.495 & -58.9750 & 43.6235 & -0.041 & 204.997 & 6.634 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& P_{\text {max }} \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]} \\
& \hline
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & Drift Correction [ \(\mathrm{nm} / \mathrm{s}\) ] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 111.8 & 2487.6 & 110.73 & 374,592 & 129.0 & 128.7 & 63.944 & 103.2 & 1.132 & -58.1950 & -4.3460 & -0.200 & 160.296 & 6.641 \\
\hline 115.1 & 2487.9 & 128.03 & 393,110 & 130.7 & 129.7 & 34.483 & 104.0 & 1.319 & -58.1900 & -4.3455 & -0.149 & 180.918 & 6.329 \\
\hline 114.0 & 2487.2 & 120.94 & 387,196 & 130.9 & 129.5 & 39.819 & 103.4 & 1.268 & -58.1850 & -4.345 & -0.140 & 172.19 & 6.424 \\
\hline 114.5 & 2488.8 & 127.47 & 389,626 & 130.3 & 129.1 & 38.794 & 103.9 & 1.290 & -58.1800 & -4.345 & -0.104 & 180.932 & 6.388 \\
\hline 11 & 2488.3 & 137.28 & 380,991 & 127.2 & 126.5 & 15.501 & 98.8 & 1.529 & -58.1755 & -4.345 & -0.112 & 197.06 & 6.531 \\
\hline 112.3 & 2488. & 136.1 & 377,112 & 127.1 & 126.0 & 27.166 & 100.5 & 1.395 & -58.195 & -4.340 & -0.093 & 196. & 6.599 \\
\hline 20.2 & 2489. & 135.5 & 365,912 & 25.0 & 124.0 & 2.245 & 97.6 & 1.44 & -58.190 & -4.340 & . 063 & 98. & . 80 \\
\hline 112.7 & 2487.8 & 135.67 & 379,589 & 127.8 & 126.5 & 30.185 & 101.3 & 1.369 & -58.1850 & -4.3405 & -0.062 & 195.1 & . 55 \\
\hline 117.8 & 2488.5 & 145.75 & 409,043 & 131.6 & 130.7 & 9.139 & 102.1 & 1.673 & -58.1750 & -4.3405 & -0.050 & 201.90 & 6.084 \\
\hline 112.1 & 2489.5 & 133.88 & 376,498 & 126.9 & 126.1 & 26.060 & 100.1 & 1.399 & -58.1945 & -4.3355 & -0.041 & 193.31 & 6.612 \\
\hline 109.5 & 2489.3 & 131.87 & 361,895 & 124.7 & 123.7 & 18.985 & 96.0 & 1.468 & -58.1900 & -4.3355 & -0.043 & 194.224 & 6.878 \\
\hline 108.3 & 2490.1 & 139.70 & 355,094 & 122.8 & 121.6 & 72.828 & 100.9 & 1.165 & -58.1850 & -4.3355 & -0.025 & 207.706 & 7.012 \\
\hline 110.6 & 2489.4 & 140.15 & 367,924 & 124.7 & 123.9 & 17.832 & 97.2 & 1.503 & -58.1800 & -4.3355 & -0.024 & 204.708 & 6.766 \\
\hline 111.8 & 2489.5 & 133.15 & 374,689 & 126.8 & 125.8 & 32.019 & 100.6 & 1.349 & -58.1755 & -4.3355 & -0.032 & 192.731 & 6.644 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& h_{c} \\
& {[\mathrm{~nm}]} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& P_{\max } \\
& {[\mu \mathrm{N}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{S} \\
& {[\mu \mathrm{~N} / \mathrm{nm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& {\left[\mathrm{~nm}^{2}\right]}
\end{aligned}
\] & \[
\begin{aligned}
& h_{\max } \\
& {[\mathrm{nm}]} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& h_{\text {eff }} \\
& {[\mathrm{nm}]} \\
& \hline
\end{aligned}
\] & A & \[
\begin{aligned}
& h_{f} \\
& {[\mathrm{~nm}]}
\end{aligned}
\] & m & \[
\begin{aligned}
& \mathrm{X} \\
& {[\mathrm{~mm}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Y} \\
& {[\mathrm{~mm}]} \\
& \hline
\end{aligned}
\] & Drift Correction [nm/s] & \[
\begin{aligned}
& E_{r} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& {[\mathrm{GPa}]}
\end{aligned}
\] \\
\hline 111.1 & 2489.1 & 136.95 & 370,570 & 125.5 & 124.7 & 32.493 & 100.1 & 1.354 & -106.0775 & 49.4300 & -0.053 & 199.320 & 6.717 \\
\hline 114.3 & 2488.8 & 129.37 & 388,661 & 129.0 & 128.7 & 31.122 & 102.8 & 1.346 & -106.0720 & 49.4300 & -0.024 & 183.852 & 6.403 \\
\hline 112.1 & 2488.6 & 136.46 & 376,337 & 126.4 & 125.8 & 37.322 & 101.7 & 1.320 & -106.0675 & 49.4300 & -0.015 & 197.091 & 6.613 \\
\hline 110.4 & 2488.6 & 136.89 & 366,824 & 124.8 & 124.0 & 27.753 & 98.7 & 1.392 & -106.0620 & 49.4300 & -0.014 & 200.256 & 6.784 \\
\hline 109.5 & 2489.7 & 138.98 & 361,717 & 123.6 & 122.9 & 36.454 & 99.1 & 1.332 & -106.0825 & 49.4350 & -0.004 & 204.742 & 6.883 \\
\hline 110.7 & 2489.2 & 126.00 & 368,378 & 125.8 & 125.5 & 52.105 & 101.5 & 1.216 & -106.0775 & 49.4350 & -0.018 & 183.926 & 6.757 \\
\hline 113.1 & 2489.0 & 137.78 & 381,936 & 127.4 & 126.7 & 28.637 & 101.6 & 1.386 & -106.0720 & 49.4350 & -0.005 & 197.524 & 6.517 \\
\hline 114.0 & 2489.5 & 137.65 & 387,116 & 128.5 & 127.6 & 24.505 & 101.9 & 1.423 & -106.0675 & 49.4350 & -0.009 & 196.021 & 6.431 \\
\hline 112.2 & 2489.1 & 128.94 & 376,558 & 127.4 & 126.6 & 46.288 & 102.5 & 1.251 & -106.0620 & 49.4350 & -0.014 & 186.165 & 6.610 \\
\hline 114.0 & 2488.9 & 136.25 & 386,812 & 129.6 & 127.7 & 25.606 & 101.9 & 1.409 & -106.0825 & 49.4400 & -0.001 & 194.091 & 6.434 \\
\hline 114.0 & 2488.5 & 140.79 & 387,094 & 128.6 & 127.3 & 21.902 & 101.5 & 1.457 & -106.0775 & 49.4400 & -0.005 & 200.487 & 6.429 \\
\hline 114.3 & 2489.2 & 137.18 & 388,878 & 128.9 & 128.0 & 24.883 & 102.2 & 1.418 & -106.0720 & 49.4400 & 0.008 & 194.897 & 6.401 \\
\hline 112.6 & 2490.3 & 134.32 & 378,853 & 127.3 & 126.5 & 25.222 & 100.4 & 1.408 & -106.0675 & 49.4400 & -0.008 & 193.342 & 6.573 \\
\hline 109.2 & 2490.2 & 133.79 & 360,401 & 124.2 & 123.2 & 27.535 & 97.4 & 1.386 & -106.0620 & 49.4400 & 0.005 & 197.449 & 6.910 \\
\hline
\end{tabular}

\section*{APPENDIX F}

\section*{VIBRATORY TUMBLING DATA}

\section*{F. \(1 \quad 250 \mu \mathrm{~m}\) Wire Samples}

The ten specimens cut with the \(250 \mu \mathrm{~m}\) diameter wire and vibratory tumbled were periodically measured along all three dimensions, as shown in Figure F.1. Height and width were measured twice for each sample, while thickness was measured only once. The recast layer removal was evident in the height and width measurements.


Figure F.1: Measurements of specimens during vibratory tumbling
Table F.1: Measurements of vibratory tumbled specimens (in mm) over time
\begin{tabular}{|llllllllllll|}
\hline 0 min & Dim. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & h & 25.032 & 25.034 & 25.029 & 25.027 & 25.027 & 25.032 & 25.029 & 25.029 & 25.016 & 25.029 \\
& w & 25.037 & 25.037 & 25.034 & 25.027 & 25.027 & 25.027 & 25.029 & 25.029 & 25.024 & 25.027 \\
& h & 25.029 & 25.032 & 25.029 & 25.032 & 25.027 & 25.029 & 25.029 & 25.029 & 25.011 & 25.027 \\
& w & 25.032 & 25.034 & 25.032 & 25.027 & 25.024 & 25.027 & 25.027 & 25.027 & 25.024 & 25.027 \\
& t & 4.082 & 4.084 & 4.084 & 4.082 & 4.084 & 4.082 & 4.084 & 4.082 & 4.079 & 4.077 \\
\hline \hline 20 min & Dim. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & h & 25.024 & 25.024 & 25.024 & 25.024 & 25.014 & 25.019 & 25.019 & 25.014 & 25.004 & 25.019 \\
& w & 25.024 & 25.024 & 25.027 & 25.016 & 25.014 & 25.014 & 25.019 & 25.014 & 25.009 & 25.011 \\
& h & 25.016 & 25.019 & 25.019 & 25.016 & 25.011 & 25.016 & 25.014 & 25.016 & 25.006 & 25.016 \\
& w & 25.022 & 25.022 & 25.024 & 25.011 & 25.011 & 25.011 & 25.014 & 25.011 & 25.006 & 25.011 \\
& t & 4.084 & 4.087 & 4.082 & 4.084 & 4.079 & 4.082 & 4.084 & 4.084 & 4.079 & 4.077 \\
\hline \hline 40 min & Dim. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & h & 25.014 & 25.016 & 25.014 & 25.011 & 25.009 & 25.014 & 25.011 & 25.014 & 25.001 & 25.011 \\
& w & 25.019 & 25.016 & 25.022 & 25.009 & 25.009 & 25.009 & 25.011 & 25.009 & 25.006 & 25.009 \\
& h & 25.014 & 25.014 & 25.011 & 25.014 & 25.011 & 25.014 & 25.011 & 25.011 & 24.999 & 25.014 \\
& w & 25.016 & 25.016 & 25.019 & 25.009 & 25.009 & 25.009 & 25.011 & 25.011 & 25.006 & 25.009 \\
& t & 4.079 & 4.084 & 4.082 & 4.082 & 4.079 & 4.077 & 4.082 & 4.082 & 4.077 & 4.079 \\
\hline \hline 60 min & Dim. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & h & 25.011 & 25.014 & 25.011 & 25.009 & 25.009 & 25.011 & 25.011 & 25.011 & 24.999 & 25.011 \\
& w & 25.016 & 25.014 & 25.016 & 25.009 & 25.009 & 25.009 & 25.009 & 25.009 & 25.004 & 25.009 \\
& h & 25.014 & 25.011 & 25.011 & 25.009 & 25.009 & 25.011 & 25.011 & 25.011 & 24.999 & 25.011 \\
& w & 25.014 & 25.014 & 25.016 & 25.009 & 25.006 & 25.009 & 25.009 & 25.009 & 25.004 & 25.006 \\
& t & 4.079 & 4.084 & 4.084 & 4.084 & 4.082 & 4.082 & 4.084 & 4.082 & 4.079 & 4.077 \\
\hline
\end{tabular}
Table F.2: Measurements of vibratory tumbled specimens (in mm) over time - continued
\begin{tabular}{|llllllllllll|}
\multicolumn{2}{c|}{ Table F.2: Measurements of vibratory tumbled specimens \((\mathrm{in} \mathrm{mm})\)} & over time - continued \\
\hline 130 min & Dim. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & h & 25.011 & 25.009 & 25.009 & 25.006 & 25.006 & 25.009 & 25.006 & 25.009 & 24.991 & 25.006 \\
& w & 25.011 & 25.011 & 25.014 & 25.006 & 25.004 & 25.004 & 25.004 & 25.006 & 25.001 & 25.004 \\
& h & 25.009 & 25.006 & 25.006 & 25.006 & 25.004 & 25.009 & 25.006 & 25.006 & 24.994 & 25.006 \\
& w & 25.011 & 25.009 & 25.011 & 25.004 & 25.004 & 25.004 & 25.004 & 25.004 & 25.001 & 25.004 \\
& t & 4.079 & 4.082 & 4.077 & 4.082 & 4.079 & 4.079 & 4.082 & 4.082 & 4.077 & 4.079 \\
\hline \hline 250 min & Dim. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & h & 25.009 & 25.006 & 25.006 & 25.004 & 25.004 & 25.006 & 25.004 & 25.006 & 24.989 & 25.006 \\
& w & 25.011 & 25.009 & 25.011 & 25.004 & 25.001 & 25.001 & 25.004 & 25.004 & 24.999 & 25.004 \\
& h & 25.006 & 25.006 & 25.006 & 25.006 & 25.004 & 25.006 & 25.004 & 25.004 & 24.989 & 25.006 \\
& w & 25.009 & 25.006 & 25.009 & 25.001 & 25.001 & 25.001 & 25.004 & 25.004 & 24.999 & 25.004 \\
& t & 4.079 & 4.084 & 4.079 & 4.079 & 4.079 & 4.079 & 4.082 & 4.082 & 4.074 & 4.077 \\
\hline \hline 490 min & Dim. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & h & 25.006 & 25.006 & 25.006 & 25.004 & 25.004 & 25.006 & 25.004 & 25.004 & 24.989 & 25.004 \\
& w & 25.009 & 25.006 & 25.009 & 25.001 & 25.001 & 25.001 & 25.004 & 25.004 & 24.999 & 25.001 \\
& h & 25.006 & 25.006 & 25.006 & 25.004 & 25.001 & 25.006 & 25.004 & 25.004 & 24.989 & 25.004 \\
& w & 25.009 & 25.006 & 25.009 & 25.001 & 25.001 & 25.001 & 25.001 & 25.004 & 24.999 & 25.001 \\
& t & 4.079 & 4.082 & 4.079 & 4.079 & 4.079 & 4.079 & 4.082 & 4.079 & 4.074 & 4.074 \\
\hline \hline 970 min & Dim. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & h & 25.006 & 25.006 & 25.004 & 25.004 & 25.001 & 25.004 & 25.001 & 25.001 & 24.986 & 25.004 \\
& w & 25.009 & 25.006 & 25.006 & 25.001 & 25.001 & 25.001 & 25.001 & 25.001 & 24.996 & 24.999 \\
& h & 25.004 & 25.004 & 25.004 & 25.004 & 25.001 & 25.001 & 25.001 & 25.004 & 24.989 & 25.004 \\
& w & 25.006 & 25.006 & 25.006 & 24.999 & 24.999 & 25.006 & 25.001 & 25.004 & 24.996 & 25.001 \\
& t & 4.074 & 4.079 & 4.077 & 4.074 & 4.074 & 4.074 & 4.077 & 4.074 & 4.072 & 4.072 \\
\hline
\end{tabular}

\section*{REFERENCES}
[1] Certificate of test. Provided by Rolled Alloys, Inc., February 2006.
[2] G. Spur and J. Schönbeck. Anode erosion in wire-EDM - a theoretical model. Annals of the CIRP, 42(1):253-256, 1993.
[3] B. Lazarenko and N. Lazarenko. Machining by erosion. American Machinist, 91 (25):120-121, December 1947.
[4] K. Inoue. Spark discharge contouring machine using wire electrode. Patent: 2794216, March 1961.
[5] L. Gillespie. Deburring and edge finishing handbook. Society of Manufacturing Engineers (SME), 1999.
[6] ASM Handbook Committee. Metals Handbook: Volume 10, Materials Characterization. American Society for Metals, ninth edition, 1986.
[7] I. Noyan and J. Cohen. Residual stresses: Measurement by diffraction and interpretation. Springer-Verlag, first edition, 1986.
[8] W. Oliver and G. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7:1564-1583, 1992.
[9] Hysitron Nanoindentation. http://hysitron.com, 2007.
[10] D. DiBitonto, P. Eubank, M. Patel, and M. Barrufet. Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. Journal of Applied Physics, 66(9):4095-4103, November 1989.
[11] F. Han, M. Kunieda, T. Sendai, and Y. Imai. High precision simulation of WEDM using parametric programming. Annals of the CIRP, 51(1):165-168, 2002.
[12] André Anders. Tracking down the origin of arc plasma science I. Early pulsed and oscillating discharges. IEEE Transactions on Plasma Science, 31(4):1052-1059, August 2003.
[13] Robert Magidoff. Soviets claim"electroerosion" revolutionizes metal cutting. American Machinist, 90(10):162, May 1947.
[14] H. Rawdon. The nature of martensite: Discussion. Transactions of the American Institute of Mining and Metallurgical Engineers, 70:37, 1924.
[15] M. Barash. Electric spark machining. International Journal of Machine Tool Design and Research, 2:281-295, 1962.
[16] J. Huang, Y. Liao, and W. Hsue. Determination of finish-cutting operation number and machining-parameters setting in wire-electrical discharge machining. Journal of Materials Processing Technology, 87:69-81, 1999.
[17] B. Yan, H. Tsai, F. Huang, and L. Lee. Examination of wire electrical discharge machining of AL2O3/6061Al composites. International Journal of Machine Tools § Manufacture, 45:251-259, 2005.
[18] T. Spedding and Z. Wang. Study on modeling of wire EDM process. Journal of Materials Processing Technology, 69:18-28, 1997.
[19] S. Sarkar, S. Mitra, and B. Bhattacharyya. Parametric analysis and optimization of wire electrical discharge machining of \(\gamma\)-titanium aluminide alloy,. Journal of Materials Processing Technology, 159:286-294, 2005.
[20] Y. Liao, J. Huang, and H. Su. A study on the machining-parameters optimization of wire electrical discharge machining. Journal of Materials Processing Technology, 71:487-493, 1997.
[21] A. Hasçalýk and U. Çaydaş. Experimental study of wire electrical discharge machining of AISI D5 tool steel. Journal of Materials Processing Technology, 148:362-367, 2004.
[22] Y. Liao, J. Huang, and Y. Chen. A study to achieve a fine surface finish in wire-EDM. Journal of Materials Processing Technology, 149:165-171, 2004.
[23] R. Ramakrishnan and L. Karunamoorthy. Modeling and multi response optimization of Inconel 718 on machining of CNC WEDM process. Journal of Materials Processing Technology, 2007. In Press: Accepted Manuscript.
[24] H. Lee and J. Yur. Characteristic analysis of EDMed surfaces using the Taguchi approach. Materials and Manufacturing Processing, 15(6):781-806, 2000.
[25] S. Kuriakose and M. Shunmugam. Characteristics of wire-electro discharge machined Ti6Al4V surface. Materials Letters, 58:2231-2237, 2004.
[26] M. Hewidy, T. El-Taweel, and M. El-Safty. Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. Journal of Materials Processing Technology, 169:328-336, 2005.
[27] R. Williams and K. Rajurkar. Study of wire electrical discharge machined surface characteristics. Journal of Materials Processing Technology, 28:127-138, 1991.
[28] F.Han, J. Jiang, and D. Yu. Influence of discharge current on machined surface by thermo-analysis in finish cut of WEDM. International Journal of Machine Tools \(\mathcal{B}\) Manufacture, 47:1187-1196, June 2007.
[29] M. Kunieda and C. Furudate. High precision finish cutting by dry WEDM. Annals of the CIRP, 50:121-124, 2001.
[30] M. Jennes, R. Snoeys, and W. Dekeyser. Comparison of various approaches to model the thermal load on the EDM-wire electrode. Annals of the CIRP, 33: 93-98, 1984.
[31] K. Masui and T. Sone. The electrolytic corrosion on wire-EDM's surface. Journal of the Japan Society for Precision Engineering, 54:160-165, 1988.
[32] T. Magara, H. Yamada, S. Sato, T. Yatomi, and K. Kobayashi. Improvement of surface quality by non-electrolysis wire-EDM. Journal of the Japan Society for Precision Engineering, 59:1157-1162, 1993.
[33] C. Wilkins. EDM wire covers all the angles. Cutting Tool Engineering, pages 40-45, April 1996.
[34] A. Schoth, R. Förster, and W. Menz. Micro wire EDM for high aspect ratio 3D microstructuring of ceramics and metals. Microsystem Technologies, 11:250-253, 2005.
[35] G. Benavides, L. Bieg, M. Saavadra, and E. Bryce. High aspect ratio meso-scale parts enabled by wire micro-EDM. Microsystem Technologies, 8:395-401, 2002.
[36] F. Klocke, D. Lung, D. Thomaidis, and G. Antonoglou. Micro wire-EDM investigations using thin wires. Proceedings of the First International Conference for Manufacturing Engineering (ICMEN), pages 737-744, 2002.
[37] J. Fordham, R. Pilkington, and C. Tang. The effect of different profiling techniques on the fatigue performance of metallic membranes of AISI 301 and Inconel 718. International Journal of Fatigue, 19:487-501, 1997.
[38] C. Huang, C. Shih, K. Li, and Y. Chang. The surface alloying behavior of martensitic stainless steel cut with wire electrical discharge machine. Applied Surface Science, 252:2915-2926, 2006.
[39] C. Huang, F. Hsu, and S. Yao. Microstructure analysis of the martensitic stainless steel surface fine-cut by the wire electrode discharge machining (WEDM). Materials Science and Engineering A, 371:119-126, 2004.
[40] C. Huang, C. Hsu, and H. Kuo. The surface characteristics of P/M high-speed steel (ASP 23) multi-cut with wire electrical discharge machining (WEDM). Journal of Materials Processing Technology, 140:298-302, 2003.
[41] H. Obara, Y. Iwata, and T. Oshumi. An attempt to detect wire temperature distribution during wire EDM. Proceedings of the 11th International Symposium on Electromachining (ISEM), pages 67-73, 1995.
[42] W. Wang and K. Rajurkar. Adaptive control of WEDM by on-line identifying workpiece height. Transactions of the North American Manufacturing Research Institution/Society of Manufacturing Engineers (NAMRI/SME), XXII: 73-78, 1994.
[43] J. Prohaszka, A. Mamalis, and N. Vaxevanidis. The effect of electrode material on machinability in wire electro-discharge machining. Journal of Materials Processing Technology, 69:233-237, 1997.
[44] H. Groos. Schnellschneidende electrode zur schneiderosionsbearbeitung [german]. German Patent: DE3415055A1, 1984.
[45] M. Yan and H. Chien. Monitoring and control of the micro wire-EDM process. International Journal of Machine Tools \& Manufacture, 48(1):148-157, 2007.
[46] Y. Liao, S. Chen, and C. Lin. Development of a high precision tabletop versatile cnc wire-EDM for making intricate micro parts. Journal of Micromechanics \(\mathcal{E}\) Microengineering, 15:245-253, 2005.
[47] E. Uhlmann, S. Piltz, and U. Doll. Machining of micro/miniature dies and moulds by electrical discharge machining-recent developments. Journal of Materials Processing Technology, 167:488-493, 2005.
[48] M. Yan, C. Huang, C. Cheng, and C. Chang. Development of a prototype micro-wire-EDM. Journal of Materials Processing Technology, 149:99-105, 2004.
[49] F. Klocke, D. Lung, D. Thomaidis, and G. Antonoglou. Using ultra thin electrodes to produce micro-parts with wire-EDM. Journal of Materials Processing Technology, 149:579-584, 2004.
[50] D. Pham, S. Dimov, S. Bigot, A. Ivanov, and K. Popov. Micro-EDM-recent developments and research. Journal of Materials Processing Technology, 149: 50-57, 2004.
[51] S. Jeelani and M. Collins. Effect of electric discharge machining on the fatigue life of Inconel 718. International Journal of Fatigue, 10(2):121-125, 1988.
[52] J.R. Davis and ASM International Handbook Committee. ASM Specialty Handbook: Nickel, Cobalt and Their Alloys. ASM International, first edition, 2000.
[53] Inconel 718. Alloy Digest: Ni-65, April 1961.
[54] R. Kennedy, W. Cao, T. Bayha, and R. Jeneski. Allvac 718Plus: A Ni-Cr-Fr-Co alloy with \(1300^{\circ} \mathrm{F}\left(704^{\circ} \mathrm{C}\right)\) capability. Cobalt News, pages 5-7, April 2005.
[55] Technical data blue sheet: Allegheny Ludlum Altem 718 alloy nickel-base superalloy (UNS designation N07718). Provided by Allegheny Ludlum Corporation., February 1998.
[56] ASM International Handbook Committee. ASM Handbook: Volume 4, Heat Treating. ASM International, tenth edition, 1991.
[57] L. Rhoades. Removing EDM recast layer. Socitey of Manufacturing Engineers (SME) Technical Paper, MR87-643, 1987.
[58] T. Loveless, R. Williams, and K. Rajurkar. A study on the effects of abrasiveflow finishing on various machined surfaces. Journal of Materials Processing Technology, 47:133-151, 1994.
[59] A. Wang and S. Weng. Developing the polymer abrasive gels in AFM process. Journal of Materials Processing Technology, 192-193:486-490, 2007.
[60] J. Qun, A. Shih, R. Scattergood, and J. Luo. Abrasive micro-blasting to improve surface integrity of electrical discharge machined WC-Co composites. Journal of Materials Processing Technology, 166:440-448, 2005.
[61] H. Ramasawmy and L. Blunt. 3D surface characterization of electropolished EDMed surface and quantitative assessment of process variables using Taguchi Methodology. International Journal of Machine Tools \(\&\) Manufacture, 42:11291133, 2002.
[62] C. Zhou, E. Taylor, J. Sun, L. Gebhart, E. Stortz, and R. Renz. Electrochemical machining of hard passive alloys with pulse reverse current. Transactions of the North American Manufacturing Research Institution/Society of Manufacturing Engineers (NAMRI/SME), XXV:147-152, 1997.
[63] B. Lilly, J. Brevick, and C. Chen. The effect of pulsed electrochemical machining on the fatigue life of H-13 steel. Transactions of the North American Manufacturing Research Institution/Society of Manufacturing Engineers (NAMRI/SME), XXV:153-158, 1997.
[64] G. Macdonald. A procedure for high integrity edm surfaces. American Society of Tool and Manufacturing Engineers (ASTME) Technical Paper, MR69-291, 1969.
[65] K. Rajurkar, D. Zhu, J. McGeough, J. Kozak, and A. De Silva. New developments in electro-chemical machining. Annals of the CIRP, 48:567-579, 1999.
[66] D. Zhu, K. Wang, and N. Qu. Micro wire electrochemical cutting by using in situ fabricated wire electrode. Annals of the CIRP, 56:241-244, 2007.
[67] H. Tönshoff, R. Egger, and F. Klocke. Environmental and safety aspects of electrophysical and electrochemical processes. Annals of the CIRP, 45:553-568, 1996.
[68] Improve fatigue strength with abrasive tumbling. Iron Age, pages 129-131, February 1959.
[69] K. Elmblad and A. Kuutila. Mass finishing techniques. Society of Manufacturing Engineers (SME) Technical Paper, FC99-195, 1999.
[70] M. Kutz. Mechanical engineers' handbook. Wiley, 1986.
[71] W. Renshi, Z. Xuecong, S. Deyu, and Y. Yuanfa. Shot peening of superalloys and its fatigue properties at elevated temperature. Proceedings of the First International Conference on Shot Peening, pages 395-404, 1981.
[72] B. Yan, G. Chang, J. Chang, and R. Hsu. Improving electrical discharge machined surfaces using magnetic abrasive finishing. Machining Science and Technology, 8:103-118, 2004.
[73] G. Yan, Y. Lin, and F. Huang. Surface modification of Al-Zn-Mg alloy by combined electrical discharge machining with ball burnishing. International Journal of Machine Tools \(\mathcal{G}\) Manufacture, 42:925-934, 2002.
[74] C. Kao and A. Shih. Sub-nanosecond monitoring of micro-hole electrical discharge machining pulses and modeling of discharge ringing. International Journal of Machine Tools \(\S\) Manufacture, 46:1996-2008, 2006.
[75] Y. Liao and Y. Yu. The energy aspect of material property in WEDM and its application. Journal of Materials Processing Technology, 149:77-82, 2004.
[76] George Blann of Buehler Ltd. Personal Communication, August 2006.
[77] George F. Vander Voort. Buehler SUM-MET: The Science Behind Materials Preparation, page 77. Buehler Ltd., first edition, 2004.
[78] J. Radavich. Metallography of alloy 718. Journal of Metals, pages 42-43, July 1988.
[79] ASM Handbook Committee. Metals Handbook, volume 8, pages 100-104. American Society for Metals, eighth edition, 1973.
[80] Electroless nickel. Alloy Digest: Ni-332, April 1986.
[81] V. Hauk, R. Oudelhoven, and G. Vaessen. The state of residual stress in the near surface region of homogeneous and heterogeneous materials after grinding. Metallurgical and Materials Transactions A, 13:1239-1244, July 1982.
[82] I. Ogata and Y. Mukoyama. Residual stress on surface machined by wire electric discharge. International Journal of the Japan Society for Precision Engineering, 25(4):273-278, 1991.
[83] J. Kruth and P. Bleys. Measuring residual stress caused by Wire EDM of tool steel. International Journal of Electrical Machining, 5:23-28, 2000.
[84] C. Suryanarayana and M. Norton. X-Ray Diffraction: A Practical Approach. Plenum Press, first edition, 1998.
[85] W. Oliver and G. Pharr. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. Journal of Materials Research, 19:3-20, 2004.
[86] Hysitron Inc. Triboscope users manual, February 2003.
[87] G. Sines and R. Carlson. Hardness measurement for determination of residual stress. Bulletin of the American Society of Testing Materials, 180:35-37, 1952.
[88] A. Warren, Y. Guo, and M. Weaver. The influence of machining induced residual stress and phase transformation on the measurement of subsurface mechanical behavior using nanoindentation. Surface Coatings \& Technology, 200:3459-3467, 2006.
[89] S. Thompson. Selection of vibratory finishing equipment. Society of Manufacturing Engineers (SME) Technical Paper, MR81-381, 1981.```

