
last modified 7/15/91, printed 8/8/91 1 of 6

Controlling User Interface Objects 
Through Pre- and Postconditions

Daniel F. Gieskens and James D. Foley

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-028

June 1991

Abstract

We have augmented user interface objects (i.e. windows, 
menus, buttons, sliders, etc.) with preconditions that deter-
mine their visibility and their enabled/disabled status and 
postconditions that are asserted when certain actions are 
performed on the object. Postconditions are associated with 
each functionally different action on the object. Attaching 
pre- and postconditions to interface objects provides several 
useful features, such as selective enabling of controls, rapid 
prototyping, and automatic generation of explanations and 
help text.

Introduction

Several techniques can be used to describe the dialogue of 
an application. Some of the best known techniques are tran-
sition diagrams, grammars and event languages. As dis-
cussed by Green [GREE86], the event model has a greater 
descriptive power than the former two. A particularly useful 
form of the event model is to associate pre- and postcondi-
tions with dialogue components (actions and/or interface 
objects). The preconditions of a dialogue component deter-
mine when the component would be enabled or activated, 
while the postconditions are used to describe changes in the 
state of the interface.
Pre- and postconditions were first used for user interface de-
sign by Green [GREE85] as part of a formal specification; 
They were not used at run-time to control the dialogue. In 
the User Interface Design Environment (UIDE) [FOLE89], 
pre- and postconditions are associated with application ac-
tions. They are used to describe partial semantics of applica-
tion actions. These partial semantics are used for many 
purposes, including selective enabling of menu items, par-
tial explanations of what an action does, providing context 
sensitive animated help [SUKA90], applying correctness-
preserving transformations to the interface [FOLE87], 

checking the completeness and consistency of the interface, 
and dialogue sequencing.
By extending the UIDE mechanism to include all interface 
objects, we provide finer-grained control in UIDE, which 
used pre- and postconditions to control only the enabling of 
individual menu items. While the original UIDE used a set 
of predefined expressions in its conditions, we now allow 
arbitrary boolean predicates. The predicates can also be set 
by the application program, thereby affecting the state of the 
interface. Predicates can also have special variables which 
serve to communicate information between interface objects 
and the application.
Because pre- and postconditions contain semantic informa-
tion about the dialogue components with which they are as-
sociated, they can be used to generate explanations about 
these dialogue components. For example, if a menu item has 
a precondition saying that there should be a selected object, 
a help tool can use this information to tell the user he has to 
select an object first. If a certain command is not available 
or if an interface object is disabled, pre- and postconditions 
of other commands and interface objects can be used to de-
termine the sequence of actions needed to enable the com-
mand or the interface object [SENA89].
Pre- and postconditions not only describe semantics, but 
also encode dynamic behavior. A set of interface objects 
with pre- and postconditions can implement a complete dia-
logue without any additional program code.
Pre- and postconditions also form an interface between a di-
alogue component and its environment. Dialogue compo-
nents become independent objects which communicate by 
means of pre- and postconditions. This is somewhat similar 
to the idea used in VUIMS [PITT90], where the interface 
consists of objects that communicate by sending tokens to 
each other. The main difference is that with the pre- and 
postconditions the messages are predicates that are posted 
on a ‘blackboard’, which makes the objects even more inde-
pendent since they do not need to know who is interested in 
their information.



last modified 7/15/91, printed 8/8/91 2 of 6

Controlling User Interface Objects Through Pre- and Postconditions

In this paper we explain how pre- and postconditions work, 
then we show how the system supporting this mechanism 
works. Finally we discuss how a user interface design tool, 
such as Sun Microsystems’ Developers Guide [SUN90], can 
be enhanced with this mechanism to support a better proto-
typing environment.
In the rest of this article we will use the term widget when 
we are talking about interface objects. Several examples in 
this paper use a CD player application, which is a software 
interface used for playing music from a CD rom. This inter-
face looks similar to a front panel of a real CD player (Fig-
ure 1).

Predicate Mechanism

In this system boolean predicates are posted on ‘the Current 
State Blackboard’ (CSB), which is a list of predicates that 
are currently true. The CSB is similar to a real-life black-
board: When a predicate becomes true it is written on the 
blackboard and when it becomes false it is simply erased. 
Predicates can be written to and removed from the CSB by 
means of postconditions as well as by the application itself. 
The application can also check if certain predicates are on 
the CSB. The CSB can be used to exchange semantic infor-
mation between the application and the interface (UIMS) 
and thus facilitates separating the application and its inter-
face.
Each predicate consists of a name and two arguments (we 
can capture any fact or relation in this form). Preconditions 
are boolean expressions and postconditions are lists of 
changes to be made in the CSB1. Each widget has two sets 
of preconditions and several postconditions, depending on 
the type of widget. One set of preconditions determines 
whether the widget is visible and the other determines 

1. Postconditions consist of a list of predicates to be 
added to the CSB and a list of predicates to be removed 
from the CSB, an “add” list and a “delete” list respec-
tively.

whether it is enabled. A button, for instance, may be visible 
while not being enabled. On the other hand, a widget can 
never be enabled when it is not visible. Postconditions are 
associated with each functionally different action on the 
widget. Some widgets have only one possible functional ac-
tion (like the select action on a button), while others have 
several possible actions.
Below are two examples, both taken from the CD player ap-
plication. Example 1 shows how buttons can be greyed out 
automatically and example 2 shows how simple program 
dynamics can be encoded using pre- and postconditions. In 
the following examples we will describe widgets by stating 
their type and name (i.e. menu item save_current_file), fol-
lowed by a list of label-value pairs that describe the widget’s 
pre- and postconditions. The labels pre visible and pre en-
able stand for the visibility preconditions and the enable 
preconditions, respectively. The label post <action> (i.e. 
post select) describes the postconditions for that specific ac-
tion on the widget.

Button stop
pre enable: not status(CD,STOPPED)
post select: status(CD,STOPPED)

Example 1 Selectively enabling of controls - stopping the CD is 
only useful when the CD is not already stopped.

Button search
post select: popup(SEARCH)

Popup window search_track_dialogue
pre visible: popup(SEARCH)

Example 2 Simple program dynamics - when the search button 
is selected the search-track dialogue window auto-
matically pops up.

In the previous examples the predicates had literal (con-
stant) arguments, which means the predicate and its argu-
ments must be on the CSB in exactly the same form. Literal 
arguments are written in uppercase. Predicates can also have 
variable arguments, written in lowercase, in which case the 

Figure 1 CD player interface



last modified 7/15/91, printed 8/8/91 3 of 6

Controlling User Interface Objects Through Pre- and Postconditions

argument matches with any text (i.e. current_track(track) 
matches with current_track(1), current_track(2), etc.). 
When a predicate containing one or more variables is 
matched against predicates in the CSB, both its truth-value 
and the literal(s) substituted for its variable(s) are returned. 
The literal values are retained, because the same variables 
can be used in the postconditions (as in Example 3).
In postconditions functions can be used to modify predicate 
arguments. Functions are used to perform simple computa-
tions, like increment and decrement (see Example 3), and to 
get information from the application.

Button next_track
pre enable: current_track(curr) and 

total_tracks(total) and
less_than(curr, total)

post select: current_track(inc(curr, 1))

Example 3 Variables and functions - the variables curr and total 
get their values, based on what predicates are on the 
CSB. The value of curr is used in combination with 
the function inc to increment the current track.

Pre- and postconditions form an interface between a widget 
and its environment. Its preconditions determine when it is 
visible and enabled and the postconditions describe the 
changes that result from interactions with the widget. We 
defined special variables to increase the power of this form 
of communication between a widget and its environment. 
Special variables are variables in predicate arguments with a 
special meaning. The currently recognized special variables 
are:

• set_value: sets the value of the widget,
• get_value: gets the value from the widget,
• set_image: indicates the name of the bitmap that should 

be used by widgets that display images (icons, messages, 
etc.),

• upperbound: sets the upper limit of widgets with range 
capabilities (sliders, numeric text items, etc.), and

• lowerbound: sets the lower limit of widgets with range 
capabilities.

The special variables set_value, set_image, upperbound and 
lowerbound can only be used in preconditions, while 
get_value can only be used in postconditions. Especially 
useful are set_value and get_value, because these allow wid-
gets to communicate their values (as in Example 4) with the 
rest of the interface and the application.

Numeric text item search_track_item
pre visible: visible(SEARCH_WINDOW)
pre enable: current_track(set_value)

post changed: current_track(get_value)

Example 4 Special variables - the variable set_value initializes 
the widget with the current track number. After the 
user has changed the value of the text item, the new 
value is used in the postconditions by means of 
get_value.

Normally, when a postcondition is asserted, its effects are 
propagated immediately. However, sometimes this is not de-
sired. In the search dialogue shown in Figure 1, for instance, 
the value set by means of the text item should take effect 
only if and when the ‘ok’ button is pressed. To make this 
possible widgets can propose predicates in their postcondi-
tions. This means, when the postcondition is asserted, the 
proposed predicates do not take effect immediately; they are 
merely recorded as being proposed. Another widget, usually 
an ‘ok’ button, can then accept the proposed predicates (as 
in Example 5).

Figure 2 Architecture

Widget
Manager

Predicate
Manager

Current
State

UI toolkit (XView)

UIMS Application



last modified 7/15/91, printed 8/8/91 4 of 6

Controlling User Interface Objects Through Pre- and Postconditions

Numeric text item search_track_item
pre visible: visible(SEARCH_WINDOW)
pre enable: current_track(set_value)

post changed: propose current_track(get_value)

Button search_ok
pre visible: visible(SEARCH_WINDOW)
post select: accept search_track_item:proposed

Example 5 Proposed predicates - when the value of the text item 
is changed a new current track is proposed, but not 
yet set. When the ok button is selected the proposed 
change is asserted and the current track is changed.

Architecture

The pre- and postconditions are handled by two main com-
ponents: the predicate manager and the widget manager 
(Figure 2). These two components form a transparent layer 
between the application1 and the toolkit. It is transparent be-
cause the application does not need to know about the pre- 
and postconditions if it does not make use of them.
The predicate manager is in charge of the CSB; it is the only 
part of the system that can write to and read from the CSB. 
The application is allowed to make changes on the CSB 
only by calling functions in the predicate manager. This way 
the predicate manager can always make sure all widgets are 
updated when there is a change on the CSB. This also al-
lows for changes (in future versions) in the organization of 
the CSB and the algorithm that evaluates predicate expres-
sions (preconditions). The predicate manager also takes care 
of parsing and evaluating pre- and postconditions.
The widget manager registers widgets that have pre- and 
postconditions associated with them. Whenever a widget 

1. The system was originally developed as part of UIDE, 
where the UIMS part takes care of all the user interface 
related tasks. However, this system can also be used 
independently of UIDE. When we talk about the applica-
tion we mean the application and/or UIMS.

with pre- and postconditions is to be created, the widget 
manager asks the UI toolkit to create a normal widget and 
registers its id, name, pre- and postconditions and predicate 
variables and stores this information in a ‘shadow widget’. 
The pre- and postconditions supplied by the programmer as 
text strings are parsed by the widget manager before they 
are added to the ‘shadow widget’. It also adds the widget’s 
id to a hash table used to find widgets that might need to be 
updated as a result of changes in the CSB (this is described 
later in this section). The widget manager also handles com-
munication with the UI toolkit. When the application wants 
to retrieve or change widget attribute values, the widget 
manager first checks if the attributes are of interest to the 
pre- and postcondition mechanism: In addition to pre- and 
postconditions, which can be changed and retrieved as nor-
mal attributes, the widget manager also needs to know about 
callback routines, because it has to intercept all callbacks.
When a user interacts with a widget, the underlying UI tool-
kit generates a callback which invokes a function in the wid-
get manager (Figure 3). The widget manager looks up the 
postconditions of the corresponding widget and asks the 
predicate manager to make changes to the CSB. After the 
predicate manager has made changes to the CSB, it asks the 
widget manager to supply a list of widgets that might be af-
fected by the changes. For every widget in this list the pred-
icate manager reevaluates its preconditions and informs the 
widget manager about changes in the state of that widget, 
after which the widget manager asks the UI toolkit to update 
the widget. After the state of a widget has changed, its chil-
dren might need to be reevaluated, for a widget cannot be 
visible if its parent is not visible. Therefore these children 
are added to the list of potentially affected widgets. The pro-
cess then continues until this list is empty.

While we have not done efficiency testing, we have not no-
ticed any slowdown in the example interfaces we imple-
mented. However, these interfaces were relatively small 
(less than 100 widgets). We are not concerned about effi-
ciency, because the current implementation, which does not 
slow down small applications, is not the most efficient im-
plementation and can be improved in several ways.

Figure 3 Interaction between widget manager and predicate manager

Set predicate(s)

Evaluate preconditions

ApplicationCallback

Lookup postconditions

Register affected widgets

Update widget

W
id

ge
t M

an
ag

er
P

redicate M
anager



Controlling User Interface Objects Through Pre- and Postconditions

last modified 7/15/91, printed 8/8/91 5 of 6

Extending Developers Guide With Pre- And 
Postconditions

Sun Microsystems’ Developers Guide (DevGuide) [SUN90] 
is a user interface layout tool. With DevGuide the designer 
can easily layout a user interface of an application by simply 
placing and dragging interface objects, such as windows, 
buttons, sliders, etc. Its major drawback is the inability to in-
corporate run-time dynamics, such as controlling the (dis)-
appearing of popup windows. Interface Architect 
[HEWL90] has a built-in C interpreter, which allows the de-
signer to write C callback functions. However, when the de-
signer is laying out a user interface, he usually does not 
want to write code. In Interface Builder [NEXT90] and in 
version 3.0 of DevGuide it is possible to create ‘connec-
tions’ between interface objects. The designer can drag a 
connection, displayed as a rubber band line, between two 
widgets and specify the behavior of the connection. How-
ever, this does not address the important need to associate 
context-specific conditions with the connection, so that it 
will occur only when the conditions are true. For some dy-
namic behavior, semantic information about the state of the 
application is needed, to make the behavior depend on the 
current run-time context.
We are expanding DevGuide to allow the specification of 
pre- and postconditions. The attributes of widgets created 
with DevGuide are defined by property sheets, in which the 
designer can specify properties, such as label text, size, posi-
tion, color, etc. These property sheets will be extended to in-
clude slots for pre- and postconditions. Once this is done, 
the designer will be able to specify and test run-time dynam-
ics using DevGuide.
Another useful extension is the mapping of the connections 
onto pre- and postconditions: the designer specifies connec-
tions, while the system generates pre- and postconditions 
from these connections. This includes the connections in the 
pre- and postcondition mechanism and allows for better fine 
tuning; pre- and postconditions generated from connections 
can be edited, so extra conditions can be added to the con-
nections.
To take full advantage of the pre- and postconditions, sup-
port for the designer to make changes to the CSB in test 
mode to simulate changes which would normally be made 
by the application itself, should be provided.

Conclusions & Future Work

The pre- and postcondition mechanism is useful for proto-
typing user interfaces, especially in conjunction with other 
user interface design tools. It allows a designer to change 
parts of a user interface without affecting other parts of the 
interface. It also allows testing of program dynamics in an 
early phase of a design. The pre- and postconditions can 
also be used at run-time to automatically generate help and 
explanations.
With the designed architecture presented in this paper, the 
mechanism can easily be integrated in different environ-

ments and can be made to work with a variety of tools and 
toolkits.

As we mentioned before, efficiency does not appear to be a 
critical issue. However, if better efficiency is needed, several 
improvements can be made:

• The preconditions are currently evaluated by a rather in-
efficient backtracking algorithm, which can be replaced 
by a more efficient algorithm.

• When changes are made to the CSB, the system gener-
ates a list of possibly affected widgets. A linear hash ta-
ble is used to search for these widgets. Using a search 
tree would improve the time to find these widgets.

• The CSB itself is currently organized as a sorted linear 
list and determining the truth value of a predicate re-
quires a linear search. The use of a tree structure for the 
CSB will improve the time to determine the truth value 
of a predicate.

• Widgets in an interface are organized in a tree structure; 
most widgets have a parent widget. The system currently 
uses this information to make sure a child of a non-visi-
ble widget is not made visible. This information can also 
be used to limit the number of widgets of which the pre-
conditions should be reevaluated.

Currently, only one CSB is used for each application. Al-
though this has some advantages, it means all predicates are 
global. For the same reasons why scoping is used in pro-
gramming languages, we would like to have some form of 
scoping for predicates used in pre- and postconditions.

In the section on DevGuide, we mentioned extensions that 
are going to be implemented soon. Once the pre- and post-
condition mechanism is integrated with DevGuide we 
would like to improve the user interface for specifying pre- 
and postconditions. This can be as simple as supplying lists 
of commonly-used predicates from which the designer can 
select the desired predicates, or as complex as a graphical 
dialogue editor in which a dialogue is represented by aug-
mented transition networks or petri nets, which can be con-
verted to pre- and postconditions.
Finally we plan to develop a graphical debugging tool, 
where the dialogue, described by pre- and postconditions, is 
presented in a graphical form and where the run-time behav-
ior can be traced and possibly modified.

Acknowledgments

Daniel Gieskens would like to thank Jim Foley for creating 
an excellent research environment. We would like to thank 
the many George Washington University and Georgia Tech 
students who provided feedback and help in numerous 
ways: Dennis de Baar, Won Chul Kim, Piyawadee (Noi) 
Sukaviriya, Srdjan Kovacevic, Lucy Moran and Jens Kilian. 
We also would like to thank prof. Hikmet Senay at the 
George Washington University for his help with matters re-
lated to predicate logic.



Controlling User Interface Objects Through Pre- and Postconditions

last modified 7/15/91, printed 8/8/91 6 of 6

Partial funding for this work was provided by Sun Micro-
systems’ collaborative research program, and by National 
Science Foundation Grant # IRI-8813179. We thank Bob 
Ellis of Sun for his skillful management of our research pro-
posal, and Bob Watson, development manager of Sun’s 
DevGuide, for his support and interest.

References

FOLE87 Foley, J., C. Gibbs, and W. Kim, “Algorithms 
to Transform the Formal Specification of a 
User-Computer Interface” in Proceedings 
INTERACT ‘87, 2nd IFIP Conference on 
Human-Computer Interaction, Elsevier 
Science Publishers, Amsterdam, 1987, pp. 
1001-1006.

FOLE89 Foley, J., W. Kim, S. Kovacevic, and K. 
Murray, “Defining Interfaces at a High Level 
of Abstraction”, IEEE Software, 6(1), January 
1989, pp. 25-32.

FOLE91a Foley, J., D. Gieskens, W Kim, S. Kovacevic, 
L. Moran, P. Sukaviriya, “A Second-
Generation Knowledge Base for the User 
Interface Design Environment”, Report GWU-
IIST-91-13, Dept. of Electrical Engineering 
and Computer Science, George Washington 
University, Washington D.C., May 1991.

FOLE91b Foley, J., W.C. Kim, S. Kovacevic, and 
K.Murray, “UIDE - An Intelligent User 
Interface Design Environment”, in Sullivan, J. 
and Tyler, S. (eds.), Architectures for 
Intelligent Interfaces: Elements and 
Prototypes, Addison-Wesley, 1991.

GREE85 Green, M., “The Design of Graphical User 
Interfaces”, Technical Report CSRI-170, 
Computer Systems Research Institute, 
University of Toronto, 1985.

GREE86 Green M., “A Survey of Three Dialogue 
Models” in ACM Transactions on Graphics 
5(3), July 1986, pp. 244-275.

HELL90 Heller D., “XView Programming Manual”, 
O’Reilly & Associates, Inc., October 1990, 
ISBN 0-937175-52-8.

HEWL90 Hewlett-Packard Company, “HP Interface 
Architect Developer’s Guide”, Hewlett-
Packard Company, Corvallis, Oregon, October 
1990.

NEXT90 NeXT Computer, Inc., “NeXTstep Concepts”, 
NeXT Computer, Inc., Redwood City, CA, 
1990.

PITT90 Pittman J., and C. Kitrick, “VUIMS: A Visual 
User Interface Management System” in 
Proceedings of the ACM SIGGRAPH 
Symposium on User Interface Software and 
Technology, Snowbird, Utah, October 1990, 
pp. 36-46.

SENA89 Senay H., P. Sukaviriya, L. Moran, “Planning 
for Automatic Help Generation”, Report 
GWU-IIST-89-10, Dept. of Electrical 
Engineering and Computer Science, George 
Washington University, Washington D.C., 
1989.

SUKA90 Sukaviriya P., and J. Foley, “Coupling a UI 
Framework with Automatic Generation of 
Context-Sensitive Animated Help” in 
Proceedings of the ACM SIGGRAPH 
Symposium on User Interface Software and 
Technology, Snowbird, Utah, October 1990, 
pp. 152-166.

SUN90 Sun Microsystems, Inc., “Open Windows 
Developer’s Guide 1.1, Reference Manual”, 
Part No. 800-5380-10, Revision A, of June 
1990.


