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Abstract— We present an optimal timing control formulation
of the problem of controlling autonomous puppets. In partic-
ular, by appropriately timing the different movements, entire
plays can be performed. Such plays are produced by concate-
nating sequences of motion primitives and a compiler optimizes
these sequences, using recent results in optimal switch-time
control. Experimental results illustrate the operation of the
proposed method.

I. I NTRODUCTION

This paper addresses the issue of when to switch between
different modes of operation when controlling a dynamical
system. This question falls squarely under theoptimal timing
control problem for hybrid systems, which is an area of
research that has received a significant interest during the
last five years. In these types of problems, the control
parameter includes the schedule of the system’s modes and
the performance metric consists of a cost functional defined
on the system’s state (see [1], [4], [5], [7], [11], [16], [17],
[23], [24], [25], [27]).

The work in this paper draws its inspiration from recent
results on numerical optimal control of switched-mode sys-
tems, in which gradient-descent and second-order algorithms
have been developed [1], [13], [28], [29]. However, what is
novel in this paper as compared to the previous work is first
of all the application of optimal timing control to the problem
of controlling a collection of robotic puppets. Secondly, we
identify a formal motion description languagethat allows
us to specify what the puppets should be doing at a high
level of abstraction, and then use optimal control techniques
for compiling these high-level specifications into executable
control code. Thirdly, a formulation of the problem is given
in such a way that it can be decomposed into subproblems,
each involving the optimal timing sequence for the individual
puppets. The networking aspects, i.e. the way in which
these subproblems are combined, are then given a direct
interpretation in terms of the Lagrange multipliers in the
optimization problem.

When puppeteers execute entire plays, they typically break
it down into components, i.e. a play consists of multiple
acts and an act consists of multiple scenes. However, within
each scene, each piece, e.g. a puppet dance routine, is also
broken down into components and the dance is in fact both
annotated and executed as a string of movements, each of

which has its own characteristics, duration, and intensity.
What the research presented in this paper aims at is a way
of decomposing such complex control tasks in robotics into
strings of simpler control tasks, as shown in Fig. 1.

What we propose in this paper for formalizing high-level
specifications for puppetry is based on Motion Description
Languages (MDLs) [8], [12], [20], [21]. Specifically, a
MDL is a string of pairs, each specifying what control law
the system should be executing and an interrupt condition
corresponding to the termination of this control law. In order
for this language to be successful, it is important that it is
expressive enough to be able to characterize actual puppet
plays, and as such we draw inspiration from the way such
plays are staged by professional puppeteers. As an example,
consider a part of an actual play, as shown in Fig. 2.
The play that this example comes from is the “Rainforest
Adventures” - an original puppet play staged at the Center
for Puppetry Arts in Atlanta during 2005 [10], [19]. It shows
how the basic building blocks for a formal language for
puppet choreography can be derived from existing practices
in puppeteering.

In fact, the standard way in which puppet plays are
described is through four parameters, namelytemporal du-
ration, agent, space, andmotion(when?, who?, where?, and
what?) [3], [15]. Most plays are based oncountsin that each
puppet motion is supposed to happen at a particular count.
(This becomes even more important if multiple puppets are
acting simultaneously on stage or if the play is set to music).
At each specified count, a motion can be initiated and/or
terminated.

The outline of this paper is as follows: In Section II, we
recall the basic definitions of a Motion Description Language
and show how these definitions can be augmented to be more
suitable for specifying puppet plays. We then, in Section III,
use the Calculus of Variations for parsing MDL strings in an
optimal way in order to produce effective control programs,
as supported by experimental results. The issue of networked
marionettes is the topic of Section IV, where we discuss how
to structure the optimization algorithm in such a way that
each puppet is (preferably) able to produce its own timing
sequence without having to take into account the movements
of all other puppets participating in the play.



(a) Puppet in initial configuration. (b) Puppet in wave motion. (c) Puppet starting a walk. (d) The final step in the walk
mode.

Fig. 1. An image sequence of the puppet executing awave followed by awalk mode.

II. M OTION DESCRIPTIONLANGUAGES

As the complexity of many control systems increases, due
both to the system complexity (e.g. manufacturing systems,
[9]) and the complexity of the environment in which the
system is embedded (e.g. autonomous robots [2], [18]),
multi-modal control has emerged as a useful design tool.
The main idea is to define different modes of operation,
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Fig. 2. Rainforest Adventures: This figure is an original puppet choreogra-
phy sheet from the Center for Puppetry Arts in Atlanta [10]. It shows how
the basic building blocks for a formal language for puppet choreography
can be derived from existing practices in puppeteering.

e.g. with respect to a particular task, operating point, or
data source. These modes are then combined according to
some discrete switching logic and one attempt to formalize
this notion is through the concept of aMotion Description
Language(MDL) [8], [12], [20], [21].

Each string in a MDL corresponds to a control program
composed of multiple controllers. Slightly different versions
of MDLs have been proposed, but they all share the common
feature that the individual atoms, concatenated together to
form the control program, can be characterized by control-
interrupt pairs. In other words, given a dynamical system

ẋ = f(x, u), x ∈ X, u ∈ U

together with a control program(κ1, ξ1), . . . , (κp, ξp), where
κi : X → U and ξi : X → {0, 1}, the system operates
on this program aṡx = f(x, κ1(x)) until ξ1(x) = 1. At
this point the next pair is read anḋx = f(x, κ2(x)) until
ξ2(x) = 1, and so on. (Note that the interrupts can also
be time-triggered, which can be incorporated by a simple
augmentation of the state space.)

A. MDLs for Puppetry

We directly note that the general MDL outlined in the
previous paragraph does not lend itself to the way puppetry
plays are specified. In fact, what we will do in this section
is to augment the standard MDL formulation, as discussed
in [14], to include factors such as spatial location. For this,
assume that the play starts at timet0 and that it ends at time
tf . Moreover, let the temporal resolution (the length of each
“count”) be∆, and assume that(tf −t0)/∆ = M . Following
this, the set of all times over which the play is specified is
T = {t0, t0 + ∆, t0 + 2∆, . . . , t0 + M∆}.

Moreover, assume that the stage is divided intoN dif-
ferent sections (typically this number is 6, namely Lower-
Left, LowerCenter, LowerRight, MiddleLeft, MiddleCenter,
MiddleRight, UpperLeft, UpperCenter, UpperRight), whose
planar center-of-gravity coordinates are given byr1, . . . , rN ,
with the set of regions being given byR = {r1, . . . , rN}.



As before, assume that the puppet under consideration has
the dynamics

ẋ = f(x, u).

Now, given that we have constructed a number of control
laws κj , j = 1 . . . , C, corresponding to different moves
that the puppet can perform, with each control law be-
ing a function ofx (state), t (time), andα (a parameter
characterizing certain aspects of the motion such as speed,
energy, or acceleration, as is the normal interpretation of
the parameterization of biological motor programs), we can
let the set of moves that puppet can perform be given by
K = {κ1, . . . , κC}. In fact, we will often use the shorthand
fj(x, t, α) to denote the impact that control lawκj has
throughf(x, κj(x, t, α)).

As already pointed out, each instruction in the puppet play
language is a four-tuple designatingwhen, who, where, and
what the puppets should be doing. In other words, we let
the motion alphabet be given byL = T × T × R × K.
Each element inL is thus given by(T0, T1, r, κ), where the
interpretation is that the motion should take place during the
time intervalT1 − T0, largely in regionr, while executing
the control lawκ.

Following the standard notation in the formal lan-
guage field, we letL⋆ denote the set of all finite-
length concatenations of elements inL (including the
empty string), and let puppet plays be given by
words λ ∈ L⋆. In particular, if we let λ =
(t0, T1, r1, κ1), (T1, T2, r2, κ2), . . . , (Tp−1, Tp, rp, κp), then
the puppet operates on this string through

ẋ =



















f1(x, t, α1), t ∈ [t0, T1)
f2(x, t, α2), t ∈ [T1, T2)

...
fp(x, t, αp), t ∈ [Tp−1, Tp].

This seems fairly natural, but two essential parameters
have been left out. First, the motion parametersα1, . . . , αp

have not yet been specified. Moreover, the desired regions
r1, . . . , rp have not been utilized in any way. In order to
remedy this, we need to construct not just aparserfor puppet
plays, as given above, but also acompiler that selects the
“best” parameters (as well as durations) for the different
moves so that the play is executed as efficiently as possible,
which is the topic of the next section.

III. C OMPILING MDL STRINGS THROUGH OPTIMAL

CONTROL

In this section we present a compiler that takes as inputs
strings in a MDL and optimizes over these strings by adjust-
ing the interrupt times as well as the parameters defining the
specifics of the individual control laws. Rather than solving
a large-scale problem explicitly, we start with the canonical
two-primitive MDL string. In fact, consider the following
optimal control problem:

min
τ,α1,α2

J(τ, α1, α2) =

∫ tf

0

L(x, t)dt + C1(α1) + C2(α2)

+ D(τ) + Ψ1(x(τ)) + Ψ2(x(tf )),

where

ẋ =

{

f1(x, t, α1), t ∈ [0, τ)
f2(x, t, α2), t ∈ [τ, tf ]

x(0) = x0.

This optimal control problem is the atomic prob-
lem involving how to execute the two-instruction play
(0, T, r1, κ1), (T, tf , r2, κ2) under the interpretation that
D(τ): is a cost that penalizes deviations from the presepci-
fied, nominal switching timeT , Ci(αi) measures how much
energy it takes to use parameterαi for modei, Ψi(·): ensures
that the puppet is close tor1 at time τ (and similarly for
x(tf )), andL(x, t) is a trajectory cost that may be used to
ensure that a reference trajectory is followed.

We can apply calculus of variations techniques, under suit-
able assumptions of continuous differentiability, to the cost
functional. The derivations are straightforward and follow
those of [1], [13], and they result in the optimality conditions

∂J

∂τ
= λ(τ

−
)f1(x(τ)) − λ(τ+)f2(x(τ)) +

∂D

∂τ
∂J

∂α2

= µ(τ+)

∂J

∂α1

= µ(0),

where the co-statesλ andµ satisfy the following discontin-
uous (backwards) differential equations:

λ(T ) =
∂Ψ2

∂x
(x(T ))

λ̇ = −
∂L

∂x
− λ

∂f2

∂x
, t ∈ (τ, T )

λ(τ
−

) = λ(τ+) +
∂Ψ1

∂x
(x(τ))

λ̇ = −
∂L

∂x
− λ

∂f1

∂x
, t ∈ [0, τ)

µ(T ) =
∂C2

∂α2

µ̇ = −λ
∂f2

∂x
, t ∈ (τ, T )

µ(τ
−

) =
∂C1

∂α1

µ̇ = λ
∂f1

∂x
, t ∈ [0, τ).

By a direct generalization to more than two modes, this
construction allows us to produce a compiler that takes
playsand outputsstrings of control modes with an optimized
temporal duration and mode parameterization.

A. Example

As an illustrative example, consider the following cost
functional:

J(τ, α1, α2) =

∫ tf

0

qT Pq dt + ρ(T − τ)2 + w1α
2
1 + w2α

2
2,

whereq ∈ R
6 is the vector of generalized joint angles of the

puppet,P is a suitable weight matrix, andρ, w1, w2 are cost
weights that prescribe relative weights to deviations fromthe
nominal switch time and motion intensity parameters.



In Figure 3, the joint angles corresponding to the initial
conditions τ = 4, α1 = α2 = 1 are shown. Note that
this initial trajectory results in the left arm’s odd looking
behavior, where the wave motion stops the left arm in “mid-
air” as the walk motion begins. A more desirable trajectory
would lower the left arm completely before initiating a
walk. Therefore, we defined the weight matrix,P , such
that the joint angles are penalized for deviations from the
puppet’s “home” position, i.e. the left arm initial joint angles
θl = φl = 0. After an iterative, descent-based optimization
algorithm has terminated, the new values becomeτ =
4.3423, α1 = 1.3657, α2 = 0.9566, with the corresponding
joint angles shown in Figure 4. This plot shows that at
termination the joint angles were close to0 before starting
the walk mode, resulting in a more natural looking motion.
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Fig. 3. Original joint angle trajectories.
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Fig. 4. Optimized joint angle trajectories.

Examining the total cost plot in Fig. 5(a) reveals that the
cost is indeed appropriately reduced as the gradient descent
algorithm ran past 20 iterations. Additionally, the derivatives
of J(τ, α1, α2) in Fig. 5(b) are shown to decrease over time,
and given enough iterations approaches0.

B. Experimental Platform

In conjunction with the simulation results above, we have
also developed a hardware platform, as shown in Fig. 1. In
fact, the movement in that figure is the one obtain in the
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(a) Total cost as a function of iteration.
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Fig. 5. Plots of the total cost and the value of its various derivatives over
simulation time.

previous section, in which the puppet switches between a
wave and a walk mode.

The puppet system is comprised of three components:
hardware system, a Java control application, and Matlab
optimization routines. A diagram of the architecture is seen
in Fig. 6.

MDLp File

MDL Parser

optimize?
Yes

No

Optimization

Compiler

MDL Engine

Play

Java

Matlab

Java VM

τ̄
⋆, ᾱ

⋆

OS

Puppet

Hardware

Fig. 6. The puppet system software architecture.



The puppet hardware is controlled by six Robotis Dy-
namixel motors [26]. These motors are suitable for this
application since they can be issued positionand velocity
commands. Additionally, they are linked together by a mul-
tipoint serial interface (the RS-485 standard), which enables
a single command to generate motion on the six motors
simultaneously. A microcontroller connects all of the motors
together and communicates with a host computer via a serial
port.

The Java application has several functional pieces. First,
it manages the serial port so that commands may be sent to
the underlying puppet hardware. Additionally, it can parse
MDL files and generate a string of modes based on what is
available in the MDL library. These modes are then fed into
an MDL engine, which applies a particular mode’s control
action to generate a motion command. Once a user has
constructed a play, it may be fed into a Matlab optimization
routine, where the algorithm of section III and the kinematics
of the puppet are implemented. The Matlab routine then
outputs the optimal switch times (τ̄⋆) and scaling factors
(ᾱ⋆).

IV. N ETWORKED TIMING CONTROL

Since most interesting puppet plays include more than
one marionette, we will be forced to handle situations in
which two (or more) puppets need to execute a movement
in a coordinated fashion. Due to the risk of tangling strings,
multi-puppet coordination is mainly done through spatial and
temporal adjacency.

For this, we assume that the play is comprised ofn pup-
pets, each operating under their own dynamics. Additionally,
each puppet switches betweenmi control modes, with (as
before) the terminal time denoted byT = τmi

, i = 1, . . . , n.
In other words, a direct modification to the previous

formulation gives that each puppet be governed by the
dynamics,

ẋi(t) =



















fi,1(x, t), t ∈ [0, τi,1)
fi,2(x, t), t ∈ [τi,1, τi,2)

...
fi,mi

(x, t), t ∈ [τi,mi−1, τi,mi
]

for i = 1, · · · , n. Let moreover the cost functional be defined
as

J(τ̄1, . . . , τ̄n) =

∫ T

0

n
∑

i=1

Di(xi, t) dt =

n
∑

i=1

Ji(τ̄i)

whereDi(x, t) is the cost associated with operating system
i for t ∈ [0, τi,m).

Now, to illustrate the way in which the temporal con-
straints show up, we, for the ease of notation (but without
loss of generality) assume that the temporal constraint only
affects thedth switch for systemsj and k, where j, k ∈
{1, · · · , n}, ascd(τj,d, τk,d) = τj,d − τk,d 6 0.

It is directly clear that the way this optimization problem
can be solved is by simply augmenting the cost with the
Lagrangian termµcd(τj,d, τk,d), and then solve the problem

jointly across all the switching times for all the puppets.
However, we do not want to do this, and we instead illustrate
how recent ideas from so-calledTeam Theory, as described
in [22], can help distribute the computational burden across
the different puppets. (Note that the details given below are
not due to us, but rather that we highlight their application
to the problem of distributed timing control as it pertains to
the robotic marionette application.)

A. Distributed Coordination

Let, as before, puppetsj and k (j 6= k) be temporally
constrained via thedth switch ascd(τj,d, τk,d) ≤ 0. Using
the developments in [22], the constrained problem becomes

L(τj,d, τk,d, µ) = Jj(τj,d) + Jk(τk,d) + µcd(τj,d, τk,d)

where we have assumed (without loss of generality) that the
only control parameters areτj,d andτk,d. It should directly
be noted that the cost functionals are decoupled (i.e. costJj

dependsonly on systemj’s dynamics). Therefore, taking the
derivative of the Lagrangian with respect toµ results in the
expression,

∂L

∂µ
= τj,d − τk,d,

in combination with the previously defined gradient expres-
sions defined with respect to the switching times.

Now, algorithmically, this formulation is interesting in that
the dual problem becomesg⋆ = maxµ g(µ), µ > 0, where

g(µ) = inf
τj,d,τk,d

{Jj(τj,d) + Jk(τk,d) + µ(τj,d − τk,d)}.

As such, using a gradient descent for the switch times,
and a gradient ascent for the Lagrange multiplierµ, allows
us to largely decouple the solution and let the networking
aspect be reflected only through the update of the multiplier,
as was done in [22]. In fact, if we let

τ̇j,d = −
∂Jj

∂τj,d
− µ

τ̇k,d = − ∂Jk

∂τk,d
+ µ

µ̇ = τj,d − τk,d

all that needs to be propagated between the two systems is
the value of the Lagrange multiplierµ. This observation,
developed in [22], thus leads us to a general architecture for
solving networked switching time optimization problems, as
shown in Figure 7. A more complete exploration of this issue
is, however, left to a future endeavor.

V. CONCLUSIONS

In this paper we presented the a motion description
language for specifying and encoding autonomous puppetry
plays in a manner that is faithful to standard puppetry
choreography. The resulting strings of control-interruptpairs
are then compiled in the sense that they are parsed by a
dynamical system that produces optimized, hybrid control
laws corresponding to strings of motions, locations, and
temporal durations for each motion primitive. This paper also
discusses some issues arising in modeling and how to capture
relevant motion primitives from empirical data. Experimental
and simulation results illustrate the viability of the proposed
approach.
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Fig. 7. This figure shows how to propagate information between the two subsystems (puppets) in order to solve the networked timing problem.
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