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SUMMARY

Chip-firing is a deceptively simple game played on the vertices of a graph, which

was independently discovered in probability theory, poset theory, graph theory, and

statistical physics. In recent years, chip-firing has been employed in the develop-

ment of a theory of divisors on graphs analogous to the classical theory for Riemann

surfaces. In particular, Baker and Norin were able to use this set up to prove a

combinatorial Riemann-Roch formula, whose classical counterpart is one of the cor-

nerstones of modern algebraic geometry. It is now understood that the relationship

between divisor theory for graphs and algebraic curves goes beyond pure analogy, and

the primary operation for making this connection precise is tropicalization, a certain

type of degeneration which allows us to treat graphs as “combinatorial shadows” of

curves. The development of this tropical relationship between graphs and algebraic

curves has allowed for beautiful applications of chip-firing to both algebraic geometry

and number theory.

In this thesis we continue the combinatorial development of divisor theory for

graphs. In Chapter 1 we give an overview of the history of chip-firing and its connec-

tions to algebraic geometry. In Chapter 2 we describe a reinterpretation of chip-firing

in the language of partial graph orientations and apply this setup to give a new proof

of the Riemann-Roch formula. We introduce and investigate transfinite chip-firing,

and chip-firing with respect to open covers in Chapters 3 and 4 respectively. Chapter

5 represents joint work with Arash Asadi, where we investigate Riemann-Roch theory

for directed graphs and arithmetical graphs, the latter of which are a special class of

balanced vertex weighted graphs arising naturally in arithmetic geometry.

ix



CHAPTER I

INTRODUCTION

Chip-firing is a simple and elegant graph theoretic process with connections to var-

ious areas of mathematics, and the sciences at-large. For describing chip-firing, we

begin with a finite set of chips on the vertices of a graph. The fundamental operation

is firing, whereby a vertex sends a chip to each of its neighbors and loses its degree

number of chips in the process, so that the total number of chips in the graph is

conserved. We remark that our use of the word chips is intended to connote a collec-

tion indistinguishable poker chips sitting at the vertices of the graph, as opposed to

computer chips (although rather interestingly, the latter interpretation is not without

merit, e.g. [17]). If one encodes a chip configuration by a vector ~x then the operation

of firing the ith vertex can described in a linear algbraic fashion by subtracting the

ith column of the Laplacian matrix from ~x.

The history of chip-firing is quite complicated due to its independent discovery by

several different communities. The term chip-firing seems to have been introduced by

Björner, Lovász, and Shor [15] in their seminal paper where they develop ideas intro-

duced by Spencer [72], and Anderson, Lovász, Shor, Spencer, Tardos, and Winograd

[5]. The phrase chip-firing appeared in print for the first time in Tardos [73], but

he refers to Björner, Lovász, and Shor so it seems that the latter paper simply took

longer to publish.

In statistical physics, chip-firing was independently introduced around the same

time by Bak, Tang, and Weisenfeld [7] for the square two-dimensional lattice as an

example of a phenomenon which they called self organized criticality. When inves-

tigating chip-firing dynamics on large grid graphs, they encounters a phenomenon
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which they called an avalanche where large cascades of chip-firings occur in short

succession, and it was their hope that chip-firing could be utilized for describing real

world events such as forest fires and earthquakes. Their model is referred to as the

Abelian Sandpile Model, often abbreviated as the ASM, and was rigorously developed

by Dhar [26] shortly afterwards. The use of the term sandpile comes from their de-

scription of chips as grains of sand (suggestive of their large scale perspective), and the

adjective abelian is used to emphasize the important property that the final outcome

of chip-firing is independent of any choices made. In the ASM it is often assumed that

there is a sink vertex, e.g. the contracted boundary of the square grid, which does not

fire, so as to ensure that the chip-firing process terminates. This abelian property of

chip-firing was also observed by Björner, Lovász, and Shor who noted that this made

chip-firing into an example of an abstract rewriting system with the Church Rosser

property, i.e., the confluence property. They also noted chip-firing was an example

of a greedoid, or more precisely, an antimatroid. Cori, Rossin, and Salvy [25], and

independently Postnikov and Shapiro [66] later realized that one could naturally as-

sociate a binomial ideal to chip-firing, and in this context the abelian property can

be reinterpreted as saying that the binomials associated to the firings of the vertices

form a graded reverse lexicographic Gröbner basis. We note that Gröbner bases are

a well-known example of an abstract rewriting system with the confluence property.

This commutative algebraic investigation of binomial ideals associated to chip-firing

has gained much attention in recent years [64, 55, 60, 54, 54, 6]

By repeatedly adding chips and firing until it is no longer possible (stabilizing), we

obtain a Markov chain, and Dhar prove that the recurrent states for this chain provide

a collection of distinguished representatives for the cokernel of the reduced Laplacian.

This cokernel is a finite abelian group which he referred to as the sandpile group. Chip-

firing allows for a combinatorial presentation of this group, where the group law is

defined by adding two recurrent states and stabilizing. It follows from basic linear
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algebra that the cokernel has order equal to the determinant of the reduced Laplacian

and by Kirchoff’s matrix-tree theorem, this is precisely the number of spanning trees

of the graph. Dhar showed that by a beautiful process which he called burning, an

explicit bijection could be obtained between the recurrent configurations of the ASM

and the spanning trees of a graph. Variations on this burning process have been

developed, some of which allow for bijections which preserve important tree statistics

such as external activity [24] or tree inversion number [65].

Last summer the author attended a chip-firing workshop at the American Institute

of Mathematics. On the last day, Jim Propp gave a short speech where he explained

the fact, which surprisingly few audience member were aware of, that chip-firing is

originally due to Engel [30] from the 1970’s who called it the “probabilistic abacus”

and treated it as a pedagogical tool for teaching 4th grade students about Markov

chains! Engel is reportedly attempting to publish a text book about this perspective,

but unfortunately has yet to receive an offer from any publishing company.

Also in the 1970’s, while investigating Hasse diagrams for posets, Mosesian in-

troduced the concept of a sink reversal, also called a pushing down for acyclic graph

orientations. The idea is that given any sink t in an acyclic orientation, one can reverse

the orientation of all of the incoming edges to produce another acyclic orientation. It

is not hard to see that the indegree sequences of the two acyclic orientations are re-

lated by the firing of t. The notion of a sink reversal and the connection to chip-firing

were addressed in Björner, Lovász, and Shor although they seemed to be unaware

of Mosesian’s previous work. These authors identified the indegree sequences of the

acyclic orientations as the minimal recurrent states in the sinkless chip-firing model.

Gioan [35] recently generalized sink reversals to arbitrary orientations by introducing

cut reversals and cycle reversals. In Chapter 2 of this thesis the author systematically

further generalizes Gioan’s theory to the setting of partial graph orientations.

In arithmetic geometry, Raynaud found a description of the component group

3



of the special fiber of the Neron model of a curve in terms of the special fiber of a

regular semistable model. His result says that the component group is canonically

isomorphic to the cokernel of the Laplacian of the dual graph of the special fiber of

the model for the curve. Motivated by this result, Lorenzini proved several theorems

about the structure of the cokernel of the Laplacian of a graph [50, 51, 48]. The

work of Raynaud and Lorenzini may be viewed as the first important step in the

development of an exciting and very active area of research relating chip-firing to

algebraic geometry and number theory. It is worth noting that because Lorenzini

was unaware of chip-firing, his approach to studying the cokernel of the Laplacian of

a graph employed mostly linear algebraic techniques to get a handle on the Smith

normal form of the Laplacian, which encodes this group.

The next major step in this direction came from a somewhat different angle.

Bacher, De la Harpe, and Nagnibeda [62] developed, in a combinatorial way, but

still without the aid of chip-firing, a detailed theory of cut and flow lattices, and the

Jacobian of a graph. Their paper extends earlier results of Biggs and was written with

the motivation to develop a theory of divisors on graphs analogous to the classical

theory for Riemann surfaces. Lorenzini never explicitly referred to the cokernel of the

Laplacian as the Jacobian of a graph, so their paper seems to be the first appearance

of this phrase in the literature. Bacher, De la Harpe and Nagnibeda were unaware

of Lorenzini’s previous work and treated their results as being analogous to classical

results for Riemann surfaces. In particular, they did not suggest the possibility that

graphs might be viewed rigorously as “combinatorial shadows” of Riemann surfaces

or more generally, algebraic curves.

Approaching the topic from the perspective of Arakelov theory and Berkovich an-

alytic curves, Baker began to investigate the theory of divisors graphs. In particular,

Baker was interested in the question of whether there existed a graphical version of

the celebrated Riemann-Roch formula.
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The Riemann-Roch theorem is a statement about the dimension, called the rank,

of a linear space of meromorphic functions on a Riemann surface with prescribed

lower bounds for zeroes and poles. Baker did not initially know how to define such

a quantity in the setting of graphs where one is bereft of geometry. Cleverly, he

observed that without having a working definition of rank, one could still conjecture

the following special case of the Riemann-Roch theorem. Suppose you have an integral

(not necessarily positive) configuration of chips on a graph. If the number of chips is at

least |E(G)| − |V (G)|+ 1, the genus of G, then there exists a sequence of chip-firing

moves which brings every vertex out of debt. Baker had an REU student Dragos

Ilas perform some computations, which indeed supported Matt’s conjecture. Ilas

presented these results in a talk at Georgia Tech where Sergey Norin was present, who

then proved this special case of Riemann-Roch over the next couple of days. Baker

and Norin began working together, and shortly after, the Riemann-Roch formula for

graphs was established [9].

The fundamental combinatorial tool which Baker and Norin employed is a distin-

guished type of chip-configurations called a q-reduced divisor. This is a configuration

which is nonnegative away from q, such that the firing any subset of vertices not

including q causes some vertex to be sent into debt. These configurations are known

elsewhere as G-parking functions, although reduced divisors are technically different

in that they keep track of the number of chips at q. G-parking functions were first

defined by Postnikov, and by taking G to be the complete graph, one recovers the

classical parking function whose name is derived from a certain combinatorial prob-

lem about car parking. Parking functions are quite popular within Stanley’s school

of combinatorics, and it is the author’s understanding that they were originally in-

troduced by Pyke [67] and further studied by French combinatorialists before Pak

introduced them to Stanley. Perhaps the most famous application of parking func-

tions is due to Haiman [38] who utilized them in his algebraic geometric proof of
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positivity for MacDonald polynomials.

Baker and Norine observed that q-reduced divisors were in bijection with the

recurrent states of the abelian sandpile model by a simple duality, which appears

very similar to Riemann-Roch duality, and remains somewhat mysterious. Perhaps

the most intriguing insight was given by Manjunath and Sturmfels [55], who observed

that this duality could be interpreted as a manifestation of Alexander duality for

monomial ideals. In Chapter 4 of this thesis, we describe a family of chip-firing

models induced by simplicial complexes on the vertex set of a graph which provide a

fine interpolation between these two models.

The Riemann-Roch formula was soon extended to the continuous setting of metric

graphs independently by Gathmann and Kerber [33], and Mikhalkin and Zharkov [58].

The former authors’ approach was to prove the statement by a taking a continuous

limit of Baker and Norin’s result. Both sets of authors were motivated to provide

a “tropical” version of Baker and Norin’s result. Tropical geometry is a certain

piece-wise linear version of algebraic geometry, obtained by degenerating varieties to

polyhedral complexes. The tropicalization of a variety has real dimension equal to

that of the original variety, hence the tropicalization of a curve is a one dimensional

object. For the purposes of divisor theory, the embedding of a tropical curve is

unimportant, so without loss of generality, we may view this object as a metric

graph. Tropical curves have unbounded rays (tentacles), which are also unimportant

from the perspective of divisor theory, and so we may disregard these parts of tropical

curves, and assume that the metric graphs in question are compact.

Baker [58] then proved a “specialization lemma” which states that when passing

from a curve to its dual graph, the rank of a divisor cannot drop. This inequality

is significant in that it allows certain questions about ranks of divisors on algebraic

curves to be reduced to questions about ranks of divisors on graphs. Baker’s result

has had some very nice recent applications in geometry and number theory, such as
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Cools, Draisma, Payne, and Robeva’s tropical proof of the Brill-Noether theorem [22]

and Katz and Zureick-Brown’s contribution to the theory of effective bounds for the

number of rational points on curves [42].

In this thesis, we continue the combinatorial investigation of divisors on both

discrete and metric graphs. The outline of the paper is as follows. In the Chapter 2 we

describe a complete reinterpretation of the linear equivalence of divisors on graphs via

a generalization of Gioan’s cycle-cocycle reversal system for partial graph orientations.

We show that the Baker-Norine rank of a partially orientable divisor is one less than

the minimum number of directed paths which need to be reversed in the generalized

cocycle reversal system to produce an acyclic partial orientation. We apply this

perspective in giving new proofs of Baker and Norine’s Riemann-Roch theorem for

graphs as well as Luo’s topological characterization of rank determining sets [52]. We

then describe a fundamental connection between divisor theory for graphs and the

max-flow min-cut theorem from combinatorial optimization. We conclude with an

overview of the ways in which these results extend to metric graphs.

In Chapter 3 we introduce and investigate transfinite chip-firing on metric graphs.

Luo presented a metric version of Dhar’s burning algorithm for the investigation of

divisor theory on metric graphs [52]. We give a new proof of the finite termination

of Luo’s iterated Dhar algorithm, and then investigate Baker and Luo’s question

of whether the greedy reduction algorithm terminates in finite time. We provide a

strongly negative answer to this question. We first show that the Euclidean algorithm

can be modeled by the reduction of a certain degree 12 divisor on a metric graph of

genus 7. By running this example on two incommensurable number, we obtain an

example of greedy reduction which does not terminate. We remark that any infinite

greedy reduction has a well defined limit, and so we may pass to the limit and begin

the algorithm again. This allows us to investigate the greedy reduction of divisors on

metric graphs using the language of ordinal numbers, and we show that the set of all
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running times for the greedy algorithm is precisely the set of ordinal numbers strictly

less than ωω.

In Chapter 4 we introduce the notion of chip-firing with respect to an open cover.

We begin with discrete graphs using the discrete topology, where our allowed firings

are determined by an abstract simplicial complex on the vertices. It is shown that

each divisor stabilizes uniquely, and is linearly equivalent to a unique recurrent con-

figuration. These discrete models are equivalent to ones independently introduced by

the statistical physicist Paoletti [63], and we generalize this set up to directed graphs

by allowing vertex weighted abstract simplicial complexes. A generalization of the

Cori-Le Borgne bijection [24] between the chip-firing recurrent states and the span-

ning trees of an undirected graph is presented which is applicable for any simplicial

complex. We conclude with a discussion of the case of metric graphs where finite sets

are replaces by open covers. We explain that the basic results extend, and thus each

open cover of a metric graph induces a canonical presentation of the Jacobian. We

explain how any two to one cover of the metric graph by stars serves as a continuous

analogue of the abelian sandpile model, in particular, we obtain a continuous version

of a duality due by Baker and Norine which is remarkably similar to Riemann-Roch

duality.

In Chapter 5 we describe work with Arash Asadi extending Riemann-Roch theory

to directed graphs. By the lattice reduction algorithm of Wilmes, this setup allows

for a combinatorial interpretation of Amini and Manjunath’s Riemann-Roch theory

for lattices [3]. We generalize Dhar’s burning algorithm for this setting, which is dual

to an algorithm introduced by Speer, and use this to give a method for determining

whether or not a given directed graph has the Riemann-Roch formula. We then apply

this algorithm to the study of arithmetical graphs, which are certain balanced vertex

weighted graphs introduced by Lorenzini. In particular we give a very satisfying

solution to a question posed by Lorenzini, who asked for a combinatorial proof of

8



the fact that if there are at least g0 chips present in an arithmetical graph, there

necessarily exists a way of bringing all of the vertices out of debt by chip-firing moves.

Lorenzini’s original proof of this result was algebraic geometric in nature. We conclude

by presenting some examples of arithmetical graphs with and without the Riemann-

Roch property.
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CHAPTER II

RIEMANN-ROCH THEORY FOR GRAPH

ORIENTATIONS

We develop a new framework for investigating linear equivalence of divisors on graphs

using a generalization of Gioan’s cocycle reversal system for partial orientations. An

oriented version of Dhar’s burning algorithm is introduced and employed in the study

of acyclicity for partial orientations. We then show that the Baker-Norine rank of a

partially orientable divisor is one less than the minimum number of directed paths

which need to be reversed in the generalized cocycle reversal system to produce an

acyclic partial orientation. These results are applied in providing new proofs of the

Riemann-Roch theorem for graphs as well as Luo’s topological characterization of

rank-determining sets. We demonstrate that max-flow min-cut is equivalent to the

Euler characteristic description of orientable divisors, and extend this characterization

to the setting of partial orientations. Efficient algorithms for computing break divisors

and constructing partial orientations are presented.

2.1 Introduction

Baker and Norine [9] introduced a combinatorial Riemann-Roch theorem for graphs

analogous to the classical statement for Riemann surfaces. Their result employed

chip-firing, a deceptively simple game on graphs with connections to various areas

of mathematics. Given a graph G, we define a configuration of chips D on G as a

function from the vertices to the integers. A vertex v fires by sending a chip to each

of its neighbors, losing its degree number of chips in the process. If we take D to be

a vector, firing the vertex vi precisely corresponds to subtracting the ith column of
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the Laplacian matrix from D. In this way we may view chip-firing as a combinatorial

language for describing the translates of the lattice generated by the columns of the

Laplacian matrix.

Reinterpreting chip configurations as divisors, we say that two divisors are linearly

equivalent if one can be obtained from the other by a sequence of chip-firing moves,

and a divisor is effective if each vertex has a nonnegative number of chips. Baker and

Norine define the rank of a divisor, denoted r(D), to be one less than the minimum

number of chips which need to be removed so that D is no longer equivalent to an

effective divisor. Taking the canonical divisor K to have entries K(v) = deg(v)−2 and

defining the genus of G to be g = |E(G)|− |V (G)|+ 1, they prove the Riemann-Roch

formula:

r(D)− r(K −D) = deg(D)− g + 1.

Baker and Norine’s proof depends in a crucial way on the theory of q-reduced

divisors, known elsewhere as a G-parking functions or superstable configurations. A

divisor D is said to be q-reduced if (i)D(v) ≥ 0 for all v 6= q, and (ii) for any non-

empty subset A ⊂ V (G) \ {q}, firing the set A causes some vertex in A to go into

debt. They show that every divisor D is linearly equivalent to a unique q-reduced

divisor D′, and r(D) ≥ 0 if and only if D′ is effective. We note that q-reduced divisors

are dual, in a precise sense, to the recurrent configurations (also known as q-critical

configurations), which play a prominent role in the abelian sandpile model [9, Lemma

5.6]

There is a second story, which runs parallel to that of chip-firing, describing certain

constrained reorientations of graphs, first introduced by Mosesian [61] in the context

of Hasse diagrams for posets. Given an acyclic orientation of a graph O and a sink

vertex q, we can perform a sink reversal, reorienting all of the edges incident to q.

11



This operation is directly connected to the theory of chip-firing: we can associate to

O a divisor DO with entries DO(v) = indegO(v)−1, and performing a sink reversal at

vi we obtain the orientation O′ with associated divisor DO′ given by the firing of vi.

Mosesian observed that, provided an acyclic orientation O and a vertex q, there exists

an acyclic orientation O′ having q as the unique source, which is obtained from O by

sink reversals. The divisors associated to these q-rooted acyclic orientations are the

maximal noneffective q-reduced divisors. This connection between acyclic orientations

and chip-firing dates back at least to Björner, Lovász, and Shor’s original paper on

the topic [15].

Gioan [35] generalized this setup to arbitrary (not necessarily acyclic) orientations

by introducing the cocycle reversal, wherein all of the edges in a consistently oriented

cut can be reversed, and a dual cycle reversal, in which the edges in a consistently ori-

ented cycle can be reversed. Using these two operations, he defined the cycle-cocycle

reversal system as the collection of full orientations modulo cycle and cocycle rever-

sals, and proved that the number of equivalence classes in this system is equal to the

number of spanning trees of the underlying graph. He also showed that each orienta-

tion is equivalent in the cocycle reversal system to a unique q-connected orientation.

These are the orientations in which every vertex is reachable from q by a directed

path. Bernardi [11] combined these results, presenting an activity-preserving bijection

between the minimal q-connected orientations and spanning trees of a graph, where

minimal refers to a standardized choice of the orientation’s cyclic part. Recently

An, Baker, Kuperberg, and Shokrieh [4] showed that the divisors associated to the

q-connected orientations are precisely the break divisors of Mikhalkin and Zharkov

[58] offset by a chip at q. They then applied this observation to give a “volume proof”

of Kirchoff’s matrix-tree theorem via a polyhedral decomposition of Picg.

A limitation of the orientation-based perspective is that the divisor associated to
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an orientation will always have degree g − 1. In this work, we introduce a general-

ization of the cycle-cocycle reversal system for investigating partial orientations, thus

allowing for a discussion of divisors with degrees less than g − 1. The generalized

cycle-cocycle reversal system is defined by the introduction of edge pivots, whereby

an edge (u, v) oriented towards v is unoriented and an unoriented edge (w, v) is ori-

ented towards v (see Figure 1). Note that edge pivots, as with cycle reversals, leave

the divisor associated to a partial orientation unchanged. We demonstrate that this

additional operation is dynamic enough to allow for a characterization of linear equiv-

alence, that is, we prove that two partial orientations are equivalent in the generalized

cycle-cocycle reversal system if and only if the associated divisors are linearly equiv-

alent. Moreover, we use edge pivots and cocycle reversals to prove, via an explicit

construction, that a divisor with degree at most g− 1 is linearly equivalent to a divi-

sor associated to a partial orientation, unless D has negative rank, in which case we

obtain a certificate in the form of an acyclic partial orientation.

Dhar’s burning algorithm is one of the key tools in the study of chip-firing. Orig-

inally discovered in the context of the abelian sandpile model, Dhar’s algorithm pro-

vides a linear-time test for determining whether a given configuration is q-reduced.

There are variants of Dhar’s algorithm which produce bijections between q-reduced

divisors and spanning trees, some of which respect important tree statistics such as

external activity [24] or tree inversion number [65]. In the work of Baker and Norine,

this algorithm was implicitly employed in the proof of their core lemma RR1, which

states that if a divisor has negative rank then it is dominated by a divisor of de-

gree g − 1 divisor which also has negative rank. We present an “oriented” version

of Dhar’s algorithm whose iterated application provides a method for determining

whether a partial orientation is equivalent in the generalized cocycle reversal system

to an acyclic partial orientation or a sourceless partial orientation. We introduced

q-connected partial orientations and use them to prove that the Baker-Norine rank of

13



(a)	  

(b)	  

(c)	  

Figure 1: A partial orientation with (a) an edge pivot, (b) a cocycle reversal, and (c)
a cycle reversal.

a divisor associated to a partial orientation is one less than the minimum number of

directed paths which need to be reversed in the generalized cocycle reversal system to

produce an acyclic orientation. We then apply these results in providing a new proof

of the Riemann-Roch theorem for graphs. For this, we employ a variant of Baker and

Norine’s formal reduction involving strengthened versions of RR1 and RR2.

The Riemann-Roch theorem was extended to metric graphs and tropical curves

by Gathmann and Kerber [33], and Mikhalkin and Zharkov [58]. We are currently

writing an extension of the results from this chapter to the setting of metric graphs,

and in the final section 2.8 we present a preliminary description of this work.

Luo [52] investigated the notion of a rank-determining set of a metric graph, a

collection A of points such that the rank of any divisor can be computed by re-

moving chips only from points in A. As a second application of the path-reversal

description of ranks, we provide a new proof of Luo’s topological characterization
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of rank-determining sets as those which intersect every special open set. Our proof

involves a reduction to the case of full orientations and hence does not require any

techniques involving partial orientations of metric graphs.

We discuss a close relationship between network flows and divisor theory. A

polynomial-time method for computing break divisors is provided, combining the

observation (originally due to Felsner [31]) that max-flow min-cut can be used to con-

struct orientations, with An, Baker, Kuperberg, and Shokrieh’s reinterpretation of

break divisors as the q-connected orientations offset by a chip at q. We demonstrate

that the max-flow min-cut theorem is logically equivalent to the Euler characteristic

description of orientable divisors [4], and provide an extension of this result for par-

tial orientations. We conclude with an efficient algorithm for constructing a partial

orientation whose associated divisor is linearly equivalent to a given divisor, which

integrates max-flow min-cut and the oriented Dhar’s algorithm.

The perspective given by partial orientations is more “matroidal” than the divisor

theory of Baker and Norine. In future work, we plan to extend the ideas from this

chapter to partial reorientations of oriented matroids.

Acknowledgements:
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2.2 Notation and Terminology

Graphs: We take G to be a finite loopless undirected connected multigraph with

vertex set V (G) and edge set E(G). For X, Y ⊂ V (G), we write (X, Y ) for the set

of edges with one end in X and the other in Y . Therefore (X,Xc) is the cut defined
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by X. Given v ∈ V (G), we write outdegX(v) for the number of edges incident to v

leaving the set X. We take ∆ to be the Laplacian matrix ∆ = D − A, where D is

diagonal with (i, i)th entry deg(vi), the negative of the number of edges incident to

vi, and A is the adjacency matrix with (i, j)th entry equal to the number of edges

between vi and vj. A divisor, or a configuration of chips, is a function D : V (G)→ Z

and denote the set of divisors on G, by Div(G). We define Picd(G) to be the set of

divisors of degree d modulo linear equivalence. If a vertex vi fires, it send a chip to

each of its neighbors, losing its degree number of chips in the process, and we obtain

the new divisor D −∆ei. We define the firing of a set of vertices to be the firing of

each vertex in that set. We say that two divisors D and D′ are linearly equivalent,

written D ∼ D′, if there exists a sequence of firings bringing D to D′, i.e., D−D′ is in

the Z-span of ∆. A vertex v is in debt if D(v) < 0, and D is effective if no vertex is in

debt. The rank of a divisor is the quantity r(D) = minE≥0 deg(E)−1 such that there

exists no E ′ ≥ 0 with D − E ∼ E ′. The genus of a graph g = |E(G)| − |V (G)| + 1,

also known as the cyclomatic number of G, is the dimension of the cycle space of

G. The canonical divisor K is the divisor with with values K(vi) = deg(vi) − 2. A

divisor D is said to be q-reduced for some q ∈ V (G) if (i) D(v) ≥ 0 for all v 6= q, and

(ii) for any set A ⊂ V (G) \ {q}, firing A causes some vertex to be sent into debt. We

take the set of non-special divisors to be N = {ν : deg(D) = g − 1, r(ν) = −1}. Let

D1, D2 ≥ ~0 with disjoint supports such that D1 − D2 = D. We write deg+(D) and

deg−(D) for deg(D1) and deg(D2) respectively.

Orientations: An orientation of an edge e = (u, v) ∈ E(G) is a pairing (e, v).

In this case we say that e has tail u and head v, and is oriented away from u and

oriented towards v. We draw an oriented edge, i.e., directed edge as an arrow pointing

from u to v. A partial orientation O of a graph is an orientation of a subset of the

edges. A partial orientation is said to be full, or simply an orientation, if each edge
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in the graph is oriented. A directed path is a sequence of oriented edges such that

the head of each oriented edge is tail of its successor, and the heads of the edges are

all distinct. For a partial orientation O and a set X ⊂ V (G), we write X̄O for the

set of vertices reachable from X by a directed path in O, or simply X̄ when O is

clear from the context. The indegree of a vertex v in O, written indegO(v) or simply

indeg(v), is the number of edges oriented towards v in O. We associate to each partial

orientation a divisor DO with DO(v) = indeg(v)− 1. We note that the importance of

the −1 here is not expected to be immediately clear upon introduction. We say that

a divisor is partially orientable, resp. orientable, if it is the divisor associated to some

partial, resp. full, orientation. We say a vertex is a source in a partial orientation if

it has no incoming edges. We say that a partial orientation is acyclic if it contains

no directed cycles and sourceless if each vertex has an incoming edge. We note that

a partial orientation is sourceless if and only if the associated divisor is effective.

Given a partially orientable divisor D we denote by OD any partial orientation with

associated divisor D.

An edge pivot at a vertex v is an operation on a partial orientation O whereby an

edge oriented towards v is unoriented and an unoriented edge incident to v is oriented

towards v. A cocycle or cut in the graph, which we use interchangeably, is the set

of edges connecting a set of vertices A and its complement Ac. We say that a cut is

saturated if each edge in the cut is oriented. A cut is consistently oriented in O if the

cut is saturated and each edge in the cut is oriented in the same direction. We may

also refer to this cut as being saturated towards A if the cut is consistently oriented

towards A. We similarly define a consistently oriented cycle in O. A cut reversal,

resp. cycle reversal, in O is performed by reversing all of the edges in a consistently

oriented cut, resp. cycle. The cycle, resp. cocycle, resp. cycle-cocycle reversal systems

describe the collection of full orientations of a graph modulo cycle, resp. cocycle, resp.

cycle and cocycle reversals. The generalized cycle, resp. cocycle, resp. cycle-cocycle
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reversal systems are the previous systems extended to partial orientations by the

inclusion of edge pivots. If two partial orientations O and O′ are equivalent in the

generalized cycle-cocycle reversal system, we simply say that they are equivalent and

write O ∼ O′. A partial orientation is said to be q-connected if there exists a directed

path from q to every other vertex. We refer to those edges in a partial orientation O

which belong to a directed cycle as the cyclic part of O.

For a non-empty S ⊂ V (G), we take G[S] to be the induced subgraph on S and

let D|S be the divisor D restricted to S. We define χ(S) to be the Euler characteristic

of G[S], i.e., |S| − |E(G[S])|. Given a divisor D and a non-empty subset S ⊂ V (G),

we define χ(S,D) = deg(D|S) + χ(S), χ(G,D) = minS⊂V (G)χ(S,D), χ̄(S,D) =

|E(G)| − |E(G[Sc])| − |S| − deg(D|S), and χ̄(G,D) = minS⊂V (G)χ̄(S,D)

2.3 Generalized Cycle, Cocycle, and Cycle-Cocyle Reversal
Systems

The following two statements generalize results of Gioan [35, Proposition 4.10 and

Corollary 4.13] to the setting of partial orientations. That is, if we remove the words

“partial” and “generalized” from the following two statements, we obtain results of

Gioan.

Lemma 2.3.1. Two partial orientations O and O′ are equivalent in the generalized

cycle reversal system if and only if DO = DO′.

Proof. Clearly, if O and O′ are equivalent in the generalized cycle reversal system

then DO = DO′ . We now demonstrate the converse.

Suppose there exists some vertex v incident to an edge e which is oriented towards

v in O and is unoriented in O′. Because DO = DO′ , there exists another edge e′ which

is oriented towards v in O′ such that e′ is not also oriented towards v in O. We can

perform an edge pivot so that e′ becomes unoriented and e is now oriented towards v

in both O and O′. By induction on the number of of edges with different orientations
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in O and O′, we can assume that no such edge exists, and claim that the orientations

differ by cycle reversals.

Let e be some edge oriented towards v in O and away from v in O′. Again,

because DO = DO′ there exists another edge e′ which is oriented away from v in

O and towards v in O′ . We may perform a directed walk along edges in O which

are oriented oppositely in O′. Eventually this walk must reach a vertex which had

already been visited. This gives a cycle which is consistently oriented in O and O′

with opposite orientations. We can reverse the orientation of this cycle in O and

again induct on the number of edges with different orientation in O and O′, thus

proving the claim.

Definition 2.3.2. Given a directed path P from u to v in G, and an unoriented edge

e incident to v, we may perform successive edge pivots along P causing the initial

edge of the path to become unoriented. We call this sequence of edge pivots a Jacob’s

ladder cascade (see Figure 2).

Figure 2: A Jacob’s ladder cascade.

Theorem 2.3.3. Two partial orientations O and O′ are equivalent in the generalized

cycle-cocycle reversal system if and only if DO is linearly equivalent to DO′.
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Proof. Clearly, if O and O′ are equivalent in the generalized cycle-cocycle reversal

system then DO ∼ DO′ . We now demonstrate the converse.

By the previous lemma, it suffices to show that in the generalized cocycle reversal

system there exists O′′ ∼ O such that DO′′ = DO′ . Without loss of generality, we

may assume that DO′ = DO−∆f , where f ≥ 0 and there exists some v ∈ V (G) such

that f(v) = 0. This is because the kernel of the Laplacian of an undirected connected

graph is generated by the all 1’s vector. Let a and b be the minimum and maximum

positive values of f respectively. We take A = {v ∈ V (G) : f(v) ≥ a} = supp(f) and

B = {v ∈ V (G) : f(v) = b}.

We first claim that we may perform edge pivots so that the boundary of A does

not contain any edges oriented away from A. Suppose this is not true, let O be an

orientation equivalent by edge pivots which minimizes the number of edges oriented

towards Ac, and let e be an edge oriented away from A with head v ∈ Ac. Let X

denote the set of vertices reachable from v by a directed path in Ac. If any vertex in

X is incident to an unoriented edge, we can perform a Jacob’s ladder cascade so that

e is unoriented and the number of edges oriented away from A has decreased, thus

contradicting the minimality of O. The induced subgraph G[X] is fully oriented and

(X,Xc) is saturated. Moreover, the edges in (X,Xc)∩G[Ac] are all oriented towards

X and by assumption (X,Xc) ∩ (A,Ac) has at least one edge e oriented towards X.

This contradicts the fact that X has at least |(X,Xc) ∩ (A,Ac)| more chips in DO′

than DO which are fired from the set A. We remark that the previous statement

can be written compactly as χ̄(X,DO′) < 0, which is impossible as DO′ is partially

orientable. See Theorem 2.7 for a proof of the converse.

We now assume that none of the edges in (A,Ac) are oriented towards Ac. If

it were possible to perform edge pivots so that (B,Bc) was saturated towards B,

we could reverse this cut and induct on deg(f). Therefore we assume that this is

not the case, and take O be an orientation which is equivalent by edge pivots and
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minimizes the number of edges oriented away from B. It follows by the previous

claim that B̄ is contained in A. Moreover, the boundary of B̄ is saturated towards B̄,

otherwise we could perform a Jacob’s ladder cascade decreasing the number of edges

in (B,Bc) oriented towards Bc, therefore we can reverse the cut (B̄, B̄c) and induct

on deg(f).

Corollary 2.3.4. Let O and O′ be partial orientations with O′ acyclic. Then O and

O′ are equivalent in the generalized cycle-cocycle reversal system if and only if they

are equivalent in the generalized cocycle reversal system.

Proof. It is clear that if O and O′ are equivalent in the generalized cocycle reversal

system then they are equivalent in the generalized cycle-cocycle reversal system. For

the converse, suppose that O and O′ are equivalent in the generalized cocycle reversal

system. By the proof of Theorem 2.3.3, O is equivalent in the generalized cocycle

reversal system to some partial orientation O′′ such that DO′′ = DO′ . Then by the

proof of Lemma 2.3.1, O′′ is equivalent to O′ in the generalized cycle reversal system

using only edge pivots as O′ is acyclic.

In the following sections, we will be interested in the question of when a partially

orientable divisor DO is linearly equivalent to a partially orientable divisor DO′ where

O′ is acyclic. By Corollary 2.3.4, it is sufficient to restrict our attention to the

generalized cocycle reversal system.

2.4 Oriented Dhar’s Algorithm

Let D be a divisor such that D(v) ≥ 0 for all v 6= q. A priori we would need to check

firing every subset of V (G) \ {q} to determine whether D is q-reduced, but Dhar’s

algorithm [26] guarantees that we only need to check a maximal chain of sets. In

Dhar’s algorithm, we begin by firing S = V (G) \ {q}. At each each step, if firing S

causes some vertex v to be sent into debt, we remove v from S and continue. Dhar
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showed that the algorithm terminates at the empty set if and only if D is q-reduced

(recurrent in his setting). If the algorithm terminates early, we obtain a set which

can be fired without causing any vertex to be sent into debt, thus bringing the divisor

closer to being reduced. We now extend this idea to the generalized cocycle reversal

system.

Algorithm 2.4.1. Oriented Dhar’s Algorithm

Input: A partial orientation O containing a directed cycle and a source.

Output: A partial orientation O′ with DO′ = DO which is either acyclic or certifies

that no such acyclic partial orientation exists.

Initialize by taking X to be the set of sources in O. At the beginning of each

step, look at the cut (X,Xc) and perform any available edge pivots at vertices on

the boundary of Xc which bring oriented edges into the cut directed towards Xc.

Afterwards, for each v on the boundary of Xc with no incoming edge contained in

G[Xc], add v to X. If no such vertex exists, output O′.

Correctness: At each step, there are no edges oriented towards X. To prove

this, we first observe that X satisfies this condition at the beginning of the algorithm,

and note that the vertices added to X at each step do not cause any such edge to

be introduced because any vertex added does not have an incoming edge in G[Xc].

It follows that X will never contain a vertex from a directed cycle: when a vertex

v from a cycle hits the boundary of Xc, either the cycle is broken or v stays in Xc.

Moreover, the algorithm will never construct directed cycles. Thus, if the algorithm

terminates at X = V (G), we obtain O′ which is acyclic. If the algorithm terminates

with X 6= V (G), then O′ has a cut saturated towards Xc and G[Xc] is sourceless.

It follows by Lemma 2.3.1 that an acyclic partial orientation O′ with DO′ = DO

is obtainable from O by edge pivots. Any other orientation O′′ obtained from O′
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by edge pivots will still have G[Xc] sourceless and therefore contain a cycle: If we

perform a directed walk backwards in G[Xc], this walk will eventually cycle back on

itself.

Corollary 2.4.2. A partially orientable divisor D is the divisor associated to an

acyclic partial orientation O if and only if there exists no set A ⊂ V (G) which is out

of debt and can fire without sending a vertex into debt, i.e., it is reduced with respect

to the set of sources in O.

Proof. Suppose that D is partially orientable. Run the oriented Dhar algorithm 2.4.1

on D. We have that D is not the divisor associated to an acyclic orientation if and

only if the oriented Dhar’s algorithm produces a set Xc ⊂ V (G) such that each

vertex v ∈ Xc has at least outdegXc(v) + 1 edges oriented inward. It follows that

D(v) ≥ outdegXc(v), hence firing the set Xc does not cause any vertex to be sent

into debt.

Algorithm 2.4.3. Unfurling Algorithm

Input: A partial orientation O containing a directed cycle and a source.

Output: A partial orientation O′ equivalent to O in the generalized cocyle reversal

system which is either acyclic or sourceless.

At the kth step, run the oriented Dhar’s algorithm. Stop if X = V (G), otherwise

reverse the consistently oriented cut given by Dhar and reset X (see Figure 3).

Correctness: This follows directly from the correctness of the oriented Dhar’s

algorithm.
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Termination: The collection of partially orientable divisors linearly equivalent to

DO is finite, hence the collection of firings which defines them is as well, modulo the all

1’s vector which generates the kernel of the Laplacian ∆. Let Ok be the orientation

obtained after the k-th step of the unfurling algorithm, that is, after the k-th cut

reversal, and let fk be such that DOk = DO − ∆fk. We prove that if the algorithm

were to persist, it would require vertices a and b such that fk(a)−fk(b) diverges with

k. Let Ak be the set of sources in Ok and Bk be the set of vertices belonging to the

directed cycles in Ok. Observe that the sets Ak and Bk are both weakly decreasing

with k: vertices never become sources, and cycles are never created. Therefore, given

any a ∈ Ak and b ∈ Bk for all k, the value fk+1(b)−fk+1(a) = fk(b)−fk(a)+1, which

diverges with k.

Figure 3: The unfurling algorithm applied to the partial orientation on the top left,
terminating with the acyclic partial orientation on the bottom right.

Baker and Norine described the following game of solitaire [9, Section 1.5 ]. Sup-

pose you are given a configuration of chips, can you perform chip-firing moves to

bring every vertex out of debt? There is a natural version of this game for partial

orientations: given a partial orientation, can you find an equivalent partial orientation
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which is sourceless? Interestingly, there exists a dual game in this setting, which does

not make much sense in the context of chip-firing: given a partial orientation, can

you find an equivalent partial orientation which is acyclic? Our unfurling algorithm

gives a winning strategy for at least one of the two games. We now show that winning

strategies in these games are mutually exclusive.

Theorem 2.4.4. A sourceless partial orientation O is not equivalent to an acyclic

partial orientation O′.

Proof. First we observe that O necessarily contains a directed cycle. Indeed, if we

perform a directed walk backwards starting at an arbitrary vertex, this walk must

eventually reach a vertex which has already been visited, demonstrating the existence

of a directed cycle in O. Suppose for the sake of contradiction that DO ∼ DO′ with

O′ an acyclic partial orientation and that DO −∆f = DO′ with f ≥ 0 and f(v) = 0

for all v ∈ S ⊂ V (G) with S non-empty. It follows that even if it were possible

to perform edge pivots in O′ at each vertex on the boundary of S to saturate the

cut (S, Sc) towards S, we will still have G[S] sourceless, implying the existence of a

directed cycle in S, a contradiction.

Before describing our algorithm for constructing partial orientations, we first in-

troduce a modified version of the unfurling algorithm.

Algorithm 2.4.5. Modified Unfurling Algorithm

Input: A partial orientation O and a set of sources S.

Output: A partial orientation O′ equivalent to O in the generalized cocyle reversal

system which either has an edge oriented toward some vertex in S or is acyclic and

certifies that no such orientation exists.

Initialize with S := X0. We proceed as in the unfurling algorithm, but with the

following changes. At the kth step, after performing all available edge pivots, if the
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edges in (Xk, X
c
k) are consistently oriented towards Xc

k, reverse this cut and reset Xk.

Otherwise, take some v on the boundary of Xc
k incident to an unoriented edge in

(Xk, X
c
k), and set Xk+1 := Xk ∪ {v}.

Correctness: If the algorithm terminates with X = V (G), then the orientation

O′ produced is acyclic by an argument similar to the one given for the correctness of

the oriented Dhar’s algorithm. We next prove that this acyclic orientation certifies

there is no partial orientation equivalent to O in the generalized cocycle reversal

system with an edge oriented towards some v ∈ S. Without loss of generality, we

assume that no cut is reversed inO prior to the termination of the algorithm. Towards

a contradiction, assume there exists some O′′ equivalent to O by edge pivots and a

set Y with S ⊂ Y such that the edges in (Y, Y c) are consistently oriented towards Y c.

Let k be the largest integer such that Xk ⊂ Y . It follows that there is some vertex

v ∈ Xk ∩ Y with v /∈ Xk+1. This vertex was added to Xk because it was incident

to an unoriented edge in (Xk, X
c
k). In O′′, the vertex v must also be incident to an

unoriented edge contained in (Y, Y c), a contradiction.

Algorithm 2.4.6. Construction of partial orientations

Input: A divisor D with deg(D) ≤ g − 1.

Output: A divisor D′ ∼ D and a partial orientation O such that D′ = DO or

D′ ≤ DO with O acyclic certifying that D � D′′ partially orientable.

We work with partial orientation-divisor pairs (Oi, Di) such that at each step,

DOi + Di ∼ D. Initialize with (O0, D0) = (O′, D − DO′), where O′ is an arbitrary

partial orientation. At the ith step, let Ri be the negative support of Di, Si be the

positive support in Di, and Ti be the set of vertices incident to an unoriented edge in

Oi. While Di 6= ~0, we are in one of the two following cases:
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Case 1: The set Si is non-empty and Oi is not a full orientation.

Take s ∈ Si. If s̄∩Ti 6= ∅, perform a Jacob’s ladder cascade to free up an unoriented

edge e incident to s. Orient e towards s, set Di+1 = Di − (s), and updated Oi+1.

Eventually no such paths exists, and either Oi is a full orientation or the cut (s̄, s̄c) is

saturated towards s̄. In the latter case, reverse the cut, update s̄, and continue. By

induction on the size of |V (G) \ s̄|, this process will eventually terminate.

Case 2: The sets Si and Ri are both non-empty, and Oi is a full orientation.

Let s ∈ S. If s̄∩Ri 6= ∅, reverse a path from s to r ∈ Ri, set Di+1 = Di− (s)+(r),

and update Oi+1. Otherwise, the cut (s̄, s̄c) is saturated towards s̄. Reverse the cut,

update s̄, and continue.

Case 3: The set Si is empty and the set Ri is non-empty.

Apply the modified unfurling algorithm 2.4.5 to Oi with S := Ri to find an

equivalent orientation O in generalized cocycle reversal system which is either acyclic

or has an edge oriented towards some r ∈ Ri. In the latter case we may unorient an

edge pointing towards r, set Di+1 := Di + (r), update Oi+1, and continue. Thus we

may take O to be acyclic and observe that DO ≥ DO +Di ∼ D.

Corollary 2.4.7 (An-Baker-Kuperberg-Shokrieh, Theorem 4.7 [4]).

Every divisor D of degree g − 1 is linearly equivalent to an orientable divisor.

Proof. Suppose that D is not linearly equivalent to an orientable divisor. It follows

from Algorithm 2.4.6 that D is linearly equivalent to D′ ≤ DO, where O is an acyclic
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partial orientation. But then g−1 = deg(D′) ≤ deg(DO) ≤ g−1, therefore D′ = DO,

a contradiction.

Corollary 2.4.8. An effective divisor of degree at most g − 1 is linearly equivalent

to a divisor associated to a sourceless partial orientation.

Proof. When applying Algorithm 2.4.6 to an effective divisor beginning with the

empty orientation, we will remain in Case 1. First observe that each vertex will

eventually receive an edge oriented inwards. When performing cut reversals in order

to obtain a directed path from s to an undirected edge, we have that s is the only

vertex which may have all its incoming edges removed. Immediately after performing

a Jacob’s ladder cascade, we orient an edge towards s, and we update Oi+1.

Theorem 2.4.9. A divisor D with degree at most g − 1 is linearly equivalent to a

partially orientable divisor DO if and only if r(D +~1) ≥ 0.

Proof. If D is linearly equivalent to a partially orientable divisor DO, then DO + ~1

is effective. Conversely, suppose that D ∼ D′ ≥ −~1. If we apply Algorithm 2.4.6

starting with the empty orientation, we will always be in Case 1 and the algorithm

will necessarily succeed in producing a partial orientation O with DO ∼ D′ ∼ D.

In section 2.7 we will describe a second method for constructing partial orienta-

tions which applies max-flow min-cut.

2.5 Directed Path Reversals and the Riemann-Roch For-
mula

In this section we investigate directed path reversals and their relationship to Riemann-

Roch theory. The Baker-Norine rank of a divisor associated to a partial orientation

is shown to be one less than the minimum number of directed paths which need to be

reversed in the generalized cocycle reversal system to produce an acyclic orientation.

To prove this characterization, we introduce q-connected partial orientations, which
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generalize the q-connected orientations of Gioan [35]. We then apply this character-

ization of rank, together with results from section 2.4, to give a new proof of the

Riemann-Roch theorem for graphs. Baker and Norine’s original argument proceeds

by a formal reduction to statements which they call RR1 and RR2, we instead employ

a variant of this reduction introducing strengthened versions of RR1 and RR2. We

note that while Strong RR2 is an immediate consequence of Riemann-Roch, Strong

RR1 is not, and appears to be new to the literature.

Every full orientation is equivalent in the cocycle reversal system to a q-connected

orientation [4, Theorem 4.7] and [35, Proposition 4.7]. A simple proof proceeds as

follows: suppose that O is a full orientation which is not q-connected, then q̄ 6= V (G)

and (q̄, q̄c) is saturated towards q̄. We can reverse this cut and induct on |q̄c|. In

Theorem 2.5.5, we prove a generalization of this statement for divisors of degree less

than g − 1.

Lemma 2.5.1 (RR1). If r(D) = −1 then D ≤ D′ with deg(D′) = g− 1 and r(D′) =

−1.

Proof. We claim that if r(D) = −1 then there exists D′ ∼ D such that D′ ≤ DO

where O is a full acyclic orientation. By Theorem 2.4.4 and Corollary 2.4.8 this is

sufficient to establish the Lemma.

We first argue that if r(D) = −1 then deg(D) ≤ g− 1. Suppose that deg(D) ≥ g,

and let D′ = D − E with deg(D′) = g − 1 and E ≥ ~0. Let O be an orientation with

DO ∼ D′ as guaranteed by Corollary 2.4.7. Without loss of generality, we take O to

be q-connected with q ∈ supp(E). It follows that D ∼ DO + E ≥ 0 and r(D) ≥ 0.

Given D with r(D) = −1 we can apply Algorithm 2.4.6 followed by Algorithm

2.4.3 to obtain D′ ∼ D such that D′ ≤ DO where O is an acyclic partial orientation.

It is a classical fact, whose proof we now give, that any acyclic partial orientation can

be greedily extended to a full acyclic orientation. Let e = (u, v) be some unoriented

edge in O and suppose that both orientations of e cause a directed cycle to appear.
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This implies that there exist directed paths in O from u to v and v to u, hence a

directed cycle was already present in O, a contradiction.

Theorem 2.4.4 and Corollary 2.4.8 were combined in the previous argument to

show that an effective divisor is not linearly equivalent to a divisor associated to an

acyclic partial orientation. In the case of full orientations, this argument is “dual” to

the one which has been given in the past [23, Proposition 6].

Corollary 2.5.2.

r(D) = min
ν∈N

deg+(D − ν)− 1

Proof. Let E1, E2 ≥ ~0 be effective divisors such that D−E1 +E2 = ν with supp(E1)∩

supp(E2) = ∅ and ν ∈ N achieving the minimum value of deg+(D− ν)− 1. We have

that deg+(D− ν) = deg(E1) and D−E1 = ν−E2 so r(D−E1) = −1, which implies

r(D) ≤ deg+(D − ν)− 1.

Take E1 ≥ ~0 with r(D) = deg(E1)− 1 and r(D−E1) = −1. By RR1 there exists

some effective divisor E2 such that D − E1 + E2 = ν for some ν ∈ N . We observe

that supp(E1) ∩ supp(E2) = ∅, thus r(D) ≥ deg+(D − ν)− 1.

Lemma 2.5.3 (Strong RR1).

If deg(D) ≤ g − 1 then there exists a divisor D ≤ D′ with deg(D′) = g − 1 and

r(D) = r(D′).

Proof. Let E1, E2 ≥ 0 be such that E1−E2 = D−ν which achieves the minimum value

of deg+(D−ν) for ν ∈ N . Now take 0 ≤ E ≤ E2 such that deg(E) = deg(g−1−D).

We claim that r(D+E) = r(D). Clearly r(D+E) ≥ r(D), and the reverse inequality

follows by Corollary 2.5.2 as r(D+E) = minν∈N deg+(D+E−ν) ≤ minν∈N deg+(D−

ν) = r(D).
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Lemma 2.5.4. A partial orientation O which is either sourceless or has q as its

unique source is equivalent in the generalized cocycle reversal system to a q-connected

partial orientation O′.

Proof. Suppose there exists a potential edge pivot at a vertex on the boundary of

q̄c which would bring an oriented edge from G[q̄c] into the cut pointing towards q̄c.

Performing this edge pivot would enlarge q̄, therefore by induction on |q̄c|, we assume

that no such edge pivot is available. Because O is sourceless, we conclude that the

cut (q̄, q̄c) is saturated towards q̄. We can then reverse this cut and again induct on

|q̄c|.

Theorem 2.5.5. A divisor D with deg(D) ≤ g− 1 is linearly equivalent to a divisor

associated to a q-connected partial orientation if and only if r(D + (q)) ≥ 0.

Proof. The necessity of the condition is clear. Sufficiency follows by the proof of

Corollary 2.4.8 and Lemma 2.5.4.

We remark that the q-rooted spanning trees are precisely the q-connected partial

orientations associated to the divisor −(q). Additionally, the q-connected partial

orientations associated to ~0 are the divisors obtained from q-rooted spanning trees by

orienting an new edge towards q, i.e., they are the directed spanning unicycles.

Any two q-connected full orientations which are equivalent in the cycle-cocycle

reversal system are equivalent in the cycle reversal system, i.e., they have the same

associated divisors. This theorem does not extend to the setting of partial orienta-

tions, as the example in Figure 4 shows.

Lemma 2.5.6. A divisor D with D(q) = −1 is q-reduced if and only if D is the

divisor associated to a q-connected acyclic partial orientation O.

Proof. It is follows by Corollary 2.4.2 that if O is a q-connected acyclic partial orienta-

tion, then DO is q-reduced. Conversely, supposing that D is q-reduced, it again follows
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q	   q	  q	   q	  

Figure 4: A sequence of equivalent partial orientations. The left and right partial
orientations are both q-connected, but have different associated divisors. The partial
orientation on the right is a directed spanning unicycle.

by Corollary 2.4.2 that there exists some acyclic partial orientation OD. Following

the argument of Lemma 2.5.4, we can perform edge pivots to make OD q-connected

without performing any cut reversals, otherwise, D would not be q-reduced.

Theorem 2.5.7. The Baker-Norine rank of a divisor DO associated to a partial

orientation O is one less than the minimum number of directed paths which need to

be reversed in the generalized cocycle reversal system to produce an acyclic orientation.

Proof. Let Nk = {D ∈ Div(G) : deg(D) = k, r(D) = −1} so that Ng−1 = N . We

claim that

r(D) = min
ν∈Ndeg(D)

deg+(D − ν)− 1.

The formula follows by the same argument as Corollary 2.5.2, which we omit. Let

fD = D − ν for ν ∈ Ndeg(D) which achieves the minimum value of deg+(D − ν) − 1.

By assumption deg(fD) = 0 and we can write

fD =
r(D)∑
i=0

(qi)− (pi).

By Corollary 2.5.5 there exists a partial orientation O which is q0-connected and

DO ∼ D. We can reverse a path from q0 to p0 to obtainO′ with DO′ = DO+(q0)−(p0).

Proceeding in this way, we arrive an orientation O′′ with DO′′ ∼ D + fD. Therefore,
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r(DO′′) = −1 and by the proof of RR1, O′′ is equivalent in the generalized cocycle

revesal system to an acyclic orientation. The reverse inequality follows similarly. See

Figure 5 for an illustrating example.

Corollary 2.5.8. The Baker-Norine rank of a divisor DO associated to a partial

orientation O is the maximum number k such that the reversal of any k directed

paths in the generalized cocycle reversal system does not produce an acyclic partial

orientation.

Proof. This is a tautological consequence of Theorem 2.5.7.

Theorem 2.5.7 and Corollary 2.5.8 hold in the generalized cycle-cocyle reversal

system as well, which follows by Corollary 2.3.4 and Theorem 2.5.5

Figure 5: A directed path whose reversal produces an acyclic orientation. By Theo-
rem 2.5.7 it follows that the divisor associated to the top orientation has rank 0.

Corollary 2.5.9 (Strong RR2). If deg(D) = g – 1 then r(D) = r(K-D).

Proof. IfD is equivalent to an orientable divisorD′ thenK−D is equivalent toK−D′,

and these two divisors are coming from opposite orientations. It is clear by the path-

reversal interpretation of rank for orientable divisors that r(D′) = r(K −D′).

Theorem 2.5.10 (Baker-Norine [9]). For every divisor D on G,

r(D)− r(K −D) = deg(D)− g + 1.
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Proof. Either D or K−D has degree at most g−1, therefore without loss of generality,

we take D to be a divisor with deg(D) ≤ g − 1. By Strong RR1, there exits E ≥ 0

such that D+E = D′ with r(D′) = r(D), and by Strong RR2 we know that r(D′) =

r(K −D′). To prove the theorem, it suffices to show that

r(K −D)− r(K −D′) = deg(K −D)− g + 1 = deg(E).

We know that

r(K −D)− r(K −D′) ≤ deg(K −D)− g + 1 = deg(E),

and for the sake of contradiction, we suppose that

r(K −D)− r(K −D′) < deg(E).

Let K −D′′ = K −D − E ′ with E ′ ≥ 0, deg(E) = deg(E ′), and

r(K −D)− r(K −D′′) = deg(K −D)− g + 1 = deg(E ′).

We have D ≤ D + E ′ = D′′, but

r(D′′) = r(K −D′′) < r(K −D′) = r(D′) = r(D),

a contradiction, thus proving the theorem.

For a comparison with other proofs of the Riemann-Roch formula for graphs which

appear in the literature, we refer the reader to [2, 3, 9, 23, 55, 75].

2.6 Luo’s Theorem on Rank-Determining Sets

For an introduction to the theory of linear equivalence of divisors on metric graphs,

see section 3.2. Luo [52] defined a set of points A to be rank-determining for a metric

graph Γ if when computing the rank of any divisor on Γ, we only need to subtract

chips from points in A. A special open set U is a nonempty, connected, open subset

of Γ such that every connected component X of Γ \ U has a boundary point p with
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outdegX(p) ≥ 2. Luo introduced a metric version of Dhar’s burning algorithm and

applied this technique to obtain the following beautiful result, which we reprove using

the language of acyclic orientations and directed path reversals.

In what follows, we work with the canonical minimal model of Γ, whose vertex set

is taken to be the collection of points with a number of tangent directions different

from two.

Before presenting the proof, we first note a motivating special case: given an

acyclic orientation O of a metric graph and an edge e in which the orientation changes

direction, we can “push” the change of direction to one of the two incident vertices

without creating a directed cycle. This follows by the same argument which was

used in our proof of RR1 for showing that any acyclic partial orientation may be

extended greedily to a acyclic full orientation. By the reduction at the beginning of

Theorem 2.6.1, this observation may be converted into a proof that the vertices of Γ

are rank-determining, which is [52, Theorem 1.5]. See Figure 6.

Figure 6: A full orientation of a metric graph and two other orientations obtained
by “pushing” the change of orientation along the middle edge to the right and left.
The push to the right causes directed cycles to appear while the push to the left does
not.

Theorem 2.6.1 (Luo [52], Theorem 3.16). A finite subset A ⊂ Γ is rank-determining

if and only if it intersects every special open set U in Γ.

Proof. We first give a reduction to the study of negative rank divisors. Suppose that

E is effective, r(D−E) = −1, deg(E) = r(D)+1, and q ∈ supp(E). The set A is rank-

determining if and only if there exists some a ∈ A such that r(D−(E−(q)+(a)) = −1.
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This follows by induction on deg(E|Γ\A). Therefore, we can reduce to the case of

showing that for every D with r(D) = −1 and every point q ∈ Γ, there exists some

a ∈ A with r(D + (q)− (a)) = −1.

By the (metric version) of RR1, if a divisor has degree at least g, it has nonnegative

rank. Therefore, we need only study divisors of degree at most g − 1. Let D be a

divisor such that deg(D) ≤ g − 1, r(D) = −1, and ν ∈ N be such that D ≤ ν. If

for every q ∈ Γ, there exists some a ∈ A such that ν + (q)− (a) ∈ N , then the same

holds for D. Conversely, we know that if A is rank determining for all divisors with

degree at most g− 1 then it is certainly rank determining for divisors of degree g− 1.

Therefore, A is rank determining if and only if for every ν ∈ N and every q ∈ Γ,

there exists some a ∈ A such that ν + (q)− (a) ∈ N

Suppose that A is not rank-determining. By the previous reductions, we may

assume that there exists an acyclic orientation O and a point q ∈ Γ such that DO +

(q) − (a) has nonnegative rank for each a ∈ A. Taking O to be q-connected [4,

Theorem 4.4], this says that whenever a path from q to A is reversed, it causes a

directed cycle to appear in the graph. Equivalently, there exist at least two paths

from q to each point of A. Let U be the set of points which are reachable from q by

a unique directed path. We claim that U is a special open set not intersecting A.

Nonempty: The point q ∈ U , otherwise there would be a path from q to itself,

implying the existence of a directed cycle.

Connected: Every point in U lies on a path P from q. Moreover, P ⊂ U , hence

by transitivity, ignoring orientation, U is connected.

Open: We prove that the complement is closed. Suppose we have a sequence S of

points in U c converging to some point p. There exists some convergent subsequence
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S ′ of S which is contained in an edge e incident to p. If we go far enough along in S ′

we may assume that all of the points in the sequence are contained in a consistently

oriented segment of e and that all of the points on this segment have degree 2 in Γ. If

this segment is oriented towards p, it is clear that p is contained in U c. On the other

hand, if the edge is oriented away from p, the points in our sequence must be twice

reachable through p, and so p is in U c.

Special: If U is not special then there exists some connected component X of U c

with outdegX(p) = 1 for all boundary points p of X. Not all of these points can be

sinks in O, otherwise there would be no way of reaching the interior of X from q and

this would contradict q-connectivity. Let p be a boundary point which is not a sink

in O. Because p ∈ U c, p is twice reachable from q, as are all of the points in a small

neighborhood of p, but this contradicts the assumption that p is a boundary point of

U .

Conversely, if we are given a special open set U not intersecting A, we may con-

struct an acyclic orientation O for which A is not rank-determining. Let q ∈ U and

take a q-connected acyclic orientation of U . It follows because U is connected and

open that O will have sinks at each of the boundary points of U .

For any connected componentX of U c and boundary point p ∈ X with outdegX(p) ≥

2 , we can construct a p-connected acyclic orientation for X. Proceeding in this way

for each component X, we obtain a full acyclic orientation O. There exist two paths

from q to a for each a ∈ A, hence the reversal of any path from q to a will cause

a directed cycle to appear in Γ. This implies that A is not rank-determining for

DO + (q).
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2.7 Max-Flow Min-Cut and Divisor Theory

In this section we investigate the intimate relationship between network flows, a topic

of fundamental importance in combinatorial optimization, and the theory of divisors

on graphs. We recall that a network N is a directed graph ~G together with a source

vertex s ∈ V (~G), a sink vertex t ∈ V (~G), and a capacity function c : E(~G) → R≥0.

A flow f on N is a function f : E(~G)→ R≥0 such that f(e) ≤ c(e) for all e ∈ E(~G)

and ∑
e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e)

for all v 6= s, t, where E+(v) and E−(v) are the set of edges pointing towards and

away from v, respectively. Let X ⊂ V (~G) such that s ∈ X. A simple calculation

shows that ∑
v∈X

(
∑

e∈E−(v)

f(e)−
∑

e∈E+(v)

f(e)) =

∑
e∈〈X,Xc〉

f(e)−
∑

e∈〈Xc,X〉
f(e)),

where 〈X,Xc〉 and 〈Xc, X〉 are the set of edges in the cut (X,Xc) directed towards

Xc and X respectively. This sum is independent of the choice of X, in particular it

is equal to ∑
e∈E−(s)

f(e)−
∑

e∈E+(s)

f(e) =
∑

e∈E+(t)

f(e)−
∑

e∈E−(t)

f(e),

which we call the the flow value from s to t.

One may view a flow as a fluid flow from s to t through a system of one-way

pipes where the capacity of a given edge represents the maximum rate at which water

can travel through the pipe. The flow across any given cut separating s from t is

restricted by the sum of the capacities of the edges crossing a cut (X,Xc) towards

t, which we denote c(X). The “max-flow min-cut” theorem, abbreviated as MFMC,

states that equality is obtained, that is, the greatest flow from s to t is equal to the

minimum capacity of a cut separating s from t. This theorem was first proven by Ford

and Fulkerson [32] in their investigation of the max flow problem posed by Harris and
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Ross [?] in the classified RAND document concerning military railroad transportation

in the Soviet Union, which was declasified in 1999 per Alexander Schrijver’s request.

The result was independently discovered by Elias, Feinstein, and Shannon [29], and

Kotzig [44] the following year. We refer the reader to Schrijver [69], for an interesting

account of the problem’s history.

There are two standard methods of proving MFMC, the first is to demonstrate

that a flow of maximum value can be obtained greedily by so-called augmenting

paths which leads to the classical Fork-Fulkerson algorithm, and the second is to

rephrase the max flow problem as a linear program and establish MFMC via linear

programming duality. We remark that it has recently been shown that this theorem

may be also be viewed as a manifestation of directed Poincaré duality [34].

s	   t	  

2	  

1	  

1	  

2	  

7	  

3	  

5	  

s	   t	  

1	  

1	  

1	  

2	  

3	  

2	  

2	  

Figure 7: Top: A network with source s, sink t, capacities listed next to edges, and
a minimum cut of size 4 colored red. Bottom: A maximum flow on this network with
flow value 4. Note that the flow along each edge in the minimum cut is equal to the
capacity of that edge.

Momentarily switching gears, we mention the following theorem which character-

izes the collection of orientable divisors on a graph in terms of Euler characteristics.

This result has been rediscovered multiple times, but appears to originate with S. L.
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Hakimi[39]. It might be natural to view his theorem historically as an extension to

arbitrary graphs of Landau’s characterization of score vectors for tournaments [45],

i.e., divisors associated to orientations of the complete graph, although it seems that

Hakimi was unaware of Landau’s result which was presented in a paper on animal

behavior a decade earlier.

Recall we define the Euler characteristic of G[S] to be χ(S) = |S| − |E(G[S])|.

Given a divisor D and a non-empty subset S ⊂ V (G), we define

χ(S,D) = deg(D|S) + χ(S)

χ(G,D) = minS⊂V (G)χ(S,D)

χ̄(S,D) = |E(G)| − |E(G[Sc])| − |S| − deg(D|S)

χ̄(G,D) = minS⊂V (G)χ̄(S,D).

Theorem 2.7.1 (Hakimi[39], Felsner[31], An-Baker-Kuperberg-Shokrieh[4]). A divi-

sor D of degree g − 1 is orientable if and only if χ(G,D) ≥ 0.

There is a “dual” formulation of this theorem which is better suited for our ap-

proach.

Lemma 2.7.2. Let D be a divisor of degree g − 1. We have that χ(G,D) ≥ 0 if and

only if χ̄(G,D) ≥ 0.

Proof. Informally, χ(S,D) ≥ 0 says that the total number of chips in S should be

at least as large as the contribution of the edges in G[S], and χ̄(S,D) ≥ 0 says that

the total number of chips in S should not exceed contribution of the edges in G[S]

and the cut (S, Sc). Because deg(D) = g − 1, we have that χ(S,D) ≥ 0 if and only

if χ̄(Sc, D) ≥ 0. The lemma follows by taking the minimum of these values over all

S ⊂ V (G).
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Before providing a proof of Theorem 2.7.1, we remark that the result has a similar

flavor to MFMC; it states that a certain obviously necessary condition is also suffi-

cient. The following proof originally due to Felsner (and rediscovered independently

by the author) reduces the problem to an application of MFMC.

Proof. 2.7.1

Let D be a divisor of degree g − 1 satisfying χ(G,D) ≥ 0. By Lemma 2.7.2 it

follows that χ̄(G,D) ≥ 0. We now demonstrate by explicit construction that this

condition is sufficient to guarantee the existence of an orientation OD. Let O be

an arbitrary orientation and take D̃ = D − DO. Denote the negative and positive

support of D̃ as S and T respectively. Add two auxiliary vertices s and t with directed

edges from s to each vertex s′ ∈ supp(S) with capacity D̃(s′) and from each vertex

t′ ∈ supp(T ) to t with capacity −D̃(t′). Assign each edge in O capacity 1, and take

N be the corresponding network.

We claim that there is a flow from s to t with flow value deg+(D̃) = deg−(D̃).

Any s − t cut in N is determined by a set X ⊂ {V (G) ∪ {s}}. By MFMC, to show

that that such a flow exists, we need to that show the minimum capacity of a cut is at

least deg+(D̃). For each set X ⊂ V (G) let X ∩T = T1, T \T1 = T2, X ∩S = S1, and

S\S1 = S2. The capacity of the cut, c(X) is equal to deg−(D̃|S2)+deg+(D̃|T1)+χ̄(X\

{s}, DO). We claim that χ̄(X \ {s}, DO) ≥ deg−(D̃|S1)− deg+(D̃|T1). Supposing the

claim, we have that c(X) ≥ deg−(D̃|S2) + deg+(D̃|T1) + deg−(D̃|S1)− deg+(D̃|T1)) =

deg−(D̃|S2) + deg−(D̃|S1) = deg−(D̃|S) as desired.

To prove that χ̄(X \ {s}, DO) ≥ deg−(D̃|S1) − deg+(D̃|T1) we note that χ̄(X \

{s}, DO) = χ̄(X \ {s}, D) + deg−(D̃|S1) − deg+(D̃|T1) and χ̄(X \ {s}, D) ≥ 0 by

assumption, and the claim follows. Now let f be an s − t flow in N with flow value

deg+(D̃|S). To complete the proof we simply reverse the direction of each edge in O

in the support of f to obtain a reorientation of N which when restricted to G gives

a desired orientation OD. See Figure 8 for an illustrating example.
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Figure 8: (a) Left: An orientation O of a graph G Right: The divisor DO on G,
(b) A divisor D on G, (c) The network N , with auxiliary vertices s and t. The set
S is colored blue, the set T is colored green, and the additional edges are labeled by
their capacities. The remaining edges have capacity 1. The edges colored red are the
support of a maximal flow f . (d) An orientation OD obtained by reversing the flow
f on N and then restricting to G.

We now demonstrate the converse implication. To the best of the author’s knowl-

edge, this argument has not appeared previously in the literature.

Theorem 2.7.3. The max-flow min-cut theorem is equivalent to Theorem 2.7.1.

Proof. The previous argument shows that max-flow min-cut implies the Euler char-

acteristic description of orientable divisors Theorem 2.7.1. We now demonstrate that
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Theorem 2.7.1 can be applied in proving MFMC. Let N be some network with inte-

ger valued capacities which we can view as an orientation on a multigraph G where

the number of parallel edges is given by the capacities. Suppose that the minimum

capacity of a cut between s and t is of size k. Let D̃ = k(t) − k(s). We claim

that D = DN − D̃ is orientable. By Theorem 2.7.1 and Lemma 2.7.2, it suffices to

prove that χ̄(G,D) ≥ 0. Let X ⊂ V (G) with s, t /∈ X. We have that χ̄(X,D) =

χ̄(X,DN) ≥ 0. Now take X ⊂ V (G) with s ∈ X and t /∈ X, and let c(X) be the

capacity associated to this cut. By definition, χ̄(X,D)+k = χ̄(X,DN) ≥ c(X), there-

fore χ̄(X,D) = c(X)− k ≥ 0. Finally, we have that χ̄(Xc, D) = χ̄(Xc, DN) + k ≥ 0,

and the claim follows.

We next claim that the symmetric difference of orientations OD and N is a flow

in N with flow value k. Perform a directed walk on the symmetric difference of OD
and N in N starting at s. This walk either terminates at t or it loops back on itself.

In the former case, we can reverse the path and in the latter case we can reverse the

associated cycle. In both instances the claim follows by induction.

It is a classical fact that integer MFMC implies rational MFMC by scaling, and

rational MFMC implies real MFMC by taking limits.

We remark that ifO′ is an integer network, i.e. a full orientation with distinguished

vertices s and t, and we wish to find a flow from s to t of value k, we can take

D = k(s)− k(t) + DO′ . Applying Algorithm 2.4.6, we will always be in Case 2, and

we recover the Ford-Fulkerson algorithm. The algorithm produces an orientation O

such that the symmetric difference of O and O′ is a flow of value k from s to t.

In our proof of Theorem 2.7.1, it was crucial that we start with an arbitrary

orientation O and find an appropriate flow whose reversal gave a desired orientation

OD. Implicit in this approach is the following result. This statement holds for metric

graphs as well.
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Theorem 2.7.4. The set Picg−1(G) is canonically isomorphic as a Pic0(G)-torsor to

the collection of equivalence classes in the cycle-cocycle reversal system acted on by

path reversals.

Proof. Let S denote the collection equivalence classes of full orientations in the cycle-

cocycle reversal system. By Corollary 2.4.7 and Theorem 2.3.3, we can canonically

identify the sets S and Picg−1(G). Let p, q ∈ V (G), [O] ∈ S, and Oq be a q-connected

orientation in [O]. The divisor (q) − (p) maps [O] ∈ S to [O′] ∈ S where [O′p] is

obtained from Oq by reversing the path from q to p. Because DO′p = DOq + (q)− (p),

this self-map of S is compatible with the action of (q)−(p) on Picg−1(G). By linearity,

this extends to an action of Div0(G) on S. Moreover, this action respects linear

equivalence, and hence defines an action of Pic0(G) on S.

We recall that a break divisor is a divisor of degree g such that for all p ∈ Γ there

is an injective mapping of chips at p to tangent directions at p, such that if we cut the

graph at the specified tangent directions, we obtain a connected contractable space,

i.e., a spanning tree. These divisors were first introduced in the work of Mikhalkin

and Zharkov [58], and the following theorem states that they are precisely the divisors

associated to q-connected orientations offset by a chip at q. Following [4], we call the

divisors associated to q-connected orientations, q-orientable.

Theorem 2.7.5 (An-Baker-Kuperberg-Shokrieh [4]). A divisor D of degree g is a

break divisor if and only if D − (q) is q-orientable for any point q ∈ Γ.

Let →q denote the map which adds a chip at q to a divisor. An important

property of break divisors is that they provide distinguished representatives for the

divisor classes of degree g. Indeed, by Theorem 2.7.5, the image of the map →q

applied to {q−orientable divisors} is independent of the choice of q. We offer the

following short proof of this result which does not make use of Theorem 2.7.5. If we

compose →q with the inverse of →p and apply this map to {q−orientable divisors},
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we obtain the set {q−orientable divisors}+(q)−(p). These are the divisors associated

to orientations obtained from the q-connected orientations by reversing a path from

q to p. It is easy to verify that these are precisely the p-connected orientations.

We now describe a simple MFMC based algorithm to obtain the unique break

divisor linearly equivalent to a given divisor of degree g.

Algorithm 2.7.6. Efficient method for calculating break divisors

Input: A divisor D of degree g.

Output: A break divisor D′ ∼ D.

Take q ∈ V (G), and let D′ be a divisor of degree g − 1 with D′ = D − (q) . Take

O an arbitrary orientation and construct an auxiliary network for D′ as in the proof

of Theorem 2.7.1. We can perform any preferred MFMC algorithm to find a maximal

flow in this network. After reversing this flow, either we obtain an orientation O′

with DO′ ∼ D − (q), or we obtain a directed cut which can be reversed. In this way

we proceed alternating between flow reversals and cut reversals until we obtain an

orientation O with DO ∼ D − (q). Executing further cut reversals if necessarily, we

can achieve a q-connected orientation Oq. By Theorem 2.7.5, DOq + (q) is a break

divisor linearly equivalent to D.

Algorithm 2.7.7. A second construction of partial orientations

Take D with deg(D) ≤ g−1, and let D′ = D+E with E ≥ 0 and deg(D′) = g−1.

First, obtain O with DO ∼ D′ by reversing flows obtained via some MFMC algorithm,

and reversing cuts. Then perform the modified unfurling algorithm to obtain an

orientation with some edge pointed towards a vertex in the support of E. We unorient

this edge, subtract a chip from E and repeat. Eventually we either obtain a partial

orientation O′ with DO′ ∼ D or O′ acyclic and DO′ ≥ D′ with D′ ∼ D.
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We conclude with an extension of Theorem 2.7.1 to the setting of partially ori-

entable divisors.

Lemma 2.7.8. Submodularity of χ̄ and χ:

χ̄(S1 ∪ S2, D) + χ̄(S1 ∩ S2, D) ≤ χ̄(S1, D) + χ̄(S2, D)

and

χ(S1 ∪ S2, D) + χ(S1 ∩ S2, D) ≤ χ(S1, D) + χ(S2, D).

Proof.

deg(D|S1∪S2) + deg(D|S1∩S2) = deg(D|S1) + deg(D|S2).

|S1 ∪ S2|+ |S1 ∩ S2| = |S1|+ |S2|.

|E(G[S1 ∪ S2])|+ |E(G[S1 ∩ S2])| = |E(G[S1])|+ |E(G[S2])|+ |(S1 \ S2, S2 \ S1)|.

⇒ |E(G[S1 ∪ S2])|+ |E(G[S1 ∩ S2])| ≥ |E(G[S1])|+ |E(G[S2])|.

The Lemma follows by the above relations.

Theorem 2.7.9. A divisor D is partially orientable if and only if D(v) ≥ −1 for all

v ∈ V (G) and χ̄(G,D) ≥ 0.

Proof. 2.7 The necessity of this condition is clear. We prove sufficiency by induction

on g − 1 − deg(D). By Lemma 2.7.8 and the fact that χ̄(G,D) ≥ 0, we have that

χ̄(S1, D) = χ̄(S2, D) = 0 implies χ̄(S1 ∪ S2, D) = χ̄(S1 ∩ S2, D) = 0.
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Figure 9: A picture proof that for partially orientable divisors, χ̄(S1, D) = χ̄(S2, D) =
0 implies χ̄(S1 ∪ S2, D) = χ̄(S1 ∩ S2, D) = 0. This figure does not immediately apply
in the proof of Theorem 2.7 because we cannot presuppose the divisors in question
are partially orientable, although it can be converted into a proof if we contract
G[(S1 ∪ S2)c] and reduce to the case of full orientations.

We claim that if D is a divisor with deg(D) < g− 1 which satisfies the conditions

of the theorem, then there exists some vertex v ∈ V (G) such that D+(v) also satisfies

the conditions of the theorem. Suppose not, then for every vertex v we may associate

a set Sv ⊂ V (G) such that χ̄(Sv, D) = 0 since χ̄(S,D + (v)) = χ̄(S,D) − 1 for all S

containing v . Taking the union of Sv over all vertices, the previous observation gives

that χ̄(V (G), D) = 0, which says that deg(D) = g − 1, a contradiction.

Alternately, we could have made following argument. Assume that Sv is minimal

in the sense that χ̄(S,D) > 0 for all S ( Sv. It follows that Su ∩ Sv = ∅ for all

u, v ∈ V (G). By connectivity, there exists some edge e ∈ (Su, Sv), but this implies

that χ̄(Su ∪ Sv, D) < 0, a contradiction.

To complete the proof of the Theorem, we add a chip to some v ∈ V (G), so that

D + (v) satisfies χ̄(G,D + (v)) ≥ 0. It follows by induction on g − 1 − deg(D) that

D+(v) is partially orientable. Given some partial orientation OD+(v) we may unorient

an edge directed towards v to obtain a partial orientation OD.

We now provide an algorithmic proof using edge pivots.
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Proof. Starting with the empty orientation, apply Algorithm 2.4.6 to a divisor D

satisfying the conditions of the Theorem 2.7. While building our partial orientation

O, we will only be in Case 1 since D(v) ≥ −1 for all v ∈ V (G). Moreover, by utilizing

Jacob’s ladder cascades in Case 1, we will never need to perform a cocycle reversal

unless we obtain a set X such that χ̄(X,D) < 0, thus proving the sufficiency of the

conditions from the theorem.

We remark that the previous argument provides a potentially new proof of The-

orem 2.7.1 and thus, by Theorem 2.7.3, a potentially new proof of MFMC.

2.8 Partial Orientations of Metric Graphs

In this section we discuss partial orientations of metric graphs and outline the ways in

which this setting differs from the discrete one which we have investigated in previous

sections.

Before giving a description of a partial orientation of a metric graph, we must

first give a suitable working definition of the tangent space of Γ. A tangent direction

t associated to a point p ∈ Γ is an equivalence class of paths emanating from p,

where two paths are said the be the equivalent if they share some initial segment.

An orientation O of Γ is an assignment of values 1 (an inward orientation) and 0

(an outward orientation) to the points in the tangent space of Γ with the following

property. For any tangent direction t at a point p, there is some small initial segment

in the direction of t for which all of the values at the corresponding tangent directions

agree. We define a partial orientation O of Γ to be obtained from a full orientation

O′ by omitting a finite number of incoming tangent directions in O′. We call such

tangent directions missing. Note that unlike the case of discrete graphs, any partial

orientation extends uniquely to a full orientation, and we denote this orientation

c(O) for the closure of O.

For completeness sake, we describe a second equivalent definition of a partial
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orientation of a metric graph. Let G be a model for Γ and G′ be another model

obtained from G by adding in the point p ∈ Γ. Given a partial orientation O of G,

we say that the partial orientation O′ of G′ is a refinement of O if one of the following

holds. If p is interior to an edge e ∈ G which is oriented in O, then the two new

edges in G′ which replace e are both oriented as e is in G. Otherwise, p is interior

to an edge e which is unoriented in O and we require that exactly one of the two

new edges is oriented towards p, while the other edge is unoriented. We say that a

partial orientation is a refinement of another partial orientation if it is obtained by a

sequence of refinements as above. We say that two partial orientations O1 and O2 of

models G1 and G2 respectively are Γ- equivalent if they have a common refinement.

Given a set of equivalent partial orientations such that each point of Γ belongs to

some model underlying a partial orientation in our set, we define the direct limit of

this set of partial orientations under refinement to be a partial orientation of Γ.

We define a partial orientation to be sourceless if every point has an inwardly

oriented tangent direction and acyclic if it contains no directed cycle. Note that for

any (not necessarily induced) path in Γ, each interior point has a naturally associated

pair of tangent directions. We say that a path γ in O is consistently oriented if every

point in γ has oppositely oriented associated tangent directions in γ. To give the

right notion of an edge pivot for a partial orientation of a metric graph, we take

the continuous limit of a Jacob’s ladder cascade. Given a consistently oriented half

open path, whose frontier point p is missing the associated tangent direction t, we

can reverse the orientation of this path, assign t value 0, and remove the associated

tangent direction at the other boundary point. As in the discrete case, this operation

does not effect DO. We call such an operation a half open path reversal. When the

path is degenerate and consists of a single point we refer to this operation as a tangent

pivot. The generalized cycle, cocycle, and cycle-cocycle are defined as in the previous

sections.
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It is very tempting to try and combine the notions of a half open path reversals

and a cycle reversals, although at the time of writing we are not aware of a completely

natural method for doing this. This would allow for the cycle-cocycle reversal system

to be subsumed by the cocycle reversal system. One reason that this is a particularly

attractive choice is that, as in the discrete, the ranks of partial orientations in the

two systems agree.

Although we were not able to write down the proofs of our main results by the time

of submission of this thesis, we have checked them carefully. We describe informally

how the results of the previous sections extend to this setting. Lemma 2.3.1 and

Theorem 2.3.3 both extend, as do the oriented Dhar’s algorithm and the unfurling

algorithm after appropriate modifications. The one thing which needs to be checked

carefully in the unfurling algorithm is that the process terminates in finite time, but

this follows by an argument which is essentially the same as the one given in our proof

Luo’s Theorem 3.2.1.

In the discrete case, for determining whether a divisor is linearly equivalent to a

partially orientable divisor we needed to introduce a modified version of the unfurling

algorithm. Perhaps one of the most interesting differences between the metric case

and discrete case is that this modified unfurling algorithm for partial orientations of

metric graphs is unnecessary because of the following fact.

Theorem 2.8.1. Every divisor of degree at most g−1 on a metric graph Γ is linearly

equivalent to a partially orientable divisor.

Most of the work on section 2.7 extends due to the fact that the lengths of the

edges in a metric graph do not correspond to capacities. Therefore, if we wish to

use max-flow min-cut for constructing an orientation of a metric graph, it suffices to

work with a model of that metric graph and forget the underlying edge lengths. We

conclude this section by extending our Euler characteristic description of partially

orientable divisors.
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Theorem 2.8.2. A divisor D is partially orientable if and only if D(p) ≥ −1 for all

p ∈ Γ and χ̄(S,D) ≥ 0 for every closed subset S ⊂ Γ.

Proof. The necessity of the conditions of the theorem are obvious. Rather than give

a self contained proof of sufficiency, we choose to provide a reduction to the case of

finite graphs. Note that the property described in the statement of the theorem is

preserved under homeomorphisms of Γ. Therefore, we may perturb the edge lengths

of Γ by some small amounts so that they become commensurable as do the positions

the chips in Γ. We may then scale Γ so that the lengths become integral and reduce

to the case of discrete graphs.

The advantage of the previous proof is that it provides a method of finite verifi-

cation. A priori the conditions of the theorem might not be checkable.
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CHAPTER III

TRANSFINITE CHIP-FIRING

We demonstrate that the greedy algorithm for reduction of divisors on metric graphs

need not terminate by modeling the Euclidean algorithm in this context. We observe

that any infinite reduction has a well defined limit, allowing us to treat the greedy

reduction algorithm as a transfinite algorithm and to analyze its running time via

ordinal numbers. Matching lower and upper bounds on worst case running time of

O(ωn) are provided.

3.1 Introduction

Chip-firing on graphs has been studied in various contexts for over 20 years. The

theory has found new applications in the recent work of Baker and Norine [9], who

showed that by studying chip-firing, one may extend the work of Bacher, de la Harpe,

and Nagnibeda [62] on the theory of linear equivalence of divisors on graphs. In

particular, they were able to demonstrate the existence of a Riemann-Roch theorem

for graphs analogous to the classical statement for curves. Gathmann and Kerber [33],

and independently Mikhalkin and Zharkov [58], proved a Riemann-Roch theorem for

tropical curves. The approach of Gathmann and Kerber was to establish the tropical

Riemann-Roch theorem as a limit of Baker and Norine’s result for graphs under

subdivision of edges. Hladký, Král, and Norine [58] then showed that this theorem

may be proven in an elementary way by studying the combinatorics of chip-firing

on abstract tropical curves, i.e., metric graphs. Several papers have pursued this

approach further along with other consequences for the theory[58] of linear equivalence

of divisors on tropical curves [1] [22] [37] [52].

The central combinatorial objects in this study, for both graphs and tropical
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curves, are the so-called q-reduced divisors (known elsewhere in the literature as

superstable configurations or G-parking functions). A q-reduced divisor is a special

representative from the class of divisors linearly equivalent to a given divisor. There

is an algorithmic method for obtaining the unique q-reduced divisor consisting of two

parts. In this chapter, we investigate the second, more subtle part of this process

known as reduction. We offer a new short proof of Luo’s result that Dhar’s reduction

algorithm terminates after a finite number of iterations. We then investigate the

greedy reduction algorithm, which in the graphical case is known to succeed. We show

that the Euclidean algorithm may be modeled by the greedy reduction of divisors on

metric graphs. By evaluating this algorithm on two incommensurable numbers, we

obtain a run of the greedy reduction algorithm which does not terminate.

After observing that any infinite reduction has a well-defined limit, we analyze the

running time of the greedy algorithm via ordinal numbers. We demonstrate matching

upper and lower bounds on worst case running time of O(ωn). The lower bound is

obtained by gluing n copies of the Euclidean algorithm example together and ordering

the firings lexicographically. The upper bound of ωdeg(D) is provided by an inductive

argument.

3.2 Metric Chip-Firing and Reduced Divisors

A metric graph Γ is a metric space which can be obtained from an edge weighted

graph G by viewing each edge with weight wi,j as being isometric to an interval of

length wi,j. Each point interior to an edge has a neighborhood homeomorphic to an

open interval and each vertex has a small neighborhood homeomorphic to a star. The

degree of a point p ∈ Γ is the number of tangent directions at p. A vertex is called a

combinatorial vertex if it has degree other than 2.

This chapter concerns certain combinatorial aspects of chip-firing on metric graphs,

so we will take a rather concrete working definition of chip-firing. For completeness
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sake, we begin with a slightly more abstract definition. Fix a metric graph Γ and a

parameterization of the edges of Γ. Let f be a piecewise affine function with integer

slopes on Γ. We define the Laplacian operator Q applied to f at a point to be the sum

of the slopes of the function as we approach p along each of the tangent directions at

p. We note that Q(f)(p) = 0 if f is differentiable at p. We define a divisor D on Γ

to be a formal sum of points from Γ with integer coefficients, all but a finite number

of which are zero. We say that D has D(p) chips at p. Given some divisor D on Γ,

we define the chip-firing operation f applied to D to be D −Q(f). We say that two

divisors are linearly equivalent if they differ by some chip-firing move. A divisor E is

said to be effective if it has a nonnegative number of chips at each point.

We now give the definition of chip-firing on metric graphs which will be used for

the remainder of the chapter. Let X and Y be two disjoint open connected subsets of

Γ such that the Γ\ (X ∪Y ) = Z is isometric to a disjoint collection of closed intervals

of length ε. Note that the set Z defines a minimal cut in Γ. Now, we define the

divisor Q(f) as the divisor which is negative one at the end points of these intervals

on the boundary of X and positive one at the endpoints on the boundary of Y . One

may intuitively understand this divisor as pushing a chip along each edge in this cut

a fixed distance ε. We take this to be the basic type of chip-firing move and call ε

the length of the firing. Note that the chip-firing divisor is of the form Q(f) where f

is the piecewise affine function with integer slopes which is 0 on X, ε on Y , and has

slope 1 on the each open interval in Z. We write ε(f) for the length of the firing f .

As is noted in [8], any piecewise affine function with integer slopes can be expressed

as a finite sum of the functions just described, so we will not sacrifice any generality

by restricting our definition of chip-firing to be basic chip-firing moves.

A q-reduced divisor is a divisor which is nonnegative at each point other than

q ∈ Γ, such that any firing Q(f) which pushes chips toward q causes some point to

go into debt. It is proven in [58] that given any divisor D on a metric graph Γ, there
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exists a unique q-reduced divisor ν which can be reached from D by a sequence of

chip-firing moves. Moreover, there exists an effective divisor E equivalent to D if and

only if ν is effective. An algorithmic way of obtaining such a divisor was described by

Luo [52]. His method is to first bring every point other than q out of debt by some

sequence of chip-firing moves. Once we have obtained such a configuration, we may

perform firings which push chips back toward q without causing any vertex to go into

debt. We call this second part of the process reduction. Luo’s method for reducing a

divisor is to use a generalization of Dhar’s burning algorithm originally investigated

in the study of the sandpile model.

Dhar’s burning algorithm may be described in the following informal way: Let

D be a divisor which is nonnegative at every point of Γ other than q. Place D(p)

firefighters at each point p other that q. Light a fire at q and let the fire spread

through Γ along the edges. Every time the fire reaches a firefighter, it stops. If the

fire approaches a point from more directions than there are firefighters present, these

firefighters are overpowered and the fire continues to spread through the Γ. It is not

hard to check that a divisor is q-reduced if and only if the fire burns through the

entirety of Γ.

Let D be nonnegative at all points other than q. We say that a firing f is legal if

D−Q(f) is also nonnegative at all points other than q. A firing f is a maximal legal

firing for D if the legal firing f is taken to have maximum associated length, i.e., the

firing describes a push of chips along a cut so that at least one of the chips hits a

combinatorial vertex and therefore cannot be pushed any further without choosing a

different cut. Every time a fire is prevented from burning through Γ, the collection

of chips, i.e., firefighters which stop the fire define a maximal legal firing towards q

which does not cause any point to go into debt. Luo showed that if we take a divisor

which is non-negative away from q and reduce according to the maximal legal firings

obtained from this algorithm, we will obtain a reduced divisor after a finite number
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of steps. We offer the following new short proof that this process terminates.

Theorem 3.2.1. (Luo) Let Γ be a metric graph and D be a divisor on Γ such that

D(p) ≥ 0 for all p ∈ Γ with p 6= q. The reduction of D with respect to q by maxi-

mal legal firings obtained from Dhar’s algorithm terminates after a finite number of

iterations.

Proof. Let #E(Γ) be the number of edges in Γ and without loss generality take D to

be a divisor which has 0 total chips. We proceed by double induction on #E(Γ) and

−D(q), i.e., induction on k = #E(Γ)−D(q). We will restrict our attention to the set

S of edges adjacent to q. First observe that for any edge e in S which has a chip, the

closest chip p in e to q will never leave e, although chips in e further away from q may.

This is because when the fire burns from q, it will always reach p. Also, if every edge

in S contains a chip, on the next iteration of the algorithm, the fire will burn from q

and be stopped by precisely these edges. Hence, these chips will be fired towards q,

which will receive a chip and we may induct on k. Therefore, we may assume that

there exists an edge in S which will never receive a chip. We can contract this edge

and again induct on k.

3.3 Infinite Greedy Reduction

We can always reduce by performing any legal firings we wish. If this process termi-

nates, we know by uniqueness that we have reached the q-reduced divisor equivalent

to D. In the case of discrete graphs, it is clear that this process will terminate. We

begin by answering Matthew Baker and Ye Luo’s question of whether the greedy

reduction algorithm for metric graphs also terminates after a finite number of itera-

tions. The answer, as we will see, is a resounding no. To this effect, we will provide

an example which demonstrates that we can model the Euclidean algorithm in this

context and therefore, by taking our input to be a pair of incommensurable numbers,

obtain a run of the greedy reduction algorithm which does not terminate in finite
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time.

We define a greedy reduction of a divisor D = D0 to be a sequence of divisors Di

such that Di = Di−1 −Q(fi−1), where Q(fi−1) is a maximal legal firing for Di−1.

Theorem 3.3.1. There exists a metric graph Γ, a divisor D on Γ such that D(p) ≥ 0

for all p ∈ Γ with p 6= q, and a greedy reduction of D with respect to q which does not

terminate after a finite number of steps.
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Figure 1. A divisor on a metric graph with infinite greedy

reduction via firings which model the Euclidean algorithm.

Proof. We now present an example which demonstrates that the greedy reduction

algorithm may not terminate after a finite number of iterations. We refer to Figure

1 which illustrates a certain divisor D on a metric graph Γ. We will take all of the

edge lengths to be sufficiently large. What is meant by sufficiently large will become

clear after we have completed the proof. We take D to have chips (with labels for

the clarity’s sake) c0, c1, and c2 with c1 at u1, c0 at distance a from v0 on (u0, v0) and

c2 at distance b from v2 on (u2, v2) with a < b. We take D to have a chip at the

midpoint of every other edge in Γ. It is not important that chips be at the midpoints,

only that they be sufficiently far from both endpoints. The idea of the example is to

show that given D, we can perform the subtraction of a from b without changing the

rest of the divisor much. We may then perform the Euclidean algorithm on inputs

a and b. By taking a and b so that a
b
/∈ Q it follows (after verifying the convergence

of a certain series) that we can obtain a run of the greedy reduction algorithm which

does not terminate. We now describe the pair of firings which allows us to subtract

a from b.

Firing 1: We would like to perform a maximal legal chip-firing move towards
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q which will push chips c0, c1, and c2 length a toward v0, v1, and v2 so that c0

hits v0. We can achieve this by taking a firing corresponding to the cut (X, Y ) =

({u0, u1, u2}, {q, v0, v1, v2}). Given this cut, we can push c0, c1, and c2 as described

and extend this to a maximal legal firing towards q by pushing the chips interior to

the edges (u0, q), (u1, q) and (u2, q) distance a towards q.

Firing 2: Now, we would like to perform a maximal legal chip-firing move towards

q which will push c0 and c1 distance a back towards u0 and u1 respectively so that c1

reaches u1. As in Firing 1, we can achieve this by the taking the cut corresponding

to the partition (X, Y ) = ({v0, v1}, {v2, u0, u1, u2, q}) and pushing chips in each of the

other edges of this cut length a towards {v2, u0, u1, u2, q}.

By ignoring the position of all of the chips other than c0, c1, and c2, we observe

that we have returned to the original divisor with b replaced by b − a, so we have

subtracted a from b. We can now perform the Euclidean algorithm by subtracting

a, n times from b so that 0 ≤ b − na < a. By the symmetry of the construction,

we may now reverse the roles of c0 and c2 and repeat. The one subtlety here is

that we need to be sure that none of the other chips in the metric graph eventually

reach either of the endpoints of the edge they are contained in, otherwise we might

not be able to perform the firings described above. This is why we take the chips

to be at the midpoints of sufficiently long edges. If a and b are such that a
b
/∈ Q,

this process will never terminate, but the series of length of the firings will converge,

and we can take the lengths of the edges to be the twice this series of the lengths

corresponding to the firings performed. It remains to prove that the corresponding

series of lengths converges. To this end, we will assign some notation to the quantities

appearing in the Euclidean algorithm. Given two numbers ai and bi with 0 < ai < bi,

we define bi+1 = ai and ai+1 = bi − niai with ni ∈ N and 0 ≤ bi − niai < bi. Letting

li = niai, it needs to be shown that
∑
i≥0 li converges. We claim that taking a = a0

and b = b0,
∑
i≥0 li ≤ 4b. This follows from the simple observations that li+1 ≤ li and
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li+2 <
1
2
li, which allow us to conclude that

∑
i≥0 li is bounded geometrically and the

claim follows.

3.4 Running Time Analysis via Ordinal Numbers

We now prove than any reduction of a divisor which does not terminate has a well-

defined limit. This will allow us to interpret the greedy algorithm as a transfinite

algorithm and to analyze its running time in the language of ordinal numbers. We

first prove that for any infinite reduction, the sum of the lengths of the firings must

converge.

Lemma 3.4.1. Let Γ be a metric graph, D a divisor on Γ such that D(p) ≥ 0 for all

p 6= q, and let fi be an infinite sequence of maximal legal firings reducing D. Then

the series
∑
i fi converges and the greedy reduction of D has a well defined limit.

Proof. Let l(p) =
∑∞
i=0 fi(p) for p ∈ Γ. We now take v and v′ to be combinatorial

vertices. If l(v) is finite then l(v′) is finite – if this were not the case, it would mean

that v′ sent an infinite number of chips towards v which were never able leave the

set of edges incident to v and so we would have an infinite number of chips clustered

around v, a clear contradiction. Take some v adjacent to q. Clearly l(v) is finite,

otherwise v will send an infinite number of chips to q. By the connectedness of the

metric graph, it follows that l(v) is finite for each combinatorial vertex, hence l(v)

is finite for each v and it follows that
∑
i fi converges. We now show that

∑∞
i=0 ε(fi)

converges. Because Γ is compact and the sum of fi is convergent, we see that the

limit of
∑∞
i=0

∫
Γ fi is well defined. Moreover,

∫
Γ fi ≥ ε(fi)m(Γ), where m(Γ) is the

sum of the lengths of the edges of Γ, as f is a nonnegative piecewise affine function

with slopes ±1, therefore
∑∞
i=0 ε(fi) converges.

Label the chips in D arbitrarily. For each passage from Di to Di+1, a given chip

c either stays fixed or travels ε(fi). The series of these lengths which c travels must
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converge because it is an increasing sequence bounded above by
∑∞
i=0 ε(fi). Therefore

as we follow the path which this chip traces out, we see that it must have a well

defined limit. Hence the limit of the greedy reduction has a well defined limit.

It is now natural, given an infinite greedy reduction, to pass to the limit and

begin the process again. We will analyze the running time of the greedy reduction

algorithm in terms of ordinal numbers. For an introduction to ordinal numbers, we

refer the reader to [41]. We remark that in what follows, we will not use any advanced

properties of ordinal numbers, rather they serve as a bookkeeping tool for rigorously

investigating the question of how long it takes for the greedy reduction of a divisor

to terminate. It has been proven [10][58] that any convergent sum of basic chip-firing

moves is itself a finite sum of basic chip-firing operations, so we can be confident that

in passing to the limit of a chip-firing process, we never leave the class of divisors

linearly equivalent to the one we started with. In what follows, we would like to

emphasize that ωn is not nω, that is, even informally we should not think of ωn as

n copies of ω concatenated, rather we should consider this quantity as a nest of ω’s

with depth n.

Theorem 3.4.2. For every n ∈ N, there exists a metric graph Γ and a divisor D on

Γ with D(p) ≥ 0 for all p ∈ Γ with p 6= q such that the greedy reduction of D with

respect to q takes time at least ωn.

Proof. This is again a proof by construction. The idea is that by “gluing together” n

copies of the previous Euclidean example we can obtain running time ωn. See Figure

2 for an illustration of a piece of the example which will allow us to obtain running

time ω2. Missing from the figure are the edges (ui, q) and (vi, q) for all i. Once again,

we imagine that all of the edges are sufficiently long and that there are chips at each

of the midpoints of the edges not drawn. The idea is that we can run the example

described previously for the bottom 3 rows (letting (u0, v0, c0) and (u1, v1, c1) switch
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roles). In the limit, c0, c1, and c2 move to u0, v1 and v2 respectively, after which we

may use the top two rows to “recharge” c1 and c2. This recharging is achieved by the

following two firings, which are illustrated in Figure 2:

Firing 1: We would like to push c0 and c3 distance a towards v0 and v3 respectively

so that c3 hits v3. We can achieve this by taking a maximal legal firing corresponding

to the cut (X, Y ) = ({u0, u3}, {q, u1, u2, u4, v0, v1, v2, v3, v4}).

Firing 2: We would like to push c0, c1 and c3 distance a towards v0, v1 and v3

respectively so that c0 hits v0. We can achieve this by taking a maximal legal firing

corresponding to the cut

(X, Y ) = ({v0, v1, v3}, {q, u0, u1, u2, u3, u4, v2, v4}).

The figure shows how we can use c3 and c0 to recharge c1. We can then perform

a similar pair of firings using c4 and c0 to recharge c2. We then iterate the process.

The one subtle point is that we again need convergence of the double series of lengths

coming from the firings. In order to do this, we should perform one step of the

Euclidean algorithm with c0, c3 and c4 after taking a limit of the bottom three rows and

before recharging c1 and c2. A simple calculation shows that this minor adjustment

ensures convergence. We leave the extension to n copies of the Euclidean example as

an exercise for the reader. In order to ensure convergence of the associated n nested

series of lengths, we should order the firings on the product of the n copies of the

Euclidean example lexicographically.
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Figure 2. Two copies of the Euclidean example glued

together and a recharging move achieved by two firings.

We now show that in some sense, the previous example is worst possible. The

previous example shows that for any ordinal number α < ωω, there exists a divisor

D with a greedy reduction which takes more than α steps. While it is more or

less obvious that we cannot have a greedy reduction with an uncountable number of

iterations, ωω is still a countable ordinal and so a priori there might exist a divisor

with a greedy reduction which takes ωω steps. The following result shows that this

cannot occur.

Theorem 3.4.3. Let Γ be a metric graph and D be a divisor on Γ such that D(p) ≥ 0

for all p ∈ Γ with p 6= q. Any greedy reduction of D with respect to q takes at most

ωdeg(D) steps.

Proof. Insight into this claim can be derived from inspection of the Euclidean exam-

ple. As was noted previously, when we pass to the limit of this reduction process,
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c0, c1, and c2 approach the combinatorial vertices u0, v1, and v2 respectively. We

claim that more generally at step ωn−1 of any greedy reduction, there must be at

least n chips present at the combinatorial vertices. Eventually, all of the chips will

be at combinatorial vertices. During the next firing, some chip will traverse an edge

from one combinatorial vertex to another. Thus the length of the firing will be at

least the minimum the edge lengths. This cannot happen an infinite number of times

otherwise the sum of the lengths will diverge contradicting Lemma 1. This will in

turn give an upper bound on the running time of the greedy reduction algorithm of

ωdeg(D).

We will proceed by induction. Because we are performing maximal legal firings,

we always have a chip at a combinatorial vertex, e.g., one of the chips which arrived

at a combinatorial vertex after the previous firing. We take this to be the base case

of the claim. For the inductive step, assume that there are at least n chips at the

combinatorial vertices at time ωn−1. For each step kωn−1, we can associate a set of

chips Sk which are present at the combinatorial vertices at this time. Let A be some

set of chips which is equal to Sk for infinitely many k. At time ωn, the set of chips A

will lie at combinatorial vertices. Moreover, if there exists some set of chips B 6= A

which is equal to Sk for infinitely many k, then the union A ∪ B will be present at

combinatorial vertices at time ωn+1, and we will have proved the claim, therefore

we may assume that there exists a unique A equal to Sk for infinitely many k. At

time kωn + 1 some chip ck must reach a combinatorial vertex. Observe that the chip

ck ∈ Sk for only finitely many k, otherwise the nested series of lengths will diverge.

Therefore there exist some chip c = ck for infinitely many k such that c /∈ Sk. We

conclude that A ∪ c are living at combinatorial vertices in the limit at time ωn thus

completing the proof.
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We note that although we are working with ordinal numbers, the previous argu-

ment employed only finite induction, not transfinite induction. We conclude with a

question first posed to the author by Sergey Norin. The previous bound is a function

of the degree of the divisor, but not the metric graph Γ. It would be nice to have

a bound on the running time of an arbitrary greedy reduction on Γ in terms of the

structure of Γ. For example, does there exist a bound of the form ωf(g) where f is a

polynomial in g, the genus of Γ? Can we take f to be linear?

There is a famous example showing non termination of Ford-Fulkerson for the

case of real edge capacities. This example and the Euclidean example exist for the

following dual reasons. Real edge capacities can be viewed as a limit of multigraphs

where ratios of the multiplicities of edges converge to irrational quantities. For metric

graphs, divisors with chips at irrational locations can be obtained as a limit of divisors

on discrete graphs under subdivisions of the edges of the so that the ratios of distances

between points converge to irrational numbers.

In future work, we hope to make this duality more precise. In particular, it

would be nice to relate Luo’s metric Dhar’s algorithm to the Edmond-Karp variant

on Ford-Fulkerson, both of which necessarily terminate in finite time. It may be

interesting to analyze the running time of Ford-Fulkerson for real edge capacities via

ordinal numbers and see if we obtain the same set of running times as with the greedy

reduction algorithm.
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CHAPTER IV

CHIP-FIRING VIA OPEN COVERS

Given a graph G, an sink vertex v0, and an abstract simplicial complex σ on the

nonsink vertices of G, we define a hereditary chip-firing models by requiring that only

those vertices which form a face of σ may fire simultaneously, and only if they do

not cause any vertex to be sent into debt. These models give a fine interpolation

between the abelian sandpile model, where σ is a disjoint collection of points, and

the cluster firing model, i.e., the unconstrained chip-firing model, where σ is the full

simplex. The hereditary chip-firing models retain some very desirable properties, e.g.

stabilization is independent of firings chosen and each chip-firing equivalence class

contains a unique recurrent configuration. These models are equivalent to the ones

independently discovered by Paoletti [?]. In this chapter we give self contained proofs

of these results and explain how this framework generalizes to directed graphs using

weighted abstract simplicial complexes. We present an explicit bijection between the

recurrent configurations of a hereditary chip-firing model σ on an undirected graph

G and the spanning trees of G, which generalizes the Cori-Le Borgne algorithm [24],

and conclude with a description of how these results extend to metric graphs, where

abstract simplicial complexes are replaced by open covers of Γ.

Acknowledgements: Thanks to Lionel Levine for bringing the work of Guglielmo

Paoletti to my attention, and to Guglielmo Paoletti for his encouragement.

4.1 Introduction

In the ableian sandpile model (ASM), vertices are restricted to fire individually. This

is in contrast to the cluster firing model (CFM) where vertices are allowed to fire
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simultaneously. A chip-firing model is a collection σ of subsets of the vertex set,

those subsets which are allowed to fire simultaneously if no vertex is sent into debt. If

every vertex appears somewhere in σ, and the family σ has the hereditary property,

i.e. A ∈ σ and B ⊂ A implies B ∈ σ, we say that σ is a hereditary chip-firing

model. This is equivalent to the statement, σ forms an abstract simplicial complex on

the nonsink vertices of G. From this perspective, the sandpile model is the coarsest

hereditary chip-firing model, described by taking σ to be the collection of all singleton

sets from V (G)\{v0}, and the cluster model is the finest hereditary chip-firing model,

described by taking σ to be the power set of V (G) \ {v0}, i.e., the full simplex.

Some of the fundamental properties of the ableian sandpile model and the cluster

firing model extend to arbitrary hereditary chip-firing models: the stabilization of

a configuration is independent of the firings chosen and each chip-firing equivalence

class contains a unique recurrent configuration. It is well known that the number of

chip-firing equivalence classes is the same as the number of spanning trees of a graph.

It follows that the number of recurrent configurations in a hereditary chip-firing model

is the same as the number of spanning trees.

For the case of ASM and CFM, several bijections between recurrent configurations

and spanning trees exist in the literature, e.g. [26] [24] [12] [20]. There is a simple

relationship between the recurrent configurations in ASM and CFM which allows a

bijection in one model to be “dualized” to produce a bijection in the other model.

The recurrent configurations in CFM go by several names: G-parking functions, v0-

reduced divisors, superstable configurations. It is the aim of this chapter to present

an explicit bijection between the recurrent configurations in an arbitrary hereditary

chip-firing model and the spanning trees of a graph. Our bijection is a modification

of the Cori-Le Borgne algorithm [24].

If we order the elements of σ by inclusion, we have a set of maximal elements

A1, . . . Ak which in turn, by the hereditary property, determine σ. We note that
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these maximal elements of σ need not be disjoint, i.e. hereditary chip-firing models

are not determined by partitions of the vertex set, instead we should think of them

as being described by covers of V (G) \ {v0}. Moreover, these covers need not be

minimal, instead we ask that the elements of the cover be incomparable. This allows

us to naturally identify hereditary chip-firing models with maximal antichains in the

Boolean lattice. Calculating the number of such maximal antichains is an extremely

challenging problem [28], but this quantity, called the Dedekind number, is known to

be doubly exponential in n.

4.2 Notation and Terminology

We take G to be a connected undirected loopless multigraph with vertices labeled

v0, v1, . . . , vn. Given X, Y ⊂ V (G), we let (X, Y ) = {e ∈ E(G) : e = (x, y), x ∈

X, y ∈ Y }, and let Xc denote V (G) \ X. To describe chip-firing, we begin with a

graph G and a configuration D of chips on G. Formally, a configuration of chips is

a function D : V (G) → Z. For the purposes of this chapter we will usually restrict

our attention to D such that D(vi) ≥ 0 for all i 6= 0 and D(v0) = −∑n
i=1D(vi) so

that the sum of the values of D, called the the degree of D, is 0. If a vertex v in a

configuration of D is seen to have D(v) < 0, we say that this vertex is in debt. The

basic operation is firing whereby a vertex v sends a chip along each of its edges to

its neighbors and loses deg(v) chips in the process so that the total number of chips

is conserved. We designate v0 to be the sink vertex and say that it cannot fire. This

ensures that we cannot continue firing vertices indefinitely. The adjacency matrix A

of a graph is an (n + 1) × (n + 1) matrix with entries Ai,j = # of edges between vi

and vj. Taking D to be the diagonal matrix with Di,i = degree of vi, the Laplacian

Q of a graph is defined as the difference D − A.

For S ⊂ V (G), we take χS to be the characteristic vector of S. As an abuse

of notation we denote χ{vi} by χi. From a linear algebraic perspective, viewing a
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configuration D as a vector, if a vertex vi fires then D is replaced by D − Qχi, and

more generally if a set S fires we obtain D − QχS. We say that two configurations

D and D′ are equivalent if there exists some sequence of firings which brings D to

D′ (possibly including firings by v0 and passing through intermediate configurations

which are negative at vertices other than v0). Two configurations are seen to be

equivalent if their difference is in the integral span of the columns of the Laplacian.

We call a collection of configurations which are equivalent, a chip-firing equivalence

class.

The ASM (ableian sandpile model) is defined by placing the additional restriction

that vertices may only fire one at a time, whereas in the CFM (cluster firing model),

vertices are allowed to fire simultaneously. We fix a collection σ of subsets of V (G) \

{v0}, those sets which are allowed to fire simultaneously if no vertex is sent into debt,

and call this collection a chip-firing model. If each vertex vi with i 6= 0 appears

somewhere in σ, we say that σ covers G. If σ covers G and σ is hereditary, i.e. for

every A ∈ σ and B ⊂ A, we have that B ∈ σ, we say that σ is a hereditary chip-firing

model.

Let σ be a hereditary chip-firing model on a graph G. If a configuration of chips

D has no set of vertices M ∈ σ which can fire without some v ∈ M being sent into

debt, we say that D is stable. The process of firing sets from σ until a configuration

becomes stable is called stabilization. We say that a set M ∈ σ, is ready in D if

this set can fire without sending any vertex into debt, and call a vertex v active in a

configuration D if there exists some M ⊂ V (G) \ {v0} with v ∈ M which is ready.

Suppose v ∈ V (G) is active in a configuration D. There may very well be several

different ready sets which contain v, and these different ready sets might cause v

to lose different numbers of chips if they were to fire. Therefore, we let Nmin(v,D)

denote the minimum amount that an active vertex v can lose by firing a ready set in

D which contains v.
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Lemma 1 states that the stabilization of a configuration in a hereditary chip-

firing model is well defined, so we denote the stable configuration obtained from

D by stabilization as D◦. A configuration D is said to be reachable from another

configuration D′ if there exists a way of adding chips to D′ and then firing ready

sets to reach D. Because of our convention that the degree of D be zero, we are

actually adding configurations of the form χi − χ0, i.e. subtracting from v0 exactly

as many chips as we add to other vertices. A configuration D is globally reachable

if it is reachable from every other configuration. Finally, we call D recurrent, if it

is both stable and globally reachable. The original motivation for this terminology

comes from the observation that if we continue adding chips and stabilizing, the

configurations we will see infinitely many times are the recurrent ones. The recurrent

configurations in CFM (G-parking functions) are precisely the stable configurations,

so there is no need for a discussion of global reachability. We say that a configuration

D is critical if it is stable and (D − Qχo)
◦ = D. As with the ASM, we will show

that a configuration in a hereditary chip-firing model is recurrent if and only if it is

critical. This statement is trivially true for the CFM.

4.3 Preliminary Results for Discrete Graphs

In this section we present the basic results of hereditary chip-firing models. Hereditary

chip-firing models as well as the results of this section were discovered independently

of the author by Paoletti [?], and Caracciolo, Paoletti and Sportiello [18]. They

observe that stabilization in a chip-firing model σ is independent of firings if and only

if σ is closed under subtraction, i.e. for all A,B ∈ σ, we have A \ B ∈ σ. They then

restrict to the case where for each v ∈ V (G), {v} ∈ σ. It is easy to see that a family

of subsets of [n] is closed under subtraction and contains all singletons if and only if

it is hereditary and covers [n], i.e., is an abstract simplicial complex on [n].

Lemma 4.3.1. Given a fixed hereditary chip-firing model σ on a graph G, and a
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chip-firing configuration D on G, the stabilization of D is independent of the firings

chosen.

Proof. First, we observe that if M,N ⊂ V (G) \ {v0}, M is ready and N fires first,

then M \N is ready. This is because if we fire N and then fire M \N , a vertex v ∈M

loses at most as many chips as if M had fired alone. More generally, if M is ready

and a multiset N fires, i.e. we fire vertices in N a number of times corresponding

their multiplicity in N, then M \N is ready. Let M1, . . . ,Ms ∈ σ and N1, . . . , Nt ∈ σ

correspond to sequences of sets which are fired in two different stabilizations of D.

Let XMq =
∑q
i=1 χMi

and XBr =
∑r
i=1 χBr . Suppose that D −QXMs and D −QXNt

are not equal, i.e. the two stabilizations of D are different. We note that this can

occur if and only if XMs 6= XNt , as v0 does not fire and the kernel of the Laplacian

is generated by the all one’s vector. Without loss of generality, there exists some l

maximum such that XMl
≤ XNt and XMl+1

� XNt . By construction Ml+1 is ready

for D −QXMl
. Now let χP = XNt −XMl

be the characteristic vector corresponding

to the multi set P . By the first observation, Ml+1 \ P is nonempty and ready for

D−QXMl
−QχP = D−QXNt , but this contradicts the fact that D−QXNt is stable.

Theorem 4.3.2. Given a fixed hereditary chip-firing model σ on a graph G, there

exists a unique recurrent configuration ν in each chip-firing equivalence class.

Proof. We begin by observing that every chip-firing equivalence class contains at

least one recurrent configuration. In a stable configuration, each vertex v has at

most deg(v)− 1 chips. Therefore, if we can show that each equivalence class contains

a configuration with more than deg(v) chips at each vertex v, it would follow that

this configuration is globally reachable and hence its stabilization is recurrent. The

technique which we now apply also appears in [9]. Partition the vertices according to

their distance from v0. Let d be the maximum distance of a vertex from v0. Begin
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by firing all of the vertices of distance at most d − 1 from v0. This has the effect of

sending money to the vertices of distance d. Repeat until each such vertex v has at

least deg(v) chips. Now fire all of the vertices of distance at most d− 2 from v0 until

the vertices of distance d − 1 have at least their degree number of chips. Working

backwards in this way towards v0, we obtain the desired configuration.

We now show that there is at most one recurrent configuration in each equivalence

class. This proof is identical to the argument presented in [40]. First, we would like

to show that there exists a configuration ε with ε(vi) > 0 for all i 6= 0, such that

when we add ε to a recurrent configuration ν and stabilize, we obtain ν. Let D be

a configuration such that D(vi) ≥ deg(vi) for all i 6= 0. We will take ε = D − D◦.

Because ν is recurrent, it is globally reachable, hence there exists some configuration

ζ such that (D+ ζ)◦ = ν. We are interested in computing γ◦ = (D+ ζ+ ε)◦. Because

stabilization is independent of firings chosen, we can stabilize γ by first stabilizing

D + ζ, i.e. γ◦ = ((D + ζ)◦ + ε)◦ = (ν + ε)◦. On the other hand, this is also equal to

(D◦ + ζ + ε)◦ = (D◦ + ζ +D −D◦)◦ = (ζ +D)◦ = ν.

Assume that there are two different equivalent recurrent configurations ν and ν ′

such that ν ∼ ν ′. By definition, there exists some f ∈ Zn+1 such that ν − ν ′ = Qf ,

moreover we can take f to be such that f(v0) = 0 because the all ones vector is in

the kernel of Q. Let f+, f− ∈ Zn+1 be such that f+ ≥ ~0, f− ≤ ~0, and f+ + f− = f .

Therefore, there is some configuration D such that D = ν − Qf+ = ν ′ − Q(−f−).

Note that because ν and ν ′ are stable, it follows that D may have vertices which are

in debt. For any k ∈ N, ν + kε and ν ′ + kε will stabilize to ν and ν ′ respectively, as

was shown above. On the other hand, if we take k to be sufficiently large, we can

perform firings defined by f+ and −f− (by individual vertices for example) to ν + kε

and ν ′+ kε respectively to obtain the configuration D+ kε. But now we arrive at the

contradiction that D + kε should stabilize to both ν and ν ′.

72



We remark that Lemma 4.3.1 and Theorem 4.3.2 both extend to the setting of

strongly connected directed graphs (or at least those with a spanning tree rooted a

v0), where they generalize in a curious way by the admittance of weighted abstract

simplicial complexes. An abstract simplicial complex can be encoded by the incidence

vectors of its faces which are in turn described as the downward closure of the inci-

dence vectors of the facets. We can generalize this idea naturally by taking a weight

abstract simplicial complex to be the downward closure of a finite collection of positive

integral vectors. In the case of undirected graphs, one can easily show that this extra

level of generality provides nothing new, the reason being that undirected graphs are

special cases of Eulerian directed graphs, those whose digraphs whose Laplacian has

a left kernel generated by the all one’s vector. See Chapter 5 for a discussion of left

kernels of directed Laplacians. In general, strongly connected directed graph are de-

scribed equivalently as those directed graphs whose Laplacian which has a left kernel

generated by positive vector, which is unique up to scaling. Let ~G be a strongly

connected directed graph, and ~R the primitive (shortest integral) vector in the left

kernel. It turns out that we lose no generality by restricting the incidence vectors for

our weighted simplicial complex to be dominated by ~R, thus for undirected graphs,

and more generally Eulerian directed graphs, standard abstract simplicial complexes

suffice.

The following remark requires that the reader have some working knowledge of

commutative algebra. As was briefly mentioned in the introduction, the study of

binomial ideals associated to chip-firing is a very active topic of research in combina-

torial commutative algebra. The two previously studied ideals are those associated

to the ASM and CFM. The former is called the sandpile ideal, and is contained in

the latter, called the Laplacian lattice ideal. Given a hereditary chip-firing model we

can naturally associate a binomial ideal with one generator coming from each allowed

firing move, and we refer to these ideals as hereditary chip-firing ideals. Lemma 4.3.1
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can be then be interpreted as saying that these binomials form a grevlex Gröbner

basis for the ideal which they generate. This is simply because firing translates in

this setting as polynomial division, and one characterization of a Gröbner basis is

that division with respect to the given term order yields remainders which are inde-

pendent of any choices made. As with the sandpile ideal, each hereditary chip-firing

ideal is contained in the Laplacian lattice ideal, which is obtained by saturating with

respect to the product of the variables. These are all zero dimensional ideals, so their

associated variety is a finite collection of points. Moreover, each associated variety is

set theoretically the same, they differ only by the “thickness” of the zero at the ori-

gin. One can show that the multiplicity of the origin is given by the number of stable

configurations in the associated hereditary chip-firing ideal which are not recurrent.

In future work we hope to further investigate hereditary chip-firing ideals and their

minimal free resolutions.

Lemma 4.3.3. Given a fixed hereditary chip-firing model on a graph G, a chip-firing

configuration ν on G is recurrent if and only if it is critical.

Proof. Suppose first that ν is recurrent, but not critical, that is (ν−Qχ0)◦ = D 6= ν.

Let ε be as in Theorem 4.3.2, then (ν + kε − Qχ0)◦ = ((ν + kε)◦ − Qχ0)◦ = (ν −

Qχ0)◦ = D. Because ε(vi) > 0 for all i 6= 0, we can take k sufficiently large so

that (ν + kε − Qχ0)(vi) > deg(vi) for all i 6= 0 and it follows that D is recurrent,

a contradiction. Conversely, suppose that D is not recurrent, but that D is critical,

then (D−kQχ0)◦ = D for all k ∈ N. If we take k to be sufficiently large, then we can

perform firings as in the beginning of Theorem 1 to spread the chips around in the

graph and reach a configuration which has at least degree number of chips at each

vertex. It follows that D is globally reachable, hence recurrent, a contradiction.

Lemma 4.3.4. The number of chip-firing equivalence classes on a graph G is the

same as the number of spanning trees of G.
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Proof. Let Q̄ denote the matrix obtained from Q by deleting the row and column

corresponding to v0. This matrix, called the reduced Laplacian of a graph, is known

to have full rank as G is connected, and by the matrix-tree theorem det(Q̄) is equal

to the number of spanning trees of G [43]. By ignoring the values of v0 in our

configuration, we see that the number of different chip-firing equivalence classes is

the number of cosets for the image of Q̄ and this index is given by det(Q̄).

4.4 Spanning Tree Bijection

This algorithm is a modification of the Cori-Le Borgne algorithm [24] as presented

in [10]. Their algorithm can be viewed as a variant of Dhar’s burning algorithm [53].

We will call Dhar’s burning algorithm as a subroutine, so we first begin by describing

this method, and do so in the context of the cluster firing model where the author

believes it is more naturally understood. One might argue that the brilliance of Dhar’s

algorithm is that its discovery occurred in the context of the ableian sandpile model,

where its application is less obvious.

Given a recurrent configuration ν for the sandpile model K+−ν = ν̄ is a recurrent

configuration in the cluster firing model, where K+(v) = deg(v)−1 for all V (G)\{v0}.

The interested reader can prove this fact using Lemma 3 or look to [9] for an alternate

proof. This allows a bijection for one model to be “dualized” to produce a bijection for

the other model. The bijection presented here is the first bijection which the author

is aware of that applies directly to both models without exploiting this duality.

As was mentioned in the introduction, the recurrent configurations in the cluster

firing model are precisely the stable configurations, therefore to check that a config-

uration ν is recurrent, we need only check that there exists no set A ⊂ V (G) \ {v0}

which can fire without sending a vertex into debt. A priori we would need to check

an exponential number of sets to be sure that ν was reduced, but Dhar’s observation

is that it’s sufficient to check only n such sets. Begin by firing A1 = V (G) \ {v0}. By
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assumption, there exists at least one vertex v which is sent into debt. Remove v from

A1 and continue firing sets in ν and removing vertices sent into debt until reaching

the empty set.

Here is why this works: suppose that B ∈ V (G) \ {v0} is ready in ν, but that

we have a collection A1, . . . , An of sets which were obtained from a run of Dhar’s

algorithm. There exists i maximum such that B ⊂ Ai. It follows that Ai−1 = Ai \ v,

with v ∈ B, where v was sent into debt by Ai, but if we fire Ai \B, v may only gain

chips, and v is supposedly able to fire in B without being sent into debt. Firing Ai\B

and then B is the same as firing Ai, contradicting the fact that v was sent into debt

by Ai.

Dhar’s burning algorithm earns its name from the following alternate description:

Place D(v) firefighters at each vertex and start a fire at v0. The fire spreads through

the graph along the edges, but is prevented from passing through vertices by the

firefighters located there. When the number of edges burned incident to a vertex

is greater than the number of firefighters present, the firefighters are overpowered

and the fire burns through the vertex. A configuration is stable in the cluster firing

model if and only if the fire burns through the entire graph. Dhar noticed that by

burning in a systematic way, this algorithm produces a bijection between the recurrent

configurations and the spanning trees.

In the Cori-Le Borgne algorithm, the edges are burned in an order which produces

an “activity preserving” bijection. To describe the Cori-Le Borgne algorithm, we

begin with an arbitrary ordering of the edges e1, e2, . . . , em ∈ E(G). The setup is the

same as with Dhar, except that we burn one edge at a time, always taking the edge

with the smallest label connecting the burnt vertices to the non burnt vertices. When

an edge burned causes the firefighters at a vertex to be overpowered and the vertex to

be burnt, we mark this edge. It is clear that if the fire burns through the graph, these

marked edges form a spanning tree . Conversely, if we start with a tree and begin
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burning the edges of our graph one at a time, the edges of the tree tell us when we

should burn a vertex, hence how many firefighters (chips) a vertex should have. This

shows that the algorithm produces a bijection between the recurrent configurations

and spanning trees.

Before describing our algorithm, we introduce a third characterization of recurrent

configurations. This definition is the the one which will be used in our bijection.

Lemma 4.4.1. A configuration ν is critical if and only if any maximal sequence of

firings by active vertices brings ν −Qχ0 back to ν.

Proof. Here we are allowing active vertices to fire even though this may cause them

to go into debt. If a configuration ν is critical, it is clear that we can continue firing

active vertices in the ready sets and eventually return to ν. Conversely, suppose that

there exists some firing of individual active vertices which brings ν −Qχ0 back to ν,

but that ν is not critical. If this is the case, there must be some vertex v ∈ V (G)\{v0}

which was never fired in the stabilization of ν−Qχ0. We might take v to be the first

such vertex, but observe that this situation may only occur if a vertex of the same

type has already been fired causing v to become active, a contradiction.

The definition just described can be viewed as a quasi-local characterization of

the recurrent states. It is local in the sense that vertices fire individually rather than

as collections, but it is nonlocal in that whether a vertex is allowed to fire or not is

based on nonlocal data. Recall Nmin(v,D) is the minimum amount that v can lose

by firing a ready set in D which contains v. We now explain our bijection between

recurrent configurations in a fixed hereditary chip-firing model σ on a graph G and

the spanning trees of G. First we explain the map from critical configurations to

spanning trees. Let X be the vertices which were fired at the ith step of the process.

Let Y be the collection of maximal ready sets. The primary observation is that for
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each ready set S in Y , there exists a vertex v which, before X fired, would have been

sent into debt if S fired. This means that D(v) < Nmin(v,D − QχX) < D − QχX .

As we burn edges from X across the cut to Y , eventually the number of edges burnt

plus D(v) is equal to Nmin(v,D−QχX). At this point we mark the last edge as part

of the spanning tree, fire v, “unburn” the burnt edges and continue. We remark that

although it is aesthetically displeasing to “unburn” the burnt edges and start anew

with each iteration, it is necessary for the algorithm to work. In order to compute

the value Nmin(v,D − QχX) more quickly than by simply checking all subsets of X

complement, we can run the Dhar algorithm on each maximal element of σ contained

in X complement.

Input:
G = (V,E), a graph with a fixed ordering on E,
v0 ∈ V (G),
σ, a hereditary chip-firing model on V (G)\{v0}
ν =

∑
v av(v), a v0-critical divisor of degree d.

Output:
Tν , a spanning tree of G.

Initialization:
X = {v0} (“burnt” vertices),
R = ∅ (“burnt” edges),
T = ∅ (“marked” edges).

while X 6= V (G) do
f = min{e = {s, t} ∈ E(G) | e 6∈ R, s ∈ X, t 6∈ X},
let v ∈ V (G)\X be the vertex incident to f ,
if av = Nmin(v, ν −QχX)− |{e incident to v | e ∈ R}| then

X ← X ∪ {v},
T ← T ∪ {f},
R← ∅

end
else R← R ∪ {f}

end
Output Tν = T .

Algorithm 1: Reduced divisor to spanning tree.

We now describe our algorithm γ for taking a tree T and producing a recurrent

configuration, νT . This process has two parts. First we use T to construct a total
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order on the vertices. The idea is to mimic the Cori– Le Borgne algorithm for taking

a tree and producing a critical configuration ν. The problem is that, in this more

general setting, we are no longer able to determine ν because we do not know what

the ready sets are at each step. Still, we are able to obtain a total order on the

vertices which corresponds to the order in which the vertices should be fired, and we

can then use this total order to reconstruct ν by running the algorithm a second time,

this time “backwards”.

Input:
G = (V,E), a graph with a fixed ordering on E,
v0 ∈ V (G),
σ, a hereditary chip-firing model on V (G)\{v0},
T , a spanning tree of G.
Output:
w0 < w1 < · · · < wn, a total oder on V (G)

Initialization:
i = 0,
w0 = v0 (“burnt” vertices),
R = ∅ (“burnt” edges).

while i 6= n do
f = min{e = {s, t} ∈ E(G) | e 6∈ R, s ∈ X, t 6∈ X},
if f ∈ T then

let v ∈ V (G)\X be the vertex incident to f ,
wi := v,
R← ∅,
i← i+ 1.

end
else R← R ∪ {f}

end
Output: w0 < w1 < · · · < wn.

Algorithm 2: Spanning tree to reduced divisor: part 1

Now, let σ and γ be the maps from critical configuration to spanning trees and

spanning trees to critical configurations respectively as described in the algorithms

above.
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Input:
G = (V,E), a graph with a fixed ordering on E,
v0 ∈ V (G),
σ, a hereditary chip-firing model on V (G) \ {v0},
T , a spanning tree of G,
w0 < w1 < · · · < wn, a total order of V (G) obtained in part 1.
Output:
νT =

∑
v av(v), a v0-critical divisor.

Initialization:
X = V (G) \ {wn} (“burnt” vertices),
R = ∅ (“burnt” edges),
i = n.

while X 6= v0 do
f = min{e = {s, t} ∈ E(G) | e 6∈ R, s ∈ X, t 6∈ X},
if f ∈ T then

wi ∈ V (G)\X is the vertex incident to f ,
awi := Nmin(wi, ν −QχX)− |{e incident to v | e ∈ R}|,
X ← X \ {wi},
R← ∅,
i← i− 1.

end
else R← R ∪ {f}.

end
Output νT =

∑
v av(v).

Algorithm 3: Spanning tree to reduced divisor: part 2
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Theorem 4.4.2. The operations, σ and γ are inverse to each other and induce a

bijection between the recurrent configurations of a hereditary chip-firing model σ on

a graph G and the spanning trees of G.

Proof. First we claim that γ ◦ σ is the identity map on the recurrent configurations.

Let D be recurrent and σ(D) = T a spanning tree. Observe that the total order

produced on the vertices of G during the run of γ on T is the same as the order

in which the vertices are processed during σ run on D. Given this total order on

the vertices, the algorithm γ is designed so as to produce the configuration D such

that σ(D) = T . It follows that σ is injective, and by Lemma 3, σ is an injective

map between two sets with the same cardinality. It follows that σ is a bijection with

explicit inverse γ.

4.5 Chip-firing via Open Covers of Metric Graphs

In this section we briefly discuss continuous analogues of the previously investigated

model for metric graphs. Let Γ be a compact metric graph, and U an open cover

of Γ with maximal sets U1, . . . Un, and q ∈ Γ. Given a divisor D which is effective

away from q. We call a firing function f allowable if f ≥ 0, f(q) = 0, and there

exists some Ui such that the support of f is contained in Ui. We would like to talk

about stabilization of D with respect to U as the repeated application of firing until

it is no longer possible, but the immediate problem is that such a process might

never terminate. Thus, to give an appropriate notion of stabilization, we allow for

transfinite firing processes, which will terminate in time less than ωω. Given this

notion of stabilization we remark that we have the following natural metric versions

of Lemma 4.3.1.

Lemma 4.5.1. Given a metric graph Γ, a point q ∈ Γ, U an open cover of Γ with

maximal sets U1, . . . Un, and a divisor D which is effective away from q, the (U , q)-

stabilization of D is independent of any firing choices.
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We could like to also define recurrent configurations with respect to U , but this

is problematic for the following reason. If we define a Markov chain by adding chips

and stabilization, we will eventually only see certain configurations, but because this

Markov chain is infinite, we see any fixed recurrent configuration again with proba-

bility 0. Instead we work with the following equivalent notion. We say that a divisor

D which is effective away from q is (U , q)-critical if when we fire away from q some

arbitrarily small distance ε and then (U , q)-stabilize, we return to D. We now describe

a metric version of Theorem 4.3.2.

Theorem 4.5.2. Given a metric graph Γ, a point q ∈ Γ, U an open cover of Γ with

maximal sets U1, . . . Un, and a divisor D on Γ, D is linearly equivalent to a unique

(U , q)-critical divisor.

Putting these two results together, we have the following corollary.

Corollary 4.5.3. Given a metric graph Γ, a point q ∈ Γ, and U an open cover of Γ

with maximal sets U1, . . . Un induce a canonical presentation of the Jacobian.

Proof. By the previous Theorem, any elements [D1], [D2] ∈ Pic0(Γ) are linearly equiv-

alent contain unique (U , q)-critical divisors D1 and D2. We can add these two divisors

and (U , q)-stabilize to obtain the unique (U , q)-critical configuration in [D1]+[D2].

If we take a collection of points S ⊂ Γ, which contains all of the points which

have a number of tangent direction other than 2, this set induces a canonical cover

US of Γ by stars, which is two to one away from S. We find that this model serves

as a metric version of the abelian sandpile model. In particular, we obtain a duality

between the (US, q)-critical configurations and the q-reduced divisors.

Theorem 4.5.4. Let S ⊂ Γ be a set of points containing all of the points from Γ

which have a number of tangent direction different than 2, US be the canonical cover

of Γ by stars. and K+
S =

∑
s ∈ S(deg(s)− 1)(s). There exists a canonical pairing of
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the (US, q)-critical configurations and the q-reduced divisors so that the sum of each

pair (US, q)-stabilizes to K+
S =

∑
s∈S(deg(s)− 1)(s).

If Γ has all edge lengths one, take S to be the minimal set satisfying the desired

property, and we restrict this pairing to divisors supported on S, we retain a duality

of Baker and Norine [9]. Every open cover has a refinement of a 2 to 1 cover by stars.

Therefore, if there were method of making sense of a limit of (US, q)-criticial divisors

under refinement, then these star shaped covers would allows for a computation of

the limit. We allow ourselves this one moment in the thesis to be completely spec-

ulative and suggest that this duality, viewed through the appropriate lens, ought to

be interpretable as a combinatorial version of Serre duality.
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CHAPTER V

RIEMANN-ROCH THEORY FOR DIRECTED GRAPHS

AND ARITHMETICAL GRAPHS

In this chapter we investigate Riemann-Roch theory for directed graphs and arith-

metical graphs. The Riemann-Roch criteria of Amini and Manjunath is generalized

to all integer lattices orthogonal to some positive vector. Using generalized notions

of v0-reduced divisors and Dhar’s algorithm, we investigate two chip-firing games

coming from the rows and columns of the Laplacian of a strongly connected directed

graph. We discuss how the “column” chip-firing game is related to directed ~G-parking

functions and the “row” chip-firing game is related to the directed sandpile model.

Wilmes’ lattice reduction algorithm shows that the “row” chip-firing game gives a

graph theoretic model for the work of Amini and Manjunath. We conclude with a

discussion of arithmetical graphs, which after a simple transformation may be viewed

as a special class of directed graphs which will always have the Riemann-Roch prop-

erty for the column chip-firing game. We answer a question of Lorenzini who asked for

a combinatorial proof of the fact that if there are g0 chips present in an arithmetical

graph, then there exists a sequence of chip-firing moves which brings all of the vertices

out of debt. Examples of arithmetical graphs are provided which demonstrate that

either, both, or neither of the two Riemann-Roch conditions may be satisfied for the

row chip-firing game. This chapter represents joint work with Arash Asadi.

5.1 Introduction

This project with Arash Asadi was the first one which the author pursued as a grad-

uate student. It began when Matt Baker suggested that we answer a question posed

84



by Lorenzini, who asked for a combinatiorial proof of the fact that if there are at

least g0 chips present in an arithmetical graph, then there necessarily exists a way of

bringing all of the vertices out of debt by chip-firing. He also asked for a chip-firing

proof that if g0 agrees with gmax, the geometric genus of the associated lattice, then

we have a natural canonical divisor. His original proofs of theses results relied on

specialization arguments from curves to graphs. Eventually we found graph theoretic

proofs of these statements, which required the introduction of generalized notions

of reduced divisors and Dhar’s algorithm for arithmetical graphs. After solving this

problem, we generalized, per Farbod Shokrieh’s suggestion, Amini and Manjunath’s

work on Riemann-Roch theory for full-dimensional lattices orthogonal to the all 1’s

vector to full-dimensional lattices orthogonal to an arbitrary positive integer vector,

and used these results to investigate Riemann-Roch theory for arithmetical graphs.

We remark that this extension requires little more than carefully checking that their

arguments extend. Omid Amini visited Georgia Tech, and when we got to chat to-

gether about our work, his first reaction was that by scaling the Laplacian lattice

coming from an arithmetical graph, one obtains chip-firing on a special class of di-

rected graphs. By my work with Arash, we were able to fact check that this type

of scaling is legitimate. We began to read about chip-firing on directed graphs and

were immediately disappointed to notice that a dual version of our Dhar’s algorithm

had been discovered by the mathematical physicist Speer in 1994, who called it the

script algorithm, as were a dual notion of reduced divisors. In section, illustrate this

duality, and note that this has recently been extended to Gabrielov’s M-matrices by

Guzman and Klivans. Both our row and column chip-firing games for strongly con-

nected directed graphs were both generalized in the much overlooked unpublished

work of Gabrielov. Independently, and at the same time as us, Perkinson, Perlman,

and Wilmes discovered directed reduced divisors and the dual script algorithm. It

seems then, looking back on this work, that the real contribution is our chip-firing
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analysis of arithmetical graphs, in particular our combinatorial proofs of Lorenzini’s

theorems.

In this chapter we investigate Riemann-Roch theory for two dual chip-firing games

coming from the Laplacian of a strongly connected directed graph, i.e., a directed

graph for which there exists a direct path from any vertex to any other vertex. These

digraphs can be algebraically characterized as those digraphs for which the left kernel

of the Laplacian is 1-generated by a single positive (integer) vector, and it is the

primitive vector in this left kernel of the Laplacian which determines the dynam-

ics for both chip-firing games. The unconstrained row chip-firing game and column

chip-firing game are defined similarly to the unconstrained chip-firing game of Baker

and Norin, but they are determined by the row and column spans of the directed

Laplacian. We recall that the Laplacian of an undirected graph can be obtained as

the Laplacian of a directed Laplacian by viewing each undirected edge as a pair of

directed edges. In this way, the row and column and chip-firing games may be viewed

as dual extensions of the undirected chip-firing game. The row chip-firing game is

both the more intuitive and important of the two games, so we begin by describing

it first. Given a directed graph and a (not necessarily positive) chip configuration on

the vertices, a vertex v fires by sending a chip along each of it’s outgoing edges, and

losing this many chips in the process, so that the number of chips is conserved. This

game was investigated first in chip-firing by Lovasz, and In the column chip-firing

game, the vertex v firing still loses its degree number of chips, but now the vertices

with edges pointed towards v gain a chip. It appears at first that the total number

of chips is not conserved, but for strongly connected directed graphs, the primitive

vector in the left kernel gives a list of currencies for the vertices which makes the game

conservative. We show how the directed G-parking functions are the appropriate gen-

eralization of the reduced divisors for this column chip-firing game when determining

whether we have a winning strategy in the Baker-Norin game. By Amini’s scaling
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argument, we may scale the associated lattice by the left kernel to reduce the study

of Riemann-Roch theory for the column-chip-firing to the row chip-firing game on

Eulerian directed-graphs.

We then present our work on arithmetical graphs. We prove Lorenzini’s theorems

using reduced divisors for the row chip-firing game and our dual script algorithm. We

then present examples of arithmetical graphs with and without the Riemann-Roch

property. Our main example of arithmetical graphs with the Riemann-Roch property

are a class we call Euclidean stars, whose proof involves several techniques developed

in the chapter. Amini and Manjunath [3] showed that by viewing the chip-firing

game of Baker and Norine geometrically as a walk through the lattice spanned by its

Laplacian, a pair of necessary and sufficient Riemann-Roch conditions, equivalent to

those of Baker and Norine, could be generalized to all sub-lattices of the lattice Λ~1.

They refer to these conditions as uniformity and reflection invariance.

5.1.1 Basic Notations and Definitions

For any two vectors x, y ∈ Rn+1, let x · y denote the inner product of x and y.

For any x = (x0, . . . , xn)T ∈ Rn+1, define x+ = (x+
0 , . . . , x

+
n )T ∈ Rn+1

+ and x− =

(x−0 , . . . , x
−
n )T ∈ Rn+1

− to be the positive part and negative part of x respectively where

x = x+ + x− and x+
i x
−
i = 0, for all 0 ≤ i ≤ n. Define degR(x) = R ·D and call it the

degree of x. We denote degR(x+) by deg+
R(x) and we call it the degree plus of x.

Assume ~0 and ~1 are the vectors in Rn+1 all of whose coordinates are 0 or 1,

respectively. For any x = (x0, . . . , xn)T ∈ Rn+1, we say x ≥ ~0 (x > ~0) if and only if

for all 0 ≤ i ≤ n, xi ≥ 0 (xi > 0). We define a partial order in Rn+1 as follows: for any

x, y ∈ Rn+1, we say x ≥ y (x > y) if and only if x−y ≥ ~0 (x−y > ~0). For any vector

x ∈ Rn+1, define C+(x) = {y ∈ Rn+1 : y ≥ x} and C−(x) = {y ∈ Rn+1 : x ≥ y}.

We denote the standard basis for Rn+1 by {e0, . . . , en}. Suppose that R ∈ Nn+1 is

a vector, and define HR = {x ∈ Rn+1 : R · x = 0}. Let ΛR = HR ∩ Zn+1 be the
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integer lattice in the hyperplane HR where R ∈ Nn+1. Let ‖ · ‖ denote the `2-norm,

i.e., ‖x‖ =
√
x · x, for all x ∈ Rn+1.

Let G be graph and let {v0, . . . , vn} be an ordering of vertices of G. Let Div(G)

be the free Abelian group on the set of vertices of G. By analogy with the Riemann

surface case as noted also in [9], we refer to elements of Div(G) as divisors on G.

In the case that the graph G is implied by context, we simply refer to elements of

Div(G) as divisors. Because there is a fixed ordering on vertices of G, we think of

an element α ∈ Div(G), which is a formal integer linear combinations of vertices of

G, as a vector D = (d0, . . . , dn) ∈ Zn+1 where di is the coefficient of vi in α for all

0 ≤ i ≤ n. We denote to the ith coordinate of D by D(vi), for all 0 ≤ i ≤ n. We

refer to both vectors in Zn+1 and elements of Div(G) as divisors.

5.2 Riemann-Roch Theory for Sub-lattices of ΛR

5.2.1 Main Theorems

Throughout this section, R will denote a vector in Nn+1.

Definition 5.2.1. Let Λ ⊆ ΛR be a sub-lattice of rank n. Define

Σ(Λ) = {D ∈ Zn+1 : D 6≥ p for all p ∈ Λ},

ΣR(Λ) = {x ∈ Rn+1 : x 6≥ p for all p ∈ Λ}.

Note that the set Σ(Λ) defined in Definition 5.2.1 is the negative of the Sigma

region set defined by Amini and Manjunath [3]. We denote by ΣR(Λ) the topological

closure of the set ΣR in Rn+1. Let B(x, r) = {y ∈ Rn+1 : ‖y − x‖ ≤ r} denote the

ball of radius r with center at x. For any set S ⊂ Rn+1, let int(S) denote the relative

interior of S.

Define H+
R = {x ∈ Rn+1 : x · R ≥ 0}. For any vector p ∈ H+

R , define ∆R(p) =

HR∩C−(p) to be the n-dimensional simplex in the hyperplane HR. For the definitions
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of simplex and facet and their properties, we refer the reader to [56, 68]. For simplicity

we denote ∆R(R) by ∆R.

It is easy to see that for any p ∈ H+
R there exists a unique λ ≥ 0 and p′ ∈ HR

such that p = p′ + λR. Define the projection function π : H+
R → HR as follows: for

any p ∈ H+
R , define π(p) = p′. It is also easy to see that λ = (p ·R)/‖R‖2. We refer

to π(p) as the projection of the point p into the hyperplane HR along the vector R.

Definition 5.2.2. For any two points p, q ∈ HR, define the ∆R-distance function

between p and q as follows:

d∆R
(p, q) = inf{λ ≥ 0 : q ∈ p+ λ∆R}.

The ∆R-distance function defined above is a gauge function (which is often used

in the study of convex bodies). For more on gauge functions and their properties,

see [70].

For any point p ∈ Λ define d∆R
(p,Λ) = min{λ ≥ 0 : there exists q ∈ Λ such that q ∈

p+ λ∆R}.

Definition 5.2.3. Define

Ext(Σ(Λ)) = {ν ∈ Σ(Λ) : degR(ν) ≥ degR(p), for all p ∈ N(ν) ∩ Σ(Λ)},

Ext(ΣR(Λ)) = {ν ∈ ΣR(Λ) : ∃ δ > 0, such that degR(ν) ≥ degR(p),

for all p ∈ B(ν, δ) ∩ ΣR(Λ)},

Crit(Λ) = {ν ∈ HR : ∃ δ > 0 such that d∆R
(ν,Λ) ≥ d∆R

(p,Λ),

for all p ∈ B(ν, δ) ∩HR}.

where N(ν) consists of all points D ∈ Zn+1 such that ‖D − ν‖~1 ≤ 1. We call

Ext(Σ(Λ)), Ext(ΣR(Λ)) the set of extreme points or extreme divisors of Σ(Λ) and

ΣR(Λ) respectively. The set of critical points of Λ is denoted Crit(Λ).
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Definition 5.2.4. Let Λ be a sub-lattice of ΛR of rank n, and Ext(Σ(Λ)) be the set

of extreme points of Σ(Λ). Define

gmin = min{degR(ν) : ν ∈ Ext(Σ(Λ))}+ 1,

gmax = max{degR(ν) : ν ∈ Ext(Σ(Λ))}+ 1.

We say the lattice Λ is uniform if gmin = gmax.

Definition 5.2.5. Let Λ be a sub-lattice of ΛR of rank n. We say Λ is reflection

invariant if −Crit(Λ) is a translate of Crit(Λ), i.e., if there exists v ∈ Rn+1 such

that −Crit(Λ) = Crit(Λ) + v.

Definition 5.2.6. Let Λ be a sub-lattice of dimension n of ΛR. We say a divisor

K ∈ Zn+1 is a canonical divisor of Λ, or equivalently Λ has a canonical divisor K, if

for all divisors D ∈ Zn+1,

degR(D)− 3gmax + 2gmin + 1 ≤ r(D)− r(K −D) ≤ degR(D)− gmin + 1.

Theorem 5.2.7. Let Λ be a reflection invariant sub-lattice of ΛR of rank n. Then Λ

has a canonical divisor, i.e. there exists a divisor K such that for all D ∈ Zn+1,

degR(D)− 3gmax + 2gmin + 1 ≤ r(D)− r(K −D) ≤ degR(D)− gmin + 1.

Definition 5.2.8. Let Λ be a uniform sub-lattice of dimension n of ΛR. We say Λ

has the Riemann-Roch property if there exists a divisor K with degree 2g − 2, where

g = gmin = gmax, such that for all divisor D ∈ Zn+1:

r(D)− r(K −D) = deg(D)− g + 1.

Theorem 5.2.9. Let Λ be a uniform sub-lattice of dimension n of ΛR. Then Λ is

reflection invariant if and only if Λ has the Riemann-Roch property.
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Definition 5.2.10. We say a sub-lattice Λ of ΛR has the Riemann-Roch formula if

there exists a an integer m ∈ Z and a divisor K of degree 2m − 2 such that for all

D ∈ Zn+1:

r(D)− r(K −D) = degR(D)−m+ 1.

Theorem 5.2.11. Let Λ be a sub-lattice of dimension n of ΛR. Then Λ has a

Riemann-Roch formula if and only if Λ is uniform and reflection invariant, in par-

ticular Λ has the Riemann-Roch property.

Let R = (r0, . . . , rn) ∈ Nn+1 and R = diag(r0, . . . , rn) be a matrix mapping ΛR

to Λ~1. To be more precise, for any p ∈ ΛR the image of p is Rp. For any set

S ⊆ Rn+1, let RS denote the set {Rp : p ∈ S}. It is easy to see that if Λ ⊆ ΛR

is a sub-lattice of dimension n then RΛ is a sub-lattice of Λ~1 of dimension n. The

proceeding theorem follows immediately from Theorem 5.2.11, Corollary 5.2.30 and

Lemma 5.2.31 appearing in Appendix A 5.2.2.

Theorem 5.2.12. Let Λ be a uniform sub-lattice of dimension n of ΛR. Then Λ has

the Riemann-Roch property if and only if RΛ ⊆ Λ~1 has the Riemann-Roch property.

5.2.2 Amini and Manjunath’s Riemann-Roch theory for lattices

Many of the proofs and statements presented in this section are similar to those which

appeared in Amini and Manjunath [3]. Essentially, what is being demonstrated is that

if one replaces each statement about lattices orthogonal to the all one’s vector with the

same statement for lattices orthogonal to some fixed positive vector, the proofs will

go through without much extra effort. This in itself is not a very strong observation,

but it is necessary for proving Theorems 5.2.7, 5.2.9, 5.2.11 and 5.2.12, which are

used several times in the preceding sections so, for the sake of completeness, we have

decided to provide all of the necessary lemmas and theorems with proofs.

Recall Definitions 5.2.1, 5.2.2 and 5.2.3.
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Lemma 5.2.13. If Λ ⊆ ΛR is a sub-lattice of rank n, then

ΣR(Λ) = {x ∈ Rn+1 : x 6> p, for all p ∈ Λ}.

Proof. Suppose x ∈ Rn+1 such that x > p for some p ∈ Λ. Thus there exists δ > 0

such that for all y ∈ B(x, δ), y > p. Thus x 6∈ ΣR(Λ). Now, suppose x 6∈ ΣR(Λ).

Then there exists δ > 0 and p ∈ Λ such that x − δ
2
~1 ≥ p. Hence x > p, and this

completes the proof of the lemma.

Lemma 5.2.14. If D ∈ Zn+1 then D ∈ Σ(Λ) if and only if D + ~1 ∈ ΣR(Λ).

Proof. If D 6∈ Σ(Λ) then there exists p ∈ Λ such that D ≥ p. Hence D + ~1 > p and

by Lemma 5.2.13 D+ ~1 6∈ ΣR(Λ). If D+ ~1 6∈ ΣR(Λ) then Lemma 5.2.13 implies that

D + ~1 > p for some p ∈ Λ. Since D, p ∈ Zn+1, it follows that D ≥ p and this implies

that D 6∈ Σ(Λ).

Suppose R = (r0, . . . , rn) ∈ Rn+1
+ and x = (x0, . . . , xn) ∈ Rn+1. Define ‖x‖R =∑n

i=0 ri|xi|. It is easy to see that ‖·‖R is a norm on Rn. For any two points x, y ∈ Rn+1,

we define distR(x, y) = ‖x − y‖R. One can consider ‖ · ‖R as a weighted taxi-cab

distance. For any set S ⊆ Rn+1 and p ∈ Rn+1, we define distR(p, S) = inf{distR(p, x) :

x ∈ S}. Observe that r(D) = −1 if D is not equivalent to any effective divisor and

−1 ≤ r(D) ≤ degR(D).

Lemma 5.2.15. If D ∈ Zn+1 is a divisor then

(i) r(D) = −1 if and only if D ∈ Σ(Λ).

(ii) r(D) = distR(D,Σ(Λ))− 1 = min{distR(D, p) : p ∈ Σ(Λ)} − 1.

Proof. (i) For D ∈ Zn+1, r(D) = −1 if and only if for all p ∈ Λ, D − p 6≥ ~0 if and

only if D ∈ Σ(Λ).
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(ii) Since Σ(Λ) is a closed set, inf{distR(D, p) : p ∈ Σ(Λ)} = min{distR(D, p) : p ∈

Σ(Λ)}.

r(D) = min{deg(E) : |D − E| = ∅, E ≥ ~0} − 1

= min{deg(E) : r(D − E) = −1, E ≥ ~0} − 1

= min{deg(E) : D − E ∈ Σ(Λ), E ≥ ~0} − 1

= min{degR(D − p) : D − p ≥ ~0, p ∈ Σ(Λ)} − 1

= distR(D,Σ(Λ))− 1.

Note that the last equality follows from the fact that if p ∈ Σ(Λ) and (D−p)i < 0

for some 0 ≤ i ≤ n then distR(D, p− ei) ≤ distR(D, p) and p− ei ∈ Σ(Λ).

Lemma 5.2.16. If p = (p0, . . . , pn) ∈ H+
R and p = π(p) + λR, then

(i) ∆R(p) = π(p) + λ∆R.

(ii) Fi = ∆R(p)∩ {x ∈ Rn : xi = pi} for all 0 ≤ i ≤ n, define all of the facets of the

simplex ∆R(p).

It is easy to see that ∆R is the simplex in HR with vertices b0, . . . , bn ∈ HR, whose

coordinates are:

bij =


−∑k 6=i

r2k
ri

if i = j

ri otherwise

for all 0 ≤ j ≤ n. The following remark can be considered as a generalization of

Lemma 4.7 in [3], and its proof easily follows from Definition 5.2.2.

Remark 5.2.17. Given any two vectors p, q ∈ HR,

d∆R
(p, q) = max

0≤i≤n
{qi − pi

ri
}.
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Proof. By Definition 5.2.2,

d∆R
(p, q) = inf{λ ≥ 0 : q ∈ p+ λ∆R} = inf{λ ≥ 0 : q ∈ p+ C−(λR)}

= inf{λ ≥ 0 : q ≤ p+ λR} = max
0≤i≤n

{qi − pi
ri
}.

Lemma 5.2.18. If p, q ∈ H+
R , then p ≤ q if and only if ∆R(p) ⊆ ∆R(q). In particular,

p < q if and only if ∆R(p) ( int(∆R(q)).

Proof. It is easy to see that p ≤ q if and only if C−(p) ⊆ C−(q). Now the second

part of Lemma 5.2.16 implies that C−(p) ⊆ C−(q) if and only if (C−(p) ∩ HR) ⊆

(C−(q) ∩HR).

Recall Definition 5.2.3. An easy application of Lemma 5.2.13 is that if p ∈

Ext(ΣR(Λ)), then p 6∈ Λ. The following theorem characterizes the set of extreme

points of ΣR(Λ).

Theorem 5.2.19. If p ∈ ΣR(Λ) \Λ then p ∈ Ext(ΣR(Λ)) if and only if each facet of

the simplex ∆R(p) contains a point of Λ in its interior.

Proof. Assume that p = (p0, . . . , pn) ∈ ΣR(Λ) \ Λ. Let Fi, 0 ≤ i ≤ n be the facets of

∆R(p). Let 0 ≤ i ≤ n be such that int(Fi) contains no point of Λ. By Lemma 5.2.16

(ii), there exists an ε > 0 such that ∆R(p+ εei) does not contain any points of Λ in its

interior. Hence Lemma 5.2.18 and Lemma 5.2.13 imply that p + εei ∈ ΣR(Λ). Since

degR(p) < degR(p+ εei), the point p is not an extreme point.

Conversely, assume that p ∈ ΣR(Λ) \ Λ is such that the interior of each facet F

of ∆R(p) contains a point of Λ. We claim that for any v = (v0, . . . , vn) ∈ Rn+1,

either degR(p + εv) ≤ degR(p) for all ε ≥ 0, or there exists λ > 0 such that for all

0 < ε ≤ λ, p+ εv 6∈ ΣR(Λ). If v ≤ ~0, then for all ε ≥ 0, degR(p+ εv) ≤ degR(p). Now,

without loss of generality assume that v0 > 0 and v1 ≤ 0. Suppose x ∈ int(F ) where
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F = ∆R(D)∩ {y ∈ Rn : (y −D) · e0 = 0}. Since x ∈ int(F ), we can pick λ > 0 small

enough such that for all 0 < ε ≤ λ, x ∈ int(∆R(p + εv)). Thus Lemma 5.2.18 and

Lemma 5.2.13 imply that x 6∈ ΣR(Λ) for all 0 < ε ≤ λ. This completes the proof of

the claim. It is easy to see that the proof of the theorem follows from the claim.

Corollary 5.2.20. The set Ext(ΣR(Λ)) is a subset of Zn+1.

Proof. Let p ∈ Ext(ΣR(Λ)). Theorem 5.2.19 shows that the interior of every facet F

of ∆R(p) contains a point of Λ. Since Λ ⊆ Zn+1, the second part of Lemma 5.2.16

implies that p ∈ Zn+1.

Theorem 5.2.21. A divisor ν ∈ Ext(Σ(Λ)) if and only if ν + ~1 ∈ Ext(ΣR(Λ)).

Proof. Corollary 5.2.20 implies that Ext(ΣR(Λ)) ⊆ Zn+1. The theorem immediately

follows from Lemma 5.2.14.

The set of critical points of Λ (Crit(Λ) in Definition 5.2.3) is the set of local

maxima of the function d∆R
(·,Λ). The following theorem characterizes critical points

of Λ in terms of extreme points of ΣR(Λ).

Theorem 5.2.22. For p ∈ HR, let λ = d∆R
(p,Λ) and p′ = p + λR. Then p′ ∈

Ext(ΣR(Λ)) if and only if p ∈ Crit(Λ).

Proof. If p′ ∈ Ext(ΣR(Λ)) then by Theorem 5.2.19 each facet of the simplex ∆R(p+

λR) = p+ λ∆R contains a point of Λ in its interior. This shows that p ∈ Crit(Λ).

Conversely, assume that p ∈ Crit(L)and p′ 6∈ Ext(ΣR(Λ)). As the proof of

Theorem 5.2.19 shows, there exist 0 ≤ i ≤ n and δ > 0 such that for all 0 < ε ≤ δ,

p′ε = p′ + εei ∈ ΣR(Λ). For each 0 < ε ≤ δ, let pε = π(p′ε) to be the projection of p′ε

along R into HR. Lemma 5.2.24 implies that d∆R
(pε,Λ) =

(
p′ε·R
‖R‖2

)
. Since p′ε ·R > p′ ·R,

we conclude that d∆R
(pε,Λ) > d∆R

(p,Λ), a contradiction.

Corollary 5.2.23. Let ϕ : Ext(Σ(Λ)) → Crit(Λ) be as follows: For any ν ∈

Ext(Σ(Λ)), ϕ(ν) = π(ν + ~1). Then ϕ is a bijection.
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Proof. This follows from Theorems 5.2.22 and 5.2.21.

Lemma 5.2.24. Let p ∈ HR, λ = d∆R
(p,Λ), and λ′ = max{t ≥ 0 : p+ tR ∈ ΣR(Λ)}.

Then λ = λ′.

Proof. First note that since p ∈ ΣR(Λ) and ΣR(Λ) is a closed set, max{t ≥ 0 : p+tR ∈

ΣR(Λ)} is well-defined. The first part of Lemma 5.2.16 implies that p + t∆R =

∆R(p + tR). Now, for all 0 ≤ t ≤ λ, by applying Lemma 5.2.13 and Lemma 5.2.18,

we conclude that p+ tR ∈ ΣR(Λ). So λ′ ≥ λ. Conversely, suppose t ≥ 0 is such that

Λ ∩ (p + t∆R) 6= ∅. Lemma 5.2.13 and Lemma 5.2.18 imply that p + tR ∈ ΣR(Λ) if

and only if Λ ∩ int(p + t∆R) = ∅. This shows that λ′ ≤ λ, completing the proof of

the lemma.

Lemma 5.2.25. There exists a constant C depending only on the lattice Λ and the

vector R such that for any point p ∈ Σ(Λ), we have:

(i) degR(p) ≤ C,

(ii) there exists some ν ∈ Ext(Λ) such that p ≤ ν.

Proof. (i): First, we claim that there exists c such that for all p ∈ HR, d∆R
(p,Λ) ≤ c.

We start by noting that there exists a constant K depending only on R such that

d∆R
(p, q) ≤ K · ‖p− q‖. This follows immediately by taking the constant K to be the

largest radius of a sphere in HR with center at the origin contained in ∆R.

Let {l0, ..., ln−1} be a set of generators of Λ, and let P be the parallelotope gen-

erated by l0, ...ln−1. Because the ∆R-distance function is invariant under translation

by lattice points, it is sufficient to prove the claim for all p ∈ P . By letting c be K

times the maximum `2-distance from a point in P to the vertices of P (diameter of

P by `2-norm), the claim is proved.

To prove the first part, it is enough to show that for all p ∈ H+
R ∩Σ(Λ), degR(p) ≤

C. Let p′ = π(p), λ ≥ 0 be such that p = p′+λR. Lemma 5.2.18 implies that p ∈ Σ(Λ)
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if and only if ∆R(p) contains no points of Λ. Lemma 5.2.24 and Theorem 5.2.21 imply

that λ ≤ dist∆R
(p,Λ), so λ ≤ c. Therefore, degR(p) = λ‖R‖2 ≤ c‖R‖2. This shows

that C ≤ c‖R‖2, which completes the proof of the first part.

(ii): Let p ∈ Σ(Λ). The first part shows that the degrees of points in Ext(Λ)

are bounded above by C. Therefore C+(p) ∩ Σ(Λ) is a finite set. This immediately

shows that there exists ν ∈ Ext(Λ) such that p ≤ ν. To be more precise, one can find

an extreme point ν ∈ Ext(Λ) greedily by starting at point p and walking in positive

directions as much as possible while remaining in Σ.

Lemma 5.2.26. For any divisor D ∈ Zn+1, r(D) = min{deg+
R(D − ν) : ν ∈

Ext(Λ)} − 1.

Proof. First we show that min{deg+
R(D − ν) : ν ∈ Ext(Λ)} ≤ r(D) + 1. Let E ≥ ~0

with degR(E) = r(D) + 1 be such that D − E ∈ Σ(Λ), where the existence of E

guaranteed by Lemma 5.2.15. By Lemma 5.2.25, there exists ν ∈ Σ(Λ) such that

ν ≥ D − E. Let E ′ = ν − (D − E). We claim that E ′ · E = 0. Suppose not and

assume there exists 0 ≤ i ≤ n such that Ei, E
′
i ≥ 1. Note that D − (E − ei) ∈ Σ(Λ)

as ν ≥ D − (E − ei), but degR(E − ei) < degR(E) = r(D) + 1, a contradiction. This

gives that deg+
R(D − ν) = deg+

R(E − E ′) = deg(E) = r(D) + 1.

For proving the reverse inequality, let ν ∈ Ext(Λ) be such that deg+(D − ν) is

minimum. Because ν ≥ ν+ (D−ν)− = D− (D−ν)+, it follows that D− (D−ν)+ ∈

Σ(Λ). Hence Lemma 5.2.15 implies that r(D) ≤ min{deg+
R(D−ν) : ν ∈ Ext(Λ)}−1,

which completes the proof.

Lemma 5.2.27. Suppose φ : A → A′ is a bijection between sets, and f : A → Z

and f ′ : A′ → Z are functions whose values are bounded from below. If there exist

constants c1, c2 ∈ Z such that for all a ∈ A,

c1 ≤ f(a)− f ′(φ(a)) ≤ c2,

97



then

c1 ≤ min
a∈A

f(a)− min
a′∈A′

f ′(a′) ≤ c2.

Proof. Since f and f ′ are integer valued functions whose values are bounded from

below, there exists x ∈ A and y ∈ A′ such that f(x) = mina∈A f(a) and f ′(y) =

mina′∈A′ f
′(a′). The choice of x and y implies that f(x)−f ′(y) ≤ f(φ−1(y))−f ′(y) ≤

c2, and f(x) − f ′(y) ≥ f(x) − f ′(φ(x)) ≥ c1. Hence c1 ≤ f(x) − f ′(y) ≤ c2, as

desired.

Recall Definitions 5.2.4, 5.2.5 and 5.2.6. Here we are going to present the proof

of Theorem 5.2.7.

Proof of Theorem 5.2.7. First we construct the canonical divisor K and then we

show it has the desired property. Since Λ is reflection invariant, there exists a vector

v ∈ Rn+1 such that −Crit(Λ) = Crit(Λ) + v. Therefore there exists a bijection

function η from Crit(Λ) to itself such that η(c)+c = v. Let ϕ : Ext(Σ(Λ))→ Crit(Λ)

be the bijection described in Corollary 5.2.23. Define the bijection φ from Ext(Σ(Λ))

to itself so that for all ν ∈ Ext(Σ(Λ)), φ(ν) = ϕ−1ηϕ(ν). Since for all ν ∈ Ext(Σ(Λ)),

degR(ν+φ(ν)) ≤ 2gmax, there exists ν0 ∈ Ext(Σ(Λ)) such that degR(ν0 +φ(ν0)) is as

large as possible. Let the canonical divisor K be ν0 + φ(ν0).

For any ν ∈ Ext(Σ(Λ)), let c = ϕ(ν); then we have:

φ(ν) + ν = φ(ϕ−1(c)) + ϕ−1(c) = ϕ−1η(c) + ϕ−1(c) = λR + v − 2× ~1,

where λ ∈ R is a constant depends on ν (or equivalently c). Hence, the choice of K

implies that for any ν ∈ Ext(Σ(Λ)), there exists Eν ∈ Rn+1
+ such that φ(ν)+ν+Eν =
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K. Therefore, for all divisor D ∈ Zn+1 and ν ∈ Ext(Σ(Λ)) we have:

deg+
R(D − ν)− deg+

R(K −D − φ(ν)) = deg+
R(D − ν)− deg+

R(φ(ν) + ν + Eν −D − φ(ν))

= deg+
R(D − ν)− deg+

R(ν + Eν −D)

≤ deg+
R(D − ν)− deg+

R(ν −D)

= degR(D)− degR(ν)

≤ degR(D)− gmin + 1.

Note that for all ν ∈ Ext(Σ(Λ)), Eν = K − (ν + φ(ν)) ≤ 2gmax − 2gmin. Hence,

deg+
R(D − ν)− deg+

R(K −D − φ(ν)) = deg+
R(D − ν)− deg+

R(φ(ν) + ν + Eν −D − φ(ν))

= deg+
R(D − ν)− deg+

R(ν + Eν −D)

≥ deg+
R(D − ν)− deg+

R(ν −D)− 2(gmax − gmin)

= degR(D)− degR(ν)− 2gmax + 2gmin

≥ degR(D)− 3gmax + 2gmin + 1.

Therefore for all D ∈ Zn+1 and all ν ∈ Ext(Σ(Λ)),

degR(D)−3gmax+2gmin+1 ≤ deg+
R(D−ν)−deg+

R(K−D−ϕ(ν)) ≤ degR(D)−gmin+1.

For a fixed D ∈ Zn+1, degR(D) − 3gmax + 2gmin + 1 and degR(D) − gmin + 1 are

constant integers, deg+
R(D− ν) and deg+

R(K −D−ϕ(ν)) are integer valued functions

bounded from below by zero, and ϕ is a bijection from Ext(Σ(Λ)) to itself, hence

Lemma 5.2.27 implies that

degR(D)− 3gmax + 2gmin + 1

≤ min
ν∈Ext(Σ(Λ))

deg+
R(D − ν)− min

ν∈Ext(Σ(Λ))
deg+

R(K −D − ν)

≤ degR(D)− gmin + 1.

The assertion of the theorem now follows from Lemma 5.2.26.
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Recall Definitions 5.2.8 and 5.2.10, the following are the proof of Theorems 5.2.9

and 5.2.11, respectively.

Proof of Theorem 5.2.9. Assume Λ is reflection invariant and let K be the canon-

ical divisor obtained in the proof of Theorem 5.2.7. By applying Theorem 5.2.7,

it is enough to show that deg(K) = 2g − 2. The construction of K shows that

K = ν + φ(ν), where φ is the bijection obtained in proof of Theorem 5.2.7. Since Λ

is uniform, gmin = gmax = g. Hence degR(ν) = degR(φ(ν)) = g − 1 and this implies

that degR(K) = 2g − 2.

Now, assume that Λ has the Riemann property. Assume ν is an extreme divisor

of Σ(Λ), so the first part of Lemma 5.2.15 implies that r(ν) = −1. Since Λ is uniform

degR(ν) = g − 1 and this shows that r(K − ν) = r(ν) = −1. By Lemma 5.2.15,

K−ν ∈ Σ(Λ), and is hence an extreme divisor of Σ(Λ). Hence the function ψ defined

as ψ(−ν) = K − ν, for all ν ∈ Ext(Λ) is a bijection from Ext(Λ) to itself. If ϕ is the

function defined in Corollary 5.2.23, the function ϕoψoϕ−1 is a bijection from Crit(Λ)

to itself. It is easy to see that for any p ∈ Crit(Λ), ϕ(ψ(ϕ−1(p))) = −p+π(K)+2π(~1),

and by picking v = −π(K)− 2π(~1), we have −Crit(Λ) = Crit(Λ) + v.

Proof of Theorem 5.2.11. If Λ is uniform and reflection invariant, then Theo-

rem 5.2.9 implies that Λ has Riemann-Roch property and therefore Λ has the Riemann-

Roch formula with m = gmax.

For proving the other direction it is enough by Theorem 5.2.9 to show that Λ is

uniform and m = gmax. First, we show that m = gmax. Let D be a divisor with

degR(D) ≥ m. The Riemann-Roch formula implies that r(D) − r(K − D) ≥ 1 and

since r(K −D) ≥ −1, we have r(D) ≥ 0. It follows that gmax ≤ m.

We know that for any divisor D ∈ Zn+1, if the degree of D is more that gmax − 1

then the divisor is effective, so degR(D) − r(D) ≤ gmax. On the other hand, if
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degR(D) > 2m−2, then degR(K−D) < 0, therefore r(K−D) = −1. The Riemann-

Roch formula implies that deg(D) − r(D) = m. Therefore, m ≤ gmax. This shows

that m = gmax.

To prove uniformity, let ν ∈ Ext(Σ(Λ)) and degR(ν) < gmax−1. Since degR(K) =

2gmax− 2, degR(K − ν) ≥ gmax, so K − ν 6∈ Σ(Λ), and by Lemma 5.2.15 is equivalent

to an effective divisor. The Riemann-Roch formula implies that r(K − ν) = gmax −

deg(ν)− 2, so there exists an effective divisor E of degree gmax− deg(ν)− 1 > 0 such

that |K−ν−E| = ∅. We claim that ν+E is not equivalent to an effective divisor. The

Riemann-Roch formula implies that r(ν+E)−r(K−ν−E) = degR(ν+E)−gmax+1 =

0 and therefore r(ν + E) = −1. By Lemma 5.2.15, ν + E ∈ Σ(Λ), contradicting the

fact that ν ∈ Ext(Σ(Λ)).

The following lemmas and corollaries preparing the ground for proving Theo-

rem 5.2.12

Lemma 5.2.28. Let Λ be a sub-lattice of dimension n of ΛR. Then RΣ(Λ) = Σ(RΛ).

The proof of above lemma follows easily from Definition 5.2.1 and the fact that

R is an invertible matrix with positive diagonal entries.

Lemma 5.2.29. Let Λ be a sub-lattice of dimension n of ΛR. Then RExt(ΣR(Λ)) =

Ext(ΣR(RΛ)).

Proof. Let ν ∈ Ext(ΣR(Λ)) so that there exists some δ > 0 such that for all p ∈

B(ν, δ)∩ΣR(Λ), degR(ν) ≥ degR(p). Let δ′ = δ. It is easy to see that if q ∈ B(Rν, δ′),

we have R−1q ∈ B(ν, δ). Hence degR(R−1q) ≤ degR(ν) and therefore deg~1(q) ≤

deg~1(Rν). Here we have used the fact that for any D ∈ Zn+1, degR(D) = deg~1(RD)

and Lemma 5.2.28. This proves that RExt(ΣR(Λ)) ⊆ Ext(ΣR(RΛ)). The other

direction is proved similarly.

The following corollary immediately follows from Lemma 5.2.29 and Theorem 5.2.21.
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Corollary 5.2.30. Let Λ be a sub-lattice of dimension n of ΛR. Then Λ is uniform

if and only if RΛ ⊆ Λ~1 is uniform.

Lemma 5.2.31. Let Λ be a uniform sub-lattice of dimension n of ΛR. Then Λ is

reflection invariant if and only if RΛ ⊆ Λ~1 is reflection invariant.

Proof. First suppose Λ is reflection invariant. Then there exists a vector v ∈ Rn+1

such that −Crit(Λ) = Crit(Λ) + v. By applying Lemma 5.2.29 and Theorem 5.2.22,

let Rν−~1−deg~1(Rν−~1)~1 be an arbitrary point of Crit(RΛ) where ν is an arbitrary

point of Ext(ΣR(Λ)). Now, by applying Theorem 5.2.22,

ν − ~1− degR(ν − ~1)R ∈ Crit(Λ).

Since Λ is reflection invariant, there exists ν ′ ∈ Ext(ΣR(Λ)) such that

−ν + ~1 + degR(ν − ~1)R = ν ′ − ~1− degR(ν ′ − ~1)R + v,

therefore

−Rν +R~1 + degR(ν − ~1)RR = Rν ′ −R~1− degR(ν ′ − ~1)RR +Rv.

Since Λ is uniform degR(ν − ~1) is a constant independent from the choice of ν ∈

Ext(ΣR(Λ)). Hence, Rν − Rν ′ = u where u is constant vector in Rn+1 which does

not depend on ν or ν ′. Since RΛ is uniform, deg~1(Rν −~1) is a constant independent

from the choice of ν ∈ Ext(ΣR(Λ)). This shows that

Rν −Rν ′ = u+ 2deg~1(Rν − ~1) + 2× ~1.

Hence RΛ is reflection invariant. The other direction is proved similarly.

Recall the definition of the canonical vector (Definition 5.2.6) and the argument in

the proof of Lemma 5.2.7 in constructing a canonical vector for a reflection invariant

sublattice of ΛR. So we can consider the following corollary as a consequence of

Theorem 5.2.21, Lemma 5.2.29, and Lemma 5.2.31.
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Corollary 5.2.32. Let Λ be a reflection invariant sub-lattice of dimension n of ΛR.

If K is a canonical vector of RΛ then R−1(K + 2× ~1)− 2× ~1 is a canonical vector

of Λ.

5.2.3 Wilmes’ Lattice Reduction Algorithm

John Wilmes’ Senior Thesis from Reed College includes the following result: Given

a full dimensional sub-lattice of Zn, we can find a basis for this lattice coming from

the rows of the reduced Laplacian of a directed graph. We first show how to use

this result to prove that any full dimensional sub-lattice L of the root lattice has a

basis coming from the rows of a strongly connected directed graph. It follows from

this observation that the work of this chapter provides a combinatorial framework for

Amini and Manjunath [3].

Take B to be a basis for L. Because this lattice is codimension one, we can choose

a vector v in B such that the remaining vectors span the root lattice over Q. Let v′

be some integral vector lying in the root lattice which is positive in the first entry and

negative in all other entries. The vector v′ is in the Q-span of B \ v therefore there

exists some positive integer k such that kv′ is in the span of B \v over Z. Taking k to

be large enough, we can be sure that v + kv′ has the same sign pattern as kv′. Now

we can take the vectors in B \ v and apply Wilmes’ reduction algorithm. We claim

that the basis obtained along with v + kv′ is coming from the rows of the Laplacian

of a strongly connected digraph. We will first describe Wilmes’ algorithm informally

as it appears in [64, 75], the claim will follow by construction.

Delete the first entry of each vector in B \ v and arrange the resulting vectors

in a square matrix M . We describe a set of elementary row operations on M which

turns M into a reduced directed Laplacian matrix. We note that the operations being

performed are also being performed on the first entry of the basis, but because the

row sums are one, we can easily recover these values at the end of the algorithm. The
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defining qualities of such a matrix are that (i)Mi,i ≥ 0, (ii)Mi,j ≤ 0 for i 6= j and (iii)

the sum of the entries in each row, i.e. the degree of each row is nonnegative.

First observe that not all of the degrees of the rows are zero, otherwise they would

linearly dependent. By performing the Euclidean algorithm on the degrees of the

rows, which only involves adding integer multiples of rows to each other, we can take

the degrees of all but the first row to be zero. Moreover, we can take the degree of

the first row to be positive by negating this row if necessary.

Next we restrict attention to the remaining n − 1 rows and apply the Euclidean

algorithm to the entries in the second column, and by possibly permuting these rows,

the entries below the second entry are zero. Now we restrict attention to the bottom

n − 2 rows and again apply Euclidean algorithm to the entries in the third column.

Continuing this way, we may make M so that that all of the entries below the supra

diagonal entries, i.e. those entries directly below the diagonal, are zero. Moreover, by

negating rows when necessary, we can assume that these supra diagonal entries are

negative. The matrix M now satisfies (iii) and this condition will be maintained for

the remainder of the algorithm.

The last row now satisfies the conditions (i) and (ii). We now perform a boot-

strapping procedure: assuming that the last k rows satisfy (i) and (ii), we can make

the n− kth row also satisfy (i) and (ii) by adding the appropriate multiples of these

bottom k rows. A corollary of this construction is that the directed graph we obtain

whose Laplacian is obtain from M and v+kv′ has a special form. It is a path from vn

to v0 (the supra diagonal entries are nonzero) with edges added from v0 (v+kv’ has

no zero entries) to all other vertices and potentially additional edges (vi, vj) where

j < i (no nonzero entries below the supra diagonal).
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5.3 Chip-Firing Games on Directed Graphs

5.3.1 Row Chip-Firing Game, The Sandpile Model, and Riemann-Roch
Theory

Let ~G be a directed graph with vertex set {v0, ..., vn} and adjacency matrix ~A whose

entry ~Ai,j for 0 ≤ i, j ≤ n is the number of edges directed from vi to vj. Let

~D = diag(deg+(v0), . . . , deg+(vn)) where deg+(v) denotes the number edges leaving

vertex v ∈ V (~G). We call the matrix ~Q = ~D− ~A the Laplacian matrix of the directed

graph ~G. We define Λ ~G to be the lattice spanned by the rows of ~Q.

In this section we study the following row chip-firing game on vertices of ~G. Begin

with D ∈ Zn+1, which we call a configuration or a divisor, whose ith entry D(vi) is

the number of chips at vertex vi. In each move of the game a vertex either fires or

borrows. We say a vertex fires if it sends a chip along each of its outgoing edges to

its neighbors and borrows if it receives a chip along each of its incoming edges from

its neighbors. We say that a vertex is in debt if the number of chips at that vertex

is negative. The objective of the game is to bring every vertex out of debt by some

sequence of moves. Note that the game is “commutative” in the sense that the order

of firings and borrowings does not effect the final configuration. For f ∈ Zn+1, we

may interpret the divisor D′ = D− ~QTf as the divisor obtained from D by a sequence

of moves in which the vertex vi fires f(vi) times if f(vi) ≥ 0 and it borrows f(vi)

times if f(vi) ≤ 0. We refer to f as a firing strategy. Note that both firing strategies

and divisors are vectors in Zn+1. We say a configuration is a winning configuration

if all of the vertices are out of debt. We call a sequence of moves which achieves a

winning configuration a winning strategy. The question of whether a winning strategy

exists is equivalent to the question of whether there exists a firing strategy f ∈ Zn+1

and an effective divisor E ∈ Zn+1
≥0 such that E = D− ~QTf , i.e., D−E ∈ Λ ~G, |D| 6= ∅

or r(D) ≥ 0. In what follows we will restrict our attention to strongly connected

directed graphs. The main motivation for this consideration is given in the following
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lemma which, interpreted combinatorially, characterizes strongly connected digraphs

in terms of which firings leave a divisor unaffected.

Lemma 5.3.1. A directed graph ~G is strongly connected if and only if there exists a

vector R ∈ Nn+1, unique up to multiplication by a real constant, such that ~QTR = 0.

Proof. Let ~G be strongly connected. For the sake of contradiction suppose there

exists R 6≥ 0 such that ~QTR = 0. Let V + be the set of vertices of ~G such that

R(v) > 0 for all v ∈ V +. Let D = ~QTR. Since the net amount of chips leaving V +

is positive, there must exist some v ∈ V + such that D(v) < 0, a contradiction. Now

assume there exist two linearly independent firing strategies R1 and R2. It is easy to

see that there exists a linear combination of R1 and R2, say R, such that R 6≥ 0. This

proves the uniqueness. Note that we can take R to be an integral vector.

Conversely, suppose ~G is not strongly connected. Let V1, . . . , Vt be the decompo-

sition of vertices of ~G into maximal strongly connected components. Without loss of

generality, let V1 be a set of vertices such that there exists no edges from u to v where

u ∈ Vi, 2 ≤ i ≤ t and v ∈ V1. As above there exists v ∈ V1 such that ~QTR(v) < 0, a

contradiction.

5.3.1.1 Reduced Divisors

Let f, f ′ ∈ Zn+1 be firing strategies. We define an equivalence relation ∼ on Zn+1 by

declaring f ∼ f ′ if ~QT (f − f ′) = ~0. For any set S ⊆ V (~G), the characteristic vector

of S, denoted by χS, is the vector
∑
vi∈S ei. We say a vector f ∈ Zn+1 is a natural

firing strategy if f ≤ R, and f 6≤ ~0. We say a nonzero vector f ∈ Zn+1 is a valid

firing strategy with respect to v0 if f(v0) = 0, and ~0 ≤ f ≤ R. The following lemma

is an immediate consequence of Lemma 5.3.1.

Lemma 5.3.2. Let f ∈ Zn+1 be a nonzero firing strategy then there exists a unique

f ′ ∈ Zn+1 such that f ∼ f ′ and f ′ is a natural firing strategy.
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Definition 5.3.3. Let ~G be a directed graph. We call a divisor D v0-reduced if the

following two conditions hold:

(i) for all v ∈ V (~G) \ {v0}, D(v) ≥ 0,

(ii) for every valid firing f with respect to v0, there exists a vertex v ∈ V (~G) \ {v0}

such that (D − ~QTf)(v) < 0.

The proceeding remark immediately follows from Definition 5.3.3.

Remark 5.3.4. If D′ ∼ D is a v0-reduced divisor then for all k ∈ Z, D′ + kχ{v0} is

a v0-reduced divisor and D′ + kχ{v0} ∼ D + kχ{v0}.

Lemma 5.3.5. Let D be a v0-reduced divisor and let f be a firing strategy such

that f(v0) ≤ 0 and f(v) > 0 for some vertex v ∈ V (~G) \ {v0}. Then there exists

v ∈ V (~G) \ {v0} such that (D − ~QTf)(v) < 0.

Proof. Lemma 5.3.2 implies that there exists a natural firing strategy f ′ ∼ f with

f ′(v0) ≤ f(v0) = 0. Suppose f+ and f− are the positive and negative part of f ′. It

is easy to see that f+ is a valid firing strategy with respect to v0. Hence there exists

a vertex v ∈ V (~G) \ {v0} such that (D − ~QTf+)(v) < 0. Therefore,

(D − ~QTf)(v) = (D − ~QTf ′)(v) = (D − ~QTf+ − ~QTf−)(v) ≤ (D − ~QTf+)(v) < 0.

Lemma 5.3.6. Let ~G be a directed graph and let D be a divisor. Then there exists a

divisor D′ ∼ D such that D′ is v0-reduced.

Proof. The proof that we present here is similar to the proof given by Baker and

Norine [9](§3.1). The process of obtaining a v0-reduced divisor D′ ∼ D has two

steps: first we bring every v ∈ V (~G) \ {v0} out of debt, so that it satisfies the

first condition of Definition 5.3.3, and then we “reduce” the divisor with respect
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to v0, in order to satisfy the second condition of Definition 5.3.3. For performing

the first step, define d(v), for all v ∈ V (~G) \ {v0}, to be the length of the shortest

directed path from v0 to v. Let d = maxv∈V ( ~G)\{v0} d(v). For all 1 ≤ i ≤ d, define

Ai = {v ∈ V (~G) : d(v) = i}. Now we bring the Ai’s out of debt consecutively,

starting at Ad. We recursively define sequences of integers bi and divisors Di as

follows. Let bd = max ({−D(v) : v ∈ Ad, D(v) ≤ 0} ∪ {0}). Define Dd = D − ~QTfd

where fd is the all zero vector except fd(vj) = bd if vj 6∈ Ad. It is easy to see

that Dd(vj) ≥ 0 for all vj ∈ Ad. Now suppose 1 ≤ i ≤ d − 1, and define bi =

max ({−D(v) : v ∈ Ai, Di+1(v) ≤ 0} ∪ {0}). Define Di = Di+1− ~QTfi where fi is the

all zero vector except fi(vj) = bi if vj 6∈ ⋃dk=iAk. It is easy to see that Di(vj) ≥ 0 for

all vj ∈ Ai and Di(vj) = Di+1(vj) for all vj ∈ ⋃dk=i+1 Ak. Since d is a finite number

and the bi’s are bounded, the above procedure terminates. It is easy to verify that

D1 ∼ D is a divisor such that no vertex other than v0 is in debt. This completes the

description of the first step.

Now, we are going to explain the second step. Let D′ = D1 be the divisor obtained

from the first step. While there exists a valid firing strategy f with respect to v0 such

that (D′ − ~QTf)(v) ≥ 0 for all v ∈ V (~G) \ {v0}, replace D′ by D′ − ~QTf . If we show

that the procedure terminates, it is obvious that D′ is a v0-reduced divisor. Since

f(v0) = 0 for any valid firing strategy with respect to v0, the vertex v0 must stop

receiving money at some point. At this point, none of its neighbors fires, so they must

eventually stop receiving money. By iterating this argument we see that, since v0 is

reachable from every vertex, each vertex must stop receiving money at some point.

Hence, the above procedure terminates at a v0-reduced divisor.

Corollary 5.3.7. Let D be a divisor satisfying the property (i) in Definition 5.3.3.

Then there exists a sequence of valid firings f1, . . . , fk with respect to v0 such that

D′ = D − ~QT (
∑k
i=1 fi) is v0-reduced.
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Lemma 5.3.8. For any divisor D, there exist exactly R(v0) = r0 distinct v0-reduced

divisors equivalent to D.

Proof. First, we show that there exist at most r0 distinct reduced divisors equivalent

to D. Suppose not, so by the pigeonhole principle, there exist two distinct reduced

divisors, D′ = D − ~QTf ′ and D′′ = D − ~QTf ′′ with f ′(v0) ≡ f ′′(v0) (mod) r0. Pick

k ∈ Z so that (f ′ − f ′′ − kR)(v0) = 0 and let f ∗ = f ′ − f ′′ − kR. By our assumption

D′ 6= D′′ and so ~QT (f ′ − f ′′) 6= 0. Hence by Lemma 5.3.1, either f ∗ or −f ∗ satisfies

the assumptions of Lemma 5.3.5. Without loss of generality, suppose f ∗ satisfies

the assumption of Lemma 5.3.5. But D′ = D′′ − ~QTf ∗ is a v0-reduced divisor,

contradicting Definition 5.3.3(i).

Now, we show that there exist at least r0 distinct reduced divisors equivalent to

D. Lemma 5.3.6 implies that there exists at least one v0-reduced divisor equivalent

to D, so if r0 = 1 we are done. Therefore for the rest of the proof we will assume that

r0 > 1. Take a v0-reduced divisor D′ ∼ D and observe that D′′ = D′ − ~QT (χ{v0})

satisfies the condition (i) of Definition 5.3.3. Hence Corollary 5.3.7 implies that D′′

can be reduced without firing v0 to achieve a new reduced divisor from D′. We can

acquire r0 v0-reduced divisors equivalent to D by repeated application of this method.

We claim that all of the v0-reduced divisors obtained are distinct. Suppose that there

exist 0 ≤ i < j < r0 and firing strategies f ′ and f ′′ such that f ′(v0) = i, f ′′(v0) = j,

and D∗ = D′ − ~QTf ′ = D′ − ~QTf ′′ is v0-reduced. This implies that ~QT (f ′′ − f ′) = ~0

but 0 < (f ′′ − f ′)(v0) < r0, contradicting the statement of Lemma 5.3.1.

Corollary 5.3.9. Let ~G be a directed graph and let D be a divisor. There exist r0

v0-reduced divisors Di = D − ~QTfi where fi(v0) = i for all 0 ≤ i ≤ r0 − 1.

Lemma 5.3.10. Let ~G be a directed graph and let D be a divisor. Then

(i) D is equivalent to an effective divisor if and only if there exists a v0-reduced

divisor D′ ∼ D such that D′ is effective;
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(ii) Suppose D is not equivalent to an effective divisor. Then D is an extreme

divisor if and only if for any v ∈ V (~G), there exists a v-reduced divisor D′ ∼ D

such that D′(v) = −1.

Proof. (i): One direction is obvious. So assume D is equivalent to an effective divisor,

call it D′′. If D′′ is v0-reduced then we are done. Otherwise, Corollary 5.3.7 implies

that there exists a valid firing strategy f with respect to v0 such that D′′ − ~QTf

is v0-reduced. Since D′′ is effective and f is valid with respect to v0, D′′ − ~QTf is

effective.

(ii): First assume that D is an extreme divisor. The assertion of part (i) implies

that for all v ∈ V (D), if D′ ∼ D is a v-reduced divisor, D′(v) ≤ −1. Suppose there

exists v ∈ V (~G) such that for all v-reduced divisor D′ ∼ D we have that D′(v) < −1.

Then by Remark 5.3.4, for all v-reduced divisors D′ ∼ D, D′ + χ{v} is not effective

and it is v-reduced. So by part (i), D + χ{v} is not effective, a contradiction.

For proving the other direction, it is enough to show that for all v ∈ V (~G), D+χ{v}

is equivalent to an effective divisor. So let v be a vertex and let D′ ∼ D be the v-

reduced divisor such that D′(v) = −1. Then D′ + χ{v} is effective and so D + χ{v} is

also.

5.3.1.2 Dhar’s Algorithm

Dhar [26], while studying the sand pile model, found a simple algorithm for checking

whether a given divisor in an undirected graph G is v0-reduced or not. We discuss the

directed sandpile model in the next section. Here we generalize his algorithm so that

it applies to an arbitrary strongly connected directed graph ~G. The authors found

this generalization independently from Speer [71].

The input of the algorithm is a divisor D satisfying the condition (i) of Defini-

tion 5.3.3. The output of the algorithm is a finite sequence fi of firing strategies

which is decreasing with respect to the ≤ relation. The description of the algorithm
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is as follows.

We construct a sequence of firing strategies fi’s recursively. Set f0 = R, the

primitive vector in the left kernel of the Laplacian. For t ≥ 0, if there exists some

v ∈ V (~G) \ {v0} such that

(D − ~QTft)(v) ≤ −1, (1)

pick one such vertex v and set ft+1 = ft − χ{v}. If for all v ∈ V (~G) \ {v0}, (D −
~QTft)(v) ≥ 0 and ft(v0) > 0, set ft+1 = ft−χ{v0}. Otherwise the algorithm terminates

and the output of the algorithm is the decreasing sequence of fi’s.

We call the above algorithm the generalized Dhar’s algorithm.

Theorem 5.3.11. Let D be a divisor satisfying condition (i) in Definition 5.3.3.

Then

(i) the divisor D is v0-reduced if and only if the generalized Dhar’s Algorithm ter-

minates at f~1·R = ~0.

(ii) if D is a v0-reduced divisor then for each 0 ≤ t ≤ ~1 · R − 1 such that ft+1 =

ft − χ{v0}, D − ~QTft is a v0-reduced divisor.

Proof. (i): Clearly if D is reduced then the algorithm terminates at f~1·R = 0.

So assume that the algorithm terminates on the divisor D. Take a valid firing f

with respect to v0 and pick t as large as possible such that ft ≥ f . The choice of t

implies that ft+1 = ft−χ{v} for some vertex v ∈ V (~G)\{v0} since f(v0) = 0. Therefore

ft = f+f ′ where f ′ ≥ 0 and f ′(v) = 0. Hence (D− ~QTf)(v) = (D− ~QTft− ~QTf ′)(v) ≤

(D− ~QTft)(v) < 0 so the divisor D satisfies the second condition of Definition 5.3.3.

Hence D is v0-reduced.

(ii): For the sake of contradiction, let t be such that ft+1 = ft−χ{v0} and D− ~QTft

is not a v0-reduced divisor. There exists a valid firing strategy f with respect to v0

such that ((D − ~QTft) − ~QTf)(v) ≥ 0 for all v ∈ V (~G) \ {v0}. Let f ′ = ft + f ,

then we have two cases. Assume there exists vi ∈ V (~G) \ {v0} such that f ′(vi) > ri
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then f ′′ = f ′ − R is a firing strategy which satisfies the conditions of Lemma 5.3.5,

contradicting the fact that for all v ∈ V (~G) \ {v0}, (D − ~QTf ′)(v) > 0. Therefore,

we can choose s as large as possible such that fs ≥ f ′. The choice of s implies that

there exists v ∈ V (~G) such that fs(v) = f ′(v) and fs+1 = fs − χ{v}. If v = v0, since

t > s, fs+1 ≥ ft but fs+1(v0) < ft, a contradiction. Hence v ∈ V (~G) \ {v0} and

(D − ~QTfs)(v) < 0. But (D − ~QTf ′)(v) ≤ (D − ~QTfs)(v) < 0 and this contradicts

the choice of f and ft.

The following two paragraphs are not central to this section, and require a working

knowledge of commutative algebra. The generalized Dhar’s algorithm was indepen-

dently discovered by Perkinson, Perlman, and Wilmes [64] in their investigation of

directed Laplacian lattice ideals. Building on an work of Cori, Rossin, and Salvy

[25], and independently Postnikov and Shapiro [66], they observed that the binomial

coming from the firings in the generalized Dhar’s algorithm are a grevlex Gröbner

basis for the directed Laplacian lattice ideal which they generate.

The author and Madhusudan Manjunath have recently answered, in the full di-

mensional case, a question posed by Miller and Sturmfels [59], who asked for an

explicit deformation of a lattice ideal. By Wilmes’ lattice reduction algorithm, it

suffices to study directed Laplacian lattice ideals. The Gröbner basis coming from

the generalized Dhar’s algorithm has the property that it respects perturbations of

the lattice coming from perturbations of the graph. We then use this observation

to deterministically perturb the graph so that the associated Gröbner basis has full

support, implying that the ideal it generates is generic.

We conclude this section with the following definition which will appear in each

of the subsequent sections.

Definition 5.3.12. Let ~G be a directed graph with the Riemann-Roch property. Then

~G has the natural Riemann-Roch property if its canonical divisor K has ith entry

deg+(vi)− 2 for 0 ≤ i ≤ n.
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5.3.1.3 The Sandpile Model

The sandpile model for a directed graph is a constrained version of the “row” chip-

firing game. We define a divisor D to be a v0-sandpile configuration if D satisfies

the condition (i) from Definition 5.3.3. The vertex v0 does not participate in this

game and a vertex v ∈ V (~G) \ {v0} may only fire if it has at least as many chips

as its out-degree (so that v does not go in debt), and it never borrows. Moreover,

we say that two configurations are the same if they agree at all vertices other than

v0. This model has been studied in [40, 46, 71]. The goal of this section is to show

a connection between the sandpile model and the Riemann-Roch property for the

row chip-firing game on a strongly connected directed graph. To do this we will first

show a connection between this model and v0-reduced divisors. We begin with some

necessary definitions.

We now restrict our attention to the sandpile model. We call a v0-sandpile configu-

ration v0-stable if no vertex v ∈ V (~G)\{v0} can fire. We note that while some authors

require v0 to be a global sink (in order to guarantee that a divisor will eventually sta-

bilize), we simply insist that v0 never fires. We say that a v0-sandpile configuration

D′ stabilizes to D, a v0-stable configuration, if D is v0-sandpile achievable from D′.

To see that any v0-sandpile configuration will eventually stabilize to a v0-stable con-

figuration, one may follow an argument similar to the one from Lemma 5.3.6. We

note that, as the language suggests, D is unique, i.e., stabilization is independent of

the choice of firings, and a simple proof by induction on k, the length of the sequence

of firings, gives this fact. A v0-stable configuration D is said to be v0-reachable from

another v0-sandpile configuration D′ if there exists an effective divisor E such that

D′ + E stabilizes to D. A v0-stable configuration is v0-recurrent if it is v0-reachable

from any other v0-sandpile configuration.

Lemma 5.3.13. A divisor D is v0-recurrent if and only if there exists a divisor D′

such that D′(v) ≥ deg+(v) for all v ∈ V (~G) \ {v0} and D′ stabilizes to D.
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Proof. We begin with the easier of the two directions. Assume that D is v0-recurrent

and let D′′ be some divisor such that D′′(v) ≥ deg+(v). By definition, D is v0

reachable from D′′, therefore there exists some effective divisor E such that D′′+E =

D′ stabilizes to D. This gives the existence of D′ from the statement of the lemma.

Conversely, given some v0-sandpile configuration D′ such that D′(v) ≥ deg+(v)

for all v ∈ V (~G) \ {v0}, which stabilizes to D, we will show that D is v0-recurrent.

Take some D′′, a v0-sandpile configuration. We will show that D is v0-reachable from

D′′. First let D′′ stabilize to the configuration D′′′. Now D′′′ ≤ D′ so that D is

v0-reachable from D′′′. Let D′ − D′′′ = E ≥ 0. We claim that D′′ + E stabilizes

to D. By the observation made above, that stabilization is independent of a choice

of firings, it is sufficient to show that there exists a sequence of firings which brings

D′′ + E to D. Because D′′ + E ≥ D′′ we can perform the sequence of firings which

brought D′′ to D′′′. This sequence of firings brings D′′ +E to D′′′ +E = D′ and this

now stabilizes to D.

The following definition is for the unconstrained row chip-firing game introduced

in the previous section. We say that a divisor D is v0-negatively achievable from D′

if there exists a sequence of borrowings by individual vertices such that at each step

the vertex which borrows has a negative number of chips prior to borrowing.

Lemma 5.3.14. A divisor ν is v0-reduced if and only if there exists a divisor D with

D(v) < 0 for all v ∈ V (~G) \ {v0} such that ν is v0-negatively achievable from D.

Proof. We will first show that if ν, a v0-sandpile divisor, is v0-negatively achievable

from D with D(v) < 0 for all v ∈ V (~G) \ {v0} then ν is v0-reduced. We now

introduce some notation, which will be useful for this proof. Let S : va1 , . . . , vak be

the sequence of vertices which borrow and let fS ≤ 0 be the corresponding firing

so that D − QTfS = ν. Let fS,j be the firing strategy defined as fS,j(v) = |{i :
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vai = v, i ≤ j}| for 1 ≤ j ≤ k, with fS,0 = ~0. Assume that ν is not v0-reduced

and let f 6= ~0 be a natural firing such that ν − QTf = ν ′ is a v0-sandpile divisor.

If f + fS � 0 then there exists a maximal connected subset A of V (~G) \ {v0} such

that (f + fS)(v) > 0 for all v ∈ A, but the set A loses a net positive amount of

money via the firing (f + fS) contradicting the fact that D − QT (f + fS) = ν ′ is

a v0 sandpile configuration and D(v) < 0 for all v ∈ A. Because f + fS ≤ 0 we

may take j maximum so that fS,j ≥ f + fS but fS,j+1 � f + fS. This shows that

0 ≤ ν ′(vaj+1
) = (D −QT (f + fS))(vaj+1

) ≤ (D −QTfS,j)(vaj+1
) < 0, a contradiction.

We now show that for any v0-reduced divisor ν there exists some D with D(v) < 0

for all v ∈ V (~G) \ {v0} such that ν is v0-negatively achievable from D. Take ν and

greedily fire vertices in v ∈ V (~G) \ {v0} with a nonnegative number of chips until

you obtain D with D(v) < 0 for all v ∈ V (~G) \ {v0}. To see that this process

will eventually terminate, adapt the argument given in Lemma 5.3.6 for why greedy

reduction of a divisor terminates. We claim that D is the desired divisor. If we now,

as above, greedily borrow by vertices in v ∈ V (~G) \ {v0} which are in debt, we will

stop at a v0-reduced divisor ν ′. To see that this process eventually terminates, again

mimic the argument from Lemma 5.3.6. The fact that ν ′ is v0-reduced was proven

above. The divisor ν ′ is clearly equivalent to ν, and v0 did not participate in the

above process, hence the divisor obtained is equal to ν.

The authors, independently from Speer [71], discovered the following theorem.

Theorem 5.3.15. A v0-sandpile configuration D is v0-recurrent if and only if the

divisor ν is a v0-reduced divisor, where ν(vi) = deg+(vi)−1−D(vi) for all 0 ≤ i ≤ n.

Proof. Let K be the divisor such that K(vi) = deg+(vi) − 2. We first note that the

map φ(D) = K +~1−D is a bijection between divisors D such that D(v) ≥ deg+(v)

for all v ∈ V (~G) \ {v0} and divisors D such that D(v) < 0 for all v ∈ V (~G) \ {v0}.

The theorem then follows by observing that ν is v0-negatively achievable from D with
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D(v) < 0 for all v ∈ V (~G) \ {v0} if and only if φ(ν) is v0-sandpile achievable from

φ(D) with (φ(D))i ≥ deg+(vi) for all v ∈ V (~G) \ {v0}.

We note that using the notion of equivalence given by the unconstrained row

chip-firing game, the previous theorem shows that there are exactly r0 v0-recurrent

divisors in each equivalence class. This is different from the case of undirected graphs

or directed graphs with v0 a global sink, where the recurrent state in each equivalence

class is unique.

We define a divisor D to be minimally v0-recurrent if, ignoring the value of D(v0),

it is minimal with respect to dominance among all v0-recurrent divisors. Using this

definition we have a new way of describing the natural Riemann-Roch property in

terms of the sandpile model for strongly connected directed graphs.

Theorem 5.3.16. A directed graph, ~G has the natural Riemann-Roch property if and

only if for each minimal v0-recurrent divisor D there exists D′ = D + ke0, k ∈ Z,

Ei ∈ Z≥0 for 0 ≤ i ≤ n such that Ei(vi) = 0 and Ei(vj) > 0 for j 6= i and D′ ∼ Ei

and each D′ is of fixed degree g − 1 ∈ N.

Proof. Clearly D is minimally v0 recurrent if and only if, by Theorem 5.3.15, we may

fix D′ as in the statement of the theorem such that ν = K − D′ + ~1 is extreme v0-

reduced. Hence, ~G has the natural Riemann Roch property if and only if ν ′ = D′−~1 ∈

Ext(Σ(Λ) and is fixed degree g − 1, which occurs precisely when D′ ∈ Ext(ΣR(Λ))

and is of fixed degree g − 1. By Lemma 5.2.19, the Theorem follows.

5.3.2 Column Chip-Firing Game, ~G-Parking Functions, and Riemann-
Roch Theory

In this section we present a chip-firing game which comes from the columns of the

Laplacian matrix.

Definition 5.3.17. We call a divisor D a directed ~G-parking function (or simply

~G-parking) with respect to v0 if the following two conditions hold:
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(i) for all v ∈ V (~G) \ {v0}, D(v) ≥ 0,

(ii) for every set A ⊆ V (~G) \ {v0}, there exists some v ∈ A such that

|{(v, u) ∈ E(~G) : u /∈ A}| ≥ D(v).

We introduce the following “column” chip-firing game wherein if a vertex v fires,

it loses deg+(v) chips and sends a chip along each incoming edge (u, v) ∈ E(~G)

(borrowing is defined as the inverse of firing). Note that the total number of chips is

not preserved by firing in contrast to the previous “row” chip-firing game. It is not

hard to see that if all vertices in a set A fire once then a vertex v ∈ A will lose as

many chips as it has edges leaving A, i.e., |{(v, u) : u /∈ A}|, while a vertex u 6∈ A

will gain as many chips as it has edges entering to it from A, i.e., |{(v, u) : v ∈ A}|.

One may view this game as a walk through the lattice spanned by the columns of the

Laplacian of ~G and it follows immediately that if D is a divisor then (D− ~QχA)(v) =

D(v) − |{(v, u) : u /∈ A}| if v ∈ A and (D − ~QχA)(u) = D(u) + |{(v, u) : v ∈ A}| if

u /∈ A. Because ~Q~1 = ~0, we have that for any firing strategy f , there exists some

firing strategy f ′ such that ~Q(f − f ′) = ~0 and f ′ ≤ χA for some A ⊆ V (~G) \ {v0}. It

is also worth mentioning that if R = (r0, . . . , rn) ∈ Nn+1 is the vector guaranteed by

Lemma 5.3.1 such that RT ~Q = ~0T , then degR( ~Qf) = 0 for all f ∈ Zn+1, i.e., the total

number of chips is preserved in the “column” chip-firing game with respect to degR(·).

One may interpret this fact combinatorially by assigning to each vertex vi its own

“chip currency” worth ri of a “universal chip currency” making the game conservative.

Similar notions of “currencies” and “exchange rates” are employed when discussing

chip-firing on arithmetical graphs in Section 5.4.

The definition of a ~G-parking function is the “column” chip-firing analogue of a

v0-reduced divisors from the “row” chip-firing game. More specifically, if we change

~QT to ~Q in definition of v0-reduced divisor (Definition 5.3.3), then we get the def-

inition of ~G-parking function with respect to v0 (Definition 5.3.17). Hence, Dhar’s

algorithm introduced in [9, 26] applies in verifying whether D is ~G-parking function
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with respect to v0. Note that for undirected graphs, the notion of a v0-reduced divisor

and a G-parking function agree as the Laplacian is symmetric, i.e., the “row” and

“column” chip-firing games are identical. It is a well known fact, and has several

combinatorial proofs, that the ~G-parking functions are in bijection with set of rooted

directed spanning trees [20].

An Eulerian directed graph ~H is a directed graph such that deg+(v) = deg−(v)

for each v ∈ V ( ~H). The name is derived from the fact that they are exactly those

directed graphs which possess a directed Eulerian circuit.

Theorem 5.3.18. Let ~G be a strongly connected directed graph with Laplacian ~Q and

let ~G′ be the Eulerian directed graph with Laplacian ~QTR where R = diag(r0, . . . , rn)

where ~1TR ~Q = 0. The directed graph ~G has the Riemann-Roch property for the

column chip-firing game if and only if the directed graph ~G′ has the Riemann-Roch

property for the row chip-firing game.

Proof. Let Λ′~G = { ~Qf : f ∈ Zn+1} be the lattice spanned by the columns of ~Q. It

follows by Theorem 5.2.12 that Λ′~G has the Riemann-Roch property if and only if

RΛ′~G does. This is the lattice spanned by the rows of ~QTR completing the proof.

We note that the column chip-firing game for an Eulerian digraph is the same

game as the row chip-firing game played on the same directed graph with as of the

orientations of all of the arrows reversed. This explains why we are passing to the

transpose of the Laplacian in the proof.

Amini and Manjunath [3] have some results related to Eulerian directed graphs

(which they call regular digraphs). By the previous theorem, all of these results

extend to the column chip-firing game on strongly connected directed graphs. We

also remark that for testing whether a divisor is v0-reduced, the burning algorithm of

Dhar may be applied (burning along incoming edges) and this algorithm can be used

to obtain several of the results of Amini and Manjunath related to Eulerian directed
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graphs.

5.4 Arithmetical Graphs

5.4.1 A Combinatorial Proof of Lorenzini’s Theorem

Let G be a connected undirected multigraph, choose an ordering {v0, . . . , vn} of

vertices of G, and let A be the corresponding adjacency matrix of G. Let R =

(r0, . . . , rn)T ∈ Nn+1 be such that gcd(r0, r1 . . . , rn) = 1 and let δ0, . . . , δn ∈ N be such

that (D − A)R = ~0, where D = diag(δ0, . . . , δn). We say (G,R) is an arithmetical

graph with Laplacian Q = D −A and corresponding multiplicity vector R, where for

all 0 ≤ i ≤ n the value ri is the multiplicity of the vertex vi. Note that an undirected

graph G can be considered as an arithmetical graph (G,~1).

Consider the following chip-firing game played on the vertices of an arithmetical

graph (G,R). Suppose we have a “universal chip currency” and each vertex vi has

its own “vi-chip currency” such that each vi-chip is worth ri of the “universal chip

currency”. If a vertex vi fires, it loses δi of its own vi-chips and sends mi,j vj-chips to

each vj adjacent to vi, where mi,j is the number of edges between vi and vj. We define

borrowing to be the inverse of firing. Let Λ(G,R) be the lattice spanned by the columns

of Q. It is easy to see that moves in this chip-firing game correspond to translations

of some divisor D by a lattice point l ∈ Λ(G,R). This observation allows us to make

use of definitions and theorems from Section 2 when discussing the chip-firing game.

Let (G,R) be an arithmetical graph and R = diag(r0, . . . , rn). Let ~GR be the

directed graph obtained from (G,R) by replacing each undirected edge (vi, vj) with

rj edges directed from vi to vj and ri edges directed from vj to vi. The chip-firing game

for (G,R) corresponds to the row chip-firing game for ~GR by converting each vertex’s

currency to the universal chip currency. Omid Amini observed that if we define ~QR

to be the Laplacian of ~GR, ~QT
R = RQ. It then follows by Theorem 5.2.12 that the

chip-firing game on (G,R) will have the Riemann-Roch property if and only if the row
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chip-firing game on ~GR has the Riemann-Roch property. The row chip-firing game on

~GR is strictly “finer” than the chip-firing game on (G,R) in the sense that a vertex, vi

need not have a multiple of ri universal chips, although so the role of Theorem 5.2.12

here is to say that this difference does not effect whether the Riemann-Roch property

holds.

In our discussion of the chip-firing game for arithmetical graphs we will borrow

several definitions and methods from the row chip-firing game whose interpretation

will be clear from the context in which they are used. In particular the definition of a

v0-reduced divisor and the generalized Dhar’s algorithm will be frequently employed.

Theorem 5.4.1. Let (G,R) be an arithmetical graph with Laplacian Q and let ~GR

be the associated directed graph. Then ~GR has the Riemman-Roch property for the

column chip-firing game.

Proof. By Theorem 5.3.18 it is equivalent to ask the question for the row chip-firing

game on the directed graph ~H whose Laplacian is R ~Q′ where ~Q′ is the Laplacian for

~GR. But ~Q′ is simply ~QR and so ~H has Laplacian R ~QR which as one can easily

check is the Laplacian of the undirected graph obtained from G by replacing each

edge (vi, vj) with rirj edges. By Baker and Norine, this graph has the Riemman-

Roch property and this completes the proof.

Let N = {D ∈ Ext(Σ(Λ(G,R))) : degR(D) = gmax − 1}. For each 0 ≤ i ≤

n, let N(vi) denote the family of vertices which are adjacent to vi, counting their

multiplicities. We call |N(vi)| the degree of the vertex vi and we denote it by deg(vi).

Recall the definition of g0, the number such that 2g0 − 2 =
∑n
i=0 ri(δi − 2). It is not

hard to verify, and is noted in [50], that g0 is an integer. It is also easy to see that

by firing all of the vertices of the G, we get
∑n
i=0 riδi =

∑n
i=0 rideg(vi). Therefore

2g0 − 2 =
∑n
i=0 ri(deg(vi)− 2).
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The following Theorem 5.4.2 and Theorem 5.4.5 are due to Lorenzini [49]. His

approach in proving these theorems is purely algebraic and employs the classical

Riemann-Roch Theorem for curves. As mentioned in [49], he was interested in com-

binatorial proofs of these facts, which we now present.

Theorem 5.4.2. Let (G,R) be an arithmetical graph. Then gmax ≤ g0.

Proof. The following proof is an averaging argument employing the generalized Dhar’s

algorithms and gives a bound twice as good as the naive bound. If one looks closely at

the proof, it becomes apparent that arithmetical graphs are precisely those “directed

graphs” for which such an averaging argument is successful. Let D ∈ N . Choose

a v0-reduced divisor D′ ∼ D such that D′(v0) is as large as possible. For proving

the theorem, it is enough to show that degR(D′) ≤ g0 − 1. Apply the generalized

Dhar’s algorithm to D′. For all 0 ≤ i ≤ n and 1 ≤ k ≤ ri, define Fi,k to be the firing

strategy obtained from the generalized Dhar’s algorithm such that Fi,k(vi) = k, and

the successor of Fi,k is the firing strategy Fi,k − χ{vi}. For each vi ∈ V (~G) \ v0 we

obtain ri inequalities as follows:

for each k where 1 ≤ k ≤ ri, we have:

D′(vi) ≤ kδi −
Ñ ∑
vj∈N(vi)

Fi,k(vj)
é
− 1, (2)

which follows from the fact that (D′ −QFi,k)(vi) < 0 by choice of Fi,k.

For the vertex v0, we know that for all 1 ≤ k ≤ r0,

kδ0 −
∑

vj∈N(v0)

F0,k(vj) ≥ 0,

by the choice of D′ and the second assertion of Lemma 5.3.11. Because D′ ∈ N , by

(ii) of Lemma 5.3.10 we have that D′(v0) < 0. Hence, for all 1 ≤ k ≤ r0,

D′(v0) ≤ kδ0 −
Ñ ∑
vj∈N(v0)

F0,k(vj)

é
− 1. (3)

Note that
∑n
i=0

∑ri
k=1D

′(vi) = D′ ·R = degR(D′).
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Now, taking the sum over all inequalities in (2) and (3), we have:

n∑
i=0

ri∑
k=1

D′(vi) ≤
n∑
i=0

ri((ri + 1)δi − 2)/2−
n∑
i=0

ri∑
k=1

∑
vj∈N(vi)

Fi,k(vj). (4)

We will now restrict our attention to
∑n
i=0

∑ri
k=1

∑
vj∈N(vi)Fi,k(vj). By reordering

the sums, we have

n∑
i=0

ri∑
k=1

∑
vj∈N(vi)

Fi,k(vj) =
∑

i<j, vivj∈E(G)

(
ri∑
k=1

Fi,k(vj) +
rj∑
`=1

Fj,`(vi)
)
.

We claim that if vivj ∈ E(G) then
∑ri
k=1Fi,k(vj) +

∑rj
`=1Fj,`(vi) = rirj. We prove

the claim by induction on ri + rj. If ri + rj = 2, then the claim holds trivially, since

ri = rj = 1. Now suppose ri + rj = m ≥ 3. Without loss of generality, assume Fi,ri
is generated before Fj,rj in the run of the generalized Dhar’s algorithm on D′. Hence

ri∑
k=1

Fi,k(vj) +
rj∑
`=1

Fj,`(vi) = rj +
ri−1∑
k=1

Fi,k(vj) +
rj∑
`=1

Fj,`(vi) = rj + (ri − 1)rj = rirj.

The equality
∑ri−1
k=1 Fi,k(vj) +

∑rj
`=1Fj,`(vi) = (ri − 1)rj follows from the induction

hypothesis. This completes the proof of the claim. So

∑
i<j, vivj∈E(G)

(
ri∑
k=1

Fi,k(vj) +
rj∑
`=1

Fj,`(vi)
)

=
∑

i<j, vivj∈E(G)

rirj =
1

2

Ñ
n∑
i=0

ri
∑

vj∈N(vi)

rj

é
.

Since QR = 0, for all 0 ≤ i ≤ n,
∑
vj∈N(vi) rj = riδi. Hence

n∑
i=0

ri∑
k=1

∑
vj∈N(vi)

Fi,k(vj) =
1

2

(
n∑
i=0

r2
i δi

)
. (5)

Now by substituting (5) into inequality (4), we have:

degR(D′) ≤
n∑
i=0

(ri((ri + 1)δi − 2)/2− 1

2

(
n∑
i=0

r2
i δi

)
=

n∑
i=0

ri(δi − 2)/2 = g0 − 1.

It follows from the above theorem shows that if, in a configuration of the game

identified by D ∈ Div((G,R)), degR(D) ≥ g0, then D has a winning configuration.
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Corollary 5.4.3. We have that gmax = g0 if and only if all inequalities in (2) and (3)

obtained in a run of the generalized Dhar’s algorithm on a v0-reduced divisor D ∈ N

are tight, i.e., if fi is the sequence of firing strategies obtained from the run of the

generalized Dhar’s algorithm on a v0-reduced divisor D ∈ N , for all 0 ≤ t ≤ ~1 ·R−1,

if ft+1 = ft − χ{v} then (D −Q(ft))(v) = −1.

It is clear, and demonstrated below, that if D ∈ N and deg(D) = gmax − 1, then

for each v ∈ V (G) and D′ ∼ D such that D′ is v-reduced, we have D′(v) = −1. The

following theorem shows that the converse is also true.

Theorem 5.4.4. Let D ∈ N . Then deg(D)=gmax− 1 if and only if for each D′ ∼ D

such that D′ is a v-reduced divisor, D′(v) = −1.

Proof. Suppose D ∈ N with deg(D) = gmax − 1. Take v ∈ V (~G). By applying (ii) of

Lemma 5.3.10 we may pick D′ ∼ D to be a v-reduced divisor such that D′(v) = −1.

Corollary 5.4.3 implies that all the inequalities are tight, so for all v-reduced divisor

D′′ ∼ D, D′′(v) = −1.

Conversely, assume that D ∈ N is v0-reduced and suppose that for each D′ ∼

D which is an extreme v-reduced divisor, D′(v) = −1. We wish to show that

deg(D)=gmax − 1. Apply the generalized Dhar’s algorithm to D, and define Fi,k
to be the firing strategy obtained from the generalized Dhar’s algorithm such that

Fi,k(vi) = k and the successor of Fi,k is the firing strategy Fi,k − χ{vi}.

D(vi) ≤ kδi −
Ñ ∑
vj∈N(vi)

Fi,k(vj)
é
− 1, (6)

which follows from the fact that (D − QFi,k)(vi) < 0 by choice of Fi,k. By the

previous corollary, to show that deg(D) = gmax− 1, it is enough to show that each of

the inequalities from (6) holds with equality.

For the vertex v0, we know that for all 1 ≤ k ≤ r0,

kδ0 −
∑

vj∈N(v0)

F0,k(vj) ≥ 0,
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this follows from the choice ofD and the second assertion of Lemma 5.3.11. BecauseD

is extreme, by (ii) of Lemma 5.3.10 we have that D(v0) < 0. Hence for all 1 ≤ k ≤ r0,

D(v0) ≤ kδ0 −
Ñ ∑
vj∈N(v0)

F0,k(vj)

é
− 1. (7)

By assumption, all of the inequalities for v0 above hold with equality. So take vi ∈

V (~G)\v0 and 1 ≤ k ≤ ri. For finishing the proof, we will show that (D−Q(Fi,k))(vi) =

−1. Let the firing strategy f be such that D−Qf is vi-reduced and f(vi) = k, where

the existence of f is guaranteed by Corollary 5.3.9. Assume f ′ ∼ f is a natural

firing strategy. Let ft’s be the sequence of firing strategies obtained from a run of the

generalized Dhar’s algorithm on D. Take j as large as possible such that fj ≥ f ′. Let

v ∈ V (~G) be such that fj+1 = fj − χ{v} and let the firing strategy f ′′ be such that

f ′ = fj − f ′′ where f ′′ ≥ ~0 and f ′′(v) = 0. We claim that v = vi. If v /∈ {v0, vi} then

(D − Qf ′)(v) = (D′ − Q(fj − f ′′))(v) ≤ (D − Q(fj))(v) < 0, contradicting the fact

that D−Qf ′ is a vi-reduced. If v = v0, then (D−Qf ′)(v0) = (D−Q(fj−f ′′))(v0) ≤

(D − Q(fj))(v0) = −1 since D − Qfj is a v0-reduced divisor by the second part of

Theorem 5.3.11. But this again contradicts the fact that D − Qf ′ is a vi-reduced

divisor. Hence v = vi and this finishes the proof of the claim. Therefore fj = Fi,k
and we have:

−1 = (D −Qf ′)(vi) = (D −Q(fj − f ′′))(vi)

= (D −Q(Fi,k − f ′′))(vi) ≤ (D −Q(Fvi,k))(vi) ≤ −1.

Hence (D −Q(Fi,k))(vi) = −1 as desired.

We note that a more general version of the previous theorem can be stated for

strongly connected directed graphs and might have been included in the section on

Dhar’s algorithm, but because we do not have statement like Corollary 5.4.3 for all

strongly connected directed graphs, the statement of this more general theorem would

have been awkwardly phrased.
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Theorem 5.4.5. Let K = (δ0 − 2, ..., δn − 2) be a vector in Zn+1. If gmax = g0 then

D ∈ N if and only if K −D ∈ N .

Proof. Without loss of generality, we may assume D is a v0-reduced divisor. Apply

the generalized Dhar’s algorithm to D and let fi be the output sequence. Let Fi,k be

the firing strategies defined in the proof of Theorem 5.4.2.

Define the divisor D′ such that for all 0 ≤ i ≤ n,

D′(vi) = kδi −
Ñ ∑
vj∈N(vi)

(R−Fi,ri+1−k)(vj)

é
− 1.

We claim that D′ is well-defined. For proving the claim, it is enough to show that for

all 0 ≤ i ≤ n, the value of D′(vi) does not depend upon k. We will show D′ = K−D.

Since gmax = g0, Corollary 5.4.3 implies that for all 0 ≤ i ≤ n,∑
vj∈N(vi)Fi,ri+1−k(vj) = (ri + 1− k)δi −D(vi)− 1. For all 0 ≤ i ≤ n, we have:

∑
vj∈N(vi)

(R−Fi,ri+1−k)(vj) =

Ñ ∑
vj∈N(vi)

rj

é
− ((ri + 1− k)δi −D(vi)− 1)

= −δi + kδi +D(vi) + 1.

Therefore,

D′(vi) = kδi −
Ñ ∑
vj∈N(vi)

(R−Fi,ri+1−k)(vj)

é
− 1

= kδi − (−δi + kδi +D(vi) + 1)− 1 = δi − 2−D(vi).

Since degR(K−D) = g0−1, for finishing the proof we only need to show that K−D

is not equivalent to an effective divisor.

Assume to the contrary that D′ is equivalent to some effective divisor E and let

f be such that D′ − Qf = E. Let f ′ ∼ f be a natural firing strategy guaranteed

by Lemma 5.3.2. Define a “reverse sequence” of firing strategies f ′i = R − f~1·R−i

for all 0 ≤ i ≤ ~1 · R. Take t as large as possible such that f ′t ≥ f ′, so there exists

vi ∈ V (~G) such that f ′(vi) = f ′t(vi). By the definition of the reverse sequence, there

exists 1 ≤ k ≤ ri such that f ′t = R−Fi,ri+1−k + χ{vi}. Therefore,

E(vi) ≤ (D′ −Qf ′t)(vi)
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= kδi −
Ñ ∑
vj∈N(vi)

(R−Fi,ri+1−k)(vj)

é
− 1− (ri − (ri + 1− k)− 1) δi

+

Ñ ∑
vj∈N(vi)

(R−Fi,ri+1−k + χ{vi})(vj)

é
= kδi − (ri − (ri + 1− k)− 1)− 1 = −1.

Note that
∑
vj∈N(vi)(R − Fi,ri+1−k + χ{vi})(vj) =

∑
vj∈N(vi)(R − Fi,ri+1−k)(vj). This

contradicts the choice of E. Hence D′ = K − D is not equivalent to an effective

divisor.

Theorem 5.4.6. Let (G,R) be an arithmetical graph. If g0 = gmin = gmax, then

(G,R) has the Riemann-Roch property. Moreover, the corresponding directed graph

has the natural Riemann-Roch property.

Proof. The first part of the theorem follows as an immediate consequence of Theo-

rem 5.2.11 and Theorem 5.4.5. The second part of the theorem follows by Corollary

5.2.32, which in this context says that if g0 = gmin = gmax, then the canonical divisor

for the corresponding digraph ~GR has ith entry deg+(vi)− 2, i.e., ~GR satisfies Defini-

tion 5.3.12 for the row chip-firing game. Moreover, we note that (δ0−2, . . . , δn−2) ∼

(deg(v0)− 2, . . . , deg(vn)− 2) as is easily observed by computing Q~1.

5.4.2 Arithmetical Graphs with the Riemann-Roch Property

In this section we provide some examples of arithmetical graphs with the Riemann-

Roch property applying several techniques developed in the previous sections. We

begin with a very simple lemma.

Lemma 5.4.7. Let (G,R) be an arithmetical graph. If Λ(G,R) has a unique class of

extreme divisors, i.e. Ext(Σ(Λ(G,R))) = {ν + ` : ` ∈ Λ(G,R)}, then Λ(G,R) has the

Riemann-Roch property.
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Theorem 5.4.8. Let (G,R) be an arithmetical graph. If g0 ≤ 1 then (G,R) has the

Riemann-Roch property.

Proof. Let v0 be a vertex such that r0 ≤ ri for all 1 ≤ i ≤ n. Let D be an extreme

v0-reduced divisor with D(v0) = −1. By Theorem 5.4.2 gmax ≤ g0, so deg(D) ≤

gmax − 1 ≤ 0. Now we have two cases:

(i) D(vi) = 0 for all 1 ≤ i ≤ n, part (ii) of Lemma 5.3.10 and the choice of r0

implies that D is the unique extreme v0-reduced divisor, and the assertion of

the lemma holds by Corollary 5.4.7. Note that in this case gmax 6= g0 unless

g0 = 0 and r0 = 1.

(ii) There exists 1 ≤ i ≤ n such that D(vi) > 0. Since deg(D) ≤ 0, ri = r0 and

vi is the only vertex with D(vi) > 0. This implies that the divisor D′ with

D′(v0) = −1 and D′(vj) = 0 for all 1 ≤ j ≤ n is not an extreme divisor. Hence,

g0 = gmin = gmax = 1, and assertion of the lemma follows by Theorem 5.4.6.

Using the definition of g0, the following is an immediate consequence of Theo-

rem 5.4.8.

Corollary 5.4.9. Let (G,R) be an arithmetical graph with all δi’s equal to two or all

deg(vi)’s equal to two. Then (G,R) has the Riemann-Roch property.

The former arithmetical graphs are those coming from the connection between Lie

algebras or elliptical curves which have been classified [19] and the latter arithmetical

graphs where the underlying graph is a cycle. The following two examples show that

both cases described in the proof of Theorem 5.4.8 occur.

Example 1. Let (G,R) be an arithmetical graph where G is the even cycle v0, . . . , v2n−1

for n ≥ 2, and for all 0 ≤ i ≤ n − 1, the multiplicities of the vertices v2i and v2i+1
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are 1 and 2, respectively. Then gmin = gmax = g0 = 1, and in particular (G,R) has

the Riemann-Roch property.

Proof. We claim that the set of extreme v0-reduced divisors for (G,R) are the set of

divisors Di = χ{v2i}−χ{v0} for all 1 ≤ i ≤ n−1. Assume 1 ≤ i ≤ n−1, and the vector

f is a valid firing strategy with respect to v0 such that Di−Qf ≥ ~0. Observe that if

f(v2i) = 1, then in order to (Di−Qf)(v2i) ≥ 0 we must have f(v2i−1) + f(v2i−1) ≥ 3.

By symmetry, assume that f(v2i−1) ≥ 2. Since (Di − Qf)(v2i−1) ≥ 0, we have

f(v2i−2) = 1. By repeating the argument, we conclude that f(v0) = 1, a contradiction.

This shows that Di is v0-reduced and since r0 = 1, (i) of Lemma 5.3.10 implies that

Di is not equivalent to an effective divisor. For proving the fact that Di is an extreme

divisor, it is enough to show that Di + χ{vj} is equivalent to an effective divisor, for

all 0 ≤ j ≤ 2n− 1.

It is easy to see that g0 = 1. If 0 ≤ j ≤ 2n− 1 is odd, then the divisor Di + χ{vj}

has degree 2 > g0, thus Theorem 5.4.2 implies that Di + χ{vj} is effective. We claim

that for all 0 ≤ j ≤ i ≤ n − 1, the divisor Di + χ{v2j} is equivalent to an effective.

We prove the claim by induction on j. If j = 0, then the assertion of the claim

trivially holds. So, assume j > 0 and let f = χ{v2j−1,...,v2i+1}. A simple computation

gives that Di + χ{v2j}−Qf = Di+1 + χ{v2j−2}. The induction hypothesis implies that

Di+1 + χ{v2j−2} is equivalent an effective divisor, so is Di+1 + χ{v2j}. This shows that

Di’s are extreme v0-reduced divisors.

Now assume that D is an extreme v0-reduced divisor. Part (ii) of Lemma 5.3.10

implies that D(v0) = −1. If D(v2i+1) = 1 for some 0 ≤ i ≤ n− 1, then D is not a v0-

reduced divisor. The above argument shows that if D(v2i) = 2 or D(v2i) = D(v2j) = 1

for some 0 ≤ i 6= j ≤ n − 1, the divisor D is equivalent to an effective divisor.

Obviously D 6= −χ{v0}, and this completes the proof of the claim.

Since each extreme v0-reduced divisor Di, 1 ≤ i ≤ n − 1 has degree zero, gmin =

gmax = g0. Theorem 5.4.6 implies that (G,R) has the Riemann-Roch property.
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Example 2. Let (G,R) be an arithmetical graph where G is a cycle v1, . . . , vn for

n ≥ 3 and the multiplicity of vertex vi is i for all 1 ≤ i ≤ n. Then (G,R) has

Riemann-Roch property.

Proof. It is easy to see that g0 = 1. Now assume D is an extreme v1-reduced divisor.

The part (ii) of Lemma 5.3.10 implies that D(v1) = −1. If there exists 2 ≤ i ≤ n

such that D(vi) ≥ 1, then degree of D is at least one. Thus, Theorem 5.4.2 implies

that D is equivalent to an effective divisor. This shows that D = −χ{v1} is the unique

extreme v1-reduced divisor and the assertion of the lemma follows Corollary 5.4.7.

The following example introduced in [49] has the Riemann-Roch property.

Example 3. Let (G,R) be an arithmetical graph where G is a graph with vertex

set {v0, v1} such that v0 is connected to v1 with r0r1 edges where r0 and r1 are the

multiplicity of the vertex v0 and v1, respectively. Then (G,R) has the Riemann-Roch

property.

Proof. The proof follows from Corollary 5.4.7, since there exists a unique extreme

v0-reduced divisor, D = −χ{v0} + (r2
0 − 1)χ{v1}. Hence gmin = gmax = g0.

Given any two integers r0 > r1, we can recursively construct a decreasing sequence

ri’s where ri+1 = δiri − ri−1, ri+1 < ri and δi ∈ N for all i ≥ 1. We call such a

sequence the Euclidean sequence generated by r0 and r1. Note that the Euclidean

sequence generated by r0 and r1 is finite and it comes from a simple variation of

Euclid’s algorithm.

Let (G,R) be an arithmetical graph. We define a Euclidean chain leaving v0

generated by r0 and r1 to be an induced path C = v0, v1, . . . , vn of length n + 1 ≥ 2

in G such that degG(vn) = 1 where the corresponding sequence of multiplicities,

r0, r1, . . . , rn is the Euclidean sequence generated by r0 and r1. Note that rn =
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gcd(ri, ri+1) for all 0 ≤ i ≤ n− 1. If v0, r0 and r1 are clear from the context, we may

simply refer to the path as a Euclidean chain.

Lorenzini [50] uses a slight variation of the Euclidean chain for building arithmeti-

cal graphs. We use Euclidean chains to construct a family arithmetical graph with

the Riemann-Roch property.

A Euclidean star generated by r0 and r1 is an arithmetical graph (G,R) with

the center vertex v0 with multiplicity r0 and r0 identical Euclidean chains leaving v0

generated by r0 and r1. We call the vertex v0 the center vertex. When r0 and r1 are

clear from the context, we will simply say Euclidean star.

We will show that every Euclidean star generated by r0 and r1 with gcd(r0, r1) = 1,

has the Riemann-Roch property.

Definition 5.4.10. Let r0 > r1 be two positive integers with gcd(r0, r1) = 1. Assume

r0, r1, . . . , rm is the Euclidean sequence generated by r0 and r1. Given a nonnegative

integer x, we say x has a good representation with respect to r0 and r1 if there exist

0 ≤ ti ≤ δi − 1, for all 1 ≤ i ≤ m such that x =
∑m
i=1 tiri, and there exist no

1 ≤ i < j ≤ m such that ti = δi − 1, tj = δj − 1 and for all i < k < j, tk = δk − 2.

Lemma 5.4.11. Let r0 and r1 be positive integers with gcd(r0, r1) = 1. Given a

nonnegative integer x, x has a good representation with with respect to r0 and r1 if

and only if 0 ≤ x ≤ r0 − 1. Moreover, if 0 ≤ x ≤ r0 − 1 such a representation is

unique.

Proof. Assume r0, r1, . . . , rm is the Euclidean sequence generated by r0 and r1. We

prove by induction on m. If m = 1, the assertion of the lemma is obvious. Now

assume m ≥ 2 and x is an arbitrary nonnegative integer. It is easy to see that

t1 ≤ b xr1 c. If t1 < b xr1 c, then x − t1r1 ≥ r1, so by the induction hypothesis x − t1r1

does not have a good representation with respect to r1 and r2 because gcd(r1, r2) = 1

and the Euclidean sequence obtained from r1 and r2 is r1, r2, . . . , rm.
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Hence, we may assume t1 = b x
r1
c, so by induction hypothesis x− t1r1 has a good

representation with respect to r1 and r2. If t1 ≤ δ1− 2, then the good representation

of x−t1r1 with respect to r1 and r2 extends to a good representation of x with respect

to r0 and r1.

If t1 = δ1 − 1, then x − (δ1 − 1)r1 = x − r0 − r2 + r1 < r1 − r2, therefore

x− t1r1 +r2 =
∑m
i=2 tiri is a unique good representation with respect to r1 and r2. We

claim t2 ≥ 1. If t2 = 0 then x − t1r1 + r2 has a good representation with respect to

r2 and r3, therefore by induction x− t1r1 + r2 < r2, so x− t1r1 < 0, a contradiction.

Therefore (t2 − 1)r2 +
∑m
i=3 tiri is the unique good representation of x − t1r1 with

respect to r1 and r2. We claim that t1r1 + (t2 − 1)r2 +
∑m
i=3 tiri is the unique good

representation of x with respect to r0 and r1. Uniqueness has been established, so it

remains to show that the representation is good. Assume the representation is not

good. It follows that there exists i ≥ 3 such that ti = δi − 1 and for all 2 < k < i,

tk = δk − 2, and t2− 1 = δ2− 2. Therefore, t2 = δ2− 1, which implies
∑m
i=2 tiri is not

a good representation of x− t1r1 + r2 with respect to r0 and r1, a contradiction.

Suppose there exists an integer x ≥ r0 such that x has a good representation with

respect to r0 and r1, x =
∑m
i=1 tiri. If t1 ≤ δ1−2 then x−t1r1 ≥ x−(r0+r2)+2r1 ≥ r1.

So by induction hypothesis x − t1r1 does not have a good representation respect to

r1 and r2, a contradiction. Hence t1 = δ1 − 1 and x − t1r1 < r1. This implies that

x−t1r1 ≥ x−(r0+r2)+r1 ≥ r1−r2. Let x−t1r1 =
∑m
i=2 tiri be the good representation

of x − t1r1 with respect to r1 and r2. By induction hypothesis x − t1r1 + r2 ≥ r1

does not have a good representation with respect to r1 and r2. Either there exists

3 ≤ j ≤ m such that tj = δj − 1, t2 + 1 = δ2 − 1 and ti = δi − 2 for all 2 < i < j, or

t2 + 1 = δ2, both of which contradict the fact that
∑m
i=1 tiri is a good representation

of x with respect to r0 and r1 because t1 = δ1 − 1.

Lemma 5.4.12. Let (G,R) be a Euclidean star generated by r0 and r1 with center

vertex v0. Then the set of all v0-reduced divisors are the set of divisors such that
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for any Euclidean chain C = v0, v1, . . . , vm leaving v0, x =
∑m
i=1D(vi)ri is a good

representation with respect to r0 and r1.

Proof. Let D be a v0-reduced divisor and C = v0, v1, . . . , vm be a Euclidean chain

leaving v0. It is clear that if x =
∑m
i=1D(vi)ri is not a good representation with

respect to r0 and r1 then D is not a v0-reduced divisor.

Conversely, letD be a divisor such that for every Euclidean chain C = v0, v1, . . . , vm

leaving v0, x =
∑m
i=1D(vi)ri is a good representation with respect to r0 and r1, but

D is not a v0-reduced divisor. Let f ≥ ~0 be a firing strategy such that f(v0) = 0 and

D′ = D − Qf is a v0-reduced divisor. Note that the existence of f is guaranteed by

Corollary 5.3.7. Let C = v0, v1, . . . , vm be a Euclidean chain leaving v0. Without loss

of generality, we may assume f ′ 6= ~0 where f ′ is the projection of f into the first m+1

coordinates. If f ′(v1) > 0 then
∑m
i=1D

′(vi)ri < 0, therefore there exists 1 ≤ i ≤ m

such that D′(vi) < 0, a contradiction. Hence,
∑m
i=1 D

′(vi)ri =
∑m
i=1D(vi)ri. Since

f ′ 6= ~0, by Lemma 5.3.1 and the uniquenes of the representation of
∑m
i=1D(vi)ri im-

plied by Lemma 5.4.11,
∑m
i=1 D

′(vi)ri is not a good representation. Therefore D′ is

not v0-reduced, a contradiction.

Definition 5.4.13. Let (G,R) be a Euclidean star generated by r0 and r1 with cen-

ter vertex v0. We say a divisor S is a staircase divisor if there exists a labeling

C0, . . . , Cr0−1 of the Euclidean chains leaving v0 where Pi = v0, vi,1, . . . , vi,m is the

induced path of Ci such that
∑m
j=1 S(vi,j)rj is the good representation of i, for all

0 ≤ i ≤ r0 − 1, and S(v0) = −1.

Lemma 5.4.14. Let (G,R) be a Euclidean star generated by r0 and r1 with center

vertex v0. A divisor D is an extreme v0-reduced divisor if and only if D is a staircase

divisor.

Proof. Let S be a staircase divisor and C0, . . . , Cr0−1 be a labeling of the Euclidean

chains leaving v0 where v0, vi,1, . . . , vi,m are the vertices of Ci. We claim that S is
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not equivalent to an effective divisor. For proving the claim, it is enough to show

that all v0-reduced divisors equivalent to S are staircase divisors. Let 1 ≤ k ≤ r0

and fk be the firing strategy guaranteed by Corollary 5.3.9, such that fk(v0) = k

and Sk = S −Qfk is a v0-reduced divisor. Note that since S is a v0-reduced divisor,

by Lemma 5.4.12, the divisor S is v0-reduced. So, as an application of part (ii) of

Theorem 5.3.11, we may assume fk ≥ ~0. It is clear from the proof of Lemma 5.4.12,∑m
j=1 Sk(vi,j)rj is a good representation of i+ kr1 mod r0 for all 0 ≤ i ≤ r0− 1. Note

that Sk is a staircase divisor and sk(v0) = −1. So (i) of Lemma 5.3.10 implies that

Sk is not equivalent to an effective divisor.

We now prove that for any v0-reduced divisor D not equivalent to an effective,

there exists a staircase divisor S such that D′ ∼ D with D′ ≤ S. Let C0, . . . , Cr0−1

be a labeling of the Euclidean chains leaving v0 where v0, vi,1, . . . , vi,m are the vertices

of Ci such that
∑m
j=1 D(vi,j)rj ≤ ∑m

j=1 D(vi+1,j)rj for all 0 ≤ i ≤ r0 − 2. Let S be

the staircase divisor defined by the same labeling of the Euclidean chains leaving

v0. If for all 0 ≤ i ≤ r0 − 1,
∑m
j=1D(vi,j)rj ≤ i then D ≤ S, so we may assume

that there exists 0 ≤ i ≤ r0 − 1 such that
∑m
j=1D(vi,j)rj > i. Let k be such that

kr1 ≡ r0 − i− 1 (mod) r0. By Corollary 5.3.9, there exist firing strategies fD and fS

such that fD(v0) = fS(v0) = k and the divisors Dk = D − QfD and Sk = S − QfS
are v0-reduced. We claim that Dk is effective, in particular Dk(v0) = 0. We have

fD(v`,1) = fS(v`,1) = bkr1
r0
c for all 0 ≤ ` ≤ i− 1 and fD(v`,1) = fS(v`,1) = dkr1

r0
e for all

i+ 1 ≤ ` ≤ r0 − 1, but fD(vi,1) = dkr1
r0
e while fS(vi,1) = bkr1

r0
c. This proves the claim

and completes the proof of the lemma.

Theorem 5.4.15. Let (G,R) be a Euclidean star then (G,R) has the Riemann-Roch

property.

Proof. By Lemma 5.4.14, we know that the set of staircase divisors is the set of
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extreme v0-reduced divisors, hence

gmin − 1 = gmax − 1 = (
r0−1∑
i=0

i)− r0 = r0(r0 − 3)/2.

Let V (~G) = {v0, . . . , vn}. Using the formula

g0 − 1 =
n∑
i=0

ri(deg(vi)− 2)/2 = r0(r0 − 3)/2 =

Ü
r0 − 1

2

ê
− 1.

Now the assertion of the theorem follows from Theorem 5.4.6.

5.4.3 Arithmetical Graphs without the Riemann-Roch Property

It follows from Theorem 5.2.11 that an arithmetical graph (G,R) fails to have the

Riemann-Roch property if (G,R) is not uniform or is not reflection invariant. The

following examples show that there exist arithmetical graphs which are uniform, but

not reflection invariant, arithmetical graphs which are reflection invariant, but not

uniform, and arithmetical graphs which are neither reflection invariant nor uniform.

Example 4. Let (G,R) be an arithmetical graph, where G is the graph obtained by

adding two edges connecting v0 to v3 to the 6-cycle v0, . . . , v5, and the multiplicity of

the vertex vi is 1 if i ∈ {0, 2, 4} and is 2 otherwise. Then (G,R) is neither uniform

nor reflection invariant.

Proof. Let ν1 = −χ{v0} + χ{v2,v3,v4}, ν2 = −χ{v0} + χ{v2} + 2χ{v4} and ν3 = −χ{v0} +

2χ{v2}+χ{v4}. We claim that E = {ν1, ν2, ν3} is the set of extreme v0-reduced divisors

of (G,R). Note that degR(ν1) = 3 and degR(ν2) = degR(ν3) = 2. For proving the

claim, we start by showing that ν1 is v0-reduced. Let f be a valid firing strategy with

respect to v0 such that (D1 − Qf)(vi) ≥ 0, for all 1 ≤ i ≤ 5. If f(v2) = 1, since

(D1−Qf)(v2) ≥ 0, we have f(v1) + f(v3) ≥ 3. If f(v1) = 2, since (D1−Qf)(v1) ≥ 0

we must have f(v0) ≥ 1, a contradiction. So f(v3) = 2 and this implies that in order

to have (D1−Qf)(v3) ≥ 0 we must have f(v4) = 3, a contradiction. This shows that

f(v1) = 0, and by symmetry f(v5) = f(v4) = 0, which shows that f(v3) = 0. This
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shows that f = ~0, which contradicts the fact that f is valid strategy with respect to

v0. Hence, ν1 is v0-reduced, as desired. By applying a similar argument, we can see

that ν2 and ν3 are v0-reduced divisors. Note that since r0 = 1, by Lemma 5.3.10(i),

the v0-reduced divisors ν1, ν2, ν3 are not effective and they are pairwise inequivalent.

It is easy to compute that degR(ν1) = 3 = g0−1, so Theorem 5.4.2 implies that ν1

is extreme. Hence, by symmetry, we only need to prove that ν2 is extreme. For proving

this fact it is enough to show that D = ν2 + χ{vi} is equivalent to an effective divisor

for all 0 ≤ i ≤ 5. If i 6∈ {0, 2, 4}, then degree of D is 4 = g0, so Theorem 5.4.2 implies

that D is equivalent to an effective divisor. If i = 0, then D is trivially effective. If

i = 2, then we have a firing strategy f = ~1 − χ{v0} such that D − Qf = 3χ{v0} ≥ ~0.

Also, if i = 4, then we have f = χ{v4,v5} such that D − Qf = χ{v2,v3} ≥ ~0. This

completes the proof of the fact that ν1, ν2, ν3 are extreme v0-reduced divisors.

Suppose ν is an extreme v0-reduced divisor. It is easy to see that ν(v2) ≤ 2 (by

symmetry ν(v4) ≤ 2), since otherwise ν − Qf ≥ 0, where f = χ{v1,v2}. Note that

ν(v1) = ν(v5) = 0 and ν(v3) ≤ 1. It follows that E is the set of v0-reduced divisors and

this completes the proof of the claim. This demonstrates that (G,R) is not uniform.

Now, we are going to show that (G,R) is not reflection invariant. Let Λ be

the lattice spanned by Laplacian of (G,R). By applying Lemma 5.3.6 and (ii) of

Lemma 5.3.10, we conclude that Ext(Σ(Λ)) = {ν+` : ` ∈ Λ, ν ∈ E}. Corollary 5.2.23

implies Crit(Λ) = P + Λ, where P = {π(ν + ~1) : ν ∈ E}. Let pi = π(νi + ~1) = (νi +

~1) −
(

(νi+~1)·R
R·R

)
R. An easy computation shows that p1 = 1

5
(−4,−3, 6, 2, 6,−3), p2 =

1
15

(−11,−7, 19,−7, 34,−7) and p3 = 1
15

(−11,−7, 34,−7, 19,−7). For seeking a con-

tradiction, assume there exists v ∈ R6 such that−Crit(Λ) = Crit(Λ)+v. Either there

exist `, `′, `′′ ∈ Λ such that −p1 = p1 + `+ v, −p2 = p2 + `′+ v and −p3 = p3 + `′′+ v,

in this case 2(pi − pj) ∈ Λ for all 1 ≤ i 6= j ≤ 3. Or, there exist `, `′ ∈ Λ and

{i, j, k} = {1, 2, 3} such that −pi = pj + ` + v, and −pk = pk + `′ + v, in this case

−pj = pi + `+ v and we must have −2pk + pi + pj ∈ Λ. Note that Λ ⊆ Z6, so an easy
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computation shows that none of the above cases happen. This proves that (G,R) is

not reflection invariant.

Example 5. Let (G,R) be an arithmetical graph, where G is a graph obtained from

K4 where V (K4) = {v0, v1, v2, v3}, by subdividing the edge v2v3 twice. The multiplicity

of the vertices v0 and v1 are 2 and 4 respectively, and the multiplicity of the other

vertices are 3. Then (G,R) is uniform, but not reflection invariant.

Proof. Let P = v2v4v5v3 be the induced path connecting v2 to v3, i.e., the path

obtained by subdividing the edge v2v3 in the graph K4.

Let ν1 = −χ{v0} + χ{v2,v4}, ν2 = −χ{v0} + 2χ{v2} and ν3 = −χ{v0} + 2χ{v3}. We

claim that E = {ν1, ν2, ν3} is the set of extreme v0-reduced divisors of (G,R). By

running the generalized Dhar’s algorithm on each νi, 1 ≤ i ≤ 3, it is not hard to see

that ν1 ∼ −χ{v0} + χ{v3,v5}, ν2 ∼ −χ{v0} + χ{v3,v4} and ν3 ∼ −χ{v0} + χ{v2,v5}.

We will leave the details of the fact that νi, 1 ≤ i ≤ 3 is v0-reduced to the reader.

(It follows from Lemma 5.3.11, or case analysis similar to that one used in the proof

of the Example 4.) It is easy to compute that g0 = 7, and for all ν ∈ E and 0 ≤ i ≤ 5,

degR(ν + χ{vi}) ≥ 7. Now, Theorem 5.4.2 implies that ν + χ{vi} is equivalent to an

effective divisor. This shows that νi, 1 ≤ i ≤ 3 is extreme v0-reduced.

To finish the proof of the claim, it is enough to show that if ν is extreme v0-

reduced divisor, then ν ∈ E . Note that ν(v1) = 0 since otherwise ν −Qf ≥ 0 where

f = χ{v0} + 3χ{v1} + 2χ{v2,v3,v4,v5}. Also, note that if ν(v2) ≥ 1 and ν(v3) ≥ 1, then

ν − Qf ≥ χ{v1} where f = χ{v0,...,v5}. This shows that there exists 1 ≤ i ≤ 3 such

that ν = νi or ν ∼ νi.

The uniformity of (G,R) immediately follows from the fact that for all ν ∈ E ,

degR(ν) = 4.

For proving the fact that (G,R) is not reflection invariant, we apply a similar ar-

gument we used in the proof of Example 4. Let P = {p1, p2, p3} be the same set as de-

fined in Example 4. An easy computation shows that p1 = 1
3
(−2,−1, 4,−1, 4,−1), p2 =
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1
3
(−2,−1, 7,−1, 1,−1) and p3 = 1

5
(−4,−3, 1, 7, 1,−3). For seeking a contradiction,

assume there exists v ∈ R6 such that −Crit(Λ) = Crit(Λ) + v. Either there exist

`, `′, `′′ ∈ Λ such that −p1 = p1 + ` + v, −p2 = p2 + `′ + v and −p3 = p3 + `′′ + v,

in this case 2(pi − pj) ∈ Λ for all 1 ≤ i 6= j ≤ 3. Otherwise there exist `, `′ ∈ Λ and

{i, j, k} = {1, 2, 3} such that −pi = pj + ` + v, and −pk = pk + `′ + v, in this case

−pj = pi + ` + v and we must have −2pk + pi + pj ∈ Λ. Note that Λ ⊆ Z6, so an

easy computation shows that none of the above cases occur. This proves that (G,R)

is not reflection invariant.

Example 6. Suppose R = (r0, r1, r2) = (1, 2, 3). Let (G,R) be an arithmetical graph

where G is a graph with vertex set {v0, v1, v2} such that the multiplicity of vi is ri

and vi is connected to vj with rirj edges for all 0 ≤ i 6= j ≤ 2. Then (G,R) is not

uniform, but it is reflection invariant.

Proof. We claim that ν1 = −χ{v0} + 3χ{v1} + 2χ{v2} and ν2 = −χ{v0} + χ{v1} + 3χ{v2}

are the only extreme v0-reduced divisors. Suppose ν is an extreme v0-reduced divisor.

Lemma 5.3.10 (ii) implies that ν(v0) = −1. It is not hard to see that ν(v1) ≤ 3 and

ν(v2) ≤ 3, otherwise ν − Qf is effective where f = χ{v1,v2} and f = χ{v1} + 2χ{v2}

respectively. Moreover, if D = −χ{v0}+2χ{v1}+3χ{v2}, then D−Qf is effective where

f ′ = 2χ{v1} + 3χ{v2}. Therefore the only possible extreme divisors are ν1 and ν2. By

running the generalized Dhar’s algorithm on ν1 and ν2, and applying Lemma 5.3.11,

one can check that ν1 are ν2 are v0-reduced and therefore they are not equivalent to

effective divisors. Note that the above computation shows that we already checked

some of the different possible firing strategies in a run of the generalized Dhar’s

Algorithm on ν1 and ν2.

So, we claim that if an arithmetical graph (G,R) has only two v0-reduced divisors

then (G,R) is reflection invariant. Let Λ be the lattice spanned by the Laplacian of

(G,R) and E be the set of extreme divisors of Λ. By applying Lemma 5.3.6 and (ii) of

Lemma 5.3.10, we conclude that Ext(Σ(Λ)) = {ν+` : ` ∈ Λ, ν ∈ E}. Corollary 5.2.23
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implies Crit(Λ) = P + Λ where P = {π(ν + ~1) : ν ∈ E}. Let ν1 and ν2 be the only

extreme v0-reduced divisors of (G,R) and p1 = π(ν1 + ~1) and p2 = π(ν2 + ~1). For

proving the claim its enough to show that−Crit(Λ) = Crit(Λ)+v where v = −p1−p2.

Assume p ∈ Crit(Λ), therefore there exists 1 ≤ i ≤ 2 and ` ∈ Λ such that p = pi + `.

Now, it is easy to see that pi + ` + v = −pj + ` = −(pj − `) where j = −i + 3 and

pj − ` ∈ Crit(Λ). This completes the proof of the claim.

So by a similar argument mentioned in proof of Example 5, (G,R) is reflection

invariant. Since degR(ν) = 11 and degR(ν ′) = 10, we have gmax = 12 and gmin = 11.

This shows that (G,R) is not uniform.
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